

Download at Boykma.Com

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Masterminds of
Programming

Edited by Federico Biancuzzi and Shane Warden

Download at Boykma.Com

Masterminds of Programming
Edited by Federico Biancuzzi and Shane Warden

Copyright © 2009 Federico Biancuzzi and Shane Warden. All rights reserved. Printed in the

United States of America.

Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (safari.oreilly.com). For more information, contact our

corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Rachel Monaghan

Indexer: Angela Howard

Proofreader: Nancy Kotary

Cover Designer: Monica Kamsvaag

Interior Designer: Marcia Friedman

Printing History:

March 2009: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Masterminds of Programming and

related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by

manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the

designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

ISBN: 978-0-596-51517-1

[V]

Download at Boykma.Com

http://safari.oreilly.com
mailto:corporate@oreilly.com
mailto:corporate@oreilly.com

iii

C O N T E N T S

FOREWORD vii

PREFACE ix

1 C++ 1

Bjarne Stroustrup

Design Decisions 2

Using the Language 6

OOP and Concurrency 9

Future 13

Teaching 16

2 PYTHON 19

Guido von Rossum

The Pythonic Way 20

The Good Programmer 27

Multiple Pythons 32

Expedients and Experience 37

3 APL 43

Adin D. Falkoff

Paper and Pencil 44

Elementary Principles 47

Parallelism 53

Legacy 56

4 FORTH 59

Charles D. Moore

The Forth Language and Language Design 60

Hardware 67

Application Design 71

5 BASIC 79

Thomas E. Kurtz

The Goals Behind BASIC 80

Compiler Design 86

Language and Programming Practice 90

Language Design 91

Work Goals 97

Download at Boykma.Com

iv C O N T E N T S

6 AWK 101

Alfred Aho, Peter Weinberger, and Brian Kernighan

The Life of Algorithms 102

Language Design 104

Unix and Its Culture 106

The Role of Documentation 111

Computer Science 114

Breeding Little Languages 116

Designing a New Language 121

Legacy Culture 129

Transformative Technologies 132

Bits That Change the Universe 137

Theory and Practice 142

Waiting for a Breakthrough 149

Programming by Example 154

7 LUA 161

Luiz Henrique de Figueiredo and Roberto Ierusalimschy

The Power of Scripting 162

Experience 165

Language Design 169

8 HASKELL 177

Simon Peyton Jones, Paul Hudak, Philip Wadler,
and John Hughes

A Functional Team 178

Trajectory of Functional Programming 180

The Haskell Language 187

Spreading (Functional) Education 194

Formalism and Evolution 196

9 ML 203

Robin Milner

The Soundness of Theorems 204

The Theory of Meaning 212

Beyond Informatics 218

10 SQL 225

Don Chamberlin

A Seminal Paper 226

The Language 229

Feedback and Evolution 233

XQuery and XML 238

Download at Boykma.Com

C O N T E N T S v

11 OBJECTIVE-C 241

Brad Cox and Tom Love

Engineering Objective-C 242

Growing a Language 244

Education and Training 249

Project Management and Legacy Software 251

Objective-C and Other Languages 258

Components, Sand, and Bricks 263

Quality As an Economic Phenomenon 269

Education 272

12 JAVA 277

James Gosling

Power or Simplicity 278

A Matter of Taste 281

Concurrency 285

Designing a Language 287

Feedback Loop 291

13 C# 295

Anders Hejlsberg

Language and Design 296

Growing a Language 302

C# 306

The Future of Computer Science 311

14 UML 317

Ivar Jacobson, James Rumbaugh, and Grady Booch

Learning and Teaching 318

The Role of the People 323

UML 328

Knowledge 331

Be Ready for Change 334

Using UML 339

Layers and Languages 343

A Bit of Reusability 348

Symmetric Relationships 352

UML 356

Language Design 358

Training Developers 364

Creativity, Refinement, and Patterns 366

Download at Boykma.Com

vi C O N T E N T S

15 PERL 375

Larry Wall

The Language of Revolutions 376

Language 380

Community 386

Evolution and Revolution 389

16 POSTSCRIPT 395

Charles Geschke and John Warnock

Designed to Last 396

Research and Education 406

Interfaces to Longevity 410

Standard Wishes 414

17 EIFFEL 417

Bertrand Meyer

An Inspired Afternoon 418

Reusability and Genericity 425

Proofreading Languages 429

Managing Growth and Evolution 436

AFTERWORD 441

CONTRIBUTORS 443

INDEX 459

Download at Boykma.Com

vii

Chapter

Foreword

PROGRAMMING LANGUAGE DESIGN IS A FASCINATING TOPIC. There are so many programmers

who think they can design a programming language better than one they are currently

using; and there are so many researchers who believe they can design a programming lan-

guage better than any that are in current use. Their beliefs are often justified, but few of

their designs ever leave the designer’s bottom drawer. You will not find them represented

in this book.

Programming language design is a serious business. Small errors in a language design can

be conducive to large errors in an actual program written in the language, and even small

errors in programs can have large and extremely costly consequences. The vulnerabilities

of widely used software have repeatedly allowed attack by malware to cause billions of

dollars of damage to the world economy. The safety and security of programming lan-

guages is a recurrent theme of this book.

Download at Boykma.Com

viii F O R E W O R D

Programming language design is an unpredictable adventure. Languages designed for uni-

versal application, even when supported and sponsored by vast organisations, end up

sometimes in just a niche market. In contrast, languages designed for limited or local use

can win a broad clientele, sometimes in environments and for applications that their

designers never dreamed of. This book concentrates on languages of the latter kind.

These successful languages share a significant characteristic: each of them is the brainchild

of a single person or a small team of like-minded enthusiasts. Their designers are master-

minds of programming; they have the experience, the vision, the energy, the persistence,

and the sheer genius to drive the language through its initial implementation, through its

evolution in the light of experience, and through its standardisation by usage (de facto)

and by committee (de jure).

In this book the reader will meet this collection of masterminds in person. Each of them

has granted an extended interview, telling the story of his language and the factors that lie

behind its success. The combined role of good decisions and good luck is frankly acknowl-

edged. And finally, the publication of the actual words spoken in the interview gives an

insight into the personality and motivations of the designer, which is as fascinating as the

language design itself.

—Sir Tony Hoare

Sir Tony Hoare, winner of an ACM Turing Award and a Kyoto Award, has been a leader in research

into computing algorithms and programming languages for 50 years. His first academic paper, writ-

ten in 1969, explored the idea of proving the correctness of programs, and suggested that a goal of pro-

gramming language design was to make it easier to write correct programs. He is delighted to see the

idea spread gradually among programming language designers.

Download at Boykma.Com

ix

Chapter

Preface

WRITING SOFTWARE IS HARD—AT LEAST, WRITING SOFTWARE THAT STANDS UP UNDER TESTS, TIME,

and different environments is hard. Not only has the software engineering field struggled

to make writing software easier over the past five decades, but languages have been

designed to make it easier. But what makes it hard in the first place?

Most of the books and the papers that claim to address this problem talk about architec-

ture, requirements, and similar topics that focus on the software. What if the hard part was

in the writing? To put it another way, what if we saw our jobs as programmers more in

terms of communication—language—and less in terms of engineering?

Children learn to talk in their first years of life, and we start teaching them how to read

and write when they are five or six years old. I don’t know any great writer who learned

to read and write as an adult. Do you know any great programmer who learned to pro-

gram late in life?

And if children can learn foreign languages much more easily than adults, what does this

tell us about learning to program—an activity involving a new language?

Download at Boykma.Com

x P R E F A C E

Imagine that you are studying a foreign language and you don’t know the name of an

object. You can describe it with the words that you know, hoping someone will under-

stand what you mean. Isn’t this what we do every day with software? We describe the

object we have in our mind with a programming language, hoping the description will be

clear enough to the compiler or interpreter. If something doesn’t work, we bring up the

picture again in our mind and try to understand what we missed or misdescribed.

With these questions in mind, I chose to launch a series of investigations into why a pro-

gramming language is created, how it’s technically developed, how it’s taught and

learned, and how it evolves over time.

Shane and I had the great privilege to let 27 great designers guide us through our journey,

so that we have been able to collect their wisdom and experience for you.

In Masterminds of Programming, you will discover some of the thinking and steps needed to

build a successful language, what makes it popular, and how to approach the current

problems that its programmers are facing. So if you want to learn more about successful

programming language design, this book surely can help you.

If you are looking for inspiring thoughts regarding software and programming languages,

you will need a highlighter, or maybe two, because I promise that you will find plenty of

them throughout these pages.

—Federico Biancuzzi

Organization of the Material

The chapters in this book are ordered to provide a varied and provocative perspective as

you travel through it. Savor the interviews and return often.

Chapter 1, C++, interviews Bjarne Stroustrup.

Chapter 2, Python, interviews Guido van Rossum.

Chapter 3, APL, interviews Adin D. Falkoff.

Chapter 4, Forth, interviews Charles H. Moore.

Chapter 5, BASIC, interviews Thomas E. Kurtz.

Chapter 6, AWK, interviews Alfred Aho, Peter Weinberger, and Brian Kernighan.

Chapter 7, Lua, interviews Luiz Henrique de Figueiredo and Roberto Ierusalimschy.

Chapter 8, Haskell, interviews Simon Peyton Jones, Paul Hudak, Philip Wadler, and John

Hughes.

Chapter 9, ML, interviews Robin Milner.

Chapter 10, SQL, interviews Don Chamberlin.

Download at Boykma.Com

P R E F A C E xi

Chapter 11, Objective-C, interviews Tom Love and Brad Cox.

Chapter 12, Java, interviews James Gosling.

Chapter 13, C#, interviews Anders Hejlsberg.

Chapter 14, UML, interviews Ivar Jacobson, James Rumbaugh, and Grady Booch.

Chapter 15, Perl, interviews Larry Wall.

Chapter 16, PostScript, interviews Charles Geschke and John Warnock.

Chapter 17, Eiffel, interviews Bertrand Meyer.

Contributors lists the biographies of all the contributors.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, filenames, and utilities.

Constant width

Indicates the contents of computer files and generally anything found in programs.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://www.oreilly.com/catalog/9780596515171

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://www.oreilly.com

Download at Boykma.Com

http://www.oreilly.com/catalog/9780596515171
mailto:bookquestions@oreilly.com
http://www.oreilly.com

xii P R E F A C E

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite

technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters, and

find quick answers when you need the most accurate, current information. Try it for free

at http://my.safaribooksonline.com.

Download at Boykma.Com

http://www.oreilly.com
http://my.safaribooksonline.com

1

Chapter 1 C H A P T E R O N E

C++
Bjarne Stroustrup

C++ occupies an interesting space among languages: it is built on the foundation of

C, incorporating object-orientation ideas from Simula; standardized by ISO; and

designed with the mantras “you don’t pay for what you don’t use” and “support

user-defined and built-in types equally well.” Although popularized in the 80s

and 90s for OO and GUI programming, one of its greatest contributions to software

is its pervasive generic programming techniques, exemplified in its Standard Tem-

plate Library. Newer languages such as Java and C# have attempted to replace C++,

but an upcoming revision of the C++ standard adds new and long-awaited fea-

tures. Bjarne Stroustrup is the creator of the language and still one of its strongest

advocates.

Download at Boykma.Com

2 C H A P T E R O N E

Design Decisions

Why did you choose to extend an existing language instead of creating a new one?

Bjarne Stroustrup: When I started—in 1979—my purpose was to help programmers

build systems. It still is. To provide genuine help in solving a problem, rather than being

just an academic exercise, a language must be complete for the application domain. That

is, a non-research language exists to solve a problem. The problems I was addressing

related to operating system design, networking, and simulation. I—and my colleagues—

needed a language that could express program organization as could be done in Simula

(that’s what people tend to call object-oriented programming), but also write efficient

low-level code, as could be done in C. No language that could do both existed in 1979, or

I would have used it. I didn’t particularly want to design a new programming language; I

just wanted to help solve a few problems.

Given that, building on an existing language makes a lot of sense. From the base language,

you get a basic syntactic and semantic structure, you get useful libraries, and you become

part of a culture. Had I not built on C, I would have based C++ on some other language.

Why C? I had Dennis Ritchie, Brian Kernighan, and other Unix greats just down (or

across) the hall from me in Bell Labs’ Computer Science Research Center, so the question

may seem redundant. But it was a question I took seriously.

In particular, C’s type system was informal and weakly enforced (as Dennis Ritchie said,

“C is a strongly typed, weakly checked language”). The “weakly checked” part worried me

and causes problems for C++ programmers to this day. Also, C wasn’t the widely used lan-

guage it is today. Basing C++ on C was an expression of faith in the model of computation

that underlies C (the “strongly typed” part) and an expression of trust in my colleagues.

The choice was made based on knowledge of most higher-level programming languages

used for systems programming at the time (both as a user and as an implementer). It is

worth remembering that this was a time when most work “close to the hardware” and

requiring serious performance was still done in assembler. Unix was a major breakthrough in

many ways, including its use of C for even the most demanding systems programming tasks.

So, I chose C’s basic model of the machine over better-checked type systems. What I really

wanted as the framework for programs was Simula’s classes, so I mapped those into the C

model of memory and computation. The result was something that was extremely expres-

sive and flexible, yet ran at a speed that challenged assembler without a massive runtime

support system.

Why did you choose to support multiple paradigms?

Bjarne: Because a combination of programming styles often leads to the best code, where

“best” means code that most directly expresses the design, runs faster, is most maintain-

able, etc. When people challenge that statement, they usually do so by either defining their

favorite programming style to include every useful construct (e.g., “generic programming is

simply a form of OO”) or excluding application areas (e.g., “everybody has a 1GHz, 1GB

machine”).

Download at Boykma.Com

C + + 3

Java focuses solely on object-oriented programming. Does this make Java code more

complex in some cases where C++ can instead take advantage of generic programming?

Bjarne: Well, the Java designers—and probably the Java marketers even more so—

emphasized OO to the point where it became absurd. When Java first appeared, claiming

purity and simplicity, I predicted that if it succeeded Java would grow significantly in size

and complexity. It did.

For example, using casts to convert from Object when getting a value out of a container

(e.g., (Apple)c.get(i)) is an absurd consequence of not being able to state what type the

objects in the container is supposed have. It’s verbose and inefficient. Now Java has gener-

ics, so it’s just a bit slow. Other examples of increased language complexity (helping the

programmer) are enumerations, reflection, and inner classes.

The simple fact is that complexity will emerge somewhere, if not in the language defini-

tion, then in thousands of applications and libraries. Similarly, Java’s obsession with put-

ting every algorithm (operation) into a class leads to absurdities like classes with no data

consisting exclusively of static functions. There are reasons why math uses f(x) and f(x,y)

rather than x.f(), x.f(y), and (x,y).f()—the latter is an attempt to express the idea of a

“truly object-oriented method” of two arguments and to avoid the inherent asymmetry of

x.f(y).

C++ addresses many of the logical as well as the notational problems with object orienta-

tion through a combination of data abstraction and generic programming techniques. A

classical example is vector<T> where T can be any type that can be copied—including built-

in types, pointers to OO hierarchies, and user-defined types, such as strings and complex

numbers. This is all done without adding runtime overheads, placing restrictions on data

layouts, or having special rules for standard library components. Another example that

does not fit the classical single-dispatch hierarchy model of OO is an operation that

requires access to two classes, such as operator*(Matrix,Vector), which is not naturally a

“method” of either class.

One fundamental difference between C++ and Java is the way pointers are implemented.

In some ways, you could say that Java doesn’t have real pointers. What differences are

there between the two approaches?

Bjarne: Well, of course Java has pointers. In fact, just about everything in Java is implic-

itly a pointer. They just call them references. There are advantages to having pointers

implicit as well as disadvantages. Separately, there are advantages to having true local

objects (as in C++) as well as disadvantages.

C++’s choice to support stack-allocated local variables and true member variables of every

type gives nice uniform semantics, supports the notion of value semantics well, gives com-

pact layout and minimal access costs, and is the basis for C++’s support for general

resource management. That’s major, and Java’s pervasive and implicit use of pointers (aka

references) closes the door to all that.

Download at Boykma.Com

4 C H A P T E R O N E

Consider the layout tradeoff: in C++ a vector<complex>(10) is represented as a handle to an

array of 10 complex numbers on the free store. In all, that’s 25 words: 3 words for the vec-

tor, plus 20 words for the complex numbers, plus a 2-word header for the array on the

free store (heap). The equivalent in Java (for a user-defined container of objects of user-

defined types) would be 56 words: 1 for the reference to the container, plus 3 for the con-

tainer, plus 10 for the references to the objects, plus 20 for the objects, plus 24 for the free

store headers for the 12 independently allocated objects. Obviously, these numbers are

approximate because the free store (heap) overhead is implementation defined in both

languages. However, the conclusion is clear: by making references ubiquitous and implicit,

Java may have simplified the programming model and the garbage collector implementa-

tion, but it has increased the memory overhead dramatically—and increased the memory

access cost (requiring more indirect accesses) and allocation overheads proportionally.

What Java doesn’t have—and good for Java for that—is C and C++’s ability to misuse

pointers through pointer arithmetic. Well-written C++ doesn’t suffer from that problem

either: people use higher-level abstractions, such as iostreams, containers, and algorithms,

rather than fiddling with pointers. Essentially all arrays and most pointers belong deep in

implementations that most programmers don’t have to see. Unfortunately, there is also

lots of poorly written and unnecessarily low-level C++ around.

There is, however, an important place where pointers—and pointer manipulation—is a

boon: the direct and efficient expression of data structures. Java’s references are lacking

here; for example, you can’t express a swap operation in Java. Another example is simply

the use of pointers for low-level direct access to (real) memory; for every system, some

language has to do that, and often that language is C++.

The “dark side” of having pointers (and C-style arrays) is of course the potential for mis-

use: buffer overruns, pointers into deleted memory, uninitialized pointers, etc. However,

in well-written C++ that is not a major problem. You simply don’t get those problems with

pointers and arrays used within abstractions (such as vector, string, map, etc.). Scoped

resource management takes care of most needs; smart pointers and specialized handles

can be used to deal with most of the rest. People whose experience is primarily C or old-

style C++ find this hard to believe, but scope-based resource management is an immensely

powerful tool and user-defined with suitable operations can address classical problems

with less code than the old insecure hacks. For example, this is the simplest form of the

classical buffer overrun and security problem:

char buf[MAX_BUF];
gets(buf); // Yuck!

Use a standard library string and the problem goes away:

string s;
cin >> s; // read whitespace separated characters

These are obviously trivial examples, but suitable “strings” and “containers” can be crafted

to meet essentially all needs, and the standard library provides a good set to start with.

Download at Boykma.Com

C + + 5

What do you mean by “value semantics” and “general resource management”?

Bjarne: “Value semantics” is commonly used to refer to classes where the objects have the

property that when you copy one, you get two independent copies (with the same value).

For example:

X x1 = a;
X x2 = x1; // now x1==x2
x1 = b; // changes x1 but not x2
 // now x1!=x2 (provided X(a)!=X(b))

This is of course what we have for usual numeric types, such as ints, doubles, complex

numbers, and mathematical abstractions, such as vectors. This is a most useful notion,

which C++ supports for built-in types and for any user-defined type for which we want it.

This contrast to Java where built-in types such and char and int follow it, but user-defined

types do not, and indeed cannot. As in Simula, all user-defined types in Java have refer-

ence semantics. In C++, a programmer can support either, as the desired semantics of a

type requires. C# (incompletely) follows C++ in supporting user-defined types with value

semantics.

“General resource management” refers to the popular technique of having a resource (e.g.,

a file handle or a lock) owned by an object. If that object is a scoped variable, the lifetime

of the variable puts a maximum limit on the time the resource is held. Typically, a con-

structor acquires the resource and the destructor releases it. This is often called RAII

(Resource Acquisition Is Initialization) and integrates beautifully with error handling

using exceptions. Obviously, not every resource can be handled in this way, but many

can, and for those, resource management becomes implicit and efficient.

“Close to the hardware” seems to be a guiding principle in designing C++. Is it fair to say

that C++ was designed more bottom-up than many languages, which are designed top-

down, in the sense that they try to provide abstractly rational constructs and force the

compiler to fit these constructs to the available computing environment?

Bjarne: I think top-down and bottom-up are the wrong way to characterize those design

decisions. In the context of C++ and other languages, “close to the hardware” means that

the model of computation is that of the computer—sequences of objects in memory and

operations as defined on objects of fixed size—rather than some mathematical abstraction.

This is true for both C++ and Java, but not for functional languages. C++ differs from Java

in that its underlying machine is the real machine rather than a single abstract machine.

The real problem is how to get from the human conception of problems and solutions to

the machine’s limited world. You can “ignore” the human concerns and end up with

machine code (or the glorified machine code that is bad C code). You can ignore the

machine and come up with a beautiful abstraction that can do anything at extraordinary

cost and/or lack of intellectual rigor. C++ is an attempt to give a very direct access to hard-

ware when you need it (e.g., pointers and arrays) while providing extensive abstraction

mechanisms to allow high-level ideas to be expressed (e.g., class hierarchies and templates).

Download at Boykma.Com

6 C H A P T E R O N E

That said, there has been a consistent concern for runtime and space performance

throughout the development of C++ and its libraries. This pervades both the basic lan-

guage facilities and the abstraction facilities in ways that are not shared by all languages.

Using the Language

How do you debug? Do you have any suggestion for C++ developers?

Bjarne: By introspection. I study the program for so long and poke at it more or less sys-

tematically for so long that I have sufficient understanding to provide an educated guess

where the bug is.

Testing is something else, and so is design to minimize errors. I intensely dislike debugging

and will go a long way to avoid it. If I am the designer of a piece of software, I build it

around interfaces and invariants so that it is hard to get seriously bad code to compile and

run incorrectly. Then, I try hard to make it testable. Testing is the systematic search for

errors. It is hard to systematically test badly structured systems, so I again recommend a

clean structure of the code. Testing can be automated and is repeatable in a way that

debugging is not. Having flocks of pigeons randomly peck at the screen to see if they can

break a GUI-based application is no way to ensure quality systems.

Advice? It is hard to give general advice because the best techniques often depend on

what is feasible for a given system in a given development environment. However: iden-

tify key interfaces that can be systematically tested and write test scripts that exercise

those. Automate as much as you can and run those automated tests often. And do keep

regression tests and run them frequently. Make sure that every entry point into the sys-

tem and every output can be systematically tested. Compose your system out of quality

components: monolithic programs are unnecessarily hard to understand and test.

At what level is it necessary to improve the security of software?

Bjarne: First of all: security is a systems issue. No localized or partial remedy will by itself

succeed. Remember, even if all of your code was perfect, I could probably still gain access

to your stored secrets if I could steal your computer or the storage device holding your

backup. Secondly, security is a cost/benefit game: perfect security is probably beyond the

reach for most of us, but I can probably protect my system sufficiently that “bad guys” will

consider their time better spent trying to break into someone else’s system. Actually, I pre-

fer not to keep important secrets online and leave serious security to the experts.

But what about programming languages and programming techniques? There is a danger-

ous tendency to assume that every line of code has to be “secure” (whatever that means),

even assuming that someone with bad intentions messes with some other part of the sys-

tem. This is a most dangerous notion that leaves the code littered with unsystematic tests

guarding against ill-formulated imagined threats. It also makes code ugly, large, and slow.

“Ugly” leaves places for bugs to hide, “large” ensures incomplete testing, and “slow”

encourages the use of shortcuts and dirty tricks that are among the most fertile sources of

security holes.

Download at Boykma.Com

C + + 7

I think the only permanent solution to security problems is in a simple security model applied

systematically by quality hardware and/or software to selected interfaces. There has to be a

place behind a barrier where code can be written simply, elegantly, and efficiently without

worrying about random pieces of code abusing random pieces of other code. Only then can

we focus on correctness, quality, and serious performance. The idea that anyone can provide

an untrusted callback, plug-in, overrider, whatever, is plain silly. We have to distinguish

between code that defends against fraud, and code that simply is protected against accidents.

I do not think that you can design a programming language that is completely secure and

also useful for real-world systems. Obviously, that depends on the meaning of “secure”

and “system.” You could possibly achieve security in a domain-specific language, but my

main domain of interest is systems programming (in a very broad meaning of that term),

including embedded systems programming. I do think that type safety can and will be

improved over what is offered by C++, but that is only part of the problem: type safety

does not equal security. People who write C++ using lots of unencapsulated arrays, casts,

and unstructured new and delete operations are asking for trouble. They are stuck in an 80s

style of programming. To use C++ well, you have to adopt a style that minimizes type safety

violations and manage resources (including memory) in a simple and systematic way.

Would you recommend C++ for some systems where practitioners are reluctant to use it,

such as system software and embedded applications?

Bjarne: Certainly, I do recommend it and not everybody is reluctant. In fact, I don’t see

much reluctance in those areas beyond the natural reluctance to try something new in

established organizations. Rather, I see steady and significant growth in C++ use. For exam-

ple, I helped write the coding guidelines for the mission-critical software for Lockheed Mar-

tin’s Joint Strike Fighter. That’s an “all C++ plane.” You may not be particularly keen on

military planes, but there is nothing particularly military about the way C++ is used and well

over 100,000 copies of the JSF++ coding rules have been downloaded from my home pages

in less than a year, mostly by nonmilitary embedded systems developers, as far as I can tell.

C++ has been used for embedded systems since 1984, many useful gadgets have been pro-

grammed in C++, and its use appears to be rapidly increasing. Examples are mobile

phones using Symbian or Motorola, the iPods, and GPS systems. I particularly like the use

of C++ on the Mars rovers: the scene analysis and autonomous driving subsystems, much

of the earth-based communication systems, and the image processing.

People who are convinced that C is necessarily more efficient than C++ might like to have

a look at my paper entitled “Learning Standard C++ as a New Language” [C/C++ Users

Journal, May 1999], which describes a bit of design philosophy and shows the result of a

few simple experiments. Also, the ISO C++ standards committee issued a technical report

on performance that addresses a lot of issues and myths relating to the use of C++ where

performance matters (you can find it online searching for “Technical Report on C++ Per-

formance”).* In particular, that report addresses embedded systems issues.

* http://www.open-std.org/JTC1/sc22/wg21/docs/TR18015.pdf

Download at Boykma.Com

http://www.open-std.org/JTC1/sc22/wg21/docs/TR18015.pdf

8 C H A P T E R O N E

Kernels like Linux’s or BSD’s are still written in C. Why haven’t they moved to C++? Is it

something in the OO paradigm?

Bjarne: It’s mostly conservatism and inertia. In addition, GCC was slow to mature. Some

people in the C community seem to maintain an almost willful ignorance based on

decade-old experiences. Other operating systems and much systems programming and

even hard real-time and safety-critical code has been written in C++ for decades. Consider

some examples: Symbian, IBM’s OS/400 and K42, BeOS, and parts of Windows. In gen-

eral, there is a lot of open source C++ (e.g., KDE).

You seem to equate C++ use with OO. C++ is not and was never meant to be just an

object-oriented programming language. I wrote a paper entitled “Why C++ is not just an

Object-Oriented Programming Language” in 1995; it is available online.* The idea was and is

to support multiple programming styles (“paradigms,” if you feel like using long words) and

their combinations. The most relevant other paradigm in the context of high-performance

and close-to-the-hardware use is generic programming (sometimes abbreviated to GP). The

ISO C++ standard library is itself more heavily GP than OO through its framework for

algorithms and containers (the STL). Generic programming in the typical C++ style relying

heavily on templates is widely used where you need both abstraction and performance.

I have never seen a program that could be written better in C than in C++. I don’t think

such a program could exist. If nothing else, you can write C++ in a style close to that of C.

There is nothing that requires you to go hog-wild with exceptions, class hierarchies, or

templates. A good programmer uses the more advanced features where they help more

directly to express ideas and do so without avoidable overheads.

Why should a programmer move his code from C to C++? What advantages would he

have using C++ as a generic programming language?

Bjarne: You seem to assume that code first was written in C and that the programmer

started out as a C programmer. For many—probably most—C++ programs and C++ pro-

grammers, that has not been the case for quite a while. Unfortunately, the “C first”

approach lingers in many curricula, but it is no longer something to take for granted.

Someone might switch from C to C++ because they found C++’s support for the styles of

programming usually done with C is better than C’s. The C++ type checking is stricter

(you can’t forget to declare a function or its argument types) and there is type-safe nota-

tional support for many common operations, such as object creation (including initializa-

tion) and constants. I have seen people do that and be very happy with the problems they

left behind. Usually, that’s done in combination with the adoption of some C++ libraries

that may or may not be considered object-oriented, such as the standard vector, a GUI

library, or some application-specific library.

* http://www.research.att.com/~bs/oopsla.pdf

Download at Boykma.Com

http://www.research.att.com/~bs/oopsla.pdf

C + + 9

Just using a simple user-defined type, such as vector, string, or complex, does not require a

paradigm shift. People can—if they so choose—use those just like the built-in types. Is

someone using std::vector “using OO”? I would say no. Is someone using a C++ GUI

without actually adding new functionality “using OO”? I’m inclined to say yes, because

their use typically requires the users to understand and use inheritance.

Using C++ as “a generic-programming programming language” gives you the standard

containers and algorithms right out of box (as part of the standard library). That is major

leverage in many applications and a major step up in abstraction from C. Beyond that,

people can start to benefit from libraries, such as Boost, and start to appreciate some of the

functional programming techniques inherent in generic programming.

However, I think the question is slightly misleading. I don’t want to represent C++ as “an

OO language” or “a GP language”; rather, it is a language supporting:

• C-style programming

• Data abstraction

• Object-oriented programming

• Generic programming

Crucially, it supports programming styles that combines those (“multiparadigm program-

ming” if you must) and does so with a bias toward systems programming.

OOP and Concurrency

The average complexity and size (in number of lines of code) of software seems to grow

year after year. Does OOP scale well to this situation or just make things more

complicated? I have the feeling that the desire to make reusable objects makes things

more complicated and, in the end, it doubles the workload. First, you have to design a

reusable tool. Later, when you need to make a change, you have to write something that

exactly fits the gap left by the old part, and this means restrictions on the solution.

Bjarne: That’s a good description of a serious problem. OO is a powerful set of techniques

that can help, but to be a help, it must be used well and for problems where the tech-

niques have something to offer. A rather serious problem for all code relying on inherit-

ance with statically checked interfaces is that to design a good base class (an interface to

many, yet unknown, classes) we require a lot of foresight and experience. How does the

designer of the base class (abstract class, interface, whatever you choose to call it) know

that it specifies all that is needed for all classes that will be derived from it in the future?

How does the designer know that what is specified can be implemented reasonably by all

classes that will be derived from it in the future? How does the designer of the base class

know that what is specified will not seriously interfere with something that is needed by

some classes that will be derived from it in the future?

Download at Boykma.Com

10 C H A P T E R O N E

In general, we can’t know that. In an environment where we can enforce our design, peo-

ple will adapt—often by writing ugly workarounds. Where no one organization is in

charge, many incompatible interfaces emerge for essentially the same functionality.

Nothing can solve these problems in general, but generic programming seems to be an

answer in many important cases where the OO approach fails. A noteworthy example is

simply containers: we cannot express the notion of being an element well through an

inheritance hierarchy, and we can’t express the notion of being a container well through

an inheritance hierarchy. We can, however, provide effective solutions using generic pro-

gramming. The STL (as found in the C++ standard library) is an example.

Is this problem specific to C++, or does it afflict other programming languages as well?

Bjarne: The problem is common to all languages that rely on statically checked interfaces

to class hierarchies. Examples are C++, Java, and C#, but not dynamically typed lan-

guages, such as Smalltalk and Python. C++ addresses that problem through generic pro-

gramming, where the C++ containers and algorithms in standard library provide a good

example. The key language feature here is templates, providing a late type-checking

model that gives a compile time equivalent to what the dynamically typed languages do at

runtime. Java’s and C#’s recent addition of “generics” are attempts to follow C++’s lead

here, and are often—incorrectly, I think—claimed to improve upon templates.

“Refactoring” is especially popular as an attempt to address that problem by the brute

force technique of simply reorganizing the code when it has outlived its initial interface

design.

If this is a problem of OO in general, how can we be sure that the advantages of OO are

more valuable than the disadvantages? Maybe the problem that a good OO design is

difficult to achieve is the root of all other problems.

Bjarne: The fact that there is a problem in some or even many cases doesn’t change the

fact that many beautiful, efficient, and maintainable systems have been written in such

languages. Object-oriented design is one of the fundamental ways of designing systems

and statically checked interfaces provide advantages as well as this problem.

There is no one “root of all evil” in software development. Design is hard in many ways.

People tend to underestimate the intellectual and practical difficulties involved in building

a significant system involving software. It is not and will not be reduced to a simple

mechanical “assembly line” process. Creativity, engineering principles, and evolutionary

change are needed to create a satisfactory large system.

Are there links between the OO paradigm and concurrency? Does the current pervasive

need for improved concurrency change the implementation of designs or the nature of

OO designs?

Bjarne: There is a very old link between object-oriented programming and concur-

rency. Simula 67, the programming language that first directly supported object-

oriented programming, also provided a mechanism for expressing concurrent activities.

Download at Boykma.Com

C + + 11

The first C++ library was a library supporting what today we would call threads. At Bell

Labs, we ran C++ on a six-processor machine in 1988 and we were not alone in such uses.

In the 90s there were at least a couple of dozen experimental C++ dialects and libraries

attacking problems related to distributed and parallel programming. The current excite-

ment about multicores isn’t my first encounter with concurrency. In fact, distributed com-

puting was my Ph.D. topic and I have followed that field ever since.

However, people who first consider concurrency, multicores, etc., often confuse them-

selves by simply underestimating the cost of running an activity on a different processor.

The cost of starting an activity on another processor (core) and for that activity to access

data in the “calling processor’s” memory (either copying or accessing “remotely”) can be

1,000 times (or more) higher than we are used to for a function call. Also, the error possi-

bilities are significantly different as soon as you introduce concurrency. To effectively

exploit the concurrency offered by the hardware, we need to rethink the organization of

our software.

Fortunately, but confusingly, we have decades’ worth of research to help us. Basically,

there is so much research that it’s just about impossible to determine what’s real, let alone

what’s best. A good place to start looking would be the HOPL-III paper about Emerald.

That language was the first to explore the interaction between language issues and sys-

tems issues, taking cost into account. It is also important to distinguish between data par-

allel programming as has been done for decades—mostly in FORTRAN—for scientific

calculations, and the use of communicating units of “ordinary sequential code” (e.g., pro-

cesses and threads) on many processors. I think that for broad acceptance in this brave

new world of many “cores” and clusters, a programming system must support both kinds

of concurrency, and probably several varieties of each. This is not at all easy, and the

issues go well beyond traditional programming language issues—we will end up looking at

language, systems, and applications issues in combination.

Is C++ ready for concurrency? Obviously we can create libraries to handle everything,

but does the language and standard library need a serious review with concurrency in

mind?

Bjarne: Almost. C++0x will be. To be ready for concurrency, a language first has to have a

precisely specified memory model to allow compiler writers to take advantage of modern

hardware (with deep pipelines, large caches, branch-prediction buffers, static and dynamic

instruction reordering, etc.). Then, we need a few small language extensions: thread-local

storage and atomic data types. Then, we can add support for concurrency as libraries. Nat-

urally, the first new standard library will be a threads library allowing portable program-

ming across systems such as Linux and Windows. We have of course had such libraries for

many years, but not standard ones.

Threads plus some form of locking to avoid data races is just about the worst way to

directly exploit concurrency, but C++ needs that to support existing applications and to

maintain its role as a systems programming language on traditional operating systems.

Prototypes of this library exist—based on many years of active use.

Download at Boykma.Com

12 C H A P T E R O N E

One key issue for concurrency is how you “package up” a task to be executed concur-

rently with other tasks. In C++, I suspect the answer will be “as a function object.” The

object can contain whatever data is needed and be passed around as needed. C++98 han-

dles that well for named operations (named classes from which we instantiate function

objects), and the technique is ubiquitous for parameterization in generic libraries (e.g., the

STL). C++0x makes it easier to write simple “one-off” function objects by providing

“lambda functions” that can be written in expression contexts (e.g., as function argu-

ments) and generates function objects (“closures”) appropriately.

The next steps are more interesting. Immediately post-C++0x, the committee plans for a

technical report on libraries. This will almost certainly provide for thread pools and some

form of work stealing. That is, there will be a standard mechanism for a user to request

relatively small units of work (“tasks”) to be done concurrently without fiddling with

thread creation, cancellation, locking, etc., probably built with function objects as tasks.

Also, there will be facilities for communicating between geographically remote processes

through sockets, iostreams, and so on, rather like boost::networking.

In my opinion, much of what is interesting about concurrency will appear as multiple

libraries supporting logically distinct concurrency models.

Many modern systems are componentized and spread out over a network; the age of

web applications and mashups may accentuate that trend. Should a language reflect

those aspects of the network?

Bjarne: There are many forms of concurrency. Some are aimed at improving the through-

put or response time of a program on a single computer or cluster, some are aimed at deal-

ing with geographical distribution, and some are below the level usually considered by

programmers (pipelining, caching, etc.).

C++0x will provide a set of facilities and guarantees that saves programmers from the

lowest-level details by providing a “contract” between machine architects and compiler

writers—a “machine model.” It will also provide a threads library providing a basic map-

ping of code to processors. On this basis, other models can be provided by libraries. I

would have liked to see some simpler-to-use, higher-level concurrency models supported

in the C++0x standard library, but that now appears unlikely. Later—hopefully, soon after

C++0x—we will get more libraries specified in a technical report: thread pools and futures,

and a library for I/O streams over wide area networks (e.g., TCP/IP). These libraries exist,

but not everyone considers them well enough specified for the standard.

Years ago, I hoped that C++0x would address some of C++'s long-standing problems with

distribution by specifying a standard form of marshalling (or serialization), but that didn’t

happen. So, the C++ community will have to keep addressing the higher levels of distrib-

uted computing and distributed application building through nonstandard libraries and/or

frameworks (e.g., CORBA or .NET).

The very first C++ library (really the very first C with classes) library, provided a light-

weight form of concurrency and over the years, hundreds of libraries and frameworks for

Download at Boykma.Com

C + + 13

concurrent, parallel, and distributed computing have been built in C++, but the commu-

nity has not been able to agree on standards. I suspect that part of the problem is that it

takes a lot of money to do something major in this field, and that the big players preferred

to spend their money on their own proprietary libraries, frameworks, and languages. That

has not been good for the C++ community as a whole.

Future

Will we ever see C++ 2.0?

Bjarne: That depends on what you mean by “C++ 2.0.” If you mean a new language built

more or less from scratch providing all of the best of C++ but none of what’s bad (for some

definitions of “good” and “bad”), the answer is “I don’t know.” I would like to see a major

new language in the C++ tradition, but I don’t see one on the horizon, so let me concen-

trate on the next ISO C++ standard, nicknamed C++0x.

It will be a “C++ 2.0” to many, because it will supply new language features and new stan-

dard libraries, but it will be almost 100% compatible with C++98. We call it C++0x, hoping

that it’ll become C++09. If we are slow—so that that x has to become hexadecimal—I (and

others) will be quite sad and embarrassed.

C++0x will be almost 100% compatible with C++98. We have no particular desire to

break your code. The most significant incompatibilities come from the use of a few new

keywords, such as static_assert, constexpr, and concept. We have tried to minimize impact

by choosing new keywords that are not heavily used. The major improvements are:

• Support for modern machine architectures and concurrency: a machine model, a

thread library, thread local storage and atomic operations, and an asynchronous value

return mechanism (“futures”).

• Better support for generic programming: concepts (a type system for types, combina-

tions of types, and combinations of types and integers) to give better checking of tem-

plate definitions and uses, and better overloading of templates. Type deduction based

on initializers (auto), generalized initializer lists, generalized constant expressions

(constexpr), lambda expressions, and more.

• Many “minor” language extensions, such as static assertions, move semantics,

improved enumerations, a name for the null pointer (nullptr), etc.

• New standard libraries for regular expression matching, hash tables (e.g., unordered_map),

“smart” pointers, etc.

For complete details, see the website of the “C++ Standards Committee.”* For an over-

view, see my online C++0x FAQ.†

* http://www.open-std.org/jtc1/sc22/wg21/

† http://www.research.att.com/~bs/C++0xFAQ.html

Download at Boykma.Com

http://www.open-std.org/jtc1/sc22/wg21/
http://www.research.att.com/~bs/C++0xFAQ.html

14 C H A P T E R O N E

Please note that when I talk about “not breaking code,” I am referring to the core language

and the standard library. Old code will of course be broken if it uses nonstandard exten-

sions from some compiler provider or antique nonstandard libraries. In my experience,

when people complain about “broken code” or “instability” they are referring to propri-

etary features and libraries. For example, if you change operating systems and didn’t use one

of the portable GUI libraries, you probably have some work to do on the user interface code.

What stops you from creating a major new language?

Bjarne: Some key questions soon emerge:

• What problem would the new language solve?

• Who would it solve problems for?

• What dramatically new could be provided (compared to every existing language)?

• Could the new language be effectively deployed (in a world with many well-supported

languages)?

• Would designing a new language simply be a pleasant distraction from the hard work

of helping people build better real-world tools and systems?

So far, I have not been able to answer those questions to my satisfaction.

That doesn’t mean that I think that C++ is the perfect language of its kind. It is not; I’m

convinced that you could design a language about a tenth of the size of C++ (whichever

way you measure size) providing roughly what C++ does. However, there has to be more

to a new language that just doing what an existing language can, but slightly better and

slightly more elegantly.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable

future?

Bjarne: That’s a big question: can we learn from history? If so, how? What kind of lessons

can we learn? During the early development of C++, I articulated a set of “rules of

thumb,” which you can find in The Design and Evolution of C++ [Addison-Wesley], and also

discussed in my two HOPL papers. Clearly, any serious language design project needs a set

of principles, and as soon as possible, these principles need to be articulated. That’s actu-

ally a conclusion from the C++ experience: I didn’t articulate C++’s design principles early

enough and didn’t get those principles understood widely enough. As a result, many peo-

ple invented their own rationales for C++’s design; some of those were pretty amazing and

led to much confusion. To this day, some see C++ as little more than a failed attempt to

design something like Smalltalk (no, C++ was not supposed to be “like Smalltalk”; it fol-

lows the Simula model of OO), or as nothing but an attempt to remedy some flaws in C

for writing C-style code (no, C++ was not supposed to be just C with a few tweaks).

The purpose of a (nonexperimental) programming language is to help build good sys-

tems. It follows that notions of system design and language design are closely related.

Download at Boykma.Com

C + + 15

My definition of “good” in this context is basically “correct, maintainable, and providing

acceptable resource usage.” The obvious missing component is “easy to write,” but for the

kind of systems I think most about, that’s secondary. “RAD development” is not my ideal.

It can be as important to say what is not a primary aim as to state what is. For example, I

have nothing against rapid development—nobody in their right mind wants to spend

more time than necessary on a project—but I’d rather have lack of restrictions on applica-

tion areas and performance. My aim for C++ was and is direct expression of ideas, result-

ing in code that can be efficient in time and space.

C and C++ have provided stability over decades. That has been immensely important to

their industrial users. I have small programs that have been essentially unchanged since

the early 80s. There is a price to pay for such stability, but languages that don’t provide it

are simply unsuitable for large, long-lived projects. Corporate languages and languages

that try to follow trends closely tend to fail miserably here, causing a lot of misery along

the way.

This leads to thinking about how to manage evolution. How much can be changed? What

is the granularity of change? Changing a language every year or so as new releases of a

product are released is too ad hoc and leads to a series of de facto subsets, discarded librar-

ies and language features, and/or massive upgrade efforts. Also, a year is simply not suffi-

cient gestation period for significant features, so the approach leads to half-baked solutions

and dead ends. On the other hand, the 10-year cycle of ISO standardized languages, such

as C and C++, is too long and leads to parts of the community (including parts of the com-

mittee) fossilizing.

A successful language develops a community: the community shares techniques, tools,

and libraries. Corporate languages have an inherent advantage here: they can buy market

share with marketing, conferences, and “free” libraries. This investment can pay off in

terms of others adding significantly, making the community larger and more vibrant.

Sun’s efforts with Java showed how amateurish and underfinanced every previous effort

to establish a (more or less) general-purpose language had been. The U.S. Department of

Defense’s efforts to establish Ada as a dominant language was a sharp contrast, as were the

unfinanced efforts by me and my friends to establish C++.

I can’t say that I approve of some of the Java tactics, such as selling top-down to nonpro-

gramming executives, but it shows what can be done. Noncorporate successes include the

Python and Perl communities. The successes at community building around C++ have

been too few and too limited, given the size of the community. The ACCU conferences are

great, but why haven’t there been a continuous series of huge international C++ confer-

ences since 1986 or so? The Boost libraries are great, but why hasn’t there been a central

repository for C++ libraries since 1986 or so? There are thousands of open source C++

libraries in use. I don’t even know of a comprehensive list of commercial C++ libraries. I

won’t start answering those questions, but will just point out that any new language must

somehow manage the centrifugal forces in a large community, or suffer pretty severe

consequences.

Download at Boykma.Com

16 C H A P T E R O N E

A general-purpose language needs the input from and approval of several communities,

such as, industrial programmers, educators, academic researchers, industrial researchers,

and the open source community. These communities are not disjoint, but individual sub-

communities often see themselves as self-sufficient, in possession of knowledge of what is

right and in conflict with other communities that for some reason “don’t get it.” This can

be a significant practical problem. For example, parts of the open source community have

opposed the use of C++ because “it’s a Microsoft language” (it isn’t) or “AT&T owns it” (it

doesn’t), whereas some major industrial players have considered it a problem with C++

that they don’t own it.

This really crucial problem here is that many subcommunities push a limited and paro-

chial view of “what programming really is” and “what is really needed”: “if everybody just

did things the right way, there’d be no problem.” The real problem is to balance the vari-

ous needs to create a larger and more varied community. As people grow and face new

challenges, the generality and flexibility of a language start to matter more than providing

optimal solutions to a limited range of problems.

To get to technical points, I still think that a flexible, extensible, and general static type

system is great. My reading of the C++ experience reinforces that view. I am also very

keen on genuine local variables of user-defined types: the C++ techniques for handling

general resources based on scoped variables have been very effective compared to just

about anything. Constructors and destructors, often used together with RAII, can yield

very elegant and efficient code.

Teaching

You left industry to become an academic. Why?

Bjarne: Actually, I haven’t completely left industry, because I maintain a link to AT&T

Labs as an AT&T fellow, and spend much time each year with industry people. I consider

my connection with industry essential because that’s what keeps my work anchored in

reality.

I went to Texas A&M University as a professor five years ago because (after almost 25

years in “The Labs”) I felt a need for a change and because I thought I had something to

contribute in the area of education. I also entertained some rather idealistic ideas about

doing more fundamental research after my years of very practical research and design.

Much computer science research is either too remote from everyday problems (even from

conjectured future everyday problems), or so submerged in such everyday problems that

it becomes little more than technology transfer. Obviously, I have nothing against tech-

nology transfer (we badly need it), but there ought to be strong feedback loops from

industrial practice to advanced research. The short planning horizon of many in industry

and the demands of the academic publication/tenure race conspire to divert attention and

effort from some of the most critical problems.

Download at Boykma.Com

C + + 17

During these years in academia, what did you learn about teaching programming to

beginners?

Bjarne: The most concrete result of my years in academia (in addition to the obligatory

academic papers) is a new textbook for teaching programming to people who have never

programmed before, Programming: Principles and Practice Using C++ [Addison-Wesley].

This is my first book for beginners. Before I went to academia, I simply didn’t know

enough beginners to write such a book. I did, however, feel that too many software devel-

opers were very poorly prepared for their tasks in industry and elsewhere. Now I have

taught (and helped to teach) programming to more than 1,200 beginners and I feel a bit

more certain that my ideas in this area can scale.

A beginner’s book must serve several purposes. Most fundamentally, it must provide a

good foundation for further learning (if successful, it will be the start of a lifelong effort)

and also provide some practical skills. Also, programming—and in general software devel-

opment—is not a purely theoretical skill, nor is it something you can do well without

learning some fundamental concepts. Unfortunately, far too often, teaching fails to main-

tain a balance between theory/principles and practicalities/techniques. Consequently, we

see people who basically despise programming (“mere coding”) and think that software

can be developed from first principles without any practical skills. Conversely, we see peo-

ple who are convinced that “good code” is everything and can be achieved with little more

than a quick look at an online manual and a lot of cutting and pasting; I have met pro-

grammers who considered K&R “too complicated and theoretical.” My opinion is that

both attitudes are far too extreme and lead to poorly structured, inefficient, and unmain-

tainable messes even when they do manage to produce minimally functioning code.

What is your opinion on code examples in textbooks? Should they include error/

exception checking? Should they be complete programs so that they can actually be

compiled and run?

Bjarne: I strongly prefer examples that in as few lines as possible illustrate an idea. Such

program fragments are often incomplete, though I insist that mine will compile and run if

embedded in suitable scaffolding code. Basically, my code presentation style is derived

from K&R. For my new book, all code examples will be available in a compilable form. In

the text, I vary between small fragments embedded in explanatory text and longer, more

complete, sections of code. In key places, I use both techniques for a single example to

allow the reader two looks at critical statements.

Some examples should be complete with error checking and all should reflect designs that

can be checked. In addition to the discussion of errors and error handling scattered

throughout the book, there are separate chapters on error handling and testing. I strongly

prefer examples derived from real-world programs. I really dislike artificial cute examples,

such as inheritance trees of animals and obtuse mathematical puzzles. Maybe I should add

a label to my book: “no cute cuddly animals were abused in this book’s examples.”

Download at Boykma.Com

Download at Boykma.Com

19

Chapter 2 C H A P T E R T W O

Python
Guido von Rossum

Python is a modern, general-purpose, high-level language developed by Guido van

Rossum as a result of his work with the ABC programming language. Python’s phi-

losophy is pragmatic; its users often speak of the Zen of Python, strongly preferring

a single obvious way to accomplish any task. Ports exist for VMs such as Microsoft’s

CLR and the JVM, but the primary implementation is CPython, still developed by van

Rossum and other volunteers, who just released Python 3.0, a backward-incompatible

rethinking of parts of the language and its core libraries.

Download at Boykma.Com

20 C H A P T E R T W O

The Pythonic Way

What differences are there between developing a programming language and developing

a “common” software project?

Guido van Rossum: More than with most software projects, your most important users

are programmers themselves. This gives a language project a high level of “meta” content.

In the dependency tree of software projects, programming languages are pretty much at

the bottom—everything else depends on one or more languages. This also makes it hard

to change a language—an incompatible change affects so many dependents that it’s usu-

ally just not feasible. In other words, all mistakes, once released, are cast in stone. The ulti-

mate example of this is probably C++, which is burdened with compatibility requirements

that effectively require code written maybe 20 years ago to be still valid.

How do you debug a language?

Guido: You don’t. Language design is one area where agile development methodologies

just don’t make sense—until the language is stable, few people want to use it, and you

won’t find the bugs in the language definition until you have so many users that it’s too

late to change things.

Of course there’s plenty in the implementation that can be debugged like any old program,

but the language design itself pretty much requires careful design up front, because the

cost of bugs is so exorbitant.

How do you decide when a feature should go in a library as an extension or when it

needs to have support from the core language?

Guido: Historically, I’ve had a pretty good answer for that. One thing I noticed very early

on was that everybody wants their favorite feature added to the language, and most peo-

ple are relatively inexperienced about language design. Everybody is always proposing

“let’s add this to the language,” “let’s have a statement that does X.” In many cases, the

answer is, “Well, you can already do X or something almost like X by writing these two or

three lines of code, and it’s not all that difficult.” You can use a dictionary, or you can

combine a list and a tuple and a regular expression, or write a little metaclass—all of those

things. I may even have had the original version of this answer from Linus, who seems to

have a similar philosophy.

Telling people you can already do that and here is how is a first line of defense. The second

thing is, “Well, that’s a useful thing and we can probably write or you can probably write

your own module or class, and encapsulate that particular bit of abstraction.” Then the

next line of defense is, “OK, this looks so interesting and useful that we’ll actually accept it

as a new addition to the standard library, and it’s going to be pure Python.” And then,

finally, there are things that just aren’t easy to do in pure Python and we’ll suggest or rec-

ommend how to turn them into a C extension. The C extensions are the last line of

defense before we have to admit, “Well, yeah, this is so useful and you really cannot do

this, so we’ll have to change the language.”

Download at Boykma.Com

P Y T H O N 21

There are other criteria that determine whether it makes more sense to add something to

the language or it makes more sense to add something to the library, because if it has to do

with the semantics of namespaces or that kind of stuff, there’s really nothing you can do

besides changing the language. On the other hand, the extension mechanism was made

powerful enough that there is an amazing amount of stuff you can do from C code that

extends the library and possibly even adds new built-in functionality without actually

changing the language. The parser doesn’t change. The parse tree doesn’t change. The

documentation for the language doesn’t change. All your tools still work, and yet you

have added new functionality to your system.

I suppose there are probably features that you’ve looked at that you couldn’t implement

in Python other than by changing the language, but you probably rejected them. What

criteria do you use to say this is something that’s Pythonic, this is something that’s not

Pythonic?

Guido: That’s much harder. That is probably, in many cases, more a matter of a gut feel-

ing than anything else. People use the word Pythonic and “that is Pythonic” a lot, but

nobody can give you a watertight definition of what it means for something to be Pythonic

or un-Pythonic.

You have the “Zen of Python,” but beyond that?

Guido: That requires a lot of interpretation, like every good holy book. When I see a good

or a bad proposal, I can tell if it is a good or bad proposal, but it’s really hard to write a set

of rules that will help someone else to distinguish good language change proposals from

bad change proposals.

Sounds almost like it’s a matter of taste as much as anything.

Guido: Well, the first thing is always try to say “no,” and see if they go away or find a way

to get their itch scratched without changing the language. It’s remarkable how often that

works. That’s more of a operational definition of “it’s not necessary to change the language.”

If you keep the language constant, people will still find a way to do what they need to do.

Beyond that it’s often a matter of use cases coming from different areas where there is

nothing application-specific. If something was really cool for the Web, that would not

make it a good feature to add to the language. If something was really good for writing

shorter functions or writing classes that are more maintainable, that might be a good thing

to add to the language. It really needs to transcend application domains in general, and

make things simpler or more elegant.

When you change the language, you affect everyone. There’s no feature that you can hide

so well that most people don’t need to know about. Sooner or later, people will encounter

code written by someone else that uses it, or they’ll encounter some obscure corner case

where they have to learn about it because things don’t work the way they expected.

Download at Boykma.Com

22 C H A P T E R T W O

Often elegance is also in the eye of the beholder. We had a recent discussion on one of the

Python lists where people were arguing forcefully that using dollar instead of self-dot was

much more elegant. I think their definition of elegance was number of keystrokes.

There’s an argument to make for parsimony there, but very much in the context of

personal taste.

Guido: Elegance and simplicity and generality all are things that, to a large extent, depend

on personal taste, because what seems to cover a larger area for me may not cover enough

for someone else, and vice versa.

How did the Python Enhancement Proposal (PEP) process come about?

Guido: That’s a very interesting historical tidbit. I think it was mostly started and champi-

oned by Barry Warsaw, one of the core developers. He and I started working together in

‘95, and I think around 2000, he came up with the suggestion that we needed more of a

formal process around language changes.

I tend to be slow in these things. I mean I wasn’t the person who discovered that we really

needed a mailing list. I wasn’t the person who discovered that the mailing list got

unwieldy and we needed a newsgroup. I wasn’t the person to propose that we needed a

website. I was also not the person to propose that we needed a process for discussing

and inventing language changes, and making sure to avoid the occasional mistake

where things had been proposed and quickly accepted without thinking through all of

the consequences.

At the time between 1995 and 2000, Barry, myself, and a few other core developers, Fred

Drake, Ken Manheimer for a while, were all at CNRI, and one of the things that CNRI did

was organize the IETF meetings. CNRI had this little branch that eventually split off that

was a conference organizing bureau, and their only customer was the IETF. They later also

did the Python conferences for a while, actually. Because of that it was a pretty easy boon-

doggle to attend IETF meetings even if they weren’t local. I certainly got a taste of the IETF

process with its RFCs and its meeting groups and stages, and Barry also got a taste of that.

When he proposed to do something similar for Python, that was an easy argument to

make. We consciously decided that we wouldn’t make it quite as heavy-handed as the

IETF RFCs had become by then, because Internet standards, at least some of them, affect

way more industries and people and software than a Python change, but we definitely

modeled it after that. Barry is a genius at coming up with good names, so I am pretty sure

that PEP was his idea.

We were one of the first open source projects at the time to have something like this, and

it’s been relatively widely copied. The Tcl/Tk community basically changed the title and

used exactly the same defining document and process, and other projects have done simi-

lar things.

Download at Boykma.Com

P Y T H O N 23

Do you find that adding a little bit of formalism really helps crystallize the design

decisions around Python enhancements?

Guido: I think it became necessary as the community grew and I wasn’t necessarily able

to judge every proposal on its value by itself. It has really been helpful for me to let other

people argue over various details, and then come with relatively clear-cut conclusions.

Do they lead to a consensus where someone can ask you to weigh in on a single particular

crystallized set of expectations and proposals?

Guido: Yes. It often works in a way where I initially give a PEP a thumb’s up in the sense

that I say, “It looks like we have a problem here. Let’s see if someone figures out what the

right solution is.” Often they come out with a bunch of clear conclusions on how the

problem should be solved and also a bunch of open issues. Sometimes my gut feelings can

help close the open issues. I’m very active in the PEP process when it’s an area that I’m

excited about—if we had to add a new loop control statement, I wouldn’t want that to be

designed by other people. Sometimes I stay relatively far away from it like database APIs.

What creates the need for a new major version?

Guido: It depends on your definition of major. In Python, we generally consider releases

like 2.4, 2.5, and 2.6 “major” events, which only happen every 18–24 months. These are

the only occasions where we can introduce new features. Long ago, releases were done at

the whim of the developers (me, in particular). Early this decade, however, the users

requested some predictability—they objected against features being added or changed in

“minor” revisions (e.g., 1.5.2 added major features compared to 1.5.1), and they wished

the major releases to be supported for a certain minimum amount of time (18 months). So

now we have more or less time-based major releases: we plan the series of dates leading

up to a major release (e.g., when alpha and beta versions and release candidates are

issued) long in advance, based on things like release manager availability, and we urge the

developers to get their changes in well in advance of the final release date.

Features selected for addition to releases are generally agreed upon by the core developers,

after (sometimes long) discussions on the merits of the feature and its precise specification.

This is the PEP process: Python Enhancement Proposal, a document-base process not

unlike the IETF’s RFC process or the Java world’s JSR process, except that we aren’t quite

as formal, as we have a much smaller community of developers. In case of prolonged dis-

agreement (either on the merits of a feature or on specific details), I may end up breaking

a tie; my tie-breaking algorithm is mostly intuitive, since by the time it is invoked, rational

argument has long gone out of the window.

The most contentious discussions are typically about user-visible language features; library

additions are usually easy (as they don’t harm users who don’t care), and internal

improvements are not really considered features, although they are constrained by pretty

stringent backward compatibility at the C API level.

Download at Boykma.Com

24 C H A P T E R T W O

Since the developers are typically the most vocal users, I can’t really tell whether features

are proposed by users or by developers—in general, developers propose features based on

needs they perceived among the users they know. If a user proposes a new feature, it is

rarely a success, since without a thorough understanding of the implementation (and of

language design and implementation in general) it is nearly impossible to properly pro-

pose a new feature. We like to ask users to explain their problems without having a spe-

cific solution in mind, and then the developers will propose solutions and discuss the

merits of different alternatives with the users.

There’s also the concept of a radically major or breakthrough version, like 3.0. Historically,

1.0 was evolutionarily close to 0.9, and 2.0 was also a relatively small step from 1.6. From

now on, with the much larger user base, such versions are rare indeed, and provide the

only occasion for being truly incompatible with previous versions. Major versions are

made backward compatible with previous major versions with a specific mechanism avail-

able for deprecating features slated for removal.

How did you choose to handle numbers as arbitrary precision integers (with all the cool

advantages you get) instead of the old (and super common) approach to pass it to the

hardware?

Guido: I originally inherited this idea from Python’s predecessor, ABC. ABC used arbi-

trary precision rationals, but I didn’t like the rationals that much, so I switched to integers;

for reals, Python uses the standard floating-point representation supported by the hard-

ware (and so did ABC, with some prodding).

Originally Python had two types of integers: the customary 32-bit variety (“int”) and a

separate arbitrary precision variety (“long”). Many languages do this, but the arbitrary

precision variety is relegated to a library, like Bignum in Java and Perl, or GNU MP for C.

In Python, the two have (nearly) always lived side-by-side in the core language, and users

had to choose which one to use by appending an “L” to a number to select the long vari-

ety. Gradually this was considered an annoyance; in Python 2.2, we introduced automatic

conversion to long when the mathematically correct result of an operation on ints could

not be represented as an int (for example, 2**100).

Previously, this would raise an OverflowError exception. There was once a time where the

result would silently be truncated, but I changed it to raising an exception before ever let-

ting others use the language. In early 1990, I wasted an afternoon debugging a short demo

program I’d written implementing an algorithm that made non-obvious use of very large

integers. Such debugging sessions are seminal experiences.

However, there were still certain cases where the two number types behaved slightly dif-

ferent; for example, printing an int in hexadecimal or octal format would produce an

unsigned outcome (e.g., –1 would be printed as FFFFFFFF), while doing the same on the

mathematically equal long would produce a signed outcome (–1, in this case). In Python

3.0, we’re taking the radical step of supporting only a single integer type; we’re calling it

int, but the implementation is largely that of the old long type.

Download at Boykma.Com

P Y T H O N 25

Why do you call it a radical step?

Guido: Mostly because it’s a big deviation from current practice in Python. There was a

lot of discussion about this, and people proposed various alternatives where two (or more)

representations would be used internally, but completely or mostly hidden from end users

(but not from C extension writers). That might perform a bit better, but in the end it was

already a massive amount of work, and having two representations internally would just

increase the effort of getting it right, and make interfacing to it from C code even hairier.

We are now hoping that the performance hit is minor and that we can improve perfor-

mance with other techniques like caching.

How did you adopt the “there should be one—and preferably only one—obvious way

to do it” philosophy?

Guido: This was probably subconscious at first. When Tim Peters wrote the “Zen of

Python” (from which you quote), he made explicit a lot of rules that I had been applying

without being aware of them. That said, this particular rule (while often violated, with my

consent) comes straight from the general desire for elegance in mathematics and com-

puter science. ABC’s authors also applied it, in their desire for a small number of orthogo-

nal types or concepts. The idea of orthogonality is lifted straight from mathematics, where

it refers to the very definition of having one way (or one true way) to express something.

For example, the XYZ coordinates of any point in 3D space are uniquely determined, once

you’ve picked an origin and three basis vectors.

I also like to think that I’m doing most users a favor by not requiring them to choose

between similar alternatives. You can contrast this with Java, where if you need a listlike

data structure, the standard library offers many versions (a linked list, or an array list, and

others), or C, where you have to decide how to implement your own list data type.

What is your take on static versus dynamic typing?

Guido: I wish I could say something simple like “static typing bad, dynamic typing good,”

but it isn’t always that simple. There are different approaches to dynamic typing, from Lisp

to Python, and different approaches to static typing, from C++ to Haskell. Languages like

C++ and Java probably give static typing a bad name because they require you to tell the

compiler the same thing several times over. Languages like Haskell and ML, however, use

type inferencing, which is quite different, and has some of the same benefits as dynamic

typing, such as more concise expression of ideas in code. However the functional para-

digm seems to be hard to use on its own—things like I/O or GUI interaction don’t fit well

into that mold, and typically are solved with the help of a bridge to a more traditional lan-

guage, like C, for example.

In some situations the verbosity of Java is considered a plus; it has enabled the creation of

powerful code-browsing tools that can answer questions like “where is this variable

changed?” or “who calls this method?” Dynamic languages make answering such ques-

tions harder, because it’s often hard to find out the type of a method argument without

analyzing every path through the entire codebase. I’m not sure how functional languages

Download at Boykma.Com

26 C H A P T E R T W O

like Haskell support such tools; it could well be that you’d have to use essentially the same

technique as for dynamic languages, since that’s what type inferencing does anyway—in

my limited understanding!

Are we moving toward hybrid typing?

Guido: I expect there’s a lot to say for some kind of hybrid. I’ve noticed that most large

systems written in a statically typed language actually contain a significant subset that is

essentially dynamically typed. For example, GUI widget sets and database APIs for Java

often feel like they are fighting the static typing every step of the way, moving most cor-

rectness checks to runtime.

A hybrid language with functional and dynamic aspects might be quite interesting. I

should add that despite Python’s support for some functional tools like map() and lambda,

Python does not have a functional-language subset: there is no type inferencing, and no

opportunity for parallellization.

Why did you choose to support multiple paradigms?

Guido: I didn’t really; Python supports procedural programming, to some extent, and OO.

These two aren’t so different, and Python’s procedural style is still strongly influenced by

objects (since the fundamental data types are all objects). Python supports a tiny bit of

functional programming—but it doesn’t resemble any real functional language, and it

never will. Functional languages are all about doing as much as possible at compile time—

the “functional” aspect means that the compiler can optimize things under a very strong

guarantee that there are no side effects, unless explicitly declared. Python is about having

the simplest, dumbest compiler imaginable, and the official runtime semantics actively dis-

courage cleverness in the compiler like parallelizing loops or turning recursion into loops.

Python probably has the reputation of supporting functional programming based on the

inclusion of lambda, map, filter, and reduce in the language, but in my eyes these are just

syntactic sugar, and not the fundamental building blocks that they are in functional lan-

guages. The more fundamental property that Python shares with Lisp (not a functional

language either!) is that functions are first-class objects, and can be passed around like any

other object. This, combined with nested scopes and a generally Lisp-like approach to

function state, makes it possible to easily implement concepts that superficially resemble

concepts from functional languages, like currying, map, and reduce. The primitive opera-

tions that are necessary to implement those concepts are built in Python, where in func-

tional languages, those concepts are the primitive operations. You can write reduce() in a

few lines of Python. Not so in a functional language.

When you created the language, did you consider the type of programmers it might have

attracted?

Guido: Yes, but I probably didn’t have enough imagination. I was thinking of professional

programmers in a Unix or Unix-like environment. Early versions of the Python tutorial

used a slogan something like “Python bridges the gap between C and shell programming,”

Download at Boykma.Com

P Y T H O N 27

because that was where I was myself, and the people immediately around me. It never

occurred to me that Python would be a good language to embed in applications until peo-

ple started asking about that.

The fact that it was useful for teaching first principles of programming in a middle school

or college setting or for self-teaching was merely a lucky coincidence, enabled by the

many ABC features that I kept—ABC was aimed specifically at teaching programming to

nonprogrammers.

How do you balance the different needs of a language that should be easy to learn for

novices versus a language that should be powerful enough for experienced programmers

to do useful things? Is that a false dichotomy?

Guido: Balance is the word. There are some well-known traps to avoid, like stuff that is

thought to help novices but annoys experts, and stuff that experts need but confuses novices.

There’s plenty enough space in between to keep both sides happy. Another strategy is to have

ways for experts to do advanced things that novices will never encounter—for example, the

language supports metaclasses, but there’s no reason for novices to know about them.

The Good Programmer

How do you recognize a good programmer?

Guido: It takes time to recognize a good programmer. For example, it’s really hard to tell

good from bad in a one-hour interview. When you work together with someone though,

on a variety of problems, it usually becomes pretty clear which are the good ones. I hesi-

tate to give specific criteria—I guess in general the good ones show creativity, learn

quickly, and soon start producing code that works and doesn’t need a lot of changes before

it’s ready to be checked in. Note that some folks are good at different aspects of program-

ming than others—some folks are good at algorithms and data structures, others are good

at large-scale integration, or protocol design, or testing, or API design, or user interfaces,

or whatever other aspects of programming exist.

What method would you use to hire programmers?

Guido: Based on my interviewing experience in the past, I don’t think I’d be any good at

hiring in the traditional way—my interview skills are nearly nonexistent on both sides of

the table! I guess what I’d do would be to use some kind of apprentice system where I’d be

working closely with people for quite some time and would eventually get a feeling for

their strengths and weaknesses. Sort of the way an open source project works.

Is there any characteristic that becomes fundamental to evaluate if we are looking for

great Python programmers?

Guido: I’m afraid you are asking this from the perspective of the typical manager who

simply wants to hire a bunch of Python programmers. I really don’t think there’s a simple

answer, and in fact I think it’s probably the wrong question. You don’t want to hire

Python programmers. You want to hire smart, creative, self-motivated people.

Download at Boykma.Com

28 C H A P T E R T W O

If you check job ads for programmers, nearly all of them include a line about being able

to work in a team. What is your opinion on the role of the team in programming? Do you

still see space for the brilliant programmer who can’t work with others?

Guido: I am with the job ads in that one aspect. Brilliant programmers who can’t do

teamwork shouldn’t get themselves in the position of being hired into a traditional pro-

gramming position—it will be a disaster for all involved, and their code will be a night-

mare for whoever inherits it. I actually think it’s a distinct lack of brilliance if you can’t do

teamwork. Nowadays there are ways to learn how to work with other people, and if

you’re really so brilliant you should be able to learn teamwork skills easily—it’s really not

as hard as learning how to implement an efficient Fast Fourier Transform, if you set your

mind about it.

Being the designer of Python, what advantages do you see when coding with your

language compared to another skilled developer using Python?

Guido: I don’t know—at this point the language and VM have been touched by so many

people that I’m sometimes surprised at how certain things work in detail myself! If I have

an advantage over other developers, it probably has more to do with having used the lan-

guage longer than anyone than with having written it myself. Over that long period of

time, I have had the opportunity to ponder which operations are faster and which are

slower—for example, I may be aware more than most users that locals are faster than glo-

bals (though others have gone overboard using this, not me!), or that functions and

method calls are expensive (more so than in C or Java), or that the fastest data type is a

tuple.

When it comes to using the standard library and beyond, I often feel that others have an

advantage. For example, I write about one web application every few years, and the tech-

nology available changes each time, so I end up writing a “first” web app using a new

framework or approach each time. And I still haven’t had the opportunity to do serious

XML mangling in Python.

It seems that one of the features of Python is its conciseness. How does this affect the

maintainability of the code?

Guido: I’ve heard of research as well as anecdotal evidence indicating that the error rate

per number of lines of code is pretty consistent, regardless of the programming language

used. So a language like Python where a typical application is just much smaller than, say,

the same amount of functionality written in C++ or Java, would make that application

much more maintainable. Of course, this is likely going to mean that a single programmer is

responsible for more functionality. That’s a separate issue, but it still comes out in favor of

Python: more productivity per programmer probably means fewer programmers on a team,

which means less communication overhead, which according to The Mythical Man-Month

[Frederick P. Brooks; Addison-Wesley Professional] goes up by the square of the team size, if

I remember correctly.

Download at Boykma.Com

P Y T H O N 29

What link do you see between the easiness of prototyping offered by Python and the

effort needed to build a complete application?

Guido: I never meant Python to be a prototyping language. I don’t believe there should

be a clear distinction between prototyping and “production” languages. There are situa-

tions where the best way to write a prototype would be to write a little throwaway C hack.

There are other situations where a prototype can be created using no “programming” at

all—for example, using a spreadsheet or a set of find and grep commands.

The earliest intentions I had for Python were simply for it to be a language to be used in

cases where C was overkill and shell scripts became too cumbersome. That covers a lot of

prototyping, but it also covers a lot of “business logic” (as it’s come to be called these days)

that isn’t particularly greedy in computing resources but requires a lot of code to be writ-

ten. I would say that most Python code is not written as a prototype but simply to get a job

done. In most cases Python is fully up to the job, and there is no need to change much in

order to arrive at the final application.

A common process is that a simple application gradually acquires more functionality, and

ends up growing tenfold in complexity, and there is never a precise cutover point from

prototype to final application. For example, the code review application Mondrian that I

started at Google has probably grown tenfold in code size since I first released it, and it is

still all written in Python. Of course, there are also examples where Python did eventually

get replaced by a faster language—for example, the earliest Google crawler/indexer was

(largely) written in Python—but those are the exceptions, not the rule.

How does the immediacy of Python affect the design process?

Guido: This is often how I work, and, at least for me, in general it works out well! Sure, I

write a lot of code that I throw away, but it’s much less code than I would have written in

any other language, and writing code (without even running it) often helps me tremen-

dously in understanding the details of the problem. Thinking about how to rearrange the

code so that it solves the problem in an optimal fashion often helps me think about the

problem. Of course, this is not to be used as an excuse to avoid using a whiteboard to

sketch out a design or architecture or interaction, or other early design techniques. The

trick is to use the right tool for the job. Sometimes that’s a pencil and a napkin—other

times it’s an Emacs window and a shell prompt.

Do you think that bottom-up program development is more suited to Python?

Guido: I don’t see bottom-up versus top-down as religious opposites like vi versus Emacs.

In any software development process, there are times when you work bottom-up, and

other times when you work top-down. Top-down probably means you’re dealing with

something that needs to be carefully reviewed and designed before you can start coding,

while bottom-up probably means that you are building new abstractions on top of existing

ones, for example, creating new APIs. I’m not implying that you should start coding APIs

without having some kind of design in mind, but often new APIs follow logically from the

available lower-level APIs, and the design work happens while you are actually writing code.

Download at Boykma.Com

30 C H A P T E R T W O

When do you think Python programmers appreciate more its dynamic nature?

Guido: The language’s dynamic features are often most useful when you are exploring a

large problem or solution space and you don’t know your way around yet—you can do a

bunch of experiments, each using what you learned from the previous ones, without hav-

ing too much code that locks you into a particular approach. Here it really helps that you

can write very compact code in Python—writing 100 lines of Python to run an experiment

once and then starting over is much more efficient than writing a 1,000-line framework

for experimentation in Java and then finding out it solves the wrong problem!

From a security point of view, what does Python offer to the programmer?

Guido: That depends on the attacks you’re worried about. Python has automatic memory

allocation, so Python programs aren’t prone to certain types of bugs that are common in C

and C++ code like buffer overflows or using deallocated memory, which have been the

bread and butter of many attacks on Microsoft software. Of course the Python runtime

itself is written in C, and indeed vulnerabilities have been found here over the years, and

there are intentional escapes from the confines of the Python runtime, like the ctypes

module that lets one call arbitrary C code.

Does its dynamic nature help or rather the opposite?

Guido: I don’t think the dynamic nature helps or hurts. One could easily design a

dynamic language that has lots of vulnerabilities, or a static language that has none. How-

ever having a runtime, or virtual machine as is now the “hip” term, helps by constraining

access to the raw underlying machine. This is coincidentally one of the reasons that

Python is the first language supported by Google App Engine, the project in which I am

currently participating.

How can a Python programmer check and improve his code security?

Guido: I think Python programmers shouldn’t worry much about security, certainly not

without having a specific attack model in mind. The most important thing to look for is

the same as in all languages: be suspicious of data provided by someone you don’t trust

(for a web server, this is every byte of the incoming web request, even the headers). One

specific thing to watch out for is regular expressions—it is easy to write a regular expression

that runs in exponential time, so web applications that implement searches where the end

user types in a regular expression should have some mechanism to limit the running time.

Is there any fundamental concept (general rule, point of view, mindset, principle) that

you would suggest to be proficient in developing with Python?

Guido: I would say pragmatism. If you get too hung up about theoretical concepts like data

hiding, access control, abstractions, or specifications, you aren’t a real Python programmer,

and you end up wasting time fighting the language, instead of using (and enjoying) it;

you’re also likely to use it inefficiently. Python is good if you’re an instant gratification

junkie like myself. It works well if you enjoy approaches like extreme programming or

Download at Boykma.Com

P Y T H O N 31

other agile development methods, although even there I would recommend taking every-

thing in moderation.

What do you mean by “fighting the language”?

Guido: That usually means that they’re trying to continue their habits that worked well

with a different language.

A lot of the proposals to somehow get rid of explicit self come from people who have

recently switched to Python and still haven’t gotten used to it. It becomes an obsession for

them. Sometimes they come out with a proposal to change the language; other times they

come up with some super-complicated metaclass that somehow makes self implicit. Usu-

ally things like that are super-inefficient or don’t actually work in a multithreaded envi-

ronment or whatever other edge case, or they’re so obsessed about having to type those

four characters that they changed the convention from self to s or capital S. People will

turn everything into a class, and turn every access into an accessor method, where that is

really not a wise thing to do in Python; you’ll just have more verbose code that is harder

to debug and runs a lot slower. You know the expression “You can write FORTRAN in any

language?” You can write Java in any language, too.

You spent so much time trying to create (preferably) one obvious way to do things. It

seems like you’re of the opinion that doing things that way, the Python way, really lets you

take advantage of Python.

Guido: I’m not sure that I really spend a lot of time making sure that there’s only one

way. The “Zen of Python” is much younger than the language Python, and most defining

characteristics of the language were there long before Tim Peters wrote it down as a form

of poetry. I don’t think he expected it to be quite as widespread and successful when he

wrote it up.

It’s a catchy phrase.

Guido: Tim has a way with words. “There’s only one way to do it” is actually in most

cases a white lie. There are many ways to do data structures. You can use tuples and lists.

In many cases, it really doesn’t matter that much whether you use a tuple or a list or

sometimes a dictionary. It turns out usually if you look really carefully, one solution is

objectively better because it works just as well in a number of situations, and there’s one

or two cases where lists just works so much better than tuples when you keep growing

them.

That comes more actually from the original ABC philosophy that was trying to be very

sparse in the components. ABC actually shared a philosophy with ALGOL-68, which is

now one of the deadest languages around, but was very influentia. Certainly where I was

at the time during the 80s, it was very influential because Adriaan van Wijngaarden was

the big guy from ALGOL 68. He was still teaching classes when I went to college. I did one

or two semesters where he was just telling anecdotes from the history of ALGOL 68 if he

felt like it. He had been the director of CWI. Someone else was it by the time I joined.

Download at Boykma.Com

32 C H A P T E R T W O

There were many people who had been very close with ALGOL 68. I think Lambert

Meertens, the primary author of ABC, was also one of the primary editors of the ALGOL

68 report, which probably means he did a lot of the typesetting, but he may occasionally

also have done quite a lot of the thinking and checking. He was clearly influenced by

ALGOL 68’s philosophy of providing constructs that can be combined in many different

ways to produce all sorts of different data structures or ways of structuring a program.

It was definitely his influence that said, “We have lists or arrays, and they can contain any

kind of other thing. They can contain numbers or strings, but they can also contain other

arrays and tuples of other things. You can combine all of these things together.” Suddenly

you don’t need a separate concept of a multidimensional array because an array of arrays

solves that for any dimensionality. That philosophy of taking a few key things that cover

different directions of flexibility and allow them to be combined was very much a part of

ABC. I borrowed all of that almost without thinking about it very hard.

While Python tries to give the appearance that you can combine things in very flexible

ways as long as you don’t try to nest statements inside expressions, there is actually a

remarkable number of special cases in the syntax where in some cases a comma means a

separation between parameters, and in other cases the comma means the items of a list,

and in yet another case it means an implicit tuple.

There are a whole bunch of variations in the syntax where certain operators are not

allowed because they would conflict with some surrounding syntax. That is never really a

problem because you can always put an extra pair of parentheses around something when

it doesn’t work. Because of that the syntax, at least from the parser author’s perspective,

has grown quite a bit. Things like list comprehensions and generator expressions are syn-

tactically still not completely unified. In Python 3000, I believe they are. There’s still some

subtle semantic differences, but the syntax at least is the same.

Multiple Pythons

Does the parser get simpler in Python 3000?

Guido: Hardly. It didn’t become more complex, but it also didn’t really become simpler.

No more complex I think is a win.

Guido: Yeah.

Why the simplest, dumbest compiler imaginable?

Guido: That was originally a very practical goal, because I didn’t have a degree in code

generation. There was just me, and I had to have the byte code generator behind me

before I could do any other interesting work on the language.

Download at Boykma.Com

P Y T H O N 33

I still believe that having a very simple parser is a good thing; after all, it is just the thing

that turns the text into a tree that represents the structure of the program. If the syntax is

so ambiguous that it takes really advanced parts of technology to figure it out, then

human readers are probably confused half the time as well. It also makes it really hard to

write another parser.

Python is incredibly simple to parse, at least at the syntactic level. At the lexical level, the

analysis is relatively subtle because you have to read the indentation with a little stack that

is embedded in the lexical analyzer, which is a counterexample for the theory of separa-

tion between lexical and grammatical analysis. Nevertheless, that is the right solution. The

funny thing is that I love automatically generated parsers, but I do not believe very

strongly in automatically generated lexical analysis. Python has always had a manually

generated scanner and an automated parser.

People have written many different parsers for Python. Even port of Python to a different

virtual machine, whether Jython or IronPython or PyPy, has its own parser, and it’s no big

deal because the parser is never a very complex piece of the project, because the structure

of the language is such that you can very easily parse it with the most basic one-token

lookahead recursive descent parser.

What makes parsers slow is actually ambiguities that can only be resolved by looking

ahead until the end of the program. In natural languages there are many examples where

it’s impossible to parse a sentence until you’ve read the last word and the arbitrary nesting

in the sentence. Or there are sentences that can only be parsed if you actually know the

person that they are talking about, but that’s a completely different situation. For parsing

programming languages, I like my one-token lookahead.

That suggests to me that there may never be macros in Python because you have to

perform another parsing phase then!

Guido: There are ways of embedding the macros in the parser that could probably work.

I’m not at all convinced that macros solve any problem that is particularly pressing for

Python, though. On the other hand, since the language is easy to parse, if you come up

with some kind of hygienic set of macros that fit within the language syntax, it might be

very simple to implement micro-evaluation as parse tree manipulations. That’s just not an

area that I’m particularly interested in.

Why did you choose to use strict formatting in source code?

Guido: The choice of indentation for grouping was not a novel concept in Python; I inher-

ited this from ABC, but it also occurred in occam, an older language. I don’t know if the

ABC authors got the idea from occam, or invented it independently, or if there was a com-

mon ancestor. The idea may be attributed to Don Knuth, who proposed this as early as

1974.

Download at Boykma.Com

34 C H A P T E R T W O

Of course, I could have chosen not to follow ABC’s lead, as I did in other areas (e.g., ABC

used uppercase for language keywords and procedure names, an idea I did not copy), but I

had come to like the feature quite a bit while using ABC, as it seemed to do away with a

certain type of pointless debate common amongst C users at the time, about where to

place the curly braces. I also was well aware that readable code uses indentation voluntar-

ily anyway to indicate grouping, and I had come across subtle bugs in code where the

indentation disagreed with the syntactic grouping using curly braces—the programmer

and any reviewers had assumed that the indentation matched the grouping and therefore

not noticed the bug. Again, a long debugging session taught a valuable lesson.

Strict formatting should produce a cleaner code and probably reduce the differences in

the “layout” of the code of different programmers, but doesn’t this sound like forcing a

human being to adapt to the machine, instead of the opposite path?

Guido: Quite the contrary—it helps the human reader more than it helps the machine;

see the previous example. Probably the advantages of this approach are more visible when

maintaining code written by another programmer.

New users are often put off by this initially, although I don’t hear about this so much any

more; perhaps the people teaching Python have learned to anticipate this effect and

counter it effectively.

I would like to ask you about multiple implementations of Python. There are four or five

big implementations, including Stackless and PyPy.

Guido: Stackless, technically, is not a separate implementation. Stackless is often listed as

a separate Python implementation because it is a fork of Python that replaces a pretty

small part of the virtual machine with a different approach.

Basically the byte code dispatch, right?

Guido: Most of the byte code dispatch is very similar. I think the byte codes are the same

and certainly all of the objects are the same. What they do different is when you have a

call from one Python procedure to another procedure: they do that with manipulation of

objects, where they just push a stack of stack frames and the same bit of C code remains in

charge. The way it’s done in C Python is that, at that point, a C function is invoked which

will then eventually invoke a new instance of the virtual machine. It’s not really the

whole virtual machine, but the loop that interprets the byte code. There’s only one of

those loops on the C stack in stackless. In traditional C Python, you can have that same

loop on your C stack many times. That’s the only difference.

PyPy, IronPython, Jython are separate implementations. I don’t know about something

that translates to JavaScript, but I wouldn’t be surprised if someone had gotten quite far

with that at some point. I have heard of experimental things that translate to OCaml and

Lisp and who knows what. There once was something that translated to C code as well.

Download at Boykma.Com

P Y T H O N 35

Mark Hammond and Greg Stein worked on it in the late 90s, but they found out that the

speedup that they could obtain was very, very modest. In the best circumstances, it would

run twice as fast; also, the generated code was so large that you had these enormous bina-

ries, and that became a problem.

Start-up time hurt you there.

Guido: I think the PyPy people are on the right track.

It sounds like you’re generally supportive of these implementations.

Guido: I have always been supportive of alternate implementations. From the day that

Jim Hugunin walked in the door with a more or less completed JPython implementation,

I was excited about it. In a sense, it counts as a validation of the language design. It also

means that people can use their favorite language on the platform where otherwise they

wouldn’t have access to it. We still have a way to go there, but it certainly helped me isolate

which features were really features of the language that I cared about, and which features

were features of a particular implementation where I was OK with other implementations

doing things differently. That’s where we ended up on the unfortunately slippery slope of

garbage collection.

That’s always a slippery slope.

Guido: But it’s also necessary. I cannot believe how long we managed to live with pure

reference counting and no way to break cycles. I have always seen reference counting as a

way of doing garbage collection, and not a particularly bad one. There used to be this holy

war between reference counting versus garbage collection, and that always seemed rather

silly to me.

Regarding these implementations again, I think Python is an interesting space because it

has a pretty good specification. Certainly compared to other languages like Tcl, Ruby, and

Perl 5. Was that something that came about because you wanted to standardize the

language and its behavior, or because you were looking at multiple implementations, or

something else?

Guido: It was probably more a side effect of the community process around PEPs and the

multiple implementations. When I originally wrote the first set of documentation, I very

enthusiastically started a language reference manual, which was supposed to be a suffi-

ciently precise specification that someone from Mars or Jupiter could implement the lan-

guage and get the semantics right. I never got anywhere near fulfilling that goal.

ALGOL 68 probably got the closest of any language ever with their highly mathematical

specification. Other languages like C++ and JavaScript have managed with sheer will-

power of the standardization committee, especially in the case of C++. That’s obviously an

incredibly impressive effort. At the same time, it takes so much manpower to write a spec-

ification that is that precise, that my hope of getting something like that for Python never

really got implemented.

Download at Boykma.Com

36 C H A P T E R T W O

What we do have is enough understanding of how the language is supposed to work, and

enough unit tests, and enough people on hand that can answer to implementers of other

versions in finite time. I know that, for example, the IronPython folks have been very

conscientious in trying to run the entire Python test suite, and for every failure deciding if

the test suite was really testing the specific behavior of the C Python implementation or if

they actually had more work to do in their implementation.

The PyPy folks did the same thing, and they went one step further. They have a couple of

people who are much smarter than I, and who have come up with an edge case probably

prompted by their own thinking about how to generate code and how to analyze code in a

JIT environment. They have actually contributed quite a few tests and disambiguations

and questions when they found out that there was a particular combination of things that

nobody had ever really thought about. That was very helpful. The process of having mul-

tiple implementations of the language has been tremendously helpful for getting the spec-

ification of the language disambiguated.

Do you foresee a time when C Python may not be the primary implementation?

Guido: That’s hard to see. I mean some people foresee a time where .NET rules the world;

other people foresee a time where JVMs rule the world. To me, that all seems like wishful

thinking. At the same time, I don’t know what will happen. There could be a quantum

jump where, even though the computers that we know don’t actually change, a different

kind of platform suddenly becomes much more prevalent and the rules are different.

Perhaps a shift away from the von Neumann architecture?

Guido: I wasn’t even thinking of that, but that’s certainly also a possibility. I was more

thinking of what if mobile phones become the ubiquitous computing device. Mobile

phones are only a few years behind the curve of the power of regular laptops, which sug-

gests that in a few years, mobile phones, apart from the puny keyboard and screen, will

have enough computing power so that you don’t need a laptop anymore. It may well be

that mobile phones for whatever platform politics end up all having a JVM or some other

standard environment where C Python is not the best approach and some other Python

implementation would work much better.

There’s certainly also the question of what do we do when we have 64 cores on a chip,

even in a laptop or in a cell phone. I don’t actually know if that should change the pro-

gramming paradigm all that much for most of the things we do. There may be a use for

some languages that let you specify incredibly subtle concurrent processes, but in most

cases the average programmer cannot write correct thread-safe code anyway. Assuming

that somehow the ascent of multiple cores forces them to do that is kind of unrealistic. I

expect that multiple cores will certainly be useful, but they will be used for coarse-grained

parallelism, which is better anyway, because with the enormous cost difference between

cache hits and cache misses, main memory no longer really serves the function of shared

memory. You want to have your processes as isolated as possible.

Download at Boykma.Com

P Y T H O N 37

How should we deal with concurrency? At what level should this problem be dealt with

or, even better, solved?

Guido: My feeling is that writing single-threaded code is hard enough, and writing multi-

threaded code is way harder—so hard that most people don’t have a hope of getting it

right, and that includes myself. Therefore, I don’t believe that fine-grained synchronization

primitives and shared memory are the solution—instead, I’d much rather see message-

passing solutions get back in style. I’m pretty sure that changing all programming lan-

guages to add synchronization constructs is a bad idea.

I also still don’t believe that trying to remove the GIL from CPython will work. I do believe

that some support for managing multiple processes (as opposed to threads) is a piece of the

puzzle, and for that reason Python 2.6 and 3.0 will have a new standard library module,

multiprocessing, that offers an API similar to that of the threading module for doing

exactly that. As a bonus, it even supports processes running on different hosts!

Expedients and Experience

Is there any tool or feature that you feel is missing when writing software?

Guido: If I could sketch on a computer as easily as I can with pencil and paper, I might be

making more sketches while doing the hard thinking about a design. I fear that I’ll have to

wait until the mouse is universally replaced by a pen (or your finger) that lets you draw

on the screen. Personally, I feel terribly handicapped when using any kind of computer-

ized drawing tool, even if I’m pretty good with pencil and paper—perhaps I inherited it

from my father, who was an architect and was always making rough sketches, so I was

always sketching as a teenager.

At the other end of the scale, I suppose I may not even know what I’m missing for spe-

lunking large codebases. Java programmers have IDEs now that provide quick answers to

questions like “where are the callers of this method?” or “where is this variable assigned

to?” For large Python programs, this would also be useful, but the necessary static analysis

is harder because of Python’s dynamic nature.

How do you test and debug your code?

Guido: Whatever is expedient. I do a lot of testing when I write code, but the testing

method varies per project. When writing your basic pure algorithmic code, unit tests are

usually great, but when writing code that is highly interactive or interfaces to legacy APIs,

I often end up doing a lot of manual testing, assisted by command-line history in the shell

or page-reload in the browser. As an (extreme) example, you can’t very well write a unit

test for a script whose sole purpose is to shut down the current machine; sure, you can

mock out the part that actually does the shut down, but you still have to test that part,

too, or else how do you know that your script actually works?

Download at Boykma.Com

38 C H A P T E R T W O

Testing something in different environments is also often hard to automate. Buildbot is

great for large systems, but the overhead to set it up is significant, so for smaller systems

often you just end up doing a lot of manual QA. I’ve gotten a pretty good intuition for

doing QA, but unfortunately it’s hard to explain.

When should debugging be taught? And how?

Guido: Continuously. You are debugging your entire life. I just “debugged” a problem

with my six-year-old son’s wooden train set where his trains kept getting derailed at a cer-

tain point on the track. Debugging is usually a matter of moving down an abstraction level

or two, and helped by stopping to look carefully, thinking, and (sometimes) using the

right tools.

I don’t think there is a single “right” way of debugging that can be taught at a specific

point, even for a very specific target such as debugging program bugs. There is an incredi-

bly large spectrum of possible causes for program bugs, including simple typos, “thinkos,”

hidden limitations of underlying abstractions, and outright bugs in abstractions or their

implementation. The right approach varies from case to case. Tools come into play mostly

when the required analysis (“looking carefully”) is tedious and repetitive. I note that

Python programmers often need few tools because the search space (the program being

debugged) is so much smaller.

How do you resume programming?

Guido: This is actually an interesting question. I don’t recall ever looking consciously at

how I do this, while I indeed deal with this all the time. Probably the tool I used most for

this is version control: when I come back to a project I do a diff between my workspace

and the repository, and that will tell me the state I’m in.

If I have a chance, I leave XXX markers in the unfinished code when I know I am about to

be interrupted, telling me about specific subtasks. I sometimes also use something I picked

up from Lambert Meertens some 25 years ago: leave a specific mark in the current source

file at the place of the cursor. The mark I use is “HIRO,” in his honor. It is colloquial Dutch

for “here” and selected for its unlikeliness to ever occur in finished code. :-)

At Google we also have tools integrated with Perforce that help me in an even earlier

stage: when I come in to work, I might execute a command that lists each of the unfin-

ished projects in my workspace, so as to remind me which projects I was working on the

previous day. I also keep a diary in which I occasionally record specific hard-to-remember

strings (like shell commands or URLs) that help me perform specific tasks for the project at

hand—for example, the full URL to a server stats page, or the shell command that rebuilds

the components I’m working on.

What are your suggestions to design an interface or an API?

Guido: Another area where I haven’t spent a lot of conscious thought about the best pro-

cess, even though I’ve designed tons of interfaces (or APIs). I wish I could just include a

talk by Josh Bloch on the subject here; he talked about designing Java APIs, but most of

Download at Boykma.Com

P Y T H O N 39

what he said would apply to any language. There’s lots of basic advice like picking clear

names (nouns for classes, verbs for methods), avoiding abbreviations, consistency in

naming, providing a small set of simple methods that provide maximal flexibility when

combined, and so on. He is big on keeping the argument lists short: two to three argu-

ments is usually the maximum you can have without creating confusion about the order.

The worst thing is having several consecutive arguments that all have the same type; an

accidental swap can go unnoticed for a long time then.

I have a few personal pet peeves: first of all, and this is specific to dynamic languages,

don’t make the return type of a method depend on the value of one of the arguments; oth-

erwise it may be hard to understand what’s returned if you don’t know the relationship—

maybe the type-determining argument is passed in from a variable whose content you

can’t easily guess while reading the code.

Second, I dislike “flag” arguments that are intended to change the behavior of a method in

some big way. With such APIs the flag is always a constant in actually observed parameter

lists, and the call would be more readable if the API had separate methods: one for each

flag value.

Another pet peeve is to avoid APIs that could create confusion about whether they return

a new object or modify an object in place. This is the reason why in Python the list method

sort() doesn’t return a value: this emphasizes that it modifies the list in place. As an alter-

native, there is the built-in sorted() function, which returns a new, sorted list.

Should application programmers adopt the “less is more” philosophy? How should they

simplify the user interface to provide a shorter learning path?

Guido: When it comes to graphical user interfaces, it seems there’s finally growing sup-

port for my “less is more” position. The Mozilla foundation has hired Aza Raskin, son of

the late Jef Raskin (codesigner of the original Macintosh UI) as a UI designer. Firefox 3 has

at least one example of a UI that offers a lot of power without requiring buttons, configu-

ration, preferences or anything: the smart location bar watches what I type, compares it to

things I’ve browsed to before, and makes useful suggestions. If I ignore the suggestions it

will try to interpret what I type as a URL or, if that fails, as a Google query. Now that’s

smart! And it replaces three or four pieces of functionality that would otherwise require

separate buttons or menu items.

This reflects what Jef and Aza have been saying for so many years: the keyboard is such a

powerful input device, let’s use it in novel ways instead of forcing users to do everything

with the mouse, the slowest of all input devices. The beauty is that it doesn’t require new

hardware, unlike Sci-Fi solutions proposed by others like virtual reality helmets or eye

movement sensors, not to mention brainwave detectors.

There’s a lot to do of course—for example, Firefox’s Preferences dialog has the dreadful

look and feel of anything coming out of Microsoft, with at least two levels of tabs and

many modal dialogs hidden in obscure places. How am I supposed to remember that in

order to turn off JavaScript I have to go to the Content tab? Are Cookies under the Privacy

Download at Boykma.Com

40 C H A P T E R T W O

tab or under Security? Maybe Firefox 4 can replace the Preferences dialog with a “smart”

feature that lets you type keywords so that if I start typing “pass,” it will take me to the

section to configure passwords.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the forseeable future?

Guido: I have one or two small thoughts about this. I’m not the philosophical kind, so

this is not the kind of question I like or to which I have a prepared response, but here’s

one thing I realized early on that I did right with Python (and which Python’s predecessor,

ABC, didn’t do, to its detriment). A system should be extensible by its users. Moreover, a

large system should be extensible at two (or more) levels.

Since the first time I released Python to the general public, I got requests to modify the

language to support certain kinds of use cases. My first response to such requests is always

to suggest writing some Python code to cover their needs and put it in a module for their

own use. This is the first level of extensibility—if the functionality is useful enough, it may

end up in the standard library.

The second level of extensibility is to write an extension module in C (or in C++, or other

languages). Extension modules can do certain things that are not feasible in pure Python

(though the capabilities of pure Python have increased over the years). I would much

rather add a C-level API so that extension modules can muck around in Python’s internal

data structures, than change the language itself, since language changes are held to the

highest possible standard of compatibility, quality, semantic clarity, etc. Also, “forks” in

the language might happen when people “help themselves” by changing the language

implementation in their own copy of the interpreter, which they may distribute to others

as well. Such forks cause all sorts of problems, such as maintenance of the private changes

as the core language also evolves, or merging multiple independently forked versions that

other users might need to combine. Extension modules don’t have these problems; in

practice most functionality needed by extensions is already available in the C API, so

changes to the C API are rarely necessary in order to enable a particular extension.

Another thought is to accept that you don’t get everything right the first time. Early on

during development, when you have a small number of early adopters as users, is the time

to fix things drastically as soon as you notice a problem, never mind backward compatibil-

ity. A great anecdote I often like to quote, and which has been confirmed as truthful by

someone who was there at the time, is that Stuart Feldman, the original author of “Make”

in Unix v7, was asked to change the dependence of the Makefile syntax on hard tab char-

acters. His response was something along the lines that he agreed tab was a problem, but

that it was too late to fix since there were already a dozen or so users.

As the user base grows, you need to be more conservative, and at some point absolute

backward compatibility is a necessity. There comes a point where you have accumulated

so many misfeatures that this is no longer feasible. A good strategy to deal with this is

Download at Boykma.Com

P Y T H O N 41

what I’m doing with Python 3.0: announce a break with backward compatibility for one

particular version, use the opportunity to fix as many such issues as possible, and give the

user community a lot of time to deal with the transition.

In Python’s case, we’re planning to support Python 2.6 and 3.0 alongside each other for a

long time—much longer than the usual support lifetime of older releases. We’re also offer-

ing several transitional strategies: an automated source-to-source conversion tool that is

far from perfect, combined with optional warnings in version 2.6 about the use of func-

tionality that will change in 3.0 (especially if the conversion tool cannot properly recog-

nize the situation), as well as selective back-porting of certain 3.0 features to 2.6. At the

same time, we’re not making 3.0 a total rewrite or a total redesign (unlike Perl 6 or, in the

Python world, Zope 3), thereby minimizing the risk of accidentally dropping essential

functionality.

One trend I’ve noticed in the past four or five years is much greater corporate adoption of

dynamic languages. First PHP, Ruby in some context, definitely Python in other contexts,

especially Google. That’s interesting to me. I wonder where these people were 20 years

ago when languages like Tcl and Perl, and Python a little bit later, were doing all of these

useful things. Have you seen desire to make these languages more enterprise-friendly,

whatever that means?

Guido: Enterprise-friendly is usually when the really smart people lose interest and the

people of more mediocre skills have to somehow fend for themselves. I don’t know if

Python is harder to use for mediocre people. In a sense you would think that there is quite

a bit of damage you cannot do in Python because it’s all interpreted. On the other hand, if

you write something really huge and you don’t use enough unit testing, you may have no

idea what it actually does.

You’ve made the argument that a line of Python, a line of Ruby, a line of Perl, a line of

PHP, may be 10 lines of Java code.

Guido: Often it is. I think that the adoption level in the enterprise world, even though

there are certain packages of functionality that are helpful, is probably just a fear of very

conservative managers. Imagine the people in charge of IT resources for 100,000 people in

a company where IT is not a main product—maybe they are building cars, or doing insur-

ance, or something else, but everything they do is touched by computers. The people in

charge of that infrastructure necessarily have to be very conservative. They will go with

stuff that looks like it has a big name attached, like maybe Sun or Microsoft, because they

know that Sun and Microsoft screw up all the time, but these companies are obliged to

recover from those screwups and fix them, even if it takes five years.

Open source projects traditionally have just not offered that same peace of mind to the

average CIO. I don’t know exactly if and how and when that will change. It’s possible that

if Microsoft or Sun suddenly supported Python on their respective VMs, programmers in

enterprises would actually discover that they can get higher productivity without any

downsides by using more advanced languages.

Download at Boykma.Com

Download at Boykma.Com

43

Chapter 3 C H A P T E R T H R E E

APL
Adin D. Falkoff

In the late 1950s, while on the faculty of Harvard University, Kenneth Iverson

devised an extension of mathematical notation for the precise description of algo-

rithms. Then, along with Adin Falkoff and other researchers at IBM, the team grad-

ually turned the notation into a full-fledged programming language called APL. The

language uses an extended character set requiring a specialized keyboard and

appears on the page as strings of sometimes unfamiliar symbols—but the under-

lying consistency of the language makes it easy to learn, and its unmatched array-

processing capabilities make it extraordinarily powerful. Its spiritual descendents,

J and K, continue APL’s legacy of concise and powerful algebraic manipulations.

Download at Boykma.Com

44 C H A P T E R T H R E E

Paper and Pencil

I read a paper written by you and Ken Iverson, “The Design of APL,” which said that the

first seven or eight years of development happened without any computer involved! This

let you change design aspects without having to worry about legacy issues. How did the

first software implementation influence the evolution of the language?

Adin Falkoff: Yes, the first years of the evolution of APL, when it had no name other

than “Iverson’s notation,” were mainly concerned with paper-and-pencil mathematical

applications, analysis of digital systems, and teaching. To a great extent, we thought of

programming as a branch of mathematics concerned with the discovery and design of

algorithms, and this concept was supported by the symbolic form of the notation. The

attractiveness of the notation as a general programming language became evident after a

while, and was advanced by the efforts of various people (in particular, Herb Hellerman at

IBM) who experimented with machine implementations of significant elements of the

notation, including primitive functions and array operations. Nevertheless, it is true that

throughout this period we had complete freedom to design the language without concern

for “legacy” issues.

The most significant early evolution of the language took place in two steps. First was the

writing and publication of “The Formal Description of System 360” [IBM Systems Journal,

1964]. In order to formally describe some of the behavior of this newly designed comput-

ing system, some additions and modifications to the notation described in Iverson’s book

(A Programming Language [Wiley]) were necessary. Second was the design of a type ele-

ment for Selectric-based terminals, which we undertook in anticipation of using the lan-

guage on a machine. This imposed significant restraints arising from the linear nature of

typewriting, and mechanical requirements of the Selectric mechanism. I believe there is

considerable detail on the influence of these two factors on the evolution of the language in

the paper you refer to, “The Design of APL” [IBM Journal of Research and Development, 1974].

The first comprehensive implementation of the language was, of course, APL\360. It nec-

essarily introduced facilities to write defined functions (i.e., programs)—something taken

for granted when using pencil and paper—and for controlling the environment in which

programs would be executed. The ideas introduced then, including the workspace and

library system, rules for scope of names, and the use of shared variables for communica-

tion with other systems, have persisted without significant change. Programs written for

APL\360 run without modification on the modern APL systems that I am familiar with.

It is fair to say that the presence of an implementation influenced further evolution of the

language by the strict application of the principle that new ideas must always subsume the

earlier ones, and, of course, by the constant critical examination of how the language was

working for new and different applications.

Download at Boykma.Com

A P L 45

When you defined the syntax, how did you picture the typical APL programmer?

Adin: We did not direct our thinking about syntax to programmers as such, but rather

conceived the language as being a communication medium for people, which incidentally

should also work for people communicating with machines. We did realize that users

would have to be comfortable with a symbolic language like algebra, but also felt that they

would come to appreciate the power of symbolic representation, as it facilitates formal

manipulation of expressions leading to more effective analysis and synthesis of algorithms.

Specifically, we did not believe a lot of experience or knowledge of mathematics was nec-

essary, and in fact used the APL system for teaching at the elementary and high school

level with some notable success.

As time went on, we found that some of the most skilled and experienced programmers

were attracted to APL, used it, and contributed to its development.

Did the complex syntax limit the diffusion of APL?

Adin: The syntax of APL and its effect on the acceptance of the language is well worth

discussing, although I do not agree with the statement that it is “complex.” APL was based

on mathematical notation and algebraic expressions, regularized by removing anomalous

forms and generalizing accepted notation. For example, it was decided that dyadic func-

tions like addition or multiplication would stand between their two arguments, and

monadic functions would consistently have the function symbols written before the argu-

ment, without exceptions such as are found in traditional math notation, so that absolute

value in APL has one vertical bar before the argument and not bars on both sides, and the

symbol for factorial in APL comes before the argument rather than following it. In this

respect, the syntax of APL was simpler than the syntax of its historical source.

The syntax of APL was also simpler than that of algebraic notation and other program-

ming languages in another very important way: the precedence rule for the evaluation of

expressions in APL is simply that all functions have the same precedence, and the user

does not have to remember whether exponentiation is carried out before multiplication,

or where defined functions fit into the hierarchy. The rule is simply that the rightmost

subexpression is evaluated first.

Hence, I don’t believe that the syntax of APL limited the diffusion of the language,

although the character set, using many nonalphabetic symbols not easily available on

standard keyboards, probably did have such an effect.

How did you decide to use a special character set? How did that character set evolve

over time?

Adin: The character set was defined by the use of conventional mathematical notation,

augmented by a few Greek letters and some visually suggestive symbols like the quad.

Download at Boykma.Com

46 C H A P T E R T H R E E

There was also the practical influence of the linear typewriter limitation, leading to the

invention of some characters that could be produced by overstriking. Later on, as termi-

nals and input devices became more versatile, these composite characters became primi-

tive symbols in their own right, and a few new characters were introduced to

accommodate new facilities, such as the diamond for a statement separator.

Was there a conscious decision to use the limited resources of the time more

productively?

Adin: The character set definitely was influenced by the desire to optimize the use of the

limited resources available at the time; but the concise, symbolic form was developed and

maintained because of the conviction that it facilitated analysis and formal manipulation

of expressions. Also, the brevity of programs compared to equivalent ones written in other

languages makes it easier to comprehend the logical flow of a program once the effort is

made to read it in the concise APL representation.

I would think people needed a lot of training to learn the language, especially the

character set. Was there a process of natural selection, which meant that APL

programmers were experts at the language? Were they more productive? Did they write

higher-quality code with fewer bugs?

Adin: Learning APL to the point of being able to write programs at the level of FORTRAN,

for example, was actually not difficult or lengthy. Programming in APL was more produc-

tive because of the simplicity of the rules, and the availability of primitive functions for

data manipulation like sorting, or mathematical functions like matrix inversion. These fac-

tors contributed to the conciseness of APL programs, which made them easier to analyze

and debug. Credit for productivity must also be given to the APL implementations, using

workspaces with all their useful properties, and the interactive terminal-based interpretive

systems.

A super-concise form of expression might be incredibly useful on devices with a small

screen like PDAs or smartphones! Considering that APL was first coded on big iron such

as IBM System/360, would it be extensible to handle modern projects that need to

manage network connections and multimedia data?

Adin: An implementation of APL on a handheld device would at the very least provide a

very powerful hand calculator; and I see no problem with networks and multimedia, as

such applications have been managed in APL systems for a very long time. Tools for man-

aging GUIs are generally available on modern APL systems.

Early on in the development of APL systems, facilities for managing host operating sys-

tems and hardware from within APL functions were introduced, and were utilized by APL

system programmers to manage the performance of APL itself. And commercial APL time-

sharing systems dependent upon networks for their economic viability used APL for man-

aging their networks.

Download at Boykma.Com

A P L 47

It is true that the first commercially viable APL systems were coded on large machines, but

the earliest implementations, which demonstrated the feasibility of APL systems, were

done on relative small machines, such as the IBM 1620 and the IBM 1130 family, includ-

ing the IBM 1500, which had significant usage in educational applications. There was

even an implementation on an early experimental desktop machine, dubbed “LC” for

“low cost,” that had but a few bytes of memory and a low-capacity disk. The evolution of

IBM APL implementation is described in some detail in the paper “The IBM Family of APL

Systems” [IBM Systems Journal, 1991].

Elementary Principles

When you pursued standardization, was it a deliberate decision?

Adin: We surely started standardization fairly early; in fact I think I wrote a paper about

it, and we got to be part of ISO. We always wanted to standardize things and we managed

to a large extent to do that. We discouraged people from fiddling around with the basic

structures of the language, adding arbitrary kind of things that would complicate the syn-

tax, or violate some of the elementary principles we were trying to maintain.

What was your main desire for standardization, compatibility or conceptual purity?

Adin: The desire of standardization is an economic issue. We surely wanted APL to be via-

ble economically, and since a lot of different people were implementing and using it, it

seemed a good idea to have a standard.

Several different vendors had different APL compilers. Without strong standardization,

what happens when you have an extension that works on one system but not on

another?

Adin: That is something worked on rather carefully by the APL standardization commit-

tees, and efforts were made to compromise between extensibility and purity.

You want people to be able to solve problems you haven’t anticipated, but you don’t

want them to remove the essential nature of your system. Forty years later, how do you

think the language holds up? Are the design principles you chose still applicable?

Adin: I think so; I really don’t see anything really wrong.

Is that because you spent a lot of time designing it carefully or because you had a very

strong theoretical background with algebra?

Adin: I think we were a couple of reasonably smart people with a belief in the concepts of

simplicity and practicality, and an unwillingness to compromise that vision.

I found it too much trouble to try to learn and remember all the rules in other languages

so I tried to keep it simple from that standpoint, so that I could use it.

Download at Boykma.Com

48 C H A P T E R T H R E E

Some of our way of thinking shows up in papers, especially the ones jointly authored by

Iverson and me. I myself later wrote a paper that was called “A Note on Pattern Matching:

Where do you find the match to an empty array?”[APL Quote Quad, 1979], which used

some nice reasoning involving small programs and algebraic principles, to obtain the

reported results, which turned out to be consistent and useful. The paper looked at various

possibilities, and found that the one simplest to express works out better than any other.

I found it really fascinating to build a language from a small set of principles and

discovering new ideas built on those principles. That seems like a good description of

mathematics. What is the role of math in computer science and programming?

Adin: I believe that computer science is a branch of mathematics.

Programming of mathematical computations is obviously part of mathematics, especially

the numerical analysis required to constantly maintain compatibility between discrete dig-

ital operations and the continuity of theoretical analysis.

Some other thoughts that come to mind are: the impetus from math problems that can be

solved only by extensive computations that inspire need for speed; the discipline of logical

thought required for math and carried over to programming of all kinds; the notion of

algorithms, which are a classical mathematical tool; and the various specialized branches of

mathematics, such as topology, that lend themselves to analysis of computational problems.

I have read some other discussions where you and other people suggested that one of

the interesting applications was using APL to teach programming and mathematics at the

elementary and high school levels.

Adin: We did some of that, particularly at the beginning, and we had a little fun with it.

At that time we only had typewriter terminals and we made some available to some local

private schools. There was one in particular where problem students were supposed to be

taught, and we gave them exercises to do on the typewriter and turned them loose.

The fun part was that we found that some of these students who were supposed to be

resistant to learning broke into the school after hours so they could do more work on it.

They were using typewriter terminals hooked to our time-sharing system.

So they enjoyed that so much they suddenly had to do it even afterward?

Adin: Yes.

You used APL to teach “programming thinking” to nonprogrammers. What made APL

attractive for nonprogrammers?

Adin: In the early days one of the things was you didn’t have all this overhead, you didn’t

have to make declarations before you added two numbers, so if you wanted to add 7 and

5 you just wrote down 7 + 5, instead of saying there is a number called 7 and there is a

number called 5, these are numbers, floating point or not floating point, and the result is a

number and I want to store the result here, so there was a lower barrier in APL to doing

what you wanted.

Download at Boykma.Com

A P L 49

When someone is learning to program, the initial step toward doing that first thing is very

small. You basically write down what you want to do, and you don’t have to spend time

pleasing a compiler to get it to work.

Adin: That’s right.

Easy to start and easy to play with. Does this technique let people become programmers

or increase their programming knowledge?

Adin: The easy accessibility makes it easy to experiment, and if you can experiment and

try out different things, you learn, and so I think that is favorable toward the development

of programming skills.

The notation that you chose for APL is different from traditional algebraic notation.

Adin: Well, it’s not that different…the precedence rules are different. They are very sim-

ple: you go from right to left.

Did you find that much easier to teach?

Adin: Yes, because there is only one rule and you don’t have to say that if it’s a defined

function, you go this way, and if it’s exponentiation, it has precedence over multiplication,

or stuff like that. You just say, “look at the line of the instructions and take it from right to

left.”

Was this a deliberate design decision to break with familiar notation and precedence in

favor of greater simplicity?

Adin: That’s right. Greater simplicity and greater generality.

I think Iverson was mainly responsible for that. He was quite good at algebra and he was

very interested in teaching. One example he liked to use was the representation of poly-

nomials, which is extremely simple in APL.

When I first saw that notation, even though it was unfamiliar, it did seem conceptually

much simpler overall. How do you recognize simplicity in a design or an implementation?

Is that a matter of good taste or experience, or is there a rigorous process you apply to try

to find optimal simplicity?

Adin: I think to some extent it must be subjective, because it depends somewhat on your

experience and where you come from. I would say the fewer there rules are, the simpler it

is in general.

You started from a small set of axioms and you can build from there, but if you

understand that small set of axioms, you can derive more complexity?

Adin: Well, let’s take this matter of precedence. I think it’s simpler to have the precedence

based on a simple form from right to left, than on a basis of a table that says this function

goes first and that function goes second. I think it is one rule versus an almost limitless

number of rules.

Download at Boykma.Com

50 C H A P T E R T H R E E

You see, in any particular application you set up your own set of variables and functions,

and for a particular application you might find it simpler to write some new rules, but if

you are looking at a general language like APL, you want to start with the fewest possible

number of rules.

To give people designing systems built with the language more opportunity to evolve?

Adin: People who are building applications are in fact building languages; fundamentally,

programming has to do with developing languages suitable for particular applications.

You express the problem in a language specific to its domain.

Adin: But then those objects, notably the nouns and the verbs, the objects and the func-

tions, they have to be defined in something, for example in a general-purpose language

like APL.

So you use APL to define these things, but then you set up your operations to facilitate the

kind of things you want to do in that application.

Is your concern constructing the building blocks people can use to express themselves?

Adin: My concern is giving them the basic building blocks if you like, the fundamental

tools for constructing the building blocks that are suitable and appropriate for what they

are trying to accomplish in the field in which they are working.

It seems to be a concern shared by other language designers; I think of Chuck Moore with

Forth, or John McCarthy with Lisp, and Smalltalk in the early 70s.

Adin: I’m sure that’s the case.

McCarthy, I know, is a theoretical kind of person and he was concerned with developing a

system to express the lambda calculus effectively, but I don’t think the lambda calculus is

as convenient for most purposes as plain old algebra, from which APL derives.

Suppose I want to design a new programming language. What’s the best piece of advice

you can give me?

Adin: I guess the best thing I can say is do something that you enjoy, something that

pleases you to work with, something that helps you accomplish something that you would

like to do.

We were always very personal in our approach, and I think most designers are, as I read

what people have to say. They started doing things that they wanted to do, which then

turned out to be useful generally.

Download at Boykma.Com

A P L 51

When you were designing APL, were you able to see at some point “we are going in the

wrong direction here; we need to scale back this complexity” or “we have several

different solutions; we can unify them into something much simpler”?

Adin: That is approximately right, but there was usually a question of “is this a generali-

zation which subsumes what we already have, and what is the likelihood that it is going to

enable us to do a lot more with very little further complication?”

We paid a lot of attention to end conditions—what happens in a limit when you go from 6

to 5 to 4 down to 0, for example. Thus, in reduction you are applying a function like sum-

mation to a vector, and if you are summing up a vector that has n elements and then n

minus one elements, and so on, what happens when you eventually have no elements?

What’s the sum? It has to be 0 because that’s the identity element.

In the case of multiplication, the multiplication over an empty vector goes to 1, because

that’s the identity element for that function.

You mentioned looking at several different solutions and trying to generalize and asking

yourself the question of what happens when approaching 0, for example. If you hadn’t

already known that when you do a reduction, you need to end up at the identity element

for when n is 0, you could look at both those cases and say “Here is the argument we

make: it is 0 when this case and it’s 1 in this case, because it is the identity element.”

Adin: That’s right. That’s one of the processes we used.

What happens in the special cases is very important, and when you use APL effectively, you

keep applying that criterion to the more elaborate functions that you might be developing

for a particular application. This often leads to unexpected but gratifying simplification.

Do the design techniques you use when creating a language inform the design techniques

people might use when programming in the language?

Adin: Yes, because as I said before, programming is a process of designing languages. I

think that’s a very fundamental thing, which is not often mentioned in the literature as far

as I know.

Lisp programmers do, but in a lot of the languages that came afterward, especially Algol

and its C derivatives, people don’t seem to think this way. Is there a divide between what

is built in the language and what’s not, where everything else is second class?

Adin: Well, what do we mean by second class? In APL the so-called second class follows

the same rules as the first class, and we don’t have any problem there.

You can make the same argument for almost all of Lisp or Scheme or Smalltalk, but C has

a distinct division between operators and functions, and user-created functions. Is

making that distinction sharp between these entities a design mistake?

Adin: I don’t know if I would call it a mistake, but I think it’s simpler to have the same

rules apply to both what’s primitive and not primitive.

Download at Boykma.Com

52 C H A P T E R T H R E E

What’s the biggest mistake you’ve made with regard to design or programming? What did

you learn from it?

Adin: When work on APL first began, we consciously avoided making design decisions

that catered to the computer environment. For example, we eschewed the use of declara-

tions, seeing their use as an unnecessary burden on the user when the machine could eas-

ily determine the size and type of a data object from the object itself at the time of its input

or generation. In the course of time, however, as APL became more widely used with

more and more vested interests, hardware factors were increasingly difficult to avoid.

Perhaps the biggest mistake that I personally made was to underestimate advances in

hardware and become too conservative in system design. In contemplating early imple-

mentation of APL on the PC, for instance, I advocated leaving out recent language exten-

sions to general arrays and complex numbers because these would strain the capacity of

the extant hardware to provide satisfactory performance. Fortunately, I was overruled,

and it was not long before major increases in PC memory and processor speeds made such

powerful extensions completely feasible.

It is hard to think of big mistakes made in programming because one expects to make

errors in the course of writing a program of reasonable complexity. It then depends on the

programming tools how the error grows, when it is discovered, and how much has to be

redone to recover from it. Modularization and ready reuse of idiomatic code fragments, as

follows from the functional programming style fostered by APL, tends to limit the genera-

tion and propagation of errors so they don’t become big mistakes.

As for mistakes in the design of APL itself, our method of development, using consensus

among the designers and implementers as the ultimate deciding factor, and feedback from

users gaining practical experience in a diversity of applications as well as our own use of

the language before design was frozen, helped us avoid serious errors.

However, one person’s exercise of principle may be another’s idea of a mistake, and even

over long periods of time, differences may not be empirically resolvable. Two things come

to mind.

One is the character set. There was from the earliest times considerable pressure to use

reserved words instead of the abstract symbols chosen to represent primitive functions.

Our position was that we were really dealing with extensions to mathematics, and the

evolution of mathematical notation was clearly in the direction of using symbols, which

facilitated formal manipulation of expressions. Later on, Ken Iverson, who had an abiding

interest in the teaching of mathematics, chose to limit the character set to ASCII in his fur-

ther work, on the language J, so that J systems could be easily accessible to students and

others without specialized hardware. My own inclination was and is to stick with the sym-

bolic approach; it’s more in keeping with history and ultimately easier to read. Time will

tell if either direction is mistaken, or if it doesn’t really matter.

The second thing that comes to mind as possibly leading to a significant mistake in direc-

tion that may never be decided is the treatment of general arrays, i.e., arrays whose scalar

Download at Boykma.Com

A P L 53

elements may themselves have an accessible structure within the language. After APL\360

was established as an IBM product (one of the very first such when IBM unbundled its

software and hardware in 1966 or 1967), we began to look at extensions to more general

arrays and had extensive studies and discussions regarding the theoretical underpinnings.

Ultimately APL systems have been built with rival ways of treating scalar elements and

syntactic consequences. It will be interesting to see how this evolves as the general interest

in parallel programming becomes more commercially important.

Parallelism

What are the implications (for the design of applications) of thinking about data in

collections rather than as individual units?

Adin: This is a rather large subject, as indicated by the spread of “array languages” and the

introduction of array primitives in languages like FORTRAN, but I think there are two sig-

nificant aspects to thinking in terms of collections.

One, of course, is the simplification of the thought process when not bogged down in the

housekeeping details of dealing with individual items. It is closer to our natural way of

thinking to say, for example, how many of the numbers in this collection are equal to

zero, and write a simple expression that produces the desired result, than to start thinking

in terms of a loop in any of its derivative forms.

The second is that possibilities for parallelism are made more evident in programs acting

directly on collections, leading to more efficient utilization of modern hardware.

There’s been some talk in modern programming languages about adding higher-order

features to languages such as C++ or Java—languages where you spend a lot of time

writing the same for() loop over and over again. For example, I have a collection of

things and I want to do something to each one of them. Yet APL solved this problem 40–

45 years ago!

Adin: Well, I don’t know how many years ago, but there are sort of two stages there. One

is the use of arrays as primitive, and second stage was the introduction of the operator

called each, which basically applies any arbitrary function to any collection of items. But

there were always some questions like “Do we want to put in primitives for looping specif-

ically?” We decided we didn’t want to do that because it complicated the syntax too much,

and it was easy enough to write the few needed loops in the standard way.

Complicate the syntax for the implementation or for users?

Adin: For both: people have to read it, machines have to read it; the syntax is either sim-

ple or not.

You would put in new kinds of statements, and that’s clearly a complication. Now the

question is “Is the payoff worth it?”, and that’s where the design judgment comes in. And

we always came down on the side that we didn’t want to have new kinds of syntax for

handling loops since we could do it quite conveniently with what we had.

Download at Boykma.Com

54 C H A P T E R T H R E E

You said that APL really has an advantage for parallel programming. I can understand the

use of arrays as the primitive data structure for the language. You also mentioned the use

of shared variables. How do they work?

Adin: A shared variable in APL is a variable that is accessible to more than one processor

at a time. The sharing processors can both be APL processors or one can be of a different

sort. For example, you can have a variable, let’s call it X, and, as far as APL is concerned,

reading and writing X is not different from an ordinary variable. However there might be

another processor, let’s say a file processor, which also has access to X, it being a shared

variable, and whatever value APL might give to X, the file processor uses that value

according to its own interpretation. And similarly, when it gives a value to X, which is

then read by APL, the APL processor similarly applies its own knowledge to it, however it

chooses to interpret that value. And this X is a shared variable.

What we have in APL systems like APL2 of IBM is some protocol for managing access to

this variable so that you don’t run into trouble with different kinds of race conditions.

Is this parallelization you were talking about something the compiler can determine

automatically? Suppose that I want to multiply two arrays and add the value to each

element of an array. This is easy to express in APL, but can the compiler perform implicit

parallelization on that?

Adin: The definition in APL is that it doesn’t matter in what order you do the operations

on the elements of an array; therefore, the compiler or the interpreter or whatever imple-

mentation you have is free to do them simultaneously or in any arbitrary sequence.

Besides enabling simplicity at the language level, it can give implementers tremendous

flexibility to change the way the implementation works, taking advantage of new

hardware, or give you a mechanism to exploit things like automatic parallelization.

Adin: That’s right, because according to the definition of the language, which is of course

the definition of what happens when the processor is applied, it doesn’t matter what order

you do them. That was a very deliberate decision.

Was that a unique decision in the history of languages of the time?

Adin: I am not that familiar with the history of languages, but since we were basically the

only serious array-oriented language, it probably was unique.

It’s interesting to talk about collections and large data sets, which are clearly

preoccupations of modern programmers. APL preceded the invention of the relational

database. Now we have a lot of data in structures containing different data types, in

relational databases, and in large unstructured collections such as web pages. Can APL

handle these well? Does it offer models that people using more popular languages such

as SQL, PHP, Ruby, and Java can learn from?

Adin: APL arrays can have as elements both scalars, which have no internal structure,

and nonscalars, which may be of any complexity. Nonscalar elements are recursively

structured of other arrays. “Unstructured” collections such as web pages can therefore be

conveniently represented by APL arrays and manipulated by primitive APL functions.

Download at Boykma.Com

A P L 55

Regarding very large arrays, APL has the facility to treat external files as APL objects. Once

an association has been made between a name in the workspace and an external file,

operations can be applied to the file using APL expressions. It appears to the user as if the

file is within the workspace, even though in actuality it may be many times larger than

the workspace size.

It is very hard to give specific details of what designers of other languages can learn from

APL, and it would be presumptuous of me to go into particulars of the languages you

mention, as I am not an expert in any of them. However, as I read about them in the liter-

ature I see that by and large the principles that guided the design of APL—which we

described, for example, in our 1973 paper “The Design of APL”—have continued to inform

later work in language design.

Of the two overriding principles, simplicity and practicality, the latter seems to have fared bet-

ter; simplicity is a more difficult objective to achieve since there are no practical constraints

on complexity. We strove for simplicity in APL by carefully defining the scope of the prim-

itive operations it would allow, maintaining the abstract nature of APL objects, and resist-

ing the temptation to include special cases represented by the operations of other systems.

An illustration of this is the fact that the concept of a “file” does not appear in APL. We

have arrays that may be treated as files as called for by an application, but there are no

primitive functions specifically designed for file manipulation as such. The practical need

for efficiency in file management, however, early on fostered the development of the

shared-variable paradigm, which itself is a general concept useful in a multitude of appli-

cations where the APL program needs to invoke facilities of another (APL or non-APL)

auxiliary processor.

Later on, an additional facility, using the general concept of namespaces, was designed to

allow APL programs to directly manipulate objects outside of the workspace, including

access to Java fields and methods, extremely large data collections, compiled programs in

other languages, and others. The user interface to both the shared-variable and namespace

facilities rigorously maintains APL syntax and semantics and thereby keeps it simple.

Without going into detail, therefore, it is reasonable to say that the newer languages could

benefit by maintaining a strict adherence to their own primitive concepts, defining each to

be as general as possible within the context of the applications they are addressing.

As for specific characteristics of APL as a model, APL has demonstrated that declarations

are unnecessary, although they may contribute to efficiency of execution in some situa-

tions, and that the number of different data types can be quite small. Newer languages

may benefit by aiming in these directions rather than taking it for granted that the user

has to help out the computer by providing such implementation-related information.

Also, the concept of a pointer is not a primitive in APL, and has never been missed. Of

course, where possible the primitive operations in the language should be defined on col-

lections of data having an abstract internal structure, such as regular arrays, trees, and

others.

Download at Boykma.Com

56 C H A P T E R T H R E E

You are correct in noting that APL preceded the invention of the relational database. Both

Dr. E. F. (Ted) Codd and the APL group were at the IBM T. J. Watson Research Center in

the 1960s, when he was developing the relational database concepts, and I believe that we

had a very strong influence on that work. I recall in particular a heated discussion

between us one afternoon where we demonstrated that simple matrices, rather than com-

plex scalar pointer systems, could be used for representing the relationships among data

entities.

Legacy

I know that lots of design influences in Perl came from APL. Some people say some of the

crypticness of Perl comes from APL. I don’t know if this is a compliment or not.

Adin: Let me give you an example of that kind of compliment. There is a lot of politics

involved in the design and use of programming languages, particularly in a place like IBM

where it is a business. At various times, people tried to set up competitive experiments to

see if APL would do better than, say, PL1 or FORTRAN. The results were always loaded,

because the judges were people on the other side, but there is one comment that I always

remember from some functionary: he said APL can’t be very good because two of the

smartest guys he knew, Iverson and Falkoff, can’t make people believe in it.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable

future?

Adin: Decisions about system design are not purely technical or scientific. Economic and

political considerations have a strong influence, and especially so in situations where there

is potential flexibility in the underlying technicalities, as in the design of languages and

systems.

In the period when APL was taking hold as an important tool being used within IBM in

the mid-1960s, and consideration was being given to making it into a product, we had to

contend with an IBM “language czar,” who decreed that only PL/1 would be supported by

the company in the future—except, of course, for FORTRAN and COBOL, which were

already entrenched in the industry and could not be totally abandoned.

As history has shown, this was an unrealistic position for the company to take and was

bound to fail, but this was not so obvious at the time, considering the dominance of IBM

in the computing industry and the dominance of certain factions within the power struc-

ture of the company.

We had to fight the policy to get the necessary support for APL to survive. The battle took

place on several fronts: as members of the IBM Research Division, we exploited as much

as possible opportunities to give professional talks, seminars, and formal classes so as to

imbed awareness of APL’s unique characteristics in the technical consciousness of the

time; we enlisted—wherever we could find them—people of influence within the com-

pany to countervail against the administrative power structure; we spread and supported

Download at Boykma.Com

A P L 57

the internal use of our APL\360 system to development and manufacturing locations; we

leveraged important customers’ interest in APL systems to force the availability of APL

outside the company, at least on an experimental basis; and made allies within the ranks

of the marketing division. And we were successful, to the point where APL\360 was

among the very first IBM program products to be marketed after the unbundling of hard-

ware and software in the late 1960s.

A very significant milestone was accomplished on account of the interest that technical

talks and demonstrations had engendered at the NASA Goddard Space Center. In 1966

that facility requested access to our internal APL system in order to experiment with its

use. They were a very important customer, and we were urged by the IBM marketing peo-

ple to comply with their request. However, we demurred, insisting that we would only

agree to do this if we were first enabled to give a weeklong instructional course on site at

the Goddard Space Center.

We obtained this agreement, but then ran into difficulty implementing it: time-sharing

systems like APL\360 at the time required terminals connecting to the central system

through acoustic modems working with specialized telephone “data sets.” These tele-

phone sets were also used on the other end, attached to the central computer, and they

were in short supply. After all the administrative agreements to go ahead with the project

had been reached, we found that neither the New York- nor Washington D.C.-area phone

companies could provide the units needed for the projected classes at the Space Center.

While it was their normal practice to work only with their own equipment, the D.C.

phone company agreed to install any data sets we could somehow provide. But as much as

our IBM communication managers tried to persuade the New York phone company to

find data sets somewhere, they were not able to produce any, although they somehow

conveyed the idea that they would look the other way if we happened to use their equip-

ment already in our possession in ways they could not officially condone.

So we proceeded to disable half of the lines coming into our central computer, and had the

data sets thus freed taken down to the Space Center in an IBM station wagon. They were

then installed off the record by the local phone company and we were able to go ahead

with our course, thus establishing the first off-premises use of the APL\360 system by a

non-IBM entity, getting it out the door despite the support-only-PL/1 policy.

What do you regret most about the language?

Adin: We gave the design of APL our best efforts and worked hard in the political arena to

have it accepted and widely used. Under the circumstances, I don’t find anything to regret

about the language. One possible regret in hindsight is that we did not start sooner and

put greater effort behind the development of an effective compiler, but we can’t know

what this might have cost in tradeoffs, given the extant limitations of resources. Further-

more, there is reason to believe that current interest in parallel programming and the

adoption of APL-like array operations in traditional compiled languages like FORTRAN

will result in the equivalent in due course.

Download at Boykma.Com

58 C H A P T E R T H R E E

How do you define success in terms of your work?

Adin: APL proved to be a very useful tool in the development of many aspects of IBM’s

business. It provided a much simplified approach to using computers that allowed

researchers and product developers to apply themselves more efficiently to the substantive

problems they were working on, from theoretical physics to development of flat-screen

displays. It was also used to prototype major business systems such as assembly lines and

warehouses, allowing them to get started quickly and tested before being frozen in imple-

mentations using other programming systems.

We were successful in making APL into a whole line of IBM products, and providing lead-

ership for other computer companies to provide their own APL systems conforming to an

international standard.

APL also found substantial use in academic institutions as a tool and a discipline, thus ful-

filling one of the principal purposes of its development—its use in education.

APL of course was the forerunner of programming languages and systems treating arrays

as primitive data objects and using shared variables for managing simultaneity, and as

such will no doubt have a strong influence on further developments involving parallel

programming. It is very gratifying to see that in the last few months, three separate com-

puter industry consortiums have been established to work in this field.

Download at Boykma.Com

59

Chapter 4 C H A P T E R F O U R

Forth
Charles D. Moore

Forth is a stack-based, concatenative language designed by Chuck Moore in the

1960s. Its main features are the use of a stack to hold data, and words that operate

on the stack, popping arguments and pushing results. The language itself is small

enough that it runs on anything from embedded machines to supercomputers,

and expressive enough to build useful programs out of a few hundred words. Suc-

cessors include Chuck Moore’s own colorForth, as well as the Factor programming

language.

Download at Boykma.Com

60 C H A P T E R F O U R

The Forth Language and Language Design

How do you define Forth?

Chuck: Forth is a computer language with minimal syntax. It features an explicit param-

eter stack that permits efficient subroutine calls. This leads to postfix expressions (opera-

tors follow their arguments) and encourages a highly factored style of programming with

many short routines sharing parameters on the stack.

I read that the name Forth stands for fourth-generation software. Would you like to tell us

more about it?

Chuck: Forth is derived from “fourth,” which alludes to “fourth-generation computer

language.” As I recall, I skipped a generation. FORTRAN/COBOL were first-generation

languages; Algol/Lisp, second. These languages all emphasized syntax. The more elaborate

the syntax, the more error checking is possible. Yet most errors occur in the syntax. I

determined to minimize syntax in favor of semantics. And indeed, Forth words are loaded

with meaning.

You consider Forth a language toolkit. I can understand that view, given its relatively

simple syntax compared to other languages and the ability to build a vocabulary from

smaller words. Am I missing anything else?

Chuck Moore: No, it’s basically the fact that it’s extremely factored. A Forth program

consists of lots of small words, whereas a C program consists of a smaller number of larger

words.

By small word, I mean one with a definition typically one line long. The language can be

built up by defining a new word in terms of previous words and you just build up that

hierarchy until you have maybe a thousand words. The challenge there is 1) deciding

which words are useful, and 2) remembering them all. The current application I’m work-

ing on has a thousand words in it. And I’ve got tools for searching for words, but you can

only search for a word if you remember that it exists and pretty much how it’s spelled.

Now, this leads to a different style of programming, and it takes some time for a program-

mer to get used to doing it that way. I’ve seen a lot of Forth programs that look very much

like C programs transliterated into Forth, and that isn’t the intent. The intent is to have a

fresh start. The other interesting thing about this toolkit, words that you define this way

are every bit as efficient or significant as words that are predefined in the kernel. There’s

no penalty for doing this.

Does the externally visible structure consisting of many small words derive from Forth’s

implementation?

Chuck: It’s a result of our very efficient subroutine call sequences. There’s no parameter

passing because the language is stack-based. It’s merely a subroutine call and return. The

stack is exposed. The machine language is compiled. A switch to and from a subroutine is

literally one call instruction and one return instruction. Plus you can always reach down

Download at Boykma.Com

F O R T H 61

into the equivalent of an assembly language. You can define a word that will execute

actual machine instructions instead of subroutine calls, so you can be as efficient as any

other language, maybe more efficient than some.

You don’t have the C calling overhead.

Chuck: Right. This gives the programmer a huge amount of flexibility. If you come up

with a clever factoring of a problem, you can not only do it efficiently, you can make it

extraordinarily readable.

On the other hand, if you do it badly, you can end up with code that no one else can read—

code your manager can’t understand, if managers can understand anything. And you can

create a real mess. So it’s a two-edged sword. You can do very well; you can do very badly.

What would you say (or what code would you show) to a developer who uses another

programming language to make him interested in Forth?

Chuck: It is very hard to interest an experienced programmer in Forth. That’s because he

has invested in learning the tools for his language/operating system and has built a library

appropriate for his applications. Telling him that Forth would be smaller, faster, and easier

is not persuasive compared to having to recode everything. A novice programmer, or an

engineer needing to write code, doesn’t face that obstacle and is much more receptive—as

might be the experienced programmer starting a new project with new constraints, as

would be the case with my multicore chips.

You mentioned that a lot of Forth programs you’ve seen look like C programs. How do

you design a better Forth program?

Chuck: Bottom-up.

First, you presumably have some I/O signals that you have to generate, so you generate

them. Then you write some code that controls the generation of those signals. Then you

work your way up until finally you have the highest-level word, and you call it go and

you type go and everything happens.

I have very little faith in systems analysts who work top-down. They decide what the

problem is and then they factor it in such a way that it can be very difficult to implement.

Domain-driven design suggests describing business logic in terms of the customer’s

vocabulary. Is there a connection between building up a vocabulary of words and using

the terms of art from your problem domain?

Chuck: Hopefully the programmer knows the domain before he starts writing. I would

talk to the customer. I would listen to the words he uses and I would try to use those

words so that he can understand what the program’s doing. Forth lends itself to this kind

of readability because it has postfix notation.

If I was doing a financial application, I’d probably have a word called “percent.” And you

could say something like “2.03 percent”. And the argument’s percent is 2.03 and every-

thing works and reads very naturally.

Download at Boykma.Com

62 C H A P T E R F O U R

How can a project started on punch cards still be useful on modern computers in the

Internet era? Forth was designed on/for the IBM 1130 in 1968. That it is the language of

choice for parallel processing in 2007 is surely amazing.

Chuck: It has evolved in the meantime. But Forth is the simplest possible computer lan-

guage. It places no restrictions upon the programmer. He/she can define words that suc-

cinctly capture aspects of a problem in a lean, hierarchical manner.

Do you consider English readability as a goal when you design programs?

Chuck: At the very highest level, yes, but English is not a good language for description or

functionality. It wasn’t designed for that, but English does have the same characteristic as

Forth in the sense that you can define new words.

You define new words by explaining what they are in previously defined words mostly. In

a natural language, this can be problematic. If you go to a dictionary and check that out,

you find that often the definitions are circular and you don’t get any content.

Does the ability to focus on words instead of the braces and brackets syntax you might

have in C make it easier to apply good taste to a Forth program?

Chuck: I would hope so. It takes a Forth programmer who cares about the appearance of

things as opposed merely to the functionality. If you can achieve a sequence of words that

flow together, it’s a good feeling. That’s really why I developed colorForth. I became

annoyed at the syntax that was still present in Forth. For instance, you could limit a com-

ment by having a left parenthesis and a right parenthesis.

I looked at all of those punctuation marks and said, “Hey, maybe there’s a better way.”

The better way was fairly expensive in that every word in the source code had to have a

tag attached to it, but once I swallowed that overhead, it became very pleasant that all of

those funny little symbols went away and were replaced by the color of the word which

was, to me, a much gentler way of indicating functionality.

I get interminable criticism from people who are color blind. They were really annoyed

that I was trying to rule them out of being programmers, but somebody finally came up

with a character set distinction instead of a color distinction, which is a pleasant way of

doing it also.

The key is the four-bit tag in each word, which gives you 16 things that we’re to do, and

the compiler can determine immediately what’s intended instead of having to infer it from

context.

Second- and third-generation languages embraced minimalism, for example with meta-

circular bootstrapping implementations. Forth is a great example of minimalism in terms

of language concepts and the amount of hardware support required. Was this a feature of

the times, or was it something you developed over time?

Chuck: No, that was a deliberate design goal to have as small a kernel as possible. Pre-

define as few words as necessary and then let the programmer add words as he sees fit.

Download at Boykma.Com

F O R T H 63

The prime reason for that was portability. At the time, there were dozens of minicomput-

ers and then there became dozens of microcomputers. And I personally had to put Forth

on lots of them.

I wanted to make it as easy as possible. What happens really is there might be a kernel with

100 words or so that is just enough to generate a—I’ll call it an operating system, but it’s not

quite—that has another couple hundred words. Then you’re ready to do an application.

I would provide the first two stages and then let the application programmers do the third,

and I was usually the application programmer, too. I defined the words I knew were going

to be necessary. The first hundred words would be in machine language probably or

assembler or at least be dealing directly with the particular platform. The second two or

three hundred words would be high-level words, to minimize machine dependence in the

lower, previously defined level. Then the application would be almost completely machine

independent, and it was easy to port things from one minicomputer to another.

Were you able to port things easily above that second stage?

Chuck: Absolutely. I would have a text editor, for instance, that I used to edit the source

code. It would usually just transfer over without any changes.

Is this the source of the rumor that every time you ran across a new machine, you

immediately started to port Forth to it?

Chuck: Yes. In fact, it was the easiest path to understanding how the machine worked,

what its special features were based on how easy it was to implement the standard pack-

age of Forth words.

How did you invent indirect-threaded code?

Chuck: Indirect-threaded code is a somewhat subtle concept. Each Forth word has an

entry in a dictionary. In direct-threaded code, each entry points to code to be executed

when that word is encountered. Indirect-threaded code points to a location that contains

the address of that code. This allows information besides the address to be accessed—for

instance, the value of a variable.

This was perhaps the most compact representation of words. It has been shown to be

equivalent to both direct-threaded and subroutine-threaded code. Of course these con-

cepts and terminology were unknown in 1970. But it seemed to me the most natural way

to implement a wide variety of kinds of words.

How will Forth influence future computer systems?

Chuck: That has already happened. I’ve been working on microprocessors optimized for

Forth for 25 years, most recently a multicore chip whose cores are Forth computers.

What does Forth provide? As a simple language, it allows a simple computer: 256 words of

local memory; 2 push-down stacks; 32 instructions; asynchronous operation; easy com-

munication with neighbors. Small and low-power.

Download at Boykma.Com

64 C H A P T E R F O U R

Forth encourages highly factored programs. Such are well-suited to parallel processing, as

required by a multicore chip. Many simple programs encourage thoughtful design of each.

And requiring perhaps only 1% the code that would otherwise be written.

Whenever I hear people boasting of millions of lines of code, I know they have greviously

misunderstood their problem. There are no contemporary problems requiring millions of

lines of code. Instead there are careless programmers, bad managers, or impossible

requirements for compatibility.

Using Forth to program many small computers is an excellent strategy. Other languages

just don’t have the modularity or flexibility. And as computers get smaller and networks

of them are cooperating (smart dust?), this will be the environment of the future.

This sounds like one major idea of Unix: multiple programs, each doing just one thing,

that interact. Is that still the best design today? Instead of multiple programs on one

computer, might we have multiple programs across a network?

Chuck: The notion of multithreaded code, as implemented by Unix and other OSes, was a

precursor to parallel processing. But there are important differences.

A large computer can afford the considerable overhead ordinarily required for multi-

threading. After all, a huge operating system already exists. But for parallel processing,

almost always the more computers, the better.

With fixed resources, more computers mean smaller computers. And small computers

cannot afford the overhead common to large ones.

Small computers will be networked, on chip, between chips and across RF links. A small

computer has small memory. Nowhere is there room for an operating system. The com-

puters must be autonomous, with a self-contained ability to communicate. So communi-

cation must be simple—no elaborate protocol. Software must be compact and efficient. An

ideal application for Forth.

Those systems requiring millions of lines of code will become irrelevant. They are a conse-

quence of large, central computers. Distributed computation needs a different approach.

A language designed to support bulky, syntactical code encourages programmers to write

big programs. They tend to take satisfaction, and be rewarded, for such. There is no pres-

sure to seek compactness.

Although the code generated by a syntactic language might be small, it usually isn’t. To

implement the generalities implied by the syntax leads to awkward, inefficient object

code. This is unsuitable for a small computer. A well-designed language has a one-one

correlation between source code and object code. It’s obvious to the programmer what

code will be generated from his source. This provides its own satisfaction, is efficient, and

reduces the need for documentation.

Download at Boykma.Com

F O R T H 65

Forth was designed partly to be compact in both source and binary output, and is

popular among embedded developers for that reason, but programmers in many other

domains have reasons to choose other languages. Are there aspects of the language

design that add only overhead to the source or the output?

Chuck: Forth is indeed compact. One reason is that it has little syntax.

Other languages seem to have deliberately added syntax, which provides redundancy and

offers opportunity for syntax checking and thus error detection.

Forth provides little opportunity for error detection due to its lack of redundancy. This

contributes to more compact source code.

My experience with other languages has been that most errors are in the syntax. Design-

ers seem to create opportunity for programmer error that can be detected by the compiler.

This does not seem productive. It just adds to the hassle of writing correct code.

An example of this is type checking. Assigning types to various numbers allows errors to

be detected. An unintended consequence is that programmers must work to convert

types, and sometimes work to evade type checking in order to do what they want.

Another consequence of syntax is that it must accommodate all intended applications.

This makes it more elaborate. Forth is an extensible language. The programmer can create

structures that are just as efficient as those provided by the compiler. So all capabilities do

not have to be anticipated and provided for.

A characteristic of Forth is its use of postfix operators. This simplifies the compiler and

offers a one-one translation of source code to object code. The programmer’s understand-

ing of his code is enhanced and the resulting compiled code is more compact.

Proponents of many recent programming languages (notably Python and Ruby) cite

readability as a key benefit. Is Forth easy to study and maintain in relation to those? What

can Forth teach other programming languages in terms of readability?

Chuck: Computer languages all claim to be readable. They aren’t. Perhaps it seems so to

one who knows the language, but a novice is always bewildered.

The problem is the arcane, arbitrary, and cryptic syntax. All the parentheses, ampersands,

etc. You try to learn why it’s there and eventually conclude there’s no good reason. But

you still have to follow the rules.

And you can’t speak the language. You’d have to pronounce the punctuation like Victor

Borgia.

Forth alleviates this problem by minimizing the syntax. Its cryptic symbols @ and ! are pro-

nounced “fetch” and “store.” They are symbols because they occur so frequently.

Download at Boykma.Com

66 C H A P T E R F O U R

The programmer is encouraged to use natural-language words. These are strung together

without punctuation. With good choice of words, you can construct reasonable sentences.

In fact, poems have been written in Forth.

Another advantage is postfix notation. A phrase like “6 inches” can apply the operator

“inches” to the parameter 6, in a very natural manner. Quite readable.

On the other hand, the programmer’s job is to develop a vocabulary that describes the

problem. This vocabulary can get to be quite large. A reader has to know it to find the pro-

gram readable. And the programmer must work to define helpful words.

All in all, it takes effort to read a program. In any language.

How do you define success in terms of your work?

Chuck: An elegant solution.

One doesn’t write programs in Forth. Forth is the program. One adds words to construct a

vocabulary that addresses the problem. It is obvious when the right words have been

defined, for then you can interactively solve whatever aspect of the problem is relevant.

For example, I might define words that describe a circuit. I’ll want to add that circuit to a

chip, display the layout, verify the design rules, run a simulation. The words that do these

things form the application. If they are well chosen and provide a compact, efficient

toolset, then I’ve been successful.

Where did you learn to write compilers? Was this something everybody at the time had to

do?

Chuck: Well, I went to Stanford around ‘60, and there was a group of grad students writ-

ing an ALGOL compiler—a version for the Burroughs 5500. It was only three or four of

them, I think, but I was impressed out of my mind that three or four guys could sit down

and write a compiler.

I sort of said, “Well, if they can do it, I can do it,” and I just did. It isn’t that hard. There

was a mystique about compilers at the time.

There still is.

Chuck: Yeah, but less so. You get these new languages that pop up from time to time, and

I don’t know if they’re interpreted or compiled, but well, hacker-type people are willing to

do it anyway.

The operating system is another concept that is curious. Operating systems are dauntingly

complex and totally unnecessary. It’s a brilliant thing that Bill Gates has done in selling

the world on the notion of operating systems. It’s probably the greatest con game the

world has ever seen.

Download at Boykma.Com

F O R T H 67

An operating system does absolutely nothing for you. As long as you had something—a

subroutine called disk driver, a subroutine called some kind of communication support, in

the modern world, it doesn’t do anything else. In fact, Windows spends a lot of time with

overlays and disk management all stuff like that which are irrelevant. You’ve got gigabyte

disks; you’ve got megabyte RAMs. The world has changed in a way that renders the oper-

ating system unnecessary.

What about device support?

Chuck: You have a subroutine for each device. That’s a library, not an operating system.

Call the ones you need or load the ones you need.

How do you resume programming after a short hiatus?

Chuck: I don’t find a short coding hiatus at all troublesome. I’m intensely focused on the

problem and dream about it all night. I think that’s a characteristic of Forth: full effort over

a short period of time (days) to solve a problem. It helps that Forth applications are natu-

rally factored into subprojects. Most Forth code is simple and easy to reread. When I do

really tricky things, I comment them well. Good comments help re-enter a problem, but

it’s always necessary to read and understand the code.

What’s the biggest mistake you’ve made with regard to design or programming? What did

you learn from it?

Chuck: Some 20 years ago I wanted to develop a tool to design VLSI chips. I didn’t have a

Forth for my new PC, so I thought I’d try a different approach: machine language. Not

assembler language, but actually typing the hex instructions.

I built up the code as I would in Forth, with many simple words that interacted hierarchi-

cally. It worked. I used it for 10 years. But it was difficult to maintain and document.

Eventually I recoded it in Forth and it became smaller and simpler.

My conclusion was that Forth is more efficient than machine language. Partly because of

its interactivity and partly because of its syntax. One nice aspect of Forth code is that num-

bers can be documented by the expression used to calculate them.

Hardware

How should people see the hardware they develop on: as a resource or as a limit? If you

think of hardware as a resource, you might want to optimize the code and exploit every

hardware feature; if you see it as a limit, you are probably going to write code with the

idea that your code will run better on a new and more powerful version of the hardware,

and that’s not a problem because hardware evolves rapidly.

Chuck: A very perceptive observation that software necessarily targets its hardware. Soft-

ware for the PC certainly anticipates faster computers and can afford to be sloppy.

Download at Boykma.Com

68 C H A P T E R F O U R

But for embedded systems, the software expects the system to be stable for the life of the

project. And not a lot of software is migrated from one project to another. So here the

hardware is a constraint, though not a limit. Whereas, for PCs, hardware is resource that

will grow.

The move to parallel processing promises to change this. Applications that cannot exploit

multiple computers will become limited as single computers stop getting faster. Rewriting

legacy software to optimize parallel processing is impractical. And hoping that smart com-

pilers will save the day is just wishful thinking.

What is the root of the concurrency problem?

Chuck: The root of the concurrency problem is speed. A computer must do many things

in an application. These can be done on a single processor with multitasking. Or they can

be done simultaneously with multiple processors.

The latter is much faster and contemporary software needs that speed.

Is the solution in hardware, software, or some combination?

Chuck: It’s not hard to glue multiple processors together. So the hardware exists. If soft-

ware is programmed to take advantage of this the problem is solved. However, if the soft-

ware can be reprogrammed, it can be made so efficient that multiprocessors are not

needed. The problem is to use multiprocessors without changing legacy software. This is

the intelligent compiler approach that has never been achieved.

I’m amazed that software written in the 1970s hasn’t/can’t be rewritten. One reason

might be that in those days software was exciting; things being done for the first time;

programmers working 18-hour days for the joy of it. Now programming is a 9–5 job as

part of a team working to a schedule; not much fun.

So they add another layer of software to avoid rewriting the old software. At least that’s

more fun than recoding a stupid word processor.

We have access to a big computational power in common computers, but how much

actual computing (that is, calculating) are these systems doing? And how much are they

just moving and formatting data?

Chuck: You are right. Most computer activity is moving data, not calculating. Not just

moving data, but compressing, encrypting, scrambling. At high data rates, this must be

done with circuitry so one wonders why a computer is needed at all.

Can we learn something from this? Should we build hardware in a different way?

Don Knuth launched a challenge: check what happens inside a computer during one

second of time. He said that what we would discover could change a lot of things.

Chuck: My computer chips recognize this by having a simple, slow multiply. It isn’t used

very often. Passing data between cores and accessing memory are the important features.

Download at Boykma.Com

F O R T H 69

On one hand you have a language that really enables people to develop their own

vocabularies and not necessarily think about the hardware presentation. On the other

hand, you have a very small kernel that’s very much tied to that hardware. It’s interesting

how Forth can bridge the gap between the two. On some of these machines, is it true that

you have no operating system besides your Forth kernel?

Chuck: No, Forth is really standalone. Everything that needs to exist is in the kernel.

But it abstracts away that hardware for people who write programs in Forth.

Chuck: Right.

The Lisp Machine did something similar, but never really was popular. Forth quietly has

done that job.

Chuck: Well, Lisp did not address I/O. In fact, C did not address I/O and because it didn’t,

it needed an operating system. Forth addressed I/O from the very beginning. I don’t

believe in the most common denominator. I think that if you go to a new machine, the

only reason it’s a new machine is because it’s different in some way and you want to take

advantage of those differences. So, you want to be there at the input-output level so you

can do that.

Kernighan and Ritchie might argue for C that they wanted a least common factor to make

porting easier. Yet you found it easier to port if you didn’t take that approach.

Chuck: I would have standard ways of doing that. I would have a word—I think it was

fetchp maybe—that would fetch 8 bits from a port. That would be defined differently on

different computers, but it would be the same function at the stack.

In one sense then, Forth is equivalent to C plus the standard I/O library.

Chuck: Yeah, but I worked with the Standard FORTRAN Library in the early days, and it

was awful. It just had the wrong words. It was extremely expensive and bulky. It was so

easy to define half a dozen instructions to perform in I/O operation that you didn’t need

the overhead of a predefined protocol.

Did you find yourself working around that a lot?

Chuck: In FORTRAN, yeah. When you’re dealing with, say, Windows, there’s nothing

you can do. They won’t let you have access to the I/O. I have stayed away from Windows

most deliberately, but even without Windows, the Pentium was the most difficult

machine to put Forth on.

It had too many instructions. And it had too many hardware features like the lookaside

buffers and the different kinds of caching you really couldn’t ignore. You had to wade

your way through, and the initialization code necessary to get Forth running was the most

difficult and the most bulky.

Even if it only had to be executed once, I spent most of my time trying to figure out how to

do it correctly. We had Forth running standalone on a Pentium, so it was worth the trouble.

Download at Boykma.Com

70 C H A P T E R F O U R

The process extended over 10 years probably, partly chasing the changes in the hardware

Intel was making.

You mentioned that Forth really supports asynchronous operation. In what sense do you

mean asynchronous operation?

Chuck: Well, there’s several senses. Forth has always had a multiprogramming ability, a

multithreading ability called Cooperative.

We had a word called pause. If you had a task and it came to a place where it didn’t have

anything to do immediately, it would say pause. A round-robin scheduler would assign the

computer to the next task in the loop.

If you didn’t say pause, you could monopolize the computer completely, but that would

never be the case, because this was a dedicated computer. It was running a single applica-

tion and all the tasks were friendly.

I guess that was in the old days when all of the tasks were friendly. That’s one kind of

asynchronism that these tasks could run, do their own thing without ever having to syn-

chronize. One of the features, again, of Forth is that that word pause could be buried in

lower-level words. Every time you tried to read or write disk, the word pause would be

executed for you, because the disk team knew that it was going to have to wait for the

operation to complete.

In the new chips, the new multicore chips that I’m developing, we’re taking that same

philosophy. Each computer is running independently and if you have a task on your com-

puter, and another task on the neighbor, they’re both running simultaneously but they’re

communicating with each other. That’s the equivalent of what the tasks would’ve been

doing in a threaded computer.

Forth just factors very nicely into those independent tasks. In fact, in the case of the multi-

core computer, I can use not exactly the same programs, but I can factor the programs in

the same way to make them run in parallel.

When you had the cooperative multithreading, did each thread of execution have its own

stack, and you switched between them?

Chuck: When you did a task switch, sometimes all you needed to do, depending on the

computer, was save the word on top of the stack and then switch the stack pointer. Some-

times you actually had to copy out the stack and load the new one, but in that case, I

would make it a point to have a very shallow stack.

Did you deliberately limit the stack depth?

Chuck: Yes. Initially, the stacks were arbitrarily long. The first chip I designed had a stack

that was 256 deep because I thought that was small. One of the chips I designed had a

stack 4 deep. I’ve settled now on about 8 or 10 as a good stack depth, so my minimalism

has gotten stricter over time.

Download at Boykma.Com

F O R T H 71

I would’ve expected it to go the other way.

Chuck: Well, in my VLSI design application, I do have a case where I’m recursively fol-

lowing traces across the chip, in which case, I have to set the stack depths to about 4,000.

To do that might require a different kind of stack, a software-implemented stack. But, in

fact, on the Pentium it can be a hardware stack.

Application Design

You brought up the idea that Forth is an ideal language for many small computers

networked together—smart dust, for example. For which kinds of applications do you

think these small computers are the most appropriate?

Chuck: Communication certainly, sensing certainly. But I’m just beginning to learn how

independent computers can cooperate to achieve a greater task.

The multicore computers we have are brutally small. They have 64 words of memory.

Well, to put it differently, they have 128 words of memory: 64 RAM, 64 ROM. Each word

can hold up to four instructions. You might end up with 512 instructions in a given com-

puter, period, so the task has to be rather simple. Now how do you take a task like the

TCP/IP stack and factor it amongst several of these computers in such a way that you can

perform the operation without any computer needing more than 512 instructions? That’s

a beautiful design problem, and one that I’m just approaching now.

I think that’s true of almost all applications. It’s much easier to do an application if it’s bro-

ken up into independent pieces as it is trying to do it in serial on a single processor. I think

that’s true of video generation. Certainly I think it’s true of compressing and uncompress-

ing images. But I’m just learning how to do that. We’ve got other people here in the com-

pany that are also learning and having a good time at it.

Is there any field of endeavor where this is not appropriate?

Chuck: Legacy software, certainly. I’m really worried about legacy software, but as soon

as you’re willing to rethink a problem, I think it is more natural to think of it this way. I

think it corresponds more closely to the way we think the brain works with Minsky’s

independent agents. An agent to me is a small core. It may be that consciousness arises in

the communication between these, not in the operation of any one of them.

Legacy software is an unappreciated but serious problem. It will only get worse—not only

in banking but in aerospace and other technical industries. The problem is the millions of

lines of code. Those could be recoded, say in thousands of lines of Forth. There’s no point

in machine translation, which would only make the code bigger. But there’s no way that

code could be validated. The cost and risk would be horrendous. Legacy code may be the

downfall of our civilization.

Download at Boykma.Com

72 C H A P T E R F O U R

It sounds like you’re betting that in the next 10 to 20 years we’ll see more and more

software arise from the loose joining of many small parts.

Chuck: Oh, yes. I’m certain that’s the case. RF communication is so nice. They talk about

micro agents inside your body that are fixing things and sensing things, and these agents

can only communicate via RF or maybe acoustic.

They can’t do much. They’re only a few molecules. So this has got to be how the world

goes. It’s the way our human society is organized. We have six and half billion indepen-

dent agents out there cooperating.

Choosing words poorly can lead to poorly designed, poorly maintainable applications.

Does building a larger application out of dozens or hundreds of small words lead to

jargon? How do you avoid that?

Chuck: Well, you really can’t. I find myself picking words badly. If you do that, you can

confuse yourself. I know in one application, I had this word—I forget what it was now—

but I had defined and then I had modified it, and it ended up meaning the opposite of

what it said.

It was like you had a word called right that makes things go to the left. That was hideously

confusing. I fought it for a while and finally renamed the word because it was just impos-

sible to understand the program with that word throwing so much noise into your cogni-

tion. I like to use English words, not abbreviations. I like to spell them out. On the other

hand, I like them to be short. You run out of short meaningful English words after a while

and you’ve got to do something else. I hate prefixes—a crude way to try to create

namespaces so you can use the same old words over and over. They just look to me like a

cop out. It’s an easy way to distinguish words, but you should’ve been smarter.

Very often Forth applications will have distinct vocabularies where you can reuse words.

In this context, the word does this; in that context, it does something else. In the case of

my VLSI design, all of this idealism failed. I needed at least a thousand words, and they’re

not English words; they’re signal names or something, and I quickly had to revert to defi-

nitions and weirdly spelled words and prefixes and all of that stuff. It isn’t all that read-

able. But on the other hand, it’s full of words like nand and nor and xor for the various gates

that are involved. Where possible, I use the words.

Now, I see other people writing Forth; I don’t want to pretend to be the only Forth pro-

grammer. Some of them do a very good job of coming up with names for things; others do

a very bad job. Some come up with a very readable syntax, and others don’t think that

that’s important. Some come up with very short definitions of words, and some have

words that are a page long. There are no rules; there’s only stylistic conventions.

Also, the key difference between Forth and C and Prolog and ALGOL and FORTRAN, the

conventional languages tried to anticipate all possible structures and syntax and build it

into the language in the first place. That has led to some very clumsy languages. I think C

is a clumsy language with its brackets and braces and colons and semicolons and all of

that. Forth eliminated all of that.

Download at Boykma.Com

F O R T H 73

I didn’t have to solve the general problem. I just had to provide a tool that someone else

could use to solve whatever problem they encountered. The ability to do anything and not

the ability to do everything.

Should microprocessors include source code so that they can be fixed even decades

later?

Chuck: You’re right, including the source with microcomputers will document them

nicely. Forth is compact, which facilitates that. But the next step is to include the com-

piler and editor so that the microcomputer code can be examined and changed without

involving another computer/operating system that may have been lost. colorForth is my

attempt to do that. A few K of source and/or object code is all that’s required. That can

easily be stored on flash memory and be usable in the far future.

What is the link between the design of a language and the design of a software written

with that language?

Chuck: A language determines its use. This is true of human-human languages. Witness

the difference between Romance (French, Italian), Western (English, German, Russian)

and Eastern (Arabic, Chinese) languages. They affect their cultures and their worldview.

They affect what is said and how it’s said. Of these, English is particularly terse and

increasingly popular.

So too with human-computer languages. The first languages (COBOL, FORTRAN) were

too verbose. Later languages (Algol, C) had excessive syntax. These languages necessarily

led to large, clumsy descriptions of algorithms. They could express anything, but do it

badly.

Forth addresses these issues. It is relatively syntax-free. It encourages compact, efficient

descriptions. It minimizes the need for comments, which tend to be inaccurate and distract

attention from the code itself.

Forth also has a simple, efficient subroutine call. In C, a subroutine call requires expensive

setup and recovery. This discourages its use. And encourages elaborate parameter sets that

amortize the cost of the call, but lead to large, complex subroutines.

Efficiency allows Forth applications to be very highly factored, into many, small subroutines.

And they typically are. My personal style is one-line definitions—hundreds of small sub-

routines. In such a case, the names assigned this code become important, both as a

mnemonic device and as a way to achieve readability. Readable code requires less

documentation.

The lack of syntax allows Forth a corresponding lack of discipline. This, to me, allows indi-

vidual creativity and some very pleasant code. Others view it as a disadvantage, fearing

management loss of control and lack of standardization. I think that’s more of a manage-

ment failure than the fault of the language.

Download at Boykma.Com

74 C H A P T E R F O U R

You said “Most errors are in syntax.” How do you avoid the other types of errors in Forth

programs, such as logic errors, maintainability errors, and bad style decisions?

Chuck: Well, the major error in Forth has to do with stack management. Typically, you

leave something on the stack inadvertently and it’ll trip you up later. We have a stack com-

ment associated with words, which is very important. It tells you what is on the stack upon

entry and what is on the stack upon exit. But that’s only a comment. You can’t trust it.

Some people did actually execute those and use them to do verification and stack behavior.

Basically, the solution is in the factoring. If you have a word whose definition is one line

long, you can read through it thinking how the stack acts and conclude at the end that it’s

correct. You can test it and see if it works the way you thought it did, but even so, you’re

going to get caught up in stack errors. The words dup and drop are ubiquitous and have to

be used correctly. The ability to execute words out of context just by putting their input

parameters and looking at their output parameters is hugely important. Again, when

you’re working bottom-up, you know that all of the words you’ve already defined work

correctly because you tested them.

Also, there are only a few conditionals in Forth. There’s an if-else-then construction, a

begin-while construct. My philosophy, which I regularly try to teach, is that you minimize

the number of conditionals in your program. Rather than having a word that tests some-

thing and either does this or that, you have two words: one that does this and one that

does that, and you use the right one.

Now it doesn’t work in C because the calling sequences are so expensive that they tend to

have parameters that let the same routine do different things based upon the way it’s

called. That’s what leads to all of the bugs and complications in legacy software.

In trying to work around deficiencies of the implementation?

Chuck: Yeah. Loops are unavoidable. Loops can be very, very nice. But a Forth loop, at

least a colorForth loop, is a very simple one with a single entry and a single exit.

What advice would you give a novice to make programming more pleasant and effective?

Chuck: Well, surely not to your surprise, I would say you should learn to write Forth

code. Even if you aren’t going to be writing Forth code professionally, exposure to it will

teach you some of these lessons and give you a better perspective on whatever language

you use. If I were writing a C program, I have written almost none, but I would write it in

the style of Forth with a lot of simple subroutines. Even if there were a cost involved

there, I think it would be worth it in maintainability.

The other thing is keep it simple. The inevitable trend in designing an aircraft or in writing

an application, even a word processor, is to add features and add features and add features

until the cost becomes unsupportable. It would be better to have half a dozen word pro-

cessors that would focus on different markets. Using Word to compose an email is silly;

Download at Boykma.Com

F O R T H 75

99% of all of the facilities available are unnecessary. You ought to have an email editor.

There used to be such, but the trend seems to be away from that. It’s not clear to me why.

Keep it simple. If you’re encountering an application, if you’re on part of a design team,

try to persuade other people to keep it simple. Don’t anticipate. Don’t solve a problem that

you think might occur in the future. Solve the problem you’ve got. Anticipating is very

inefficient. You can anticipate 10 things happening, of which only one will, so you’ve

wasted a lot of effort.

How do you recognize simplicity?

Chuck: There’s I think a budding science of complexity, and one of their tenets is how to

measure complexity. The description that I like, and I don’t know if there’s any other one,

is that the shortest description or if you have two concepts, the one with the shorter

description is the simpler. If you can come up with a shorter definition of something, you

come up with a simpler definition.

But that fails in a subtle way that any kind of description depends on the context. If you

can write a very short subroutine in C, you might say this is very simple, but you’re rely-

ing upon the existence of the C compiler and the operating system and the computer

that’s going to execute it all. So really, you don’t have a simple thing; you have a pretty

complex thing when you consider the wider context.

I think it’s like beauty. You can’t define it, but you can recognize it when you see it—

simple is small.

How does teamwork affect programming?

Chuck: Teamwork—much overrated. The first job of a team is to partition the problem

into relatively independent parts. Assign each part to an individual. The team leader is

responsible for seeing that the parts come together.

Sometimes two people can work together. Talking about a problem can clarify it. But too

much communication becomes an end in itself. Group thinking does not facilitate creativ-

ity. And when several people work together, inevitably one does the work.

Is this valid for every type of project? If you have to write something as feature-rich as

OpenOffice.org…it sounds pretty complex, no?

Chuck: Something like OpenOffice.org would be factored into subprojects, each pro-

grammed by an individual with enough communication to assure compatibility.

How do you recognize a good programmer?

Chuck: A good programmer writes good code quickly. Good code is correct, compact, and

readable. “Quickly” means hours to days.

A bad programmer will want to talk about the problem, will waste time planning instead

of writing, and will make a career out of writing and debugging the code.

Download at Boykma.Com

76 C H A P T E R F O U R

What is your opinion of compilers? Do you think they mask the real skills of

programmers?

Chuck: Compilers are probably the worst code ever written. They are written by someone

who has never written a compiler before and will never do so again.

The more elaborate the language, the more complex, bug-ridden, and unusable is the

compiler. But a simple compiler for a simple language is an essential tool—if only for

documentation.

More important than the compiler is the editor. The wide variety of editors allows each

programmer to select his own, to the great detriment of collaborative efforts. This fosters

the cottage industry of translating from one to another.

Another failing of compiler writers is the compulsion to use every special character on the

keyboard. Thus keyboards can never become smaller and simpler. And source code

becomes impenetrable.

But the skills of a programmer are independent of these tools. He can quickly master their

foibles and produce good code.

How should software be documented?

Chuck: I value comments much less than others do. Several reasons:

• If comments are terse, they are often cryptic. Then you have to guess what they mean.

• If comments are verbose, they overwhelm the code they’re embedded in and trying to

explain. It’s hard to find and relate code to comment.

• Comments are often badly written. Programmers aren’t known for their literary skills,

especially if English is not their native language. Jargon and grammatical errors often

make them unreadable.

• Most importantly, comments are often inaccurate. Code may change without com-

ments being updated. Although code may be critically reviewed, comments rarely are.

An inaccurate comment causes more trouble than no comment. The reader must judge

whether the comment or the code is correct.

Comments are often misguided. They should explain the purpose of the code, not the

code itself. To paraphrase the code is unhelpful. And if it is inaccurate, downright mislead-

ing. Comments should explain why the code is present, what it is intended to accomplish,

and any tricks employed in accomplishing it.

colorForth factors comments into a shadow block. This removes them from the code itself,

making that code more readable. Yet they are instantly available for reading or updating.

It also limits the size of comments to the size of the code.

Download at Boykma.Com

F O R T H 77

Comments do not substitute for proper documentation. A document must be written that

explains in prose the code module of interest. It should expand greatly the comments and

concentrate on literate and complete explanation.

Of course, this is rarely done, is often unaffordable, and is easily lost since it is separate

from the code.

Quoting from http://www.colorforth.com/HOPL.html:

“The issue of patenting Forth was discussed at length. But since software patents were

controversial and might involve the Supreme Court, NRAO declined to pursue the matter.

Whereupon, rights reverted to me. I don’t think ideas should be patentable. Hindsight

agrees that Forth’s only chance lay in the public domain. Where it has flourished.”

Software patents are still controversial today. Is your opinion about patents still the

same?

Chuck: I’ve never been in favor of software patents. It’s too much like patenting an idea.

And patenting a language/protocol is especially disturbing. A language will only be suc-

cessful if it’s used. Anything that discourages use is foolish.

Do you think that patenting a technology prevents or limits its diffusion?

Chuck: It is difficult to market software, which is easy to copy. Companies go to great

lengths to protect their product, sometimes making it unusable in the process. My answer

to that problem is to sell hardware and give away the software. Hardware is difficult to

copy and becomes more valuable as software is developed for it.

Patents are one way of addressing these issues. They have proven a wonderful boon to

innovation. But there’s a delicate balance required to discourage frivolous patents and

maintain consistency with prior art/patents. And there are huge costs associated with

granting and enforcing them. Recent proposals to reform patent law threaten to freeze out

the individual inventor in favor of large companies. Which would be tragic.

Download at Boykma.Com

http://www.colorforth.com/HOPL.html

Download at Boykma.Com

79

Chapter 5 C H A P T E R F I V E

BASIC
Thomas E. Kurtz

In 1963, Thomas Kurtz and John Kemeny invented BASIC, a general-purpose lan-

guage intended to teach beginners to program as well as to allow experienced

users to write useful programs. Their original goals included abstracting away

details of the hardware. The language spread widely after the introduction of

microcomputers in the 70s; many personal computers included custom variants.

Though the language has moved beyond line numbers and GOTO statements

through Microsoft’s Visual Basic and Kurtz’s BASIC, multiple generations of pro-

grammers learned the joy of programming from a language that encouraged exper-

imentation and rewarded curiosity.

Download at Boykma.Com

80 C H A P T E R F I V E

The Goals Behind BASIC

What is the best way to learn to program?

Tom Kurtz: Beginning programmers should not have to wade through manuals. Most

manuals are far too wordy to retain the attention of new students. Simple coding assign-

ments and easy access to easy-to-use implementations are required, and many examples.

Some educators prefer to teach a language in which programmers need to develop a lot

of experience before applying it. You have chosen instead to create a language that any

level of programmer can use quickly, where they can improve their knowledge by

experience.

Tom: Yes. Once you have learned to program, new computer languages are easy to learn.

The first is the hardest. Unless a language is particularly obtuse, the new language will be

but a short step from the languages already known. An analogy with spoken languages

(which are much more difficult to learn): once you learn your first Romance language, the

second is much simpler. First of all, the grammar is similar, there are many words the

same, and the syntax is fairly simple (i.e., whether the verb is in the middle, as in English,

or at the end).

The simpler the first language, the more easily the average student will learn it.

Did this evolutionary approach guide your decision to create BASIC?

Tom: When we were deciding to develop BASIC (John Kemeny and I back in 1962 or so),

I considered attempting to develop simplified subsets of either FORTRAN or Algol. It didn’t

work. Most programming languages contain obscure grammatical rules that act as a bar-

rier for the beginning student. We tried to remove all such from BASIC.

Several of the considerations that went into the design of BASIC were:

• One line, one statement.

We couldn’t use a period to end a statement, as JOSS did (I believe.) And the Algol

convention of a semicolon made no sense to us, as did the FORTRAN Continuation (C).

• Line numbers are GOTO targets.

We had to have line numbers since this was long before the days of WYSIWYG. Invent-

ing a new concept of “statement label” didn’t seem like a good idea to us. (Later, when

creating and editing programs became easier, we allowed the user to not use line numbers,

as long as he didn’t use GOTO statements; by that time, BASIC was fully structured.)

• All arithmetic is floating point.

One of the most difficult concepts for a beginner to learn is why the distinction

between type integer and type floating. Almost all the programming languages at the

time bowed to the architecture of the most computer hardware, which included float-

ing point for engineering calculations and integer for efficiency.

Download at Boykma.Com

B A S I C 81

In handling all arithmetic in floating point, we protected the user from numeric typing.

We did have to do some complicated stuff internally when an integer value was

required (as in an array subscript) and the user provided a noninteger (as in 3.1). We

simply rounded in such cases.

We had similar problems with the difference between binary and decimal fractions. As

in the statement:

 FOR I = 1 TO 2 STEP 0.1

The decimal fraction 0.1 is an infinite repeating binary fraction. We had to use a fuzz

factor to determine the completion of the loop.

(Some of these binary-decimal considerations were not included in the original BASIC,

but were handled in the much more recent True BASIC.)

• A number is a number (is a number).

No form requirements when entering a number in the code or in data statements. And

the PRINT statement produced answers in a default format. The FORMAT statement, or

its equivalent in other languages, is quite difficult to learn. And the beginning user

might wonder why would he have to learn it—he just wanted to get a simple answer!

• Reasonable defaults.

If there are any complications for the “more advanced” user, they should not be visible to

the beginner. Admittedly, there were not many “advanced” features in the original

BASIC, but that idea was, and is, important.

The correctness of our approach was borne out by that fact that it took about an hour to teach

freshmen how to write simple programs in BASIC. Our training started out with four one-

hour lectures, then was reduced to three, then two, and finally to a couple of videotapes.

I once determined that an introductory computer science course could be taught using a

version of BASIC (not the original one, but one that included structured programming

constructs). The only thing you could not do was to introduce the student to the ideas of

pointers and allocated storage!

Another point: in the early days running a program required several steps: Compiling.

Linking and loading. Execution. We decided in BASIC that all runs would combine these

steps so that the user wouldn’t even be aware of them.

At that time in the history of computing, most languages required a multiple-pass com-

piler, which might consume too much valuable computer time. Thus, we compiled once,

and executed many times. But small student programs were compiled and executed once

only. It did require us to develop a single-pass compiler, and go directly to execution if the

compilation stage was without errors.

Also, in reporting errors to the student, we stopped after five errors. I can recall FORTRAN

error printouts many pages in length detailing all the syntax errors in a program, usually

from omitting but one key punctuation at the beginning.

Download at Boykma.Com

82 C H A P T E R F I V E

I’ve seen a BASIC manual from 1964. The subtitle is “the elementary algebraic language

designed for the Dartmouth Time Sharing system.” What’s an algebraic language?

Tom: Well, we were both mathematicians, so naturally there are certain things in the lan-

guage that look mathematical, for example raising numbers to power and things of this

sort, and then the functions that we added were mathematical, like sine and cosine,

because we were thinking of students doing calculus using BASIC programs. So there was

obviously a bias for numerical calculations in contrast to other languages that were devel-

oped at the time such as COBOL, which had a different focus.

What we did was look at FORTRAN at the time. Access to FORTRAN on any of the big IBM

computers was through the medium of 80-column punch cards. We were introducing a

computer in our campus through the use of teletype machines, which were used as input to

computers because they were compatible with phone lines, and we wanted the phone lines

to connect the terminals in various places on the campus to the central computer. So all that

was done using machinery designed originally for communication purposes such as teletype

communication, store and forward messages, and so on. So we did away with punch cards.

Second thing we wanted to do was to get away from the requirements that punch cards

imposed on users, which was that things had to be in certain columns on the card, and so

we wanted to be something more or less free form that somebody could type on a teletype

keyboard, which is just a standard “qwerty” keyboard, by the way, but only with upper-

case letters.

That’s how the form of the language appeared, something that was easy to type, in fact

originally it was space-independent. If you put spaces or you didn’t put spaces in what you

were typing it didn’t make any difference, because the language was designed originally so

that whatever you typed was always interpreted by the computer correctly, even if there

were spaces or no spaces. The reason for that was that some people, especially faculty

members, couldn’t type very well.

Space insensitivity made its way into some of the early personal computer versions of

BASIC, and that led to some quite funny anomalies about the interpretation of what the

person typed.

At Dartmouth there was no ambiguity at all. Only in much later years were spaces required

as the language evolved; the ending of a variable name had to be either a space or symbol.

One critic of BASIC said that it is a language designed to teach; as soon as you start writing

big programs, they become chaotic. What do you think?

Tom: This is a statement by somebody who hasn’t followed the development of BASIC

over the years. It’s not a baby language. With True BASIC I personally wrote 10,000- and

20,000-line programs, and it expands quite well, and I could write 30,000- or 40,000-line

programs and there wouldn’t be any problem, and it wouldn’t cause the runtime to

become inefficient, either.

The implementation of the language is separate from the design of the language.

Download at Boykma.Com

B A S I C 83

The design of the language is what the user has to type to get his work done. Once you

allow the possibility of libraries, then you can do anything you want. Then it’s a question

of the implementation of the language whether it supports programs of infinitely large

size, and True BASIC does.

This is different from other versions of BASIC. For example Microsoft BASIC and Visual

Basic, that is based on it, have some limitations. Other versions of BASIC that have been

floating around had other limitations, but those are in the implementation, not in the

design of the language.

Which features of True BASIC made it possible for you to write large programs?

Tom: There’s only one, the encapsulation, the module. We call our encapsulating struc-

tures modules.

That was actually standardized by the BASIC Committee, believe it or not, before they

went out of business. That happened in the early days of True BASIC. That feature was

added to the language standard, and that was about 1990 or so, 1991.

Modern computers have lots of memory and very fast chips and so there’s no problem

implementing that kind of stuff.

Even though you’re back to two passes now in the compiler.

Tom: The linker is also written in True BASIC. It’s actually a crude version of True BASIC, or

a simplified version of True BASIC. That’s compiled into this B code, like the Pascal P code.

To actually do the linking, you execute those B code instructions and there’s a very fast

interpreter that executes B code instructions. True BASIC, like the original BASIC, is com-

piled. The original BASIC was compiled into direct machine instructions, in one stage. In

True BASIC we compile into B code, and the B code is very simple, so the execution of B

code by a very fast C written loop, as it is now, was originally written for the DOS platforms.

That’s very fast. It’s not as fast as a language designed for speed, but it’s pretty darn fast. As

I said, there are two-address instructions in the B code, and so it’s very fast.

In the early days, interpretation didn’t slow things down because we had to do floating

point in software. We insisted that True BASIC and original Dartmouth BASIC always

dealt with double-position numbers, so that 99% of the users didn’t have to worry about

the precision. Now, of course, we use the IEEE standard that’s provided automatically by

all chips.

Do you think that the only difference between a language designed to teach and one

designed to build professional software is that the first is easier to learn?

Tom: No, it’s just the way that things developed. C came at an appropriate time and gave

access to the hardware. Now the current object-oriented languages that are around, what

they are teaching and what the professionals are doing, are derivatives of that environ-

ment, and so those languages are very hard to learn.

Download at Boykma.Com

84 C H A P T E R F I V E

It means that people who use these derivative languages and are professionally trained

and are members of programming teams can put together much more sophisticated appli-

cations, such those used to do movies, sounds, and things of this sort. It is just much easier

to do that with an object-oriented language like Objective-C, but if that’s not your goal,

and you just want to write a large application program, you could use True BASIC, which

comes from Dartmouth BASIC.

What is the final goal of making a programming language easier to use? Will we ever be

able to build a language so simple that every computer user could write his own

programs?

Tom: No, a lot of the stuff we based on BASIC at Dartmouth can now be handled by other

applications such as spreadsheets. You can do quite complicated calculations with spread-

sheets. Furthermore, some of the mathematical applications we had in mind can now be

done using libraries of programs put out by professional societies.

The details of the programming language don’t really matter because you can learn new

languages in one day. It is easy to learn a new language if there is proper documentation.

I just don’t see what is the need of any new language alleged to be the perfect language.

Without a specific field in mind, you can’t have a good language; it’s a self-contradicting

idea! It’s like asking what is the best spoken and written language around the world? Is it

Italian? English? Or what is it? Could you define one? No, because all written and spoken

languages derive from how life is in that place where the language is used, so there is no

such thing as the perfect language. There is no perfect programming language, either.

Did you always intend that people would write a hundred very small programs and then

call themselves programmers?

Tom: That was our purpose, but the odd thing about it is, as the language grew, without

getting too complex, it became possible to write 10,000-line programs. That’s because we

kept things very simple. The whole idea, and you see, the trick in time sharing is that the

turnaround time is so quick, you don’t worry about optimizing the program. You worry

about optimizing person time.

I had an experience when I was writing a program for the MIT computer several years

before we invented BASIC. That was using a symbolic assembly program, SAP, for the

IBM 704. I tried to write this program and I tried to do everything that made sense, and I

used sense lights to optimize it, so I didn’t repeat calculations that weren’t necessary. I did

everything. Well, the damn thing didn’t work and it took me a month to find out that it

didn’t work, because I went down every two weeks. The turnaround time was two weeks.

I used I don’t know how many minutes or hours of computer time in the process. Then

the next year when FORTRAN came out, I switched and wrote a FORTRAN program and I

think I used five minutes of computer time, all told.

The whole business of optimizing and coding is absolutely wrong. You don’t do that. You

optimize only if you have to and you do it later. Higher-level languages optimize com-

puter time automatically because you make fewer errors.

Download at Boykma.Com

B A S I C 85

That’s a point I hear infrequently.

Tom: Computer scientists are kind of stupid in that respect. When we’re computer pro-

grammers we’re concentrating on the intricate little fascinating details of programming and

we don’t take a broad engineering point of view about trying to optimize the total system.

You try to optimize the bits and bytes.

At any rate, that’s just an editorial comment. I’m not sure I could back it up.

Did the evolution of the hardware influence the evolution of the language?

Tom: No, because we thought the language was a protection from knowing about the

hardware. When we designed BASIC we made it hardware-independent; there is nothing

in the language or in the features that came in later that reflects the hardware.

This is not true with some of the early personal computer versions of BASIC, which were

based only in a loose sense on what we did at Dartmouth. For example, in one personal

computer version of BASIC they had a way to set or interrogate the content of a certain

memory location. In our own BASIC at Dartmouth, we never had that. So of course those

personal computer BASICs were terribly dependent on the hardware capabilities, and the

design of those personal computer languages reflected the hardware that was available to

them.

If you were talking to people who did Microsoft BASIC, they would say yes, the features

of the language were influenced by the hardware, but this didn’t happen at Dartmouth

with the original original BASIC.

You chose to perform all arithmetic as floating point to make things easier for the user.

What is your opinion on the way modern programming languages handle numbers?

Should we move to an exact form of representation using arbitrary-precision numbers,

where you consider them as a sort of “array of digits”?

Tom: There are lots of ways to represent numbers. It is true that most languages at that

time, and modern languages as well, reflect the availability of the type of number repre-

sentations that are available on today’s hardware.

For example, if you program in C today, there are number types that correspond to the

numeric representation available on hardware, such as single-precision floating point,

double-precision floating point, single-precision integer, double-precision integer, etc.

Those are all aspects of the C language because it was designed to get at the hardware, so

they have to provide access to whatever the number representations are in the computer.

Now, what numbers can be represented in computers? Well, in a fixed-length number of

binary digits, binary bits—with which most computers work—are at least a finite number

of decimal digits, you have a limitation on the type and numbers you can represent, and

that’s well known to lead to certain types of rounding errors.

Download at Boykma.Com

86 C H A P T E R F I V E

Some languages provide access to an unlimited precision, like 300 decimal digits, for

example, but they do that with software by representing very large numbers as potentially

infinite arrays of digits, but that’s all done by a software and consequently is very slow.

Our approach in BASIC was simply to say a number is a number, “3” is a number but also

“1.5” is a number. We haven’t bothered our students with that distinction; whatever they

put as a number, we tried our best to represent that number in the floating-point hard-

ware that was available on the machine.

One thing to say about that is when we were first considering which computers to get (of

course we ended up with the GE computer in 1964), we insisted that the computer had

floating-point hardware because we didn’t want to mess around with having to do soft-

ware arithmetic, and so that’s how we represented the numbers. Of course there is a cer-

tain imprecision in that, but that’s what you have to live with.

Were the GOTO and the GOSUB statements just a choice given the hardware at the time?

Should modern programming languages provide them as well?

Tom: I don’t think the hardware was the issue; it’s irrelevant.

Some structured languages required it, but that was in the old days, 20 or 30 years ago, so

I don’t really think that’s an issue.

The thing was important at the time because that was how people wrote programs for

computers in machine language and assembly language. When we did BASIC the idea of

structured programming had not yet surfaced; also, we patterned BASIC after FORTRAN,

and FORTRAN had the GOTO statement.

During the evolution of BASIC, what criteria did you use when considering new features

to add to the language?

Tom: Well, whatever was needed at the time—nothing very theoretical.

For example, one of the things we did after BASIC saw the light of day in early 1964 was

to add the ability to handle nonnumerical information, strings of character information.

We allowed character strings so that when people were writing programs such as to play

games, they could type “yes” or “no” instead of “1” or “0”. In the original BASIC, “1”

meant “yes,” and “0” meant “no,” but very soon we added the ability to handle strings of

characters. And that was just because it was needed.

Compiler Design

When you wrote the first version of BASIC, you were able to write a single-pass compiler

while everyone else was doing a multipass compiler. How did you do that?

Tom: It’s very simple, if the design of the language is relatively simple. A lot of languages

are simple in that respect. Everything was known, and the only thing we had to put off to

what we call the pass and a half was filling in for forward transfers. That was the only

thing that really prevented a complete single-pass compiler.

Download at Boykma.Com

B A S I C 87

In the first hundred lines of a program you have a GOTO to something in the first

thousand lines. It’s a linking stage then.

Tom: That’s what we did. It was the equivalent of the linking list. Now, we didn’t actually

use a linked list structure in the assembly language of the computer we were working

with, but it was basically that. It might have been a little table that was set up with

addresses that are filled in later.

Were you able to parse and generate code at the same point then?

Tom: Yes. The other part about it was that the language was deliberately made simple for

the first go-round so that a single-pass parsing was possible. In other words, variable

names are very limited. A letter or a letter followed by a digit, and array names, one- and

two-dimensional arrays were always single letters followed by a left parenthesis. The pars-

ing was trivial. There was no table lookup and furthermore, what we did was to adopt a

simple strategy that a single letter, or a single letter followed by a digit, gives you what, 26

times 11 variable names. We preallocated space, fixed space for the locations for the val-

ues of those variables, if and when they had values.

We didn’t even use a symbol table.

Did you require variable declarations?

Tom: No, absolutely not. In fact, arrays always were single letters followed by left paren-

thesis, so that was in fact the declaration. Let me see if I can remember this correctly. If

you used an array, like you used a(3), then it was automatically an array from, oh, let’s

see, I think it was 0 to 10. Automatic default declarations, in other words, and starting at 0

because, being mathematicians, when you represent the coefficients of a polynomial, the

first one has a 0 subscript.

Did you find that simple to implement?

Tom: Trivial to implement. In fact, there are a lot of things in compiler writing that are

not too hard at all. Even later on when a more advanced version of BASIC was floating

around that used a symbol table lookup, but that’s not so hard, either.

It’s the optimizations that hurt.

Tom: We didn’t worry about optimization, because 99% of all the programs that were

being written by students and by faculty members at that time were little teeny, little triv-

ial things. It didn’t make any sense to optimize.

You’ve said that polymorphism implies runtime interpretation.

Tom: I believe that’s true, but nobody has challenged me on that statement because I

haven’t discussed it. Polymorphism means that you write a certain program and it behaves

differently depending on the data that it operates on. Now, if you don’t pull that in as a

source program, then at execution time that piece of program doesn’t know what it’s

doing until it actually starts executing, that’s runtime interpretation. Am I wrong on that?

Download at Boykma.Com

88 C H A P T E R F I V E

Consider Smalltalk, where arguably you have the source available. If you make really late

binding decisions, does that count as runtime binding?

Tom: That’s a tricky question. There’s early binding, late binding, and runtime binding.

It’s really tricky, and I imagine you can figure out ways of getting around this.

For example, suppose you’re writing a sorting routine. If you’re sorting numbers, the

comparison between which number is less and so on is obvious. If you’re sorting character

strings, then it’s less obvious, because you don’t know whether you want ASCII sorting or

whether you want dictionary ordering or whether you want some other ordering.

If you’re writing a sorting routine, you know which one you want, so that’s how you

make your comparison. If you’re writing a general purpose sorting routine, then you have

to call a subroutine or do something like that to determine whether item A is less than

item B, whatever that is. If you’re trying to sort keys to records or something, then you

have to know the ordering of whatever it is you’re sorting. They may be different kinds of

things. Sometimes they may be character strings, but think of what the possibilities are.

When you write the sorting algorithm, you don’t know any of that stuff, which means it has

to be put in later. If it’s done at runtime, of course, then it’s runtime interpretation.

That can be done efficiently, don’t get me wrong, because you can have a little program, a

subroutine, and then all the person has to do is, in the subroutine, to write the rules for

ordering the elements that he’s sorting. But it isn’t automatic.

You don’t get polymorphism for free. You have to write the polymorphic variants.

Tom: Somebody has to worry about it.

The other thing that the object-oriented people talk about is inheritance. That’s only

important if you have data typing in your language. I’ve read the introductions to a num-

ber of object-oriented books, and they talk about a guy writing a circle routine. Somebody

else might use it for some other purpose, but that’s extremely rare. The problem that I’ve

always felt about stuff like that is that if you want to write a routine that’s general-purpose

enough that other people might want to use it, then you’ve got to document the hell out

of it, and you have to make it available. I mean there’s a whole raft of considerations.

You’re almost writing a complete application with documentation.

For the kind of programs I do, that’s overrated. I don’t know what happens in the industry.

That’s another matter.

Would you call that idea of cheap and easy code reuse premature generalization?

Tom: It’s an idea that may have relevance in the programming profession, but it does not

have relevance to the wider group of amateurs who might write programs. As a matter of

fact, most people don’t write programs these days. Much of what we used to write pro-

grams for is now done by an application that you can buy or you can put it into a spread-

sheet, or whatever. Having nonprofessional programmers, people in other fields, write

programs is not done very much anymore.

Download at Boykma.Com

B A S I C 89

One of the things that bothers me about the education of programming primarily in second-

ary schools, where they have an advanced placement in computer science, is that it’s much

too complicated. I don’t know what languages they teach these days, I haven’t looked at it.

I once looked at how I would structure a first college course in computer science using

BASIC. It could do practically everything I‘d ever want to do in a beginning computer sci-

ence course except deal with pointers and allocated storage. That’s sort of a complexity. If

you use Pascal for the language, you may have to get into pointers and allocated storage

when people don’t even know what a computer program is, but that’s neither here nor

there. I never pushed my views. I’m one against many.

People are starting to believe that you don’t have to deal with allocated memory and

pointers much anymore unless you’re writing virtual machines. Those who write

compilers do, but that’s our job.

Tom: Let the compiler do it; you don’t have to do it.

We got portability in True BASIC. A couple of young men who were really brilliant did the

design. I just was with the company and did application programming. They designed an

intermediate language that was in the fashion of the P code of Pascal. Instead of being two

address, it was three address, because it turned out that practically all instructions in

BASIC are three address, LET A = 3. That’s three things, the opcode and the two addresses.

Then they built a compiler using BASIC itself, and built a very crude support to actually

compile that compiler. The compiler itself is written in True BASIC, and it runs on any

machine for which there is a True BASIC engine, which we call the interpreter.

The language is interpreted at the execution level, not at the scanning level. So there’s

three stages in the execution of the program. The first is the compiler stage, the second is

the linking/loading stage, and the third is the execution. But the user doesn’t know that.

The user just types run or hits run or something and bang, it happens.

The compiled code is also machine-independent. It can transport that across boundaries.

It’s really quite a sophisticated language environment. We were on multiple platforms, four

or five different platforms for a while, but most platforms lived a short time and died, of

course. Now there’s only two major platforms or three major platforms left: Unix, Microsoft,

and, for us, Apple—an interesting platform because Dartmouth was always an Apple school.

Doing the porting to those platforms turned out to be a dog. The windowing support and

the gadgets and the buttons and all that kind of stuff, they all do it differently, and you

have to get down to the detail of how they do it. Sometimes they do it at a very low level,

so you have to build all that stuff up yourself.

The old, original Mac, it had a Mac toolbox. For a while, we used a layering software, XVT

out of Boulder, Colorado, which claimed to target Windows and also the classic Mac. We

were able to get some mileage out of that. Before the company went defunct, the pro-

grammer put out a version for Windows; it goes directly to the Windows application

environment.

Download at Boykma.Com

90 C H A P T E R F I V E

The trouble with those is that when we have a single programmer doing all of that stuff, it

takes a while, and new versions of the operating system come out and you run across new

bugs and have to track them down. It was almost impossible for a small outfit like we

were. At one point we had three programmers, then down to two, and then down to one.

That’s really just too much for one programmer to handle.

The underlying code, now that it’s largely C, contains tons of #ifdefs in it.

Language and Programming Practice

What is the link between the design of a language and the design of a software written

with that language?

Tom: Very tight. Most languages were designed with specific types of software in mind. A

prime example was APT, a language for controlling Automatic Programmed Tools.

You added the REM statement for comments in the early days. Has your opinion on

comments and software documentation changed over the years?

Tom: No, it’s a kind of self-defense mechanism. When I write programs in True BASIC, I

do add comments to remind me whatever I was thinking when I wrote the code. So I

think that comments play a role, and the role is different depending on what kind of pro-

grams you are writing, whether you work in a group or no other people read your code. I

believe in comments but only insofar as they are necessary.

Do you have any suggestions for people writing software in teams?

Tom: No, because we have never done it. All the software we have done in our environ-

ment has been solo work. In True BASIC we had maybe two or three people writing code,

but they were really working on completely separate projects. I just don’t have any expe-

rience working in teams.

You had a time-sharing machine, so you suggested that users should plan their session at

the teletype before sitting there. The motto was: typing is no substitute for thinking. Is this

true today?

Tom: I think probably that thinking does take place. When a major company is going to

develop a new software product, they do a lot of thinking before it, so I think that’s done.

One of the things I do personally is not thinking too much ahead but just start writing the

program. Then I will discover that it is not quite working out, so I will scrap the whole

thing and start over. That’s the equivalent to thinking. I usually start coding just to see

what the problems are going to be, and then throw that version away.

It is important to think about what you are doing—very important. I am not sure, but I

think Richard Hamming stated that “typing is no substitute for thinking.” Those are the

early days of computing and very few people knew how to do it, so there was a lot of

advice like that floating around.

Download at Boykma.Com

B A S I C 91

What is the best way to learn a new programming language?

Tom: Once one knows how to program, and knows the concepts (i.e., how storage is allo-

cated), learning a new language is straightforward if one has access to a reference manual,

and a decent implementation (i.e., compiler). I’ve done it many times.

Attending a class is pretty much a waste of time.

Any programmer worth her salt will know many languages in her professional lifetime.

(I probably have used more than 20 in mine.) The way to learn new languages is to read

the manual. With few exceptions, most programming languages are similar in structure

and in the way they operate, so new languages are fairly easy to learn, if there is a reason-

able manual available.

Once you get over the jargon hurdle (what does polymorphism mean?), things are really

fairly simple.

One problem with today’s programming style is that there are no manuals—just interface

building tools. They are designed so that programmers don’t have to type, letter by letter,

many of the instructions, but behave like the engineers’ CAD and CAM tools. To old-time

programmers like me, that is anathema—I want to type all the code, letter by letter.

There have been attempts in the past to simplify the typing (for poor typists or students) by

providing macros (such as a single keystroke for the keyword LET), but they never caught on.

I am now attempting to learn a language that is supposedly “object-oriented.” No refer-

ence manual exists, at least that I have found. The manuals that are available develop

what appear to be almost trivial examples, and spend perhaps 90% of the space pointing

out how OOP is such a superior “religion.” I have friends who took a C++ course, and it

was a disaster from a pedagogical point of view. My opinion is that OOP is one of the great

frauds perpetrated on the community. All languages were originally designed for a certain

class of users—FORTRAN for extended numerical computations, etc. OOP was designed so

that its clients could claim superior wisdom for being on the “inside.” The truth of the

matter is that the single most important aspect of OOP is an approach devised decades ago:

encapsulation of subroutines and data. All the rest is frosting.

Language Design

Do you think Microsoft’s current Visual Basic is a full-fledged object-oriented language, and if

so, do you approve of this aspect of it (given your dismissal of the object-oriented paradigm)?

Tom: I don’t know. With a few simple experiments, I found Visual Basic relatively easy to

use. I doubt that anyone outside of Microsoft would define VB as an OOL. As a matter of

fact, True BASIC is just as much object-oriented as VB, perhaps more so. True BASIC

included modules, which are collections of subroutines and data; they provide the single

most important feature of OOP, namely, data encapsulation. (True BASIC does not have

inherited types, since it doesn’t have user-defined types, other than array dimensions.

Hardly any language has polymorphism, which, in fact, implies runtime interpretation.)

Download at Boykma.Com

92 C H A P T E R F I V E

You mentioned that Visual Basic as compared to True BASIC had some severe limitations.

Do you mean that Visual Basic lacked something like your module system?

Tom: I don’t know. I only wrote some sample programs in—well, I didn’t write anything

in Visual Basic. I just convinced myself that I could do it. It had a fairly simple user inter-

face to it. This is in contrast to some of the others I tried to use once. Visual Basic was the

old Microsoft BASIC and they claim it was object-oriented but it really wasn’t, just by add-

ing the front-end interface builder to it.

You also made an interesting comment about some of the bigger systems people are

building for video and audio. You said it’s easier to put together a sophisticated app like

that with an object-oriented language like Objective-C.

Tom: Yeah, probably because the language environment is made sufficient for that.

I’m trying to learn Objective-C right now without success, but at any rate, you have that

environment. If you know what you’re doing you can access all of that stuff that’s on the

platform, visual and audio, in some sort of a reasonable way. I haven’t tried it, so I don’t

know how hard it is, but it’s included in the language development environment.

It’s not necessarily a feature of the language itself; it’s a feature of the environment around

the language.

Tom: It doesn’t really have anything to do with the language per se, but it’s the language

environment. If the language environment is currently being used by a lot of people, then

there’s maybe a hundred programmers back in the factory making sure it works right.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable

future?

Tom: Nothing.

From the early 60s I recall the Burroughs 5500 computer. Its hardware was designed to

allow pushdown stack applications, such as Algol compilers, to be more efficient.

Today, the trend seems to be in the other direction, toward RISC machines.

For most programming languages, nothing special is needed. Part of the reason is that the

speed of computers is so great, and getting greater, that the compiling and processing time

of a particular language is a nonissue.

The reverse might be true. For example, to process large arrays, you might build an array-

processing computer, which would then require you to develop a suitable programming

language.

Download at Boykma.Com

B A S I C 93

If today you had to create a completely new programming language for teaching, how

similiar would it be to BASIC?

Tom: Very, because the principles that we followed are still valid. For instance, we tried to

make a language that was easy to remember, so if a person didn’t use it for a long time,

they were still able to sit down and remember how to use it.

We tried to make a language that had a minimum of esoteric requirements. For example,

in FORTRAN if you wanted to print a number, you had to use a format statement and

indicate exactly how was it to be printed. That’s an esoteric subject for people to learn,

particularly if they don’t use the language that often, so what we were doing in BASIC

was just print the number in a way that we thought would be the best way to print it. If it

was an integer number, in fact, even though we use internal floating point, we would

print it out as an integer value without the decimal point. If you wanted to type in a num-

ber, you didn’t have to worry about the format; you would have just written your favou-

rite formula and it would have gone in—you weren’t restricted to some particular format

for entering data.

Most of the time this is followed by spreadsheets; they are good at this type of thing. You

can specify if you want a fixed-point output for numbers that are displayed in a particular

column, or if you don’t care you get the general form. I think that’s more or less what we

did with BASIC. We allow character input, and we do it in a very simple way: you just

type it in; there is no rule to follow.

During the 70s and 80s we developed structured programming versions of BASIC at Dart-

mouth and we added the elements to get the capabilities of object-oriented programming.

We would not have done anything differently.

Is encapsulation what you like about object orientation?

Tom: That is absolutely correct. I used to say that encapsulation is 70% of what object

programming provides, but I think I’m changing that to 90%. That’s the main thing, to

merge together routines and their data. That’s really important. I don’t write much any-

more, but everything that I’ve written when I was working for True BASIC and so on, I

encapsulated them.

We had a way of encapsulating groups of subroutines in what we called modules, which is

the same thing, but grouping the subroutines together and then they’re isolated from the

rest of the programming except through their calling sequence. In fact, they had their own

private data. That turned out to be extremely handy to isolate functionality, that type of

thing.

Download at Boykma.Com

94 C H A P T E R F I V E

One of the things that I’ve asked many of these designers of languages and systems is to

what degree they like this notion of a mathematical formalism. Take Scheme, which

expresses the lambda calculus very effectively. You have six primitives and everything is

just beautifully built on top of that. That seems like the mathematician approach.

Tom: Yeah, that’s very interesting. That’s an interesting mathematical problem, but if

you’re designing a computer language, you don’t have to do that stuff, because every

computer language that I’ve ever seen is much simpler than that. Even FORTRAN. Algol is

simple; it uses recursive definitions, but that’s fairly simple and straightforward.

I never studied the theory of programming languages, so I can’t make any more com-

ments than that.

Do you consider the people who will use a language and the biggest problems they’re

going to have to solve?

Tom: Yeah. The biggest problem for the people that we were designing for was remem-

bering the language from week to week, but they only wrote one program every two

weeks. We also wanted a programming language and a system environment that we could

teach in a matter of a couple of hours, so you don’t have to take a course.

That’s how I and a lot of my peers learned to program. We had Microsoft BASIC on the

PCs of the early 80s—the Commodore 64 and the Apple II. They were line BASICs with

subroutines, but not much else.

Tom: There are oddities floating around. They actually had some tricky stuff to it. For

example, I used Apple Soft BASIC. I don’t know if Microsoft did it or whether somebody

else did it, but all of those were copied from Dartmouth BASIC startup. They introduced

the idea of a multicharacter variable name, but they didn’t parse it correctly. If you hap-

pened to have a keyword buried inside your multiple-character variable name, it would

throw the thing off.

Was this because of whitespace insensitivity?

Tom: No, because they claimed to have multicharacter variable names, but they didn’t.

They faked it. If you had a multiple-character variable name which was, let’s say, TOT,

they would recognize the TO as a keyword. It was a marketing gimmick. Those languages,

little features were designed for the market. They thought that multiple-character variable

names would be a good gimmick. People that used the language managed to get around

that by not using multiple characters very much.

That’s not a process that’s discoverable reading the manual.

Tom: The errors in it are not, no.

How did whitespace insensitivity come about?

Tom: The only thing I know about it was published, and the reason for space insensitivity

is partly because John Kemeny was a poor typist. I don’t know if that was really the rea-

son. We codesigned the language, but a feature like that is something that he did.

Download at Boykma.Com

B A S I C 95

Because variable names are unique and do not look like keywords, spaces are not needed.

You can add spaces or remove them ad lib.

Things develop. Now when I write programs, there are still versions of True BASIC float-

ing around that run on various machines. That’s the only language I use, and I use spaces

to improve clarity.

Not to work around computer limitations; it’s solely a human factors issue for you?

Tom: That’s right, because the main thing about a program, you know, if it’s a serious

program you’re writing and you’re going to be working on it, is to make sure that if you

put it aside for six months and pick it up again that you’ll be able to understand it by read-

ing it. It’s very important to choose variable names that suggest the quantities they repre-

sent or to build a structure; I’m thinking primarily the fact of using single-purpose

subroutines and then giving them a name that suggests what they do.

With multicharacter variable names of arbitrary length now a part of all computer lan-

guages, even if there are 20 letters in the subroutine name, nonetheless it tells what it

does. Someone can come back six months later and understand it.

Chuck Moore says that in Forth you build up a vocabulary of words so that you can write

in the language of the domain if you’ve chosen the words correctly. It’s interesting how

that idea has come up so many times.

Tom: A computer language like BASIC is designed for people who are not professional

programmers. If you are a person in some field and you decide to write an application pro-

gram for your field, you would prefer a simpler programming language to work with than

somebody who is a professional. I’m thinking in particular of these object-oriented lan-

guages that are floating around.

I have a little bit of experience with one of them, and it’s grotesquely complicated. It’s the

only computer language in my life that I have not been able to figure out, and I’ve written

programs in maybe 30 computer languages.

How would a WYSIWYG eliminate the need for line numbers? You suggested they existed

only as targets of GOTO statements. Are line numbers also needed so programmers can

refer to lines when editing a file?

Tom: Absolutely not (to the last question). Line-numbered editing has long since gone.

How would WYSIWYG change programming?

Tom: Not at all. The WYSIWYG editors are now sophisticated and closely associated with

the language they serve (in terms of indentation, use of color, etc.).

Is there anything we miss in computer science education today? Some people have said

that there’s no engineering focus, for example.

Tom: Well, I don’t know because I don’t know how they teach computer science today. I

retired 15 years ago and I didn’t teach anything but statistics and computer science, so I

have no idea of how the field has since developed.

Download at Boykma.Com

96 C H A P T E R F I V E

How should debugging be taught?

Tom: Well, the best thing to do is to prevent it in the first place, and you do that by think-

ing ahead better.

One of our former students become an Apple fellow doing some very significant work for

them and then retired. Before that he worked at Dartmouth in the computer center. He

wrote a PL/1 compiler, and it’s a big thing, and he checked it, and looked at it, and so on,

but he never tested it, he never ran it until it was all done. You know, 20,000 or 30,000

lines of code, and the only test he did was to read it. Then he ran it and it worked the first

time!

That’s an oddity in the whole history of computer science! I mean somebody writes a

20,000- or 30,000-line program and it works correctly the first time, that’s bizarre, OK?

But he did it, and that’s the way to do it. He worked solo; he didn’t work in a team. You

are always more productive when you work alone. So he was very careful about how the

various parts of the programs worked together and he read code very carefully, and this

means that when you read the code what you are really doing is emulating what the com-

puter is going to do, so you check every step—this is right, this is right, etc.

So when he pressed the “go” button and it worked, that’s crazy, nobody does that, but

that’s the idea. You reduce bugs by keeping them out in the first place.

A lot of commercial software around these days is tremendously buggy because it is not

written by good programmers, it is written by teams, and the design of what it does is

determined by the marketing department. It has to come out in a certain period of time

with a certain program with certain capabilities, so it’s full of bugs. For the software com-

panies, most of the users just use superficial features in their computers, so they don’t run

into many bugs.

Would you draw a line between what you think is good to incorporate into the language

as opposed to a library?

Tom: Well, we paid a lot of attention to that, too. Anything that was a little bit esoteric

that only a fraction of the users would want to know about, we would put into a library.

That’s the way the language developed over the years. So we had a library for doing a lot

of things; in the modern version of BASIC, which is True BASIC, we use a library of sub-

routines to access the objects of object-oriented programming such as push buttons, dialog

boxes, and things of that sort. We use a library routine, and the access of that kind of stuff

is not included in the language per se, so you have to call a subroutine to do these things

and the subroutines are contained in a number of libraries. That is something we thought

quite hard about at the beginning.

Download at Boykma.Com

B A S I C 97

When people write software in teams, they often build common libraries for everyone to

use. Do you have any advice to build such libraries in True BASIC?

Tom: Well, I have written libraries myself, but I don’t have any particular advice besides

try to keep it simple. You know, these are techniques everybody knows about: keep things

simple and try to avoid introducing bugs.

Single-purpose subroutines, for example, are important. Don’t have subroutines that do

something on the side because it seems like a good idea. Side effects can be disastrous.

There are lots of ways to write libraries that can reduce or eliminate future bugs or errors.

There are well-known techniques for reducing errors, but I don’t know how much they

follow them in the industry, because in the industry the programs they write are dictated

largely by the marketing department.

Work Goals

How do you define success in terms of your work?

Tom: For many years because of our work—because it was so open, because we gave

unlimited access to students who were part of the project—Dartmouth had one of the best

computer reputations around the world. People visited us from Russia, Japan, and other

places, just to see what it was like. And this was before the days of common personal com-

puters. Now everyone has a personal computer, so it’s not an issue anymore, but in those

days it was a very interesting issue that we allowed students, any student, to do any com-

puting, anytime they wanted, without prior permission. That was novel in those days.

That gave Dartmouth a reputation that lasted 10 or 15 years and was to its advantage in

terms of fundraising, attracting students, and recruiting faculty.

The other success was that many students who went to Dartmouth and learned how to do

computing were able to build extraordinary careers out of the fact that they knew how to

do it. These were people not in the computing center of the corporations; they were work-

ing in other departments. There are quite a few Dartmouth students that became million-

aires just because they knew how to use a computer!

That’s the main measure of our success.

What should young people learn from your experience?

Tom: They should be aware of the eventual users of the software, the people that are

going to use their software. Many of the applications that we use these days are really very

hard to use.

I know that a number of years ago, people at Microsoft tried to introduce the idea of user

friendliness through a program called “Bob” or something like that, but they didn’t under-

stand it; they thought that “user friendly” meant “patronizing,” as if you are talking to a

child. That’s not what user friendly means.

Download at Boykma.Com

98 C H A P T E R F I V E

I am afraid that the industry at large doesn’t know what user friendly means. I don’t know

if people doing computer science these days would even understand what the words

mean.

My advice is to be concerned about the people who are going to use your software.

Should we build an interface that is easy to learn like BASIC was easy to learn?

Tom: Yes, easy to learn, simple to describe in a manual of some sort, and which does

more or less what you expect it to do when you use it, so there are no surprises.

You also said that you’re always more productive when you work alone, and I want to

understand what you mean by productive there.

Tom: I mean in very simple terms. I think there’s a lot of evidence that supports that. I

have never worked on a programming team in my life. I’ve always said, “OK, this needs to

be done, I’m going to write a program for it.” Everything I’ve written has been capable of

being managed by me, a single programmer.

I’ve used stuff that other people have written but I’ve never been part of a development

team. I’ve written, oh, I don’t know how many lines of programs, but I’ve got several

things out there that I’m still using that are 10,000 lines long. They’re easy to write.

They’re easy to debug. If you find a feature that you don’t like, it’s easy to change—and

you don’t have to write memos if you’re working by yourself. I don’t mind doing the doc-

umentation, either, if it has documentation. Most of my stuff doesn’t because it’s for my

own use, but I’m a believer in everything that Fred Brooks ever wrote about programming

in his book The Mythical Man-Month.

I like the one he says about estimating how long it takes to write a program. A program-

mer writes three lines of documented code per day or something like that, and they dis-

covered that their applications were just taking too long. They couldn’t figure out what was

wrong with them. Then they discovered the reason was programmers only work 20 hours a

week. They’re in the factory for 40 hours, but 20 hours are spent doing nonproductive

things, going to staff meetings.

That’s the thing I hate the most: staff meetings. Sometimes they’re absolutely necessary. I

remember when the original BASIC was being developed for the GE225, GE235 comput-

ers. The student programmers would meet for a weekly meeting of about one hour. John

Kemeny would chair that meeting, and as he liked to say, he made all of the unimportant

decisions, like who is favored in the scheduling algorithm and so forth and so on, but the

students made all the important decisions, like which bit is used for what purpose.

We had a two-machine environment in those days, and so there was one student on each

machine. They were sophomores, and so they had to work together, they had to commu-

nicate. By and large they did their own work. Anytime we were writing a compiler or an

editor, that was a single-person job.

Download at Boykma.Com

B A S I C 99

You made this comment in the context of the discussion about the student who wrote a

PL/1 compiler, and the first time he ran it, it worked.

Tom: That’s Phil Koch, and he’s an Apple fellow. He’s retired from Apple now, living in

Maine. He was an astonishing programmer. It took him a long time and he read code

religiously.

If there is one lesson you’d like people to learn from your vast and varied experiences

over the years, what is that?

Tom: Make it easy for your users to use your software.

You can say user friendly if you want, but part of that is that the industry has defined user

friendly to be, in my view, condescending. The real issue on user friendliness is to have

reasonable defaults in whatever application you’re doing, so the person who’s just come

to it fresh doesn’t have to learn about all of the variations and degrees of freedom that are

possible. He or she can just sit down and start to do it. Then if they want to do something

different, make it relatively easy to get at that.

In order to do that, you have to have some sort of an idea of what your user base is going

to be.

I’ve used Microsoft Word frequently, but by my standards, it’s not user friendly at all.

Then Microsoft came out with that Bob thing about 10 years ago, and that was the wrong

idea. They didn’t understand what user friendly really means.

Some applications, I think, are user friendly, but the big thing now is website design. Peo-

ple that design websites, sometimes they do a good job and sometimes they don’t do a

good job. If you go to a website and you can’t figure out what to do to get more informa-

tion, that’s a lousy design.

That stuff’s hard to teach.

Ben Shniederman, a specialist in human factors in computer science at the University of

Maryland, actually did some studies* that suggested that what we had chosen in BASIC for

our structures for DO, LOOP, and IF were easier in the sense of user friendliness than

some of the other structures that were using the other languages, like the semicolon in

Algol or Pascal to end a sentence.

People normally don’t use semicolons to end sentences, so that’s something that you have

to learn specifically. I remember in FORTRAN, for example, there were places where a

comma is needed and places where a comma isn’t needed. As a result, there was a bug in

a program down at the space station in Florida where they lost a rocket because there was

a missing comma. I think Ed Tufte actually documented that. Try to stay away from stuff

that’s possibly ambiguous.

* Shneiderman, B. “When children learn programming: Antecedents, concepts, and outcomes,” The

Computing Teacher, volume 5: 14–17 (1985).

Download at Boykma.Com

100 C H A P T E R F I V E

I keep saying to the world at large, Kemeny and I failed because we didn’t make other

people’s computers user friendly, but we did a good job with our own students because for

20 or so years, our students were going out and getting very cushy jobs in the industry

because they knew how to do things.

That is a good type of success to have.

Tom: If you’re a teacher, that’s really the main thing.

Download at Boykma.Com

101

Chapter 6 C H A P T E R S I X

AWK
Alfred Aho, Peter Weinberger, and Brian Kernighan

The Unix philosophy of many small tools, powerful in their combination, is evident

in the AWK programming language. Its inventors (Al Aho, Peter Weinberger, and

Brian Kernighan) describe it as a language for syntax-driven pattern matching. Its

straightforward syntax and clever selection of useful features make it easy to slice

and dice text through one-liners without having to understand parsers and gram-

mars and finite automata. Though its inspiration has spread to general-purpose

languages such as Perl, any modern Unix box still has AWK installed and quietly,

effectively, working away.

Download at Boykma.Com

102 C H A P T E R S I X

The Life of Algorithms

How do you define AWK?

Al Aho: I would say AWK is an easy-to-learn and easy-to-use scripting language that

excels at routine data-processing applications.

What was your role in the development of AWK?

Al: I was doing research into efficient parsing and string pattern matching algorithms in

the 1970s. Brian Kernighan and I had been talking about generalizations of grep to be able

to do more general pattern matching and text processing for many data-processing appli-

cations we had in mind. Peter Weinberger came along and expressed great interest in this

project, so we quickly implemented the first version of AWK in 1977.

The language then evolved considerably for a few years as a number of our colleagues started

to use it for a large variety of data-processing tasks, many of which we had not anticipated.

In what context is AWK most appropriate?

Al: I think AWK is still unbeatable for simple routine data-processing applications. Our

AWK book has dozens of practical examples of where a one- or two-line AWK program

can do what would take dozens or hundreds of C or Java lines to implement.

What should people keep in mind when designing software written in AWK?

Al: AWK is a scripting language that was designed for writing short programs for common

data-processing applications. We didn’t intend it to be used to program large applications,

but we often found people were doing this because the language was so easy to use. For

large applications I’d recommend the usual good software engineering practices: good

modularization, good variable names, good comments, and so forth. These practices are

also good for short programs.

How does the availability of hardware resources affect the mindset of programmers?

Al: It’s certainly true that fast hardware, plenty of memory, and good IDEs have made pro-

gramming more enjoyable. Also, programs can be applied to much larger datasets than ever

before in the past. I now routinely run AWK programs on inputs that are several orders of

magnitude larger than in the past, so fast hardware has made me more productive as a user.

However, there is a tradeoff: improvements in hardware have led to explosions in the size

and complexity of software systems. Software does become more useful as hardware

improves, but it also becomes more complex—I don’t know which side is winning.

When you developed the algorithms behind AWK, how did you estimate the size of data

with which your code would work?

Al: Whenever possible, we implemented algorithms that were linear in time, in either the

worst case or the average case. This way AWK could gracefully scale to handle larger and

larger inputs.

Download at Boykma.Com

A W K 103

We tested AWK on various sizes of datasets to measure how performance would scale as

the size of the input grew. We tried to make our implementation as efficient as we knew

how, using real data to test how well we were doing.

Did you consider how the size of data would grow in the future?

Al: When we designed AWK, I thought a megabyte dataset was huge. If we consider the

exabytes of data now available on the Internet, we were many orders of magnitude off in

what’s now considered a large dataset. Of course, even a linear-time scan of a terabyte of data

is far too slow, so a whole new approach is necessary to process relevant data on the Internet.

I’ve heard AWK described as a “pattern-matching language suitable for simple data-

processing tasks.” Considering that AWK was created more than 30 years ago, what has

changed since then in pattern matching?

Al: The scale and diversity of pattern matching has exploded in the past 30 years. The

parameters of the problems have broadened significantly; the patterns have become more

complex and the size of the datasets has vastly increased. Today we routinely use search

engines to look for textual patterns in all of the web pages on the Internet. We are also

interested in data mining—looking for patterns of all kinds in huge digital libraries such as

genomic databases and scientific archives. It is fair to say that string pattern matching is

one of the most fundamental applications in computer science.

Are there better pattern-matching algorithms and implementations of them today?

Al: Pattern matching in AWK was done using a fast, compact, lazy state-transition con-

struction algorithm to build from a regular expression the transitions of a deterministic

finite automaton needed to do the pattern matching. The algorithm is documented in the

Red Dragon book.* The running time of the algorithm is basically linear in the length of

the regular expression and in the size of the input text. This is the best known expected

running time for regular expressions. We could have implemented a Boyer-Moore algo-

rithm or an Aho-Corasick algorithm for the special cases when a regular expression is a

single keyword or a finite set of keywords. We did not do this since we did not know the

characteristics of regular expressions that people would use in AWK programs.

I might mention that there is a dark side to using complex algorithms in software systems.

The algorithms may not be understandable by others (or even the original author, after a

long passage of time). I had incorporated some sophisticated regular expression pattern-

matching technology into AWK. Although it is documented in the Red Dragon book, Brian

Kernighan once took took a look at the pattern-matching module that I had written and his

only addition to that module was putting a comment in ancient Italian: “abandon all hope, ye

who enter here.”† As a consequence, neither Kernighan or Weinberger would touch that

part of the code. I was the one that always had to make the bug fixes to that module!

* Aho, Alfred V. et al. Compilers: Principles, Techniques, and Tools (Addison-Wesley, 1986).

† Lasciate ogne speranza, voi ch’intrate is the inscription on the gate of Hell in Canto III, Inferno, The

Divine Comedy, by Dante Alighieri.

Download at Boykma.Com

104 C H A P T E R S I X

Language Design

Do you have any advice for designers of programming languages?

Al: Always keep your users in mind. Having others say they used your tool to solve a

problem is very rewarding. It’s also satisfying having others build on your work to create

more powerful tools.

How did Kernighan and Weinberger think about language design?

Al: If I had to choose a word to describe our centering forces in language design, I’d say

Kernighan emphasized ease of learning; Weinberger, soundness of implementation; and I,

utility. I think AWK has all three of these properties.

How do you make design decisions with utility in mind? How does that affect the way you

think about design?

Al: I don’t know whether it’s conscious or unconscious, but certainly the things that sur-

vive are things that are useful. It reinforces the notion of Darwinism. You create notions

and dictions that are useful for solving problems that you’re interested in, but if they’re

not good at solving the problems that others are interested in, they wither away. It’s sur-

vival of the fittest ideas that create utility. We don’t keep languages that aren’t useful.

Unless we’re art historians, there’s a dichotomy between a program that is beautiful or a

program that is functional.

Al: Can’t you have both?

People seem to want to draw the line there. The question is whether programming is a

creative endeavor, whether it’s art or craft.

Al: Knuth of course was very interested in programming as an art. He thought that pro-

grams should be beautiful. Almost all of the programmers that I know feel that there

should be elegance in the programs that you write.

A craftsman woodworker might say, “Here’s a chair. You can sit on it or you can stand on

it. You can stack phone books on it, but look at the elegant design, look at the wonderful

joints, look at the wonderful carvings.” There’s artistry, even if it’s a functional tool.

Al: But there can also be beauty in minimalism, so we don’t need all sorts of ornamenta-

tion or rococo architecture to make things beautiful.

How can someone become a better programmer?

Al: My number one suggestion is to think before you program. Then I would advocate

writing lots of code, having experts critique your code, reading good code written by

others, and participating in code reviews. If you’re really brave, you could try to teach stu-

dents to write good code.

Download at Boykma.Com

A W K 105

I have found that there’s no better way to learn a subject than teaching it to others. In the

process of teaching, you have to organize the material and the presentation in such a

manner that the subject becomes clear to others. When you’re doing this in a classroom

setting, students will ask you questions that will expose different ways of thinking about

the problems than you had initially thought about. Your insights deepen and become far

sharper than they used to be.

This is certainly true about programming. If you are teaching programming, students will

ask, “Couldn’t we solve it this way, couldn’t we solve it that way?” Then you realize, “Yes,

there are many ways to solve that problem with a program.” You recognize that people

think very differently, and because they think differently, they have different approaches

to solving problems, and through that, you get a much better appreciation for different

approaches to solving the problem.

I have certainly found that in every book that I have written with programs in it, the pro-

grams have gotten more efficient and shorter with the writing of the book. During the

year we wrote the AWK book, many of the programs in it became 50% shorter. This is

because we learned how to use the abstractions in AWK even more effectively than we

initially had thought.

Did you find deficiencies in the design of AWK when you wrote the book?

Al: When people started using AWK for many other tasks than we initially thought, it

exposed certain aspects of the language where we hadn’t intended it to be a general-

purpose programming language. I wouldn’t call these “deficiencies,” but it showed that

AWK was a specialized language that was not intended for some of the applications that

people were trying to use it for.

Were you able to address some of those, or did you strongly resist making AWK more

general purpose?

Al: After the initial version of AWK was created, the language evolved for about a decade

with the addition of new constructs and new operators, but it stayed a pattern-action lan-

guage, a language that was intended for solving data-processing problems. We didn’t take

it out of that domain.

How do you make the idea of syntax-driven transformations accessible to users who

might not know very much or anything at all about finite-state machines and push-down

automata?

Al: Certainly as a user of AWK, you don’t need to know about these concepts. On the

other hand, if you’re into language design and implementation, knowledge of finite-state

machines and context-free grammars is essential.

Download at Boykma.Com

106 C H A P T E R S I X

Should a user of lex or yacc understand the context-free grammar even if the programs

they produce don’t require their users to understand them?

Al: Most users of lex can use lex without understanding what a finite-state machine is. A

user of yacc is really writing a context-free grammar, so from that perspective, the user of

yacc certainly gets to appreciate grammars, but the user doesn’t have to become a formal

language theorist to use yacc.

Otherwise you suffer through pages of pages of shift/reduce conflict errors.

Al: One useful aspect of yacc is that since it automates the construction of a deterministic

parser from a grammar, it informs programming language designers about constructs in

their language that are ambiguous or difficult to parse. Without the tool, they might not

have noticed these infelicitous constructs. With yacc, language designers often said, “Oh, I

didn’t realize that there were two ways to interpret this grammatical construct!” Then

they eliminated or modified the questionable construct. Ambiguities in precedence and

associativity were easily resolved by simple mechanisms that specified “I’d like to have this

order of precedence for the operators in the language, and this order of associativity.”

How do you build a debugging-friendly language? When designing a language, how do

you think about features you need to add or remove to aid the debugging phase?

Al: The trend in programming language design has been to create languages that enhance

software reliability and programmer productivity. What we should do is develop lan-

guages alongside sound software-engineering practices so that the task of developing reli-

able programs is distributed throughout the software lifecycle, especially into the early

phases of systems design.

Systems cannot be developed assuming that human beings will be able to write millions of

lines of code without making mistakes, and debugging alone is not an efficient way to

develop reliable systems. Regularity of syntax and semantics is a good way to eliminate

accidental errors.

Unix and Its Culture

Early Unix culture seemed to promote the idea that when you have a problem, you write

a little compiler or a little language to solve it. At what point do you decide it’s the right

approach to create a language to solve a specific problem instead of a program in

another language?

Al: There are thousands and thousands of programming languages in the world today,

and one can ask why these languages arose. Virtually every area of human endeavor has

its own jargon. Musicians have a special notation for writing music; lawyers use jargon to

talk about the law; chemists have special diagrams for describing atoms and molecules and

how they get combined. It’s not unnatural for people to say, “Let’s create a language

around these notations for solving problems arising in a given area.”

Download at Boykma.Com

A W K 107

You can use a general-purpose programming language to express any algorithm, but on

the other hand, it’s often more convenient, more economical, and perhaps even more

suggestive of solutions to have a specialized language to solve a specific class of problems.

It becomes a judgment call when to create a new language, but if the area is of interest

and there are special dictions that are amenable to automation, then it’s only natural that

a programming language would arise for expressing solutions to problems in a given area.

Economical in terms of programmer investment or hardware time?

Al: Languages, at least in the early days, came about because people recognized certain

important classes of problems that they needed to solve, and then they devised hardware-

efficient programming languages to create programs for solving problems in those areas.

As hardware has become cheaper and faster, languages have tended to become higher-

level and hardware efficiency less relevant.

Did you consider AWK strong enough in its niche on its own?

Al: The pattern-action paradigm that’s embedded in AWK is very natural for solving large

classes of commonly occurring data-processing problems. Changing this paradigm would

vitiate the language and not make it as appealing for the class of problems that we had in

mind. The language is also very useful for Unix command-line programming.

That sounds like the Unix philosophy of combining many small tools that are each very

good at what they do.

Al: I think that’s a very apt description.

Most of the places I’ve seen AWK are command lines or shell scripts.

Al: Applications where you can compose problems on the command line, or create shell

scripts that are a combination of Unix commands, are very popular AWK programs. This

style of problem solving epitomized early AWK applications on Unix, and even many Unix

applications today.

In Unix, “everything is a file.” Do you have a vision of what might be considered the “file”

of the Internet?

Al: Files are a nice simple abstraction that should be used wherever they are appropriate.

The Internet of today, however, has become much richer in data types and programs often

have to deal with streams of concurrent interactive multimedia data. Today the best solu-

tion seems to be to use standardized, well-defined APIs for dealing with data, and security

programs need to be concerned with how to react properly to ill-formed data.

What limits do you see in command-line tools and in graphical interfaces?

Al: AWK is very useful for converting the output format of one program so that it can be

used as input to another. If a graphical interface has preprogrammed this kind of data con-

version as a mouse-click, then that is clearly more convenient. If it hasn’t, then it may be

very difficult to get at the internal formats to do the needed data conversions.

Download at Boykma.Com

108 C H A P T E R S I X

Is there a connection between that idea of composing programs together from the

command line through pipes and the idea of writing little languages, each for a specific

domain?

Al: I think there’s a connection. Certainly in the early days of Unix, pipes facilitated func-

tion composition on the command line. You could take an input, perform some transfor-

mation on it, and then pipe the output into another program. This provided a very

powerful way of quickly creating new functionality with simple compositions of programs.

People started thinking how to solve problems along these lines. Larry Wall’s language

Perl, which I think of as a descendant of AWK and other Unix tools, combined many

aspects of this kind of program composition into a single language.

When you say “function composition,” that brings to mind the mathematical approach of

function composition.

Al: That’s exactly what I mean.

Was that mathematical formalism in mind at the invention of the pipe, or was that a

metaphor added later when someone realized it worked the same way?

Al: I think it was right there from the start. Doug McIlroy, at least in my book, deserves the

credit for pipes. He thought like a mathematician and I think he had this connection right

from the start. I think of the Unix command line as a prototypical functional language.

To what degree is formalizing the semantics and ideas of a language useful? Is there an

underlying formalism in AWK?

Al: AWK was designed around a syntax-directed translation scheme. I was very interested

in compilers and compiler theory, so when we created AWK, the implementation was

done as a syntax-directed translation. We had a formal syntax for AWK in the form of a

context-free grammar, and the translation from the source language to the target lan-

guage was done in terms of semantic actions based on that formal grammar. This facili-

tated the growth and development of AWK. We had at our disposal the newly created

compiler construction tools, lex and yacc, which greatly aided experimentation with and

development of the language.

Simon Peyton Jones from Haskell said that they had formalisms for 80/85% of the

language, but beyond that it just wasn’t worth their time to formalize the rest because of

diminishing returns.

Al: Because of security, specificity is becoming a much more important issue in language

and systems design. Hackers often exploit the unusual or unspecified parts of a system to

compromise security.

Download at Boykma.Com

A W K 109

Add into that the problem of library design, and suddenly the problem gets even larger.

“I’ve specified the formalisms of my language, but now I need a library to interact with

the Internet; have I quantified the formalisms of that library? Do they fit the formalisms?

Do they violate the formalisms and guarantees of the language?”

Al: Having worked in the telecommunications industry, I noticed virtually all of the inter-

face specifications for which Bell Labs constructed equipment conformed to an interna-

tional standard. Having said this, many of the standards were written in English and so

they were often ambiguous, incomplete, and inconsistent. But in spite of these difficulties,

the international telecommunications network and Internet interoperate and work well

largely due to well-defined interfaces between systems.

Third parties often create device drivers and applications for other vendors’ operating sys-

tems. If a device driver or application is buggy, the systems vendor gets a bad rap for poor

software quality when it isn’t their fault. Recently, the research community has made

great strides in building software verification tools using model checking and other power-

ful verification techniques that can check to make sure that programs written by device-

driver vendors and other application developers use systems APIs correctly. These new

software verification tools are having a pronounced benefit on software quality.

Would languages benefit from this formalism?

Al: Almost every language today admits of some kind of formal grammatical description. The

big problem is how completely we are able to, or willing to, describe the semantics of the lan-

guage using the current formalisms for describing programming language semantics. The

semantic formalisms are not nearly as mechanizable as constructing a parser from a context-

free grammar. Even though describing semantics is tedious, I’m a big believer in the benefits

of planning and describing and outlining the semantics of a language before implementing it.

I think of two stories: the canonical story about Make, where Stuart Feldman decided he

couldn’t remove tabs because he already had 12 users, as well as Dick Gabriel’s “Worse Is

Better” paper,* where he described the New Jersey approach and the MIT approach. Unix

and C and the New Jersey approach won.

Al: I’ve always expressed that as the success of Darwinism. I believe that successful lan-

guages grow and evolve based on usage by real programmers. Languages that need a pon-

derous committee for their initial design are by-and-large ignored by programmers. Unless

their use is mandated, they don’t seem to survive.

One perhaps alarming aspect of popular languages is that they are relentlessly becoming

bigger. We don’t know how to take features out of existing languages. The major lan-

guages of today, such C++ and Java, are much much bigger now than when they were ini-

tially created, and there seems to be no abatement in sight for the future sizes of these

languages. No single individual can really understand all of the language any more and

the compilers for these languages are measured in millions of lines of code.

* http://www.dreamsongs.com/WorseIsBetter.html

Download at Boykma.Com

http://www.dreamsongs.com/WorseIsBetter.html

110 C H A P T E R S I X

That seems to be an open question in systems research: how do you make a language that

is extensible beyond its initial problem domain without necessarily having to modify the

language itself? Do you have an extension mechanism?

Al: Libraries are the time-honored approach to doing that.

Even C++ and Java have upcoming language changes.

Al: That’s true. Even the core languages are growing, but there is a centering force to keep

the core language compatible with the past, so you don’t break existing programs. That

stops unmitigated evolution of these language.

Is that necessarily a good thing in and of itself?

Al: Certainly being able to run programs from the past is very desirable. At one time I wrote

an article for Science Magazine entitled “Software and the Future of Programming Languages.”

In it I tried to estimate how much software the world uses to run its affairs, taking into

account all distinct software systems used by organizations and people around the world.

I estimated between a half a trillion and a trillion source lines of software. Assuming it

costs $10 to $100 to create a finished line of software, I concluded that we simply cannot

afford to reprogram a substantial portion of the legacy base. What this means is that the

existing languages and systems will continue to be with us for a long period of time. In

many ways hardware is more portable than software, because we always want to create

faster hardware that’ll run the old programs.

With Unix, you had an operating system that was suddenly very portable. Was that

because they could port it, or because they had a desire to migrate existing software to

different hardware platforms as they changed?

Al: As Unix evolved, computers evolved even faster. One of the big developments in Unix

occurred when Dennis Ritchie created the C language to build the third version of Unix. This

made Unix portable. In a relatively few years when I was at Bell Labs, we had Unix running

on everything from minicomputers to the world’s biggest supercomputers because it had

been written in C, and we had portable compiler technology, which could be used to

make C compilers quickly for new machines.

A strong focus of Unix was to create a system that would facilitate software development,

one that programmers liked and would be willing to use to develop new programs. I think

it was eminently successful at that.

Most of the best tools and most of the best software written do that.

Al: It’s an interesting question: are the best toolmakers the artisans or the toolsmiths? I

don’t think there’s a clear-cut answer to this, but certainly in the early days of Unix, many

of the most useful tools were created by programmers who had devised innovative tools to

to solve problems that they were interested in. This was one of the reasons why AWK was

born. Brian, Peter, and I had certain classes of application programs we wanted to write,

but we wanted to write them with really short programs.

Download at Boykma.Com

A W K 111

Did the presence of tools and the rapidity of practical feedback push people to research

better tools and better algorithms?

Al: If you look at the early history of Unix and my early research career, I was very strongly

motivated by Knuth’s statement that the best theory is motivated by practice, and the best

practice by theory. I wrote dozens of papers looking at how to make parsing more efficient

and being able to parse constructs that appear in real programming languages in a convenient

and efficient way. Steve Johnson, Jeff Ullman, and I collaborated very closely in the develop-

ment of this theory and of yacc, so yacc was a great marriage of theory and practice.

The Role of Documentation

When I write documentation, or a tutorial or paper, for a piece of software I’ve written, I

often find places where the design is difficult or embarrassing to explain, and that leads

me to refine the program. Do you find something similar?

Al: Very much so. My experience with AWK had a profound impact on how I teach the

programming languages and compilers course at Columbia. As part of the course there is a

semester-long project in which students work in teams of five to create their own little

language and build a compiler for it.

In the 20 years or so that I’ve been teaching the compilers course, never has a team failed

to deliver a working compiler by the end of the semester. This success has not come about

by accident but by my experiences working on AWK, seeing how software development

was done at Bell Labs, recognizing the importance of a lightweight software engineering

process for a project of this kind, and listening to my students.

The software engineering process that accompanies the compiler project is vital to the suc-

cess of creating a new language and building a working compiler for it in 15 weeks. Stu-

dents get two weeks to decide whether they want to take the course. After two weeks the

students form teams, and after another two weeks they have to write a short white paper

(patterned after the Java white paper) describing the language they want to create. The

white paper really a value-proposition for the language stating why their language is

needed and what properties it should have. The most important aspect of the white paper

is that it forces the students to quickly decide what kind of language they want to create.

After a month, the students write a language tutorial and a language reference manual.

The tutorial is patterned after Chapter 1 of Kernighan and Ritchie’s The C Programming

Language [Prentice-Hall], and the reference manual is patterned after Appendix A of the

same book. I critique both the tutorial and the language reference manual very carefully

because at this point the students don’t realize how hard it is to create a working compiler

even for a small language.

I ask the students to state what features they guarantee to implement and what features

they will implement if they have extra time. (Never have the students implemented any of

the extra features.) The purpose of this exercise is to define the scope the project so that it

can be done in the course of a semester and is equivalent in effort to the other projects.

Download at Boykma.Com

112 C H A P T E R S I X

As soon as the teams are formed, the students elect for their team a project manager, a

systems architect, a systems integrator, a verification person, and a language guru. Each of

these people play a critical role in creating and delivering a working compiler.

The project manager’s responsibility is to create and enforce a timeline for the deliverables

of the project. The system architect creates the block diagram for the compiler and the sys-

tems integrator defines the tools and development environment that will be used to create

the compiler. As soon as the language reference manual gets written, the verification per-

son creates a test plan and test suite for the entire language. The language guru makes

sure the properties defined in the white paper for the language actually get implemented.

We created a regression test suite for AWK, perhaps a little belatedly. Our test suite was

invaluable. As we developed the language, we always ran the regression test suite before

submitting our deltas to the master directory. In this way we always had a working ver-

sion of the compiler at all times. Before we added new features to the language, we cre-

ated and added the tests for the features to the regression test suite.

I mentioned that no student team has ever failed to deliver a working compiler at the end

of the semester. The regression test suite is key to achieving this goal: the students deliver

at the end of the semester what they have working at that time. But the working compiler

needs to implement the language features promised in the language reference manual.

The systems architect produces a block diagram for the compiler, what the interface speci-

fications are, and who is going to implement which component by when. Every member

of the team has to produce at least 500 lines of original source code for the project, and

everybody, including the project manager, has to do some implementation. It’s very salu-

brious (and challenging) for students to create programs that have to interface with other

people’s code.

The system integrator has to specify the platform on which the compiler will be built, and

what tools like lex, yacc, ANTLR, or their equivalents are going to be used. He also has to

learn how to use the tools and teach the rest of the team about their proper use, so that

there is a tools person resource on every team.

The language guru has the most interesting job. He is responsible for the intellectual integ-

rity of the language, so that the properties that were stated in the language white paper

actually get implemented. He needs to baseline design and coding changes so that if the

team makes a change to the language design, these changes get recorded and disseminated

to the entire team and the regression test suite.

Through the project students learn three important skills: project management, teamwork,

and communication, both oral and written. At the end of the course, I ask the students

what is the most important thing they have learned during the course. Frequently they

cite one or another of these skills. Documentation drives the project and students get lots

of practice writing and talking about software. The students have to give an in-class pre-

sentation on their language, the primary goal of which is to convince their fellow students

that everybody in the world should use their language. I rehearse with the first team on

Download at Boykma.Com

A W K 113

how to give a successful presentation. Subsequent teams always try to outdo the first team

in their presentations because the students are so enthusiastic about their languages. The

languages created have ranged from simulating quantum computers to composing music,

to producing comics, to simulating civilizations, to doing fast matrix computations, to gen-

erating graphics.

At the end of the course the students have to deliver a final project report, which has as

chapters: the language white paper, the language tutorial, the language reference manual,

a chapter written by the project manager on how the project was managed, a chapter by

the system architect giving the block diagram and interface specifications, a chapter by the

systems integrator describing the development platform and tools, a chapter by the verifi-

cation person with the test plan and test suites, and then a chapter by the language guru

talking about language-baselining process. The final chapter is entitled “Lessons Learned”

and answers the questions “What did you learn as a team? What did you learn as an indi-

vidual? If I were to offer the course again next year, what things would you suggest I keep

the same; what things would you suggest I change?” An appendix contains the code list-

ing, with the authors signing each module that they wrote.

If you make something better over a long period of time, it usually becomes pretty good.

I’ve heeded the advice students have given me, and a few years ago I received the Great

Teacher Award from the Society of Columbia Graduates for this course.

Many recruiters interviewing students who have taken this course have said they wished

their software systems were developed with this kind of process.

Which grade level are the students in this class?

Al: They’re mostly seniors and first-year graduate students, but there are a lot of prerequi-

sites for this course: advanced programming, computer science theory, and data structures

and algorithms. What impresses me about the students is that they end up doing distrib-

uted software development, so they’re using things like wikis and advanced IDEs. Many of

the students have interned in industry.

One thing I strongly emphasize is for the students to keep the regression test suite up to

date as the language evolves. The regression test suite makes the students much more pro-

ductive, because the bugs they find tend to be their own, rather than those of some other

person on the team.

When and how should debugging be taught?

Al: I think debugging should be taught along with programming. Brian in his various

books has sound pragmatic advice on debugging. However, I don’t know of any good

general theory for debugging. The techniques one would use to debug a compiler are very

different from those used to debug a numerical analysis program, so maybe the best approach

is to stress examples of unit tests, systematic testing processes, and use of debugging tools, as

part of every programming course. I also think it is salubrious to get students to write specifi-

cations for what their programs are supposed to do before they write the program.

Download at Boykma.Com

114 C H A P T E R S I X

One of the mistakes we made with AWK is that we didn’t institute rigorous testing right

from the start. We did start rigorous testing after the project began, but in hindsight we

would have been much more productive had we created and evolved the rigorous test

suites right from the beginning.

What factors should developers measure during the evolution of a codebase and in what

way?

Al: The correctness of the implementation is the most important concern, but there is no

royal road to correctness. It involves diverse tasks such as thinking of invariants, testing,

and code reviews. Optimization should be done, but not prematurely. Keeping the docu-

mentation and comments consonant with the code is important, but all too easy to

neglect. A modern IDE with good software development tools is a must.

How do you resume a programming session when you haven’t touched it in a few days?

After several months?

Al: When one is writing a programming system (or a book, for that matter), one needs to

keep the entire system paged in one’s mind. Interruptions break one’s chain of thought

but if the interruption is short, one can usually page in the system after some code review.

After an interruption of months or years, I frequently find myself referring to papers,

books, or notes in which I have documented my algorithms to refresh my memory of

what I previously coded.

I guess what I am saying is that good comments and documentation are a great benefit to

the original system designers as well as others who have to maintain the code for long

periods of time. Brian maintained a log of major decisions we made as we designed the

language. I found his log invaluable.

Computer Science

What constitutes research in computer science?

Al: This is a wonderful question, and one that does not have a well-defined answer. I think

computer science research has broadened enormously in its scope. We still have the deep,

unsolved, quintessential questions of computer science: how do we prove that a problem like

factoring or an NP-complete problem is actually hard; how do we model complex systems

like a human cell or the human brain; how can we construct scalable, trustworthy systems;

how can programmers build arbitrarily reliable software; how can we make software with

human-friendly characteristics like emotion or intelligence; how far can we extend Moore’s

Law?

Today, the scale and scope of computing has exploded. We are trying to organize and

access all of the world’s information, and computers and computation are affecting all

areas of daily life. As a consequence, whole new areas of computer science research have

emerged in interdisciplinary applications combining computation with other areas of sci-

ence and human endeavor. Examples of these new areas include fields like computational

biology, robotics, cyberphysical systems. We don’t know how best to deploy computers in

Download at Boykma.Com

A W K 115

education or health. Privacy and security have become more important than ever. I

believe computer science is as exciting a research field as any.

What is the role of math in computer science and programming?

Al: I think the best engineering is done on top of a solid scientific foundation. With AWK

we designed the language around a number of elegant abstractions rooted in computer

science theory, such as regular expressions and associative arrays. These constructs were

subsequently adopted by the major scripting languages: Perl, JavaScript, Python, and

Ruby. We also used efficient algorithms based on finite automata to implement the string-

matching primitives. All in all, I think AWK was a nice marriage of good theory and sound

engineering practice.

You worked on automata theory and its applications to programming languages. What

surprised you the most when you started implementing the results of your studies?

Al: Perhaps the greatest surprise has been its broad applicability. Let me interpret autom-

ata theory as formal languages and the automata that recognize them. Automata theory

provides useful notations, particularly regular expressions and context-free grammars, for

describing the important syntactic features of programming languages. The automata that

recognize these formal languages, such as finite-state machines and push-down automata,

can serve as models for the algorithms used by compilers to scan and parse programs. Per-

haps the greatest benefit of automata theory to compiling comes from being able to build

compiler-construction tools such as lex and yacc that automate the construction of effi-

cient scanners and parsers based on these automata.

What is preventing us from building a compiler (and/or a language) that identify all

potential bugs? Where is the line between the bugs linked to a wrong design of the

program and the bugs that could have been spotted or prevented if the language were

more proactive?

Al: Undecidability makes it impossible to design a compiler that will find all the bugs in

programs. We have, however, made great strides in creating useful software verification

tools employing powerful techniques like model checking to find important classes of bugs

in programs. I think the software development environment of the future will have a large

variety of verification tools that a programmer can harness to pinpoint many common

causes of bugs in programs.

My long-term vision is that through the use of stronger languages, more powerful verifi-

cation tools, and better software-engineering practices, software will improve in reliability

and quality.

How can we design pattern-matching algorithms that take advantage of concurrency in

multicore hardware?

Al: This is currently an active research area. Many researchers are exploring parallel hard-

ware and software implementations of pattern-matching algorithms like the Aho-Corasick

algorithm or finite-state algorithms. Some of the strong motivators are genomic analyses

and intrusion detection systems.

Download at Boykma.Com

116 C H A P T E R S I X

What motivated you and Corasick to develop the Aho-Corasick algorithm?

Al: The origin has a very interesting story behind it. I was working on the book The Design

and Analysis of Computer Algorithms [Addison-Wesley] with John Hopcroft and Jeffrey Ullman

back in the early 70s. I was giving a lecture at Bell Labs on algorithm design techniques.

Margaret Corasick from Bell Labs’s technical information libraries was in the audience. At

the end of my lecture she came to me saying she had written a bibliographic search pro-

gram for Boolean functions of keywords and phrases. However, on some complex

searches, running the program could exceed the $600 limit for searches.

Her initial implementation of the search program used a straightforward pattern-matching

algorithm. I suggested that she might look for the keywords in parallel using a finite

automaton, and that there was a way of efficiently constructing the pattern-matching

automaton in linear time from any set of keywords.

She reappeared in my office a few weeks later and said, “Remember that $600 program

search? I’ve implemented the algorithm you suggested. That search now costs $25. In fact,

every search now costs $25; this is the cost of reading the tape.” This was the birth of the

Aho-Corasick algorithm.

On learning this, my lab director, Sam Morgan said, “Why don’t you keep working on

algorithms? I think they’ll be useful sometime in the future.” That was the magic of Bell

Labs at the time: there were people with problems and people with unconventional ways

of thinking about those problems. When you brought these people together, amazing

inventions would result.

Breeding Little Languages

What hooked you on programming?

Brian Kernighan: I don’t really recall any specific event. I didn’t even see my first com-

puter until I was about a junior in college, and I didn’t really learn to program (in FOR-

TRAN) until a year or so after that. I think that the most fun I had programming was a

summer job at Project MAC at MIT in the summer of 1966, where I worked on a program

that created a job tape for the brand new GE 645 in the earliest days of Multics. I was writ-

ing in MAD, which was much easier and more pleasant than the FORTRAN and COBOL

that I had written earlier, and I was using CTSS, the first time-sharing system, which was

infinitely easier and more pleasant than punch cards. That was the point where the puzzle-

solving aspects of programming became really enjoyable, because the mechanical details

didn’t get in the way nearly so much.

How do you learn a new language?

Brian: I find it easiest to learn a new language from well-chosen examples that do some

task that’s close to what I want to do. I copy an example, adapt it to what I need, then

Download at Boykma.Com

A W K 117

expand my knowledge as the specific application drives it. I poke around in enough differ-

ent languages that after a while they start to blur, and it takes a while to shift gears when

I shift from one to another, especially if they are not ones like C that I learned long ago.

It’s good to have good compilers that complain about suspicious constructions as well as

illegal ones; languages with strong type systems like C++ and Java are helpful here, and

the options that enforce strict conformance to standards are good, too.

More generally, there’s nothing like writing a lot of code, preferably good code that other

people use. Next best, though less frequently done, is reading a lot of good code to see

how other people write. Finally, breadth of experience helps—each new problem, new

language, new tool, and new system helps you get better, and creates links with whatever

you know already.

How should a manual for a new programming language be organized?

Brian: A manual should make it easy to find things. That means that the index has to be

really good, the tables of things like operators and library functions have to be concise and

complete (and easy to find), and the examples should be short and crystal clear.

This is different from a tutorial, which should definitely not be the same as a manual. I

think the best approach for a tutorial is a sort of “spiral,” in which a small set of useful

basic things is presented, but enough to write complete and useful programs. The next

rotation of the spiral should cover another level of detail or perhaps alternative ways of

saying the same kinds of things and the examples should still be useful but can be bigger.

Then put a good reference manual at the end.

Should examples—even beginner examples—include the error-handling code?

Brian: I’m torn on this. Error-handling code tends to be bulky and very uninteresting and

uninstructive, so it often gets in the way of learning and understanding the basic language

constructs. At the same time, it’s important to remind programmers that errors do happen

and that their code has to be able to cope with errors.

My personal preference is to pretty much ignore error handling in the earlier parts of a

tutorial, other than to mention that errors can happen, and similarly to ignore errors in

most examples in reference manuals unless the point of some section is errors. But this can

reinforce the unconscious belief that it’s safe to ignore errors, which is always a bad idea.

What did you think of the idea for the Unix manual to cite bugs? Does this practice make

sense today, too?

Brian: I liked the BUGS sections, but that was when programs were small and rather sim-

ple and it was possible to identify single bugs. The BUGS were often features that were not

yet provided or things that were not properly implemented, not bugs in the usual sense of

walking off the end of an array or the like. I don’t think this would be feasible for most of

the kinds of errors one would find in really big modern systems, at least not in a manual.

Online bug repositories are a fine tool for managing software development, but it’s not

likely that they will help ordinary users.

Download at Boykma.Com

118 C H A P T E R S I X

Do current programmers need to be aware of the lessons you collected in your book about

programming style, The Elements of Programming Style [Computing McGraw-Hill]?

Brian: Yes! The basic ideas of good style, which are fundamentally to write clearly and

simply, are just as important now as they were 35 years ago when Bill Plauger and I first

wrote about them. The details are different in minor ways, to some extent depending on

properties of different languages, but the basics are the same now as then. Simple,

straightforward code is just plain easier to work with and less likely to have problems. So

as programs get bigger and more complicated, it’s even more important to have clean,

simple code.

Does the way you can write text influence the way you write software?

Brian: It might. In both text and programs, I tend to work over the material many times

until it feels right. There’s a lot more of this in prose, of course, but it’s the same desire, to

have the words or the code be as clear and clean as possible.

How does knowing the problems that software will solve for the user help the developer

write better software?

Brian: Unless the developer has a really good idea of what the software is going to be used

for, there’s a very high probability that the software will turn out badly.

In some fortunate cases, the developer understands the user because the developer is also

going to be a user. One of the reasons why the early Unix system was so good, so well

suited to the needs of programmers, was that its creators, Ken Thompson and Dennis

Ritchie, wanted a system for their own software development; as a result, Unix was just

great for programmers writing new programs. The same is true of the C programming

language.

If the developers don’t know and understand the application well, then it’s crucial to get

as much user input and experience as possible. It is really instructive to watch new users

of your software—within a minute, a typical newcomer will try do something or make

some assumption that you never thought of and your program will make their life harder.

But if you don’t monitor your users when they first encounter your software, you won’t

see their problems; if you see them later, they’ve probably adapted to your bad design.

How can programmers improve their programming?

Brian: Write more code! And then think about the code you wrote and try to rework it to

make it better. Get other people to read it too if you can, whether as part of your job or as

part of an open source project. It’s also helpful to write different kinds of code, and to

write in different languages, since that broadens your repertoire of techniques and gives

you more ways to approach some programming problem. Read other people’s code, for

example, to try to add features or fix bugs; that will show you how other people approach

problems. Finally, there’s nothing like teaching others to program to help you improve

your own code.

Download at Boykma.Com

A W K 119

Everyone knows that debugging is twice as hard as writing the software, so how should

debugging be taught?

Brian: I’m not sure that debugging can be taught, but one can certainly try to tell people

how to do it systematically. There’s a whole chapter on this in The Practice of Programming

[Addison-Wesley], which Rob Pike and I wrote to try to explain how to be more effective

at debugging.

Debugging is an art, but it’s definitely possible to improve your skill as a debugger. New

programmers make careless mistakes, like walking off the start or end of an array, or mis-

matching types in function calls, or (in C) using the wrong conversion characters in printf

and scanf. Fortunately, these are usually easy to catch because they cause very distinctive

failures. Even better, they are easy to eliminate as you write the code in the first place, by

boundary condition checking, which amounts to thinking about what can go wrong as

you write. Bugs usually appear in the code you wrote most recently or that you started to

test, so that’s a good place to concentrate your efforts.

As bugs get more complicated or subtle, more effort is called for. One effective approach is to

“divide and conquer,” attempting to eliminate part of the data or part of the program so that

the bug is localized in a smaller and smaller region. There’s also often a pattern to a bug; the

“numerology” of failing inputs or faulty output is often a very big clue to what’s going wrong.

The hardest bugs are those where your mental model of the situation is just wrong, so you

can’t see the problem at all. For these, I prefer to take a break, read a listing, explain the

problem to someone else, use a debugger. All of these help me to see the problem a different

way, and that’s often enough to pin it down. But, sadly, debugging will always be hard. The

best way to avoid tough debugging is to write things very carefully in the first place.

How do hardware resources affect the mindset of programmers?

Brian: Having more hardware resources is almost always a good thing—it means, for

example, that one doesn’t have to worry much about memory management, which used

to be an infinite pain and source of errors 20 or 30 years ago (and certainly was when we

were writing AWK). It means that one can use potentially inefficient code, especially general-

purpose libraries, because runtime is not nearly as much of an issue as it was 20 or 30

years ago. For example, I think nothing today of running AWK over 10 or even 100 MB

files, which would have been very unlikely long ago. As processors continue to get faster

and memory capacities rise, it’s easier to do quick experiments and even write production

code in interpreted languages (like AWK) that would not have been feasible a few decades

ago. All of this is a great win.

At the same time, the ready availability of resources often leads to very bloated designs

and implementations, systems that could be faster and easier to use if a bit more restraint

had gone into their design. Modern operating systems certainly have this problem; it seems

to take longer and longer for my machines to boot, even though, thanks to Moore’s Law,

they are noticeably faster than the previous ones. All that software is slowing me down.

Download at Boykma.Com

120 C H A P T E R S I X

What is your opinion on domain-specific languages (DSL)?

Brian: I worked on a lot of what are now most often called domain-specific languages,

though I usually called them “little languages,” and others refer to “application-specific

languages.” The idea is that by focusing a language on a specific and usually narrow

domain, you can make its syntax match the domain well, so that it’s easy to write code to

solve problems within that domain. There are lots of examples—SQL would be an

instance, and of course AWK itself is a fine example, a language for specifying certain

kinds of file processing very easily and compactly.

The big problem with little languages is that they tend to grow. If they are at all useful,

people want to apply them more broadly, pushing the envelope of what the original lan-

guage was meant for. That usually implies adding more features to the language. For

instance, a language might originally be purely declarative (no if tests, no loops) and it

might have no variables or arithmetic expressions. All of those are useful, however, so

they tend to get added. But when they are added, the language grows (it’s no longer so lit-

tle), and gradually the language starts to look like any other general-purpose language,

but with different syntax and semantics and sometimes a weaker implementation as well.

Several of the little languages I worked on were for document preparation. The first, with

Lorinda Cherry, was called EQN, and was for typesetting mathematical expressions. It was

pretty successful, and as our typesetting equipment became more capable, I also did a lan-

guage for drawing figures and diagrams, which was called PIC. PIC started out only able to

draw, but it rapidly became clear that it needed arithmetic expressions to handle computa-

tions on coordinates and the like, and it needed variables to store results, and it needed

loops to create repetitive structures. All of these were added, but each one was kind of

awkward and shaky. In the end, PIC was quite powerful, a Turing-complete language, but

one wouldn’t want to write a lot of code in it.

How do you define success in terms of your work?

Brian: One of the most rewarding things is to have someone say that they used your lan-

guage or tool and found that it helped them get their job done better. That’s really satisfy-

ing. Of course it’s sometimes followed by a report of problems or of missing features, but

even those are valuable.

In which contexts is AWK still powerful and useful?

Brian: AWK still seems to be best for quick and dirty data analysis: find all the lines that

have some property, or summarize some aspect of the data, or make some simple transfor-

mation on it. I can often get more done with a couple of lines of AWK than others can

with 5 or 10 lines of Perl or Python, and empirically, my code will run almost as fast.

I have a collection of small AWK scripts that do things like add up all the fields in all the

lines or compute the ranges of all fields (a way to get a quick look at a dataset). I have an

AWK program that fills arbitrary text lines into at most 70 character lines that I probably

Download at Boykma.Com

A W K 121

use 100 times a day for cleaning up mail messages and the like. Any of these could be easily

written in some other scripting language and would work just as well, but they’re easier in

AWK.

What should people keep in mind when writing AWK programs?

Brian: The language was originally meant for writing programs that were only one or two

lines long. If you’re writing something big, AWK might well not be the right language,

since it has no mechanisms that help with big programs, and some design decisions can

lead to hard to find bugs—for example, the fact that variables are not declared and are

automatically initialized is very convenient for a one-line program, but it means that spell-

ing mistakes and typos are undetectable in a big program.

Designing a New Language

How would you go about creating a new programming language?

Brian: Presumably you have some set of tasks, some domain of application, for which you

think a new programming language would be better than any existing language. Think

about what people want to be able to say. What are the problems, the applications, that

this programming language is going to be used for? How would you like to express them

in that language? What would be the most natural way to write them down? What are

the most important examples, the simplest ones that would get somebody started? Try to

make those as straightforward as possible.

Fundamentally, the idea is to try to write things in the language before it exists. How

would you say something? I think this applied to AWK pretty well because everything in

the design of that language was intended to make it easy to write useful programs without

having to say very much. That meant we didn’t have declarations, partly because we

didn’t have types. It meant that we didn’t have explicit input statements because the input

was completely implicit, it just happened. It meant that we didn’t have statements for

splitting input lines into fields because that happened automatically. All the properties of

the language came from the goal of trying to make it really easy to say really simple

things.

The standard examples that we used in the AWK paper that we wrote originally, and in

the manual and so on, were all basically one-liners. I want to print all the lines that have

length greater than 80 characters, so by writing "length > 80", I’m done. In that particular

language, it was clear enough what we were trying to do, and then of course later on you

discover all the things that you left out that you really need, like the ability to read from

specific input files by name, so we had to add that. Constructs that were needed when

programs got longer than a few lines, like functions, were added later.

The EQN language that Lorinda Cherry and I worked on is a completely different exam-

ple. EQN is a language for describing mathematical expressions so they could be printed.

Download at Boykma.Com

122 C H A P T E R S I X

The goal was to make the language as close as possible to the way that people would speak

mathematics out loud. If I were to try to describe the formula to you over the telephone,

what would I say? Or if I were writing a formula on the blackboard in a class, what would

I be saying as I wrote the expression on the board? Or in my case, I was recording text-

books for blind people. How did I read the mathematical expressions so that somebody

who couldn’t see them might be able to understand them? EQN was entirely focused on

making it easy to write mathematics as it was spoken, and it didn’t worry much about the

quality of the output. Compare that to TeX, which is not as easy to type, with a lot of syn-

tax, but it is a very powerful language that gives you far more control over the output, at

the price of being rather harder to use.

When you designed the language, how much did you think about the implementation?

Brian: A fair amount, because I’ve always been involved with both design and implemen-

tation; if I can’t see how to implement something, I won’t pursue the design.

For almost every language I have done, either the language has been simple enough that

it could be parsed by a straightforward ad hoc parser, or if it had a richer syntactic struc-

ture, I’ve been able to use yacc to specify the grammar.

I think if I had had to do languages like EQN or AWK without the benefit of yacc, they

would never have happened, because it’s too hard to write parsers by hand. Not that you

can’t do it, but it’s a real nuisance. Writing them with a tool like yacc made it possible to

do interesting, adventurous things easily and change the design quickly if something

didn’t seem to be right, because all you had to do was rewrite a bit of the grammar; you

didn’t have to change any significant amount of code to make a substantial change in the

language, or to add some new feature. It was really easy with a tool like yacc, and would

have been much harder with a conventional recursive descent parser.

Should language designers enforce a preferred style to avoid some recurrent mistakes?

For example, Python’s source code formatting, or Java’s lack of pointer arithmetic.

Brian: I have mixed feelings about that, though mostly the enforced discipline is helpful

once one gets used to it. I found Python’s indentation rules irritating at first, but once I got

used to them, it was not a problem.

One should try to design the language so that it has the right constructs to make it easy for

people to say what they want to say, and there isn’t ambiguity or too many different ways

to say it. No matter what, people will find the most natural way of expressing things. So if

Java omits pointers, that’s a major change from C or C++, but it provides references, which

are a reasonable alternative for many situations. Java doesn’t provide a goto statement.

Download at Boykma.Com

A W K 123

I’ve never felt that that was a problem. C provides a goto statement that I don’t typically

use, but every once in a while, it makes sense. So I’m comfortable either way with those

kinds of decisions.

I mentioned the PIC language for drawing pictures. It was good for simple pictures like

arrows and boxes and flowcharts. But people wanted to draw pictures with regular struc-

tures. For those, I somewhat reluctantly added a while loop and a for loop and even an if

statement. Of course, they were an afterthought, with somewhat irregular syntax that

didn’t quite fit the PIC language, but they were not the same as in any conventional lan-

guage, either. The result was useful but awkward.

It seems that the language starts out simple, and then it grows, and additions gradually

make it take on all of the character of a full-blown programming language with variables

and expressions, and the if statements and while loops and functions that any full-blown

programming language has. But usually the constructions are sort of awkward, the syntax

is irregular or at least different, the mechanisms may not work very well, and the whole

thing feels wrong.

Was this due to their genesis as little languages, without consideration of evolving them

into general-purpose languages?

Brian: Yes, I think that’s what it is. I’m speaking only for myself on this, but the mental

picture that I have started out with is almost always a little language, something very

small and simple, not meant to do big things, not meant to be a general-purpose program-

ming language. But if it’s useful, people start to push its limits and they want more. And

typically the things they want are the features of general-purpose programming languages

that make them programmable rather than just declarative. They want ways to repeat

things, they want ways to avoid having to say the same thing over and over again, and

these lead to loops and macros or functions.

How can we design a language that works for everybody? You mentioned little languages

that are focused on a particular goal, but I also have the impression that you like the idea

that a developer writes a language to satisfy his own needs. Once you have something

that works, how can you grow it to make it more useful to other people?

Brian: There isn’t likely to ever be a language that is satisfactory for everybody for every

application or even relatively large groups with large collections of applications.

We have a lot of good general-purpose languages now. C is fine for some jobs; C++, Java,

Python—each does a good job in its area and can be pushed into almost all the other areas.

But I don’t think I would try to write an operating system in Python, and I don’t want to

write text-processing code in C anymore.

Download at Boykma.Com

124 C H A P T E R S I X

How do you recognize the area where a language is particularly useful or strong? For

example, you said Python is not good to write an operating system. Is that particular to

the language or the implementation?

Brian: I think it’s probably both. The implementation is likely to mean that things would

be too slow. But if I were writing a toy or demonstration operating system, Python might

be absolutely fine. It might in some ways be better. But I don’t think I would write an

operating system that would support, let’s say, Google’s infrastructure, using Python.

Real programmers don’t have the luxury of choice sometimes. They have to do whatever

the local environment requires. So if I am a programmer at a big financial operation on

Wall Street, they will be programming in a particular language or a very small set of lan-

guages, perhaps C++ and Java. I am not going to be able to say, “Oh, I just want to write

C,” nor am I going to be able to say, “Well, I think Python would be better for that.” In one

company I know, the set of languages is C++, Java, and Python. Ruby might really be bet-

ter for some things, but you’re not going to write Ruby. A lot of people don’t have a free

choice in what they write.

On the other hand, if they have to do a particular job, the choice might be free among

C++, Java, or Python. Then the technical considerations could be evaluated in deciding

which one to use.

Maybe everybody should have a personal language.

Brian: One that’s really their own and nobody else uses?

Where everyone has a personal syntax that is translated to a general byte code, and then

it’s universal.

Brian: It’s going to make it hard to do collaborative development. :)

After you built the first prototype, what should people do?

Brian: First try to write code yourself in this proposed language. What does it feel like to

write the kinds of things that you personally want to write and that you think people

around you would probably want to write? For EQN, it was crystal clear. How do mathe-

maticians speak? I’m not a mathematician, but I had a pretty good idea because I’d taken a

lot of math courses. You want to use it yourself and then, as quickly as possible, you want

other users to try it, but you want users who are going to be really good critics, that is,

people who will try it, push it, and tell you what they found.

One of the wonderful things about Bell Labs in the 70s and 80s was that there were a

bunch of people in and around the Unix group who were just incredibly good at this

kind of critical evaluation of what other people did. The criticism was often very blunt,

but there was good feedback, very quickly, about what was good and what was not.

Download at Boykma.Com

A W K 125

We all profited from that because the criticism helped smooth off the rough edges, kept

systems culturally compatible, and weeded out the really bad ideas.

I think it’s harder to get that in some ways now. You can get criticism from a broader col-

lection of people more widely distributed because of the Internet, but you may not get as

focused criticism from a group of people who are extremely talented with whom you are

very close, where you could meet them in the hall on an hourly basis, where you step out

of your office and into their office.

How did you manage all your ideas and experiments, and at the same time, build a

unique and stable system?

Brian: It wasn’t that hard because AWK was so small. The first version was only perhaps

3,000 lines of code. I think Peter Weinberger wrote the first version. The grammar was

done with yacc, which was very easy. The lexical part was done with lex. And semantics

at that point were pretty regular. We had several different versions of the interpreter

machine, but it wasn’t very big. It was pretty easy to make changes quickly and maintain

control of it. And in fact it’s still quite small; the version that I distribute is not much over

6,000 lines at this point, 30 years later.

Is it true that each one of you had to write test modules for every new feature that you

wanted to include?

Brian: No. Absolutely not. About the time the book was published in 1988, we started to

be more systematic about collecting test cases. It was probably some years after that when

I started to be more orderly in collecting tests, and somewhere in that period I decided that

if I added a feature, I was going to add a few tests that would make sure that feature actu-

ally worked. I have not added new features for quite a while, but the collection of tests has

continued to grow because when somebody finds a bug, I add a test or two that would

have found the bug earlier and make sure that it doesn’t come back again.

I think that’s good practice. It’s something that I wish we had done more carefully and

systematically much earlier in the game. The test suite today includes essentially all of the

programs in the first and second chapters of the AWK book. But those obviously came

after the book, which was well after the language itself.

In the past 40 years, there has been a lot of research in computer science and also on

programming languages. Have you seen any improvement in the language design part

beyond tool improvements?

Brian: I’m not sure I know enough to give a proper answer on that. For some languages,

let’s say scripting languages, the language design process is still pretty idiosyncratic based

on the preferences and interests and beliefs of the language designer. So we have dozens

of scripting languages, and I don’t think that those have profited directly from research in

things like type theory.

Download at Boykma.Com

126 C H A P T E R S I X

In the 70s, every type of language was available: C, Smalltalk—very different types of

languages. Today we have a very different range of languages, but we still have C, C++,

and Smalltalk. Did you expect more innovation and improvements in the way we design

languages and interact with computers?

Brian: I guess I don’t know enough about the whole area. I think probably we will get

better at getting the machine to do more of the work for us. That means that languages

may become even higher level and more declarative so that we don’t have to spell out so

many details. One hopes that the languages will become more safe, so that it’s harder to

write programs that don’t work. Perhaps languages that will be easier to translate into a

very efficient runnable form. But beyond that, I honestly don’t know.

Can we have a science of language design? Can we approach the language design with a

scientific method so that we can learn from the previous discoveries or inventions and

keep improving? Will it always include the designer’s personal taste?

Brian: I think that there’s always going to be a very large amount of personal taste and

intuition about what works in language design. Almost all languages are really the product

of one or two people, maybe three. There’s hardly any language you can name that was a

group effort. And so that just says it’s likely to be personal.

At the same time, our understanding of almost every aspect of programming languages is

better and is likely to continue getting better. That suggests that new languages will be

based on sound principles, and their properties will be mostly well understood. And in

that sense, it will be more scientifically based than might have happened say 10 or 20, well

certainly 30 years ago, where things really didn’t have much basis. But I will guess that

much language design will still be determined by individual taste.

People are going to come up with things that appeal to them, and some of those will

appeal to lots of other people as well. But there will be more and more things that a lan-

guage has to have because their existence will be taken for granted. So, for example, any

significant language today is almost surely going to have some kind of object mechanism,

and it will be designed into it from the beginning, not glued on afterward. Concurrency is

another important area, because we’re getting machines that have lots of processors, and

languages will have to deal with concurrency in the language itself, not just some library

add-on.

As we understand the situation better, we try to build systems that are always bigger, so in

some ways we are more powerful, but we always try to set the bar higher. We keep

building bigger teams.

Brian: I think your basic observation is absolutely correct. We’re always trying to do big-

ger things, so we’re always up to our armpits in alligators. As we get more hardware, as

we get more understand of how to write programs, as we get better programming lan-

guages, we take on bigger things. Tasks that in the 1970s might have taken a team of a

couple hundred people a year or two to build can today be knocked off by an undergradu-

ate in a couple of weeks because there’s so much support, so much infrastructure, so

Download at Boykma.Com

A W K 127

much horsepower also in the computers, and so much existing software that you can

build on. So I think in some sense we’re always going to be up against that.

Are we going to have big teams like the thousands that Microsoft had working on Vista?

Probably, but we’re clearly going to need to find ways to make big projects into a bunch of

small projects that cooperate with each other in a safe and well-organized way.

Some of this will require improvements in languages, and some of it will require better

mechanisms for gluing together components no matter what languages they were written

in, and for packaging information as it passes across interfaces.

Previously you said that a modern programming language should absolutely support

OOP. Is OOP good as it is? Is there anything else that we could try to do or invent or add

to simplify the process of building large systems?

Brian: Object orientation is very useful in some settings. If you’re writing Java, you have

no choice; if you’re writing Python or C++, you can use it or not. I think that’s probably

the right model: you can use it or not use it depending on the specific application. As lan-

guages evolve, there will surely be other mechanisms for packaging up computational

units and organizing a program.

If you look at COM, Microsoft’s component object model, that’s based on object-oriented

programming, but it’s more than that because a component is a bunch of objects, not just

one. How do you deal with that in a somewhat more orderly way than perhaps COM pro-

vides so that there’s more of a notion of how these things are related?

We need mechanisms to deal with huge numbers of objects. We’re dealing with quite

complicated structures of objects, as we deal with bigger programs or programs whose

pieces come from more places.

Unix takes the C language that didn’t have any OO support, and then you build

components—objects—as little tools easily combined to build complex features. Instead

of putting the concept of objects inside the language, perhaps we should build objects or

components that are little tools as separate programs. If you think of a spreadsheet

program, generally that’s a huge program built with objects, maybe it supports plug-ins or

add-ons, but the idea is that the objects are inside, integrated, and managed with the

language.

Brian: Excel is a fine example because it packages up a huge number of objects and their

associated methods and properties. You can write code that will control Excel, so in effect,

Excel becomes a giant subroutine, or just another computational unit. The plumbing isn’t

quite as neat as it is with, say, a Unix pipeline, but it could be pretty close and would not

be very hard to have Excel be part of a pipeline.

Mashups have some of that flavor: there are large building blocks that can be glued

together in ad hoc ways. It’s not quite as easy as a Unix pipeline, but it’s the same idea of

combining large, self-contained pieces into larger systems.

Download at Boykma.Com

128 C H A P T E R S I X

Yahoo! Pipes is a nice example. It is a really interesting approach to saying, “How can we

take fairly complicated operations and glue them together?” They put a beautiful graphical

front end on the whole thing, but you can imagine doing the same with text-based mech-

anisms, and thus having a system that would let you put together arbitrary collections of

computations just by writing text-based programs again. Figuring out how to do this well

is definitely something that’s worth working on. How do we effectively build systems out

of existing components and how do we get programming languages to help us do it?

During the command-line era, you had to communicate with the computer using written

language: enter text as input and read text as output. Today we interact with the keyboard

but also the mouse, and we get partially graphical and partially textual output. Is the best

way to communicate with a computer still a language? Was the command line in some

way a better way to communicate because of the use of language?

Brian: Graphical interfaces are very good for unskilled users, for users who are new to

some system, or for applications that you don’t use very often or that are intrinsically

graphical, like creating a document. But after a while, you find yourself doing the same

thing over and over and over again. Computers are great at repetive operations. Wouldn’t

it be much nicer if we could say to the computer: do this over and over again?

There are mechanisms for that right now, such as macros in Word or Excel. But we’re see-

ing programmable APIs for systems like Google or Yahoo! or Amazon or Facebook. You

can take whatever operations you might have been doing with your keyboard and mouse,

and you can mechanize them. And you can do it without the screen scraping and HTML

parsing that you had to do 10 years ago.

In effect, that’s going back to the command line, where pure text-based manipulation is

best. You may not know what you want to do until you’ve done some of the mouse and

keyboard-based operations, but once you start to see the repetitive operations, then the

command-line interface and these APIs mechanize the process rather than requiring a

human being in the loop.

When designing the language, do you consider the debuggability of features? One

critique of AWK is that variables are automatically initialized without declaration. This is

convenient, but if you make spelling mistakes or typos, it can be very hard to find

problems.

Brian: It’s a tradeoff. Every language has tradeoffs, and in AWK we made tradeoffs in the

direction of making it really, really easy to use. A one-line program was the goal, because

we thought that most programs would only be one or two lines long. Variables that

weren’t declared and had automatically initialized values were consistent with that,

because if you had to declare it and initialize it, you tripled the size of the program. That

worked beautifully for small programs, but is bad for big programs. So what might you do?

Download at Boykma.Com

A W K 129

Perl has a mode that warns you; it says, “Tell me when I’ve done something stupid.” You

could be more careful the way that Python does. You do have to initialize variables in

Python, but you can usually get away without much declaration. Or you could have some

separate tool off to the side, a lint for AWK programs that would say, “You have two vari-

ables whose names are extremely similar; did you really mean that?”

A more dubious design decision in AWK is that concatenation was expressed by adja-

cency, without an explicit operator; a sequence of adjacent values is just concatenated. If

you couple that with the fact that variables aren’t declared, nearly anything you write is a

valid AWK program. It’s just too easy to make mistakes.

I think that that’s an example of stupid design. It didn’t save us anything—we should have

used an operator. Automatically initialized variables was a conscious design tradeoff,

which works beautifully for little things and doesn’t scale.

Legacy Culture

Suppose I write a new little language that has to run in two megabytes of memory, for a

cell phone or embedded device. To what degree do issues of implementation like that

affect the interface level? When a user uses my program, is he or she going to understand

some of my design choices, or have we moved away from those types of limitations now?

Brian: I think we’re a lot more away from it than we used to be. If you look at the history

of early Unix programs, and certainly AWK among them, you can see lots of places where

the fact that memory was extremely tight showed up in the language or various pieces of

the operating system.

For example, for many years AWK had internal limits: you could only have this many files

open, only have this many elements in an associative array, and so on. They were all cop-

ing with the fact that memory was really tight and processes weren’t all that fast. Those

constraints have gradually gone away. In my implementation, there are no fixed limits

anymore. Fixed limits are a place where resource limitations bubble up and become visible

to the ultimate user.

AWK tries to preserve the state of a variable so that if a variable has been used as a num-

ber and then is coerced to a string for printing, AWK knows that both the numeric value

and the string value are current so it doesn’t have to do the coercion again. In a modern

machine running 1,000 times faster, you wouldn’t do that at all. You would just coerce

the value when it was needed.

Even originally, it was probably a silly thing to do, since there’s a lot of intricate code, very

delicately balanced and probably not always correct, to manage this state. If I were doing it

today, I wouldn’t think about it at all. I’m sure if I run Perl or Python, they’re not worry-

ing about that.

Download at Boykma.Com

130 C H A P T E R S I X

Perl 5 still uses that trick, oddly enough.

Brian: The first version of Perl was written less than 10 years after AWK, and there were

still plenty of resource constraints. Anyway, those are examples of things where tight

resources forced you to do things that, in retrospect, you would probably do differently.

I started out on machines that had, if I remember correctly, 64k bytes total. That was

when we were well into the Unix world.

Peter Weinberger said that in the early Unix days there was always a sense that you could

rewrite a program next year. It didn’t have to be perfect because it wasn’t big or

complicated. You could always rewrite it. Was that your experience?

Brian: Programs did get rewritten a fair amount. I don’t know whether they got rewritten

from scratch. In my own experience, I don’t think anything I ever did got rewritten in the

sense of just toss it away and start over again. My changes were more incremental, but

there was a lot of rethinking, and it definitely was part of the culture to see if there were

ways where you could make the program smaller.

He gave me the impression that this was a cultural thing. The design consideration was

never that a program would last for 10, 20, or 40 years. Did you see a shift from short-term

to long-term thinking?

Brian: I don’t know whether anyone thinks long term in software today, but some people

did in the early days. Some people do because they have to. If, for example, I was in a tele-

phone company making switching software, in the good old days that code was going to

last for a long while and it had to be compatible with the code that was there before. You

had to do things more cautiously. Maybe we were just more realistic about the fact that

you can’t rewrite it. There isn’t enough time.

The other thing, at least in my memory of the Unix of the 70s, was that there were so

many interesting new things to do that people just went in and kept changing programs. I

don’t think anybody thought of themselves as writing for the ages. If you had told Al or

Peter or me in 1978 that we would be having conversations about AWK 30 years later, we

would not have believed it.

The Unix kernel has really evolved. Many people may wish otherwise, but the C language

is still one of the best options for software like AWK and kernels. Why do things like this

survive when other things don’t?

Brian: Partly the survival is because they’re really good at what they do. C found a sweet

spot for system implementation. It’s incredibly expressive, but at the same time, it’s not

complicated or big, and it’s efficient, and that’s will always matter at some level. It’s a nice

language to work with because if you want to say something, there aren’t too many differ-

ent ways to say it. I will look at your code and say, “I see what you are doing.” I don’t

think that’s true of languages like Perl and C++. I’ll look at your Perl code and I’ll say

“Huh?” because there’s no one way to write it.

Download at Boykma.Com

A W K 131

C++ is big and intricate and there are many different ways that you can say something. If

you and I were writing C++, we might come up with rather different ways to express a big

computation. C doesn’t have that. C survives because it found the right balance of expres-

siveness and efficiency, and for core applications, it’s still the best tool.

That’s why we’ve never replaced the X Window system on Unix. Everything uses Xlib or

something that uses Xlib. Baroque as Xlib may be, it’s pervasive.

Brian: Exactly. It does the job. It does it well enough. To do it over from scratch is just too

big a job.

When you look at C++ now, one of the original design goals was backward compatibility

with C, for good or ill. The theory goes if you want to replace X, then we need something

that can run X program strings transparently. C++ did not displace C in a lot of places,

though it had that nominal goal.

Brian: Bjarne killed himself to try and make it compatible with C as much as he possibly

could. One of the reasons that C++ succeeded where other languages did not is that com-

patibility was good, both source and object, and that meant that you didn’t have to buy in

to a whole new way of doing business to use C++ in a C environment.

I’m sure those decisions that Bjarne made on compatibility have come back in some ways

to haunt him just because people say, “Oh, it’s awful because….” He made them very con-

sciously and after a lot of thought because the compatibility with the existing world was

important, and it was more likely to succeed in the long run.

Some of its biggest sins are that it hews too closely to C.

Brian: Perhaps, but the further from C, the less likely it would have succeeded. It’s a diffi-

cult balance, and I think he did a very good job.

To what degree can you pursue backward compatibility versus trying to introduce

something new and revolutionary?

Brian: That’s a dilemma in absolutely every field, and I don’t see any way out of it.

You mentioned that a lot of little languages started adding features and becoming Turing-

complete and losing their conceptual purity. Are there design principles to apply if you’re

taking a little language and making it more general purpose without losing its way?

Brian: I guess. I remember saying that on a variety of occasions, and I often wondered

how much of it was a parochial view. That is, all of the languages I had touched had this

property and maybe nothing else did. Perhaps I was just seeing my own problem. In hind-

sight, in most cases I would’ve been better off to be sure that new features were syntacti-

cally compatible with existing languages so that people didn’t have to learn a brand-new

syntax.

Download at Boykma.Com

132 C H A P T E R S I X

Is there or will there be a resurgence of little languages?

Brian: I’m not sure that “resurgence” is the right word, but little languages will continue

to be developed.

What might drive this to some degree is the proliferation of APIs for web services. Every-

body has an API that will let you drive their web service from a program rather than from

your fingertips. Most of those are, at this point, packaged as JavaScript APIs, but I can

imagine ways in which they would be more accessible and run from Unix or Windows

command lines rather than writing JavaScript that sits inside a browser, where you still

have to click to get it started.

It almost sounds like you’re talking a resurgence of the Unix command line that operates

on the Internet as a whole.

Brian: That’s a great way of saying it. Wouldn’t that be neat?

Transformative Technologies

You mentioned that yacc made experimentation with the syntax of a language easier,

because you could update your grammar and run that again, rather than tweaking a

hand-rolled direct descent parser. Was yacc a transformative technology?

Brian: Certainly for language development, yacc was an enormous influence. Speaking

personally, I would never gotten off the ground doing language work without it, because

for whatever reason, I wasn’t any good at writing recursive descent parsers. I always had

trouble with precedence and associativity.

With yacc you didn’t have to think about that. You could write down a grammar that

made sense, and then you could say “This is the precedence and the associativity, and

here’s how you handle ugly cases like unary operators that are spelled the same as binary

operators.” All of those things were so much easier. Just the existence of that tool made it

possible to think about doing things from a language point of view that otherwise would

have been too hard.

Certainly, yacc worked extremely well for EQN. The grammar was not very complicated,

but it had weird constructs. Some of them had not been thought of in a programming lan-

guage context before, and in fact EQN was declarative, not procedural. There was even

discussion of it in CACM at some point—the trickiness of putting subscripts and super-

scripts on the same entity, which could be handled well in a yacc grammar and was very

hard to do other ways.

yacc was an amazing piece of work from the theoretical standpoint—that is, taking this

language technology, this understanding of how to parse things and converting it into a

program—but it was also extremely well engineered, much better than anything else from

that time. For a long time, nothing came close to the engineering that yacc provided.

Download at Boykma.Com

A W K 133

lex had some of that same property, but somehow didn’t take off to the same degree,

probably because it’s easier to roll your own lexical analyzers. In AWK we originally had a

lex lexical analyzer, but as time passed, I found it hard to support in different environ-

ments, and so I replaced it by a handcrafted C lexical analyzer. That was the source of all

the bugs in the program for years afterward.

Did other technologies beside lex and yacc make it simpler or easier or more powerful to

develop languages or programs?

Brian: After that, having Unix as the operating system underneath meant that all kinds of

computing tasks were easy. The ability to create shell scripts, the ability to run a program

and capture its output, think about it, perhaps edit and make it into something different,

at a time when machines were slow—these made quite a difference. Overall, having these

tools around, and especially core ones like sort, grep, and diff, made it possible to see what

you were doing and keep track of little pieces.

I can’t imagine compiling programs without Make, but of course I can’t imagine a world

without patch either, and that was ’86 or ’87.

Brian: Until I started teaching, I never used patch because I never wrote anything that

was so big that patching made more sense than just having the whole source. I decided a

few years ago that students in my class ought to know something about patch because

that’s the way so much code, especially in the Linux world, is shipped around. One of the

assignments in my class asks the students to download my version of AWK from the Web,

add a specific feature like repeat until, invent some tests and run them with shell scripts,

and then send us the patch file. It gives them the whole experience of going to some open

source program, fiddling it in a minor way, and sending it back. I had never thought of

using patch. I used to get them to send me the source.

It’s easier to review in patch form.

Brian: I guess that’s the other thing. Patch files are much more compact and you can see

what they did much more quickly.

You brought up testing. Would you write code differently now to facilitate unit testing?

Brian: For the kind of programs that I have written over the years, unit testing doesn’t

make much sense because the programs themselves are too small and they’re self con-

tained. The idea of a unit test, a bunch of little “call this function and see what it does”

inside a fake main for testing, makes no sense for these programs, so I do not do unit test-

ing at that level. I’ve tried it in my class a few times and it has failed miserably.

For small programs, I prefer to do end-to-end black-box testing. Make up a bunch of test

cases, usually a form of a very specialized little language, and then write a program that

will run the test cases automatically and report the things that don’t work. That’s good for

bits and pieces of AWK; that’s excellent for regular expressions. It’s fine for Base64 encod-

ers and decoders, which I sometimes ask students to do. For all of those things, I do out-

side testing, not inside testing. I don’t put things inside the program for testing.

Download at Boykma.Com

134 C H A P T E R S I X

On the other hand, one thing that I would do differently today is to make it easier to do

internal consistency checking, with assertions and sanity-checking functions, and maybe

more test points or ways to get internal state out to the outside without having to work

too hard, rather like the built-in self-test that the hardware people do.

That sounds almost as much like debugging code as it does testing code. Maybe there’s no

sharp difference between the two.

Brian: The idea of assertions, for me, is that you’re pretty sure that something is right at

this particular point, but you’re not absolutely sure, so you put on a parachute to make

sure that if things fall apart, you can land safely. That’s a badly mixed metaphor. Asser-

tions and sanity checks are useful because if something goes wrong, your debugging will

be far easier because you know where to start probing to figure out what was wrong. It

also tells you what kind of test that you probably should have had that you didn’t.

I once tried to get my students to build an associative array class that was basically the

same idea as the associative arrays in AWK. They were writing it in C, which meant that

the string handling was the place where things would usually go wrong. When I was writ-

ing my own version, I wrote a separate sanity-checking function to go through the data

structures and make sure that the number of elements that you got by counting on the

inside of the data structure was the same as you got from dead reckoning on the outside.

I guess it’s like versions of malloc that check the arena before and after every transaction.

The checking says, “If I’m going to go wrong, this is the place where it’s going to happen,

so let me just make sure.” I would do much more of that.

Is that partly because of your maturity as a developer that you’ve seen the kind of bugs

that can create, or because it’s a lot less expensive to do that?

Brian: I don’t think I could claim maturity as a developer. I write less code than I would

like almost all the time and when I do, it’s often shoddy, in spite of what I say. It’s more

like “Do as I say, not as I do.”

Our editor heard you praise both Tcl and Visual Basic at a conference once. What do you

think of those languages now?

Brian: In the early 90s, I did extensive Tcl/Tk programming. I really understood it inside

and out, and I wrote some systems that were at least briefly used inside Bell Labs. I could

make interfaces very fast. Tcl/Tk is a wonderful environment for building user interfaces

and a vast improvement over all its successors.

Tcl as a standalone language is somewhat idiosyncratic. It was good at what it was meant to

do, but it was unusual enough that I think a lot of people had trouble with it, and it might

have disappeared if it were not for Tk, which is great for building interfaces.

Visual Basic in its early days was a nice language and environment for writing Windows

applications. At one point, VB was one of the most popular programming languages around.

Download at Boykma.Com

A W K 135

It was so easy to get graphical interfaces up and running, so in the Windows world it was

doing the same thing as Tk was doing in the X11 Unix world, a way to build interfaces

quickly. Microsoft has slowly killed Visual Basic, and at this point, I wouldn’t use it for

anything new. C# would be the natural choice.

What’s your feeling on when you can drop a feature or an idea and ask people to

upgrade to a new version?

Brian: Unfortunately, that’s one of those things where there is no right answer; no matter

what, somebody will be unhappy. If it’s my program, then I want people to follow me,

and if it’s somebody else’s program, then I want them to maintain whatever purely idio-

syncratic construct I’ve been using. I’ve been on both sides of this. One of the sore points

for me for many years has been the different versions of AWK that came from Bell Labs.

Al, Peter, and I had one, and there was a variant called NAWK from another group. They

wanted to evolve the language differently, and so we wound up with two somewhat

incompatible versions.

That’s a consistent opinion. The question is “What makes your life easier?” If getting rid of

a feature that is hard to maintain or hard to explain makes it easier for you to maintain a

program long term, that’s certainly one aspect. If upgrading to a new version of the

program makes you rewrite a bunch of code, that’s a different kind of angst.

Brian: In some settings it can be managed. Microsoft for example, had a conversion wiz-

ard that would take VB 6 into VB.NET. The early version of that wizard was not really up

to the job, but the newer versions got a lot better and so, at that point, it became more of a

feasible operation.

To what degree should a designer consider an elegant interface a prime goal of an

implementation? Is that always something to keep in the forefront of your mind, or does it

depend on your other goals?

Brian: If it’s a programming language, you have to think about how people are going to

write programs. What programs are they going to write? You want to have tried many

examples yourself before you freeze it. If it’s an API, then you really have to think about

how people are going to use that API and how it handles difficult questions like who owns

what resources.

Michi Henning wrote a very nice article about API design in the May 2007 issue of ACM

Queue, an article that I reread before I try to talk about APIs in class. One of the points he

makes is that APIs are more important now, because there are more of them and they’re

dealing with more complicated functionality.

Web service APIs are examples. For example, the API for Google Maps is quite big now. I

don’t remember it being that big when I first played with it three years ago; it seems to

have grown. It’s well done, as far as I can see. Other interfaces are less easy to use. Getting

those right is hard work. Then of course, if you change your mind, what do you do?

Download at Boykma.Com

136 C H A P T E R S I X

You can have a flag day where you upgrade all your servers.

Brian: Or you change a bunch of names so it’s upward compatible?

Is that something you can evolve? Was it Stuart Feldman who said, “I can’t change the

tabs in Make—I have 12 users!”?

Brian: Right. That’s one of the awkward points about Make, and I’m sure Stu is just as

unhappy with it now as he was then. It’s very hard to change once you get real users.

Joshua Bloch gives a talk about API design where he says, “APIs are forever.” Once you’ve

done it, it’s hard to change. You can sometimes do converters. We talked about the VB

converter. Mike Lesk changed TBL long ago. Tables used to be done by columns and he

decided it was better by rows, so he wrote a converter. It didn’t do a perfect job, but it was

enough that you could take an existing table and map it to the new one. That approach

helps for some things. There’s an AWK-to-Perl translator that does a pretty limited job,

but it’s enough to get you off the ground.

If there’s one lesson you’ve learned over the years of your experience, what is it?

Brian: Think really hard about what you’re doing, but then keep playing with it and try-

ing it and keep revising it and fixing it up until you’re satisfied. Don’t ship the first thing

you did.

With some systems you get the feeling that somebody sent out their first version. You

know from publishing that that just doesn’t fly. Consider a genius like Beethoven. His

manuscripts are a mess. Mozart was probably the only composer who could write music

down perfectly the first time.

There’s a real line between the staggering work of once-in-a-millennium genius and the

rest of us.

Brian: In Isaac Asimov’s autobiography, he said that he just wrote the words down and

then published it, and most of his writing was actually pretty decent. He said he never

rewrote, and that’s fine for him, but I don’t think that that’s the norm.

On the wall of a room here at the university, there is a poem by Paul Muldoon that

reminds me of the Beethoven manuscripts. There is endless scratching out and reworking

and writing over again, all on one piece of paper; somebody framed it and put it on the

wall as a reminder of how hard it is to do things right the first time. Programming is the

same. Don’t ship the first thing you write.

Download at Boykma.Com

A W K 137

Bits That Change the Universe

Is it true that the beginning of AWK was a discussion that you had with Al Aho about

adding a parser for extensible languages to your database project?

Peter Weinberger: That’s not how I remember it, although memory is fallible. I worked

in a department that dealt with data (on Univac computers), and Al and Brian were inter-

ested in adding something database-ish to the Unix commands. It’s possible that they had

started with even more ambitious plans, but my recollection is that we decided early that

scanning data was a productive way to go.

Why did you choose to focus on a tool to extract information from files? Why did you

avoid the feature to insert data, for example?

Peter: One of the unifying features of Unix command-line tools was that they dealt with

files made up of lines (and it was ASCII in those days). One would (and did) do insertion

with an editor, and otherwise updating a file usually meant making a new file with modi-

fied contents. Other things were possible, and were done, but they weren’t main line.

I heard that you focused on reading data because you didn’t want to deal with

concurrency in writing.

Peter: Well, not exactly; that’s not the way it came out. :)

Would you make the same decision today?

Peter: No, I think if we were writing it today, and remembered to not get overambitious,

I don’t think there would be any user-visible concurrency stuff in it, but I’m sure it would

be built to exploit whatever sort of local multicore or parallelism there was. I’m sure it

would have caused us some trouble, but then we would’ve overcome it. There’s an inter-

esting question there, or possibly interesting question, which is: how much would that

have changed the language design at all?

I don’t know; you’d have to think about that. If you think you have free CPU, lots of free

CPU, there’s several things you can do. One is you could say, well, we’re not going to use

it; we’ll just leave it for whatever else is running. Which in the case of AWK, or something

like AWK, is not a bad choice, because if you believe that mostly it’s designed to be used in

pipelines then the other things in the pipeline need CPU processing time, too.

On the other hand, if you think it’s going to be used for relatively complicated file trans-

forming, you might put in things that could use several processors running on them at

once, which of course we didn’t do, because that’s not the way machines were then.

Download at Boykma.Com

138 C H A P T E R S I X

In what contexts do you see AWK as a better fit than SQL, for example?

Peter: Well, they are essentially incomparable. AWK has no explicit types, SQL is badly

overrun with them. That is, AWK reads and writes strings, but it’s prepared to consider

some strings as numbers when asked to. SQL does joins, but to do the same thing in AWK,

one would run a program in front of it, probably ‘join’. SQL does sorting and aggregation,

but in the Unix context these are done by sort, and then piping through AWK again, or

another Unix command. In short AWK was meant to be used as part of a sequence of

commands piped together. SQL was meant to be used with data hidden away in an

opaque structure, with some sort of schema known to the user. Finally, there’s years of

query optimization work done to support SQL while in AWK, what you see is what you

get.

What advantages do you see in storing (Unix) logs in text files and manipulating them

with AWK?

Peter: Text files are a big win. It requires no special tools to look at them, and all those

Unix commands are there to help. If that’s not enough, it’s easy to transform them and

load them into some other program. They are a universal type of input to all sorts of soft-

ware. Further, they are independent of CPU byte order. Even so small an optimization as

keeping them compressed implies that people remember which compression command

was used, and there are usually several choices. As for manipulating them with AWK,

that’s fine if a pipeline of commands does what’s needed. Otherwise a scripting language

like Perl or Python reads text files just fine. Finally, so do C and Java.

Text files for logs are great. In the old days, one argument against them was that they had

to be parsed, and numbers converted to binary and so forth. But the latter is barely notice-

able in CPU time, and lines of text are trivial to parse compared to XML. On the other side,

fixed-size binary structs don’t need parsing but that’s very unusual, and it’s a rare case

where it makes a difference.

AWK was one of the early proofs of the power of the Unix concept of many small

programs working together. These programs were largely text-oriented. How does the

concept apply to nontext forms of data and multimedia?

Peter: It’s useful to tease out what the “Unix concept” really was. It was a style in which

many programs were useful with one input and one output, together with command-line

syntax, and system support that made all input and output uniform (read and write system

calls, no matter what the device) and system support (pipes) that avoided having to name

and allocate temporary files. Transcoding and compression are examples of things that the

idea applies to perfectly well, even when the data is audio or video. But even with text,

there are lots of applications that don’t work that way, particularly if human beings need to

interact with them. For instance, the spell command produced a list of words it thought

were misspelled, but it wasn’t interactive; the users had to go back and edit their document.

Download at Boykma.Com

A W K 139

So the essence of your question might be, “If we only have command lines, what com-

mands would be used to process data or multimedia?” But this is a counterfactual. We

now have other ways of interacting with computing, and more choices for dividing up

tasks. The new ways aren’t necessarily better or worse than the old ones, just different.

One example is TeX versus programs like Word. Is one better than the other? I doubt that

there is a consensus.

What limits do you see in command-line tools and in graphical interfaces?

Peter: This is an old old topic and the boundaries have become a little blurred. Perhaps it

needs a thoughtful essay. Here’s a superficial answer. If I need to combine a bunch of pro-

grams, then a shell script invoking command-line tools works well. It’s also a way of mak-

ing sure the options and preferences for the various components are consistent. But

graphical interfaces are a lot better at letting me see and choose among a modest number

of options and potentially better at keeping all the information organized.

Many interviewees underlined the importance of learning math to be a better

programmer. I wonder to what degree we can study what we need right when we need it.

For example, with the Internet you can find and learn things pretty quickly, right?

Peter: Yes and no. Unfortunately to learn some things, you not only have to think about

them but you have to sort of practice, so there’s some stuff—you can go to the Internet

and you read it and you say, “Oh, yeah, that works.” And then there’s some stuff where

there’s just no substitute for years of hard work. So here you are in the middle of some

project and you decide you need to understand linear programming to solve your prob-

lem; probably what you’ll get from the Internet will not be helpful, and if you have to solve

this problem within a week, you’re unlikely to choose a method that requires a lot of work to

learn unless you already know about that—even if it were much better. And that happens.

What is the role of math in computer science and programming in particular?

Peter: My degree is in math, so I’d like to believe that math is fundamental. But there are

many parts of computer science, and many kinds of programming, where one can be quite

successful without any mathematics at all. The use (or usefulness) of mathematics comes

in layers. People with no feeling for statistics or randomness will be misled over and over

again by real-world data. There’s mathematics in graphics, there’s lots of mathematics in

machine learning (which I think statisticians think of as a form of regression), and there’s

all sorts of number theory in cryptography. Without some mathematics, people are just

cut off from understanding large parts of computer science.

What differences do you see between working on the theorems and building an

implementation?

Peter: At the highest level, when you prove a theorem, you know something about the

universe that you only suspected was true before. It’s unconditional knowledge. When

you write a program, you can do something you might not have been able to do before.

Download at Boykma.Com

140 C H A P T E R S I X

In some sense, you’ve changed the universe. Mostly the changes are very, very small.

Mathematics and programming are quite different. Maybe the easiest way to see that is to

compare mathematics papers, and the proofs of theorems or programs that theorem prov-

ers produce. The papers are short and frequently convey insight. The machine proofs are

neither. Writing a program has some of the character of the machine-generated proofs, in

that all the tiny details have to be right, a huge burden on the programmer’s understand-

ing, and testing skills, too.

Does building the implementation teach you something more?

Peter: Sure. Typically you learn that you should throw it out and implement it again. Any

project has dozens, or more, design decisions, most of which either seem neutral at the

time, or the alternative is chosen on the basis of intuition. Almost invariably, when the

code runs for real, it is obvious that the decisions could have been made better. And then

over time the code is used in unexpected circumstances, and more of the decisions look

bad.

Would functional programming help?

Peter: If the question is whether functional programs, being more mathematical, would

somehow express results better than ordinary programs, I don’t see a big difference. Any

single-assignment language is easier to reason about, but that doesn’t make the programs

easier to write, nor is there persuasive evidence that programs are easier to write. In fact,

most comparative questions about languages, coding techniques, development methodol-

ogies, and software engineering in general, are appallingly unscientific.

Here’s a quote from R. Bausell’s Snake Oil Science [Oxford University Press]:

Carefully controlled research (such as randomized, controlled trials) involving numeri-

cal data has proved more dependable for showing us what works and what does not

than has reliance upon expert opinions, experience, hunches, or the teachings of those

we revere.

Software is still a craft, rather like furniture making. There are Chippendales, there are

craftsmen, and there are lesser practitioners. I’m a little far off your original question here.

What are your suggestions to become a better programmer?

Peter: How about “learn mathematics”? Oh well, perhaps another answer would be bet-

ter. How about “understand floating point”? Maybe not that one, either. People vary a lot

on this.

I think it is important to learn new techniques and algorithms. Without that, I think peo-

ple quickly become overspecialized and narrow. In addition, these days one ought to be

up on writing secure and robust code. There’s a lot of attacks on users and systems, and

you’d like to make sure it’s not your code that is vulnerable. This is especially tricky for

websites.

Download at Boykma.Com

A W K 141

When should debugging be taught? And how?

Peter: Talking about debugging should be integral to all programming courses (and inte-

gral to all language design as well). It’s hard enough to write correct sequential programs

running on isolated machines. Writing multithreaded code is even harder, and the debug-

ging tools are not yet very satisfactory. One consideration in design needs to be whether it

makes debugging easier. It’s not much of an exaggeration to say that as a programmer

either I am trying to decide what to do next, or I am debugging. Everything else takes

hardly any time.

Is there something you consider the biggest mistake you’ve made with regard to design or

programming? What did you learn from it?

Peter: I don’t know that there’s a single biggest mistake. People make mistakes all the

time. From mistakes you learn (perhaps without being able to state them clearly) a set of

design priniciples that generally work. Then you push them too far, and they break, and

perhaps the new lessons can be incorporated in them, or perhaps your code always bears

the scars of your obsolescent design rules. I find I do not put enough useful explanation in

error messages, and generally end up going back and adding details. There’s a typical con-

flict here: if the error occurs, you want complete useful information. If it doesn’t occur

that’s a lot of typing, and a lot of space taken up on the screen. It’s a balance.

What do you regret most about AWK?

Peter: I think the brainstorm of using whitespace for string concatenation didn’t work out

as well as we hoped. An explicit operator would have made things clearer. The syntax also

generally suffers from the conflict between wanting to encourage short command lines

and allowing big programs. We didn’t think of the latter at first, so some of our choices are

uninspired.

What has become popular (or useful) to your surprise?

Peter: The whole language became much more popular than we expected, or than I

expected. One of the ideas that guided the design was that it should be easy to learn for

people who already knew Unix-like things, particularly C and grep. That doesn’t drive it to

a mass audience of secretaries (as they used to be called) or sheep farmers. But I met a

sheep farmer at a wedding in the early 90s who used Unix to keep his records, and was a

great fan of AWK. I suspect he’s by now moved on.

How do you stimulate creativity in a software development team?

Peter: The best path to high-quality software is talented experts who share a pretty clear

sense of what they want to produce. There are other ways, but they are more work. I have

no idea how to produce good software without talented programmers, though presumably

it’s possible.

Download at Boykma.Com

142 C H A P T E R S I X

How did you develop a language as a team?

Peter: We all talked about syntax and semantics, and then each of us would write code.

Then any of us would change the code. For most of it, it’s not any one person’s code,

although Brian has tended it over the years. We also had limited ambitions. I think we

were helped by the target machine, which only had 128k bytes of memory.

For design we sat around and talked and wrote on the board, and then in coding it might

turn out that we’d missed something important. That would call for informal discussion.

When you find a recurring problem in a codebase, how do you recognize if the best

solution is a local workaround or a global fix?

Peter: There are two kinds of software projects: those that fail, and those that turn into

legacy horrors. The only way to avoid the second would be to rewrite the code as its envi-

ronment changes. The trouble is that that’s a luxury most projects can’t afford, so the

pressure of reality forces people to put in local fixes. After enough local fixes, the code

becomes rigid and really hard to maintain. Without the original developers, or remarkably

good specifications, it becomes really hard to rewrite the code, too. Life can be hard.

If you had one piece of advice, what should readers most learn from your experiences?

Peter: Quoting, or perhaps misquoting, Einstein: “As simple as possible, but no simpler.”

The trick is not being self-indulgent, which it’s very easy to become. If for sure people are

going to start asking for something, then you might as well put it in. It requires judgment

to get simple but no simpler than necessary, whatever the quote is.

The simplest thing that can possibly work? That was Kent Beck, I think. How do you

recognize simplicity and resist adding things that you don’t need right now?

Peter: It depends on who you’ve got around you. For many people, “Can you explain it to

your parents?” would be a good test. Sometimes that may not be possible, but as a starting

point it seems quite reasonable to me. A more general test is if you think about the people

you expect to use it, “Can you explain it to the median user?” as opposed to “Will the

smartest user figure it out?”

Theory and Practice

You taught math before joining Bell Labs. Should we teach computer science in the same

way we teach math?

Peter: We teach math for a couple of different reasons. One of them is for future mathe-

maticians, which is sort of what I was doing when I was teaching math. One of them is

because mathematics is so useful. But it’s a little clearer, I think, what mathematics is than

what computer science is.

Download at Boykma.Com

A W K 143

In computer science there are various kinds of programming and it’s hard to know what

to think about that. There’s all those data structures and there’s the sort of algorithms and

complexity part. It’s somewhat less clear what different users of computer science need

than it is, at least what people think about, what potential users of mathematics need. So

when you’re teaching mathematics you know what the engineers need; nowadays I sup-

pose you know what people who will be doing statistics or economics or something need,

but I think the problems are somewhat simpler for the mathematicians.

On the other hand I think computer scientists ought to know more mathematics, so

there’s some leftovers from when I was a mathematician.

So there’s this question versus what we might loosely call reality: computer science

departments, at least in this country, have had some trouble attracting majors, at least

over the last several years; it’s not clear why, but some of the ones who have succeeded in

attracting more majors have changed their curricula a lot. So, what computer science

should be taught is changing.

From your previous answers I have the impression that you suggest that the sweet spot of

programming is between a pure theoretical approach, where you might be too far from

the real-life needs, and a full pragmatic approach, where you might solve the problem

assembling pieces of code from various sources. Does this make sense?

Peter: Well, yes, but I think the bigger problem is it’s very hard to know where to draw

the various lines. It depends on what your ambitions for your code are. If you expect peo-

ple to use it for a long time, then it has to be written so that it’s very easy to fix bugs.

The other thing that’s difficult is if you get too many users too soon, it means it’s too hard

to fix any design problems. If I write it just for myself, then every time I don’t like the way

it is, I just fix it or change it. If you write it for a fairly small group, then it takes a while

before people complain when you make incompatible changes, because they know it’s exper-

imental. But if you write for a large group or if it’s used by a large group, it becomes much

harder to make an incompatible changes, so you’re stuck with whatever choices you made.

This might be one of the problems with legacy software, when people take pieces of code

from various sources such that problems in that code propagate and stay alive for

decades.

Peter: Yes, I think that a lot of code that’s still around that was written a long time ago by

people who had no idea it would last this long.

One factor that keeps AWK alive is that so many users take scripts written by someone

else and modify them to do something else.

Peter: Yes, that’s right and in fact that was a design goal. That’s sort of the way that we

thought it would be used, we thought that it would be used a lot. People would take

things that did almost what they want and just modify them.

Download at Boykma.Com

144 C H A P T E R S I X

Is this idea of programming by example applicable to larger projects?

Peter: I think not too much larger, because the example has to be small enough to see to

understand. The level at which you can do it, it’s easiest if it’s a few lines of code. Maybe

you could get up to sort of a screenful, and expect people to follow what’s going on. Pretty

much it needs to be simple enough so that you could just look at the code and see what

needs to be changed, or at least see enough of what needs to be changed so that you could

run experiments to see if you’ve got it right.

The idea to write very short “throwaway” scripts sounds very seductive. Has your

experience with big codebases and other programming languages taught you when to

rework a codebase, and when to restart it?

Peter: It’s hard to restart from scratch, in practice. If your user community is small, you

can talk to them. Otherwise, if your code has a well-defined interface, then it’s possible. If

the interfaces aren’t well defined and the user community is large, it seems really hard to

avoid breaking things. Unfortunately this is true of less-drastic upgrades, too. So that’s

actually the good news, namely that since any substantial upgrade will break things, it’s

not too much worse for the users to do a major reimplementation. After a few years, new

code will almost certainly need to be totally rewritten. Users will use it in ways that the

developers hadn’t thought of, and many of the implementation decisions will turn out to

be suboptimal, especially for new hardware.

The AWK experience is a little different. We did rewrite it several times, but then we

declared it finished. It would have been possible to upgrade it, but all our ideas seemed

incompatible with the basic principles. I think that was nearly the right decision. We all

went on to other things, rather than expanding the range of the system. The only thing

that I think is missing for its tiny niche in the modern world is using UTF-8 as input.

Brian said that you were a very fast implementer. What’s your secret?

Peter: I don’t think there is a secret. People are just different. I’m not sure, for instance, if

I had to do it now, that I would be quite as fast. Part of it was optimistic ignorance, I think.

That’s the belief that you can just write it down and it will be enough. Part of it is how one

is with the tools, and language, that are available. Some people find the tools comfortable,

and some don’t. It’s like the ability to match colors with watercolors, which some find easy,

and some find difficult.

One of the things that I think that’s true is that if you are going to write code profession-

ally, for a living, you should find it fairly easy to write; otherwise, you’re just struggling all

the time. It’s like writing short stories: if you don’t find it easy to do them at a certain

level, I think you are going to find it very hard to do at all, although I don’t know since I

can’t do that kind of writing. It’s a lot of work getting things into their final shape.

Download at Boykma.Com

A W K 145

Do you write the prototype and then modify it to get professional-quality code? Or do

you experiment with the idea, but then rewrite completely to create the finished work?

Peter: I think you can’t tell in advance. When you start writing the prototype, you can tell

sometimes what kind of compromises you’re making. Sometimes those compromises

mean that the prototype will be inconsistent with being easily converted into a production

program. Anyway, there’s all kind of things that you might do that would make it hard, and

in that case you’re just going to have to rewrite it, but if you’re lucky, then maybe you can

transform it sort of step by step. You ought to expect to have to throw it away, and redo it.

For one thing, it’s unlikely you’ll make enough right decisions. You write it and you start

experimenting with it and you change things. After a while, unless you were very lucky,

the code starts looking terrible. It really needs to be at least refactored, but probably just

rewritten. That’s what I would probably expect; you’d really end up rewriting it. Certainly

the first AWK implementation was purely a proof-of-concept thing because it generated C

code; of course that’s completely inconsistent with how you would want to use it.

Tom Kurtz, creator of BASIC, said that writing code makes you understand aspects of the

problem that you didn’t think of.

Peter: That’s right, stuff you weren’t smart enough to think about until you had to face it.

I think one of the things you look for when you’re hiring people is whether or not writing

code is a natural form of expression for them. Is this how they express their sort of algo-

rithmic ideas?

What differences are there between writing software and creating a language?

Peter: In some ways writing a language is simpler than the general software, but I’m not

sure that’s really true. It concentrates your choices, I think, because it has to fit together

and there’s a relatively modest number of ways to do each thing. Once you’ve decided on

the big features of the language, there’s a lot of framework that’s already in your head:

how functions will work, and are you going to do garbage collection, or whatever. What

are the primitives of the language? The implementation comes in layers. I think that tends

to be somewhat easier. Of course, if, sort of late in the thing, you’ve discovered you made

some really bad choice, you have to throw it all away.

Does the implementation affect the design of the language?

Peter: Oh, sure. I think you can see that undoubtedly. I think, for instance, for a long

time it was a relatively special thing to do garbage collection. The Lisp guys worked at it

and some of the functional programming guys worked at it and lots of other people just

sort of waited because it wasn’t quite clear how it would work in, say, C-like languages.

Then, for instance, the Java guys just said that’s what we’re going to do. It was quite a dif-

ferent tradeoff, by making a relative small change in features of the language; I’m not say-

ing this is what happened to Java, but by giving up on actual memory address as being

accessible to programmers, you could decide whether you wanted to try garbage collection

or compacting garbage collectors and stuff.

Download at Boykma.Com

146 C H A P T E R S I X

I think now languages without that really suffer a lot comparatively, even though garbage

collection is far from perfect. Fighting with memory allocations is a big annoyance, so it’s

never quite totally trivial, but there’s lots more known now about how to implement lan-

guages and you have a much wider choice of things to do, especially if you’re doing some-

thing lightweight.

If you want a feature in your language that’s hard to implement, it’s not clear that it’s

worthwhile because it’s hard to implement and you’re trying to do something lightweight.

If you’re trying to do a language that makes doing difficult things possible, then there

might be a list of things that you have to do and then you have to put up with whatever

the troubles are.

How much does the language influence programmers’ productivity? How much does the

ability of the programmer makes a difference?

Peter: Boy, I wish I knew the answer to that. I used to think I knew the answers to those

questions. It’s clear that programmers vary some huge amount in ability. There’s really

more than a factor of 10, maybe much more than a factor of 10. This is sort of software

engineering, so there’s no empirical evidence for any of it, and my belief is that the lan-

guages shouldn’t matter. That is, given a group of people and some project, it really

doesn’t matter what the language is, but for individual programmers I suspect it does mat-

ter. I think people, for personality, or what they learn first, or whatever, find some kinds

of languages easier to adapt to than others. This is where you get these funny debates.

It’s clear that there are, for instance, Lisp applications that would be really hard to achieve

the same functionally in C, and for that matter C applications where it would be really

hard to achieve the same thing in Lisp. But for a range of programs you could use lots of

languages, but I’m not sure even with practice all programmers would be equally comfort-

able across a wide range of languages, and I don’t know why. But of course it takes time to

become expert in a language. On the other hand, for some people it takes less time in

some languages than other languages.

People have these big debates about languages and which of the many desirable features

they implement and which ones they don’t, and how awful that they don’t and stuff like

that. But it’s not clear that it really matters. To put it much more controversially: you can

write Mars Lander software in any language; each one of them will have properties and it

will depend much more on the people who wrote it and how they organized it than what

the language is. Everybody will argue fiercely for their choice, but I just don’t believe it.

C doesn’t support objects, but at the same time you built little tools, components of the

Unix system, that could be used together to build complex features. To what degree does

building objects inside the language as part of a big program work better than building

components that are part of the system?

Peter: That raises two questions in my mind. One of them is sort of a binding question or

a modularity question. The question is what you put inside one language as opposed to

what you try to compose out of tools. You get a much tighter and of course more complex

Download at Boykma.Com

A W K 147

relationship among the components if they are all within a language. Some of that is just

computational efficiency, but I think some of it is conceptual consistency also.

The other question has to do with “object-oriented” as a general idea and I think it’s possi-

ble to be overenthusiastic about the success of object-oriented this and that. Leaving that

aside, which is somewhat controversial, if you look across languages a lot of them say,

“We’re object-oriented,” and then when you look closely, you notice they all do quite dif-

ferent things. It’s not always clear what the term means. In fact, people get into these very

confusing discussions, because there’s a natural temptation to believe that whatever your

language does about objects, is what object-oriented means. I think it’s basically a term

that does not have a simple, relatively straightforward, widely accepted definition.

How does choice of programming language affect code security?

Peter: You certainly need something to help you with all the various things that are

involved in security. I guess, roughly speaking, two kinds of things go wrong in programs

that are connected with security. One of them is logic errors of one sort, so that there’s

something that you can say to the program and it makes a mistake and it gives you privi-

leges or does things it’s just not supposed to do at all. The other is the whole buffer over-

flow stuff, which is implementation errors of various sorts that are exploitable, actual bugs

that people didn’t think about. And I think most of those just shouldn’t be there. Low-

level languages support buffer overflow with careless programming of various sorts, so it’s

not easy to get right.

I thought there was a time when it was rumored that Microsoft for what became Vista was

just going to rewrite all the C and C++ into C#, and at that point you weren’t going to get

buffer overflows, because you can’t get buffer overflows. But of course that didn’t work

out. Instead they do these enormously elaborate things with machine-language executa-

bles, to attempt to make it hard to exploit buffer overflows and other similar things.

Then there is another kind of security problem, which happens at seams between pro-

grams, because a lot of the interfaces aren’t all that well specified, or not specified at all in

some sense, except very informally, such as HTTP and XML cross-site scripting and those

things. We need to do something about security, but I really don’t know what.

How much does it help if the language makes it difficult to create certain problems?

Peter: Yeah, as much as possible, but like our earlier discussion, it’s not clear how much

that helps. It was a time when I was writing a fair amount of Python, and I had these

amusing bugs, which of course are caused by careless thinking and bad style. But the thing

about the indentation in Python was that as soon as the loop became too long—I had a

nested loop—to get at the bottom of the loop, I needed to go back two tabs to get out of

the loop and do some work, and I didn’t give it two tabs; I gave it one tab because I

thought that was enough because that is what it looked like on the screen, and that of

course meant I was doing this expensive thing every time through the outer loop, which

was very silly. Although the program was still correct, it was very slow.

Download at Boykma.Com

148 C H A P T E R S I X

I guess the moral is no matter how well designed the language is, it’s always possible for

the programmer to make dumb mistakes. And the question of whether or not you can be

relatively scientific about ways you can make it less likely or more likely, I don’t know.

Software engineering is in many ways a very pathetic field, because so much of it is anec-

dotal and based on people’s judgments or even people’s aesthetic judgments. It’s not clear

to me how many of the criteria people use to talk about languages, in programming lan-

guages, are directly and irreducibly relevant to writing correct programs or maintainable

programs, or programs that can be changed easily.

Research generally helps the implementation, but the design aspects generally reflect the

personal preferences of the designer.

Peter: Yes, in fact, I think the really successful languages have little things in them that

weren’t directly examples of what had appeared in the literature. People decided that

something would be interesting to do. All the stuff that is in programming language is use-

ful for thinking about languages, and talking about languages, but it’s not clear what you

would do, either in the language or in how you use languages, to make the code, to make

a programming process better, the maintenance process better. Everybody has strong

views on this, but it is not clear to me why we should believe what. There doesn’t seem to

be any science.

It’s difficult to use a scientific approach for the design of the language partly because we

don’t have a scientific way to measure the good and the bad of a language.

Peter: Yeah, I think that’s right, or the good and the bad of programming in general, not

just languages. There are lots of people who think they know solutions but it’s not quite

clear to me why they should be believed because it’s clear there’s lots of different success-

ful ways of developing programs.

How do you choose the right syntax for a language? Do you focus more on corner cases or

on the average user experience?

Peter: The not-so-surprising answer is “both.” It should be as sensible as we humans of

bounded intelligence can make it, but it should be clear what the semantics are in corner

cases, too. A successful language will be used by lots of people, most of whom don’t share

the designer’s point of view or aesthetic judgment, and it’s best if they aren’t gratuitously

misled by strange features or edge cases. And, people will write programs that generate

programs in the new language, and that will come as a surprise to the implementation.

When designing a language, do you consider debugging when evaluating potential

features?

Peter: That’s a tricky question. What you hope for is a fair amount of help from the devel-

opment environment for what’s easy to do. The stuff we know how to do is giving guesses

as to what the completions might be and show you what the parameters are, and it can

show you other references if it’s good, and find the definitions. It’s harder of course to find

a function you don’t know the name of that does something, I mean you’re sure some-

where in this mess is a function that formats numbers in a machine-readable way and

Download at Boykma.Com

A W K 149

puts commas in or something like that, right? But how do you remember the name? How

do you find the names of these functions? And so when people write these libraries, they

try naming conventions, informal naming conventions and things like that. But a lot of

that stuff just doesn’t scale very well.

How about good error messages?

Peter: Well, that would be nice. My usual complaint about error messages is that they

read like notes from the program to itself, as opposed to suggesting to the user what you

might fix, and in some cases they’re much worse than that.

How much detail do error messages need?

Peter: Well, they should be as helpful as possible, but that doesn’t actually answer the

question. Certain kinds of errors in programming languages are much harder to be intelli-

gent about than others, although you can certainly understand heuristics. So in C-like lan-

guages mistakes in separators and braces really tend to confuse the compilers a lot and it’s

hard for them to explain, and so people learn to recognize what your compiler says when

you’ve left out the semicolon between a class definition and the next function. You just

recognize that this imbecilic error message has nothing to do with what actually hap-

pened. The compiler has gone too far into the next function before it noticed it was a mis-

take. And if you leave out a closing curly brace, you get the same kind of

incomprehensible error messages; you just sort of learn what their shape is. It’s possible to

do better but it seems to be a lot of work, and it’s not clear that it’s worth it.

There’s another way of asking this question, which is would you like stupid error mes-

sages that give you a hint about what the program thought was going wrong, or would

you like helpful error messages that remind you of those hints that Microsoft used to put

in Word to give you help that were never very useful and always seemed to be wrong?

I think if you’re going to do fancy error messages, you have to work hard at getting them

so that they’re mostly right; but that’s partly because we’re used to mediocre error mes-

sages from which we can sort of figure out what’s going on.

Waiting for a Breakthrough

How would you change AWK to improve the support for big programs?

Peter: Given all that’s happened in between, the question is, would we have come up

with Perl or would we have come up with something else? Well, I don’t think we have the

right kind of minds to have come up with all of Perl, but if you look at the spirit of what

was going on AWK, if you thought it should be used for big programs, something like that

would be possible.

I think the other answer is we stopped when we stopped because it seemed like a good

place to stop. I don’t know if I’ve told this story—I think it’s only months, but in retrospect, it

might have been a couple years after AWK had been released internally—I got a call from

somebody in the computer center who was having some trouble with AWK, and I went

Download at Boykma.Com

150 C H A P T E R S I X

down to look at his program and we had thought of AWK as I described it, short one-liners,

little things, OK? And he had written an assembler for some esoteric piece of hardware in

AWK and it was 55 pages of code. We were just stunned. In fact it’s not so strange you can

do that; people certainly wrote longer programs in languages with less structure, but it

was quite surprising to us.

Brian said that essentially every time you design a little language, people start using it and

then they ask for loops and whatever, so every time you have to stop, otherwise the

language would become...

Peter: ...bigger and bigger, and you have to decide whether you want to go down that

road or not.

If you want to build a general-purpose language, start with that goal in mind, instead of

starting from a little language and going big after it becomes successful.

Peter: I think that’s right, too. That was another thing, which is another story I may have

told. Bigness is that people write programs and, say, languages, parsers, or compilers, and

they think of people as typing the input, but for many reasons you may discover people

writing programs to produce the input. I think typically the first time that happens is the

compiler case because, say, in a C-like language nobody ever saw an 80,000 case switch

statement before. They don’t think of a human being able to type a 80,000 case switch

statement. Maybe the code generator never saw a switch statement with so many cases.

These things happen at all levels even for general-purpose languages.

What about extensible languages where users can modify the language?

Peter: Well, it depends exactly what that means, I think. I mean basically, yeah, sure, but

there’s a lot of limitations you get unless you mean something like Lisp, where people can

add these things to the language using macros. There’s lots of reasons people want to add

stuff to languages, for either expressibility or because you need to include libraries written

in other languages that do complicated things.

This is another question that of course we didn’t have to face in AWK at all, thank you,

which is how hard is it to incorporate subroutines or packages written in other languages

into your language? The answers to that question vary a lot.

There seems to be a divide between mathematicians and nonmathematicians. Is there a

difference between mathematics and software development? C won; Scheme didn’t. C

won; Lisp didn’t. It’s the “worse is better” approach again.

Peter: I think there may be a difference between the mathematician-designed languages

and the nonmathematician-designed languages, but the differences between Scheme and

C are much more the difference between languages that attempt to have a simple founda-

tion and languages that don’t. There’s nothing absolute in this; we don’t know what’s

going on.

Download at Boykma.Com

A W K 151

There’s certainly no general agreement on what makes languages successful, but there are

a lot of factors. Everyone has favorite facets and aspects, and no one knows how to

encompass them all. Original Lisp, to be purist, had a very simple model of what was going

on, and was for that surprisingly powerful. One might ask, why did they have to make the

language more complicated? What was it that they weren’t doing that needed extra com-

plication? Certainly all the intermediate Lisps, and then Scheme, and then finally Com-

mon Lisp, have extra complications.

There’s probably two things. This may not work out because I haven’t thought it through

but let me just push right on. One thing is programmer convenience. Another thing is pro-

gram performance. We’ll get to other languages eventually but I think that languages like

Lisp give a lot of clarity to some of these issues.

One of the big differences between original Lisp, I believe, and Common Lisp is the extra

data types, hash tables, and stuff. Those are in there essentially for performance. At the

other end of this—my history is really weak on this instance; I do not actually know a lot

about Lisp—at some point the Lisp guys started putting macros in. In one way, macros are

a very natural thing. There’s just a different evaluation environment for them, but—and

that’s a question of programmer convenience—there’s nothing macros do that program-

mers couldn’t have written themselves.

They’re a force multiplier.

Peter: That’s the expectation. But you also get a force confusion multiplier and you use it

extensively; it means that your code is essentially unreadable by anyone else. It makes it

much harder to say what your language does, even informally. There’s a lot of funny cor-

ner cases. Even in this relatively pure environment, you can see the tensions between

what you might call mathematical purity and getting the damn job done.

All the Lisp languages and all those other languages, many of which have very formal

semantic definitions, have exactly the same problem. There are people involved in at least

at two phases of the life of the program, plus there’s a computer involved. To make the

program satisfactory to the computer, you need a quite precise definition of what the stuff

the people write means. The people need something that’s not hard to write. Once the

program has been alive for a while and used, it’s quite likely the people changing the pro-

gram, the maintainers, have to be able to read the code and change it.

In my—as we say, “humble, but correct”—opinion, many of the features of some lan-

guages that make it convenient to write the code make it very difficult for maintainers.

Just for greater shock value we can pick on almost all object-oriented languages. These

sorts of pragmatic languages, where the precise semantics are only clear to the compiler

and the compiler writer, are quite valuable to the writer of new code. Languages that

allow you to express your intent in a way that’s clear to people who have no other guid-

ance but the code, that would be nice, too. I’m hard-put to think of any examples.

Although, of course I haven’t written in every language. But among the languages with

which I’m familiar, there may be slightly better and slightly worse languages for this.

Download at Boykma.Com

152 C H A P T E R S I X

You’re talking about two different axes.

Peter: Yes, I am. That’s right. However we were writing code in the good old days, when

giants walked the earth and all that sort of stuff. Pygmies walked the earth, but they were

in big boxes. Nobody thought that their code would last for 30 years. If you had said “Unix

will still be here,” or “FORTRAN will still be here,” the natural answer from all of us would

have been “Yes, and we would rewrite it.” That’s the way we lived. You put it out, and

you rewrote it. It was slightly incompatible and somewhat better each time, until you fell

victim to the Second System Effect, in which case it was very incompatible and a lot

worse. We sort of understood abstractly the idea that there are only two kinds of software

projects: failures and future legacy horrors.

We didn’t understand the fact that you couldn’t keep writing software year after year and

rewriting it also. It adds up and either you spend all your time rewriting the old software,

or you let it slide. You can’t do both. The maintenance problem to some extent looms

larger and larger, although I say that because that’s what I spend a fair amount of time

doing with Google, where it looms pretty large to me.

Leaving aside this unsolved case—the earlier comments on my distinction between lan-

guages of the mathematical sort of languages and the nonmathematical sort—there’s also

languages designed by mathematicians or ex-mathematicians or people who think like

mathematicians, and languages that are not. I would expect the former to be nearly com-

pletely specified, even if informally. You would really write down what it’s supposed to do

in all the circumstances you could think of. You’d actually write down the lexical story, as

opposed to hint at it. You try to write down the rest of it, and you might not succeed.

Simon Peyton Jones said they managed to specify about 85% of the first version of

Haskell, but beyond that it just wasn’t worth their time.

Peter: Sometimes you can be too careful. One of the things that hasn’t worked as well as

it might have in C short int or long. You had two choices there.

You also have signedness.

Peter: Please, we will not even start on signedness or const, for that matter. You could

have said, “We will have int8, int16, int24, int36, int64, whatever those all are, and the

language will either promise to do exactly that or we’ll do our best but round up.”

This is all in retrospect. I’m not sure that I could have done it even as well starting up ab

initio. Or you say “Listen, we’ve got short int and long, and we’ll tell you what they are

and bug off. For other things, you just have to cope yourself somehow.” That wouldn’t

have surprised the compiler writers that want to give every last bit of efficiency to their

users. You see in GCC where they’ve graciously gifted you with plenty of types. Then

there’s the unsigned guys and the pointer-sized guys and all that other stuff, which is just

too much to contemplate.

Download at Boykma.Com

A W K 153

Also strings are an interesting example. After you’ve come that far, you realize that if you

allowed arbitrary characters in them as opposed to making them say UTF-8 strings or

ASCII strings, then you can’t print them. While it doesn’t sound bad to say “Yes, all my

structures that my language and program supports are binary except the ones that are

explicitly made into printable format,” it’s a big pain in the neck.

We need some real conceptual breakthroughs. It’s been a long time, and I’m pessimistic.

You’ve made me pessimistic.

Peter: I’m sorry. What’s amazing is that all this stuff actually sort of functions, and you

can actually rely on it. It doesn’t come with any guarantees but effectively you can rely on

it. You know, your car long ago lost any ability to function without the computers, and

there’s a lot of code in your car. It mostly works almost all of the time. I know there’s no

guarantee, and I know there are stories where the computers need to reboot themselves

while you’re on the highway and all that stuff, but fundamentally you rely on it. At one

level I’m just complaining about inefficiencies as opposed to fundamental flaws—but

they’re annoying.

What type of breakthrough we would need to start solving these problems?

Peter: I think not only “No!” but “Of course not!”, but let me try some observations. On

the one hand, we have huge amounts of computer power on the machines that we write

the software on. Most of the computer power just sits there in some idle loop. Some aston-

ishingly large fraction of it goes in to running the user interface. Then if you’re compiling

C, for instance, a huge amount of it goes into reading stuff in to memory and then writing

out various versions of intermediate files so that they can be read into memory again.

OK? For a language with modest structural integrity, where you can actually tell about

aliasing and many other things, you would think the compilers could do a much better

job. That means the programmer’s got to have some way to express their intent, which we

haven’t quite figured out yet. In fact it’s gotten worse. It would be exceptionally generous-

spirited to describe threads and object-oriented as orthogonal. Instead you’d be much

closer to describe them as hideously intertangled. We’ve got all this stuff. You would have

to clean up a lot of the stuff that makes it very hard to tell what programs are doing. That’s

going to become especially difficult in the world of multicore.

Maybe there’s lots of very bright people out there doing very interesting work. Maybe

something will develop. The only tool we have is to ask computers to help our programs

be safer and cleaner, and starting from better languages when we think them up. It’s hard

to see which; it’s a giant ball of yarn, and it’s hard to see which of these little loops sticking

out you start pulling on. Find an end. I don’t know. I’m not eternally optimistic.

On the other hand, it’s not all bad. It’s just sort of annoying.

Download at Boykma.Com

154 C H A P T E R S I X

How do you define success in terms of your work?

Peter: When we were doing AWK and things like that, it seemed (it may not have been),

it seemed like you could have an idea and do a pretty moderate amount of work and if

your idea was good and your implementation was good, you had a big impact on com-

puting. So that set a standard that I think would be extremely hard to match any more. It

was easy to have a fairly substantial impact on what turned out to be a significant part of

the computing world then, and I think that just isn’t true any more.

I think the number of small groups that have a big impact is relatively small. It’s hard to

have a big impact. It’s not impossible to be successful, that is numbers of people who use

your stuff, people think it’s good, but you can’t have the same kind of impact, I think. It’s

very hard to see—the extreme example of that is Unix, where a relatively small core group

produced this thing that really made a big difference. And now maybe one of your readers

will explain how there’s some examples of that that I missed in 5 or 10 years, but I don’t

think so. I think now it takes bigger groups and it’s much harder.

I think the answer to your question is: we were lucky and had a lot of impact for relatively

little work. What a great moment, what a great benchmark for success it was. Now I think

for people who are much more talented than we were, that kind of success would be hard

to achieve. Of course that is good in many ways. It means there’s been a great deal of

progress, but it also means that individuals have to settle for less.

Programming by Example

You mentioned that AWK is a language that lives because of programming by example.

Peter: That was a deliberate design decision. There’s many things; some of them bad,

some of them good. AWK has a collection of interesting—which is a very polite way of

describing it—syntactic choices, of which I think only a couple are real mistakes. Mostly

the idea was it would look a lot like C because then we wouldn’t have to explain it to the

people we worked with.

Then the question is now what? Our view was that since all AWK programs would be one

line or at most a few lines, the way to program AWK was to look and find examples that

did something like you wanted. Just change them. If you wanted something more compli-

cated, you’d do it incrementally and that would all work out. At the same time we were

doing AWK there was a project at Xerox PARC, whose name I’ve forgotten unfortunately,

which was in vaguely the same space as AWK. It was supposed to process files. The Xerox

PARC systems didn’t think of their files with any lines and stuff, but it was close. They

meant it to be used by secretaries. The page you wrote on was two columns. You wrote

the program on the left, and a worked example on the right. The compiler checked that

your program did what the example said it should do.

Download at Boykma.Com

A W K 155

That’s clever.

Peter: It was clever, and furthermore they worked hard to make the syntax approachable

by secretaries. Of course it failed. It was not widely successful and AWK was for many rea-

sons. Unix spread and whatever system this was written didn’t, and so on and so forth.

Our version of that was this idea that you find some program that did something roughly

like what you want to do. AWK always was quite deliberately intended for programmers.

That’s not the way it worked out, of course, but the fact that it was relatively simple, and

there were examples you could look at, and you could get the AWK book and look at

examples in, I think helped a lot.

In copying and pasting and tweaking a program, you learn the semantics of the language

by osmosis at best.

Peter: Except the idea of the AWK book is that between the informal introduction and all

the examples, there was supposed to be a fairly complete description of what the language

was and what it did. I think there is and I think that’s the way it worked out.

Do people read that?

Peter: Some do, some don’t. Let me put it slightly differently, OK? Whether or not you

read it, you can do it by example in AWK, right? That’s an empirical fact. How about Ada?

I’ve never tried.

Peter: My guess is that you’d be really hard-put to do Ada programs just by examples. It’s

quite possible it would be hard to do C++ programs from example. At some level of sim-

plicity, you could get some ways into it.

People aren’t running one-liner C programs, either.

Peter: That’s the difference, of course. It’s very hard to write a one-liner aside from screen

issues. The small examples are intrinsically large.

As is the scope of the problems you’re trying to solve.

Peter: That’s right. They’re general purpose and AWK is not. One of the early programs

written in AWK was an assembler for some attached processor. I was horrified. He didn’t

clearly explain why he was doing it that way, but it was clear that it was a lot easier to get

started with an interpreted language, and the shell wasn’t powerful enough.

I’d like to see programming become more accessible to everyday people, but I also like

programs that become more reliable and easier to compose them into larger

metaprograms. It’s difficult to resolve those ideas.

Peter: Some composability can be helped by language design and idiom. Reliability, well,

that’s hard. Clean design is hard, too.

Download at Boykma.Com

156 C H A P T E R S I X

How do you recognize a clean design?

Peter: There’s a sort of metaissue here. I used to be a lot more confident in my judgments

than I am now. You look at it and you try to write small examples. You think about what

the people are saying about it. One of the things that’s essentially always true is that the

clean examples that people use in text books are completely unrealistic. There may be a

class that looks like the ones in introduction to object-oriented programming, but I don’t

believe it. They all have many, many members, which are capable of responding to many

messages. The useful object that you can put into programs and understand what the state

of your program is a lot of stuff. I think you put up with a certain amount of complication

if the reward seems great enough.

Or the perceived reward.

Peter: Right. That’s all you get. This is software engineering. There’s nothing quantitative.

Perceived and real are the same because we can’t measure real, or at least have shown no

inclination to measure real.

We can’t even measure productivity, and that makes it difficult to measure better or

worse.

Peter: It does, but I don’t think that’s the point. If you’re in a real engineering field, you

measure the results. You do bridges. How much did this bridge cost? How hard was it to

build? Does it stand up?

For programs, you can measure how hard it was to build, how much money you spent

building it, but the rest of it is just a complete mystery. Does it do what it says well? How

would we know? How would you describe what it’s supposed to do?

We don’t have a material science for software.

Peter: I have this expectation that when the hardware people finally run out of oomph, it

is possible there will be more of an engineering principle to software. Everything’s been

changing so fast. It’s a sort of doubtful analogy, but if the properties of concrete and steel

were changing 10% every year, structural engineering would look a lot different.

That’s a speculation because there’s no reason it would have to look different. It’s just the

models would say 2007, 2008, 2009. Since we never had any models in software, I guess

we can’t do that.

We talk about software. We don’t have atoms. We don’t have physical properties.

Peter: That’s right. It’s not quite like mathematics. It doesn’t live completely in people’s

heads. It’s almost completely humanly constructed, and the constraints on it are some

combination of mathematics that has to do with computability and algorithm complexity,

and whatever the hardware guys give us. That part’s been changing rapidly.

Download at Boykma.Com

A W K 157

Another point you made was that there’s a real difference between a computer

programmer and a theorem. You can prove a theorem and then you know something, but

you write a computer program and all of the sudden you can do something you couldn’t

do before.

Peter: I still think that’s mostly valid. Of course the more modern versions of theorems

sometimes come with algorithms, not surprisingly, because computing things turns out to

be so useful the boundaries have become a little blurred.

People before the age of computers thought about how hard it was to compute. There was

stuff they computed. Scientific literature has a number of places where you look into the

notebooks of some of these guys and they did amazing calculations by hand, just elaborate

calculations, and then here’s the answer. I don’t think the distinction is totally categorical.

At the time it had struck me since I started out as a mathematician.

Will there be a computing revolution where we start thinking of components as

theorems?

Peter: Not until we learn how to describe them. The kinds of descriptions that have been

most widely used are purely functional. This is how the input is transformed into the out-

put. It says nothing or hardly anything about how long it takes. It says almost nothing

about how much memory it requires. It’s a little vague on what kind of environment it

needs to run in. The theorems, to be fair, they’re human as opposed to machine theorems,

but they do come with hypothesis and conclusions. That’s open to only modest interpreta-

tion, whereas with the software, you need to interpret a lot.

There are plenty of nasty examples. That list I gave even left out things like a real careful

specification of the input. There are programs that are known to have failed when you

move them from 16 bits to 32 bits, because someplace in them was intrinsically 16 bit, and

you didn’t know that. It’s hard to describe all that stuff. It’s not fair, but the favorite exam-

ple of that is programs that have been proved correct which have bugs. Unfortunately

there was something about it that didn’t model reality. People never noticed.

The type guys have this problem. They want to be able to do a type induction guarantee,

which keeps the strength of the system fairly weak. At one other extreme in this multi-

dimensional space is a C++ template, which can compute anything at compile time with

just the speed you can expect, but since you can compute anything, it’s going to be slow

anyway.

That’s a more interesting answer to what’s bothering us about computer science.

Computers aren’t getting faster. They’re getting wider.

Peter: Exponential growth of goodness is a good environment to live in.

Download at Boykma.Com

158 C H A P T E R S I X

I realized recently that when the growth in data since the 70s has dwarfed the growth in

processor speeds. Take SQL, designed then, and it can still cope with this huge explosion

in data sizes. Other languages don’t fare as well.

Peter: I would say there’s roughly a thousand times gain in CPU speed since then. That’s

not the number in data. The experience in computing I think is that you get some 10n

improvement over time. It’s not a bad approximation to say 10n/2 of that was in hardware,

and 10n/2 of that was in algorithms. I think that’s true here.

A lot of work has gone into making query optimizers and better understanding of database

design to make it possible for them to have these terabyte databases.

How do hardware resources affect the mindset of software programmers?

Peter: Programmers are too varied a class to generalize about. You have to be aware of

the constraints. For instance, the speed of light is what it is, and is not improving. Some

things that work well locally are disastrous remotely. All those layers of abstraction and

helpful libraries allow us to get programs nearly working quickly, but have pernicious

effects on speed and robustness.

Do you first identify the right algorithms and then make them run faster, or do you focus

on speed from the beginning?

Peter: If it’s a problem you have some understanding of, you build the algorithm in a way

that keeps the performance good in the parts you think need it, and then it’s possible to

tune it if necessary. Generally it’s more important that the algorithm work, and it’s harder

to rearrange the implementation after a lot of tuning. But it’s not unusual to discover that

something is bigger, or used more often, than expected, so that quadratic algorithms are

intolerable, or even that too much time is spent copying and sorting. Many sorts of pro-

grams perform adequately without much work. Modern computers are very fast, and a lot

of the perceived delay is in networks or I/O.

How do you search for problems in software?

Peter: The trick is finding problems you can solve. There are plenty of problems in soft-

ware that turn out to be too hard, and for many of the ones that aren’t, just scale them up

a couple of powers of 10, and the old solutions frequently don’t work so well.

Once you have something that mostly works, what do you do?

Peter: If it’s for my own use, I just stop there, hoping I’ll remember enough context to

upgrade it. For professional things, one really ought to document it, try to harden it

against various sorts of bad situations, and add enough comments to the code that some-

one else could easily maintain it (or as easily as I could). This last thing is hard. Well-

commented code is rare.

Download at Boykma.Com

A W K 159

There is a Unix philosophy that says, “If you don’t know how to do something well, you

don’t do it.” Can this artistic approach spread beyond Unix?

Peter: This is a lot bigger question than just software. Most of our lives, we have to do

things we don’t know how to do well. It was a luxury we got in Unix, plus the original

Unix folks figured out how to do many things very well.

It might be interesting to explore the hard-nosed hypothesis that when businesses don’t

follow this approach they don’t do as well, but I doubt the data would be convincing, one

way or the other. The natural (and no doubt shallow) comparison is between Microsoft

and Apple, but how do you measure, critical acclaim or cumulative profits?

Download at Boykma.Com

Download at Boykma.Com

161

Chapter 7 C H A P T E R S E V E N

Lua
Luiz Henrique de Figueiredo and Roberto Ierusalimschy

Lua is a very small, self-contained dynamic language created by Roberto

Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes in 1993. Lua’s

small set of powerful features and easy-to-use C API make the language easy to

embed and extend to express domain-specific concepts. Lua is prominent in the

world of proprietary software, where games such as Blizzard’s World of Warcraft

and Crytek GmbH’s Crysis, as well as Adobe’s Photoshop Lightroom, use it for script-

ing and UI work. Its predecessors are Lisp, Scheme, and perhaps AWK; it has design

similarities to JavaScript, Icon, and Tcl.

Download at Boykma.Com

162 C H A P T E R S E V E N

The Power of Scripting

How do you define Lua?

Luiz Henrique de Figueiredo: An embeddable, lightweight, fast, powerful scripting

language.

Roberto Ierusalimschy: Unfortunately, more and more people use “scripting language”

as a synonym for “dynamic language.” Nowadays even Erlang or Scheme are called script-

ing languages. That is sad, because we lose the precision to describe a particular class of

dynamic languages. Lua is a scripting language in the original meaning of the expression.

A language to control other components, usually written in another language.

What should people keep in mind when designing software with Lua?

Luiz: That there probably is a Lua way of doing things. It’s not recommended to try to

emulate all practices from other languages. You have to really use the features of your lan-

guage, although I guess that is true for any language. In the case of Lua, those features are

mainly tables for everything and metamethods for elegant solutions. Also coroutines.

Who should use Lua?

Roberto: I think that most applications without a scripting facility could benefit from Lua.

Luiz: The problem is that most designers do not see this need untill much later, when

much code has already been written in say C or C++, and they feel that it’s too late now.

Application designers should consider scripting from the start. This will give them much

more flexibility. It will also give them better perspective about performance, by forcing

them to think where the application needs raw performance and where it does not matter

at all, and so can be delegated to the easier, shorter development cycle of scripting.

From a security point of view, what does Lua offer to the programmer?

Roberto: The core of the Lua interpreter is built as a “freestanding application.” This is a

term from ISO C that basically means that the program does not use anything from the

environment (no stdio, malloc, etc.). All those facilities are provided by external libraries.

With this architecture, it is very easy to create programs with limited access to external

resources. For instance, we can create sandboxes within Lua itself, just erasing from its

environment whatever we consider dangerous (e.g., fileopen).

Luiz: Lua also offers user-defined debug hooks that can be used to monitor the execution

of a Lua program and so, for instance, abort it if it takes too long or uses too much memory.

What are the limits of Lua?

Roberto: I think the main limits of Lua are what I consider the limits of any dynamic lan-

guage. First, even with the most advanced JIT technology (and Lua has one of the best JITs

among dynamic languages), you cannot get the performance of a good static language. Sec-

ond, several complex programs really can benefit from static analysis (mainly static typing).

Download at Boykma.Com

L U A 163

Why did you decide to use a garbage collector?

Roberto: Lua has always used a garbage collector, since day one. I would say that, for an

interpreted language, a garbage collector can be much more compact and robust than ref-

erence counting, not to mention that it does not leave garbage around. Given that an

interpreted language usually already has self-described data (values with tags and things

like that), a simple mark-and-sweep collector can be really simple, and almost does not

affect the rest of the interpreter.

And for an untyped language, reference counting can be very heavy. Without static typ-

ing, every single assignment may change counts, and so needs a dynamic check both in

the old and in the new value of a variable. Later experiences with reference count in Lua

did not improve performance at all.

Are you satisfied with the way Lua manages numbers?

Roberto: In my experience, numbers in computers will always be a source of occasional

surprises (as they are outside computers, too!). I consider the use of a double as the single

numeric type in Lua a reasonable compromise for Lua. We have considered many other

options, but most are too slow, too complex, or too memory-hungry for Lua. Even using

double is not a reasonable choice for embedded systems, so we can compile the interpreter

with an alternative numerical type, such as long.

Why did you choose tables as the unifying data constructor in Lua?

Roberto: From my side, I was inspired by VDM (a formal method mainly for software

specification), something I was involved when we started Lua. VDM offers three forms of

collections: sets, sequences, and maps. But both sets and sequences are easily expressed as

maps, so I had this idea of maps as a unifying constructor. Luiz brought his own reasons,

too.

Luiz: Yes, I liked AWK a lot, especially its associative arrays.

What value do programmers derive from first-class functions in Lua?

Roberto: Under different names, from subroutines to methods, “functions” have been a

staple of programming languages for more than 50 years, so a good support for functions

is an asset in any language. The support that Lua offers allows programmers to use several

powerful techniques from the functional-programming world, such as representing data

as functions. For instance, a shape may be represented by a function that, given x and y,

tells whether that point lies within the shape. This representation makes trivial operations

like union and intersection.

Lua uses functions also in some unconventional ways, and the fact that they are first class

simplifies those uses. For instance, every chunk (any piece of code that we feed to the

interpreter) is compiled like a function body, so any conventional function definition in

Lua is always nested inside an outer function. That means that even trivial Lua programs

need first-class functions.

Download at Boykma.Com

164 C H A P T E R S E V E N

Why did you implement closures?

Roberto: Closures are the kind of construct we always want in Lua: simple, generic, and

powerful. Since version 1, Lua has had functions as first-class values, and they proved to

be really useful, even for “regular” programmers without previous experience with func-

tional programming, but without closures, the use of first-class functions is somewhat

restricted. By the way, the term closure refers to an implementation technique, not the fea-

ture itself, which is “first-class functions with lexical scoping,” but closure is certainly

shorter. :)

How do you plan to deal with concurrency?

Roberto: We do not believe in multithreading, that is, shared memory with preemption.

In the HOPL paper,* we wrote, “We still think that no one can write correct programs in a

language where a=a+1 is not deterministic.” We can avoid this problem by removing

either preemption or shared memory, and Lua offers support for both approaches.

With coroutines, we have shared memory without preemption, but this is of no use for

multicore machines. But multiple “processes” can explore quite effectively those

machines. By “process” I mean a C thread with its own Lua state, so that, at the Lua level,

there is no memory sharing. In the second edition of Programming in Lua [Lua.org], I

already presented a prototype of such implementation, and recently we have seen libraries

to support this approach (e.g., Lua Lanes and luaproc).

You don’t support concurrency, but you did implement an interesting solution for

multitasking—namely, asymmetrical coroutines. How do they work?

Roberto: I had some experience with Modula 2 (my wife wrote a full interpreter for M-

code during her Master’s work), and I always liked the idea of using coroutines as a basis for

cooperative concurrency and other control structures. However, symmetrical coroutines, as

provided by Modula 2, would not work in Lua.

Luiz: In our HOPL paper we explained all those design decisions in great detail.

Roberto: We ended up with this asymmetrical model. The underlying idea is really sim-

ple. We create a coroutine with an explicit call to a coroutine.create function, giving a

function to be executed as the coroutine body. When we resume the coroutine, it starts

running its body and goes until it ends or it yields; a coroutine only yields by explicitly

calling the yield function. Then, later, we can resume it again, and it will continue from

where it stopped.

The general idea is very similar to Python’s generators, but with a key difference: a Lua

coroutine can yield inside nested calls, while in Python a generator can only yield from its

main function. Thinking about the implementation, this means that a coroutine must

* R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The evolution of Lua,” Proceedings of ACM

HOPL III (2007).

Download at Boykma.Com

L U A 165

have an independent stack, just like a thread. What is surprising is how much more pow-

erful these “stackful” coroutines are, compared with “flat” generators. For instance, we

can implement one-shot continuations on top of them.

Experience

How do you define success in terms of your work?

Luiz: The success of a language depends on the number of programmers using it and on

the success of the applications that use it. We don’t really know how many people pro-

gram in Lua, but there certainly are many successful applications using Lua, including sev-

eral very successful games. Also, the range of applications that use Lua, from desktop

image processing to embedded control of robots, shows that there is a clear niche for Lua.

Finally, Lua is the only language created in a developing country to have achieved such

global relevance. It is the only such language to have ever been featured in ACM HOPL.

Roberto: This is difficult. I work in several fronts, and at each of them I feel success differ-

ently. Overall, I would say that common to most of these definitions is “to be known.” It is

always a great pleasure to be introduced to someone, or to contact someone, and to be

recognized.

Do you have any regrets about the language?

Luiz: I don’t really have any regrets. In hindsight we could have done some things earlier

if we knew how to do them as we do now!

Roberto: I am not sure I regret something specific, but language design involves several

tough decisions. For me, the most difficult decisions are those about ease of use. One of

the aims of Lua is to be easy for nonprofessional programmers. I do not fit into this cate-

gory. So, several decisions about the language are not the ideal ones from my perspective

as a user. A typical example is Lua’s syntax: many uses of Lua benefit from its verbose syn-

tax, but for my own taste I would rather use a more compact notation.

Did you make mistakes of design or implementation?

Luiz: I don’t think that we have made any big mistakes in designing or implementing Lua.

We just learned how to evolve a language, which is much more than merely defining its

syntax and semantics and implementing it. There are also important social issues, such as

creating and supporting a community, with manuals, books, websites, mailing lists, chat

rooms, etc. We certainly learned the value of supporting a community and also about the

hard work that has to be put into that as well as into designing and coding.

Roberto: Luckily we did not make big mistakes, but I think we made many small ones

along the way. But we had the chance to correct them as Lua evolved. Of course this

annoyed some users, because of incompatibilities between versions, but now Lua is quite

stable.

Download at Boykma.Com

166 C H A P T E R S E V E N

What do you suggest to become a better programmer?

Luiz: Never be afraid to start over, which of course is much easier said than done. Never

underestimate the need for attention to detail. Don’t add functionality that you think will

be useful some time in the future: adding it now may prevent you from adding a much

better feature later on, when it’s really needed. Finally, always aim for the simpler solu-

tion. As simple as possible, but not simpler, as Einstein said.

Roberto: Learn new programming languages, but only from good books! Haskell is a lan-

guage that all programmers should know. Study computer science: new algorithms, new

formalisms (lambda calculus, if you do not know it yet, pi calculus, CSP, etc.). Always try

to improve your own code.

What’s the biggest problem with computer science and how we teach it?

Roberto: I guess there is no such thing as “computer science” as a well-understood corpus

of knowledge. Not that computer science is not science, but what is computer science and

what is not (and what is important and what is not) is still too ill defined. Many people in

computer science do not have a formal background in computer science.

Luiz: I consider myself as a mathematician interested in the role of computers in mathe-

matics, but of course I do like computers a lot. :)

Roberto: Even among those with a formal background there is no uniformity, we miss a

common ground. Many people think Java created monitors, virtual machines, interfaces

(as opposed to classes), etc.

Are a lot of CS programs glorified job-training programs?

Roberto: Yes. And many programmers do not even have a CS degree.

Luiz: I don’t think so, but I’m not employed as a programmer. On the other hand, I think

it would be wrong to require programmers to have CS degrees, or certifications, or any-

thing of that sort. A CS degree is no guarantee that one can program well, and many good

programmers don’t have a CS degree (perhaps this was true when I started; I’m probably

too old now). My point is that a CS degree is no guarantee that one can program well.

Roberto: It is wrong to require most professionals to have degrees, but what I meant was

that the “culture” in the area is too weak. There are very few things you can assume peo-

ple must know. Of course a hirer may demand whatever he wants, but there should not

be laws requiring degrees.

What is the role of math in computer science and programming in particular?

Luiz: Well, I’m a mathematician. I see math everywhere. I was attracted to programming

probably because it definitely has mathematical qualities: precision, abstraction, elegance.

A program is a proof of a complicated theorem that you can continually refine and

improve, and it actually does something!

Download at Boykma.Com

L U A 167

Of course I don’t think in those terms at all when programming, but I think that learning

math is very important to programming in general. It helps you get into a certain frame of

mind. It’s much easier to program if you’re used to thinking about abstract things that

have their own rules.

Roberto: According to Christos H. Papadimitriou, “computer science is the new math.” A

programmer can only go so far without math. In a broader view, both math and program-

ming share the same key mental discipline: abstraction. They also share a key tool: formal

logic. A good programmer uses “math” all the time, establishing code invariants, models

for interfaces, etc.

A lot of programming languages are created by mathematicians—maybe that is why

programming is difficult!

Roberto: I will leave this question to our mathematician. :)

Luiz: Well, I’ve said before that programming definitely has mathematical qualities: preci-

sion, abstraction, elegance. Designing programming languages feels to me like building a

mathematical theory: you provide powerful tools to enable others to do good work. I’ve

always been attracted to programming languages that are small and powerful. There’s

beauty in having powerful primitives and constructs, just like there is beauty in having

powerful definitions and basic theorems.

How do you recognize a good programmer?

Luiz: You just know it. Nowadays, I tend to recognize bad programmers more easily—not

because their programs are bad (although they frequently are a complicated, unstable

mess), but because you can sense they are not comfortable at programming, as if their

own programs were a burden and a mystery to them.

How should debugging be taught?

Luiz: I don’t think debugging can be taught, at least not formally, but it can be learned by

doing it when you are in a debugging session with someone else, perhaps more experi-

enced than you are. You can then learn debugging strategies from them: how to narrow

down the problem, how to make predictions and assess outcomes, what is useless and just

adds to noise, etc.

Roberto: Debugging is essentially problem solving. It is an activity where you may have

to use all intellectual tools you ever learned. Of course there are some useful tricks (e.g.,

avoid a debugger if you can, use a memory checker if programming in a low-level lan-

guage like C), but these tricks are only a small part of debugging. You should learn debug-

ging as you learn to program.

How do you test and debug your code?

Luiz: I try mainly to construct and test it piece by piece. I rarely use a debugger. When I

do, it’s for C code, never for Lua code. For Lua, a few well-placed print statements usually

work just fine.

Download at Boykma.Com

168 C H A P T E R S E V E N

Roberto: I follow a similar approach. When I use a debugger, frequently it’s only to do a

where to find where the code is crashing. For C code, a tool like Valgrind or Purify is essential.

What is the role of comments in the source code?

Roberto: Very small. I usually consider that if something needs comments, it is not well

written. For me, a comment is almost a note like “I should try to rewrite this code later.” I

think clear code is much more readable than commented code.

Luiz: I agree. I stick to comments that say something that the code does not make obvious.

How should a project be documented?

Roberto: Brute force. No amount of tools is a substitute for well-written and well-

thought-out documentation.

Luiz: But producing good documentation about the evolution of a project is only possible

if we have that in mind from the start. That did not happen with Lua; we never planned

Lua to grow so much and be as widely used as it is today. When we were writing the

HOPL paper (which took almost two years!), we found it hard to recall how some design

decisions had been made. On the other hand, if in the early days we had had meetings

with formal records, we would probably have lost some of the spontaneity and missed

some of the fun.

What factors do you measure during the evolution of a codebase?

Luiz: I would have to say “simplicity of the implementation.” With this comes speed and

correctness of the implementation. At the same time, flexibility is also an important point,

so that you can change an implementation if needed.

How do available hardware resources affect the mindset of programmers?

Luiz: I’m an old guy. :-) I learned programming on an IBM 370. It took hours between

punching cards, submitting it to the queue, and getting the printouts. I have seen all kind

of slow machines. I think programmers should be exposed to them, because not everyone

in the world has the fastest machines. People programming applications for the masses

should try them on slow machines to get a feel for the wider user experience. Of course,

they can use the best machines for development: it’s not fun having to wait a long time for

a compilation to finish. In these days of global Internet, web developers should try slow

connections, not the hyperfast ones they have at work. Aiming for an average platform

will make your product faster, simpler, and better.

In the case of Lua, the “hardware” is the C compiler. One thing that we learned in imple-

menting Lua is that aiming for portability does pay. Almost from the beginning, we have

implemented Lua in very strict ANSI/ISO C (C89). This has allowed Lua to run in special

hardware, such as robots, printer firmware, network routers, etc., none of which was ever

an actual target for us.

Download at Boykma.Com

L U A 169

Roberto: One golden principle is that you should always treat hardware resources as lim-

ited. Of course they are always limited. “Nature abhors a vacuum”; any program tends to

expand until it uses all available resources. Moreover, at the same time that resources

become cheaper in established platforms, new platforms emerge with severe restrictions.

It happened with the microcomputer; it happened with mobile phones; it is happening all

the time. If you want to be the first to market, you’d better be prepared to be very con-

scious about what resources your programs need.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable future?

Luiz: I think that one has to keep in mind that not all applications are going run in powerful

desktop machines or laptops. Many applications are going to run in constrained devices such

as cell phones or even smaller devices. People that design and implement software tools

should be especially concerned about this issue, because you can never tell where and how

your tool is going to be used. So, design for using minimal resources, and you may be pleas-

antly surprised to see your tool used in many contexts that you did not have as a primary

goal and some that you did not even know existed. This has happened with Lua! And for a

good reason; we have an internal joke, which is not really a joke: when we discuss the inclu-

sion of a feature in Lua, we ask ourselves, “OK, but will it run in a microwave oven?”

Language Design

Lua is easy to embed and requires very few resources. How do you design for limited

resources of hardware, memory, and software?

Roberto: When we started, we did not have those goals very clear. We just had to meet

them to deliver our project. As we evolved, those goals became more clear to us. Now, I

guess the main point is to be economic in all aspects, all the time. Whenever someone sug-

gests some new feature, for instance, the first question is how much it will cost.

Have you rejected features because they were too expensive?

Roberto: Almost all features are “too expensive” to what they bring to the language. As

an example, even a simple continue statement did not pass our criteria.

How much benefit does a feature have to add to be worth its expense?

Roberto: No fixed rules, but a good rule is whether the feature “surprises” us; that is, it is

useful for things other than its initial motivation. That remind me of another rule of

thumb: how many users would benefit from the feature. Some features are useful for only

a small fraction of users, while others are useful to mostly everyone.

Do you have an example of a feature you added that is useful to more people?

Roberto: The for loop. We resisted even this, but when it appeared, it changed all the

examples in the book! Weak tables are also surprisingly useful. Not many people use them,

but they should.

Download at Boykma.Com

170 C H A P T E R S E V E N

You waited seven years after version 1.0 before adding the for loop. What made you

keep it out? What made you include it?

Roberto: We kept it out because we could not find a format for the for loop that was both

generic and simple. We included it when we found a good format, using generator func-

tions. Actually, closures were a key ingredient to make generators easy and generic

enough to use, because with closures the generator function itself can keep internal state

during a loop.

Is that another area of expense: updating code to take advantage of new features and

newly discovered best practices?

Roberto: People do not have to use new features.

Do people choose one version of Lua and stick with it throughout the lifetime of the

project, never upgrading?

Roberto: I guess most people in games do exactly that, but in other areas I think several

projects evolve the Lua version they use. As a counterexample, World of Warcraft did

change from Lua 5.0 to Lua 5.1! However, keep in mind that Lua now is much more sta-

ble than when it was younger.

How do you share development responsibilities—in particular, writing code?

Luiz: The first versions of Lua were coded by Waldemar in 1993. Since around 1995,

Roberto has written and maintained the bulk of the code. I’m responsible for a small part of

the code: the bytecode dump/undump modules and the standalone compiler, luac. We

have always done code revisions and sent suggestions by email to the others about changes

to the code, and we have long meetings about new features and their implementation.

Do you get much feedback on the language or the implementation from the users? Do you

have a formal mechanism for including user feedback in the language and its revisions?

Roberto: We joke that whatever we do not remember was not that important in the first

place. The Lua discussion list is quite active, but some people equate open software with a

community project. Once I sent the following message to the Lua list, which summarizes

our approach:

Lua is open software, but it has never been open developed. That does not mean we do not

listen to other people. We read practically every message in the mailing list. Several impor-

tant features in Lua started or evolved from outside contributions (e.g., metatables,

coroutines, and the implementation of closures, to name just some big ones), but ulti-

mately we decide. We do not do this because we consider our judgment better than oth-

ers’. It is only because we want Lua to be the language we want it to be, not to be the

most popular language in the world.

Because of this development style, we prefer not to have a public repository for Lua. We

do not want to have to explain every single change we make to the code. We do not

want to keep documentation updated all the time. We want freedom to follow strange

ideas and then to give up without having to explain every move.

Download at Boykma.Com

L U A 171

Why do you like to get suggestions and ideas, but not code? One thing that comes to my

mind is that maybe writing the code on your own allows you to learn something more

about the problem/solution.

Roberto: It is something like that. We like to fully understand what is going on in Lua, so

a piece of code is not a big contribution. A piece of code does not explain why it is the way

it is, but once we understand the underlying ideas, writing the code is fun we do not want

to miss.

Luiz: I think we also had concerns about including third-party code about which we

could not guarantee ownership. We certainly did not want to get drowned in the legal

processes of having people license their code to us.

Will Lua reach a point where you’ve added all of the features you want to add, and the

only changes are refinements to the implementation (LuaJIT, for example)?

Roberto: I feel we are at such a point now. We have added if not all, most of the features

we wanted.

How do you handle smoke testing and regression testing? One of the big benefits I’ve

seen from having an open repository is that you can get people performing automated

testing against almost every revision.

Luiz: Lua releases are not that frequent, so when a release does come out, it has been

tested a lot. We only release work versions (pre-alpha) when it’s already pretty solid, so

that people can see what the new features are.

Roberto: We do perform strong regression testing. The point is that, because our code is

ANSI C, we usually have very few portability problems. We do not need to test changes in

several different machines. I perform all regression tests whenever I change anything in

the code, but it is all automated; all I have to do is type test all.

When you find a recurrent problem, how do you recognize if the best solution is a local

workaround or a global fix?

Luiz: We always try to provide bug fixes as soon as bugs are found. However, since we

don’t release new versions of Lua frequently, we tend to wait until there are enough fixes

to justify the release of a minor version. We leave all improvements that are not bug fixes

to major versions. If the issue is complicated (which is quite infrequent), we provide a

local workaround in the minor version and a global fix in the next major version.

Roberto: Usually, a local workaround will get you really soon. We should go for a

workaround only if it is really impossible to do a global fix—for instance, if a global fix

demands a new, incompatible interface.

Would you still design for limited resources now, some years after you started?

Roberto: Sure, our mind is always focused on that. We consider even the order of fields

inside C structures to save a few bytes. :)

Download at Boykma.Com

172 C H A P T E R S E V E N

Luiz: And there are more people putting Lua in small devices today than ever before.

How does the desire for simplicity affect the language design from a user perspective? I

think of the support for Lua classes, which reminds me a lot of OO in C in some ways (but

much less annoying).

Roberto: Currently we have a rule of “mechanisms instead of policies.” That keeps the

language simple, but as you said, the user must provide his own policies. This is the case

with classes. There are many ways to implement them. Some users love this; others hate it.

Luiz: It does give Lua a do-it-yourself flavor.

Tcl took a similar approach, but it led to fragmentation, as every library or shop had its

own approach. Is fragmentation less of an issue because of Lua’s intended purpose?

Roberto: Yes. Sometimes it is a problem, but for many kinds of uses (e.g., games) this is

not an issue. Lua is mostly used embedded in some other application, and so the application

provides a firmer framework for unifying programming styles. You have Lua/Lightroom,

Lua/WoW, Lua/Wireshark—each has its own internal culture.

Do you consider Lua’s “we provide mechanisms” style of malleability a tremendous

benefit then?

Roberto: Not exactly. As most other things, it is a compromise. Sometimes it is very use-

ful to have policies ready for use. “We provide mechanisms” is quite flexible, but needs

more work and brings fragmentation of styles. It is also quite economic.

Luiz: On the other hand, sometimes it’s hard to explain this to users. I mean, to make

them understand what the mechanisms are and what the rationale for them is.

Does that work against code sharing between projects?

Roberto: Yes, frequently. It has hindered the growth of independent libraries, too. For

instance, WoW has tons of libraries (they even have an implementation for the traveling

salesman problem using genetic programming), but nobody uses that outside WoW.

Do you worry that Lua has splintered somewhat into WoW/Lua, Lightroom/Lua, etc.,

because of this?

Luiz: We do not worry: the language remains the same. The available functions differ. I

guess these applications benefit from this in some ways.

Are serious Lua users writing their own dialects on top of Lua?

Roberto: Maybe. At least we do not have macros. I guess with macros you could create a

real new dialect.

Luiz: Not a language dialect per se, but a dialect as domain-specific language implemented

with functions, yes. That was the goal of Lua. When Lua is used just for data files, it can

look like it’s a dialect, but of course they are just Lua tables. There are some projects that

do macros, more or less. I recall metalua, for instance. This is a problem with Lisp.

Download at Boykma.Com

L U A 173

Why did you choose to provide extensible semantics?

Roberto: It started as a way to provide OO features. We did not want to add OO mecha-

nisms to Lua, but users wanted them, so we came up with this idea of providing enough

mechanisms for users to implement their own OO mechanisms. We still think this was a

good decision. Although this makes OO programming in Lua more difficult for beginners,

it brings a lot of flexibility to the language. In particular, when we use Lua mixed with

other languages (a Lua hallmark), this flexibility allows the programmer to fit Lua’s object

model with the object model of the external language.

How does the current environment of hardware, software, services, and networks differ

from the environment in which your system was originally designed? How do these

changes affect your system and call for further adaptations?

Roberto: Because Lua aims to a very high degree of portability, I would say that the cur-

rent “environments” are not that different from old ones. For instance, when we started

the development of Lua, DOS/Windows 3 were 16-bit machines; some old machines were

still 8 bit. Currently we do not have 16-bit desktops, but several platforms where Lua is

used (embedded systems) are still 16 bits or even 8 bits.

One big change was in C. When we started Lua, back in 1993, ISO (ANSI) C was not yet as

established as it is today. Many platforms still used K&R C, and many applications had

some complex scheme of macros to be compiled with K&R C and with ANSI C, the main

difference being the declaration of function headers. At that time, it was a bold decision to

stick with ANSI C.

Luiz: And we still haven’t felt the need to move to C99. Lua is implemented in C89. Per-

haps we’ll have to use some parts of C99 (especially the new size-specific types) if glitches

surface in the transition to 64-bit machines, but I don’t expect any.

If you could build the Lua VM all over again, would you stick with ANSI C, or do you wish

there were a better language for low-level cross-platform development?

Roberto: No. ANSI C is the most portable language I know (currently).

Luiz: There are excellent ANSI C compilers out there, but even using their extensions

does not give us much improved performance.

Roberto: It is not easy to improve ANSI C and keep its portability and performance.

This is C89/90, by the way?

Roberto: Yes. C99 is not very well established yet.

Luiz: Plus I’m not sure C99 would bring us many additional features. I am especially

thinking about labeled gotos available in gcc as an alternative to switch (in the main switch

of the vm execution).

Roberto: This is something that could improve performance in many machines.

Download at Boykma.Com

174 C H A P T E R S E V E N

Luiz: We tested it early on, and someone else tested it recently, and the gains are not

spectacular.

Roberto: In part because of our register-based architecture. It favors less opcodes with

more work in each one. This decreases the impact of the dispatcher.

Why did you build a register-based VM?

Roberto: To avoid all those getlocal/setlocal instructions. We also wanted to play with the

idea. We thought that, if it did not work well, we could at least write some papers about it.

In the end, it worked quite well, and we wrote only one paper. :)

Does running in a VM help with debugging?

Roberto: It does not “help”; it changes the whole concept of debugging. Anyone who has

ever debugged programs in both compiled and interpreted languages (e.g., C versus Java)

knows they are miles apart. A good VM makes the language safe, in the sense that errors

can always be understood in terms of the language itself, not in term of the underlying

machine (e.g., segmentation fault).

When a language is platform-independent, how does this affect the debugging?

Roberto: Usually it eases debugging, because the more platform-independent a language

is, the more it needs a solid abstract description and behavior.

Considering that we are humans and we know for sure we are going to make mistakes

when writing software, have you ever thought about which features you needed to add

or remove to the language just to aid the debugging phase?

Roberto: Sure. A first step to aid debugging is good error messages.

Luiz: Error messages in Lua have improved since the earlier versions. We have moved from

the dreaded “call expression not a function” error message, which existed up until Lua 3.2, to

much better error messages such as “attempt to call global ‘f’ (a nil value)”. Since Lua 5.0, we

use symbolic execution of the bytecode to try and provide useful error messages.

Roberto: In the design of the language itself, we always try to avoid constructs with com-

plex explanations. If it is hard to understand, it is harder to debug.

What is the link between the design of the language and the design of programs written

with that language?

Roberto: At least for me, a main component when designing a language is user cases, that

is, considerations about how users would use each feature and the combination of fea-

tures of the language. Of course programmers will always find new ways to use a lan-

guage, and a good language should allow unanticipated usages, but the “normal” use of

the language follows what the designers intended when they created the language.

Download at Boykma.Com

L U A 175

How much does the implementation of the language affect the design of the language?

Roberto: This is a two-way street. The implementation has a huge impact on the lan-

guage: we should not design what we cannot implement efficiently. Some people forget it,

but efficiency is always a (or the) main constraint in the design of any software. However

the design also may have a huge impact on the implementation. At first sight, several dis-

tinctive aspects of Lua come from its implementation (small size, good API with C, porta-

bility), but the design of Lua plays a key role to enable such implementation.

I read in one of your papers that “Lua uses a handwritten scanner and a handwritten

recursive descent parser.” How did you start thinking about the idea of building a parser

by hand? Was it clear since the beginning that it could have been much better than the

yacc-generated one?

Roberto: The first versions of Lua used both lex and yacc, but one of the main original

goals of Lua was to be used as a data-description language, not unlike XML.

Luiz: But much earlier.

Roberto: Soon people started using Lua in data files with several megabytes, and the lex-

generated scanner quickly became a bottleneck. It is quite easy to write a good scanner by

hand and that single change improved Lua performance by something like 30%.

The decision to change from yacc to a handwritten parser came much later, and was not

that easy. It started with problems with the skeleton code that most yacc/bison implemen-

tations use.

They were not quite portable at the time (e.g., several used malloc.h, a non-ANSI C

header), and we did not have a good control of their overall quality (e.g., how they han-

dled stack overflows or memory-allocation errors), and they were not reentrant (in the

sense of calling the parser during parsing). Also, a bottom-up parser is not as good as a

top-down one when you want to generate code on the fly, as Lua does, because it is diffi-

cult to handle “inherited attributes.” After we made the change, we saw that our hand-

written parser was a little faster and smaller than the yacc-generated one, but that was not

a main reason for the change.

Luiz: A top-down parser also allows better error messages.

Roberto: However I would never recommend a handwritten parser of any kind for a lan-

guage without a mature syntax. And for sure LR(1) (or LALR or even SRL) is much more

powerful than LL(1). Even for a simple syntax like Lua’s, we had to make some tricks to

have a decent parser. For instance, the routines for binary expressions do not follow the

original grammar at all, but instead we use a smart recursive priority-based approach. In

my compiler classes, I always recommend yacc to my students.

Download at Boykma.Com

176 C H A P T E R S E V E N

Do you have any interesting anecdote from your teaching experience?

Roberto: When I started teaching programming, the main computer facility for our stu-

dents was a mainframe. Once it happened that a program assignment from a very good

group failed even to compile. I talked to them, and they swore they tested their program

carefully, with several test cases, and it was working OK. Of course they and I were using

exactly the same environment, the mainframe. The mystery remained until a few weeks

later, when I learned that the Pascal compiler had been upgraded. The upgrade happened

between they finished their task and I started correction. Their program had a very small

syntactic error (an extra semicolon, if I recall correctly) that the old compiler did not

detect!

Download at Boykma.Com

177

Chapter 8 C H A P T E R E I G H T

Haskell
Simon Peyton Jones, Paul Hudak, Philip Wadler,

and John Hughes

Haskell is a purely functional, lazy language, originally designed as an open standard

for modern functional languages. This first Haskell Report appeared in 1990, and a

“standard” was adopted in 1998. But the language has evolved considerably over the

years, in particular with respect to its type system, which has many novel features.

Haskell has grown in popularity recently, with numerous and substantive libraries,

many real-world applications, significant improvements in implementations (most

notably, the preeminent Glasgow Haskell Compiler [GHC]), and a burgeoning, sup-

portive community of users. Haskell is particularly interesting for research into

domain-specific languages, concurrency, and the disciplined control of state. The high

level of abstractions it provides for solving problems is unparelleled—at least, once

you understand the Haskell approach to software design.

Editors’ Note: This interview is based on email exchanges with Paul Hudak, John

Hughes, Simon Peyton Jones, and Philip Wadler, and then integrated with a phone

interview with Simon Peyton Jones.

Download at Boykma.Com

178 C H A P T E R E I G H T

A Functional Team

How do you develop a language in a team?

Simon Peyton Jones: We were fortunate in having a shared goal (that of developing a

common lazy functional programming language) and having broadly compatible technical

agendas. Our paper on the history of Haskell* describes various tactics that we employed

(face-to-face meetings, email, having an Editor and Syntax Tzar). We were also unencum-

bered by having existing users with the accompanying need for backward compatibility.

There were no companies involved, thus freeing us from dealing with (incompatible) cor-

porate goals.

John Hughes: We shared a vision. We were all passionate about functional program-

ming—there was tremendous excitement in the field at that time, and we all wanted to

contribute everything we could to make the functional programming dream a reality. Not

only that, but we respected each other very highly. I think both the passion and the

respect were essential to get us through the many inevitable awkward decisions that we

had to take.

Paul Hudak: You start with a common vision. Without that, I doubt that you’d get very

far. The original members of the Haskell Committee had a spectacularly common vision.

Add to that a lot of energy. The Haskell Committee had a ridiculous amount of energy.

They were like a herd of wild animals.

You also need humility. Like the mythical man-month, having more workers doesn’t mean

that things get done more quickly, because, despite the common vision, there will be differ-

ences. We had plenty of differences, but we had enough humility to make compromises.

Finally, you need leadership. We were lucky in that we were able to share the leader-

ship—I think that’s pretty unusual. There was always one person who was driving the

action, we always knew who that person was, and we trusted him to get the job done.

How did you merge your ideas into a cohesive whole?

Simon: We argued a lot, mostly by email. We wrote technical arguments in favour of our

point of view and circulated them. We were willing to compromise, because getting a lan-

guage was the important thing. And because we recognized that there were valid argu-

ments on the other side of the compromise, too.

John: Sometimes we included two overlapping approaches, as in the equational versus

expression style, both of which Haskell supports. Mostly, though, we would have long

technical discussions of competing ideas, hammering out a consensus in the end. I think

semantics played an important role here—although we never produced a complete formal

* “Being Lazy with Class: the history of Haskell,” Proc Third ACM Conference on the History of Pro-

gramming Languages (HOPL III), http://research.microsoft.com/~simonpj/papers/history-of-haskell/index.htm.

Download at Boykma.Com

http://research.microsoft.com/~simonpj/papers/history-of-haskell/index.htm

H A S K E L L 179

semantics for all of Haskell, we regularly formalised fragments of the design, and semantic

ugliness was always a powerful argument against any proposal. Keeping one eye on for-

mal semantics helped guide us to a clean design.

Paul: Through debate—mostly at a technical level, where “right” and “wrong” were often

obvious, but also at a subjective/aesthetic/sometimes-deeply-personal level, where there

was no right or wrong. These debates seemed endless (some are still raging today), but

somehow we pushed through them. On seemingly insignificant issues we would often

rely on our leadership to make final decisions. For example, we had a “syntax czar” who

would make final decisions on syntactic minutiae.

How do you recognize the best ideas, and how do you “manage” features that you don’t

like?

Paul: The best ideas were obvious—as were the worst! The harder issues were those with

no clear best solution.

Simon: For features we didn’t like, we just argued against them. If enough people did

that, it was hard for the idea to make headway. But in fact I can’t recall an idea that was

strongly pushed by one person or a small subgroup but was ultimately voted out. Perhaps

that’s a measure of the shared technical background that we brought to the project.

In sort, disagreement was not the problem, for the most part. Rather, the hard thing was

finding willing volunteers to do the minutiae. Languages have lots and lots and lots of

details. What happens in this or that obscure case? Libraries have lots of details. This is not

romantic stuff, but it’s important.

John: You spot the best ideas by acclamation! The class system was one of those: when

we saw it, we all just drooled. That’s not to say there wasn’t a lot of hard work after that,

though, dealing with details like default instances and the interaction with modules.

As for features we don’t like, almost by definition they are the most intensively discussed.

Users complain about them all the time, and every time the language is revised someone is

bound to say, “Can’t we finally get rid of X?”, whatever X may be, and the feature gets dis-

cussed all over again. That means, at least, that we know very clearly why we have the

features we don’t like, and why we can’t get rid of them.

In some cases, we got these things right from the start—for example, the ever-unpopular

“monomorphism restriction” has remained in the same form since the beginning, quite

simply because it solves a real problem, and no one has found a better way to do it. In

other cases, we revised decisions in the light of experience from the field. We changed the

treatment of explicit strictness after the initial design proved to hinder program evolu-

tion—at a slight cost in semantic elegance, one of the few occasions we’ve done that. We

removed overloading of list comprehensions after it proved confusing to beginning program-

mers. The fact that we’ve been able to go back and fix mistakes in the light of experience,

even making incompatible changes to the language, has improved the design in the end.

Download at Boykma.Com

180 C H A P T E R E I G H T

Were there advantages in being in a group? Did it oblige you to compromise?

Simon: Being a group was the most important thing! We each had our own languages,

and we believed that having a common language would stop us duplicating effort, and help

our users believe in us because we all supported one language. This hope has been amply

repaid—Haskell has been a tremendous success by any measure, and dramatically so in

terms of our original expectations.

Paul: It was a clear advantage. Despite (again) the common vision, we each brought a dif-

ferent skill set to the table. We trusted one another, and learned a lot from each other. It

was a fantastic interaction between bright, energetic, and hardworking individuals.

Haskell could not possibly have been designed by a single person.

John: Compromise can be a good thing!

Working as a group was definitely a big advantage. We had complementary experience

and skills, and I think designing a language as a broader group definitely led to a more

broadly useful result than any one of us would have achieved alone. One person might

have designed a smaller, simpler, perhaps even more elegant language—but I don’t think

it would have been as useful.

Also, every tricky design decision could be, and was, examined and reexamined from

many possible angles. Many heads are better than one. A decision that looks quite sensible

to one person may be obviously flawed to another—time and time again we would reject

an idea after a serious flaw was exposed in this way, only to find a better idea as a result.

I think the care we took is reflected strongly in the quality of the design. It sounds quite

dialectical, doesn’t it: thesis + antithesis = synthesis.

Trajectory of Functional Programming

What makes functional programming languages different from other languages?

Simon: Oh, that’s easy: control of side effects.

John: Well, careful control of side effects, obviously. First-class functions (although these

are finding their way into more and more imperative languages, too). Concise notations

for purely functional operations—everything from creating a data structure, to list com-

prehensions. I think lightweight type systems are also very important—whether they’re

the purely dynamic type systems of Scheme and Erlang, or the polymorphic inference-

based systems of Haskell and ML. Both are lightweight in the sense that the types don’t get

in your way, even when you make heavy use of higher-order functions—and that’s really

at the heart of functional programming.

I think lazy evaluation is also important, but of course it’s not found in every functional

language.

Paul: Abstraction, abstraction, and abstraction—which, for me, includes higher-order

functions, monads (an abstraction of control), various type abstractions, and so on.

Download at Boykma.Com

H A S K E L L 181

What are the advantages of writing in a language without side effects?

Simon: You only have to reason about values and not about state. If you give a function

the same input, it’ll give you the same output, every time. This has implications for rea-

soning, for compiling, for parallelism.

As David Balaban (from Amgen, Inc.) puts it, “FP shortens the brain-to-code gap, and that

is more important than anything else.”

John: Well, now, there are virtually no such languages. Haskell programs can have side

effects, if they have the right type, or use “unsafe” operations. ML and Erlang programs

can have side effects. It’s just that, rather than being the basis for all programming, side

effects in these languages are the exception; they are discouraged, and carefully con-

trolled. So I’m going to reinterpret your question as: what are the advantages of program-

ming largely without side effects?

Many people would start talking about reasoning now, and so will I, but from a very prac-

tical perspective. Think of testing a function in an imperative language. When you test

code, you need to supply a variety of different inputs, and check that the outputs are con-

sistent with the spec. But in the presence of side effects, those inputs consist not only of

the function’s parameters, but also of those parts of the global state which the function

reads. Likewise the outputs consist not only of the function’s result, but of all those parts

of the state which it modifies. To test the function effectively, you need to be able to place

test inputs in the parts of the state that it reads, and read the parts of the state that it mod-

ifies…but you may not even have access to those parts directly, so you end up having to

construct the test state you want indirectly, by a sequence of other function calls, and

observing the effect of the function by making more calls after the function you tested, to

extract the information you expect it to have changed. You may not even know exactly

which parts of the state are read and written! And in general, to check a function’s post-

condition, you need access to both the state before it ran, and the state afterward—at the

same time! So you should really copy the state before the test, so you have access to all the

relevant information afterward.

Compare this to testing a pure function, which only depends on its arguments, and whose

only effect is to deliver its result. Life is much, much simpler. Even for programs that must

perform a lot of side effects, it makes sense to factor out as much as possible of the func-

tionality into highly testable side effect-free code, with a thin side-effecting wrapper

around it. Don Stewart gives a lovely description of this approach applied to the XMonad

window manager in a recent blog post.*

Passing everything a function depends on as arguments tends to clarify dependencies, too.

Even in Haskell, you can write programs that manipulate one big state, which is passed as

an argument to all your functions and returned as a result by all those that modify it. But

you tend not to do that: you pass in only the information the function needs, and let it

* http://cgi.cse.unsw.edu.au/~dons/blog/2007/06/02#xmonad-0.2

Download at Boykma.Com

http://cgi.cse.unsw.edu.au/~dons/blog/2007/06/02#xmonad-0.2

182 C H A P T E R E I G H T

return just the information the function itself generates. That makes dependencies much

clearer than in imperative code, where any function could in principle depend on any part

of the state. And forgetting about such dependencies is precisely what can cause the most

troublesome bugs!

Finally, as soon as you start programming with side effects, evaluation order becomes

important. For example, you must open a file handle before doing any file operations on

it, you must remember to close it exactly once, and you must not use it after closing it.

Every stateful object imposes restrictions on the order in which you may use its API, and

those restrictions are then inherited by larger code fragments—for example, such-and-

such a function must be called before the logfile is closed, because it sometimes writes a

log entry. If you forget one of those restrictions, and invoke functions in the wrong order,

then BANG!, your program fails. This is an important source of bugs. Microsoft’s Static

Driver Verifier, for example, is essentially checking that you respect the restrictions

imposed by stateful objects in the Windows kernel. Program without side effects, and you

just don’t have to worry about this.

The most awkward bugs I’ve had to deal with recently can be traced to Erlang libraries

with a stateful API, which I’m using in code with a very complex and dynamically deter-

mined execution order. In the end, the only way I could make my code work was to build

a side effect-free API on top of the standard one. I’m afraid I’m just not clever enough to

make side-effecting code work! (Wait a minute, perhaps imperative programming would

be easier without years of functional programming experience….) :-)

Oh, and did I mention easy parallelization?

Paul: Sanity, and the joy of solving a puzzle! :-)

John mentioned parallelism. Are there other changes in the computer field that make

functional programming even more desirable and needed than before?

Simon: I believe that a long-term trend is that it will become more and more important to

control side effects, in programming languages of all kinds. This five-minute video

explains what I mean:

http://channel9.msdn.com/ShowPost.aspx?PostID=326762

Is the desire for a lack of side effects a natural evolution of the development of structured

programming, as when we moved to higher languages with higher-order control

structures and loops instead of just jumps, goto statements. Is programming without side

effects the next step beyond that?

Simon: That could be one lens through which you might look at it. The reason I’m a little

cautious is because people mean very different things when they say “structured program-

ming.” I always think you have to be rather careful just to get your vocabulary straight

before you start making what seems to be compact sound bites.

Download at Boykma.Com

http://channel9.msdn.com/ShowPost.aspx?PostID=326762

H A S K E L L 183

If you recall Dijkstra’s classic letter, “Goto Considered Harmful,” he was saying, “Take

away goto in order to make your programs easier to comprehend, easier to compile, and so

forth.” Then you could regard purity as a way to take away assignment in order to make

your programs easier to read about. But I think it’s a mistake to regard functional pro-

gramming as solely an exercise in aestheticism (“we’ll take away these sinful, bad things

and leave you with a boring and difficult life”).

Rather than just saying, “We’re going to take things away from you,” we say, “We’ll take

some things away from you, but we’ll give you in exchange lazy evaluation and higher-

order functions and an extremely rich type system and this monad story.” This change

does force you to think very differently about programming, so it’s a not a painless transi-

tion, but it is one that is rich in rewards.

How does error handling change in functional programming?

Simon: You can think about errors in a new way, more like “error values” than “excep-

tion propagation.” An error value is like a NaN in floating point. This gives a more value-

oriented and less control-flow-oriented view of error handling, which is on the whole a

good thing. In consequence, the type of function is much more likely to express its error

behaviour. For example, rather than:

item lookup(key) /* May throw not-found */

we have:

lookup :: Map -> Key -> Maybe Item

where the Maybe data type expresses the possibility of failure, through the medium of values.

How does debugging change in functional programming?

Paul: Well, first of all, I’ve always felt that the “execution trace” method of debugging in

imperative languages was broken, even for imperative programs! Indeed, some well-

known imperative programmers eschewed this method in favor of more rigorous methods

based on testing or verification.

Now, one nice thing about functional languages, especially lazy functional languages, is

that it doesn’t have any particularly useful notion of an “execution trace,” so that method

of debugging isn’t a very good option. GHC has a trace facility for the graph reduction

engine that underlies its evaluation mechanism, but in my opinion this reveals far too

much about the evaluation process. Instead, people have designed debuggers such as Buddha

based on “data dependencies,” which is much more in line with the declarative principles

of functional programming. But, perhaps surprisingly, in all my years of Haskell program-

ming, I have never in fact used Buddha, or GHC’s debugger, or any debugger at all for that

matter. I find that testing works just fine; test small pieces of code using QuickCheck or a

similar tool to make things more rigorous, and then—the key step—simply study the

code to see why things don’t work the way I expect them to. I suspect that a lot of people

program similarly, otherwise there would be a lot more research on Haskell debuggers,

Download at Boykma.Com

184 C H A P T E R E I G H T

which was a popular topic for a while, but not anymore. It would be interesting to do a

survey to find out how people actually debug Haskell programs.

That said, there is another kind of debugging that has gotten a lot more attention, namely,

profiling of both time and space, but in particular space. Space leaks are the hidden scourge

of lazy functional programming, and space profiling is an important tool for getting rid of

them.

Would functional programming languages be easier to learn if we came to them without

years of imperative language experience?

Simon: I’m not sure. The ability to learn FP seems to be strongly correlated with being a

smart programmer generally. There certainly is some brain-rewiring to do, but smart pro-

grammers can do that. It think it’s a cop-out to blame the niche-status of FP on the fact

that most programmers have their initial training in imperative techniques.

A stronger reason is that there’s a tremendous lock-in effect. Lots of people use C++, so

C++ is fantastically well supported by compilers, tools, the programmer pool, etc. But even

that isn’t a very strong reason: look at the rapid success of Python or Ruby.

John: No, this is a myth. A huge amount of experience transfers straight over—whether

it’s understanding the importance of abstraction in programming, knowledge of algo-

rithms and data structures, or even just understanding that programming languages are

formal languages. The C/C++ hackers that I teach Haskell to do significantly better in gen-

eral than raw beginners. They understand what a “syntax error” is; they may not under-

stand the type system, but they know what a type error is; they know that giving variables

suggestive names will not help the computer “understand” their program and fix their

bugs!

I think the myth arises because imperative programmers find functional programming

more difficult than they expect. Experienced programmers are used to picking up new lan-

guages easily, because they can directly transfer basic concepts such as variables, assign-

ments, and loops. That doesn’t work with a functional language: even experienced

programmers find they need to learn some new concepts before they can do anything at

all. So they think functional programming is “difficult”—at the same time as they are pick-

ing it up much faster and more easily than complete beginners do!

Paul: I used to say that entrenched habits made the move hard, but I’m not so sure any-

more. I think that the best, smartest, most experienced programmers (of any kind) find it

easy to learn and love Haskell. Their experience helps them to appreciate abstraction, the

rigorous control of effects, a strong type system, and so on. Less experienced programmers

often do not.

Why do you think no functional programming language has entered the mainstream?

John: Poor marketing!

Download at Boykma.Com

H A S K E L L 185

I don’t mean propaganda; we’ve had plenty of that. I mean a careful choice of a target

market niche to dominate, followed by a determined effort to make functional program-

ming by far the most effective way to address that niche. In the happy days of the 80s, we

thought functional programming was good for everything—but calling new technology

“good for everything” is the same as calling it “particularly good at nothing.” What’s the

brand supposed to be? This is a problem that John Launchbury described very clearly in

his invited talk at ICFP. Galois Connections nearly went under when their brand was

“software in functional languages,” but they’ve gone from strength to strength since

focusing on “high-assurance software.”

Many people have no idea how technological innovation happens, and expect that better

technology will simply become dominant all by itself (the “better mousetrap” effect), but

the world’s just not like that.

Books such as Moore’s Crossing the Chasm [HarperBusiness] and Christensen’s The Innova-

tor’s Dilemma [Collins Business] have influenced my thinking on this tremendously. If

there was a target niche back in the 80s, it was parallel programming—but that turned out

not to be at all important until just recently (with the advent of multicores), thanks to the

immense ingenuity of computer architects. I think this was more important than techno-

logical problems, admittedly also important, such as low performance.

Paul: Because it’s too radically different from conventional programming. That difference

makes it hard to accept, hard to learn, and hard to support (with libraries, implementa-

tions, etc.).

Is that situation changing?

Simon: Functional programming is a long-term bet. It’s a radically different way to think

about the whole enterprise of programming. That makes it hard for people to learn; and

even when learnt, it’s hard to adopt because it’s revolutionary rather than evolutionary.

It’s still not clear whether FP will ultimately become mainstream. What is clear is that FP

has influenced mainstream languages, and furthermore that influence is increasing.

Examples include: garbage collection, polymorphic types (“generics”), iterators, LINQ,

anonymous functions, and more.

There are two reasons FP is becoming more influential. First, as programs scale up, and

people care more and more about correctness, the costs of unrestricted side effects and the

benefits of a more functional style become more apparent. Second (although perhaps of

more short-term impact), multicores and parallelism have renewed interest in pure com-

putation, or at least computation where side effects are carefully controlled. A recent

example is Software Transactional Memory (STM).

All that said, there has been substantial growth in the Haskell community of late, and it’s

not out of the question that some recognizably functional language might eventually

make it into the mainstream. (But my guess is that even if it does it will be called Java3

and will look syntactically like an OO language.)

Download at Boykma.Com

186 C H A P T E R E I G H T

John: Sure. Look at Erlang—a language focused single-mindedly on a very specific niche,

the robust distributed systems needed in telecom systems, with a huge collection of librar-

ies for every telecom-related task, and the great good fortune that Internet servers need

essentially the same characteristics. Erlang may not be mainstream yet even in telecoms,

but it has a heck of a lot of users there, and exponential growth. Choosing Erlang for a

telecom application needn’t be a controversial choice today—it’s proven technology.

Haskell is not quite as far along, but the level of interest is rising fast, and all kinds of

unexpected applications are popping up. Likewise OCaml.

Multicores provide a unique opportunity for functional programming—there’s a wide-

spread recognition that we don’t know how to program them, and many, many people

are starting to consider alternative ways of programming parallel systems, including func-

tional programming. The funny thing is that you still hear automatic parallelization of leg-

acy code described as a “short-term” solution, whereas functional programming is

described as an attractive “long-term” approach. But the fact is that if you started develop-

ing a product today that must exploit eight cores when it is released in a year’s time, then

writing sequential C and hoping for automatic parallelization to solve your problems

would be an extremely high-risk strategy. Choosing Concurrent Haskell or SMP Erlang is

no-risk, because the technology already works today.

There are already dual-core Erlang products on the market that go twice as fast, thanks to

the extra core. In a few short years from now, easy parallelization is going to be a critical

advantage, and functional languages have an opportunity to come out of the resulting sea

change very well indeed.

Paul: Yes, the environment for potential adoption is changing for several reasons:

• Other languages have adopted some of the good ideas, so it’s no longer as radical a

change.

• Programmers entering the workforce for the past 15 years have had more exposure to

modern PL ideas, to mathematics, to formal methods—thus again making the ideas not

quite as radical.

• There are many more libraries, implementations, and related tools to make using the

language easier and more practical.

• There is now a nontrivial body of successful applications written in Haskell (or other

FL), thus giving people confidence that It Will Work.

Does the fact that we still find functional programming useful after 50 years tell us

something about the state of computing?

Simon: I think it tells us something about functional programming. I love FP because it is

both principled—staying true to its foundations—and practically applicable.

By “principled” I mean that the languages and their implementations (especially pure lan-

guages like Haskell) are based very closely on unusually simple mathematical foundations,

unlike powerful but much more ad hoc languages like Python or Java. That means that FP

Download at Boykma.Com

H A S K E L L 187

isn’t going to go out of fashion—FP represents a fundamental way of thinking about com-

putation, so it’s not a fashion item at all.

By “practically applicable” I mean that FP is much, much more usable now than it was

even 10 years ago, because of vastly improved implementations and libraries. That makes

the benefits of a principled approach available to a much wider audience.

As people become more concerned about:

• Security

• Parallelism

• Bugs due to side effects

FP is going to be more and more visible and useful. If you like, computing is moving on to

the point where the costs of FP are less important than they were, and the benefits are

more valuable.

The Haskell Language

Referring back to John’s earlier answer, what made you “drool” when you were designing

the class system?

Simon: We knew we had a bunch of problems surrounding how to take equality over

arbitrary types, how to show and print arbitrary types, and how to do numerics. We knew

we wanted integers and floats and double-precision numbers and arbitrary position inte-

gers. We did not want the programmer to have to write plus int and plus float and plus

arbitrary precision integer.

We knew we wanted some way you could just write A + B and get whatever was correct.

The ML solution to that problem was to allow you to write A + B, but the type of addition

has to be resolved locally. If you write f(x,y) = x + y + 1, the system says, “Ah, you need to

tell me more. You need to give a type signature to f() so I can know whether this plus is

an integer plus or a float plus or a double plus.”

That makes you carry type information around in lots of places in your program.

Simon: Worse than that. It might be useful to call this particular function on floats or on

integers or on doubles. It’s a pain to have to fix it to be one type.

You lose the genericity. Instead, you must write three functions: f float, f double, and f

integer, all with the same body but different type signatures. Then when you call them,

well, which one of these should the compiler call? You’ve got the plus int problem back

again, but one level up.

That hurt us. That didn’t feel beautiful. That didn’t feel right. That is what the class system

solved, because it said you can write f(x,y) = x + y + 1 once for all. It gets the type Num a =>

a -> a -> a, and it’ll work for any numeric type, including ones you haven’t yet thought of!

Download at Boykma.Com

188 C H A P T E R E I G H T

They must be instances of Num, but the beautiful thing is that you can invent a type later—

10 years after the Haskell standard was nailed down and the Num class was defined and this

f function was written. You can make it an instance of Num and your old function will work

with it.

That’s where the drooling came from. We had what seemed like an intractable problem

that was just solved. The original work was by Philip Wadler and Stephen Blott.

It solved the equality problem, too. ML has a different solution for equality. If you define a

member with type member :: [a] -> Bool that asks you whether a value is a member of a list,

the operation requires you to compare the values of type a for equality. One possible solu-

tion is to say every value supports equality, but we don’t like that. You can’t reasonably

compare functions for equality.

ML says “Ah, we’ll give you a special kind of type variable called 'a. Member has type

member :: a -> ['a] -> Bool. This 'a is called an equality-type variable. It ranges only over

types that admit equality. So now you can apply member to an integer or to a character,

but you cannot apply member to a function, because then 'a will be instantiated by a

function; that’s not legal.

Their ML has a different solution from the one for overloaded numerics, but it also per-

vades the type system, so these 'as go everywhere in the description. It solves a very spe-

cific problem of checking equality in a completely different way, but it doesn’t help you

with ordering. What happens if you wanted to sort a list? Now you don’t have just equal-

ity but ordering. Type classes have solved that problem, too. In Haskell you write

member :: Eq a => a -> [a] -> Bool
sort :: Ord a => [a] -> [a]

thereby saying precisely what properties the type a must have (equality or ordering,

respectively).

That’s why we drooled, because it was a single powerful type system-level mechanism

that solved multiple problems to which we had otherwise seen only ad hoc and varying

solutions. One hammer that cracked a whole bunch of nuts, and no nut with good solu-

tion, even considered by itself.

Philip Wadler: One nice thing about type classes is that they went on to influence the

way that generics work in Java. A Java method like:

public static <T extends Comparable<T>> T min (T x, T y) {
 if (x.compare(y) < 0)
 x;
 else
 y;
}

is very similar to the Haskell method:

min :: Ord a => a -> a -> a
min x y = if x < y then x else y

Download at Boykma.Com

H A S K E L L 189

save that the latter is shorter. In general, saying that a type variable extends an interface

(which usually is parameterized over the same type variable) in Java serves the same role

as saying that the type variable belongs to a type class in Haskell.

I’m pretty sure there was a direct influence here, because (with Martin Odersky, Gilad

Bracha, and many others) I was involved in the team that designed generics for Java. I

think that generics in C# were in turn influenced by this design, but I wasn’t involved, so I

can’t say for sure. The new idea of “concepts” in C++ is also very similar, and their papers

cite type classes in Haskell for purposes of comparison.

When do you think Haskell programmers appreciate its strong typing?

Simon: Haskell’s type system is rich enough to express a lot of the design.

Type checking is not just a way to avoid stupid mistakes like 5+True. It gives you a whole

level of abstraction for describing and talking about a program’s design and architecture,

because where OO folk draw UML diagrams, Haskell folk write type definitions (and ML

folk write module signatures). This is much, much better, because it’s precise and machine

checkable.

Philip: Here’s an old anecdote.* Software AG marketed a commercial database product

called Natural Expert, where data was queried and manipulated by their own home-

grown functional language, similar to Haskell. They had a training course that lasted one

week. At the beginning of the course, developers would complain that the type checker

was giving them an awful lot of type errors. By the end of the course, they discovered that

most of the programs they wrote worked perfectly as soon as they got them past the type

checker. So the types were giving them all the debugging they needed. In short, at the

beginning of the week they were thinking of types as their enemy, but by the end they

were thinking of them as their friend.

I’m not trying to say that any program you write will work as soon as you get it through

the type checker. But types do catch an incredible number of errors and make debugging

an awful lot easier.

Types seem to be particularly important as one begins to make use of more sophisticated

features. For instance, using higher-order functions is much easier when you have types

to keep things straight. Polymorphic functions reveal a huge amount of information in

their type. For instance, if you know that something has type

l :: (Int -> Int) -> [Int] -> [Int]

(take a function from integer to bool and a list of integers, and return a list of integers), it

could be doing almost anything, but if it has type

m :: forall a b. (a -> b) -> [a] -> [b]

* Hutchison, Nigel et al. “Natural Expert: a commercial functional programming environment,” Journal

of Functional Programming 7(2), March 1997.

Download at Boykma.Com

190 C H A P T E R E I G H T

(for any types a and b, take a function from a to b and a list of a and return a list of b) then

you know an awful lot about it. In fact, the type itself furnishes a theorem* that the func-

tion satisfies, and from this type you can prove that:

m f xs = map f (m id xs) = m id (map f xs)

where map applies a function to each element of a list to get a new list, and id is the identity

function. Most likely m is itself just map, so (m id) will be the identity. But possibly m also

rearranges elements—for instance, it might reverse the input list and then apply the func-

tion, or apply the function and then take every other element of the result. But that’s all it

can do. The types guarantee that it must apply the function to an element of the input list

to get an element of the output list, and that it cannot look at the value of an element to

decide what to do with it, only where it is in the list.

The most incredible thing to me about type systems is that they have this very tight con-

nection to logic. There is this deep and beautiful property, called “propositions-as-types”

or the Curry-Howard isomorphism, that declares that every program is like a proof of a

proposition, and that the type of the program is like the proposition that the program

proves, and that evaluating a program is just like simplifying a proof. The most fundamen-

tal ways of structuring data—records, variants, and functions—correspond exactly to the

three most fundamental constructs in logic—conjunction, disjunction, and implication.†

It turns out that this works for all sorts of logical systems and programs, so it is not just a

fragile coincidence but a deep and valuable principle for designing typed programming

languages. Indeed, it gives you a recipe for design: think of a type, add constructors to the

language to build values of that type and add deconstructors to the language to take apart

values of that type, while adhering to the law that if you build something and take it apart

you get back what you started with (this is called a beta law) and if you take something

apart and build it up again you also get what you started with (this is called an eta law). It

is just incredibly powerful and beautiful. Lots of time, when designing something, it feels

arbitrary, that there are five different ways you could do it and it is not clear what is best.

But this tells us that there is a core to functional languages that is not arbitrary at all.

Now we are just getting to the point where it is beginning to become common for com-

puter scientists to type their proofs into a computer, so the computer can check whether

they are true, and the procedure is based on the same principles and type systems that

functional languages are based on, because of this deep connection between programs and

proofs, and between types and propositions. So we are beginning to see things merge, and

types will let you describe more and more of how your program behaves, and the com-

piler will be able to ensure more and more properties of your programs, and it will

slowly become more common to prove properties of your program as you write it. The

U.S. government sometimes insists on proofs of security properties for military software.

* Wadler, Philip. “Theorems for Free,” 4th International Conference on Functional Programming

and Computer Architecture, London, 1989.

† Wadler, Philip. “New Languages, Old Logic,” Dr. Dobb’s Journal, December 2000.

Download at Boykma.Com

H A S K E L L 191

We will see this trend continue. Right now, operating systems don’t give very strong guar-

antees about security, but I think we will see that change, and type systems will be a very

important part of that.

Is laziness exportable to other programming languages, or does it fit better in Haskell

because of all its other features?

John: Laziness results in complex and unpredictable control flow. That’s not a problem in

Haskell, because evaluation order can’t affect the result—you can let the control flow get

as complex as you like, and it doesn’t affect how easy or difficult it is to get your code

working. Laziness can be, and has been, added to other languages, and it’s not that hard to

simulate, either. But when laziness and side effects mix, all hell breaks loose. Making that

kind of code work is virtually impossible, because you just cannot hope to understand

why the side effects are occurring in the order they do. I’ve experienced this in Erlang, in

which I was simulating laziness in code that used a library with a side-effecting interface.

In the end, the only way I could make the code behave the way I wanted it to was to build

a purely functional interface to the library on top of the side-effecting one, so that my lazy

code could be side effect-free.

So I think the answer to your question is: yes, laziness can be exported to other lan-

guages—but programmers who use it will have to avoid side effects in that part of their

code. LINQ is a good example, of course.

Are there other features of Haskell that other languages might borrow to make them more

useful or safer?

Philip: Several features from Haskell have been incorporated or are being incorporated

into a number of mainstream languages.

Functional closures (lambda expressions) have appeared in a large number of languages,

including Perl, JavaScript, Python, C#, Visual Basic, and Scala. Inner classes were intro-

duced to Java as a way to simulate closures, and there is a widely debated proposal for

adding proper closures (similar to those in Scala) to Java. The influence toward closures

comes not just from Haskell, but from all functional languages, including Scheme and the

ML family.

List comprehensions appear in Python, C#, and Visual Basic (both in connection with

LINQ), and Scala, and are planned for Perl and JavaScript. Haskell did not introduce list

comprehensions, but did a lot to popularize them. The comprehensions in C#, Visual

Basic, and Scala also apply to structures other than lists, so they more closely resemble

monad comprehensions or “do” notation, both of which were introduced in Haskell.

The generic types in Java were strongly influenced by polymorphic types and type classes

in Haskell; I helped design the generics in Java, and also coauthored a book about them

published by O’Reilly.* The features in Java in turn inspired those in C# and Visual Basic.

* Naftalin, Maurice and Philip Wadler. Java Generics and Collections (O’Reilly, 2000).

Download at Boykma.Com

192 C H A P T E R E I G H T

Type classes also appear in Scala. Now C++ is looking at incorporating a feature called

“concepts” that is also closely related to type classes. Haskell has also influenced a number

of less widely used languages, including Cayenne, Clean, Mercury, Curry, Escher, Hal, and

Isabelle.

John: In addition: anonymous delegates in C# and list comprehensions in Python. Func-

tional programming ideas are popping up all over the place.

Paul: I have read many accounts of people who learn Haskell but rarely use it in their real

programming jobs, but claim that it changes (for the better) the way they think and pro-

gram in an imperative language. And Haskell’s influence on mainstream languages, and

more recent new languages, has been huge. So we must be doing something right, and we

seem to have influenced the mainstream, even if we are not in the mainstream.

What is the link between the design of a language and the design of a software written

with that language?

Simon: The language in which you write profoundly affects the design of programs writ-

ten in that language. For example, in the OO world, many people use UML to sketch a

design. In Haskell or ML, one writes type signatures instead. Much of the initial design

phase of a functional program consists of writing type definitions. Unlike UML, though, all

this design is incorporated in the final product, and is machine-checked throughout.

Type definitions also make a great place to write down invariants of the type; e.g., “this list

is never empty.” Currently, these claims are not machine-checked, but I expect they

increasingly will be.

Robust types change the face of program maintenance. You can change a data type and

know that the compiler will point to all the places that must change in consequence of it.

For me, this is one of the biggest single reasons to have expressive types; I cannot imagine

making substantial changes to a large dynamically typed program with nearly the same

degree of confidence.

Using a functional language dramatically changes the approach to testing, as John elo-

quently described earlier.

Using a functional language strongly pushes one in the direction of purely functional data

structures, rather than data structures that are mutated in place. That can have a profound

effect on the design of the program. You can write imperative programs in Haskell, but

they look clumsy, and that guides programmers in the direction of purity where possible.

Paul: I like Simon’s reply, although he is focusing mostly on how Haskell (or other FL)

affects the design of software. The dual question is, how does a software application affect

the design of the language? Haskell, and most other FLs, is meant to be general purpose,

of course, but one of the cool things about applications written in Haskell in recent years is

Download at Boykma.Com

H A S K E L L 193

how many of them are based on a domain-specific language (DSL) “embedded” in Haskell

(we often call these “DSELs”). There are tons of examples of this—in graphics, animation,

computer music, signal processing, parsing, printing, financial contracts, robotics, and

many more—and a ton of libraries whose designs are based on this concept.

Like the real-estate agent who says that “location, location, location” are the three most

important things in real estate, I think that “abstraction, abstraction, abstraction” are the

three most important things in programming. And to me, a well-designed DSL is the ulti-

mate abstraction of a domain—it captures just the right amount of information, no more

and no less. What is so great about Haskell is that it provides a framework for creating

these DSLs easily and effectively. It’s not a perfect methodology, but it’s pretty darn good.

Philip: Functional languages make it easy to extend the language within the language.

Lisp and Scheme are brilliant examples of this; read Paul Graham* on how Lisp was the

secret weapon in building one of the earliest web applications (which later became a

Yahoo! product), and in particular how Lisp macros were key to building this software.

Haskell also provides a number of features that make it easy to extend the power of the

language, including lambda expressions, laziness, monad notation, and (in GHC) template

Haskell for metaprogramming.

Paul already mentioned how this makes Haskell a favorite language for embedding

domain-specific languages. But it also shows up at a less grandiose level, when one builds

small libraries for parser combinators or pretty printing. If someone wants to truly under-

stand the power of functional programming, those two examples are a great place to start.

Laziness in Haskell also has a profound effect on how one writes programs, as it allows

you to decompose your problem in ways that are hard to achieve otherwise. One way I

like to think of it is that laziness allows one to transmute time into space. For instance,

instead of thinking of how to deliver values in sequence (time), I can return a list contain-

ing all the values (space)—laziness guarantees that in fact the values in the list will be

computed one by one, as needed.

Thinking about space is often easier than thinking about time: space can be visualised

directly, whereas visualising time requires animation. Contrast browsing a schedule of

events for the day with watching a video of the day’s occurrences! So exploiting laziness

can profoundly change how you approach a problem. One example is the parser combina-

tors mentioned earlier, which return a list of all the possible parses; laziness guarantees

that this list is computed as it is needed. In particular, if you are happy with the first parse,

none of the others are ever generated.

* Graham, Paul. Hackers & Painters (O’Reilly, 2004).

Download at Boykma.Com

194 C H A P T E R E I G H T

Spreading (Functional) Education

What have you learned teaching programming to college students?

Paul: For many years, and perhaps even so today, functional languages were found

mainly in introductory classes, because they are easy to learn and abstract away from the

many details of imperative computation. I now think that, in the long run, this may have

been a mistake! The reason is that students quickly conclude that FLs are toy languages,

since, after all, they were used in their intro classes, mostly on toy examples. And once

they discover the “power” of side effects, many of them never turn back. What a shame!

It seems to me that the best things about FP aren’t often appreciated by beginners. It’s only

after you’ve programmed for awhile that the benefits become apparent.

At Yale, we have a course on functional programming, and it is taken mostly by advanced

majors. I don’t have any problem throwing hard and large problems at them, as well as

advanced mathematics, to show them the real power of FP. And more importantly, I can

say, “Put that in your imperative pipe and smoke it,” and often we do—compare the

Haskell code against C code—and it’s quite enlightening, and is something that you just

can’t do with students for whom Haskell is their first language.

What’s wrong with computer science and how we teach it? How would you fix it?

Paul: I wanted to write about a personal educational objective of mine that I hope others

will find interesting, perhaps even challenging.

There are literally hundreds of books that teach how to program, or how to write pro-

grams in a particular language. These books typically use examples drawn from a variety

of sources, but the examples are often pretty lame, ranging from Fibonacci and factorial, to

string and text processing, to simple puzzles and games. What I’m wondering is whether

it’s possible to write a book whose main topic is something other than programming, but

which uses a programming language as the primary vehicle to teach the main concepts.

I suppose that you could say that a book on operating systems, networking, graphics, or

compilers is such a book, if it uses a language extensively to explain the material, but I’m

interested in topics further removed from core computer science. So I’m thinking about

things like certain sciences—physics, chemistry, astronomy—or even social sciences, eco-

nomics in particular. And I wonder whether it’s possible to go one step further and teach

aspects of various disciplines in the arts—music in particular.

I would think that a functional language, especially a language such as Haskell that offers

such great support for domain-specific embedded languages, would be an excellent vehi-

cle to teach concepts other than programming. The great thing about programming is that

it forces you to be precise, and the great thing about functional programming is that you

can be concisely precise. The pedagogy for many of the disciplines I mentioned could ben-

efit from both.

Download at Boykma.Com

H A S K E L L 195

Simon: This touches on something in which I’m quite involved in the U.K., particularly at

school. I’m a governor at the school; each school has a board of governors. The way that

computing is taught at school at the moment is dismal. There’s essentially no computer

science. It’s all essentially information technology.

When I say information technology, I mean spreadsheet and databases upward. It’s like

saying, “Here’s a car, and here’s how to drive it.” That’s how to use a spreadsheet. “And

now that you can drive it, we’re going to discuss with you where you might want to go

with it. Do you want to go to Birmingham? If you want to go to Birmingham, here’s how

I think you might plan your route and who you might take with you.”

You get into project planning and requirements analysis and systems integration and that

kind of stuff. At the moment, at school, you do not learn what’s under the bonnet of the

car. To a certain extent, that’s defensible because that means that in some sense, every-

body should learn to drive a car, right? Furthermore, you should have some clue about

where you might want to go with it and how to avoid mowing down pedestrians.

Not everybody should be interested in how cars work. It’s perfectly fair that most people

just drive them, but some people should be interested in how cars work. There is a disci-

pline to computer science or computing that should be taught at school, at least to kids

who are interested in it. At the moment what happens is they get told, “This is what com-

puters are about,” but they’re essentially turned off by it because it’s so boring.

I’m involved in a U.K.-based working group that is trying to support teachers to teach com-

puting or computer science at a school level. Certainly at secondary school, which in Britain

is ages 11 to 16. At A level, there is a computing A level where there is some real computer

science. That’s the 16 to 18 range, but by then, they’ve already been turned off.

Numbers are falling for computer science study in secondary schools, and they’re falling

even more shortly for university entrants, just as they are in the United States. That’s

partly because every child has a computer these days, so they already know a lot of this IT

stuff. When they’re taught it and taught it repeatedly in different contexts at schools, they

think, “This is just dull. Why should I be interested in this?”

I think that’s primarily what’s wrong with the way computing is taught at school. For

many people who are not really going to be interested in the technology, it’s fair enough

to teach them how to drive. That should be modest and it should be integrated with other

subjects. It’s a useful tool, and there you go. It’s no big deal. But for some kids, we teach

them about physics, which of course is ultimately going to be interesting only to a minor-

ity. Most of them are not going to go around knowing about coefficient of expansions or

care about it. In the same way, I think there’s a discipline of computing I’d like them to

have some notion about, and be fired up by, because it’s so exciting.

Download at Boykma.Com

196 C H A P T E R E I G H T

Formalism and Evolution

What value do you see in defining formal semantics for a language?

Simon: Formal semantics underwrite everything that we’ve done with Haskell. If you

look at my publications, for example, you’ll see that most papers will contain some for-

malism that tries to explain what’s going on. Even for something as imperative as transac-

tional memory, that paper had a formal semantics for what transactions meant.

Formal semantics is a fantastic way to get a handle on an idea, to try to nail down some of

the details and flush some of the tricky corners out into the open. But in a real language,

when everything plays together, to actually formalize everything for the whole of your

language is quite burdensome. I take my hat off to the Definition of Standard ML because

I think it’s a tour de force. It’s pretty much the only language that has a rather complete

formal description.

I suppose the extent to which I’d question it is to ask what the benefit is. There’s a high

cost to the last 10% of turning the language from a collection of formal fragments describ-

ing aspects of the language into a complete formal description as a whole language. That’s

a lot of work. It might be 70% of the work. How much benefit do you get from that final

70% of the work? Maybe only 20%or something. I don’t know quite how it plays out. It

seems to me that the cost/benefit ratio increases quite sharply as you go toward formaliz-

ing the whole language rather than pieces of it. That’s true even the first time.

Then you’re trying to say, “But what if the language evolves?” We keep changing Haskell.

If I have to formalize every aspect of that change, that is quite a big brake on the changes

in the language, and that’s actually happened to ML. It’s quite hard to change ML, pre-

cisely because it has a formal description.

Formalism can be a brake on innovation, perhaps. It’s a spur to innovation because it

helps you to understand what the innovation is, but it’s a brake on innovation if there’s

somehow a sort of an environment dictating that everything has to be formalized com-

pletely across the whole language.

Is there a middle ground, perhaps a semiformalism where you wear jeans with a sports coat?

Simon: I think that’s the ground that Haskell occupies. The language definition is pretty

much entirely in English, but if you look in the accompanying research papers, you find

lots of formalism for fragments of the language. So it’s not codified in the report, certainly

not as a full description. For a language that does not have a formal description, you’ll find

much more material that is formalized than for C++, which is exclusively informal,

although enormous efforts have been lavished on that informal description.

It’s a funny balance. I really, really think that formalism has made a huge difference to

keeping Haskell clean. We haven’t just lobbed things in without regard. Everything has

had to sort of fit in, in a principled way. It gives you a fantastic way to say, “This just looks

messy. Are you sure it has to be like that?” If it looks messy, chances are, it’s going to be

hard to implement and hard for the programmer to figure out what you’ve implemented.

Download at Boykma.Com

H A S K E L L 197

Philip: The initial paper on type classes was by myself and Stephen Blott, and appeared in

the proceedings of the Symposium on Principles of Programming Languages in 1989.* It

formalized the core of type classes, and we tried to keep it as simple and small as possible.

Later, Cordy Hall, Kevin Hammond, Simon, and myself tried to write down a much more

complete model.† That appeared in ESOP in 1994, so you can see that it took five years to

get around to it! We didn’t formalize all of Haskell, but we tried to formalize all the details

of type classes. So there are different levels of modeling appropriate for different purposes.

The ESOP paper served as a direct model for implementation in GHC, notably the use of

higher-order lambda calculus as an intermediate language, which is now central to GHC.

That’s one nice thing about formalization. It is a lot of work to do the formalization, but

once you’ve done it, it provides a great guide to implementation. It’s often the case that

something seems hard to implement, but once you’ve put in the effort to formalize it, the

implementation becomes a lot simpler.

Another example of formalization is Featherweight Java, which I developed with Atsushi

Igarashi and Benjamin Pierce, published in OOPSLA in 1999 (and republished in TOPLAS

in 2001).‡ At this time, lots of people were publishing formal models of Java and they

were trying to make them as complete as possible. Our goal with Featherweight Java was

instead to make it as simple as possible—we tried to get everything down to a tiny syntax

with just one page of rules. And that turned out to be a good idea, because the model was

so simple it was a good basis for people to use when they wanted to add one new feature

and model that. So the paper has generated a huge number of citations.

On the other hand, it turned out there was a bug in the initial design of generics having to

do with assignment and arrays, and we didn’t catch that, because we didn’t include either

assignment or arrays in Featherweight Java. So there’s a tradeoff between a simple model

that gives you insight, and a more complete model that can help you catch more errors.

Both are important!

I was also involved in formalizing part of the definition of XQuery, which is a query language

for XML, a W3C standard.§ Of course, you get a lot of arguments on standardization commit-

tees; in our case lots of folk said, “What is all this formalization stuff? How am I supposed to

read that?” They didn’t want to make the formalization the canonical standard; they wanted

to make English prose canonical because they thought it was easier for their developers to

read. But parts of the type system were easy to write in the formalization and very hard to

write out in English, so they decided that for those parts the formal spec would be canonical.

* Wadler, Philip and Stephen Blott. “How to make ad-hoc polymorphism less ad hoc,“16th Sympo-

sium on Principles of Programming Languages, Austin, Texas: ACM Press (January 1989).

† Hall, Cordelia et al. “Type classes in Haskell,” European Symposium On Programming, LNCS 788,

Springer Verlag: 241–256 (April 1994).

‡ Igarashi, Atsushi et al. “Featherweight Java: A minimal core calculus for Java and GJ,” TOPLAS,

23(3):396–450 (May 2001).

§ Simeon, Jerome and Philip Wadler. “The Essence of XML,” Preliminary version: POPL 2003, New

Orleans (January 2003).

Download at Boykma.Com

198 C H A P T E R E I G H T

At one point, someone suggested a change to the design. And an interesting thing was

that despite these complaints, the committee asked the group of us who were working on

formalization to formalize this change. So we did this, and discovered that even though

the proposal for the change written in English was supposed to be precise, there were 10

places where we didn’t know how to formalize it because the prose could be interpreted in

more than one way. So we resolved these questions and then presented a formal spec.

After we presented the formalism at the next meeting, the change was accepted unani-

mously—there was no argument at all—which is something that never happens at stan-

dardization meetings. So in this case, the use of formalism was really a big success.

As Simon said about Haskell, it’s usually more effort than it’s worth to formalize abso-

lutely everything. So with XQuery, we formalized about 80% of it, but there was another

20% that was important but would be a huge amount of work to formalize, so we didn’t

do it.

That said, I think we got a lot of value out of what we did formalize.

Apart from this story, that formalization became the core of Galax, implemented by my

colleagues Mary Fernandez and Jerome Simeon, which is now one of key implementa-

tions of XQuery. So, again, this is an example of how formalization can make implemen-

tation easier.

All the mathematicians I know say if math’s not beautiful, it’s probably wrong.

Simon: Right. To take an example, we’re busy adding type-level functions to Haskell at

the moment, and we’re really trying to figure out the formalism for that. We’ve got an

ICFP paper this year about it, but still I’m not completely satisfied with it. So we’re beating

away on this. This has direct consequences for the implementation. We could just throw

together an implementation. Say, “It is what it is; try it out.” Then we’d have a good

chance that people would come back the next day and say, “Well, here’s a program that I

thought would type check but doesn’t, so should it?” Then we have to say, “Well, you

know, the implementation doesn’t type check it, so maybe not. But you have a right to ask.”

I’m not unhappy with the fact that we never formalized the entire language as a whole.

But that’s is not to say that there’s no benefit from doing it, right? The last 70% of the

effort does produce some benefit. Maybe the cost/benefit ratio isn’t as good, but there are

benefits. Maybe there are interactions between language features that you hadn’t under-

stood. You formalized aspects, but you didn’t know that if you had a cunning plan A and

tricky feature B that they’d mutually destroy each other. We’re all a bit vulnerable to that.

If you have a large language community in some aspect, people will run into that

eventually and file bugs.

Simon: Right, and then you may embarrassingly say, “Well, ah, yes,” and “If only we’d

gone further with formalizing a larger sort of subset to the language, we’d have been in bet-

ter shape.” It’s terribly important. But after a bit, we consciously didn’t do what ML did.

Download at Boykma.Com

H A S K E L L 199

When this happens, do you have a technique for handling backward compatibility

concerns?

Simon: I guess we’re still evolving one, but in the past, we’ve more or less ignored it.

That’s less true today. About 10 years ago we established this language we called Haskell

98 as a kind of stable subset language. It was a language we were certain we weren’t going

to change. Haskell compilers by default accept Haskell 98. If you want anything other than

Haskell 98, you have to give them some flags that say: accept this after the other extension.

One flag used to say: switch everything on, and nowadays it has been broken down into

about 30 separate extensions. The old single flag just expands into some 15 of those. If you

look at a source module, you can usually see which language extensions it’s actually

using. In effect, we’ve become more careful about inviting programmers to identify which

language they’re using.

The constraint tends to be that you should not break old programs, although this not

exclusively the case. Some of these extensions switch on the extra keywords like forall. In

Haskell 98, you could have forall as a type variable in a type—but when you switch on

the high-ranked types, forall becomes a keyword, and you can’t have a type variable

named forall.

People very seldom do that anyway. For the most part, the extensions are upward com-

patible. But, as I say, there will definitely be Haskell 98 programs that break when you

switch on enough extensions.

Is there a point in the future where a Haskell 2009 or 2010 codifies all of these into a new

standard?

Simon: Yes. There’s a well-advanced process of this called Haskell Prime, where the

“Prime” is the tick to a variable name, mainly meaning we haven’t yet decided what to call

it. What we originally envisioned was a group of people debating in public and emerging

with a new language, sort of standard that we could plant in the ground and say, “That’s

Haskell 2010,” rather as we did with Haskell 98. In fact, it’s difficult to get enough people

to devote enough effort to make that happen.

I suppose that’s because it’s a bit of a kind of success disaster. GHC, by virtue of being the

most widely used Haskell compiler, has become a bit of a de facto standard. That means

that in practice, people don’t come across too much difficulty because of language incom-

patibilities between different compilers. I don’t think that’s ultimately healthy for the lan-

guage, but it reduces the impetus for people to devote their most precious commodity—

their time—to codify the language standard.

Will there ever be competing implementations that follow GHC’s language standard

closely?

Simon: There already are competing implementations that tend to be a bit more special-

ized toward particular areas. In fact, just recently at ICFP, the functional programming

conference a couple of weeks ago, we shifted gears. Rather than trying to produce a single

Download at Boykma.Com

200 C H A P T E R E I G H T

monolith, which is Haskell Prime, we’re instead going to try to codify language extensions.

Rather than have them defined by GHC, we’re going to invite people to suggest what lan-

guage extensions they think should be codified, debate them a bit, and then get a person

or a small group of people to write up essentially a kind of addendum to the report that

says: “Here is a standalone description of what this language extension is supposed to do.”

Then we’ll be able to say that Haskell 2010 is this set of mutually coherent extensions. We

can proceed, as it were, first of all by codifying and naming extensions, and then by group-

ing them into a named group, rather like Glasgow extensions, but a bit more coherently.

We’re hoping, as far as the language design is concerned, that it’s a bit more like what the

open source community does when they’re releasing a new version of GNOME or Linux

or something. There’s lots of stuff going on in the background, but eventually somebody

wraps a bit of sticky tape around it and says, “All the pieces work together and this partic-

ular collection of pieces is called GNOME 2.9.”

A loose collection of progress joined at a common philosophy with a nice bow on it.

Simon: Right, and a promise that they’re mutually compatible. That’s what we’re doing

on the language side. The language is almost defined by an implementation, so there’s

quite a lot of order to that process already. If anything, the reason the impetus is lacking is

because it’s too ordered.

On the library side, it’s the complete reverse. There are lots of people developing libraries.

Do you know about Hackage? There’s about a new library in there every day. We’re up to

700-something at the moment. What that means is that it’s quite difficult to say, “Does

this library actually work at all? Is it compatible with that one?” That’s quite a serious

question if you’re just Joe User trying to use Haskell.

At the moment, the goal for me, as a compiler writer, is to get out of the business of library

design and maintenance. Instead, a different bunch of people are going to do the same

process that we just described but for libraries. They’re going to call it the Haskell Platform.

It’ll essentially be a bunch of libraries that are codified. Again, this is quite conventional, I

think. The Haskell Platform will essentially be a meta library that depends on particular

versions of dozens of other libraries. It will say, “If you get the Haskell Platform, you get a

bunch of libraries, all of which have a kind of kite mark of quality control, and all of which

are somehow mutually compatible.”

One way in which they can be incompatible is that two libraries might depend on different

versions of the same common base library. If you glom them together, you’d have two

copies of the base library, and you probably don’t want that. If the base library defines a

type, the two different copies of the library might create different versions of the type that

are mutually incompatible. Things that you might expect to work wouldn’t. They

wouldn’t just fail one type, but give a perplexing type error; it would say that T from Mod-

ule M in Package P1 version 8 doesn’t match T from Module M in Package P1 version 9.

Download at Boykma.Com

H A S K E L L 201

I guess this is a long way of answering your question about backward compatibility. We’re

beginning to take it much more seriously. We still have the problem, when releasing a new

version of GHC, that the compiler is rather tightly coupled to a base package of libraries.

Everybody depends on the Prelude as well.

Simon: Yes, but that’s because the Prelude is very useful. It defines a lot of useful func-

tions. When I say “tightly coupled,” I mean the compiler knows the exact implementation

of map and knows its name and where it’s defined. There are some libraries that GHC is

deeply in bed with.

Is that in order to cheat in the compiling stages?

Simon: Yeah. Somehow, if the compiler’s going to emit code that calls library functions, it

has to know that those functions exist and what their types are. That knowledge ends up

being baked into the compiler. That’s one way of thinking about it.

What that means is that if we change the interface to the base package, as is likely to be

the case from version to version, in future releases we’re going to include a kind of shim

around the new base package that provides the same API as the old base package so that

you can be insulated from the changes if you want. All of this is sweaty backward compat-

ibility stuff that we didn’t have to do before. But it’s the problem of not obeying the motto,

“Avoid success at all costs.”

Popularity has its own set of problems.

Simon: That’s right, but they’re nice problems to have in a way.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable

future?

Simon: Functional programming is a laboratory where lots and lots of interesting ideas

are explored. Because the basic setting is simpler, we can go a lot further in exploring

promising ideas (examples: type systems, generic programming, reactive programming,

continuations). So if you walk into the FP laboratory, you’ll find lots of interesting stuff

lying around. It may or may not be directly useful to you, but the future is happening right

now in this lab.

Paul: The most interesting lesson I learned is that sticking to an ideal—purity, in the case

of designing Haskell—can have big payoffs. It might take a while to find the right solution,

and it might take even longer to see the payoff, but it will come. Shortsightedness may

yield a quicker payoff, but if you compromise your principles in the process, you will lose

out in the end.

Download at Boykma.Com

Download at Boykma.Com

203

Chapter 9 C H A P T E R N I N E

ML
Robin Milner

ML is a general-purpose functional language developed by Robin Milner and the

team he led at the University of Edinburgh in the 1970s. It grew from a metalan-

guage project designed to describe mathematical proofs. ML’s most valuable con-

tribution to language design may be the Hindley-Milner type inference algorithm

used in many static, latent type systems. The language inspired Standard ML, Caml,

Haskell, and F#, among others.

Download at Boykma.Com

204 C H A P T E R N I N E

The Soundness of Theorems

You created LCF, one of the first tools for automated theorem proving, and the

programming language ML to run the proving. How did it work?

Robin Milner: There were other efforts at machine-assisted proof around in 1970. They

were at two extremes: either fully inventive (e.g., using Robinson’s famous resolution

principle) in searching for a proof, or fully noninventive in the sense that they would only

check that each small step performed by a human was logically valid (as in de Bruijn’s

Automath system). Both these approaches, by the way, contribute a lot to today’s proof

technology.

I looked for something in between, where a human would design a tactic (or a strategy

built from little tactics) and submit it to the machine together with the thing to be proved.

There would be interaction; if one tactic failed or partly failed then the machine would say

so, and the human could suggest another. The key thing was that, although the tactics

could be adventurous, the machine would only claim success if a real proof was found. In

fact, in a successful case the machine could proudly export the proof that was found so

that another independently written program (of the fully noninventive kind) could check

it.

The key to why it works was that ML, the metalanguage in which clever users would

write the tactics they thought of, had a type system (somewhat but not completely novel)

which made the language resolutely refuse to claim success unless it (thanks to the clever

user’s tactics) could fill in every detail of the proof which the tactic merely sketched. So

ML was the vehicle for a cooperation between hopeful human and meticulous machine.

What are the limits of LCF?

Robin: I don’t see obvious limits. Nowadays systems people express quite adventurous

tactics to systems like HOL and COQ and Isabelle, and the problems solved are slowly get-

ting harder. HOL actually achieved a proof that the type system of ML was sound, which is

like confirming that your parents’ reproductive system was OK. But we’re a long way

from being able to capture the mathematicians inspired thoughts as a tactic. I suspect that

bigger advances will come mainly from building a tower of simpler theorems from which

more complex ones can be deduced, which is how most mathematical theories are built

anyway.

As for proving that programs work, this is already quite possible when the user is able to

annotate his program-to-be-proved with assertions (as pioneered by Floyd and Hoare

right back in the early 70s), which say things like “every time this point is reached in exe-

cution these relationships will hold between the program variables.”

Download at Boykma.Com

M L 205

Can this approach analyze the source code of a program to prove that it contains no

bugs?

Robin: Yes! It’s done a lot, especially for small critical programs that are embodied in real

products like the brakes of a car. The biggest problems come when people can’t (or refuse

to) formulate the desired property in a rigorous form!

How much effort is needed to define these properties in a rigorous form?

Robin: This is really a question for those who deal with logics in which the properties can

be expressed. The role of ML is not to be such a logic, but to be a medium in which proofs

in these logics can be expressed, as well as heuristic algorithms for finding those proofs. So

ML is a host to such logics. The original logic for which ML was a host was LCF, a logic of

computable functions due to Dana Scott. In this logic we used ML (and its predecessor) to

find and/or check some theorems; I’m glad to say that one of these theorems was the

(almost completed) proof of correctness of a compiler from a very simple source language

to a very simple target language.

Is this portable to other programming languages?

Robin: Having explained ML’s role (as a host to logics) I suppose the closest question to

this one that I can answer is this: can other languages be equally good hosts to logics for

proof? I’m sure they can, if they have a rich and flexible type system and handle both

higher-order functions and imperative features. ML was fortunate to be the host chosen

by some successful logic developers, and this means that people continue to choose it.

Why are higher-order functions necessary for a language to be a good host for what you

call logics of proof?

Robin: You implement inference rules as functions from theorems to theorems. So that’s

the first-order type. Your theorems are essentially sentences, so an inference rule is essen-

tially a function from strings to strings. We invented these things called tactics—you

express a goal, your sentence, that you’d like to prove, and what you get back is a set of

subgoals together with a function that will, given the proof of those subgoals, produce a

proof of the goal. So a tactic is a second-order function.

We had some of these tactics. We programmed them, and then we wanted things that

would stick them together to get bigger tactics. We then had third-order functions, which

we called tacticals, which would take tactics and produce bigger tactics. Such a tactic might

say, “Well, first of all, get rid of all the implications and put them into the assumption list

and then apply the induction rule, then apply simplification rules.” That was quite a com-

plex tactic, which we called a strategy, and that would demolish several theorems.

Download at Boykma.Com

206 C H A P T E R N I N E

When I was working for John McCarthy in Stanford, I said, “Look, I’ve done something

nice, I’ve got this strategy, this tactic, and here’s a property of strings that it proves. I just

express this goal, which is a fact about strings, and then I apply my tactic and it produces

that assertion as a theorem.” He then said to me, “How general is your tactic? What else

will it apply to? I’ve got an idea.” He said, “What about this particular thing that I’d like to

prove?” He came up with another example. Secretly I had already proved that second

example with the same tactic, but I didn’t tell him, so we applied the tactic to it and, sure

enough, it worked, to which he simply didn’t say anything because that was the way he

agreed with things. I was able to show that we had a polymorphic tactic; they could do

more than one thing.

You also developed a theoretical framework for analyzing concurrent systems, the

Calculus of Communicating Systems (CCS), and its successor, the pi calculus. Can this help

to study and improve the way we handle concurrency in modern hardware and software?

Robin: I began to think about communicating systems when I was in McCarthy’s AI lab at

Stanford, 1971–1972. It struck me that there was hardly anything in existing languages

that dealt with them nicely. Mainly I was looking for a mathematical theory, that lan-

guages could use as their semantics—this implies the need for something modular; you

should be able to assemble a (concurrent) communicating system from smaller ones.

At that time there was already a beautiful model by Carl Adam Petri—Petri nets—that

treated causality very well; there was also the Actor model of Carl Hewitt. Petri nets were

not modular, and I wanted to get closer to a kind of concurrent theory of automata than

in Hewitt’s model; also to take the notion of synchronized communication (handshake) as

primitive. Also automata theory, with its semantics as formal languages (sets of strings of

symbols), did not treat nondeterminism and interaction well. So CCS was my attempt.

My main excitement was to get an algebraic treatment—first for the statics, and then for

the dynamics. Many years were spent doing this better, including a major step prompted

by David Park, to introduce the notion of bisimilarity based upon maximal fixed points. At

the very beginning, I wanted to model systems that reconfigure their state; for example, A

and B may not be able to communicate until C, who is in touch with both, sends A the

address of B. At first, in discussion with Mogens Nielsen, we failed (mathematically); then

Mogens put right something that we had not thought out properly; this led to the pi calcu-

lus, developed with Joachim Parrow and David Walker.

The excitement here was that pi not only dealt with reconfiguration but also was capa-

ble—without any addition—of representing data types. So it looks like a basic calculus for

mobile concurrent systems, much as the lambda calculus is for sequential systems.

Pi seems to be used a lot, and is even useful for biological systems. But more importantly a

whole new range of calculi are coming forward that model distributed systems more

directly, handling such things as mobility and stochastic behaviour. Instead of polishing off

the theory of concurrent processes, we seem to have opened a very useful can of worms.

Download at Boykma.Com

M L 207

Is it possible to understand a system scientifically before you design and build it?

Robin: I’ve been thinking a lot about this in relation to ubiquitous computing lately, but I

think it’s general. You have to have some kind of model of how the system is going to

work. At the very simplest level you have the von Neumann machine, which is a scientific

or formal or rigorous model that actually gave rise to FORTRAN and a whole sequence of

sequential languages. That’s a scientific model. It’s a very simple one; that was its beauty.

You need a model from which the programming language is, as it were, extracted or

defined. For ubiquitous systems, this model may be very far from the von Neumann

machine; it has to be something that deals in general populations of agents all interacting

and moving about, and sensors and so on.

It sounds like you’re talking about a series of metalanguages that express semantics.

Robin: I’m not keen to use the word “language” until we have a model. Of course, that

completely goes contrary to what happens all the time; languages get defined and they do

get defined in metalanguages, and very often that’s before there’s a good model, unless of

course the metalanguage actually provides that model. Maybe metalanguage is a synonym

for model in this case. We used it when we defined Standard ML. We used the metalan-

guage, which was a kind of inductive inference of what would be admissible instructions

and what they would do. I suppose that’s what a generic model is. I agree with you; I’m

talking about a series or a kind of unknown family of metalanguages. Each of those gets

specialized to a particular system, which we could call a program.

In this sense, is computing the definition and formalization of models at several different

layers that allow you to build models at higher layers?

Robin: Yes. This is very much my concern with ubiquitous computing because there are

so many concepts you want to be reflected by the behavior of a particular system, but you

may not be able to include all those concepts directly in one model. I’ve been talking

about a tower of models where at the bottom you might have a rather elementary

machine. As you go up, you get into more interesting or more humanoid or more subtle

concepts, like failure management and self-awareness and trust and security and so on.

Somehow one wants to build models in a layered way so that in each model you talk

about a fairly manageable set of concepts, and then you implement them in a lower-level

model.

Lisp and Forth often talk about extracting and building systems out of reusable concepts

of meaning. In a sense, you develop a rich language to solve your problem.

Robin: As I think of a stack of models, at the lower levels you have things that would be

called programs. At the higher levels, you have specifications or descriptions of what can

and can’t, or should and shouldn’t happen. They might be in all sorts of forms, in a logical

form, even in natural language. When you get to the lower levels, you get familiar things

called programs, and they can be just regarded as particular models.

Download at Boykma.Com

208 C H A P T E R N I N E

Are they a sop to the idea that our computing models are inherently procedural?

Robin: Yes. When you get to the more dynamically explicit models, then they’re proce-

dural, I suppose. You can have a model of specifications. It may consist of logical predi-

cates; that’s a model, it’s not a very dynamic model, but then you can use pairs of

predicate formulae to represent pre- and postconditions and you can assess the soundness

of an implementation by whether you can verify it logically. You move from a specifica-

tion or model that isn’t obviously dynamic to one which is dynamic further down. That’s

interesting, I don’t think I quite understand the shift from dynamic lower down to

descriptive higher up, but it does seem to happen.

Alternatively, as in the method known as abstract interpretation, you still have a dynamic

model at a higher level but working with some abstraction of the data. It isn’t really the

program but it is dynamic. That’s what the French people have used in verifying the Euro-

pean Airbus embedded software. It is an interesting and involved question as to when a

model is dynamic and when it’s just descriptive.

Perhaps that shift occurs when we have to acknowledge the laws of physics—the

behavior of NAND gates, for example. We understand these physical processes, but

there’s a point at which the models we build subsume that level.

Robin: Yes. There’s the circuit diagrams for a computer and they’re talking about elec-

tronics, and then up above them you have the assembly code and you’re no longer talking

about electronics. But as you’re moving upward you’re still retaining a dynamic element

in the program as if it were translated into the dynamic element in the circuit diagrams.

You seem to be able to move through, as it were, different dynamic notions while still

retaining the dynamicity, but it becomes of a very different nature as you go further up.

Often logical models have a dynamic element as well. For example, the so-called modal

logics are defined in terms of possible worlds, and moving from one world to another.

There you have a dynamic element but it’s slightly cloaked.

I can imagine people objecting that errors or elements of undecidability in lower levels

may affect the computability possibilities at upper levels.

Robin: That seems to be just a fact of life. You may not be able to damp down the unde-

cidability at a lower level, but at a higher level this is done in type checking. Types are an

abstract model, and there you may have decidability because it’s a weak abstraction and

you don’t have the ingredients that lead to undecidability. Of course they only talk about

some one aspect of a program, so you only gain decidability as you go up at the expense of

detail.

I hadn’t thought of it that way.

Robin: Nor had I terribly much. In terms of type checking, you do have type systems for

which it’s decidable whether the program is well typed and what type it has, and then you

Download at Boykma.Com

M L 209

do something quite minor to it and then it turns out to be undecidable. You just add a lit-

tle bit more detail to your type system. This happened to the type system which we used

in ML; the type system was basically decidable but if you add so-called conjunctive types it

gets to be undecidable.

There’s this sort of tension between what’s useful to have and what is totally manageable.

A lot of the time even if you can’t always check something against an conjunctive type

system, you can have an awful lot of success with a sufficiently intelligent theorem prover.

One can express all this with the notion of what I call a tower of models. As you go

upward you lose more information. You may gain some analytic capability, and it may be

valuable because you’re analyzing a property of the programs that is going to be useful to

know about even if you’re not getting the whole story.

I’ve heard that you can go the other way. An expression in the model at an upper level

means you can remove a whole lot of undecidability from lower levels when you can

prove that certain conditions never happen.

Robin: Oh, I see, yes. The lower level consists of a basically undecidable model, but under

certain constraints on the elements you’re considering, it could attain decidability.

Is undecidability not as universally bad as it sounds?

Robin: No, but it’s an interesting topic to bring up in order to see what models do for you

and how they affect the undecidability. I think it’s a good topic.

How should we as informaticians, computer scientists, or working programmers teach

concepts of theorems and provability and typefulness to people who just want to get stuff

done?

Robin: It’s probably fatal to do it too early in the degree programme. That’s something

we’re up against, and it happens in maths as well. You do things that you’re later going to

do in a more abstract way, but you do them in a more concrete way early on and then

people can vaguely understand them. You do Euclidean geometry and you shut up about

all the other geometries there are. Later on, maybe in the second year at university, you

can begin to understand what another geometry might be like, whereas that level of

abstraction just isn’t available to a 17-year-old, mostly. It would be unwise to work under

any assumptions that enough of them would have it to justify teaching it.

I know I’m making mistakes also in the degree programme by trying to teach things to the

final year of an undergraduate programme that are still too abstract. A lot of the computa-

tion theory is too abstract even at that level. That’s something we just have to live with.

The trouble is that to get proper understanding of the subject without these abstractions,

you have to have a kind of hierarchy of understanding. Some people will never want to

talk about the abstractions. Other people will love them, and all you’ve got to do is make

sure they can talk together about something.

Download at Boykma.Com

210 C H A P T E R N I N E

Does this limit the applicability to practical programmers? Can we expect that up to 20% of

them will be interested in theory?

Robin: It’s reasonable that they shouldn’t have to understand the theory. Language is a

tool, and there are all kinds of tools. Model checking is a tool that people used to avoid

having to understand too many details. That’s fine, provided there are some people who

do understand and who know that the model-checking tool is sound. Essentially we seem

to have a lot of tools in our discipline that are there just to relieve people of certain kinds

of understanding because they’ve got better things to do. They’ve got bigger and more

urgent things to do, and that’s exactly where a high-level programming language comes

in. What I really like about some theories is that you can extract a programming language

from them.

I’m working with a graphical model for ubiquitous computing. It’s a descriptive mecha-

nism, which is possibly difficult for many people to understand, but you can extract a lan-

guage from it, which will be, I think, quite easy to understand. When you extract the

language, you’re using kinds of metaphors—sometimes they’re special metaphors, some-

times they’re structural limitations, and so on—so that the step from the abstract model

into the programming language is a comfort-providing step which gives people some pro-

tection from things they don’t want to have to bother with. Type systems, for example, give

you protection from some things you would rather not know for most cases. Isn’t that the

nature of our subject: that we go up this tower of models, we get more and more abstract,

and each person is prepared to go up—or down—a certain distance and no further?

As you go up the tower of models, you don’t necessarily get more abstract, but you may

get more restrictive. One beautiful example is the model of message sequence charts,

which described finite fragments of concurrent behavior of message-passing and what can

happen and what can’t happen. That seems to me like a restrictive model, which is readily

translatable into a more complex model, which deals with recursion cycles and all sorts of

horrible things that you don’t want to think about like race conditions. The beauty of the

message sequence charts model is that your executives can understand it, so as you go up

the model tower, not only do you abstract to make it easier to understand theoretically, but

you may also restrict somehow to make the model more accessible to less-specialized people.

In some ways it’s more general, but in some ways it’s more specific.

Robin: Yes, exactly. That’s a puzzle, I think. You might want to put the more specific

thing lower rather than higher, but I’ve been putting it higher. The main thing is it’s dif-

ferent and it serves the purpose of making things more accessible to some people at the

price of generality. It seems to be a worthwhile thing to do.

If a model is a collection of theorems built up from more fundamental principles, how

does it affect the ideas you can express using that particular model?

Robin: I’ve got an example. I hope it’s not too far-fetched, but it happens in the model

I’m working with. You have a model of mobile systems, systems where messages move

Download at Boykma.Com

M L 211

about and sensors and actuators move about, the sort of thing that happens in ubiquitous

computing. You can set up the model so that you can say a lot about it. You can express

the invariants so that there never comes a state when you’ve got more than 15 people in

the same room or something of that kind. But in one version of the model you can’t track

a particular individual and say, “This person was never in this room.”

It seems like a screwy example, but it’s quite simple, really: there’s nothing in that model

that tracks the identity of an individual through various events and reconfigurations. You

cannot even formulate the question, “Was this person ever in this room?” because you

don’t know how to say “this” person—”this” implies identity persisting through time,

especially if it’s connected with verbs in certain tenses.

That’s a case of a model in which there are some things that you can’t even express, and

I’m very much intrigued with this because that seems to be an advantage for some pur-

poses. It’s a great advantage in applying this model to biological systems, where you’re

talking about populations of millions of molecules, and you’re not concerned about which

molecule is which; you’re just concerned that you can say something about how many

molecules there will be in 15 minutes or something like that. The model can be very use-

ful for biology without having to express the identity of particular molecules.

Identity is not as important as the stochastic description?

Robin: That’s right, in this particular case, where it might not be for many purposes. Of

course, I’ve been making an analogy between biological and ubiquitous systems in which

people or agents of some kind moving around in a city or in some controlled environ-

ment. In this latter case, you’re very much more likely to want to talk about the identity of

a particular individual. He was never in this pub where the crime was committed. You

might want to say that, and so you’ve got to know about what “he” means through time.

In models, again for ubiquitous computing, you might be talking about space in an

entirely discrete manner, so you don’t say anything about distance. You only talk about

some entities being adjacent to each other or being nested inside each other. You may not

wish to model the continuity of space, so you forget all about that. It does seem that there

are lots of features that models may cheerfully do without for certain purposes and then

need to refine themselves for other purposes.

Suppose I write an API. The better my design choices, the more expressive and easier to

understand the model. As well, I may be able to make the system much easier to use

correctly than to misuse.

Robin: This probably happens with whatever family of systems you’re considering. You

might be talking about security systems, and in a particular model you might be unable to

express some aspects of security, but able to argue about other aspects. Or the model may

express security properties but not be able to say anything about privacy. Properties like

authenticity, privacy, security, and safety are all subtly different. Most models can only

express some of them.

Download at Boykma.Com

212 C H A P T E R N I N E

To borrow the biological metaphor again, I don’t have to understand the process of ATP

conversion in my cells to understand how to pick up and pet my cat, but those cells don’t

know anything about the cat. As far as they’re concerned, it’s a bunch of other cells.

Robin: We’re not too different from natural science in this way. You can do Newtonian

mechanics about moving bodies, but you can ignore friction.

Are we in for a renaissance of provability?

Robin: I think it’ll continue, as long as people go on designing languages with an explicit

semantics. That semantics won’t be of any use at all unless there are some theorems that

you can prove about it, like “No program will ever do anything stupid of this kind,” or

possibly more positive things like “Programs will always take a polynomial amount of

memory.”

That might be an impetus for people that design new languages to make those kinds of

proofs.

Robin: I wish they would. Generally languages get designed without that in mind partic-

ularly. That’s something I would like to change, but that’s the way the languages get

designed and usually by a mixed committee of people. Some of the designs are excellent,

but they don’t generally have proof in mind. You get faults like the fault in Pascal about

variant records where the type discipline is violated. Nontheorems like that about lan-

guages are quite common.

I think we’re probably making progress, because we do see these proofs about languages

happening, and happening without a huge amount of effort because of the efficiency of

proof systems, so this will allow feedback from provers to designers. That would be nice.

The Theory of Meaning

What is the link between the design of a language and the design of software written with

that language?

Robin: This is an enormous question. Long ago, I think in the 60s and 70s, there was

hope for a single UNiversal Computer Oriented Language (UNCOL), which never came

into existence. The idea was that you would use UNCOL for everything. If it existed, there

couldn’t be a meaningful link between the design of a language and of programs!

Now (and before then) we have seen a progression of languages, almost all favouring cer-

tain applications. Prolog favoured applications where actions can be conveniently

described by logical formulae, so the design of a Prolog program would be structured on

logical terms. ML and Haskell have rich type structure, so the design of ML and Haskell

programs will often be closely linked to type structure. And so on. Every task can be writ-

ten in many different languages, and it may be that the structure in the programmer’s

mind is the same, but that each language will do better in rendering explicit some parts of

the structure, leaving other parts implicit; the parts that can be made explicit will differ

from language to language.

Download at Boykma.Com

M L 213

Faced with a particular task, I think a programmer often picks the language that makes

explicit the aspects of the task that he considers most important. However, some lan-

guages achieve more: they actually influence the way that the programmer thinks about

the task. Object-oriented languages have done very well from this viewpoint, because the

notion of object helps to clarify thought in a remarkable variety of applications.

Do paradigms besides OOP influence the way a programmer designs and thinks?

Robin: Yes, I think that logic programming and functional programming have had that

influence. I hope that the paradigms of process calculi also have an influence. They cer-

tainly did in Lotos—a specification language—and I think they did in Ada, via the notion

of ALT commands, among other things.

Instead of having to choose a language for each task, will each programmer use his own

programming language? Will we converge on a few language families?

Robin: It would be anarchy for each programmer to use his own language, if this lan-

guage were not constrained in its meaning by an accepted theory. After all, how would

the meaning of his language be defined, other than in terms of an accepted theory? Once

the theory exists, a programmer can invent syntactic phrases that are explained by the

theory. So he would be using “his own” syntax, but with meaning drawn from a theory,

and when he describes his language, he refers explicitly to that theory. Nothing wrong

with that. But, because the theory will be behind these languages, one expects them to

have a lot in common.

How do you define the idea of designing a programming language? Is it a tool to express

ideas or a tool to express goals?

Robin: If you consider the nice example of functional programming and also logic pro-

gramming, there was already a theory, for functional programming the theory of func-

tions, the theory of types, of values, and for logic programming the well-developed theory

of first-order logic. This theory was there before the language arose and the language was

more or less based on that theory, so there are examples of theories that came before the

languages, and I think we probably need more of those; I don’t know how many different

ones we need.

We might say that the goal that someone wants to achieve is fundamental to designing a

language.

Robin: It might be that you need to express the goal or you express the properties of the

behaviour of programs in a different language or using a different theoretical tool. For

example, you might want to write your specifications in some kinds of logic, and the pro-

gramming language would be more algebraic kind of language, but the two—the algebra

and the logic—would be already pleasingly linked before you even design parts of them as

a programming language.

I think the tool that you use for expressing goals and expressing desiderable properties

doesn’t have to be the same as the one that you used to express the program, but they

Download at Boykma.Com

214 C H A P T E R N I N E

ought to be linked in a theory of some kind which exists perhaps not just in order to pro-

duce programs, but exists even to understand natural phenomena like in the case of biol-

ogy I mentioned. It seems that if we can understand informatics we can understand

natural systems from an informatic point of view, and that is what a natural scientist does.

But perhaps we can also use the same formalisms, the same mathematical constructions

and properties to define languages and therefore bring in artifacts that are not natural

phenomena. So I don’t see why the informatic description of natural systems should be

separated from the informatic description of programming systems or software systems.

Suppose today you found a bug in the system you’d done five years ago. You have a

specification synchronized with the implementation. What if there’s a bug in the

language design? What if a fault leads to a particular type of error?

Robin: I’m very glad to say that hasn’t happened, and I don’t know what we would do. I

think probably we would say you’ve got to live with it. We would publish something that

said, “OK, this goes wrong but if you do this, this, and this then you’ll never have to

worry.” These definitions are pretty sensitive. I mean some people are working on the idea

of making definitional mechanisms less sensitive and more modular, and I think that’s

really quite difficult. I don’t know how that’s done. I would be inclined now not to change

it but simply to tell people that it’s there, the problem. It’s just a practical move, so as not

to tear your hair out.

Given a language with a rich type system, such as ML or Haskell, what ideas does the type

system make explicit within the design of programs written in those languages?

Robin: If their system gets through the compiler—that is, the type checker—then certain

things cannot happen. They do know that there won’t be any of certain types of runtime

error. They won’t know that you won’t get array overflow and they won’t know all kinds

of other nasty things that can happen like silly endless loops and so on, but they will know

quite a bit.

For the application we had, the proving of mathematical theorems, it was marvelous to be

able to say, “If you think you’ve proved a theorem in ML, and you think your representa-

tion of the inference rules of your logic in ML has been well done and the ML program

comes up with a proof of a theorem, then the theorem is certainly proved.” That’s because

of the abstract types mechanism, which allows you to express the type of theorems as

being something that is only manipulable by the inference rules. Whatever clever tricks

you might want to do to search for possible inferences, if one of your searches for a possi-

ble inference sequence succeeds, then you have actually to perform that inference and

you have to perform that inference at the type of theorem. You know that the only things

you can do there are valid inferences. You may never succeed within certain searches for

possible inference sequences, but if you do succeed then you perform those inferences, or

the system does it for you. Within the verification of the soundness of the implementation

and soundness of the language design, then you do know it’s a theorem. If you had a

typeless language, you wouldn’t.

Download at Boykma.Com

M L 215

You just have a collection of operations.

Robin: The system would say, “I’ve got a theorem” and you’d say, “how am I to be sure of

that?” That’s really serious. I remember early days at Stanford when we designed the first

version of—not even ML, actually. We were working with automated inference system

and we believed that we automated it correctly and the only things that could be inferred

were inferable by the inference rules. I remember thinking at midnight once that some-

thing came out and the theorem came through and says, “I am a theorem,” and I didn’t

have to worry because I trusted the types, I trusted the implementation. I trusted it to the

extent that even though I’d been doing crazy things at the terminal, none of that could

affect the robustness of the system.

It’s really quite a really strong feature and has been all along, I think, with systems like

Isabel and HOL, and all those other systems that now exist. That side of it is amazingly lib-

erating because there’s a point at which you don’t have to worry.

The question then is: how do we convince the computer to tell us what our program

means?

Robin: A particular program presumably means something like: if you do this to me, then

this will happen; if you do that to me, then this will happen. Types allow you to make firm

statements of that kind. That’s where the computer does help you, the compiler helps you

via its type checker. Of course, this doesn’t have to be a decidable type checker; this could

be a type checker which, if it does conclude the program is well typed, then it certainly is,

but it may not conclude anything for some programs. You can have very rich type systems

that have undecidability, but still have what you call positive safety: if the theorem comes

through, then it is the theorem.

What do you suggest to someone who wants to be a better software designer?

Robin: Decide if they want to make money or whether they want to do science. You can’t

advise somebody which of those to do, but there are plenty of ways of making money and

avoiding doing science. And vice versa.

If I am advising somebody who wants to do the science, then I would say talk to people

who are doing the designs, and don’t sit in a vacuous room designing a theory that looks

beautiful, but make sure it’s going to have some relevance to practice.

You’ve described the millennium bug as a good example of a situation in which we didn’t

know what type of problems we were about to face. How can we prevent similar

structural problems during the design phase?

Robin: I don’t know. The market is so hungry for software products that if you spend

time analyzing what you are going to sell, then somebody else will get the contract. That

sounds very cynical, but I think it’s actually true. If you are going into the real world, you

really don’t succeed if you try to bring in analytical tools, even when they do exist. Of

course, very often they don’t yet exist.

Download at Boykma.Com

216 C H A P T E R N I N E

In the face of the millennium bug, we actually had all the theory we needed to completely

avoid the problem if we had written the programs in appropriate ways; all it needed was

the care to use a type theory that had been around for 20 years. Of course there are a lot

of conjectures about why that theory had been ignored, but I think it’s largely because of

market forces.

Maybe documentation might have helped. How should developers write documentation?

Robin: Well, they should certainly write comments in the code, but there should also be

some kind of rigorous basis. The difficulty of making an adequate commentary increases

nonlinearly with the size of programs, I believe, so when you get to a million lines, then

it’s really far beyond what may be adequate for a program that is only a few thousand

lines long. Things become much more difficult; the increase in complexity of the interac-

tions between the different parts is greater than linear, therefore the need for rigorous

specification is much greater for what you might call real programs.

By the way, we wrote down the complete formal specification of ML in the form of infer-

ence rules. We laid down the formal definition of the language. What we didn’t do was

write down how implementations should relate to that formal specification, but because

we had the formal specification we knew very much what we were trying to implement.

First of all we had a very clear specification, and secondly we did not intend to change it,

at least only very, very slowly.

Now what happens with real-life programs is that they have to provide the possibility of

changing or removing parts, adapting parts, introducing other parts, because the specifica-

tion is going to change. So for real programs in real life there is an additional reason for

being very careful about the relation between the specification and the implementation,

because you are going to change the specification and you want to know exactly what that

is going to imply for the change in the implementation.

Do you have any interesting anecdote regarding the development of ML?

Robin: Well, one thing is that we spent much more time arguing about syntax than we

did about semantics. We agreed on the functional understanding of the language to a very

large extent, but very often when it came to matters of taste like which word would be

used in the syntax, then we would argue indefinitely because we had no scientific basis on

which to base the decision.

Another story: we gave ML a very carefully thought-out type system which was modest

compared to some of the type theories that were already around. We were using ML for

purpose of doing formal proofs using mathematical logic and one of the things we had to

do was to make it efficient to implement what we called the “simplification rules.” When

you transform a complicated expression into an expression in some particular form, some-

times called normal form or canonical form, you have a lot of rules that dictate the transfor-

mations. To do those transformations quickly you have to implement them rather

cleverly, so that you can be looking through all the rules which might apply and matching

them somehow simultaneously.

Download at Boykma.Com

M L 217

We were implementing this simultaneous matching in ML, and we discovered that some-

thing wasn’t quite efficient, and it turned out to be because our type system was a little bit

limiting. For this particular bit of the implementation—which was actually the implemen-

tation of an analytical tool, a theorem prover—we decided to suspend the rule in ML and

we made it much more efficient. As a matter of fact, it wasn’t too bad because the more

generous type system we used was fairly well understood anyway, but it was more com-

plicated; we wanted ML to have a simple type system, and we needed a slightly more gen-

erous but slightly more complicated one to do some of the work that we wanted to do

efficiently.

If you were to start over and design ML today, would the advances in computing or your

understanding change the design in dramatic ways or would it turn out mostly the same?

Robin: We designed it for theorem proving. It turned out that theorem proving was such

a demanding sort of task that it became a general-purpose language. That makes me ask,

“What would I be designing it for now?” If I were designing it for theorem proving again,

the same problems would be there. You want something where state can be changed. You

don’t want a pure functional language because you want to change the state of it often;

you want to manage the inference tree or whatever it is that you’re growing or the tree of

goals and subgoals. You want to change that.

Having moved from that world into dealing with much more explicitly dynamic systems

like ubiquitous computing, I’d feel lost if I were using a functional language. If I were

designing the language for theorem proving, then maybe the facilities in Haskell, the

monads by which they deal with sequence, might be a better idea—but I’m not sure. I’d

have to know very much what I was designing it for.

What puzzles me is how people can design languages without having some preferred

domain of application, some kind of specific things that they want to make easy to do.

Java probably had a good idea about that and so it turned out to be a good language. But

the space of possible application domains is pretty large now. That’s why you seem to get a

lot of different languages for different purposes. Purpose is the missing parameter. If I were

designing it for the same purpose, then I might well come up with the same language.

I’ve looked at your work, and it seems like you take the approach “Within this problem I

want to create a set of reusable primitives—my theorems—and then I will build other

theorems on top of those.”

Robin: I think you can use ML without having many theorems in mind, but maybe

you’re talking about a designer rather than a user. Certainly when we were designing the

thing and using the operational structures and semantics that we did, it was in mind that

we would want to prove certain theorems about the whole language—for example, that

there would be no dangling references. There were quite a few things that we wished to

be true, and in fact later have been proved by automatic proof systems or semiautomatic

proof systems. To my relief!

Download at Boykma.Com

218 C H A P T E R N I N E

We knew informally that there wouldn’t be any dangling references, but it’s nice to have

a formal proof of the fact, to be sure you didn’t make a bad mistake. On the other hand we

did get into trouble with reference types, types of assignable variables. A couple of people

showed that we had trouble with these in the type system. If we had inposed a certain

constraint on the language then we wouldn’t have had that trouble. On investigation they

found that only 3% of programs would be affected by the constraint! If we were happy

with the other 97%, then we could avoid the trouble. We revised the language to impose

the constraint, and that triggered the revision that we did in ’97, as opposed to ’90 when

the first semantics came out.

When you revise a language, is a formal revision the only way to keep implementation

and specification synchronized?

Robin: I suppose we kept them synchronized. We were able to show that we were

upward compatible. In other words, old implementations were OK as long as they were

only implementing the slightly restricted form of programs. Upward compatibility was a

real question in revision.

As a matter of fact I almost wish we hadn’t done the revision, but it was such a tempting

thing to get right and also to do something more simply that these people had suggested.

What happened was because we were doing a revision, we revised various other things as

well. The revision took us more effort than we really had wanted. On the whole we could

so nearly not have bothered to do the revision. But on balance I’m glad that we did it,

because something had been exposed about the type system that was clearly a valuable

thing to know, and we were able to do that side of things more simply.

Beyond Informatics

What are the major problems in computer science today?

Robin: What I have been working on lately is the notion of a structure of models. If you

work in a high-level programming language, then that’s expressed in terms of entities of

lower-level languages, then that’s expressed in lower-level assembly code, and the way

assembly code behaves is expressed in terms of logic diagrams underneath, and so you have

then a model that is no longer a software model, but a model of electronic objects. And that

in turn is an explanation of the artifact that is the computer, which eventually is going to run

your program, which is about four levels up in the hierarchy of models. That isn’t the end of

the story, because you could go higher than that from a programming language to a specifica-

tion language, which is in some sense a higher model, so you already have five levels.

Think about ubiquitous computing, the kind of systems that are going to manage your

household shopping and fill your refrigerator for you, or that will monitor the health of

individuals by attaching to their body or even traveling inside them. To understand those

systems you are going to need many levels of modeling, because people talk about soft-

ware agents as negotiating with each other, requesting resources from each other, trusting

each other, and reflecting on their own behaviour, in other words exhibiting all kinds of

Download at Boykma.Com

M L 219

semihuman properties. Some of the behaviour of these systems is going to be expressed in

a very high kind of logic that has to do with trust, knowledge, belief, and so on. So you are

going to need a theory of those logics, explaining how to specify programs in terms of

more basic behaviour. These specifications will be of the normal kind, which has to do

with the operational behaviour of the program. but then at high levels you would ask

such questions as, “is it true that this program trusts that one?”, or “how do you imple-

ment the notion of trust between computing agents?” or “how do you understand the

way in which an agent can be said to believe what another agent wishes to do, or to

believe that the other agent is a threat to its own aspirations?”

I can see those questions living perhaps three levels higher than the normal level of speci-

fication that we have for ordinary programs. Whatever the models are, they model soft-

ware, or they model other models that explain software some level lower. Besides this, if

you build something like the European Airbus, then you are combining the model of the

software with the electromechanical model of how the plane would work, and possibly

even the model of atmospheric conditions or the weather, which is going to be met by the

plane when it flies. So we have this challenge to combine models, sometimes models from

natural science like meteorological models, or electromechanical engineering models, and

then the software models, and these all interact. At the level of such combined models,

you should be able to predict how this Airbus is going to perform.

I like the idea that we have a combination of the natural and the artificial, but we have the

same notion of modeling applied to both; it’s just in the case of the artificial that the model

precedes the artifact, whereas in the natural case the natural phenomenon comes first and

the modeling is done later. It’s a sort of integrity between informatics and natural science.

When you design hardware, you can actually test it physically. In software, sometimes we

fail during the implementation step, before we have any users. How can we combine

these different steps of design, implementation, and real-world use?

Robin: If you look at the models that natural science has built, ultimately they only vali-

date them by observation, by observing that the real world behaves in the ways their

models predict. This means that they can never fully validate their models; they can only

falsify them by discovering that what is observed on some occasions is not what they pre-

dicted. They could never observe that every possible phenomenon is as they predicted,

because that is an infinite amount of work.

We have a better situation if, for example, we are implementing a high-level program-

ming language in terms of a lower-level one. We have a formal description of how each of

these behaves, and so we can validate the implementation that is the translation of the

higher-level programs into the lower-level ones by seeing that the scientific or theoretical

explanation of the behaviour at the higher level is actually consistent with the explanation

at the lower level. So we have a chance of validating the way in which one model is real-

ized by another one at a lower level. It’s only when we get down to implementing the

lower-level programs as physical artifacts that we cannot do this kind of mathematical

proofs, but at every higher level, we have a chance, provided the models are well

Download at Boykma.Com

220 C H A P T E R N I N E

expressed, and provided the meaning of the entities at each level are a part of the model at

that level. At each level, you have entities and then you have the explanation of how they

behave, and that’s the medium by which you expect to validate the implementation of a

high-level model by some kind of lower-level implementation.

That’s the way I have been trying to persuade people to think. For example, one of my

recent talks was called “Ubiquitous computing: shall we understand it?”, and what I

meant with “understand” was precisely that we would like to specify the behaviour of one

of these systems, like something that is monitoring the behaviour of your body, and we

would like to understand how the specification of the behaviour of that system is actually

implemented by the agents.

I don’t think it’s very easy to persuade people of this; they tend to say it’s going to be

impossible because the systems are going to be so large that you can’t do it. In fact I read a

European report that said no one would be able to analyze the behaviour of ubiquitous

computing systems. It seems to me that that was an entirely wrong thing to be said. It’s up

to us whether we design systems that can be analyzed or not, so we should create them in

such a form that the analysis is possible.

What links do you see between engineering and informatics?

Robin: Well, engineering is very often already supported by a natural science that came

first. A lot of chemical engineering has arrived since the chemical theories were designed

and tested against reality, so chemical engineering arises as a result of the science chemis-

try, which was observing natural phenomena, so you then begin to be able to engineer

using the understanding that comes from the natural science.

I think the same thing is true in physics, but in software it seems to be different, there is

no such thing as naturally occurring software, as far as I can see it’s too much of a stretch

to try to pretend that software exists inside our minds or whatever, so we don’t have a

developed science that can be the basis for software engineering. So I think the link

between engineering and software is precisely not a link as much as a contrast; we don’t

have software engineering based on a well-accepted science, whereas in most other forms

of engineering they are based on well-accepted science.

What’s the role of math in computer science?

Robin: There are various parts of math that get used. We use logic, we use algebra, we use

probability theory; in hybrid systems, which mix up continuous phenomena with discrete

behaviour, we use the differential calculus. So there seems to be a role for more and more

varied parts of mathematics. What’s not so clear is how you pick a part. Are you picking it

because you like to do probability theory or you like stochastics? Or are you picking it

because you envision some kind of computer system or informatic system that is going to

explain?

Download at Boykma.Com

M L 221

As a mathematician, you can choose what you like to study; for us I think you have to

look at practically occurring systems, whether they are natural or artificial, and then ask

what do I need to explain that?

Lately I had to understand stochastic analysis, which is the probability of duration, time

elapse, and so on. That seems absolutely necessary if we are going to use some of our

models to explain biological phenomena. I have been moved to do learning I never did

before in order to understand how that theory works. Also I have been understanding

some more abstract parts of math like algebra, category theory, and so on. You usually

find that you are only going to use a part of that, so you are not going to develop the very

sophisticated pure theories that the mathematicians develop, you are going to pick a bit

here and there, and these parts may be already well understood, or they may be less

known because they are not beautiful enough, so you may be eventually a contributor to

the pure theories, even though your aim is to explain something real.

Do you define yourself as a computer scientist or a researcher?

Robin: I don’t like the term “computer scientist” because it puts too much emphasis on

the computer, and I think the computer is just an instance of informatic behaviour, so I

would say “informatic scientist.” Of course it depends on what you mean by informatics. I

tend to think it means acts of calculation and communication, communication being very

important.

What is your role as informatic scientist?

Robin: My role, I think, is to try to create a conceptual framework within which analysis

can happen. To do this you have to take account of what is actually happening in soft-

ware, like for example this notion of ubiquitous system, but you try to abstract from that

in some ways. This is truly difficult; you will make mistakes, you will invent the wrong

concepts, they won’t fly in a sense, they won’t scale up. You are looking for elementary

notions that can be scaled up, so that they can actually be used to explain existing or pro-

posed large software systems.

I think this notion of communication among agents is very important because it is one of

the first concepts to be isolated in computation theory that the logicians hadn’t already

studied. The idea of a structured population of interactive agents: what should be the

structure? How are they going to be linked to each other? Which ones can communicate

with which other ones? Can they create new ones? Can they adapt their behaviour

according to their neighbours’ requests or behaviour? You come across a huge range of

questions that can only be asked when you have populations of agents rather than, as in

the early days of programming, just a single program that was supposed to do just a single

task.

Download at Boykma.Com

222 C H A P T E R N I N E

Can the Internet help us find solutions?

Robin: I think the Internet might create problems. To understand it is a problem in itself.

It might help if we create conceptual tools that can be used to analyze the Internet behav-

iour, then they may be the ones that we need to understand other kinds of populations of

agents, like agents monitoring your body, or controlling traffic on a motorway.

A lot of what has happened on the Internet has been excellently designed. It’s a good

example to study because it has worked in practice extraordinary well, so I think it’s part

of the solution as well as part of the problem.

How do you see the computer science research field today?

Robin: I see it very widely spread. People who build large systems are not using rigorous

ways of specifying them. Also the people who work at the lower levels or at the more for-

mal levels, if you like, they sometime get absorbed into pure mathematics and they don’t

perhaps like to make concessions to the world’s realities, so you get a bifurcation of the

communities. Well, in fact there is a spectrum as you move from the front line of applica-

tion back to theories, and you can find people all the way along that rather long path, who

find it difficult to understand the people to the left or to the right of them.

I see it not very well connected. We designed a Grand Challenge for computing in the U.K.

called “Ubiquitous computing: Experience, Design and Science.” By experience, we mean

the kind of experiments that people do with instruments in environments of some kind.

They might instrument a building by putting a computer in every room that might recog-

nize people when they arrive, or report their movements. So you can have the people

who are experimenting with alternative designs; then you have people in the background

who are implementing those things in a way according to good engineering principles;

then below them, you have the scientists who are relating more abstract models to the

engineering work, while the engineers use what they build as the tools for experiment in

the real world. These three levels—experiment, design, and science—try to bridge the gap

that I was talking about.

I began to talk to people I wouldn’t have normally talked to, the people who think of the

social impact of ubiquitous systems, and they really think of the systems as not systems for

use by humans, but systems in which humans are some of the components. You have

these very concrete levels of understanding the systems, and you have to fight your way

back through engineering principles right down to some concepts that might be used as

the basis for analyzing the whole thing.

Do you see any difference in the way research is done today and the way it was done in

the 60s and 70s?

Robin: Well, there is much more interest in these ubiquitous systems, which will be

much more embedded in our environments, and that’s a big difference. Think in partic-

ular of the real-time critical software that is inside vehicles or some other critical

machinery. The kind of analysis that you have to do to validate real-time software is very

different; the relationship between computing and real time used to be less of a concern.

Download at Boykma.Com

M L 223

Of course today, engineers building the Airbus or any pervasive system are very much

concerned with what is happening in real time, just like in physics when you know how

long things take.

Will pervasive computing provide improvements or breakthroughs to AI?

Robin: Yes, but I think that we should approach AI indirectly. I have never been very

happy with the emphasis that was placed on AI in the 60s or 70s. It seems to me that some

of the hopes were being overstated.

As we begin to use words like “belief,” and “knowledge,” and so on, in understanding

populations of agents, we begin to regard artificial intelligence not as something that

either exists or doesn’t exist, but as something that you gradually approach. Your systems

become more and more intelligent, and become what’s called “reflective,” which means

that they can report on their own activity and they can analyze their own behaviour, and

so gradually concepts that are regarded as part of AI will be found in small quantities and

perhaps in even larger quantities as we develop more of these systems.

So I am not sure that all the work that has been done on AI is going to be helpful. I think

it’s going to be more that, as we design our big systems, we use more human-centric

words like “belief” in order to describe the events. Then the problem of the difference

between an intelligent and a unintelligent being gets softened because you have degrees.

Is there any lesson from the research field that you don’t see applied?

Robin: Most programming languages have been designed without first thinking about the

theory on which the meaning would be based. So, very often a language get designed and

implemented, and then what it means, what it is supposed to happen when every pro-

gram is run, is not necessarily predicted. Of course it was in some cases wonderfully pre-

dicted, for example, in ALGOL60; the ALGOL60 report of 1960 was so accurate that one

could follow it and find out what was going to happen. This isn’t always the case. Even in

the good languages, the formal basis is not there before the language arrives, so what peo-

ple do is later to retrofit a theory of meaning to the language, and maybe that means that

the design could not take advantage of theoretical understanding.

Other examples of retrofitted analysis are large software systems. There are plenty of

examples in the U.K.; they cause an enormous amount of delay and sometimes a disaster.

Large systems will gain greatly from rigorous specification and some kind of scientific

analysis.

What do you mean when you say a language has a “theory of meaning”?

Robin: It’s a theory of what an implementation will do. ML has a theory of meaning

because I can prove from its operational semantics that there will be no dangling refer-

ences. People have been showing lately all kinds of things about semantics of C, creating a

theory of meaning for C. You have the semantics of C and then you prove certain theo-

rems about all possible C programs using that semantics. There’s been really quite a lot of

success lately. Things are getting off the ground, I think.

Download at Boykma.Com

224 C H A P T E R N I N E

For a programming language, you mean the specification and design of the language

itself. Could this prevent some mistakes by users of the language?

Robin: Yes, it will mean that the user mistakes can be checked against the specifications

and then a mismatch can be found before the program is ever run or ever used in practice.

What I am working on now is a behavioural theory of populations of interacting agents. It

can describe how a population of people and machines might live in a built environment

communicating among themselves. The same theory can be used, I hope, for understand-

ing biological systems—for example, how a cell can produce a new cell as a kind of bubble

on its surface.

There is the possibility of a general science of informatics that doesn’t depend on particular

applications. Before you ever get to a programming language, you hope to have a theory

which then guides your design of a programming language. I want to create the theory

before the language becomes fixed.

Download at Boykma.Com

225

Chapter 10 C H A P T E R T E N

SQL
Don Chamberlin

Given a large collection of structured data, how can you provide an efficient way to

gather, retrieve, and update information when you don’t know what kind of oper-

ations people will need? That’s the fundamental idea behind the relational model,

invented by E. F. (Ted) Codd. SQL is the most visible implementation of the rela-

tional model—a declarative language where you describe what you want, not how

to do it. Donald Chamberlin and Raymond Boyce developed SQL based on Codd’s

ideas.

Download at Boykma.Com

226 C H A P T E R T E N

A Seminal Paper

How was SQL designed?

Don Chamberlin: In the early 1970s, integrated database systems were just beginning to

be widely deployed. Trends in technology and economics were making it possible for the

first time for businesses to view their data as a corporate resource to be shared among

many applications. This new perspective on data created an opportunity for development

of a new generation of data management technology.

In the 1970s, IBM’s mainstream database product was IMS, but in addition to the IMS

development group, small research groups in several IBM locations were studying the

database problem. Dr. E. F. (Ted) Codd was a leader of one of these groups, located at the

IBM Research Laboratory in San Jose, California. Ray Boyce and I were members of

another of small research group, located at IBM’s Watson Research Center in Yorktown

Heights, New York. Ray and I were studying database query languages, trying to find ways

to improve the languages that were in common usage at the time.

In June of 1970, Ted Codd published a seminal paper* introducing the relational model of

data and describing its advantages for data independence and application development.

Codd’s paper attracted a great deal of attention, both inside and outside IBM.

Ray Boyce and I attended a symposium on the relational data model organized by Codd at

Watson Research Center in 1972. This symposium served as a “conversion experience” for

Ray and myself. We were impressed with the elegance and simplicity of storing data in

relational form, and we could see that many kinds of queries were easy to express in rela-

tional form. After the symposium, Ray and I engaged in a “query game” in which we chal-

lenged each other to design languages that were flexible enough to express many kinds of

queries.

In 1973, Codd’s ideas had gained such prominence that IBM decided to consolidate its

database research efforts at Codd’s location, San Jose, and to develop an industrial-

strength prototype, called System R, as a proof of the relational concept. Ray Boyce and I,

along with several other IBM researchers from Yorktown and Cambridge, moved to Cali-

fornia to join the System R team. Since Ray and I were interested in languages, our first

task was to design a query language to serve as the user interface for System R. We studied

the relational languages that had been proposed by Codd and others, and set the following

objectives for ourselves:

• We wanted to design a language that was based on common English keywords and was

easy to type on a keyboard. We wanted the language to be based on familiar concepts

such as tables with rows and columns. Like Codd’s original language proposals, we

wanted our language to be declarative rather than procedural. We wanted to capture

* Codd, E. F. “A Relational Model of Data for Large Shared Data Banks,” Communications of the

ACM, June 1970.

Download at Boykma.Com

S Q L 227

the power of the relational approach while avoiding some of the mathematical con-

cepts and terminology, such as universal quantifiers and relational division operators,

that had appeared in Codd’s early papers. We also wanted to include some high-level

query concepts, such as grouping, that we felt were not easily expressed in other rela-

tional languages.

• In addition to query, we wanted the language to provide other functionality. The most

obvious extension was to include operations for inserting, deleting, and updating data.

We also wanted to address tasks that had traditionally been handled by database

administrators, such as creating new tables and views, controlling access to data, and

defining constraints and triggers to maintain database integrity. We wanted all these

tasks to be accomplished in a uniform syntactic framework. We wanted authorized

users to be able to perform administrative tasks such as defining new views of data

without stopping the system and invoking special tools. In other words, we saw query,

update, and database administration as different aspects of a single language. In this

respect, we had a unique opportunity because our users were creating their relational

databases from scratch and were not constrained by backward compatibility.

• We wanted our language to be used both as a standalone query language for decision

support, and as a development language for more complex applications. The latter goal

required us to find ways to interface our new language to various popular application

programming languages.

Based in part on our earlier experience with the “query game,” Ray and I developed an

initial proposal for a relational query language named SEQUEL (an acronym for “Struc-

tured English Query Language”), and published the proposal in a 16-page paper* at the

annual ACM SIGFIDET (precursor to SIGMOD) conference in May 1974 (the same con-

ference that featured the famous debate between Ted Codd and Charles Bachman).

Shortly after publication of that initial paper, Ray Boyce died suddenly and tragically from

the effects of a brain aneurysm.

After publication of the initial SEQUEL proposal, the language went through a phase of

validation and refinement that spanned approximately 1974 through 1979. During this

period, SEQUEL was implemented as part of the experimental System R database project

at IBM San Jose Research Laboratory. System R was investigating several aspects of data-

base management, including B-tree indexes, join methods, cost-based optimization, and

transaction consistency. This implementation experience fed back into the evolving design

of the language. SEQUEL was also influenced by feedback from three IBM customers who

installed the System R prototype and used it on an experimental basis. The System R team

met quarterly with the customer teams to discuss ways to improve the language and its

implementation.

* Chamberlin, Don and Ray Boyce. “SEQUEL: A Structured English Query Language,” Proceedings

of ACM SIGFIDET (precursor to SIGMOD) Conference, Ann Arbor, MI, May 1974.

Download at Boykma.Com

228 C H A P T E R T E N

The SEQUEL language evolved significantly during the span of the System R project. The

name of the language was shortened from SEQUEL to SQL to avoid a trademark infringe-

ment. A general-purpose join facility, missing in the original proposal, was added. The

grouping facility was improved and a HAVING clause was added to filter groups. In order

to deal with missing information, null values and three-valued logic were added to the

language. Some new kinds of predicates were added, including a “Like” predicate for par-

tial matching and an “Exists” predicate to test for a nonempty subquery. Additional papers

were published to document the evolution of the language.*† During this phase of the lan-

guage design, decisions tended to be made on a pragmatic basis, according to our imple-

mentation experience and the needs of our experimental users.

The research phase of SQL at IBM ended in 1979 with the completion of the System R

project. At this point, responsibility for the language passed to development teams, who

converted the System R prototype into commercial products on various IBM platforms.

However, the first commercial product based on SQL was released in 1979, not by IBM

but by a small company called Relational Software, Inc. The product was called Oracle, a

name that was later adopted by the company, which is no longer small. The Oracle prod-

uct was soon followed by SQL implementations from IBM and eventually from all major

database vendors. SQL is now the world’s most widely used database query language.

In order to promote portability of applications among various SQL implementations, the

American National Standards Institute (ANSI) undertook a project to develop a standard

specification for SQL. The result, called Database Language SQL, was published as an ANSI

Standard in 1986‡ and as an ISO Standard in 1987.§ The SQL standard has served as a

focus for continuing evolution of SQL, as new features have been added to the language to

meet changing requirements. New versions of the SQL standard were published by ISO in

1989, 1992, 1999, 2003, and 2006.

Adin Falkoff worked on APL with Ken Iverson. His work was similar to your work on SQL;

both grew from the expression of a rigorously defined model. Does a formalism like

Iverson’s notation or Ted Codd’s relational model help create a successful programming

language?

Don: I think the relational data model was fundamental to the design of SQL. I think that

any programming language that computes deterministic results needs a well-defined set of

objects and operators, which you might call a formal data model. I think that is the foun-

dation of deterministic programming.

* Chamberlin, Don et al. “SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and

Control.” IBM Journal of Research and Development, November 1976.

† Chamberlin, Don. “A Summary of User Experience with the SQL Data Sublanguage.” Proceedings

of the International Conference on Databases, Aberdeen, Scotland, July 1989.

‡ American National Standards Institute. “Database Language SQL,” Standard No. X3.135 (1986 and

subsequent updates).

§ International Organization for Standardization “Information Technology—Database Language

SQL,” Standard No. ISO/IEC 9075 (1987 and subsequent updates).

Download at Boykma.Com

S Q L 229

Even if you look at loosely typed languages like Python, you will find that they have a

well-defined data model underlying them. It’s more flexible than the relational model, but

it must be well defined to be used as the base for the language semantics.

If I were to create a new language myself, would you recommend I start from a rigorous

data model, or is it something you can retrofit into a language as it grows?

Don: In principle, I think you could do it either way, but you don’t always have the flexi-

bility to design a new data model concurrently with defining a new language. For exam-

ple, the designers of XQuery didn’t get to invent XML—they had to work with the data

model that had already been defined by XML Schema and other W3C standards.

The Language

Why did you become interested in the query languages?

Don: I have always been interested in languages.

Do you speak other languages (beyond English)?

Don: No, I don’t speak any other human language, but I like to read and write, and I find

languages a fascinating subject. I was very lucky in my career to be at the right place at the

right time, when Ted Codd had his groundbreaking ideas about the relational data model.

It was a once-in-a-lifetime opportunity to be a participant in a project that had the impact

of our early relational database research. My existing interest in languages helped me to

find a niche in this project, and I’m very grateful to have had that opportunity.

One of the early design decisions was that you wanted SQL to be declarative, not

procedural. What were the important criteria for this choice?

Don: There were several reasons for this. The first is that we wanted the language to be

optimizable. If the user tells the system in detailed steps what algorithm to use to process a

query, then the optimizer has no flexibility to make changes, like choosing an alternative

access path or choosing a better join order. A declarative language is much more optimizer-

friendly than a lower-level procedural language.

The second reason is that we were very interested in data independence, meaning that

system administrators should be free to add or delete indexes, change the organization of

the data, and create new views of data. You should be able to write applications in such a

way that they don’t have dependencies on the physical organization of the data and the

access paths that are available at the physical storage level. So, data independence is a sec-

ond important reason why we wanted a declarative language.

The third reason has to do with user productivity. We thought that it would be easier for

users to express their intent at a high level using familiar terminology rather than having

to express their queries based on low-level machine concepts that were less familiar.

So we thought that declarative languages had important advantages for optimization, data

independence, and user productivity.

Download at Boykma.Com

230 C H A P T E R T E N

Were these widely held beliefs within your group at that time?

Don: I think that the general advantages of declarative languages were pretty well under-

stood, but I think there was significant uncertainty about whether a declarative language

as complex as SQL could be implemented with the degree of performance required for

commercial applications.

Views abstract away the physical structure of data stored on disks. Was it a goal at the

time that users might interact with data through views rather than directly through

tables?

Don: We thought that views would be widely used for querying data, because different

applications would need to access data in different ways. For example, different applica-

tions may view data at different levels of aggregation, and may be authorized to view dif-

ferent parts of the data. Views provide a very natural mechanism for implementing these

differences in access to data.

For updates, on the other hand, the situation is much more difficult, because when you

update through a view, the system needs to map your updates onto the underlying stored

data. In some cases that can be done, but in some cases there isn’t a unique mapping that

can be derived. For example, it’s fine to query a view that aggregates average salaries by

department, but if you try to update that view, I don’t know what it means to change the

average salary of a department. So we found that the use of views is much more wide-

spread in querying applications than in updating applications.

SQL was one of the first languages that had to deal with concurrent access to shared data.

What impact did this issue have on the design of SQL?

Don: Maintaining database consistency in a concurrent-update environment was one of

the most important research issues addressed in the System R project at IBM Research.

The ultimate result of this work was a rigorous definition of the “ACID” properties of elec-

tronic transactions, for which Jim Gray received the ACM Turing Award in 1999. These

transaction properties were supported in System R (and other relational systems) by a sys-

tem of locks and logs that is largely transparent to SQL users.

Concurrent access to shared data is reflected in SQL mainly by the concepts of transactions

and degrees of isolation (isolation is the “I” in the ACID properties). Degrees of isolation

allow application developers to control the tradeoff between protecting users from each

other and maximizing the number of users who can be supported concurrently. An appli-

cation that is performing a statistical survey, for example, might specify a low degree of

isolation in order to avoid locking up large portions of the database. A banking transac-

tion, on the other hand, might specify a high degree of isolation to make sure that all the

transactions that affect a given account are serializable.

Concurrent updates are also visible to SQL programmers in the form of potential dead-

locks. Under certain circumstances, two concurrent SQL transactions can encounter a

deadlock; in this case, one of the transactions will receive a return code indicating that its

effects have been rolled back.

Download at Boykma.Com

S Q L 231

I read that there’s an interesting Halloween story from the System R days involving Pat

Selinger and Morton Astrahan.

Don: On the occasion of the Halloween holiday in, I believe, 1975, Pat Selinger and

Morton Astrahan were working on the optimizer for the first SQL implementation, which

had to choose an access path to use when doing a bulk update such as giving a pay

increase to all underpaid employees. Initially Pat and Morton thought that if you are look-

ing for employees who earn less than a certain salary, it would be efficient to find them by

using an index on their salary attribute. So the optimizer used an index to scan through

employees in order of increasing salaries, updating the salaries as it went along. But we

observed that when an employee’s salary changes, he moves to a new place in the index,

and as the scan continues it may encounter the same employee again and give him

another pay increase. This problem was leading to incorrect and unpredictable results in

this early experiment.

This problem was discovered by Pat and Morton on a Friday afternoon on Halloween, an

American holiday. Pat came into my office and asked, “What are we going to do about

this?” and I said “Pat, it’s Friday afternoon, we can’t solve this problem today; let’s just

remember it as the Halloween problem, and work on it next week.”

Somehow that name became attached to the problem that you can’t access data using an

index on an attribute that’s being changed or modified. Since this is a problem that has to

be solved by all relational database optimizers, somehow this name has become fairly well

known in the industry.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer languages today and in the forseeable

future?

Don: I think the history of SQL illustrates the importance of having a specific set of princi-

ples that guide the process of language design. I’ve made a list of some principles that I

think (in hindsight) are important in designing a computer language. I’m not claiming

here that all of these principles were well observed in the design of SQL; in fact, as various

people have observed, some of them represent areas of deficiency in the original SQL

design. To a considerable extent, these early deficiencies have been mitigated as the lan-

guage has evolved.

Here’s my list of design principles. Many of them seem like common sense, but applying

them in practice is more difficult than it looks.

Closure

The language should be defined in terms of a data model consisting of a set of objects

with well-defined properties. Each operator in the language should be defined in terms

of its operands and its result as data model objects. The semantics of each operator

should specify the effects of the operator on all the properties of the participating

objects.

Download at Boykma.Com

232 C H A P T E R T E N

Completeness

Each kind of object in the data model should have operators to construct it, to decom-

pose it into its more primitive parts (if any), and to compare it with other objects of a

similar kind.

Orthogonality

The concepts of the language should be defined independently and should not be sub-

ject to special rules constraining their use. For example, if a scalar value is a concept in

the language, any expression that returns a scalar value should be usable in any con-

text where a scalar value is expected.

Consistency

Common tasks, such as extracting a component from a structured object, should be

handled in a consistent way wherever they appear in various parts of the language.

Simplicity

The language should be defined in terms of a small number of relatively simple con-

cepts. Designers should avoid the temptation to add special-purpose features. If the lan-

guage is successful, keeping it simple will require discipline and determination to push

back against many requests for “improvements.” This ongoing struggle will be made

easier if the language has a good extensibility mechanism (see the next item).

Extensibility

The language should have a well-defined, general-purpose mechanism whereby new

functionality can be added, ideally with little or no impact on the syntax of the lan-

guage. For example, a database query language might provide a facility for adding user-

defined functions written in a separate Turing-complete programming language.

Abstraction

The language should not expose or depend on aspects of a specific implementation. For

example, eliminating duplicates from a set of values should be specified in terms of an

abstract concept such as a “primary key” rather than a physical strategy such as a

“unique index.” (This was a flaw in some of the earliest versions of SQL.) In the data-

base world, this concept is sometimes called data independence.

Optimizability

The language should not place unnecessary constraints on algorithms for executing its

expressions. For example, the definition of the language should allow some flexibility

in the order of predicate evaluation. Where possible, the semantic specification of the

language should be declarative rather than procedural, in order to provide opportuni-

ties for automatic optimization. In some cases, it is helpful to tolerate some indetermi-

nacy (for example, in processing a given query, an error may or may not be raised

depending on order of predicate evaluation).

Resilience

Not all programs are correct. The language should be designed in such a way that many

programming errors can be detected and clearly identified at “compile” time (i.e., in the

absence of actual input data). Also, the language should provide a mechanism that

enables programmers to handle exceptional conditions at runtime.

Download at Boykma.Com

S Q L 233

Feedback and Evolution

Ted Codd’s original paper on the relational data model was published in the open

literature and influenced people outside IBM such as Larry Ellison, and Mike

Stonebraker’s group at UC Berkeley. Was this process similar to the “open source” model?

How did external visibility affect the development of SQL?

Don: In the 1970s, the relational data model was a new idea. It was a subject for advanced

research and prototyping and it was not generally available commercially. SQL was devel-

oped as part of an experimental research project called System R that was independent of

IBM’s normal product development process. The research division at IBM traditionally

publishes the results of its exploratory research in the open literature and that’s what we

did with the SQL language and other parts of System R.

We did not release the source code for our SQL implementation, so this is quite different

from today’s model of open source software. We didn’t give away any software, but we

described some of the interfaces and techniques that were used in our experimental

implementation of SQL. For example, some of our optimization techniques were described

in the open literature, and as you know some of these papers have been influential for

other people in the industry who were developing similar kinds of software.

This process of sharing ideas was not a one-way street. In the early days of research in

relational databases, ideas were shared freely among several organizations including IBM,

UC Berkeley, and others, to their mutual benefit.

Why did SQL become popular?

Don: I think that the main reason for the popularity of SQL derives from the power and

simplicity of Ted Codd’s relational data model. Codd was responsible for the conceptual

breakthrough that revolutionized database management—SQL was simply an attempt to

encapsulate Codd’s concepts in an accessible format. Compared to other existing technol-

ogy, relational databases provided a quantum improvement in user productivity for creat-

ing and maintaining database applications.

Of course, SQL was not the only language based on Codd’s ideas that was proposed during

the 1970s. I think that some of the specific reasons why SQL became successful include

the following:

• The fact that SQL supported a complete set of database administration tasks was impor-

tant to the acceptance of the language. Using SQL, any authorized user could create or

drop tables, views, and indexes at any time by using simple commands. These tasks had

traditionally required the services of a database administrator, shutting down the data-

base and incurring significant costs and delays. SQL liberated end users from database

administrators and allowed them to freely experiment with alternative database

designs.

Download at Boykma.Com

234 C H A P T E R T E N

• SQL was reasonably easy to learn. A subset of SQL sufficient to accomplish simple tasks

could be learned in a few hours. Users could then pick up the more complex and pow-

erful aspects of the language as needed.

• SQL was available in robust, multiuser implementations from at least two vendors

(IBM and Oracle), and on multiple platforms including OS/370 and Unix. As the lan-

guage gained popularity, additional implementations became available, creating a

snowball effect.

• SQL supported interfaces to popular programming languages. Together with these host

languages, SQL was able to scale up to support complex applications.

• The early work at ANSI and ISO on standardization of SQL gave users confidence that

their SQL applications would be portable from one implementation to another. This

confidence was reinforced by the creation of an SQL conformance test suite by the

National Institute of Standards and Technology (NIST). Some agencies of the U.S. gov-

ernment required their database procurements to conform to an SQL-based Federal

Information Processing Standard (FIPS-127).

• The development of SQL took place at a propitious time, just as many enterprises were

developing or converting their critical applications to use integrated corporate data-

bases. Application developers and database administrators were in short supply. The

productivity improvements provided by SQL-enabled organizations to deal effectively

with their application development backlog.

Why has SQL remained popular?

Don: Many of the languages that were popular 25 years ago have effectively disappeared,

including some languages that had the support of large corporations. I think the reasons

why SQL remains in widespread use include the following:

• The ISO SQL standard has provided a way in which the language can evolve in a con-

trolled fashion to meet changing user requirements. The standard is maintained by a

committee that includes both users and vendors, and the vendors have committed

resources to keep their implementations in conformance with the evolving standard.

Over the years, the SQL standard has corrected flaws in the original language design

and added important new functionality such as outer join, recursive queries, stored

procedures, object-relational functionality, and OLAP (online analytical processing).

The SQL standard has also served to focus the industry’s attention and resources, pro-

viding a common framework in which individuals and companies could develop tools,

write books, teach courses, and provide consulting services.

• SQL manages persistent data, which has a long lifetime. Enterprises that have an

investment in SQL databases are inclined to build on that investment rather than start-

ing over with a different approach.

• SQL is robust enough to solve real problems. It spans a broad spectrum of usage from

business intelligence to transaction processing. It is supported on many platforms and

in many processing environments. Despite some criticism about its lack of elegance,

Download at Boykma.Com

S Q L 235

SQL has been used successfully by many organizations to develop critical, real-world

applications. I believe that this success reflects the origin of the language in an experi-

mental prototype that was responsive to the needs of real users from the earliest days.

It also reflects the pragmatic decisions that have been made throughout the history of

the language as it has evolved to meet changing requirements.

Systems written in C today are perhaps a few orders of magnitude larger than systems

written in C in the 70s, but the datasets of today are much, much larger. A handful of lines

of SQL can still operate on a dataset as it grows huge; it seems that SQL can scale with

data much better. Is that true? If so, why?

Don: Maybe this gets back to an additional advantage of declarative languages, in that

they are more susceptible to parallel processing than procedural languages. If you are per-

forming an operation over a large dataset and it is described in a nonprocedural way, the

system has more opportunities to split up the work across multiple processors. The rela-

tional data model and the high level of abstraction that it supports have been very helpful

in that kind of scaling. SQL, as a declarative language, provides opportunities for compilers

to take advantage of implicit parallelization opportunities.

Did you get feedback during these years from users of products based on your research?

Don: Since IBM’s mainline database products began to support SQL in the 1980s, IBM has

conducted periodic reviews called “customer advisory councils,” where we collect feed-

back from our users about SQL and other aspects of our database products. There is also

an independent user group called IDUG, the International DB2 User Group, that has a

meeting once a year in America, Europe, and Asia, and at those IDUG conferences there is

a lot of exchange of information between DB2 users and IBM. Much of that feedback

comes back to the research and development teams in IBM and it is used to help us plan

future enhancements to the products. This is the origin of many new features like the

object relational extensions and the OLAP extensions.

Another source of ideas is the ANSI and ISO committees that maintain the SQL language

standards, which include representatives from both users and implementors of the lan-

guage. These sources of feedback have helped the language to evolve over the years to

meet the changing needs of the user community.

You also conducted some usability tests with a psychologist named Phyllis Reisner for

two languages, SQUARE and SEQUEL. What did you learn during those tests?

Don: Yes, Phyllis Reisner was an experimental psychologist who worked with the System

R group to test our language ideas on college students. SQUARE was an early attempt at a

relational database language based on a mathematical notation, whereas SEQUEL was a

similar language that used an English keyword notation.

Phyllis did an experiment in which she taught both of these languages to college students

to find out which approach was easier to learn and could be used with the fewest errors. I

think that overall the English keyword notation proved to be easier to learn and use than

the mathematical notation.

Download at Boykma.Com

236 C H A P T E R T E N

It was interesting though that the majority of the mistakes that were made by the college

students didn’t have much to do with the structure of the language. They had to do with

things like whether strings of data were enclosed in quotes or not, or whether the data

was capitalized or not—things that you might consider to be trivial or inconsequential

errors, not really related to the structure of the language or the data. Nevertheless those

kinds of details were hard for users to get right.

Today there are a lot of SQL injection attacks against web services that don’t correctly

filter the input before it’s included in the queries to their databases. Any thoughts?

Don: SQL injection attacks are a good example of something that we never dreamed of in

the early days. We didn’t anticipate that queries would be constructed from user input

from web browsers. I guess the lesson here is that software should always take a careful

look at user input before processing it.

Did SQL evolve in ways that were unexpected during its initial design?

Don: SQL was intended to be a declarative, nonprocedural language, and it still retains

that character. But over the years, the language has evolved to become much more com-

plex than we originally imagined. It’s been used for many things that we never thought of

in the early days. Features such as Data Cubes and OLAP analysis have been added to the

language. It’s been turned into an object-relational language, with user-defined types and

methods. We didn’t anticipate all these new applications. SQL users today have to deal

with more complexity and need more technical sophistication than we expected in the

early days.

Ray Boyce and I hoped that SQL would have an impact on the database industry, but its

impact did not come in the way we expected. Ray and I thought that we were developing

a language that would be used mainly by “casual users” to pose ad hoc queries for decision

support applications. We were trying to make databases accessible to a new class of users

who were not trained computer scientists. We expected to see SQL used directly by finan-

cial analysts, urban planners, and other professionals who needed access to data but did

not want to write computer programs. These expectations proved to be too optimistic.

Since the beginning, SQL has been used primarily by trained computer programmers. In

fact, over the years a great deal of SQL code has been generated by automatic tools, a

development that was not foreseen in the early days. The nonprogramming professionals

who Ray and I thought would use SQL directly are more likely to use forms-based inter-

faces supported by application programs with back-end access to an SQL database. Direct

access to data by casual users had to wait for the development of spreadsheets and search

engines.

Download at Boykma.Com

S Q L 237

You have worked on relational systems, and also on a document-processing tool called

Quill that isolates users from the physical representation of documents. Spreadsheets like

Excel also present data in a very intuitive, user-oriented way. Do these systems have

something in common? Can this kind of data independence be extended to encompass

the Web?

Don: Quill and Excel both support what we might call direct manipulation user interfaces

that allow users to operate on a visual representation of data that has an underlying logi-

cal structure. This has proved to be a very powerful metaphor. There’s an analogy here

with relational databases: the user operates on data at a high level of abstraction that is

independent of the underlying data structures. Direct manipulation interfaces are easy to

learn and use, but at some level they still need to be supported by specialized underlying

data structures. Some kind of optimizing compiler or interpreter is needed to map the

user’s intent into the underlying data.

As far as the Web as a whole is concerned, it is what it is, and we don’t have an opportu-

nity to redesign the Web at this point, but all the popular search engines isolate their users

from the details of processing requests for information. I’m sure that search engines will

continue to evolve to support higher levels of abstraction, and to discover and exploit the

semantics of information on the Web.

You tried to develop a tool that would be useful to regular users, but for the most part

only programmers use it.

Don: I think we proved to be a little bit naïvely optimistic in our goals in the original

design of the language. I worked with Ted Codd in the early days of the relational data

model, and in those days Ted was working on a project called Rendezvous, which was a

natural-language question-answering system based on the relational model. I didn’t think

that it was feasible at that time to go all the way in a natural language, but what I did hope

was that we could design a human interface that was understandable enough that people

could use it with very little training.

I think for the most part that didn’t happen. SQL quickly grew to a level of complexity

that made it a programming language and required a level of training that was consistent

with other programming languages, so it has been used primarily by professionals.

I have the greatest respect for more recent web-based applications like Google that can be

used to retrieve useful information without any training at all. We just didn’t have the

technology to support that back in the 70s.

Is the difficulty in explaining how SQL works, or in exposing the ideas of the relational

model that people may not have been prepared for?

Don: I think both of those were factors that led to the requirement of a certain level of

technical expertise among SQL users. Another factor relates to the difference between

precise and imprecise queries.

Download at Boykma.Com

238 C H A P T E R T E N

When you throw a handful of search terms into Google, you are willing to accept an

imprecise result. In other words, Google makes its best effort to find the documents that

are most relevant to your list of search terms. That’s a nondeterministic process, and the

result in most cases is very useful.

With SQL we were working on a different kind of a problem in which the answers are

deterministic, and for deterministic answers you need a query language with a higher

degree of precision. You need to understand very explicitly the difference between “and”

and “or,” for example. In Google the semantics of queries can afford to be a little fuzzier

than they are in the structured query domain where SQL is used.

The cost of making a mistake or the cost of getting imprecise answers back from a web search

is much smaller than the cost of getting the wrong salary figure for your employees.

Don: That’s right, and if you misspell something, or don’t remember exactly what the join

column is in a table, your query might not work at all in SQL, whereas less deterministic

interfaces like Google are much more forgiving on small mistakes like that.

You believe in the importance of determinism. When I write a line of code, I need to rely

on understanding what it’s going to do.

Don: Well, there are applications where determinism is important and applications where

it is not. Traditionally there has been a dividing line between what you might call data-

bases and what you might call information retrieval. Certainly both of those are flourish-

ing fields and they have their respective uses.

XQuery and XML

Will XML affect the way we use search engines in the future?

Don: I think it’s possible. Search engines already exploit the kinds of metadata that are

included in HTML tags such as hyperlinks. As you know, XML is a more extensible

markup language than HTML. As we begin to see more XML-based standards for marking

up specialized documents such as medical and business documents, I think that search

engines will learn to take advantage of the semantic information in that markup.

You are now working on a new language called XQuery for accessing XML data. XML is

different from relational data because it includes metadata. What challenges have you

encountered when designing a query language for XML?

Don: One of the greatest strengths of XML is that XML documents are self-describing. This

makes it possible for XML documents to differ in their structures, and for these differences

to be observable by reading the metadata in the form of XML tags that are included in the

documents themselves. This makes XML a very rich and flexible format for representing

information. In today’s business applications where we exchange documents that are not

all similar in structure, the internal metadata that is included in the XML format is very

important. One of the main purposes of the XQuery language is to exploit this flexibility so

that queries can operate on data and on metadata at the same time.

Download at Boykma.Com

S Q L 239

One of the challenges that we faced in designing XQuery is that there are many different

environments in which the language needs to be used. There are some applications in

which types are very important. In these applications, you want a strongly typed language

that does a lot of type checking and raises errors if an object turns out not to conform to

the expected type. But there are also other environments, sometimes referred to as

Schema Chaos environments, in which data types are less important. In these environ-

ments you may be willing to accept data of unknown type or heterogeneous type, and you

may want the language to be very flexible and to work on data of many different kinds.

It was difficult to design a language that could span this spectrum of usage from strongly

typed to loosely typed. Also, the type system of XML Schema is much more complex than

the type system of the relational data model, and designing a language to be used with this

complex type system was very challenging.

The result is a language that’s more complex than SQL. I think XQuery is harder to learn

than SQL, but the payoff for dealing with this complexity is the ability to deal with the

richer and more flexible data format that’s offered by XML.

You have participated in the standardization of two query languages, SQL and XQuery.

What have you learned from these experiences about the standardization process?

Don: First, I learned that standards have great value in providing a formal language defi-

nition, a focus for user feedback, and a mechanism for controlled evolution of a language

to meet changing requirements. The standards process brings together people with vary-

ing points of view and expertise. The resulting collaboration is notoriously slow, but I

believe it tends to produce a relatively robust language definition.

In my experience, the following practices are important to the effectiveness of a language

standardization committee:

• The committee should maintain a reference parser at all times during language devel-

opment, and should use this parser to validate all the examples and use cases used in

the language specification and related documents. A surprising number of errors are

exposed by this simple process. Maintenance of a reference parser exposes usability and

implementation issues, and ensures that no ambiguities or other anomalies are intro-

duced into the language grammar.

• The committee should maintain a formal set of use cases that illustrate the intended

usage of the language. These use cases are helpful in exploring alternative approaches

during the design process, and can ultimately serve as examples of “best practices” in

language usage.

• The language definition should be backed up by a conformance test suite, and at least

one reference implementation should be required to demonstrate conformance before

adoption of the standard. This practice tends to expose “edge” cases and to ensure that

the semantic description of the language is complete and unambiguous. A standard

without an objective measure of conformance is of little value.

Download at Boykma.Com

240 C H A P T E R T E N

How did XQuery feel different from inventing SQL?

Don: I did notice some differences. We had many more constraints in designing XQuery

than in designing SQL, and there were a couple of reasons for that.

One was that a lot of people were interested in XQuery right from the beginning. We were

designing the language in the context of an international standards organization that had

representatives from about 25 different companies, and they all had preconceived notions of

how the language should turn out. We were doing this work in the full glare of publicity with

all our working drafts published on the Web. As a result, we got a lot of feedback, much of

which proved to be helpful.

SQL was a very different experience. We were designing the language in a very small

group, and nobody was interested outside IBM and not very many people inside, so we

had a lot more flexibility to make autonomous decisions without having to explain them

and justify them to lots of people that had strong opinions.

Having a low profile can be kind of liberating, I found.

Don: Yes, it has many advantages!

Does the size of the team affect the results?

Don: Yes, I find that, for me, the ideal size of a team is 8 to 10 people. A team of that size can

accomplish a lot, but it’s small enough that everyone can understand what everyone else is

doing and information can propagate easily without a lot of friction and overhead. That’s

about the size of the System R team that built the first experimental SQL implementation.

What is the best way to stimulate an R & D team?

Don: I think the best way to stimulate a research and development team is to give them

an opportunity for their work to have an impact. If people can see that their work is going

to make a difference in the world, they will be very motivated and work very hard. This is

an advantage that I think small start-up companies tend to have: they are often doing

something revolutionary and don’t have a legacy that places limitations on their work.

In larger companies, opportunities of that kind are more unusual, but they do exist. I person-

ally found it very motivating to be a part of the early development of relational database tech-

nology. It was something that we could see had the potential for a revolutionary impact.

Working on a project that has that potential motivates people to do their best work.

How do you define success in your field?

Don: That’s a wonderful question. I would define success in research as having a lasting

impact on technology. If we can develop theories or interfaces or methods that are widely

used and survive the test of time, I think we can claim that our research has some value.

One of the best examples of this is the work of Ted Codd. Ted came up with ideas that were

simple enough for everyone to understand and powerful enough that nearly 40 years later,

they still dominate the information management industry. Not many of us can aspire to that

level of success, but that’s how I would define an ideal outcome of a research project.

Download at Boykma.Com

241

Chapter 11 C H A P T E R E L E V E N

Objective-C
Brad Cox and Tom Love

Objective-C is a combination of the C and Smalltalk programming languages with

Smalltalk’s object support added. Tom Love and Brad Cox developed this system in

the 80s. Its popularity grew with the rise of Steve Jobs’s NeXT systems in 1988, and

it is currently most prevalent in Apple’s Mac OS X. Unlike other OO systems at the

time, Objective-C used a very small runtime library instead of a virtual machine.

Objective-C’s influence is present in the Java programming language, and Apple’s

Objective-C 2.0 is popular for Mac OS X and iPhone applications.

Download at Boykma.Com

242 C H A P T E R E L E V E N

Engineering Objective-C

Why did you extend an existing language instead of creating a new one?

Tom Love: That was very important because of the requirements for compatibility in

large organizations. It was a very important decision early on that you could take a C pro-

gram and run through the Objective-C compiler and nothing would be changed. Nothing

that you could do in C would be prohibited, and nothing that you did in Objective-C

would be incompatible with C. That was a big constraint, but it was a very important con-

straint. It allowed for mixing and matching easily, too.

Why did you choose C?

Tom: Probably because we were using Unix systems in a research environment originally

and programming in C and we were trying to do things that were difficult to do in C. The

August 1981 issue of Byte magazine showed up and started describing to most of the world

for the first time what one could do with Smalltalk. Brad basically said, “I think most of

the capabilities that they’re talking about in Smalltalk I could figure out how to add to C.”

We were a research group in ITT building distributed programming environments to help

software engineers build telecommunications systems. So we were looking for the right

tools to build a set of what today might be referred to as CAD tools—but it was more than

just CAD tools.

From today’s perspective, is Objective-C better than Smalltalk in some ways?

Tom: The Objective-C that exists today and the libraries that exist today are very different

than what existed in the fall of 1984 or 1983 when the first version actually came out. We

talked earlier about a set of given applications for which a language is appropriate and a

set for which it’s not. Smalltalk absolutely is a wonderful language for learning about

object-oriented programming, and I’m actually surprised that it’s not being used a lot

more often in academic environments because it’s a beautiful way to learn the basic con-

cepts. By contrast, if I were responsible for writing a new operating system, I wouldn’t

choose Smalltalk as the language for writing an operating system. If I’m doing certain

kinds of research models or prototypes or something like that, Smalltalk is a beautiful

solution. I think there’s a range of appropriate solutions for which any given language

works well and there’s an overlap between the two.

Objective-C and C++ both started from C, but they went in two very different directions.

Which approach do you prefer now?

Tom: There’s the successful direction, and then there’s the approach that Bjarne took

with C++. In one case, it was a small, simple—dare I say, elegant—programming language

that was very crisp and well defined. In the other case it was a pretty ugly, complicated,

difficult language that had some really troublesome features. I think those are the distinc-

tions between the two.

Download at Boykma.Com

O B J E C T I V E - C 243

Is C++ too complex in some ways?

Tom: Oh, absolutely.

It’s still evolving. They are still adding things today.

Tom: Well, and go to it. I happen to like my languages really simple. APL is a nice pro-

gramming language because it’s incredibly simple but outrageously powerful for doing

certain kinds of applications. If I’m writing a statistical package, then APL is a dandy lan-

guage to be using because it really does matrix algebra better than anything I know of.

But, you know, it’s just an example.

Why do you think that C++ was used more frequently than Objective-C?

Tom: It had the AT&T moniker behind it.

Just that?

Tom: I think so.

What do you think about Objective-C today?

Tom: It still exists. How about that?

Objective-C 2.0 adds a lot of interesting features—Apple is certainly keeping it alive.

Tom: I was just talking to someone last night who is programming for the iPhone. He was

describing that he had downloaded the Developers Kit for the iPhone, and it’s Objective-C

through and through. It stays alive.

Did you have any idea during its early development that people would use the language

on mobile phones and small devices?

Tom: We first met when I hired Brad into an advanced technology research group for the

telephone industry—ITT. Our job was to look 10 years ahead at that time. One of the

things that we learned about looking 10 years ahead was that we weren’t very good at it;

particularly, we weren’t very good at the software aspects of it. It turned out we were

spectacularly good at predicting where hardware technology was going to be 10 years out,

and we were 10 years optimistic about software. By that, I mean we thought things would

happen by 1990 that didn’t happen until 10 years later.

Even in the late 90s, people were still dubious about some of the ideas that Lisp and

other languages had invented and had used successfully for 30 or 40 years by that point.

Tom: Right. Of course programmers are legendary for being optimists. Another thing is

that that the population keeps turning over. We develop PCs and we develop PDAs, and

we develop programmable telephones, and the set of people that are programming those

different devices is often different. It’s not like the same people keep using the same tech-

nology. A long time ago the tradition was that the mainframers were different than the

Download at Boykma.Com

244 C H A P T E R E L E V E N

minicomputer guys who were different from the PC guys who were different from the

workstation guys. Each of them independently had to go learn some of the same lessons.

We keep doing that.

Listen to a group of people that are at a conference doing iPhone development applica-

tions. They won’t look at all like the crowd that will show up at a mainframe conference

these days, or even a Windows development conference. The .NET programmers are not

only a different crowd but a different generation as well.

Do you see that in hardware as well?

Tom: I don’t think that the learning is as distinct.

Why can we speculate about 10 years in the future of hardware, but not software?

Tom: We have good quantifiable data for hardware. For software, we don’t have such

quantification. As you might know about me, I’m big on counting stuff. I like numbers. It

has been a bit of an avocation of mine for 30 years of trying to figure out how long does it

take a programmer to write a class, and how long is it being tested, and how many testers

do you need per programmer, and how many tests need to be written for every class, and

how many lines of code fit in a box of paper: 100,000.

Growing a Language

Do you believe in growing and evolving a language?

Tom: Slowly. The interesting and complicated question has to do with proprietary lan-

guages versus languages in the public domain versus open source languages, and those are

reasonably difficult things to resolve. If you have a single authority responsible for making

changes to the language and those changes happen slowly and methodically, that’s proba-

bly a good thing—but some people don’t like the fact that they have to pay for their com-

pilers or pay annual maintenance charges on a compiler that’s not changing very often.

We struggled with these questions for years. It is one of the issues when trying to design

and deploy a programming language—same problem with operating systems, of course.

How do you decide whether to add a feature to a language?

Tom: You want as few features as possible to give you a maximum amount of functional-

ity and flexibility.

You’ve said that object-oriented languages are somewhat limited in their applicability.

Are there ways to reduce this limit?

Tom: Any language that you choose has a range of systems for which it’s appropriate and

systems that are outside that range. There are still people writing very tight assembly lan-

guage code for certain special-purpose applications because they need absolute maximum

runtime efficiency. I don’t think this happens as much anymore, but there are simply

physical space constraints that one has to be aware of. My view is that no matter how

wide the range, you can find examples that are outside it. So I don’t mean to imply that

Download at Boykma.Com

O B J E C T I V E - C 245

object-oriented languages have especially small range. For example, if you’re building

some kind of onboard avionics system for some remotely piloted vehicle and you have a

tiny little processor and tiny little system on board that is essentially a model airplane, it’s

going to be a different problem than if you’re designing software to run on a Boeing

Dreamliner.

I can see why you chose Smalltalk; it was clearly the best choice. Even now it’s a good

choice.

Tom: It’s an elegant language. I know some of the earlier languages like APL. APL has,

like Smalltalk, one really gigantic simplifying principle around which it was designed and

built. That was hugely important. Objective-C started off life with the idea of being a

hybrid language, and we rigorously upheld the notion that we wouldn’t take away any-

thing from C, we would only add to it. Therefore we weren’t creating a C-derivative lan-

guage, but rather a hybrid based upon C.

Some of those early decisions were actually really important, for the fact that it’s still

around. I often refer to myself as the guy responsible for the square brackets in Objective-C,

because Brad and I had a long conversation about. Do we have a C syntax that is consis-

tently C, or do we create a hybrid language where I describe it as “the square bracket is a

gear shift into the object land”? Our view was that if you had a hybrid language, you could

build a set of foundation classes so that at some point most of the work is actually done

inside the square brackets. This allows a lot of details to be hidden from a typical applica-

tion programmer.

The square brackets are an indication of a message sent in Objective-C. The original idea

was that once you built up a set of libraries of classes, then you’re going to spend most of

your time actually operating inside the square brackets, so you’re really doing object-

oriented programming using an underlying framework of objects that were developed in

the hybrid language, which was a combination of procedural and object-oriented lan-

guage. Then as you began to build up libraries of functionality, there’s less and less

requirement to drop into the procedural world and you could stay within the square

brackets. It was a deliberate decision to design a language that essentially had two levels—

once you had built up enough capability, you could operate at the higher level. I actually

think that’s one of the reasons. Had we chosen a very C-like syntax, I’m not sure any-

body would know the name of the language anymore and it wouldn’t likely still be in use

anywhere.

The other two goals at the time were sort of simplicity and elegance. Back in those days,

people in the business had probably written a program in 20 different program languages.

I found for myself that when you try to do something serious in APL you begin to learn its

real power, and see, it turns out to be a grand program for these applications.

My first home computer was an IBM 5100, which was actually an APL machine. I thought

it would be interesting to see if you could do something like a full-screen text editor using

APL, and that turned out to be a really hard problem.

Download at Boykma.Com

246 C H A P T E R E L E V E N

You’d have to treat your screen as a matrix of characters…that would be tricky.

Tom: Right. It was a poor match. A lot of us in this generation came along and spent some

time at least with a string-processing language, a Lisp processing language, a matrix-

manipulation language, and an object-oriented language. For me, I felt like I learned

important fundamental concepts each time I added a language to my repertoire.

I can see how that builds the desire for a good, general-purpose language. Was your

motivation to start from C and add Smalltalk trappings?

Tom: We were trying to figure out what is the right programming language to use to build

programming environments for large international teams building telephone switching

systems. We weren’t completely happy with any of the choices available in those days.

When the August 1981 issue of Byte magazine came out on Smalltalk, we all went out and

read it from cover to cover a few times. Brad walked in my office one day and said, “Can I

take this computer home for about a week? I think in about a week I can come back and

show you that I can build something real close to Smalltalk as an extension to C language.”

I allowed him to do something hugely unusual at the time, which was to take a computer

home. That computer was about the size of a box that a pair of cowboy boots might come

in those days. It was an Onyx computer, a computer company lost in computer history for

most people.

I have the Smalltalk 80 book from ’83 right here. It looks like more than a week’s work,

but the compiler itself is not that complicated.

Tom: No, it isn’t. Languages that have clean underpinnings aren’t themselves that com-

plicated. By contrast you can well imagine that a C++ compiler is just a really ugly thing,

because it’s not a tidy language. It’s got all sorts of special and unusual constructs that are

not completely consistent, and that’s a problem.

Several other interviewees have said you really want to start with a very small core set of

ideas and then build everything on top of those. Is that your experience or your

impression as well?

Tom: I think this is a reasonable thing to do. I would start with a few examples of really

simple, really pure languages, and Smalltalk and APL would be two obvious candidates.

You could probably think of some others. Lisp is also another candidate.

For contrast, you might want to consider a really ugly language. I’ll give you a candidate,

which is more important than you might think. It’s the MUMPS programming language.

It’s actually a simple language. It’s rather ugly and untidy and very unconventional, but it

turns out to be a good language for building things like electronic medical record systems.

It is really a programming environment, not just a programming language. The environ-

ment is really helpful when building high-performance electronic medical record systems.

The largest existing system in production is wall-to-wall MUMPS, built by the Department

of Veteran Affairs.

Download at Boykma.Com

O B J E C T I V E - C 247

Of 108 applications, about 100 of them are written MUMPS. It’s about 11 million lines of

code, and it’s intractable, and it doesn’t look like anything you’ve ever seen before. Since

electronic medical records are really, really important right now to this country and to the

world, and the largest known production system happens to be written in this language, it

actually is more important than most people realize.

One of my colleagues has always said the spreadsheet is the world’s most popular

programming language anyway. Why should we be surprised by things like that?

Tom: I’ll tell you an example of programming language pathology you probably haven’t

heard of. It turned out that I worked at a little low-key and relaxed firm called Morgan

Stanley once upon a time, and they were involved in doing trading systems, which proba-

bly does not come as a surprise to you.

One guy there decided that, that among the world’s programming languages there were,

there was not one that was ideal for doing really high-performance trading systems. He

decided to design his own programming language. It was actually designed very much in

the spirit of APL, but he had this very firm belief that any language compiler worth its salt

could be written in 10 pages of code or less.

As more and more features got added to the language and to the environment, he kept

trying to figure out how to squeeze it into his 10-page constraint. At a certain point he

started shortening the variable names in order to put more on each line. After about 15

years, you looked at those 10 pages of code and it looked like a core dump. It was the mid-

90s. Every bond trading system in Morgan Stanley was programmed in this language

called A+.

When I arrived at Morgan Stanley, I had 250 people working for me in three different

geographies: Tokyo, London, and New York. I started a process where I spent at least 30

minutes at the desk of every one of the 250 people.

I began to notice the variety of programming languages that they were actually using. I

started tabulating a list and it turned out that when all was said and done, I had a list of 32

procedural programming languages. These were not query languages. These were not

command languages. These were all programming languages. I said to the group, “Don’t

you think we could get by with 16?”

I started a variety reduction campaign, and I took all 32 languages and put them on a big

chart on my wall, and I had each one printed on a card. The idea was the name was on

one side and you flip it over and there was a name with a slash through it, which means

we had decommissioned the programming language. At one point a guy working for me

called up from London. “OK, Tom. Go put your telephone on speakerphone and walk

over to your wall. We’re going to have a little ceremony. We have as of today officially

decommissioned the following programming language.” I don’t actually remember which

one it was. I looked on the wall and my response was, “Oh, no.” He said, “Why do you say

that?” I said, “It wasn’t on the wall. We’re back to 32. The good news, we just decommis-

sioned an unnecessary programming language. The bad news is we still have 32.”

Download at Boykma.Com

248 C H A P T E R E L E V E N

That’s a humorous story, but imagine the problem of having 250 people writing in 32 dif-

ferent programming languages, and think about the human capital problems and the

resource allocation problems. You’ve got 15 people that are available to do work, but not

in the four programming languages that are going to be used on the next project. That’s

just an incredibly expensive way to run an organization.

More is not better in this business.

If you were to design a new language today, what would it look like?

Tom: Remember, I’m not fond of adding to the technical variety unless it’s absolutely

necessary. I would start with the question of “Do I really, really, really need it?” A lan-

guage that we haven’t mentioned is Ruby. It’s a clean language that can be reasonably

efficient—sufficiently efficient to do lots of things. It’s got a nice clean structure to it.

I don’t feel a need for a new language. I’m spending most of my days, worrying about

what happens before you get the first line of code.

I just handed out to some of my friends this week a big pile of buttons with the word

REQUIREMENTS and a red slash through it like a European road sign. On the back of the

button are 14 acceptable alternatives to that word. Lots of discussions go on between indi-

viduals or between groups of the form of “I couldn’t do this work because you didn’t give

me the requirements yet,” or “We need to have a group of people that goes out and gath-

ers the requirements for this new system.”

The term is simply too imprecise. You need to have more precise terms as an alternative.

On a big project that I’ve been involved in we have imposed a requirements tax. If any-

body uses the word “requirements” standalone, they have to add $2.00 to the entertain-

ment fund. If they want to talk about use cases, or if they want to talk about story cards,

or they want to talk about performance metrics, or they want to talk about business cases

or business process models, those are all acceptable terms. They don’t incur a tax, because

now if you say, “I need to have the use cases or the functional specification, or a mockup

of the application that needs to be developed,” that’s a precise request.

I see projects getting into trouble when they don’t get that part right. Writing the code

doesn’t seem like the hard part anymore. The hard part is figuring out what the code

should be doing.

Do you believe we’ve reached a productivity level where languages and tools and

platforms and libraries don’t matter as much to success as we thought 20 years ago?

Tom: I think that’s a true statement. It took me a long time to realize that when you write

a class in an object-oriented programming language, what you’re actually doing is extend-

ing the programming language.

In some languages that’s a little more obvious than in others. It’s pretty obvious in Small-

talk, for example—a little less obvious in a language like C++.

Download at Boykma.Com

O B J E C T I V E - C 249

Since we have the ability to essentially create specialized languages by virtue of develop-

ing frameworks or class libraries that are available, the problem moves to other parts of

the development cycle. I would highlight both in the “what is it that we need to do?” front

end of the process, and the back end of the process, which is the testing.

I was talking to somebody the other week who’s building an application where they

expect to have on a daily basis 40,000 users of the application. I said, “Tell me about the

stress testing that you’re going to do to convince yourself that the system will be able to

accommodate those 40,000 people when they all hit the return key at the same time.”

It’s probably because of my brief stay in the telephone industry that I think of it as a system-

engineering problem. In the medical world, I was sitting with a group of people who were

talking about shipping electronic medical records from a central database around the

country with subsecond response times. I said, “Do you know how large a current-day

MRI file is? It’s five gigabytes.”

When you start talking about what does the pipe need to look like to be able to ship 5

gigabytes in subsecond time across the country, that’s expensive. You actually can do it,

but it’s not cheap. It’s almost never the case that it’s really necessary.

Education and Training

What do you recommend to manage complex technical concepts?

Tom: I think we look to European trades in the olden days as an example. A person

should have a career progression in this business that starts off understanding some of the

simple aspects of what needs to be done, how to write test cases, how to develop func-

tional specifications for projects up through the more technical how to actually design the

solutions, how to implement those solutions, and how to do more complicated things like

stress testing of systems or actually deploying large-scale systems. I think we have a ten-

dency to bring people into jobs for which they’re not actually qualified and then are sur-

prised that they’re not successful with the job.

I happen to know a little more about Germany than I do about Italy, but my understand-

ing is that, in Germany, in order to be a certified architect you have to spend a period of

time—I think six months—in a variety of building trades. You have to understand some-

thing about how plumbing actually works and how electricity actually works and some-

thing about how you actually frame a house before you’re allowed to be certified as an

architect to legally do such things, I think. In the software business, we’re missing that

process of getting people the proper academic training and practical experience—but even

after academic training, the proper on-the-job training.

How important is real-life experience?

Tom: I draw an analogy also to the aviation business where you have to go through a

very methodical well-defined legal process of flying little airplanes, little larger airplanes,

then little larger airplanes and little faster airplanes before you finally get up to where

Download at Boykma.Com

250 C H A P T E R E L E V E N

you’re sitting in the front seat of a 757 flying 300 people across the Atlantic Ocean. Of

course, the aviation business got to that set of regulations off the back of a lot of people

who got killed doing it the other way. So those regulations didn’t come about before the

requirement to regulate happened.

Which topics should students study more?

Tom: I was just in a meeting last week with several old-timers in the software engineering

business and we were asking the question about what are the best schools in the United

States to learn about software engineering and how well regarded they are and how well

funded they are by national research grants. The news is not very good, actually. I make a

clear distinction between software engineering education and computer science educa-

tion. I’m not talking about here how to design a compiler or how to write an operating

system, but rather how to plan a project and run a project and succeed at projects in a

variety of roles.

I’m not as well versed as I once was about the educational systems in Europe for software

engineering, but I think in the United States it’s pretty weak right now. I had the experi-

ence recently that a Swedish friend of mine said, “I’m going to take over responsibility for

a software organization. What books should I read about software engineering to help me

do my job?” I gave him a list of five books and then he said, “Where can I get these?” I

said, “You could go to Amazon or something, but I’m actually going to a major univer-

sity’s bookstore tomorrow if you’d like me to pick them up and send them to you.”

I went to Yale University and I had my list of five books and it turned out that not one of

the five was in the bookstore, which was really quite revealing. Yale is not the most presti-

gious computer science school in the Ivy League, let alone the United States, but it’s a

well-respected program and has been around a long, long time. Yet they didn’t even have

the books available for the students, let alone classes in which they might learn something

a little more than is just in the books. I saw something funny yesterday. I saw a new prod-

uct that was advertised and as part of the advertising line it said it’s written 100% in

Objective-C.

How would you train a software developer?

Tom: I would start off by putting them in a testing group and teach them how to test code

and how to read code. The software business is one of the few places we teach people to

write before we teach them to read. That’s really a mistake. It’s nothing like picking up a

really awful piece of code and trying to figure it out. It turns out to be very instructive. I

would also encourage them to become familiar with existing software products that are

well designed and well architected so that they are gaining that experience from the inside

as contrasted from the outside.

Here’s an example of a very well-written product in our company. Take a look at the well-

written product and well-designed product and compare that with the one you’re cur-

rently working on. I’d begin to give them more and more responsibility but in very short

Download at Boykma.Com

O B J E C T I V E - C 251

cycles so there’s the opportunity to judge their progress and success and also to give them

help when they need it.

How do you hire a good programmer?

Tom: There’s a big topic. You might or might not know that my dissertation was a study

on the psychological characteristics of successful programmers in the 1970s.

Some of them are still active.

Tom: Yes, there are actually some that are still alive. It’s quite amazing. There are certain

cognitive psychological traits that you look for: memory ability, attention to detail. I also

look for things like communication skills, both written and oral. Working in a team; it’s

important that you be able to communicate effectively with the rest of the team and then

it’s also important if you obtain leadership roles that you be able to communicate with

customers or subject matter experts or other operations and maintenance teams that you

need to interact with as you start to deploy products. I don’t make it a requirement, but I

look for correlations like really excellent programmers, if I’m trying to hire somebody to

be a chief designer and architect for a project, I’ll pay attention to their hobbies. If they’re

very proficient in music, that’s a very good thing—proficient means has studied classical

music and can perform a piano sonata from memory. That’s a pretty good test of their

memory ability and attention to detail, and it should sound pretty good, too!

Project Management and Legacy Software

You’ve said that a programmer can maintain about half a box of paper.

Tom: That’s right. I’m involved in a lot of projects with the federal government these

days. It’s amazing how helpful that one little fact turns out to be. 100,000 lines of code is a

box of printout. It cost $3 million to develop. It takes two people to maintain it. The num-

ber of test cases to fully test that box of code is another two or three boxes of code.

Is that independent of language?

Tom: Almost. It seems to hold true across the object-oriented languages at least. In a

moderate object-oriented language, it actually takes more people testing than writing

code, because the languages are powerful enough. I’m dealing with a project right now

with three-quarters of a million lines of code, and more than half of the code was acquired

externally. This is not even anything close to leading-edge technology, actually. Looked at

from that perspective, if you said, “I’m going to have one tester for every programmer,”

you would wildly underestimate the real effort that’s required, because the programmer is

actually bringing in a lot of untested code from the outside that, in the case of a medical

application, you’ve got to thoroughly test.

You may end up with four or five or six testers for every programmer in those kinds of cir-

cumstances. In the early 1980s in a C language environment, for example, you might

have had six programmers for every tester in that environment.

Download at Boykma.Com

252 C H A P T E R E L E V E N

Is that due to the C language and its level of abstraction or reusability of code?

Tom: It’s the extent of the library that you’re bringing on board. I did a lot of analysis back

in the early days of Objective-C of if you take a big C program and redo it in Objective-C,

how many lines of code do you end up with? The number oscillated around five; you had

one-fifth the number of lines of code.

That’s a good compression ratio.

Tom: It’s a big number. We did a project about four years ago where it was actually a

combination of COBOL and C++ code, but 11 million lines of code ended up being com-

pressed to half a million lines of Java. That’s a 20 to 1 savings in annual maintenance. It

doesn’t take long before that ends up being an interesting number.

Part of that is due to lessons learned in reimplementing a system.

Tom: It’s always true. I tell that story the following way. It is in fact always easier to build

a second version of a system than the first version of the system. One of the reasons is

because you don’t have to spend any time asking the question of whether it is possible.

You know that which exists is not impossible.

You probably know this story about the Russians getting a B-29 bomber—the plane that

dropped the atomic bomb. They made an exact clone, down to the level of making sure a

patch on the wing was actually beautifully and exactly replicated in the model, and they

did it in two years and for a lot less than the $3 billion spent in the U.S. over five years to

build the first B-29—it was more expensive than the Manhattan Project!*

It really is true that the second time around, things get a lot faster.

Of course, you’re talking about more than an order of magnitude of difference in the lines

of source code. Can a programmer maintain about the same number of lines of code,

regardless of language?

Tom: I have had a lot of conversations with good programmers about that topic. There’s a

lot of variants around that number. I think the average is well established. On the other

hand, I think there’s a pretty good spread. It is possible for there to be code written so that

it is really clean and tidy and well organized, and a person can maintain 200,000 lines of

code. That’s rare, but it’s for sure possible.

Equally you can have a rat’s nest where a person works their buns off to try to keep

10,000 lines of code working. There’s a greater tendency to observe that than there is the

former. We often find it interesting that if you do a really good job of architecture and

design of some new system, and then you turn it over to the organization that paid you to

do the work, it’s astonishing how fast that orderliness gets lost in the application. People

that don’t know what they’re doing go in and start whacking, and they can do a lot of

damage in a short period of time.

* http://www.rb-29.net/HTML/03RelatedStories/03.03shortstories/03.03.10contss.htm

Download at Boykma.Com

http://www.rb-29.net/HTML/03RelatedStories/03.03shortstories/03.03.10contss.htm

O B J E C T I V E - C 253

Were you thinking about these organizational principles when you developed Objective-C?

Tom: We actually were. The research group originally at ITT was chartered to help a large

international telephone company build a distributed, object-oriented digital telephone

switching system, and to do that with what had to be distributed development teams.

We were steeped in those issues. I had come to ITT from General Electric, where I was

involved in the same kind of activities. At GE I called the thing the Software Psychology

Research Group. We were looking not only at the order of the characteristics of program-

ming languages that make them easier for people to read, understand, and maintain, but

also the organizational structures for development teams and the organizational issues

associated with doing large-scale development.

The software industry would change dramatically if governments made the software

developers responsible for security problems.

Tom: Yes, absolutely, and one of my rules when I’m looking at people to take on projects

is that they don’t take on a project that’s more than 20% different from a project that

they’ve been successful on before.

This means that you need lots of experience before becoming an architect over a large

project.

Tom: Well, it does have that characteristic, doesn’t it? The alternative actually is to do

very short projects. But there is that constraint that some of these projects take three years

to do and, exaggerating for a moment, if you work for 40 years, there’s only a relatively

small number of projects that you can do. There’s the same problem in aviation. The solu-

tion to the problem is realistic simulators and that’s something that I’ve argued for in the

case of project managers. In fact there is a problem of being able to live long enough to do

100 projects, but if you could simulate some of the decisions and experiences so that you

could build your resume based on simulated projects as contrasted to real projects, that

would also be another way to solve the problem.

Does productivity depend more on the quality of the programmer or the characteristics

of the programming language?

Tom: The effect of individual differences will far outweigh any effect of the programming

language. Studies from the 1970s show for programmers with the same educational back-

ground and same number of years’ experience, the number was 26:1 individual differ-

ences. I don’t think anybody claims that their programming language is 26 times better

than somebody else’s.

You’ve said that you are now an expert in reengineering legacy software, and that requires

understanding three words: agile, legacy, and reengineering. What did you mean?

Tom: Let’s analyze the words backward. Let’s talk about reengineering first. When I use

the word “reengineering,” by that I mean to replace very close to exactly that functionality

using modern design techniques and modern technologies. I make the clear distinction

Download at Boykma.Com

254 C H A P T E R E L E V E N

between a reengineering project and a modernization project. Modernization projects suf-

fer from the long ago described Second System Effect that Fred Brooks described in The

Mythical Man-Month [Addison-Wesley Professional]: let’s try to do everything in this itera-

tion that we couldn’t figure out how to do in the first iteration and do it in half the time.

Guess what? Those projects routinely get into trouble. I’m still searching for a modernization

project in the U.S. government that was actually successful. It’s exceedingly easy to find ones

that are unsuccessful, but I have yet to find one that was actually successful.

I’m using the word “reengineering” as a major scoping constraint on the project. I’m not

saying we’re going to look at the old system and think about the new system and go with

a clean sheet of paper and start all over. If we can reuse the workflow or reuse the screen

definitions or reuse the data models or the data elements at least or if we can reuse test

cases or reuse documentation or reuse training courses, there’s a huge amount of time and

effort to be saved and a lot of risk to be removed from the project.

A gigantic advantage of a reengineering project is you have a working system there that

you can query from time to time to find answers to questions that you couldn’t otherwise

find out answers to. That gets one of the three words.

“Legacy” of course is just simply referring to an existing system, often an enterprise-scale

system. They’re not necessarily 20-year-old systems built in antique procedural program-

ming languages or worse. I’ve heard of examples of legacy Smalltalk applications that

need to be redone and reengineered in Java for example. The distinction of legacy systems

is it’s an existing system that is deployed, that is working, that is important to the organi-

zation and it does need to be replaced for some set of reasons. The reasons could be that

it’s running on an antique operating system that’s about to be decommissioned and no

longer supported. It could be in a programming language that you can’t find any program-

mers who are still alive that understand, or all sorts of reasons. It could be that the busi-

ness has changed that you need all of that functionality but you need it packaged in a

different way or it could be that you need completely different functionality and that

would not be a reengineering project. That’s a new application development project.

The third word is “agile,” and that simply is a process that has been demonstrated to work

repeatedly and at scale and therefore a risk-adverse project manager should be looking

very seriously at that as a way of doing business.

How can we prevent legacy problems in software under development today?

Tom: I’m not sure that you prevent it. Any product that you build has a useful life. Often

in the software business, a useful life is many decades longer than the original developers

imagined and what would have been helpful is if that code had been well structured, well

documented, and well tested. I’m currently working with a government client that has 11

million lines of code, some of which is 25 years old, for which there are no test cases.

There’s no system-level documentation. They even stripped out the comments in the code

as an efficiency measure a few years ago, and it’s not under configuration control, and

Download at Boykma.Com

O B J E C T I V E - C 255

they issue about 50 patches per month for the system and have been doing so since 1996.

That’s a problem.

You can take all those things and reverse them and say, don’t do this, and don’t do that,

and don’t do that, and that’d be the right thing to be doing.

How about modularity of design?

Tom: The better designed the system, the more modular the system, the better the object

model that has been developed for the system, the longer the useful life is in all probabil-

ity. Of course, you can have a beautifully designed system, and if the business changes,

then you may or may not have anticipated the extent of the change.

Do you have a rule of thumb as to how many programming languages an organization

should have?

Tom: I have a rule for project managers, but it’s not exactly that. A project manager has to

have reading knowledge of every programming language being used on the project that

he or she is managing, which is by the way almost never the case. I believe it’s one of the

fundamental reasons that so many projects get in trouble.

I had a project manager come to me and say, “We’re supposed to be using six languages

on this project. You don’t really expect me to gain a reading knowledge of those six pro-

gramming languages, do you?” I said, “No, no, that’s not the only way you can solve the

problem. The other way you can solve the problem is to get rid of some of the languages.”

He finally realized I was serious. I have sat in so many meetings in which a programmer is

having a discussion about the effort that it takes to write a class and the project manager

has no idea what a class is in a modern programming language.

Do you still use Styrofoam balls to model your systems, where each ball represents a

class?

Tom: We do, actually. We’ve also done a 3D animation version of it, which we found to

be nowhere near as useful as the Styrofoam balls. There’s something about a physical,

conspicuous structure hanging from the ceiling right in the middle of a development

project that’s regularly updated to provide not only the structure of the system that you’re

building, but also the current status of each one of the classes.

We’ve done it on 19 projects the last time I’ve counted. One of them was 1,856 classes,

which is big—actually, probably bigger than it should be. It was a big commercial project,

so it needed to be somewhat big.

Does a class still represent a fundamental unit of progress in a system?

Tom: It’s the most stable thing I’ve found to count. You have to define what the nature of

the class is that you’re writing. If you’re just writing an initial prototype of a class, a person

can do that in a week. A real class as a part of a production application is more like a per-

son month of effort. A highly reusable class is a two- to four-person month of effort.

Download at Boykma.Com

256 C H A P T E R E L E V E N

Does that include testing and documenting?

Tom: The whole nine yards.

It takes about a day to read and understand a class. That’s where a lot of projects nowa-

days get in trouble, because you’re going to use this class library, the Swing classes, or take

your current favorite, and nobody actually sits down and says if all the programmers actu-

ally need to understand 365 classes, then it’s going to be 365 business days before we can

get ready to write the first line of code.

By contrast, if you forget that time to understand the code in the beginning, you can have

pretty big slips in a schedule.

You spend that time during debugging, for example.

Tom: Well, somewhere. You’re going to have to incur that overhead somewhere along

the way. That’s a big number. If you’re doing a six-month project, then you’re going to

have a two-year delay to get started.

Is it worth it?

Tom: It might be, but there’s several things you can do. One, you can hire people that

already know the classes. Another is you can partition it up so that not everybody has to

know everything, which is almost always a good idea. You need to be having those kinds

of thoughts. You don’t want to be surprised by that.

Look at some of these modern projects in the Java world. They could easily be starting off

with 2,000 classes that they’re relying on. You can get about 200 business days in a year,

so that’s only a 10-year hit on the schedule.

You’ve said that the time to write code has remained consistent over the years, but

you’ve also mentioned that other factors make us more productive now. Some

productivity gains require an investment of time and effort to learn.

Tom: Isn’t it better to spend a person-day to understand a class than a person-month to

rewrite it? It’s expensive, but you’re starting off with huge amounts of functionality that

in the olden days we had to start from scratch and write.

You might be 20 times more productive if there are 20 business days in a month. That’s a

good tradeoff.

Tom: It’s huge. Let’s just pick some number that I think might be a normal number these

days. Imagine that you need to understand 500 classes in order to some serious applica-

tion in the modern world. It’s not 500 completely new classes every time you start a

project. You probably didn’t go from 0 to 500 in one step. You probably did it in five steps

at least, or more.

Download at Boykma.Com

O B J E C T I V E - C 257

How do you recognize simplicity in a design?

Tom: In the olden days the measure was how many pages of BNF description were there

in order to describe the language, which is not a bad measure, because it ends up allowing

you to be able to distinguish the complicated languages from the simple languages.

You know when you stand and squint your eyes in just the right way at an APL program

or a Smalltalk program, there isn’t much of the language there. It’s almost like the lan-

guage goes away, and that’s a good thing.

How large is the reference manual for the language? How much is included? The Objective-

C programming language is not very complicated, but the class libraries that had been

built with it over the years are complicated. Describing all of that detail is hard and bulky,

and error prone. Hard to test, hard to document.

Even a language as simple as C can have complex semantics—whose responsibility is it

to manage memory for this particular library?

Tom: Exactly. What do you think the chances are that Microsoft applications get slower

and slower because they haven’t managed memory properly? Have you ever met a three-

year-old Microsoft operating system that you wanted to use? I actually operate with a lap-

top that has a Microsoft-free zone. It’s amazing how much more productive I am than

other people sitting in the same room with Microsoft computers. My machine is on, and I’ve

done my work, and I’ve closed it down before they’ve gotten to their first Excel spreadsheet.

What’s the most important piece of advice you can offer from your experience?

Tom: I could boil that down to four words. Make interesting new mistakes.

We don’t need to regurgitate history, but appreciate where we’ve come from. How many

25-year-olds coming out of a computer science program do you know that have written

an APL program?

I don’t know, but I think it’s almost none. Yet that’s an important experience, because

admittedly this may be a specialized language for doing certain kinds of applications, but

an accomplished APL programmer writing a statistics application is going to beat the pants

off anybody else using anything else, I think.

I was having a conversation with some people at the Software Engineering Institute about

the issue of how software engineers are being trained, if they are at all, and how few gradu-

ate programs there are that really make a conscientious effort to train people about system-

building experiences as contrasted to algorithm design. I don’t think we’re very good at that.

Wouldn’t it be great—I do this nowadays—if you were hiring a project manager, if the

project manager showed up with a certified log book that said here are all the projects that

I’ve managed, and here’s who to contact to find out details of each project, and here’s

what quantitative measures about each one of those projects that I can look at. How many

lines of code, how many classes, how many test cases, compliance in schedule, you know,

all that kind of stuff.

Download at Boykma.Com

258 C H A P T E R E L E V E N

I happen to be a general aviation pilot and I spend a little time doing this stuff. There are

rules that grew up around failed experiences almost always resulting in a loss of life that

has resulted in the rules and regulations that exist around aviation in this country as well

as the world.

In any given point in a typical day, there are something like 56,000 flights in the air in the

United States, and there have been years recently in which there was not a single accident

of a commercial airliner in a year’s time. That’s a pretty amazing record actually.

They have actually figured out some stuff, like pilots should be sober when they’re taking

off in their airplane. They ought to have flown with a pilot that knows this particular air-

plane, once or twice before. When this industry matures, we will end up with something

in that same spirit. One of the reasons that organizations spend so little time thinking

about either building new applications or even reengineering existing applications is

because they’re scared to death. They assume that any project they’re going to start is

going to be a failure, and they don’t want it to happen on their watch.

If they could become convinced instead that they’ve got a 90% chance or a 95% chance,

or—God forbid—a 99% chance of being successful, and they could know what it’s going

to cost before they got started, it would be a much more robust industry.

What do you mean by “success”?

Tom: You hear various numbers. Let’s imagine a project that’s going to end up with a mil-

lion lines of code or more. The probability of those projects being successful in the United

States these days is very low—well under 50%. That’s debatable. I don’t know where peo-

ple get reliable data for that kind of stuff, because people don’t like to advertise that informa-

tion. Various competent people have gone around trying to find out that information. But I

just point out that it’s actually hard to get, but not impossible. Just hard.

Objective-C and Other Languages

Why did you extend an existing language instead of creating a new one?

Brad Cox: I was quite satisfied with C, apart from well-known but livable limitations.

Reinventing the base language to do OOP would have been a waste of time.

Why did you choose C?

Brad: That’s what we had. Ada was unthinkable, Pascal was (regarded as) a toy for

researchers. Which leaves COBOL and FORTRAN. Enough said. Oh, yes, there was Chill

(a telephony language). The only plausible alternative to C was Smalltalk, and Xerox

wouldn’t sell that.

Our goal was to move OOP from the research lab to the factory floor. C was the only cred-

ible option.

Download at Boykma.Com

O B J E C T I V E - C 259

Why emulate Smalltalk?

Brad: It hit me as an epiphany over all of 15 minutes. Like a load of bricks. What had

annoyed me so much about trying to build large projects in C was no encapsulation any-

where and wrapping data and procedures into what looked to me like methods—a ha.

That’s it.

When did you see C++ for the first time, and what did you think of it?

Brad: Bjarne heard of my work and invited me to Bell Labs before either of our languages

was quite on the air. He was focused entirely on using static binding and upgrading C. I

was focused on adding dynamic binding to plain old C in the simplest, least-disrupted

manner I could manage. Bjarne was targeting an ambitious language: a complex software

fabrication line with an emphasis on gate-level fabrication. I was targeting something

much simpler: a software soldering iron capable of assembling software ICs fabricated in

plain C.

How do you explain the different diffusion rates of the two languages?

Brad: Objective-C was the initial product of a small company with no other revenue

sources than the compiler and its support libraries. AT&T built C++ for other reasons than

revenue and could well afford to give it away. Free trumps paid most every time.

Have you been involved in the project announced by Apple as Objective-C 2.0?

Brad: I have no relationship with Apple other than that I like their products.

What is your opinion on garbage collectors?

Brad: I think they’re great. Always have. I did have to struggle with marketeers who

thought of it as a language “feature” that could be painted onto C with little effort and no

impact on those who chose C for performance.

Why does Objective-C forbid multiple inheritance?

Brad: The historical reason is that Objective-C was a direct descendant of Smalltalk,

which doesn’t support inheritance, either. If I revisited that decision today, I might even

go so far as to remove single inheritance as well. Inheritance just isn’t all that important.

Encapsulation is OOP’s lasting contribution.

Why did Objective-C not support namespaces?

Brad: When I was directly involved, my goal was to copy Smalltalk and it had no notion

of namespaces.

What you know as Objective-C today is just as much a product of Apple as it is of me.

Most of my work is in XML and Java today.

Download at Boykma.Com

260 C H A P T E R E L E V E N

Was the notion of protocols unique to Objective-C?

Brad: I wish I could take credit for that. That idea was one of the things added on top of

the plain Objective-C backbone—by which I mean the smallest set of stuff I could imagine

taking from Smalltalk. Smalltalk didn’t have anything like protocol in those days and that

was added by Steve Naroff, who’s now in charge of the Objective-C at Apple. I think he

got it from SAIL if I remember right.

It seems that Java was influenced by your design, as single inheritance was carried over

into Java. Could single inheritance be removed from Java, too?

Brad: Probably could. But it won’t be and shouldn’t. It’s there, it works, it does what it

claims. It’s just abusable, like any language feature, and not as important as encapsulation.

At first I used inheritance heavily, experimenting to find its bounds. Then I realized that

encapsulation was the real contribution of OOP and that it could be used manually to do

almost everything I’d been using inheritance for, but more cleanly.

My focus has since gravitated to objects with higher levels of granularity (OOP and JBI/SCA),

which, tellingly, don’t support inheritance at all.

How do you decide whether a feature belongs in a project? For example, a garbage

collector may slow some C applications, but it offers many advantages.

Brad: Absolutely. In fact, we developed one at Stepstone similar to the one Apple has

now. Even had an Objective-C interpereter. But the marketeers wanted something auto-

matic to compete head to head with Smalltalk, not something that looked so much like C.

Do you believe in default settings and limited configurability?

Brad: We could, and did. What I objected to was trying to bend C to marketing’s wish list.

Several language designers start by describing a very small, formalized core, then build

on top of that. Did you do that for Objective C, or did you decide to borrow what

Smalltalk and C provided?

Brad: Yeah, I definitely was not starting from a formal foundation. I was thinking about

silicon. We were doing a lot of consulting with a large silicon foundry and visited their fac-

tories. I was reflecting on how they did it versus how we did it, and I saw that everything

they did revolved around reuse of silicon components. They all thought long and hard

about the components and not at all about their soldering irons. For us, of course, the lan-

guage is the soldering iron.

I saw everybody concentrating on languages or soldering irons and nobody concentrating

on components. It just seemed backward to me. It turns out why the chip manufacturers

held their perspective is very important, because silicon components are made of atoms

and there’s a business model for buying and selling them. That business model for soft-

ware components is very ephemeral, indeed.

Download at Boykma.Com

O B J E C T I V E - C 261

Software itself is ephemeral.

Brad: Indeed, but that’s why we focus on languages and not on components. We essen-

tially don’t have components in any kind of robust sense. If you think about a housing

analogy, it’s like we’re back in cave days where the way we built houses was to find some

monolithic pile of stuff—volcanic ash, for example—and I’m afraid that leads us to the

Java class loader. The way you build a cave house is: you start with a pile of stuff and

remove what you don’t need and that’s essentially a class loader model. My energy right

now is going into small granularity components where you start with nothing and add

what you need, the way we build houses today.

We describe biology and chemistry with English. Maybe the problem is that the

programming languages we use are not as powerful as the English language.

Brad: If computers were as smart as human beings, I would have confidence in that

approach. We are talking about something that is as dumb as a brick—computers—and

they haven’t really changed in any fundamental way since I started using them in the

1970s.

On the other hand, there are some fascinating new languages out there, such as functional

languages, that might help with things like multicore computers. I keep hearing people

claiming that it will help, and I have no reason to doubt them.

How does a focus on concurrency affect the OO paradigm? Are there changes necessary

to OO approaches?

Brad: Despite OOP’s Simula heritage, I’ve always thought that programming languages

should offer just enough thread support to build higher-level components that exhibit

concurrency in a limited but controllable manner. For example, Unix filters support con-

currency, implemented in plain C, in a controllable manner. I spent considerable time on

a similar approach for Objective-C: a multitasking library called TaskMaster based on

nothing more than the setjmp() mechanism.

Another example is the Defense Modeling and Simulation Office’s HLA, widely used for

military simulations. It’s implemented in several languages—C++ and Java, to name two.

It supports an event-driven concurrency model that doesn’t rely on thread support from

either language, as far as I know.

A final example is the one I’m most involved in now. SOA supports large-grained, network-

resident objects that are intrinsically concurrent because they typically reside on different

machines. Sun’s JBI and OASIS’s SCA enhance this model with finer-grained objects/

components that are assembled to build SOA objects. This is the first sign in software

construction of the multigranular approach that’s the norm in hardware engineering: fine-

grained objects (gates) assembled into intermediate-grained objects (chips; like the famous

Software-ICs) which are ultimately assembled into even higher-granularity objects (cards)

which are…so it goes. The main difference is that in tangible domains the system is truly

fractal, with many more levels than this, while we have only those three. Today.

Download at Boykma.Com

262 C H A P T E R E L E V E N

Granted, there are applications that need tighter integration. This just wasn’t a problem I

was addressing at the time. That omission was at least partially driven by my own inability

to manage highly concurrent systems, and my doubts that anyone truly can.

The complexity and size of applications seems to continue to grow. Does OOP help or

hurt? In my experience, the idea of making reusable objects adds complexity and doubles

the amount of work. First, you write a reusable object. Then you have to modify it and fit

something different in the same hole it leaves.

Brad: You’re right—if by OOP you mean Objective-C/Java-style encapsulation; what I

called chip-level integration in my second book, Superdistribution [Addison-Wesley Profes-

sional]. Not if you see chip-level integration as just one level of the kind of multilevel inte-

gration tool suite that is the norm in hardware engineering, with gate-level objects

coexisting in perfect harmony in a fractal world of gate-, chip-, card-, and higher-level

encapsulation options.

Which is exactly why I’m focused on SOA (chassis-level) and JBI (bus-level) today. These

support encapsulation as much as traditional OOP. Even better; they encapsulate not just

data + procedures, but even the entire thread of control that powers them.

Best of all, multilevel integration costs nothing and is known to work at arbitrary scales in

other industries. The only gotcha is that it’s hard to get across to unilevel OOP advocates.

Been there, done that—back then with OOP versus traditional procedural programming

and today with SOA versus JBI versus Java.

Everybody’s stuck on the myth that new technologies “obsolete” older ones like OOP.

Never happens, never will. New builds on top of old, every time.

We seem to be entering a new era of experimentation in languages and willingness by

programmers to try paradigms they’re unused to, such as Rails and functional

programming. As language designers upgrade languages or create new ones, what lessons

can you offer from Objective-C?

Brad: I’ve tried, but not yet managed, to get my head around the syntax of languages like

Haskell—at least not well enough to have a strong opinion on it. I do use XQuery fairly

heavily and that’s a functional language. And I find XQuery far more congenial to read

than XSLT.

I guess I am capable of new approaches—but Haskell in particular, I just can’t get my head

around its syntax. I had much the same problem with Lisp. That said, I’ve been impressed

by a Navy project that expresses complex authorization and authentication policy in

Haskell rules that can be proved by inspection.

The future, to me, is not continually proliferating ever more notations for doing exactly

the same thing we’ve been doing for decades—writing procedural code. That’s not saying

that working at this level is not important; it’s where the higher-level components come

from in the end and that’s not likely to change. I’m only saying that new ways of writing

procedural code are not on the cusp of innovation.

Download at Boykma.Com

O B J E C T I V E - C 263

What I do find exciting is the introduction of new kinds of notations for doing entirely

new things, namely composing ever higher-level systems from libraries of preexisting

components. BPEL is one specific example, which can be applied at two levels of integra-

tion: SOA for largest-granularity objects, and JBI (Sun) or SCA (OASYS). For example, see

the BPEL editor in NetBeans. OMG has done excellent work in this area with the model-

driven architecture.

Components, Sand, and Bricks

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable

future?

Brad: I’ve been interested in multilevel integration (aka encapsulation) for as long as I can

recall: the ability to subdivide work so that it can be allocated to specialists, then use their

work products with little or no need to break the encapsulation, to know “what’s inside”

to use it successfully.

I’ve used the common wooden pencil in some of my writing as an example. When I ask

audiences which is “simpler,” a digital pencil like Microsoft Word or a wooden pencil, peo-

ple agree the wooden variety is simpler. Until I point out that Microsoft Word was written

by eight programmers, while the wooden variety involved thousands, none of whom

could appreciate the full complexity of harvesting lumber, mining graphite, smelting met-

als, making lacquer, growing rapeseed for oil, etc. The complexity was there in the pencil,

but hidden from the user.

My complaint with C (and similar languages) is that programmers were fully exposed to

each program’s complexity, except the modest amount that could be encapsulated in

functions. The only real encapsulation boundary was the entire process space, which

amounts to a tremendously effective higher-level capsule, heavily exploited by Unix as

two-level encapsulation via shell scripting and the “pipes and filters” notion.

In trying to explain the advantages of object-oriented programming, I often used the term

“Software-IC” to refer to a new level of integration, larger than C functions (gate-level)

and smaller than a Unix program (chassis-level). My main motivation for developing

Objective-C was to get a simple software “soldering iron” for assembling large (chassis-

scale) units of functionality from reusable Software-ICs. By contrast, C++ emerged from a

rather different vision; a vast and automated factory capable of making tightly coupled

assemblies of gate-level units. Interpreting the hardware metaphor for programming,

chip-level integration occurs mainly at link time; gate-level integration at compile time.

At that time (mid-1980s), lightweight threads were not widely known and there was

nothing smaller than a Unix-style process (“heavyweight thread”). I spent some time

building out an Objective-C library, called Taskmaster, to support lightweight threads as a

basis for card-level integration. The advent of RISC computing put a stop to this; such low-

level tinkering with stack frames made it too hard to support this portably.

Download at Boykma.Com

264 C H A P T E R E L E V E N

The big change since then was ubiquitous networking, which opened up new levels of

integration larger than the Unix process space. In a service-oriented architecture (SOA),

for example, the Internet is like the cabling between the components of a HiFi system,

with services (programs) on disparate servers functioning like the components them-

selves. I found this tremendously exciting because it is the first level of integration that

approximates the separation of concerns we take for granted in everyday life. There is lit-

tle temptation or need to view the source code of each service we use, when that service

runs on a remote server that belongs to somebody else.

Significantly, this is also the first level of integration that makes it possible to solve a fatal

flaw with the Software-IC idea: the ability to provide an incentive for others to provide

components. Pencils (and the many subcomponents used to make them) get produced

because conservation of mass works for tangible goods. Nothing comparable existed for

digital goods until SOA made it feasible to deploy a useful service and charge for it while it

is used.

Within the last two years, I’ve become aware of a fundamental problem with “plain ol’

SOA” and am currently focusing largely on that. In large SOA deployments (for example,

DISA’s NCES and Army’s FCS), there is strong resistance to reaching the kinds of consen-

sus needed to build fully homogeneous SOA systems that use compatible transport mech-

anisms for land, sea, submarine, and air vehicles, not to mention compatible definitions

for confidentiality, integrity, nonrepudiation, etc. And even if the “enterprise” were

expanded to include all of the Department of Defense’s (DOD) vast system of systems,

what about Allied forces? What about compatibility with other government agencies?

What about states? What about first responders? No matter how you define the enter-

prise, you’re leaving out something that you might need to communicate with someday.

Making each service developer responsible for all this just doesn’t scale.

So I’m currently looking at Sun’s JBI (Java Business Integration) and its multilanguage

successor, SCA (Software Component Architecture), as a way to support a smaller level of

integration that can be composed to build plain ol’ SOA services.

Do we need hardware assistance to create such a system?

Brad: Hardware certainly provides a robust example we could aspire to. Computer hard-

ware is one of many examples of engineering excellence, 200 years since the industrial

revolution. People have gotten extremely good at building hardware, so as a model to

which to aspire I think hardware has a lot to teach us. But there are no easy lessons, no

easy button to push to improve quality.

Lately, I’ve been using a different example to illustrate what I mean when I say software is

primitive. Consider home construction. People have been doing that for millennia. In fact,

in some places they’re still doing in the original primitive way, with each construction team

packing mud into frames to make their own mud bricks to assemble to make a home.

Download at Boykma.Com

O B J E C T I V E - C 265

Although there are signs of recent advancement, by and large, we make software systems

in exactly the same way. For example, to build a SOA service, every development team

starts with raw materials from the java.net quarry to meet fundamental requirements of

any SOA service.

Consider security, for example, which is fundamentally what the walls of a house pro-

vides. The DOD has extremely stringent security requirements that are mandated by pol-

icy. It has also invested heavily in security standards like the WS-Security suite. And it has

recently rolled out Certification and Accreditation (C&A) processes that each and every

web service must pass. C&A is fundamentally a laborious and expensive process that each

and every web service must now undergo independently to ensure that it is in fact secure

enough to install on sensitive networks.

These web services are like mud brick homes. The policies and standards amount to

instructions that each developer should follow in making his or her own bricks. But those

bricks still cannot be trusted by others because their quality still depends on whoever

made them. Did they really abide by the standards? Did they implement them correctly?

Sure, mud bricks are free, but no one can trust them because their quality is known only

by the team that made them.

The construction industry long ago advanced to the relatively sophisticated form of pro-

duction that we take for granted today. Construction crews no longer make their own

bricks, since no one would trust them. The standards and policies remain, and as do the

C&A processes (industrial brick-testing labs). However, few of us ever see them. We can

rely on these invisible processes to ensure that any bricks on the market won’t weather

and will continue to hold up the roof.

That evolutionary process from mud bricks to real bricks wasn’t even mainly technical. It

was mainly about creating trust. We have grown to understand that there are indepen-

dent standards for what a brick should do, how long it should be, how it should resist

weather. And there are independent testing labs that we count on implicitly. Most of us

don’t know that there are brick-testing labs out there—we don’t have to know; we can

just trust the bricks to do all that we need!

Which takes us full circle to why economic systems are important. Trusted bricks exist

because there is an incentive structure for providing them: pay by the brick. Everybody

except the few brick-making specialists can forget the complexity of making them and get

on with the creative parts of building houses.

See http://bradjcox.blogspot.com/ for more on the distinction between mud brick versus real

brick architecture.

To end on a more optimistic note, this situation is beginning to improve. Several compa-

nies have started building SOA security components and are beginning the long struggle

to have them regarded as trusted components by DOD. The most mature example I know

of is OpenSSL, but Sun, Boeing, and several others recently started similar initiatives spe-

cifically for SOA security.

Download at Boykma.Com

http://bradjcox.blogspot.com/

266 C H A P T E R E L E V E N

Are encapsulation and separation of concerns the drivers for designing software?

Brad: I think so. That’s largely based on how other industries handle complexity. That

seems to be a human pattern of using encapsulation to wrestle complexity to the ground.

Are SOA and your initiatives attempts to bring componentization to software?

Brad: Absolutely. That’s exactly what I’ve been chasing my whole career.

Was it something you’d always considered, or did you see how the popular approaches

to software development don’t match the real world?

Brad: I started from the latter and started looking for how other people deal with it. I

started from the realization that software was broken.

Is the practical, large-component approach at odds with the heavily mathematical,

computer science view of software?

Brad: Probably. I just don’t want to get into criticizing computer science. I just have never

seen it as being lined up with how human beings solve problems, and that springs from a

characteristic difference in viewpoint. Computer scientists start from the view that there is

a science of software and that their purpose is to document it and teach it. I’ve always

started from the point of view that there is no such thing. There’s a science of house build-

ing and there’s a science of silicon engineering, and our job is to learn what they’ve

learned over thousands of years and start creating a science of software. To me, the glass is

totally empty and to them the glass is worth noticing.

You’ve mentioned a couple of times that you think the economic model of software

breaks down.

Brad: It’s not that it broke down. That statement implies that there was a model and now

it’s decomposing. There never was one. You can’t get it off the ground because software

spreads like vapor. The human race has just not invented a way of building economics on

that. It’s becoming barely imaginable, so with SOA services, it’s easy to imagine an eco-

nomic model for services, because the software is nailed down on some server over yon-

der and they can charge for access.

These objects with small granularity: I used to be hopeful that there was a way to deal

with fine-grained stuff, the sand and gravel objects of computing, java.net objects, but the

human complexity of setting up a solution there just got overwhelming. In the middle

ground, those mid-level prospects with intermediate scaled objects made a nucleus for us.

So at the SOA level, there’s some hope. And at the next level down, maybe. The word’s

still out on that. I think there’s no hope for objects of really small granularity.

Is that middle level the level of frameworks?

Brad: Those are the cave-dwelling objects, monolithic components where you start with

something very large and switch on functionality. I suppose there’s a model there. JBoss

supports that, for example. You fundamentally give the bits away and sell the trust. That is

a very complicated thing to do.

Download at Boykma.Com

O B J E C T I V E - C 267

What does it mean to be able to trust a piece of software?

Brad: Well, the DOD is right in the middle of that and they have answers for that. It’s very

laborious and impossibly expensive, unsatisfactory in every way you can imagine, but

they do have an answer for that.

However, the DOD is so focused on SOA that they don’t realized that SOA alone is insuffi-

cient. There’s also a need for smaller-granularity components that can be reused to solve

recurring problems that SOA alone cannot solve. Like security and interoperability, to use

DOD’s terminology. So my current work is providing sub-SOA components that can be

assembled to address the boring, repetitive parts of building SOA services. I’m hoping

someday to advance these mud bricks through DOD’s C&A processes so they become real

bricks that can be implicitly trusted, much as we trust bricks for our homes.

Security is an example of something every DOD SOA application needs. It’s a require-

ment, by policy. The only thing that the SOA application builder they has to go on is stan-

dards and policies. DOD has no brick supplier. There are no trusted components—real

bricks, if you will—that you can take or ultimately buy and that you can put together

without having to be fully informed about SOA standards, security policies, the minutiae

of using java.net components to meet DOD security requirements.

How do these multiple levels of abstraction look from a security standpoint?

Brad: I’m not sure I understand your question. It’s like asking, “How does specialization

of labor in the auto industry affect driving safety?” I suppose that with specialization, each

product depends on more people who are working at arms length from each other, and

some fraction of those might be bad guys. But their product at each level has to withstand

acceptance tests at all higher levels, so there’s less chance of bad effects getting through

than in monolithic construction.

Note that multilevel integration is not multiple levels of “abstraction.” It’s really multilevel

“concretion”: higher-level components assembled from reusable, off-the-shelf, pretested

components. For example, consider secure SOA services assembled from a library of JBI

subcomponents by wrapping the SOA services’ core functionality in JBI components that

each provide SOA security attributes: authentication, authorization, confidentiality, non-

repudiation, integrity, etc. The result is more secure simply because now you can afford to

do it well.

Are there answers the rest of us might find satisfactory?

Brad: I think so. If you look at the difference between a mud brick and a real brick, why

don’t we build houses from mud bricks? It turns out we can’t trust them. It’s just like soft-

ware. The quality of that mud brick depends totally on whoever built it, the skill of the

builder. Let’s ignore the technical differences between real bricks and mud bricks. The

fundamental difference, beyond the fact that you bake one at a high temperature, is that

real bricks have testing and certification labs. To be a real brick provider, you have to get

through the maze. That’s basically DOD’s trust model.

Download at Boykma.Com

268 C H A P T E R E L E V E N

The certification and authorization are basically very laborious testing procedures. One of

the names for that is “common criteria.” It’s in place now, and I think that’s probably

where we’re going to end up after a few thousand years of complaining about mud bricks.

“We,” you know, means the industry at large, because there’s a lot of complaining about

software security right now and not many solutions out there. Ultimately, people don’t

trust software. They never will. Ultimately, it will come down to a trust model that applies

to the people that provide software.

Look at Sun. Sun is basically trying to create a totally new business model. You’re aware

they recently went to an open source approach. They’re very taken with that analogy I

mentioned earlier, where old business model involved selling bits and their new business

model involves selling trust. They really resonated to that idea. That’s fundamentally what

they’re doing: the bits are now free. You can download almost anything Sun makes right

now today and use it if you want. They’re betting that, given that choice, that people are

going to choose to buy the bits that come with indemnity and support and some other

things I haven’t dug into in this interview. Time will tell whether that works, but I think

there’s a plausible chance.

You’ve probably heard about the problems that the state of California recently had with

their systems written in COBOL. Could having a system built with little “bricks” help us

avoid the problem of legacy software in the future?

Brad: I believe very strongly in components, but I don’t want to oversell the idea—com-

ponents don’t solve everything. Components are how people solve problems above a

modest scale; it’s one thing that separates us from chimpanzees. We invented a way of

solving problems by simply making it the other guy’s problem. It’s called specialization of

labor, and it’s as simple as that. That’s how the humans differ from chimpanzees: they

never invented that. They know how to make tools, they have a language, so for most of

the obvious things there are no differences between chimps and humans. We discovered

how to solve problems by making it the other guy’s problem—through an economic system.

If we discover an answer, will it be something built on the past or something completely

new?

Brad: Evolution is slow-motion revolution. There is no binary distinction between them.

But the article you mentioned about COBOL also mentioned that the most recent COBOL

standard supported object-oriented extensions. I don’t track COBOL these days, but in the

80s I advocated that very thing: take COBOL and add OO to it, much as I did for C.

That’s an example of how I see thing always happening. They didn’t throw out COBOL

and replace it with something new. They simply added whatever was missing, and kept on

keeping on.

Do you still think superdistribution is the way to go? What about web applications?

Brad: Superdistribution (as I use the term) applies to fine-grained objects. Simpler ways

work for more coarse-grained ones, such as SOA services. I definitely think robust

Download at Boykma.Com

O B J E C T I V E - C 269

incentives are needed. But there are now easier places to begin than with OOP-scale

objects—SOA services in particular. These didn’t exist back then (apart from a lot of hype

about “thin clients”).

Problem is, that’s like saying that learning to get along is the solution to the Palestinian

conflict. It’s obviously true, since that solution was used and found effective in the U.S.

and South Africa. But its also completely irrelevant in the middle of a shooting war on

between owners and users of digital goods. Neither side is going to compromise and just

learn to get along. Wheeling out superdistribution as “the solution” to such a conflict will

only get you shot at—by both sides.

Is the ubiquitous availability of a network a prerequisite for building the cities of your

analogy?

Brad: If houses are SOAs, the network is certainly a prerequisite to doing that. You can’t

have an SOA without a network. But as a practical matter, you can’t do squat without a

network these days.

Robin Milner from ML wants to have lots of very tiny, very stupid machines working in

parallel. Is that similar to your goal?

Brad: It’s an interesting idea. I’ve spent a lot of time in military simulations and it’s very

attractive for that kind of problem. There may be other applicable problems that I haven’t

thought about.

Quality As an Economic Phenomenon

How can we improve the quality of software?

Brad: One way is to keep software on servers, as we see in Software as a Service (SaaS).

There may be hope for an economic answer there, although that approach also has obvi-

ous tradeoffs (privacy, security, performance, etc.).

I spent a number of years working on the opposite approach, creating an economic system

around components that run locally on the end user’s machine, but I have grown pessi-

mistic about this approach because the discussion ends up in digital rights management

fight and that could go on forever. I don’t see any way to reconcile those who want to pro-

duce and own property with those who want to take it. Without physical conservation

laws backing up what ownership means, we’re left with only laws, courts, and lawyers,

which ultimately escalates to police-state tactics. Imagine banks deciding to dispense with

safes and locks, leaving money in the streets at night, and prosecuting those who steal it.

Not a pretty picture.

Another economic solution is the one in widespread use today—advertising. Here, users

are neither fisherman nor the fish, but the bait. Google’s successes notwithstanding, I

don’t see how this can lead to anything good. We’ve all seen what that model did to radio

and television, and exactly the same thing is happening to the Internet.

Download at Boykma.Com

270 C H A P T E R E L E V E N

The final way is the open source model in its many different versions and refinements, from

freeware to shareware to beerware, etc. This is largely the model I work within today. This is

not because it’s the best model imaginable, but because it’s the only one left standing, and it

does address one of the DOD’s many self-inflicted wounds: proprietary lock-in.

What are we missing to create software objects with the same “quality” as real objects?

Brad: An economic system for rewarding improvements.

Just that?

Brad: That’s the engine that drives the ship, but other innovations will be needed once a

caloric (economic) system is in hand. Robust examples can also be found in biology. For

example, Java has primitive notions of encapsulation, which are comparable to biological

mitochondria, cells, tissues, organs, etc. In Java, the largest granularity capsule is a full JVM

and the smallest is a Java class. The only level between them is the Java package (.jar). Var-

ious tricks can be played with class loaders to support a few others (servlets, to name one,

used for SOA services).

I’ve recently become attracted to OSGI as the first serious attempt to create a mature level

of encapsulation between Java classes and the JVM. For example, my sub-SOA security

and interoperability components are packaged as OSGI bundles.

Do you think that we need better incentives to make better software?

Brad: If you look at forces that improved products like socks, sweaters, and Twinkies, the

engine that drives that system is economics.

It’s economics that breaks down for software so that it remains indefinitely in its present

primitive stage of evolution.

A drug company will spend billions of dollars for research because it gets tens or

hundreds of billions of dollars from selling the drugs that result. There’s a monetization

factor in that science, even though so much research is public.

Brad: Yeah, that is a way to nail down the bits so you can own them. With bricks and sil-

icon chips, you relied on laws of nature for protecting the economics. That approach relies

on the law of mankind. In other words, go get some lawyers and lawsuits and patents and

trade secrets and all that and that model might work someday. It’s just so unpleasant.

All the knowledge you have, you can imagine banks leaving gold in the street at nights

and prosecuting those who steal it instead of locking things up in safes. It’s a very inhu-

mane picture that comes out of that, and there’s a pretty good chance we’re going to end

up there with the DMCA stuff. DMCA, RIAA, all that’s going on in that area; I just hate to

be associated with it.

Download at Boykma.Com

O B J E C T I V E - C 271

Could the open access of the open source model improve the situation?

Brad: Well, open source is the best economic model going right now. Most of what I do is

involved in open source; that’s because it’s the best model going until this SOA thing

matures and becomes a reality to count on.

But basically when I talk about a mud brick business, I am really talking about open

source. Materials are free to make mud bricks, but the result is that everybody who does

anything with those mud bricks has to suffer through the appalling documentation prob-

lem of open source.

The whole point of the mud brick analogy is that it’s OK in the absence of other options:

mud bricks are better than nothing at all. But that’s our only option and it’s primitive.

What role do the Internet and networking play in the way we design software?

Brad: These days you can’t do software without the Internet; it is just not even thinkable.

But to flip to the controversial side of that, without an economic model behind either the

Internet or software, the quality of what we have there is going to be way less than what

we get from tangible marketplaces.

Does looking at software in terms of services and components at a higher level than the

language change the economics of writing software? By selling trust, do you destroy the

market for selling bits?

Brad: My crystal ball is not that good. I don’t know. In thousands of years…it took the

building industry that long; why do we think we can do it any faster? I think that’s where

it will end up in thousands of years, but I’ll be dead and buried by then. It’s hard to predict

that far out.

Some people might object that we don’t have the laws of physics standing in our way.

Brad: Yeah, that should be an advantage. It seems to hurt us more than it helps us. It cut

down that economic model just for starters, and that’s pretty big damage.

If you built Objective-C today, would it be an open source project?

Brad: There are too many ifs in that to respond to. Open source wasn’t an option then

and we had to pay the mortgage somehow. If I had a secure job today that wasn’t too

demanding, I’d probably spend the slack time on open source. But ultimately, revenue is

just like gravity; the weakest force and thus easily overpowered by stronger forces (like

self-actualization). But revenue is also the longest-range criterion, and thus utterly ines-

capable in the long term.

Download at Boykma.Com

272 C H A P T E R E L E V E N

Do you mean that an open source project isn’t a serious alternative to commercial

software without financial support?

Brad: No, I meant just what I said. Revenue comes in many forms; reputation chits satisfy

that need, too, for many of us.

Is the web applications phenomenon a good thing?

Brad: SOA puts software on servers where it is not under control of end users. That might

someday lead to an economic system for SaaS.

That approach has barely given us any results to look at because SaaS is still in its infancy,

but I can see how that approach could lead to an economic system that might improve

software in the way tangible things are improving, through economic forces.

Education

You have a Bachelor’s degree in organic chemistry and mathematics, and a Ph.D. in

mathematical biology. How did you go from there to creating a programming language?

Brad: After my postdoc, I took a look around and realized that I was more interested in

computers than in the kind of openings that were available then.

Does your university background influence your vision of software design?

Brad: Absolutely. Constantly.

If you examine ecological systems, you see software as an ecological system in all respects

except that the system lacks anything like physical conservation laws—no conservation of

mass or energy. The product of our labor is made of bits that can be copied so easily that

it’s hard to buy, sell, and own them. The economic system, the ecology, breaks down.

If a leopard could replicate its food as we replicate software, there would be no improve-

ment by either the leopard or its prey.

It’s a constant problem in software, how to own and be compensated for the products and

for your efforts.

Did the agenda for computer science research shift from academia to industry?

Brad: I’ve never considered myself a “computer science researcher” or an academic

(although I did spend some time in that environment). All my other work was in indus-

trial settings, so my biases naturally lie there.

That said, I’ve never been impressed by academia’s research prowess until recently, when

I’ve noticed increasing academic involvement in standards-setting bodies like W3C, Oasis,

etc. That’s tremendously exciting in my view.

Download at Boykma.Com

O B J E C T I V E - C 273

I like this quote from virtualschool.edu:

Thus computer science isn’t dead. Computer science has never existed.

The core concept of this new paradigm I’m trying to bring about in my new book is that

the virus that’s causing the disease that’s causing the symptoms we call the software cri-

sis is that we’re dealing with a substance that is made of bits instead of atoms, that orig-

inates entirely from people, not nature.

But since this substance doesn’t abide by conservation of mass laws, the commercial

mechanisms that incentivize people to work together for building pencils or baggage

handling conveyor belts, entirely break down. Without commerce, advanced social

orders can’t evolve, so we’re stuck in the primitive state where every nerd fabricates

everything from first principles.

Thus everything is unique, so there is nothing above the level of the bit that is consistent

to warrant experimental study. This is why there’s no such thing as computer science.

Ten years later, is computer science still dead?

Brad: Apart from the line of observation you quoted, I don’t have much to add. And after

all, that question depends on how one defines “computer science” and “dead”...and how

much desire one has to antagonize one group or the other, fairly or not; a desire I lack

completely.

The only thing substantive I can add is that so long as software is unique and not governed

by physical law (but note that the growing use of standards tempers this claim, which was

written years ago), that makes it a kind of social science, which is very different from

physical sciences.

How did your thinking change with regard to OOP and superdistributions and SOA?

Brad: The thread you seem to be looking for is that my interests aren’t in programming

languages at all, but in why software is so hard compared to other things people manage

effortlessly. Like feeding lunch to millions of New Yorkers, keeping up with Moore’s Law,

obliterating planets (this one for now) to keep up with car production, etc. It’s really a

remarkable phenomenon, one that no other species has mastered. I keep trying to under-

stand how it works to make it work for software.

In fact, the ability to manage those types of complexity is so widespread that I’d call it

innate were it not for vestiges of hunter-gatherer societies that haven’t discovered it and

everyone is homogeneous…everyone grows their own gardens, hunts their own meat,

builds their own houses. But even then encapsulation and specialization of labor can be

found: wives cook, men hunt, children help, old people advise.

But in modern life, specialization is rampant: that peculiar human ability to carve off some

piece of my problem and make it somebody else’s. I’ll cook lunch if you run the store,

Download at Boykma.Com

274 C H A P T E R E L E V E N

somebody else hauls supplies, somebody else grows the wheat, somebody else makes fer-

tilizer, and so forth ad infinitum, down to digging ore from the mines. It’s so obvious that

we take it for granted, as evidenced by the lack of vocabulary for even talking about the

many levels of production involved in something as common as putting lunch on the

table. Notice the two parts: 1) ability to carve off, i.e., define, a carvable piece of my prob-

lem, and 2) the ability to make it somebody else’s. I’ll come back to those later.

Before OOP, the ability to delimit a problem was very deficient. The more people who

worked on a problem, the more the problem grew out of control. File after file with con-

fusing names (Hungarian notation), external variable conflicts, almost no encapsulation at

all. Exactly like the problem gate-level designers face when designing big chips. Their solu-

tion? Encapsulate a bunch of gates inside a chip. I’ll handle chip design. You solder them

together. Objective-C was precisely that notion.

Of course, that was just the beginning, not the end (which is why I sometimes lose

patience with language-centric thinking). Languages are tools, things to be picked up or

laid aside according to the problem at hand. And the same problem repeats at every level.

For example, 20 years later, the same problem recurs with Java libraries, which have

grown way beyond the ability of anyone to comprehend and use them effectively (J2EE,

I’m talking about you).

Back to superdistribution, which comes from the ability to make my problems somebody

else’s, when we’re talking about goods made of bits which don’t abide by the conservation

laws upon which compensation has been based since antiquity. Why should you under-

take to solve my problems? What’s in it for you, when I can just take what you produce

and use it to suit my own needs? My superdistribution book explained one answer in the

context of small-granularity OOP objects, basing compensation on metering usage of the

bits, not acquisition of the bits as we do today.

But usage metering is a tedious and difficult problem for goods so exposed to interference

by unscrupulous users. SOA services, in contrast, are not. They run on a server that the

owner controls, not the user, where usage can be monitored without having to address so

many opportunities for scamming. You still have the problem of supporting fair exchange

of revenue for all levels of the structure of production, but that’s just an accounting prob-

lem, not a matter of armor-plating an object against tampering.

Interestingly, all the old computer science problems are still present as you proceed up the

hierarchy from OOP to JBI/SCA to SOA. The only difference is that standard data repre-

sentations (XML schemas) eliminate the need for custom parsers for each representation.

That leaves code generation working off DOM trees built by standard XML parsers driven

by increasingly graphical “languages” like UML, DODAF, etc. The stuff going on there is

exciting, at least compared to endless debates as to which OOP language is “best.”

Been there, done that (with C, Objective-C, Perl, Pascal, Java, Ruby, etc.). IT got boring, so

I moved on to interesting problems.

Download at Boykma.Com

O B J E C T I V E - C 275

Do we miss anything in the way we teach software development?

Brad: My own teaching tried to bring the lack of robust economic forces on software qual-

ity into awareness. As a rule, the economic problem is lost and ignored in the computer

science and software-engineering curricula, and given no attention at all.

Why is computer science not a real science?

Brad: Each time you encounter a new piece of software, you encounter something com-

pletely new and unique. How can you have a science where everything is unique?

If you study gold or lead from day to day, you can measure the properties and employ sci-

entific methods to study them. With software, there is none of that.

Download at Boykma.Com

Download at Boykma.Com

277

Chapter 12 C H A P T E R T W E L V E

Java
James Gosling

The Java language grew out of a project to run on small devices. It gained popular-

ity with the rise of web browsers and applets, but with automatic memory manage-

ment, a virtual machine, a large set of bundled libraries, and some degree of “Write

Once, Run Anywhere,” it’s grown into a general-purpose programming language.

Though Sun Microsystems has released the source code as free software, the com-

pany still retains some degree of control over the evolution of the language and

libraries though the Java Community Process.

Download at Boykma.Com

278 C H A P T E R T W E L V E

Power or Simplicity

You’ve said that simplicity and power are evil twin brothers. Can you elaborate?

James Gosling: Often systems that are really powerful tend to get complicated. Take

something like the Java EE spec. It’s got all this stuff about transactions and persistence

and those are really, really powerful. But in the early days of Java, we didn’t have any of

that.

The system was really pretty simple, and people could sit down and they could understand

it pretty easily. If you restrict yourself to Java the language and the basic APIs, it still is

very simple. But as soon as you start using some of these more powerful subsystems like

Swing and Java EE and the rest of them, you get the sort of feeling that you’re drowning

in stuff. Look at the OpenGL libraries, it’s really powerful the kind of stuff you can do with

OpenGL. But oh my God, it sure isn’t simple.

Especially in OpenGL, you need a strong sense of how idealized graphics hardware

works.

James: Right. I think it was Einstein who had this quote that was essentially systems

should be as simple as possible but no simpler.

Is simplicity or complexity a constant throughout the system? Larry Wall talks about a

waterbed theory of complexity; if you push down complexity in one part of the language,

it pops up elsewhere. In making the Java core language itself very simple, does

complexity show up in places like the libraries?

James: The phrase I like to use for it is “whack-a-mole.” Often when people say, “Oh, I

solved the problem,” if you poke around a bit, you discover they haven’t actually solved

the problem; they’ve just moved it.

One of the issues with addressing some of these things in the language is that the language

is used by everybody. If you put specialized transaction support into the language, you

might make transactions a little bit simpler for people doing transactions, but you would

probably make life much harder for everybody else who is not using transactions.

They pay the conceptual overhead there.

James: Well, they certainly pay the conceptual overhead, and depending on how it’s

done, they may pay other overheads.

Java’s a mature platform now, widely used for over a decade. Is there a way to redesign

simplicity back into a system like that?

James: I don’t know; I guess it’s kind of a yes and a no answer.

It’s sort of no in the sense that there’s piles of code that uses all of this stuff. We would just

love to get rid of various bits of complexity that have been around. The problem is, if you

survey the apps out there, they tend to use them a lot.

Download at Boykma.Com

J A V A 279

You had one shot at replacing AWT with Swing, but AWT is still around.

James: Yeah, and it is amazing how many people still use AWT. A part of that is because

AWT lived on in cell phones.

But part of it is that, despite press reports to the contrary, Java is used in desktop applica-

tions unbelievably heavily, mostly building enterprise applications. There are tens of thou-

sands of them out there that were built using beta libraries, and they work perfectly well,

so people have very little incentive to get rid of them.

The answer is sort of yes in the sense that one of the nice things about having an object-

oriented system with decent abstraction is that when the world changes and you figure out

a better way to do things, you can do it that way, and it doesn’t collide with the old stuff.

You have namespaces, abstractions, and encapsulation.

James: Right. In Java EE with EE5, we went through a fairly major revolution in simplic-

ity. If you look at Java EE today, if you just pick up an EE5 manual, it’s actually not bad in

terms of complexity. But if you pick up the old EE manuals, and you try to make sense of

both of them, then it’s just hideous. We did a reasonably good job of moving EE forward,

unless you have to live with one foot in both camps. Then life is unpleasant.

Backward compatibility is always difficult. Is it a deliberate Sun engineering discussion to

allow people to run very old Java 1.1 programs on the most modern JVM?

James: One of the things that is sort of funny is that the JVM itself is actually kind of out-

side of all of this discussion, because the JVM has been remarkably stable. Where all the

pain and anguish has been is in the libraries. The libraries are much more manageable in

the core VM. They’re designed to be modular. They come in; they come out. You can actu-

ally build class loaders that partition the namespace so that you can have actually two ver-

sions of Java AWT. There’s lots of tools to manage that. Once you get down to the actual

virtual machine itself, life becomes much more difficult. But there just haven’t been many

issues down there.

The bytecodes have actually been pretty stable. Where all the VM work has been is in

building these rocket science optimizers.

Well, I’ve heard it said that effectively you have two compilers in the Java world. You

have the compiler to Java bytecode, and then you have your JIT, which basically

recompiles everything specifically again. All of your scary optimizations are in the JIT.

James: Exactly. These days we’re beating the really good C and C++ compilers pretty

much always. When you go to the dynamic compiler, you get two advantages when the

compiler’s running right at the last moment. One is you know exactly what chipset you’re

running on. So many times when people are compiling a piece of C code, they have to

compile it to run on kind of the generic x86 architecture. Almost none of the binaries you

get are particularly well tuned for any of them. You download the latest copy of Mozilla,

Download at Boykma.Com

280 C H A P T E R T W E L V E

and it’ll run on pretty much any Intel architecture CPU. There’s pretty much one Linux

binary. It’s pretty generic, and it’s compiled with GCC, which is not a very good C compiler.

When HotSpot runs, it knows exactly what chipset you’re running on. It knows exactly

how the cache works. It knows exactly how the memory hierarchy works. It knows

exactly how all the pipeline interlocks work in the CPU. It knows what instruction set

extensions this chip has got. It optimizes for precisely what machine you’re on. Then the

other half of it is that it actually sees the application as it’s running. It’s able to have statis-

tics that know which things are important. It’s able to inline things that a C compiler could

never do. The kind of stuff that gets inlined in the Java world is pretty amazing. Then you

tack onto that the way the storage management works with the modern garbage collec-

tors. With a modern garbage collector, storage allocation is extremely fast.

You’re just bumping a pointer.

James: It literally is just bumping a pointer. New in the Java world costs about as much as

malloc() in the C world. There are benchmarks where it’s a factor of 10 better than

malloc(). For things that involve large numbers of small objects, malloc() tends to do a

pretty bad job for anybody’s malloc().

Speaking of C, how do you design a system programming language? What does a designer

need to consider when he builds something that may become a system programming

language?

James: I tend to not think about languages and features much. In the times when I’ve

done language design, which is tragically too often, it’s always motivated by a problem.

What is the context in which it is going to be run? What are people going to do with it?

Kind of what is different about the universe? With Java, the things that were different

were the network. The whole pervasive network makes you think about things a little bit

differently because it has a lot of spinoff things. One of the components of that was com-

puting in your grandmother’s living room.

Or a handheld device that doesn’t look like a computer.

James: On the long list of things that that changes, you don’t ever want to see a blue

screen of death. You don’t want to have complex installation features. So Java ended up

with really strong fault-isolation mechanisms. Most people don’t think of them that way,

but they’re there; things like the way that memory pointers work and garbage collections

work and exceptions work are really about fault isolation. That ends up being about mak-

ing sure that things keep running, even if there’s a little hiccup. If you’re driving down the

road in your car and your doorknob gets loose, the car keeps going down the road. One of

the problems with most C programs is you do something completely innocuous, it turns

into a rogue pointer dereference, and bam! It’s shrapnel all over the place.

Download at Boykma.Com

J A V A 281

You have absolutely no way to predict what gets corrupted and where and if or when

you’re going to crash.

James: Right. That’s always struck me as completely unacceptable. In the days when C

was built and the early days at Sun, performance mattered above everything. Anything

that was like a check for array out of bounds or whatever it was was completely unaccept-

able. When the Java spec came out, it had this thing about “array subscript checking can-

not be turned off.” There is no “no subscript checking thing.” For one thing, it was

somewhat a radical departure from C in that C doesn’t have subscript checking at all, and

it’s kind of an intrinsic part of the language spec.

It barely has arrays, if you want to think about it that way.

James: Yeah. It has addition and then kind of a weird syntax for addition. One of the

magics of modern compilers is that they’re able to theorem prove a way potentially all

subscript checks. Though you might think that something like, you know, pointer check-

ing can never be turned off is a bad thing, in fact, it’s not a bad thing. It’s actually a very

good thing. It doesn’t have a negative performance impact. You might do a little bit of

checking on the outside of the loop, but inside the loop, it just screams.

If C had only fixed its string problem where you don’t know the length of the string

because it’s null-terminated, we probably could’ve had faster C for 40 years. That’s my

worst problem with C these days.

James: Yeah. I love C. I was a professional C developer for years and years and years. I

switched to C long before anybody else was using C. The first C compilers ran on machines

that had 32K of RAM, and for something that would run in 32K of RAM, the original C

compilers were astonishing, but it’s really hard to find a watch with only 32K of RAM.

Your average credit card has more than 32K.

A Matter of Taste

How does ubiquitous Internet connectivity change the concept of a programming

language?

James: The issue of how does the network impact the design of a programming language

is huge. As soon as you’ve got a network, you have to deal with diversity; you have to deal

with communication; you really have to think about how failures affect things; you have

to worry a lot more about reliability.

In particular, you have to worry about how to build systems that can be robust and con-

tinue operating in the face of partial failures, because most of the systems that people are

building that are of any interest are ones where there’s always something that’s broken.

Download at Boykma.Com

282 C H A P T E R T W E L V E

And the traditional view of software has been that it’s sort of an all-or-nothing thing; it’s

working, or it’s not. And a lot of those sort of concerns feed into things like the Java

exception mechanism, the strong type system, the garbage collector, the virtual machine,

and on and on. I mean, the network had really profound effects on the design of Java, the

language and the virtual machine.

What’s the biggest influence that you credit for your views on design and programming?

Is there a way that you can point to something and say this is the Gosling trademark when

I look at a system that you’ve designed or worked on?

James: Yeah. I wish life were that simple.

I’ve met several architects who say “I have a trademark design,” sort of a way that they

tend to approach things. I tend to be much more sort of trademark-free. If I have anything

of a trademark, if you talk to people who had looked at the code that I write, I tend to

drive people nuts who have to maintain code that I write because I tend to over-obsess on

performance.

I won’t do aggressive inlining, but I’ll use complicated algorithms when something really

simple would’ve been just fine. I will move heaven and earth to—I’ll tend to do more

caching than most people do. I’ll throw a cache in somewhere just out of reflex, just

because if there isn’t a cache, I get all nervous.

That reminds me of a quote about one where someone asked, “Why use a linear search

through an array? Quicksort is faster!” The response was, “There will only ever be at most

seven elements in here; writing quicksort has too much overhead.”

James: I certainly wouldn’t do a complex data structure for seven.

A lot of programmers never consider the practical implications of these things.

James: The sort of thing that drives me nuts is that, you know, people will be building a

system for all of their development work; it’s fine to do a simple linear search. They know

that when it gets deployed, it’s going to be 100,000 elements. I’m testing it on only 10

things, so I might as well just do a linear search, and they always say, “someday I’ll put in

the performance tweaks.” It’s one of those Robert Frost moments: “Knowing how way

leads on to way, I know I never shall come back.” Lots of code is that way. I tend to have

this feeling like coming back to fix things up too often doesn’t happen, and the world is

filled with systems that are just incredibly slow.

Is that time constraints or laziness or the fact that programming keeps geting simpler for

nonprogrammers?

James: It’s a little bit of all of them. It also helps that these machines have three gigahertz

clocks, and you can do an infinite loop in finite time now. :)

Download at Boykma.Com

J A V A 283

Why did you choose to use a virtual machine for Java in the beginning?

James: It helps tremendously with the portability story. It helps surprisingly with reliabil-

ity, and oddly enough, it helps hugely with performance. It’s much easier to get high per-

formance when you’re doing the just-in-time compilation. So it helps all over the place. It

helps with debugging hugely.

Is there anything you’d do differently about the JVM design, or are you satisfied with how

it works?

James: I’m actually pretty darn satisfied with it. The JVM design has been probably the most

stable part of the whole system architecture. If I were going to go off and find a problem to

solve, I wouldn’t charge in there because it’s in good enough shape; there’s nothing in there

that’s an issue that’s high enough to be worth bothering with. It’s also had a crew of really

bright people working on it for like a decade, basically a lot of Ph.D. compiler jockeys.

Would you have designed the JVM any differently based on its current popularity among

other languages?

James: Well, there may be some things I would have tweaked somewhat. We are going

through a round of language-design questions around that issue right now, and it’s actu-

ally surprisingly hard to find the things that you could do differently in the VM that would

really help other languages.

The places where we tend to have the big issues are ones that are sort of philosophical

problems or philosophical issues with the virtual machine. So, for instance, it’s really hard

to implement languages like C and C++ on the Java virtual machine because we don’t

allow naked pointers.

Allowing naked pointers would be a huge reliability problem, and we decided that we

would never allow naked pointers. I mean, the kind of issues that you get both with reli-

ability and security from that is just too awful. So C and C++ on the JVM? Nope.

You used the example that if you are driving a car, it doesn’t stop if something like the

radio stops working. Do we need new building blocks for software to avoid this

fundamental problem that when something goes wrong, everything stops working?

James: A lot of that is the way that kind of low-level plumbing in some of these language

systems is built. “Everything comes to a screeching halt” is one of the big issues in C,

because of the way that they do pointers.

As soon as you get any kind of memory error through your pointers, the system core

dumps and bam, you’re gone. Whereas in Java, on the one hand it’s somewhat less likely

that you’ll get a pointer bug, and on the other hand, when a fault happens, you can actu-

ally contain it.

Download at Boykma.Com

284 C H A P T E R T W E L V E

The exception system is really good at limiting the extent of damage so that when the car

radio goes off, you can maybe just disconnect the car radio.

And people who build these big enterprise systems in Java actually spend a fair amount of

time making it so that the various components are reasonably firewalled against each

other so that the pieces can fail gracefully.

If you look at things like the Java Enterprise spec, there are all kinds of things in the way

that that framework works that works really well with fault containment.

Is the object-oriented paradigm still complete and correct in this way?

James: Object-oriented programming is working very well for people these days. There

are all kinds of debates about things on the edge—people are getting into all kinds of

language-theory debates about basically tweaks on the side—but the basic notion of

object-oriented programming has just been fabulously successful, and is not really

showing any big cracks.

Sometimes it seems that developers have to work twice as hard with objects. First they

have to design a reusable component. If they make a change later, they have to write

something that fits precisely in the hole left by the old component. Essentially, I see a very

thin line between using objects to achieve good design and having objects that make

everything more complicated.

James: Well, it’s certainly the case that object-oriented design requires a certain amount

of good taste. The world is filled with examples of people who got way out of control, and

things got a little crazy, but that’s actually remarkably limited. The use of interfaces and

objects has been just dramatically successful, and the fact that it forces you to think about

how subsystems relate to each other, that alone as an intellectual exercise is very important.

The whole issue of making it so that things can be decomposed so that the parts of your

system can be pulled apart helps hugely with evolution, and debugging, and fault contain-

ment, and a host of other issues.

And yeah, it requires a certain amount of good taste to use it properly, but it’s not that

hard. And it’s proven to be very, very valuable—much more valuable than the kind of

stuff that people do with spaghetti code, where everything is directly integrated with

everything else, and if you try to change any one thing, then everything else has to

change. It just gets horrible.

That’s a really, really awful world to live in, when you’re not doing things in an object-

oriented way. Where object-oriented programming really starts to shine is when systems

start to get large, when they have large teams, and when they evolve over time.

The more modular you can keep things and the more sort of isolated the various program-

mers tasks are, the boundaries of things that have to change when something else

changes, it’s just tremendously useful.

Download at Boykma.Com

J A V A 285

Concurrency

People talk a lot about the end of Moore’s Law, in that systems are getting wider but not

necessarily faster. Do you agree?

James: Yeah. Moore’s Law was all about gate count, and it’s pretty easy to see how gate

count has got a pretty good chance of growth in following Moore’s Law for a lot of years.

But how that translates to clock rate, it’s almost been an accident that it’s been able to be

interpreted as clock rate for so long.

Does the need for better concurrency change the implementation or also the design?

James: Oh, it changes the design of things tremendously, although there is a certain

amount of variability as you go from problem domain to problem domain.

So like in most mathematical software, to make some piece of mathematical software

work in a multithreaded world, you really do have to change the algorithm tremendously.

In a lot of enterprise software, though, the software’s often running inside frameworks.

Like in the Java world, there’s the applications server frameworks, Java EE, and in the EE

framework, the apps hardly have to be aware that they’re running in a multithreaded

world; it’s actually the container, the app server, that knows everything about multi-

threading and how to deal with clusters and multiprocesses and all that.

Those problems are just abstracted away from you and you don’t have to worry about it,

but that works really well for enterprise software, which tends to be characterized by lots

of little transactions that have nothing to do with each other, and they just happen, bang,

bang, bang.

Mathematical software where things are tightly interrelated, they share common data,

yada yada, things get much more difficult. So there’s not a clean answer there.

Do we need new languages, or can we get by with new tools or libraries to address this? Is

it just retraining all of the existing programmers to think in a different way?

James: Well, it depends. I think it’s extremely domain-specific. In most enterprise appli-

cations, which are heavily transaction-based, you can do frameworks like Java EE, which

take care of multithreading completely straightforwardly. If you’re running on a 128-core

Sun machine, which oddly enough you can actually get, developers are not even aware of

it and it uses all of them just perfectly and it’s not even hard.

It doesn’t necessarily depend on the skill of the programmer; you can have a decent

programmer who may not be an expert on multithreading, but in that case Java will take

care of it for you.

James: Right. The frameworks pretty much abstract away all the threading issues. It gets

harder when you get into some of the more numerical things, you know—if you’re

doing various kinds of simulations and such. Any of these graph algorithms and numeri-

cal things, breaking them up into multithreaded situations is just intrinsically hard.

Download at Boykma.Com

286 C H A P T E R T W E L V E

Some of it is because you have to do data structure access and locking and all of that.

Often it’s just intrinsically hard in terms of the data structures, and getting the algorithm

right. Travelling salesman is a particularly tough one. Some of them are easier, like ray-

traced image rendering, but there it’s one where you’ve got a domain-specific observation

namely that you can take individual pixels and they’re completely independent.

It’s parallelizable down to a pixel level if you have that much hardware.

James: Right. That actually works pretty well. Most of the good ray-trace renders, they do

that. Some things like computational fluid dynamics, which is the underlying algorithm

set in things like weather prediction and figuring out whether or not an airplane is going

to fall out of the sky, those are harder because there’s a lot of communication between dif-

ferent parts of the fluid. There it’s pretty easy to break up into a shared address space sys-

tem, but really hard to break up into a cluster where you’ve got address spaces that aren’t

shared. For CFD algorithms, you know, they pretty quickly die just on communication

costs between nodes in the cluster. They work much better in multicore, but it tends to get

excruciatingly algorithm-specific.

One of the things I like about functional languages like Scala is that if you write a numer-

ical algorithm in Scala, then the compiler has a lot more ability to reason about what your

program is doing. It can do more automatic mapping of the algorithm to a multithreaded,

multicore distributed system.

Is this because Scala is a pure functional language?

James: It’s not pure functional. One of the reasons that it works as well as it does for most

people is that it’s kind of both. You can program it kind of as if it were Java or you can

program it functionally.

Are there problem domains in which shared-memory multithreading works better than

functional?

James: For enterprise applications, the framework-based approach to multicore distrib-

uted systems actually works really, really well. I don’t think that there’s a huge advantage

to a system like Scala. Things get really interesting when you’re doing something like a

travelling salesman algorithm.

A deliberate decision that seemed to come from the Green Project or the Oak Project is

that designing a language that works with the network in a pervasively network world

with multithreading means that you need primitives for synchronization, and the core

libraries need to be thread-safe.

James: We have an immense amount of mechanism for thread safety. Actually, this one

is sort of a weird case because normally what it means is that when you’re running on sys-

tems that only have one CPU, you pay a certain price. But in this particular case, I mean

this is one of these things where abstraction kind of comes to the rescue because the more

abstract APIs and interfaces can be, things like the Java Virtual Machine are quite abstract

compared to the real machine. The underlying mechanisms can do a lot of adaptation.

Download at Boykma.Com

J A V A 287

In the multithreaded logging case, it turns out that the HotSpot VM magically understands

that single-core machines are different.

When you’re JITing, you can say, “I don’t really need to worry about synchronizing this

part because I know for a fact that we’re never going to have a deadlock; we’re never

going to have thread contention for this particular piece of memory.”

James: Yeah, and that just happens magically and transparently. Nobody is aware of it.

There’s a similar issue with 64-bit pointers.

People in the C world get all wrapped around when they have to make their apps work in

64-bit. With Java apps, there’s absolutely nothing you have to do.

Designing a Language

If it weren’t for Java, would Scala be your language of choice?

James: Yeah, probably.

What do you think of all of these new languages that are not just research projects, that

appear to be very serious attempts to build a real powerful language on top of the JVM?

James: I think they’re pretty cool.

You don’t feel threatened, as if they take all of your good ideas and bypass you?

James: No, all the important bits of Java are in the VM. It’s what makes the interoperabil-

ity work. In some sense, Java and the ASCII syntax was designed as something that would

make C and C++ programmers comfortable. It does that pretty well. Most C and C++ pro-

grammers can look at a piece of Java code and go, “Oh, I understand that.”

Tactically I see what it’s doing, even if I don’t know the details of the APIs.

James: One of the big design goals was exactly that. In some abstract world of “what is

the world’s best possible programming language,” that wasn’t actually a goal. I personally

think that Scala is pretty darn interesting. The problem with Scala is that it’s a functional

programming language and most people have a hard time thinking that way.

If I were to go off and design a programming language that was just for me, it would prob-

ably drive most other people completely nuts.

Lisp then?

James: It probably wouldn’t be Lisp, but there are bits and pieces that would kind of be

like Lisp.

Bill Joy once said your goal was to drag C++ programmers kicking and screaming halfway

to Common Lisp.

James: In some sense that was true, if you look at what’s on the sheets from the JVM.

Download at Boykma.Com

288 C H A P T E R T W E L V E

The idea that a VM doesn’t have to be slow, or the idea that pervasive garbage collection

is very productive for programmers.

James: One of the things that people really didn’t appreciate was that garbage collection is

very good for reliability and security. Look at where bugs come from in typical large systems:

memory-management bugs all the time. I went through a period of collecting statistics on

all the bugs I found, and in particular, the number of hours spent. One of the things

about memory-corruption bugs is that they tended to take an inordinate amount of time to

track down. I swore to myself that I never wanted to waste another hour doing that again.

I wrote the first two garbage collectors in the JVM. Garbage collectors are a pain in the ass

to debug, but once they’re done, they’re done, and they just work. Now we’ve got several

serious rocket-science garbage collectors.

What kind of GC did you write initially?

James: I needed to do one that would work in very small address spaces. It was conceptu-

ally a basic mark and sweep with compaction and a certain ability to run asynchronously.

There wasn’t enough space to do any of the sort of more modern design. If someone had

handles, which is what helped the compaction.

An extra pointer indirection, but it lets you copy stuff around.

James: Because I was trying to work with C libraries, the initial versions of it were semi-

exact. It was exact for all pointers in the heap, but then it was inexact on the stack because

it actually would scan the C stack to see if there was anything that looked like it might be

a pointer.

That’s the only way I’ve seen handling the C stack well, unless you want to not use a C

stack at all, which has advantages and disadvantages.

James: Right. Which is actually what the JVM does now. It doesn’t use the C stack. I mean it

has its own stack mechanism. When you dive in to C code, you’re on a separate stack. One of

the things that’s sort of painful about JNI is making the transition between the worlds.

Considering that C# was inspired by Java, do you think that there are other features of

Java that could be taken by other programming languages?

James: Well, I mean, C# basically took everything, although they oddly decided to take

away the security and reliability stuff by adding all these sort of unsafe pointers, which strikes

me as grotesquely stupid, but people have used most of the features of Java somewhere.

You wrote a garbage collector to stop wasting time debugging memory-management bugs.

What’s your opinion on pointers as implemented in C++ compared to references in Java?

James: Pointers in C++ are a disaster. They are just an invitation to errors. It’s not so

much the implementation of pointers directly, but it’s the fact that you have to manually

take care of garbage, and most importantly that you can cast between pointers and inte-

gers—and the way many APIs are set up, you have to!

Download at Boykma.Com

J A V A 289

Did you design references in Java to solve all these problems and still provide the same

advantages of C++ pointers?

James: Yes, you can do all your important stuff in Java that you can do in C++ using

pointers.

Do you see any other recurrent problem that might be avoided by implementing a general

solution into the language?

James: Things like that are all over the language in Java. One example is the exception

mechanism. One of the things that people do in C++ is completely ignoring error codes

that they get from all kind of things. Java makes it easy for you to deal with errors when

they happen.

Java programs tend to be a lot more reliable partly because people are strongly encour-

aged to actually take errors into account as much as possible, in part because when errors

do happen, you are pretty sure they are contained.

Can well-chosen defaults help programmers write better code without looking for

external libraries or add-ons?

James: Over the years, most languages have cleaned up most of these stuff. One of the

most problematic over the years in C++ has been multithreading. Multithreading is very

tightly designed into the code of Java and the consequence is that Java can deal with

multicore machines very, very well.

What is the link between the design of the language and the design of the software

written with that language?

James: Oh, there are subtle linkages everywhere. I mean, an object-oriented language

really encourages you to build very modular systems. You know, when you’ve got a

strong exception-handling system, it encourages you to build systems that are robust.

Basically every feature of a language you can think of has within it a subtle push toward a

certain software design.

Is there any other feature that you would like to include in the standard language? What

about automatic code checking?

James: Well, we do a lot of that kind of stuff in the tool. If you look at what makeme(?)

does, it basically does like a real-time LINT, you know, all kinds of high-level things. These

days you can’t just consider a language alone, you have to pick the language and the tool

together.

When designing a language, do you consider how people will debug the language?

James: There are a bunch of things that are important for building reliable software, but

they are not particularly about debugging itself. For debugging we have a bunch of stan-

dards, things like how the system communicates with the debugging system.

Download at Boykma.Com

290 C H A P T E R T W E L V E

You actually do a lot of stuff in the language to avoid ever getting in a situation where you

need to debug; that’s why things like the memory manager, strong type system, the

threading model, it’s all over the place in Java and these are things that help you even

before you get to the debugger.

When a language is platform-independent, how does this affect the debugging?

James: Well, from a developer point of view, debugging is completely seamless, you

know, running on a Mac debugging something on a Linux server—it works perfectly.

How do you debug your Java code?

James: I just use NetBeans.

Do you have any advice for Java programmers?

James: Use NetBeans, sprinkle assert statements all over the place, be really careful

building tasks—there is JUnit, which is pretty popular—and pull them together and they

work pretty well.

What do college students in computer science miss?

James: Most universities focus on the technical side of things. A lot of software engineer-

ing is about, “OK, here you’ve got a piece of software, find a bug in it,” and your average

college assignment is, “Write a piece of software to do this,” where what you start with is a

blank sheet of paper so you can do anything you want.

And also a lot of software engineering is just the social dynamics of working in a team, and

a lot of that is not taught at all.

What’s your view on software documentation?

James: The more, the better.

One of the sort of unique facilities that Java pioneered was documentation that’s inte-

grated into the code.

And for Java APIs, there’s this tool called Javadoc, which extracts documentation from

your source code. One of the big issues that people often have with software documenta-

tion is that the documentation is not up to date with the actual APIs. And so by having a

lot of the boilerplate automatically extracted, things stay in sync a lot better, and even if

you write no comments at all, Javadoc actually does a plausible job of generating usable

API documentation.

So the single most important thing that people can do as far as documenting their code is

just use the Javadoc tool, and then the more that you can do in putting the right com-

ments into your code, it just helps everybody.

Download at Boykma.Com

J A V A 291

Do you believe in specifying a project formally or fully before you build it?

James: I guess I sort of have mixed feelings about formal specifications. It’s one of those

things that in theory, I think they’re great; in practice, they don’t seem to work out very

well. They can often be OK for fairly small things, but the larger you get, the less useful

formal specifications get, if only because they don’t scale very well.

And more importantly, often doing formal specifications doesn’t actually solve a problem;

it moves the problem; it moves the issue of bugs in your software to finding bugs in your

specification. And bugs in a specification can be really hard to find.

Even if you’re not doing formal specifications, you’re just doing sort of requirements

analysis—a lot of organizations do these kind of waterfall things, where there’s a group

that comes up with a requirements document, and then they hand it off to the people

who actually have to build the thing.

The requirements document is often just filled with problems, and unless there’s a really

tight feedback loop, you don’t find bugs in the requirements; you don’t find bugs in the

specifications. So while I’m generally a big fan of doing specifications and requirements

and that kind of thing, I tend to not take them all that seriously, and I certainly don’t

expect them to solve huge problems.

I’ve also been interviewing the people from UML, and other languages, and one of the

thing that sounded very interesting to me is the idea of using one of these very high-level

design languages to build the logic behind the software. They mention the possibility of

discovering logic mistakes in the model even before writing code.

James: Yeah, there are a lot of high-level tools that are model-based in the Java world.

The kind of high-level modeling that you find in lots of web application frameworks in UI

frameworks, in UML frameworks can be very powerful.

If you get a copy of NetBeans, you’ll see it’s got a fairly sophisticated UML modeling sys-

tem. You can use that both to initially specify a piece of software in terms of UML model,

and then have it automatically generate the software, or you can use the UML modeler as

kind of an archaeology tool to let you peer into a piece of software, so they help, but there

are still issues.

Feedback Loop

How much feedback do you get on the language itself, not the implementation?

James: Boy, we get lots of feedback with the language.

How do you approach that?

James: If we get one or two people asking for some feature, we tend to ignore it.

Download at Boykma.Com

292 C H A P T E R T W E L V E

Because one of the things about a language is you’ve gotta be fairly judicious about what

you change. The barrier’s a little bit easier in APIs, but in general, we don’t do anything

unless there’s a really strong demand for something.

So if many people ask for the same thing, that’s like, “Oh, OK, then, that maybe makes

sense to do.” But if just one out of millions of developers asks for something, then it’s like,

“Probably would do more harm than help.”

What’s your experience after freeing the source code to Java?

James: Oh, we’ve had lots of good interactions. I mean, we made the source available for

Java since 1995, and people have been downloading the source and using it in everything

from thesis projects to security audits, and it’s been a very powerful thing.

Is that polishing the implementation or cooperative evolution of the language?

James: Having multiple contributors is a good thing. It ends up being a conversation.

Can you design a language in a democratic fashion?

James: It’s a very, very fine line because if you’re sort of too democratic, what you end up

with is just rubbish. But if you’re sort of too much of a central dictator, you end up with

something that doesn’t make sense to anybody because it’s just that one person’s views.

And so it is really important to have a conversation with lots of people, and to have a rea-

sonably tight decision-making process.

Do you believe in the idea of growing a language, or do you think that since you have a goal,

once you build something that can achieve that goal, you should just write a new language?

James: I guess bits of both. I have no problem with growing a language, but I think that

there needs to be a fairly high barrier to just jerking things around. For things that have

real demonstrated value, it’s fine to grow the language. On things where the value isn’t

really huge, things like random syntactic changes are just kind of pointless. If you woke up

one morning and decided that braces were evil, that would be dumb, but for things that

really affected people’s ability to build software, we went through a few years ago the

whole exercise of adding generics to Java, and that’s been profoundly good.

How did you choose what to put inside the language and what to keep as an external

library?

James: That’s pretty much always decided based on sort of how generally applicable the fea-

ture is. So things that are useful only to small communities really are best off in a library. And

in general anything that you can do in a library ought to be done in a library, and language

changes should be reserved for things that really don’t fit in any kind of a library.

What criteria do you use when designing an API?

James: I mean, my number one principle is keep it as small as possible. And I guess my

number two principle is to design based on use cases. One of the failure modes that people

Download at Boykma.Com

J A V A 293

often get in designing an API is that they design an API just kind of in a vacuum, and they

sit around saying, “Well, somebody might want to do this,” or, “Somebody might want to

do that,” and that just causes APIs to mushroom and get way more complicated than they

need to be.

Whereas when you actually go through, “So what would people want to do with this?”

Look at other systems where people have tried to draw menus or make network connec-

tions. You know, what has worked in other places? What have people actually used as

opposed to what’s written in the API?

You can do a lot of interesting things about API design and language design just by doing

statistical analysis on software written in other languages.

Is there any lesson that you would like other people to learn from your experience

designing Java?

James: Designing languages isn’t terribly hard. The most important thing in designing a

language is not designing a language, but figuring out what the language is for. What is

the context? What are the tasks that people are trying to do?

The thing that really made Java different was starting out with the network. What are the

implications of networking on programming language design? It turns out to be pretty

profound, and in some sense, the language design choices were pretty simple once one

sort of went through the implications of networking.

Did Java influence how the public thinks about platform independence?

James: I don’t think the public thinks about platform independence. I mean, it’s one of

these funny things that, from my kind of weird point of view as an engineer building these

large-scale systems, the public should not even be aware of.

When you go and you use your Visa card in an ATM or a cash register, the fact that there

are almost certainly big bags of Java code behind that, running on Sun machines and IBM

machines and Dell machines and HP machines, and things with x86 architectures and

PowerPC architectures and whatever, all of that kind of stuff, you don’t notice that when

you swipe your card on the reader.

And yet, a lot of those mechanisms are going on behind the scenes. You get onto the sub-

way; if you’re using one of these proximity cards, like the Oyster cards on the London

Underground, that’s a Java-based system.

You really used all the platform-independence stuff in it, and if consumers were forced to be

aware of the programming language used to build the system, that would be a real failure to

the system. One of our goals is to be completely transparent and to get out of people’s way.

Of course, this drives the marketing people nuts. They would like to have a Java logo in

front of you every time you get on the London Underground, but that would be crazy.

Download at Boykma.Com

Download at Boykma.Com

295

Chapter 13 C H A P T E R T H I R T E E N

C#
Anders Hejlsberg

When Microsoft settled a lawsuit from Sun Microsystems over changes to the

Java programming language, they turned to veteran language designer Anders

Hejlsberg to design a new object-oriented language backed by a powerful vir-

tual machine. The result was C#—and a replacement for both Visual C++ and

Visual Basic within the Microsoft ecosystem. Although comparisons to Java are

still inevitable in syntax, implementation, and semantics, the language itself has

evolved past its roots, absorbing features from functional languages such as

Haskell and ML.

Download at Boykma.Com

296 C H A P T E R T H I R T E E N

Language and Design

You’ve created and maintained several languages. You started as an implementer of

Turbo Pascal; is there a natural progression from implementor to designer?

Anders Hejlsberg: I think it’s a very natural progression. The first compiler I wrote was

for a subset of Pascal, and then Turbo Pascal was the first almost full implementation of

Pascal. But Pascal was always meant as a teaching language and lacked a bunch of pretty

common features that are necessary to write real word apps. In order to be commercially

viable, we immediately had to dabble in extending in a variety of ways.

It’s surprising that a teaching language would be so successful in bridging the gap

between teaching and commercial success.

Anders: There are many different teaching languages. If you look at Niklaus Wirth’s his-

tory—Niklaus Wirth designed Pascal, later Modula and Oberon—he always valued sim-

plicity. Teaching languages can be teaching languages because they’re good at teaching a

particular concept, but they’re not really real other than that; or they can be full-fledged

languages that truly teach you the basics of programming. That was always Pascal’s intent.

There seem to be two schools of thought. Some schools—MIT, for example—start with

Scheme. Other schools seem to take a “practical” focus. For a while, they taught C++.

Now it’s Java, and some use C#. What would you do?

Anders: I’ve certainly always been in the more practical camp. I’m an engineer more

than I’m a scientist, if you will. It’s my belief that if you teach people something, teach

them something they can use later for something practical.

Like always, the answer is not at the extreme. It’s somewhere in between. Continually in

the programming language practice, in the implementation of programming languages for

the industry, we borrow from academia. Right now, we’re seeing a great harvesting of

ideas from functional programming which has been going on in academia for God knows

how long. I think the magic here is you’ve got to do both.

Is your language-design philosophy to take ideas from where you can and make them

practical?

Anders: Well, in a sense. I think you probably have to start with some guiding principles.

Simplicity is always a good guiding principle. Also, I’m a great fan of evolving as opposed

to just starting out new.

You might fall in love with one particular idea, and then in order to implement it, you go

create a brand-new language that’s great at this new thing. Then, by the way, the 90%

that every language must have, it kind of sucks at. There’s just so much of that, whereas

if you can evolve an existing language—for example, with C# most recently we’ve really

evolved it a lot toward functional programming—it’s all gravy at that point, I feel. You

Download at Boykma.Com

C # 297

have a huge user base that gets to just pick up on this stuff. There’s a bit of a complexity

tax, but it is certainly much less than having to learn a whole new language and a whole

new execution environment in order to pick up a particular style of programming.

It’s hard to draw the line between a language per se and its ecosystem.

Anders: Well, yeah, and certainly these days more and more. The language used to dom-

inate your learning curve, if you go back say 20, 30 years. Learning a programming envi-

ronment was all about learning the language. Then the language had a little runtime

library. The OS had maybe a few things, if you could even get to the OS. Now you look at

these gigantic frameworks that we have like .NET or Java, and these programming envi-

ronments are so dominated by the sheer size of the framework APIs that the language

itself is almost an afterthought. It’s not entirely true, but it’s certainly much more about

the environment than it is about the language and its syntax.

Does that make the job of the library designer more important?

Anders: The platform designer’s job becomes very important because where you really

get maximum leverage here is if you can ensure longevity of the platform and the ability

to implement multiple different languages on top of the platform, which is something that

we’ve always put a lot of value in. .NET is engineered from the beginning as a multilanguage

platform, and you see it now hosting all sorts of different languages on it—static lan-

guages, dynamic languages, functional languages, declarative languages like XAML, and

what have you. Yet, underneath it all is the same framework, the same APIs, and the

leverage there is just tremendous. If these were all autonomous silos, you’d just die a slow

death in interop and resource consumption.

Do you favor a polyglot virtual machine in general?

Anders: I think it has to be that way. The way I look at it is, you go back to the good old

8-bit days, where you had 64K of memory. It was all about filling those 64K, and that

happened pretty quickly. It’s not like you were going to build systems for years there.

You could implement for a month or two and then that was that; 640K, maybe six months

and you’d filled it up. Now it’s basically a bottomless pit. Users demand more and more,

and there’s no way we can rewrite it all. It’s about leveraging and making things that exist

interoperate. Otherwise, you’re just forever in this treadmill, just trying to do the basics.

If you can put a common substrate below it all and get much higher degree of interopera-

bility and efficiencies out of shared system services, then it’s the way to go. Take interop-

erability between managed code and unmanaged code, for example. There are all sorts of

challenges there. But better we solve it than every distinct programming environment try-

ing to solve it. The most challenging kinds of apps to build are these hybrid apps where

half of the app is managed and the other half is unmanaged, and you have garbage collec-

tion on one side of the fence and none on the other.

Download at Boykma.Com

298 C H A P T E R T H I R T E E N

There seems to be a design goal in the JVM never to break backward compatibility with

earlier versions of the bytecode. That limits certain design decisions they can make. They

can make a design decision at the language level, but in the actual implementation of

generics, for example, they have to do type erasure.

Anders: You know what? I think their design goal wasn’t just to be backward compatible.

You could add new bytecodes and still be backward compatible. Their design goal was to not

do anything to the bytecode, to the VM at all. That is very different. Effectively, the design

goal was no evolution. That totally limits you. In .NET, we had the backward compatibility

design goal, so we added new capabilities, new metadata information. A few new instruc-

tions, new libraries, and so forth, but every .NET 1.0 API continued to run on .NET 2.0.

It’s always puzzled me that they chose that path. I can understand how that gets you there

right now on what’s there, but if you look at the history of this industry, it’s all about

evolving. The minute you stop evolving, you’ve signed your own death sentence. It’s just

a matter of time.

Our choice to do reified generics versus erasure is one that I am supremely comfortable with,

and it is paying off in spades. All of the work we did with LINQ would simply not be possible,

I would argue, without reified generics. All of the dynamic stuff that we do in ASP.NET, all of

the dynamic code generation we do in practically every product that we ship so deeply bene-

fits from the fact that generics are truly represented at runtime and that there is symmetry

between the compile time and runtime environment. That is just so important.

One of the criticisms of Delphi was that there was a strong reluctance to break code,

which informed some language decisions.

Anders: Let’s step back then. When you say break code, that must first of all mean that

you’re talking about an evolution of something. You’re talking about a version N + 1 of

something. You could argue that sometimes it’s good to break code, but by and large,

when you sum it up, I’ve never been able to justify breakage. The only argument I hear

for breakage, because they’re not really good arguments, is “It’s cleaner that way” or “It’s

architecturally more sound” or “It’ll prepare us better for the future” or whatever. I go,

“Well, you know, platforms live maybe 10, 15 years and then they cave in under their

own weight, one way or the other.”

They become more or less legacy, maybe 20 years. At that point, there’s enough new

around them and enough new without any overhead. If you’re going to break it, then

break it good. Break everything. Get to the very front of the line. Don’t like move up a

couple of slots. That’s pointless.

That sounds like a game of leapfrog where the turns take 5 or 10 years.

Anders: You either play leapfrog or you be super cognizant of backward compatibility,

and you bring your entire community with you every time.

Download at Boykma.Com

C # 299

Managed code does that to some degree. You can use your existing components in

process.

Anders: Certainly from the inception of .NET we have remained backward compatible at

every release. We fix some bugs that caused some code to break, but I mean there has to

be some definition by which it is okay to break people’s code.

In the name of security or in the name of correct program behavior or whatever, yes, we

will sometimes break, but it is rare, and generally it reveals a design error in the user’s pro-

gram or something that they’re actually glad to have fixed because they weren’t aware

that that was a problem. It’s good at that point, but gratuitous breakage in the name of

more beautiful code or whatever, I think it is a mistake. I’ve done that enough in my early

years to know that that just gets you nowhere with your customers.

It’s hard to make the argument from just good taste.

Anders: Yeah. Well, sorry. My good taste is not your good taste.

If you look back on the languages you were involved in, from Turbo Pascal through

Delphi, J++, Cool, and C#, are there themes in your work? I can listen to early Mozart and

then to his Requiem, and say, “Those are both distinctly Mozart.”

Anders: Everything is a picture of the time that you’re in. I’ve grown up with object ori-

entation and whatever. Certainly ever since the middle of Turbo Pascal up until now

everything I’ve worked on has at the core been an object-oriented language. A lot of evo-

lution happened there that has carried forward. In Delphi, we did a bunch of work on a

more component-oriented programming model, with properties and events and so forth.

That carried forward into the work that I’ve done with C#, and certainly that’s recogniz-

able. I try to always keep a finger on the pulse of the community and try to be there with

the relevant new. Well, Turbo Pascal was the innovative development environment, and

Delphi was the visual programming—RAD. C# and .NET has all been about managed exe-

cution environments, type safety, and so forth. You learn from all of the stuff that’s

around you, be it in your ecosystem or competitive ecosystems. You really try to distill

what is good about those, and what didn’t work for them. In this business, we all stand on

the shoulders of giants. It’s fascinating actually how slowly programming languages evolve

when you compare to the evolution that we’ve seen in hardware. It is astounding.

Since Smalltalk-80, we’ve had between 15 or 20 generations of hardware!

Anders: One every 18 months practically, and yet, there’s not really a massive difference

between the programming language we use today and those that were conceived, say, 30

years ago.

Download at Boykma.Com

300 C H A P T E R T H I R T E E N

They’re still arguing over old concepts such as higher-order functions in Java. That’s

probably going to be a 10-year debate.

Anders: Which is unfortunate, because I think they could move a bit faster on that one. I

don’t think there’s really a question of whether it’s valuable. It’s more a question of

whether there’s too much process and overhead in the Java community to get it done.

If going to a continuation passing style and exposing “call with current continuation” at

the language level gives you a huge advantage, would you do that, even if only 10% of

programmers might ever understand it?

Anders: If, yes—but that’s a big if. I don’t think that that’s the case, but look at what we

did with LINQ. I truly believe that that will benefit the vast majority of our C# program-

mers. The ability to write more declarative styles of queries and have a uniformly applica-

ble query language across different domains of data, it’s super valuable. It’s like the Holy

Grail language and database integration in some ways. We may have not solved the entire

problem there, but I think we made sufficient progress that it justifies the extra learning,

and there are ways you can expose that to people without having them figure out the

lambda calculus from first principles.

I think it’s a great example of a practical application of functional programming. You can

happily use it and never even know that you’re doing functional programming, or that

there are functional programming principles powering it underneath. I’m very happy with

where we ended up on that one.

You used the word “practical.” How do you decide which features to add and which

features to exclude? What are your criteria for deciding what to add and what to keep

out?

Anders: I don’t know. Over time, you get a knack for telling whether this is going to ben-

efit enough of your users to merit the conceptual baggage that it creates, right? Trust me,

we see lots of interesting proposals from our user base of, “Oh, if we could only do this,”

or “I’d love to do that,” but often it’s too narrowly focused on solving one particular prob-

lem and adds little value as an abstract concept.

Certainly the best languages are designed by small groups of people, or single individuals.

Is there a difference between language design and library design?

Anders: Very much so. The APIs are obviously much more domain-specific than lan-

guages, and languages really are a level of abstraction above APIs if you will. Languages

put in place the framework, the quarks and the atoms and the molecules, if you will, of

API design. They dictate how you put together the APIs but not what the APIs do.

In that sense, I think there’s a big difference. This actually gets me back to what I wanted

to talk about before. Whenever we look at adding a new feature to the language, I always

try to make it applicable in more than one domain. The hallmark of a good language fea-

ture is that you can use it in more than just one way.

Download at Boykma.Com

C # 301

Again, I’ll use LINQ as an example here. If you break down the work we did with LINQ,

it’s actually about six or seven language features like extension methods and lambdas and

type inference and so forth. You can then put them together and create a new kind of API.

In particular, you can create these query engines implemented as APIs if you will, but the

language features themselves are quite useful for all sorts of other things. People are using

extension methods for all sorts of other interesting stuff. Local variable type inference is a

very nice feature to have, and so forth.

We could’ve probably shipped something like LINQ much quicker if we said, “Let’s just

jam SQL in there or something that is totally SQL Server-specific, and we’ll just talk to

a database and then we’ll have it,” but it’s not general enough to merit existence in a

general-purpose programming language. You very quickly then become a domain-specific

programming language, and you live and die by that domain.

You turn your nice 3GL into a 4GL, which is a general-purpose death.

Anders: Yeah. I’m very cognizant of that. Now one of the big things we’re looking at is

concurrency. Everybody’s looking at concurrency because they have to. It’s not a question

of want to; it’s a question of have to. Again, in the concurrency domain we could have the

language dictate a particular model for concurrency—but it would be the wrong thing to

do. We have to step above it and find what are the capabilities that are lacking in the lan-

guage that would enable people to implement great libraries for concurrency and great

programming models for concurrency. We somehow need treatment in the language to

give us better state isolation. We need function purity. We need immutability as core con-

cepts. If you can add those as core concepts, then we can leave it to the OS and framework

designers to experiment with different models of concurrency because lo and behold, they

all need these things. Then we don’t have to guess at who will be the winner. Rather we

can coast by when one blows up and it turns out that the other one was more successful.

We’re still relevant.

It sounds like you want to give people tools to build great things, rather than dictating the

kinds of things they’re going to build.

Anders: I want to. You get much better leverage of community innovation that way.

Where do you see that in the C# community? Do people bring code to you? Do you go

visit customers? Do you have your MVPs trolling newsgroups and user groups?

Anders: It’s a mixture of all of the above plus some more. We have code-sharing things

like Codeplex. There are all sorts of communities. There’s commercial communities.

There’s open source. There’s lots of open source .NET code. It’s from all over. I don’t think

there is a single point of influx, so to speak. It’s a varied and complex ecosystem out there.

You always run across stuff where you go, “Wow, how did they come up with this?” or

“That’s amazing.” You can appreciate how much work this was for someone to do. It

might not be commercially viable, but boy, it’s a beautiful piece of work.

Download at Boykma.Com

302 C H A P T E R T H I R T E E N

I certainly try to follow lots of blogs that are relevant to C# and LINQ.

Those are some of my favorite keywords when I go blog trolling, just to see what’s hap-

pening out there. It gives you good insight in whether people are picking up on the work

that you’ve done in the right way or not. It teaches you something for the future.

Growing a Language

How do you recognize simplicity?

Anders: There’s true simplicity and then there’s this thing that I call simplexity, which I see

a lot of. It is when you first build something super complex and then you go, “Wow, peo-

ple will never get this. This is way too complicated but we have to have all this power in

here. Let’s try to build a simple system on top of it. Let’s just try to like wrap it all up in a

simple interface.”

Then, the minute you have to do something that isn’t quite what the system was designed

to do, boom! You fall into this big morass of complexity underneath because all you were

looking at was just a thin veneer on top of something that’s very complicated as opposed

to something that is truly simple all the way down. I don’t know if this makes a lot of

sense to you, but I tend to think of it like that. Simplicity often just means that you’re

doing more with less. There’s just less there, but it does the same as something else or it

even does more than something else. It’s all about do more with less. It’s not about doing

more with more with a simple layer on top.

Would you follow this principle if you were to create a new programming language today?

Anders: Oh, certainly. I’ve created lots of programming languages by now or certainly

lots of implementations. I think it’s very important before you embark on creating a new

language you have to be very, very clear about why you’re doing it and what is the prob-

lem that you want to solve.

Often the mistake people make with new programming languages is that they get enam-

ored with a particular problem they want to solve. Maybe the programming language is

the right place to solve it, and so they set about solving that part of the problem and

maybe they do a wonderful job of that. Then every programming language—and I mean

every programming language—consists of 10% new and 90% stuff that is just bread and

butter for programming and that just has to be there. A lot of these new innovative solu-

tions that we see in new programming languages are great at the 10% new, but then they

are terrible at the 90% that every language must do in order for you to really be able to

write programs, and therefore they fail.

It’s very, very important to understand that there’s a bunch of boring standard stuff that

has to be in every programming language. If you don’t get that right, you will fail. Con-

versely it means that if instead of creating a new programming language, you can evolve

an existing programming language, then the equation looks very different because then

Download at Boykma.Com

C # 303

you already have the 90% covered. In fact you have 100% covered. You’re just trying to

add the new thing.

Like C++.

Anders: Like C++, which was a great example of an evolution of C or of the different ver-

sions of C# that we’ve done and so forth. I’m very much a believer in evolving. Then, of

course, there comes a time when you just can’t stuff more in there—there’s so much ten-

sion between the new things you add and the old way of doing it in the language that you

just can’t move it anymore. Creating a new language is really more of an exception to the

rule than it is the rule.

Would you create a general-purpose language or a domain-specific language?

Anders: I think the real answer there is “neither.” How I would address that problem is I

would create a general-purpose programming language that is great at creating domain-

specific languages. Again, the devil that we face with all of these domain-specific lan-

guages is that they may get the domain right but then they get the general-purposeness

wrong. There are certain general-purpose features that literally every domain-specific lan-

guage ends up needing. Unless the domain-specific language is purely just a data defini-

tion language where you’re just stating data, and at that point in my opinion you might as

well use XML then.

If you’re really a programming language where there’s logic or predicates or rules or

whatever, then you have to have expressions and expressions have operators and maybe

you have to have standard functions and your customers are going to want to do things

that you never even thought of. There’s just a bunch of standard stuff that you need. If you

can instead create your domain-specific language out of a base that is a general-purpose pro-

gramming language, then I think you’re much better off than starting out fresh every time.

One of the things that is problematic with general-purpose programming languages today

is they’re getting better at creating internal DSLs, and you could view LINQ as an example

of that. But what they’re not good at currently is capturing the correct usage patterns of

those internal DSLs. In some ways, when you create internal DSLs you actually want to

limit the things that you can do with the general-purpose programming language. You

want to be able to shut off the general-purposeness of the language, and you want to only

reveal it in certain spots in your DSL. That’s one thing that general-purpose programming

languages are not very good at right now. That might be something that would be useful

to look at.

Brian Kernighan said that if you want to create a general-purpose language, you should

start from the beginning with that goal in mind. Otherwise, if you create a little language,

as soon as people start using it, they are going to ask to add features to it. Growing a DSL

generally doesn’t work very well.

Anders: Oh yeah. I think Gosling said that every configuration file ends up being its own

programming language. It’s very true, and you want to be real careful about that.

Download at Boykma.Com

304 C H A P T E R T H I R T E E N

You said that in some ways the platform is more important than the language. Are we

going to produce reusable components?

Anders: Well, the reason I said that is if you look at the evolution over the last 25, 30

years of languages, tools, and frameworks, it’s quite remarkable how little programming

languages have changed. It’s equally remarkable how much larger our frameworks and

run times have gotten. They’re probably three orders of magnitude larger today than they

were, say, 25, 30 years ago. When I started with Turbo Pascal, there were like maybe 100,

150 standard functions in the runtime library and that was that. Now we have the .NET

Framework with 10,000 types with a combined 100,000 members. Obviously leveraging

all of that work is increasingly important. It’s important because it shapes the way we

think about problems, but the framework is getting increasingly important because it is

the stuff that we leverage in our programs.

Leverage is everything today. Your computer is, from a programming perspective, basi-

cally a bottomless pit. You could write code from now until the day you die and you

would never fill it up. There’s so much capacity, and end user expectations keep going up

and up and up. The only way you really succeed is by finding smart ways to leverage work

that has already been done. That wasn’t the case if you go back 25, 30 years ago. You had

64k of memory, well, gee, that would fill up in a month or two.

How much does the language influence the programmer’s productivity, and how much is

it the ability of the programmer that makes the difference?

Anders: I think the two go hand in hand. I think the language tends to influence the way

we think. The programmer’s job is to do the thinking, if you will. That’s the raw material,

the raw power that goes into the process. The language is the thing that shapes your

thinking—its function is really to help you think in productive ways. That’s how, for

example, languages with object-oriented support cause you to think about a problem in a

certain way. Functional languages cause you to think about the problem in another way.

Dynamic languages might cause you to think about it in a third way. They’re different hats

you put on that cause you to think differently. Sometimes it’s useful to try and put both

hats on and approach it from various viewpoints.

Would you prefer adding a language feature that make everyone a bit more productive

or one that makes just a few developers much more productive?

Anders: For a general-purpose programming language, it’s not a good idea to add fea-

tures that only help a few because you end up being a grab bag of strange things. The hall-

mark of any good language feature is that it has many good uses, not just one good use. If

you look at all of the stuff we added to the language in C# 3.0, all of the stuff that collec-

tively forms this concept called language-integrated query or LINQ, that actually breaks

down to about six or seven discrete language features that in and of themselves have

many good uses. They don’t benefit just one particular programmer. They’re at a more

abstract level than that. For every good language feature, you have to be able to show

how it’s going to benefit you in several scenarios or else it may not be right for the lan-

guage. It might be better to just have that be an API feature.

Download at Boykma.Com

C # 305

Do you consider which features to add or remove to make debugging easier? Do you

consider the debugging experience during the design process of the language?

Anders: Oh, absolutely. If you look at the whole underpinning of C#, the language is a

type-safe language, which means there is no such thing as an array overrun or a stray

pointer. Everything has well-defined behavior. There is no such thing as undefined behav-

ior in C#. Error handling is done with exceptions as opposed to return codes that you

could ignore and so forth. So each of those underpinnings like type safety, memory safety,

and exception handling all help tremendously in eliminating whole classes of bugs or

making whole classes of bugs much easier to find. That’s something we think about all the

time.

How do you try to prevent these recurrent problems without limiting the developers?

How do you choose between safety and freedom for the developer?

Anders: I think each language puts itself somewhere on the spectrum of power versus

productivity, if you will. C# is definitely a much safer and more protected environment

than C++, which in turn is safer and more protective than if you’re writing assembly code.

The general trend for programming languages throughout their entire history really has

been for us to keep moving the level of abstraction up and to make the program environ-

ment safer, if you will, or put more and more of the housekeeping that programmers have

to do in the hands of the machines and allow programmers to focus on the creative part of

the process, which really is where they add value. Programmers are terrible at doing

memory management as a rule. They’re terrible at doing type-safety analysis; therefore,

we have bugs.

To the extent that we can put that in the hands of the machine instead and have the pro-

grammers do the creative thinking, that, I think, is a good tradeoff. It costs just a little bit

of performance but boy, it’s not all that much. Today in a typical .NET application, if you

profile a program execution and look at where the program spent its time, garbage collec-

tion rarely even shows up. Yet your program is safe and will have no memory leaks. That’s

a wonderful tradeoff. That’s just fantastic compared to the kinds of stuff we had to deal

with in manually memory-managed systems like C++ or C.

Could we use a scientific approach in the way we design and grow a language? I can see

improvements given by research results in the implementation, but language design

sounds like a matter of the designer’s personal preferences.

Anders: I think programming language design is an interesting combination of art and

science. There’s clearly a lot of science in it, mathematical formalism in notation for pars-

ing and semantics and type systems, and what have you, code generation, blah, blah, blah.

There’s lots of science. There’s lots of engineering.

Then there’s the art of it. What does the language feel like? What is this process that hap-

pens in your head when you program in this language versus the other language and

how is it different? What’s going to be easier for people to understand and what’s going

to be hard for people to understand? I don’t think we’ll ever be able to measure those.

Download at Boykma.Com

306 C H A P T E R T H I R T E E N

It’ll never be scientific. It will always be an angle of language design that is purely an art.

Just like there are good paintings and bad paintings and you can sort of scientifically talk

about, “Well, the composition wasn’t done right. Maybe he didn’t use the right kind of

paint.” But ultimately it’s in the eye of the beholder. There’s just something about it that

you cannot formalize.

Do you think that the fact that you speak at least two languages in some ways might help?

Sometimes in Italian I can describe with one word a concept that in English requires a

sentence, and obviously sometimes the reverse happens.

Anders: I don’t know. That’s a good question. I never thought of that. Possibly. I certainly

think that to be a good language designer you have to understand multiple programming

languages, no doubt about it. Whether it helps to understand multiple spoken languages, I

I don’t know. Could very well be the two are connected. On the design team we definitely

have people that speak many languages or there are people that are good at music. They

do seem to be connected somehow, but I’m not quite sure how.

C#

How long is the future of C#? You’ve been on it for almost 10 years.

Anders: C# the project started in late December of ‘98, so we’re coming up on our 10-

year anniversary. That’s not 10 years of existing in the industry, but it’s 10 years since

inception internally. I’d say we’ve got another 10 years at least, but it all depends. I’ve said

I’ve long given up predicting the far-off future of this industry because no one ever gets it

right anyway. But I certainly see a strong healthy future for C#. We’re not done innovat-

ing, and there’s plenty of work still to do.

When I look at the evolution of C# from an application domain standpoint, I see the

desire to replace C++ as a systems programming language.

Anders: It can be used for that, but there are a lot of uses for which a managed execution

environment like .NET or Java is more appropriate.

When I compare C# to Java, C# seems to have a stronger push toward evolution. The

Java people seem to want a baseline where everyone’s code looks more or less the same.

Whether you’ve programmed Java for a decade, never programmed before, or just

graduated from a six-month course on Java, all of your code will look the same. C# seems

to pull in new ideas from Haskell or from F#. Is there a desire to add new features that

people who’ve just finished the six-month C# course haven’t seen and won’t immediately

understand?

Anders: I am not in this to engineer the next COBOL; let’s just put it that way.

What is it that powers the Internet revolution and the electronic revolution that we’ve

seen? It’s the fact that we’re constantly evolving. I bring it back to that. The minute you

stop evolving, I don’t know that you’re adding any value. This is, again, taking it to the

extreme. Of course, there is value in stability of the platform, but I think you provide that

Download at Boykma.Com

C # 307

value by ensuring backward compatibility. You are free to get off the bus at C# 1.0 and just

not move any further. For those people that really want to be more productive and want

to build newer kinds of apps like SOA or whatever and get into more dynamic styles of

programming—adaptable programs and more declarative styles of programming like we’re

doing with LINQ—then you’ve got to evolve or get out of the way, or something else will

replace you.

Do you get feedback regarding the C# language, not just the implementation?

Anders: We get feedback every day on the language in many different ways. It could be

people mail me. I read people’s blogs, I read forums where people ask technical questions,

go to conferences—all sorts of ways that we get feedback daily on what works and what

doesn’t in the language. We take that feedback back to the design team and we maintain a

long laundry list of all of the crazy ideas. Some of them will never make it into the lan-

guage, but we keep them on the list because there’s something there that maybe someday

we’ll get a good idea around this area. We know that we don’t have it right yet, but there’s

a desire to do something.

Then gradually we find solutions to problems. Some of them are just simple things that

people ask and that we just go do. Others are things that are bigger problems that people

never really said anything about like LINQ. It’s not like someone ever asked us, “We’d

love to have queries built into the language,” because you don’t really think about the

notion that you could.

I wouldn’t say that there’s one particular way we get the feedback. It’s a very organic pro-

cess and we get it from many different places. Certainly there’s no way we could design

the language without all this feedback, so it’s all based on listening to what people do with

the product.

How do you manage the design team? How do you make decisions?

Anders: First of all, when you get feedback from customers, very often customers will tell

you, “We would really like for you if you could add this particular feature.” As you dig, it

turns out that, oh, they’re trying to do such and such, and typically people will tell you

what they think is the solution to the problem. Now it is your job to discover what their

real problem is, and then try to fit that into the bigger framework of the language. In a sense

the first part of getting feedback is to do a little bit of detective work and understand what’s

really behind this solution that the customer is asking for. What is their true problem?

Then I think in terms of deciding what to do about it. As you evolve a language, you

always have to be careful about just willy-nilly adding a bunch of features to a language,

because the more features you add the more you age the language. Eventually the lan-

guage just caves in under its own weight. There’s too much stuff—too many conflicting

things.

You have to be very, very judicious about what you add because you really don’t want to end

up with three different ways of doing the same thing that all there only for historical reasons.

Download at Boykma.Com

308 C H A P T E R T H I R T E E N

So there are many times where we go, “Yeah, if we could start over we would definitely

include this feature that people are asking for right now.” Since we can’t start over, we’re

not going to do it because it’s fundamental or foundational enough that we can’t funda-

mentally change the nature of the beast by peppering on. We can only make it a dual-

headed beast and we don’t want that.

In terms of the design process itself, we have a very strong C# design team consisting typi-

cally of between six and eight people who meet regularly. We have met regularly for the

past 10 years from 1:00 to 3:00 every Monday, Wednesday, Friday afternoon. Some of the

meetings get cancelled, but that is a slot that we have all had on our calendars for 10 years

and it continues to be there. The people who are in the process have changed. I’ve been

there throughout. Scott Wiltamuth has as well pretty much. Other people have come and

gone, but the process has existed for that long.

We use this as our design function. That is where we do our ongoing design work. In

order to have continuity in a product it’s very important to have design as a continuously

going process. Very often people will do stuff in spurts, “Oh, it’s time to do the next ver-

sion. Let’s have some meetings and decide what it’s going to be.” Then you have a bunch

of meetings and then people go away and you don’t do any design work for a year. By the

time a year’s gone by and it’s time for the next version, you can’t even get the same peo-

ple together anymore. You end up with this sort of schizophrenic product where every

release feels different. If you keep the design ongoing, there’s almost like a personality of

the product that you keep alive.

Also good ideas don’t happen on a schedule. They just happen. If you don’t have a process

to capture the good idea, if you’re not designing right now, well then maybe that idea is

lost. We’re always doing continuous discussion of the next version that we’re about to

ship and the one after that, in an ongoing fashion. I think that works really well.

C# has an ECMA standardization process, which is rare for languages. What was the

motivation for that?

Anders: Standardization for many people is a requirement for adoption. There are cer-

tainly places—not so much businesses—but if you look at government, standardization is

actually a requirement. Academic as well. It actually has interesting benefits, for Microsoft

to standardize. Whenever we build a technology like .NET, there will invariably be imple-

mentations of that technology built by third parties for other platforms, and you can then

choose to have them randomly try to replicate what you’ve created and get it wrong, and

then have a poor experience there. That means also a poor experience for those customers

that, by and large, rely on yours but need this other implementation for legacy hardware

they have or whatever.

When you sum it all up, it actually makes sense to do it, even from a business standpoint.

It also works as a great forcing function in being very precise about what it is you’re build-

ing which has lots of advantages internally. The fact that we standardized C# meant that

we had to write a very concise specification of the language. That very precise specification

Download at Boykma.Com

C # 309

of the language—that investment—has come back to us manyfold already just from an

internal standpoint.

In terms of having better test frameworks from our QA department, having better vehicles

in research for implementing new language features, because prototype compilers, it’s

entirely clear what they’re supposed to do. For teachability of the language, the fact that

there is a very concise specification means that people can always consult that as a refer-

ence as opposed to just guessing.

It helps us in ensuring that code remains backward compatible. So anyway, lots of benefits

there that you might think immediately are not there, but in reality they are. By going

through a standardization process, you get the eyes of a very savvy community on your

product. We’ve gotten lots of feedback from the other companies and individuals involved

in the standardization process and that made C# a better language. That’s valuable, too.

I’m not sure that these organizations and individuals would’ve taken an interest if it

wasn’t because we standardized.

Standardization lags behind language evolution, though.

Anders: Right. Standardization does to some extent slow you down. It sort of depends on

how you word it. Some standards are worded as, “You must implement this and nothing

else, and it is a violation of the standard to have extensions to what we specify here.” I

have never much believed in that. Standards are supposed to establish a common base-

line, and arguably, also a way to ensure that you are adhering to the baseline and not

overstepping it. But standards should definitely leave freedom for innovation in them

because that is how you’re going to produce v2 of the standard—by picking up some of

those innovations. You can’t outlaw it.

For C#, there’s a standard, but that standard has not kept us from evolving. Rather a pro-

cess of evolution happens outside the standards process, because you’re not going to get

innovation out of a standards community. That’s not its purpose. Whatever framework

you’re operating in must allow for that innovation to occur elsewhere.

What is your opinion on the formal aspect of the design of the language? Some people

suggest that you should start with a formal specification on a piece of paper and then

write the code. Some people just ignore the formal specification totally.

Anders: The answer is rarely at the extreme. I think languages with no formal specifica-

tion at all generally tend to be a mess. Languages where you first formally specify every-

thing and then implement the compiler as an afterthought also tend to be not very

pleasant to use. The way we developed C# is we would in parallel write the compiler and

the language specification, and the two deeply influenced each other. We would run into

issues in writing the compiler that we would have to go back and address in the specifica-

tion. Or in writing the specification and trying to rigorously analyze all the possibilities we

would find stuff that, “Whoa. Maybe we should just try to do this differently in the com-

piler because there’s these other cases that we didn’t think of.”

Download at Boykma.Com

310 C H A P T E R T H I R T E E N

I think both are important. I’m happy that we did the standardization work because it

forced us to be very explicit about what the language is and how it works. Then it forced

us to have a formal specification, which, like you said, some languages don’t; that is just

not a good thing. When the source code is the specification that means that in order for

you to understand what’s going to happen in this particular program, you have to go look

at a source code for the compiler. Not a lot of people are capable of doing that. Your only

other alternative is to guess or to write tests and see what happens and hopefully you

caught all the corner cases. I don’t think that’s the right way to do it.

By the way, how do you debug your C# code?

Anders: My primary debugging tool is Console.Writeline. To be honest I think that’s true

of a lot of programmers. For the more complicated cases, I’ll use a debugger because I need

to look at a stack trace or what happened to my locals here or whatever. But quite often

you can quickly get to the bottom of it just with some simple little probes.

Do you follow any principles to design an API?

Anders: Well, first of all I would say keep them simple, but what does that mean? I mean

that sounds stupid, right? I am a great believer in APIs that have as few methods as possi-

ble and as few classes as possible. Some people believe more is better. I’m not one of those.

I think it’s important to look at what is it that you think people will typically be doing with

your API. Find the typical five scenarios that they’re going to be doing and then make sure

that the API makes that as easy as possible. Ideally that it’s just one call to the API. It

shouldn’t be that in order to do the typical scenario you have to write many lines of code

against the API. At that point it is not at the right level of abstraction.

However, I also think it’s important in APIs to always leave an out. You want to flow from

the very simple use of the API and seamlessly move into the more advanced uses if you

need to. A lot of APIs have sort of this step function. Yes, there’s some simple methods you

can call, but then the minute you want to do something that’s a little more advanced then,

boom, then you fall off a cliff. Now you have to learn about all these other things that you

didn’t care about in order to do the little more advanced stuff. I’m very much a believer in

sort of more of a gradual easing into it.

What about documentation?

Anders: The state of documentation in software in general is terrible. I always urge pro-

grammers and try to advocate internally as well, and I’m not always successful, but I tell

programmers half the value you deliver to customers is good documentation for your

APIs. A great API is worthless without documentation that explains what it does and how

it’s supposed to be used. It’s a tough one. Lots of companies like to have the programmers

write the code and the documentation people write the documentation, and the two never

talk. You end up with documentation that just says “MoveWidget moves the widget,” or

states the obvious in as many words as possible. That’s a shame. I think programmers should

write more documentation than they do.

Download at Boykma.Com

C # 311

Do you like the idea of comments inside the code or you were thinking of some external

document?

Anders: I’ve always been an advocate of having XML documentation comments in the

code. If you put it in code, then chances are the programmer who’s working on it will

notice that whatever it says up there in that documentation comment isn’t right. Maybe

he’ll go fix it. If you put it in a different file somewhere, then the programmer will never

look at it, and so it’ll never be correct.

It’s all about trying to bring the two as close together as possible. It’s not perfect by any

means, but we try.

What do you suggest to become a better C# programmer?

Anders: It’s hard. There are many good books out there on C# programming and I would

encourage people to pick up one of the better books. I’m not going to start naming names

here, but there are many good books out there that will help you become a better C# pro-

grammer and help you better understand the .NET Framework. There are many things

available online that also help. There are things like Codeplex. There’s a bunch of open

source projects that you can grab and look at and learn from and so forth.

To become a better programmer in general, one of the things that have helped me is to

look at different styles of programming and different kinds of programming languages. I

have learned in the last 5, 10 years a lot from looking at functional programming, which is

a very different way of programming, but it teaches you a bunch of things. It’s obviously

about programming, but it comes at it from a different angle, and that gives you a different

viewpoint on problems that I find to be very, very useful.

The Future of Computer Science

What do you consider the outstanding problems in computer science?

Anders: If you look even at a metalevel above that, the ongoing trend in language evolu-

tion has always been this constant increase of abstraction level. If you go all the way back

to plugboards and machine code and then symbolic assemblers and then C and then C++

and now managed execution environments and so forth, each step we moved a level of

abstraction up. The key challenge always is to look for the next level of abstraction.

There are several contenders right now that appear to be big challenges. One we already

talked about is concurrency: producing meaningful programming models for concurrency

that are understandable by the broad masses of programmers as opposed to a few high

priests of parallelism. That’s kind of the world we’re in right now. Even the high priests at

times get surprised by their own code today. We have a big challenge there.

Also there’s a lot of talk about domain-specific languages and metaprogramming in the

community these days. In my opinion, there’s more talk than reality there. I don’t think

we know what the answers are. You see things like aspect-oriented programming and

intentional programming, but we have yet to really nail it.

Download at Boykma.Com

312 C H A P T E R T H I R T E E N

Depending on who you ask, people go either, “Oh, there are no domain-specific lan-

guages,” or “Oh, domain-specific languages are everywhere.” We can’t even agree on

what a domain-specific language is, in a sense—but there’s clearly a there there when it

comes to devising more declarative ways of expressing yourself. In some ways, we’ve run

out the line all the way on imperative styles of programming. We’re not going to get much

further with our imperative programming languages. It’s not like there are new statements

that we could add that would make you 10 times more productive all of the sudden.

I think one of the things that are true of most programming languages today is that they

force you to overspecify the solution to your problem. You’re down there writing nested

for loops and if statements and whatever, and really all you wanted to do was a join

between two pieces of data. But there’s nothing that allows you to say that. You have to

get down and dirty and do hash tables and dictionaries, blah, blah, blah.

The question is how do we move to that more declarative level of programming. Of

course, the more you move it up, the more concepts you end up having because you get

more domain-specific. There’s a lot of truism to this dream of domain-specific languages,

yet we somehow have not found the right vehicle to implement them, I feel like. Yet. So

that does remain a challenge.

Right now, we’re seeing this interesting resurgence of dynamic programming languages. I

actually feel it is really in spite of the languages being dynamic and more because they

have great metaprogramming capabilities. Like if you look at Ruby on Rails, it’s all pow-

ered by Ruby’s metaprogramming capabilities, not so much the fact that it’s dynamic. It

just so happens that eval and metaprogramming are a lot easier in a dynamic language

than in a static language.

On the other hand, it’s a high price to pay to give up your statement completion and your

compile-time error checking and so forth.

The argument I’ve seen from lots of people who’ve been around dynamic languages for a

while is Smalltalk’s browser.

Anders: I’m not sure I buy that. That works when your problem is small enough, and it

used to be that problems were small enough back when Smalltalk first appeared. Now

with the size of the frameworks, it is unfathomable to think that people actually know all

of the APIs that exist on a particular object or even care to know. Tools like statement

completion and Intellisense and refactoring driven by compile-time metadata or static typ-

ing are just invaluable. They’re going to continue to be more valuable because the world is

going to keep getting more complex. Right now we’re seeing a surge of dynamic program-

ming languages, but I think in large part it is powered 1) by the metaprogramming angle,

and 2) it’s in many ways just a reaction to the complexity of the J2EE environment.

I’ve certainly seen lots of Java programmers defect to Ruby just because they’re dying in

frameworks and Struts and Spring and Hibernate and what have you. Unless you are a grand

wizard of technology, you’re not going to be able to put all of these things together yourself.

Download at Boykma.Com

C # 313

Should programming be more accessible to people who aren’t and have no aspiration

ever to be grand wizards?

Anders: I think so. It all depends on what you mean by programming also. Because in a

sense, is using a spreadsheet programming? If you can make people program without

them even realizing they’re programming, then, oh my God, that’s wonderful. I harbor no

aspirations that we’ve got to teach the world users how to write programs in the kinds of

programming environments that we use as developers today. Certainly, programming,

yes, but at a much higher level.

What’s facing us now and in five years?

Anders: Concurrency is the big one right now. That thing is right in our face, and we’ve

got to find solutions to that problem. One of my biggest challenges in the foreseeable

future is having our team work that issue.

Again, we’d like to do it in an evolutionary fashion, but how do you deal with the shared

state problem and side effects without breaking all the existing code? We don’t know yet,

but it very well may be that that concurrency is a big enough paradigm change that whole

new languages are needed or whole new frameworks are needed. Although I don’t think

we’re at that point yet.

I think there’s a lot of ground that we can gain from making it possible for people to write

APIs that internally are massively parallel and written by people that really understand a

particular domain, be it transformations or numeric processing or signal processing or bit-

maps or image manipulation. And yet, put APIs on it that look largely synchronous from

the outside and in a sense, wall off the concurrency to inside the APIs.

There are things that are required in our programming languages today in order for us to

be able to do that properly. One of them we already have, which is the ability to pass code

as parameters. As APIs get more and more complex in their capabilities, you can’t just pass

in flat values or data structures to the API. You’ve got to pass in pieces of code that the API

then orchestrates and executes.

You need higher-order functions and abstractions such as map, fold, and reduce.

Anders: Higher-order functions. Exactly. In order to be able to do that, you need stuff like

lambdas and closures and so on. In order for you to be able to do that in a concurrent

environment, you also need guarantees on whether these lambdas are pure, or do they

have side effects. Could I just automatically run this in parallel, or are there side effects

that would cause that not to be possible. How can I know that? Those are things that we

don’t have in our languages today, but we can certainly speculate about adding these. Of

course, the trick is adding them in a way that doesn’t constrain you too much and that

doesn’t break too much of your existing code. That’s a big challenge.

That is something our team thinks about daily.

Download at Boykma.Com

314 C H A P T E R T H I R T E E N

Does the need for concurrency change the implementation or also the design of the

language?

Anders: Oh, it certainly changes the design. A lot of people have harbored hope that one

could just have a slash parallel switch on the compiler and you would just say, “Compile it

for parallel” and then it would run faster and automatically be parallel. That’s just never

going to happen. People have tried and it really doesn’t work with the kind of imperative

programming styles that we do in mainstream languages like C++ and C# and Java. Those

languages are very hard to parallelize automatically because people rely heavily on side

effects in their programs.

You need to do several things. You need to first of all construct modern APIs for concurrency

that are at a higher level than threads and locks and monitors and where we’re at now.

Then there are certain things you need from the language to make that style of program-

ming easier and safer, like guaranteed immutability of objects, pure functions where you

know there are no side effects, analysis around isolation of object graphs so you know

whether a particular reference to an object graph has ever been shared with anybody else,

and if it hasn’t, then you can safely mutate it, but if it has then there might be side effects.

Things like that; things of that nature where the compiler can do some analysis and help

provide safeties, like we have type safety today and memory safety and so forth.

Those are some of the things that I think need to happen in the next 5 or 10 years in order

for us to better be able to program in these concurrent systems.

Essentially you are telling the computer what to do.

Anders: That’s one of the big problems with the very imperative style of programming

that we do now is that it is indeed very overspecified. And that’s why it’s hard to automat-

ically parallelize.

In the future, might we let the framework do the work to deal with concurrency?

Anders: Oh, I think so. There are many different kinds of concurrency, but if you’re talk-

ing about data-parallel kinds of concurrency where you’re going to do operations on large

datasets like image manipulation or voice recognition or numerical processing, then I

think it’s very likely or very appropriate for us to have a model where you just view it as

an API. You have a higher-level API where you can say to the API, “Here’s the data and

here are the operations I want to have applied. You go away and do it and do it as quick as

you can given the number of CPUs that are available.”

It’s interesting there because today it’s pretty easy for you to just say, “Here’s the data.”

You can just give it a reference to some big array or some object or whatever. Specifying

what the operations are would typically involve you giving references to pieces of code,

if you will delegates or lambdas, and it sure would be nice if the compiler could analyze

and guarantee that these lambdas have no side effects and warn you if they do. That’s

part of what I’m talking about, but that’s just one kind of concurrency. There are other

kinds of concurrency for more asynchronous distributed systems, which is a different

Download at Boykma.Com

C # 315

kind of concurrency where we could also benefit from support in the programming lan-

guages. If you look at a language like Erlang, which is used in very highly scalable distrib-

uted systems. They have a very, very different model of programming that’s much more

functional and that’s based on asynchronous agents and message passing and so forth.

There are some interesting things that I think we could all learn from also in our languages.

Does the object-oriented paradigm create problems?

Anders: You know, it depends on what you group under the object-oriented paradigm.

Polymorphism and encapsulation and inheritance are as such not a problem, although

functional languages typically have a different view of how you do polymorphism with

their algebraic data types. Aside from that, I think the biggest problem typically with

object-oriented programming is that people do their object-oriented programming in a

very imperative manner where objects encapsulate mutable state and you call methods or

send messages to objects that cause them to modify themselves unbeknownst to other

people that are referencing these objects. Now you end up with side effects that surprise

you that you can’t analyze.

In that sense object-oriented programming is a problem, but you could do object-oriented

programming with immutable objects. Then you wouldn’t have these same problems.

That’s kind of what functional programming languages are doing, for example.

Regarding your interest in functional programming, should computer science students

study more math and experiment more with functional programming?

Anders: Well, I certainly think that it is important to include functional programming in

any computer science curricula. Whether you start with it that depends. I’m not sure that

your very first introduction to programming should be functional programming, but I def-

initely think that it ought to be part of a curriculum.

What lessons should people learn from your experience?

Anders: Well, if you look at the first product I worked on, Turbo Pascal, it was very much

about not believing the traditional way of doing things. Don’t be afraid. Just because peo-

ple tell you it can’t be done, that doesn’t necessarily mean that it can’t be done. It just

means that they can’t do it. I think it’s always fun to think outside of the box and try to

find new solutions to existing problems.

I think simplicity is always a winner. If you can find a simpler solution to something—that

has certainly for me been a guiding principle. Always try to make it simpler.

I think to be really good at something, you have to be passionate about it too. That’s some-

thing you can’t learn. That’s just something that you have, I think. I got into programming

not because I wanted to make lots of money or because someone told me to. I got into it

because I just got totally absorbed by it. You just could not stop me. I had to write programs.

It was the only thing I wanted to do. I was very, very passionate about it.

You have to have that passion to get really good at something, because that makes you put

in the hours, and the hours are the real key. You need to put in a lot of work.

Download at Boykma.Com

Download at Boykma.Com

317

Chapter 14 C H A P T E R F O U R T E E N

UML
Ivar Jacobson, James Rumbaugh, and Grady Booch

How do you communicate ideas about the design of software to other people? The

world of construction uses blueprints. UML—the Unified Modeling Language—is

a graphical language intended to represent the artifacts of a software project. The

resulting combination of the object-oriented analysis of James Rumbaugh, the

object-oriented design of Grady Booch, and object-oriented software engineering

of Ivar Jacobson allows developers and analysts to model their software through

specific types of diagrams. Though the language has multiple successive stan-

dards, you’ve likely used some of its concepts in quick whiteboard drawings.

Download at Boykma.Com

318 C H A P T E R F O U R T E E N

Learning and Teaching

I read that you started working at Ericsson knowing nearly nothing about programming.

How did you learn?

Ivar Jacobson: I started working at Ericsson without knowing anything about telecom-

munications. It was a valuable experience. Even though I worked in a division that devel-

oped hardware switches, I could abstract from that the whole idea of building large

systems. I worked there for almost four years, and I learned how to think about systems in

general. That knowledge was very unique, because people who developed software had

no experience in building large systems.

I was an electrical engineer—probably the only one who had an academic degree in engi-

neering. Most people there had no academic degree. I had learned at university how to

attack problems, and I also obtained a lot of self-confidence that you could solve basically

every practical problem.

You used to take home assembly code, study it in the evening, and prepare some

questions about it for the developers.

Ivar: We had almost no documentation; it was done by people who didn’t know much

about software. They wrote about requirements and documented these requirements in

some kind of flowcharts, but these were inconsistent and incomplete.

We had flowcharts, too, developed and used by our people, but they were not componen-

tized, so they became huge diagrams. We added descriptions to every line of assembly

code, but people learned primarily by working together, by talking, and by reading code. I

would ask people about the code I read at night, basically, “what did you really intend to

do here?” and so on.

I probably had to read the same piece of code three to five times before understanding it,

but I was very stubborn, so I went over a lot of code that way at night. During the day I

was very busy managing the project. My role was a project manager, someone who

doesn’t really get involved in the technology, but understands the project, and can at least

go around and ask people where they are. I was more like a project administrator. I hated

that role, and as soon as I learned more I became more involved. It took me only three

months to come to the conclusion that what we were doing would never, ever become a

product.

Our project had 75 people at that time and what we were doing was absolutely mission-

critical to Ericsson. You can imagine the project manager who goes to his boss and says,

“this will never, ever become a product.”

Download at Boykma.Com

U M L 319

How did you come up with the concept of the use case?

Ivar: It was quite natural. In the telecom industry, people have something called traffic

cases. Traffic cases were like use cases, but applied only to telephone calls. We didn’t have

any use cases or traffic cases for other features in a switch, even if those features actually

represented more than 80% of the code, such as operation and maintenance. For this soft-

ware we just talked about “features.” There was a long list of features, and it was very

hard to see how they related to one another.

We had these two different concepts in traffic cases and features. They had been in use in

the telecom industry for at least 50 years, but they were not easy to combine. I thought

very hard to find one unifying concept that we could use to describe all kinds of interac-

tions with a system. I started to look at the system from the outside, as if it were a black

box. I tried to identify all the scenarios that seemed useful to the users. The concept in

Swedish is called usage case, but my translation was not good so it became just use case—

and I am happy for that.

By April 1986, my use cases needed to stand on their own, so I made them classlike. Use

cases can be thought of as objects that live as long as the transaction goes on between the

user and the system. They may interact with other users as well, as in telephone calls. One

of my important goals was to be able to reuse use cases, so I needed a more abstract use

case system comparable to abstract classes in object orientation. Making the analogy with

objects and classes helped me to find a unifying concept (use case) that could be applied to

describe both traffic cases and features.

It took a while before the concept settled, but by 1992 I had identified everything important

about use cases. After I wrote the book Object-Oriented Software Engineering [Addison-Wesley],

I don’t know anyone who has contributed something really substantially new since then.

Other people have explained them in better ways, such as in the book written by Kurt Bittner

and Ian Spence [Use Case Modeling; Addison-Wesley Professional]. Both of these individuals

now work in my company. Their book is a better book to introduce and detail the idea.

The discovery of aspect orientation was new, of course, as was the discovery that use

cases are really good aspects. That resulted in the book Aspect-Oriented Software Develop-

ment with Use Cases (together with Pan Wei Ng, also in my new company), published in

2005 [Addison-Wesley Professional].

What happened when you presented the idea to the developers at Ericsson?

Ivar: The first reaction from my friends and the top guys at Ericsson when it comes to

methodology was “this is really nothing new.” I could tell they just didn’t see it. I saw

immediately that use cases are also test cases, so if you specify your use cases up front, you

have many of the test cases. That was really a new thing in 1986. We could use use-case-

driven development, meaning every use case describes some set of scenarios where you

describe how they are implemented by collaborations among classes or components.

Download at Boykma.Com

320 C H A P T E R F O U R T E E N

How can we share experiences like yours in the software field?

Ivar: That is a very special problem that I have spent the last five years solving. You need to

understand the knowledge you have, so you can describe it. It’s difficult for other people to

learn ad hoc ideas. Even if you have the best process in the world, you still have to transfer

that knowledge to other people. You need systematic ideas, and then transfer your knowl-

edge by transferring a knowledge system. There are better and worse ways of doing so.

Fifteen years ago, we had Objectory. That evolved into the Rational Unified Process, and

of course a lot of new knowledge was added, but the whole technology of capturing

knowledge was not yet very approachable. It was the best we could do at that time. It was

unique because it had never been done before to such an extent.

Now we promote “practice-based” knowledge transfer. Instead of transferring knowledge

about everything you need to know about software development, you transfer one practice

at a time, and only when other people most need it. The practices are small and approach-

able, and everything inside a practice fits logically together so it’s easy to learn, whereas in a

process you have all kinds of stuff you need to keep in mind all the time. You may say that a

process in the past was just a soup of ideas. We make the process a bag of practices instead.

How should we approach computer science in education?

Ivar: The problem we have is that most university professors really know very little about

engineering. When it comes to software, few of them have developed any useful software

themselves. Maybe they have developed some compiler, but most of these compilers were

very academic. Maybe they have developed some software for training purposes. We can-

not really expect them to teach software engineering.

You can learn to do Java programming at a university level, or any other language they

might have taught if you go back in time, but if you really want to understand software,

you need to have competencies in many other different areas, such as requirements,

architecture, testing, unit testing, integration testing, system testing, performance testing,

not to mention configuration management, version control, differences between building

frameworks and building applications, building reusable software, services-oriented archi-

tecture, product line architecture, and so on.

You can’t learn the really hard things in universities.

Do students need more practical experience, such as participating in an open source

project or doing an internship in a big corporation?

Ivar: Training at universities takes place primarily through education and building simple

things.

I don’t have a fair picture of the whole world here, of course, but compare that situation

with other engineering disciplines—for example, the construction industry. There they

have architectural education, which is very separate from building things. Several differ-

ent disciplines go together. If you educate people to be architects, they still have to build

Download at Boykma.Com

U M L 321

things, too; otherwise they are not useful architects. You can always dream, but if you

cannot realize your dreams, they are not very useful.

We really don’t educate people in engineering. Building software is much more engineer-

ing than art. Many people would like to see it differently, but very few professional pro-

grammers can spend time on art. Most of them are engineers. That doesn’t mean they are

not creative. Would anyone believe that people who have an education in machinery, like

building various types of machines, are not creative? If I build ships, am I not creative? Or

houses? Of course I am. Architects are very creative, too.

Thus, we need to realize that software development is engineering and not an art. You

need to educate engineers in engineering. However, many universities in the U.S. and

Europe have a long tradition of letting their professors be truly just academics. The funda-

mental problem, as I see it, is that we really don’t have a theory for software engineering.

To most people, software engineering is just a soup of ad hoc ideas. This is one of the most

important problems to fix.

Please explore why you think this is such an important problem.

Ivar: Our view on how software should be developed seems to change dramatically every

second or third year, more frequently than the whims of fashion. Big companies around

the world carelessly discard expensive process and tool investments, almost before they

have even tried them. Instead of learning from experience, they heedlessly start with

something they believe is fundamentally new. In reality, very little has changed. As in the

fashion world, there is much ado about next to nothing. In something as trivial as clothing

this may be acceptable, but with the size of our investment in software this is wasteful,

expensive, and absurd.

The latest trend is “being agile” (as exemplified by Scrum). The “agile” movement has

reminded us that people matter first and foremost when developing software. This is not

really new—this theme resurfaces every decade or so as naïve managers try to mechanize

and commoditize what is basically an exercise in creative problem solving. It is important

that we not lose track of how to work as a team, how to collaborate, how to document

what we do, and how to plan our work on daily, weekly, and monthly timescales, etc. But

in bringing these things back to focus, much is lost or obscured by new terms for old

things, creating the illusion of something completely new.

The result of this is a lot of wasted effort as old truths are rediscovered but cloaked in

apparent new clothing. Younger and less experienced coworkers promote new trends, fol-

lowing new gurus, supported by the hype of a media always hungry for “news.” Managers

who have lost touch with actual development find themselves in a hopeless situation: resist

the newest fashion, and they brand themselves as out of touch. Pilot projects are run to force

proof of merit for the new approach, but motivated developers can make anything work on a

small scale. As a result, the new approach overtakes the old, and all that was working with

the old approach is thrown out along with the parts that were not. Only too late do they dis-

cover that the new approach itself has parts that don’t work along with the parts that do.

Download at Boykma.Com

322 C H A P T E R F O U R T E E N

At the root of this problem is a deep misunderstanding of the nature of software develop-

ment. Researchers have tried to attack this problem with new theories like formalism to

prove correctness of programs, or through formal languages that never have been adopted

outside the academic world. Industry efforts have spent years standardizing swollen meta-

models that defy easy understanding.

Universities and technical institutes teach us a particular way of working. Every project

adopts a special method that we must first learn and master before we can begin to work.

Every time we change jobs, we have to learn a new approach before we can get on with

the real task at hand. This is not effective; we cannot learn from experience as we are for-

ever starting over.

We need to stop forever chasing after fads and easy answers that forever disappoint us.

But how? This is a problem I have thought about for at the least 10 years, and now I have

a concrete idea on how we can get there.

What is your solution?

Ivar: We need a basic theory concerning what software development actually is. In my

opinion, this theory is right in front of our noses. We just need to grab it. Start with all

these methods, processes, and practices and find the “truth” of software development. For

instance, we could do what we have done in my company and what now has been used

by hundreds of companies around the world.

First we need to find that core of things which we always have or which we always do

when we build software. For instance, we always write code, we always test it (although

sometimes we fail to document how we’re testing it), we always think about requirements

(documented or undocumented), we always have a backlog (explicit or implicit), and we

always have a plan on a paper or in our heads. You might borrow an overused metaphor

and say that we must find the DNA for software development.

With my colleagues, I have identified some 20+ such elements by studying about 50

methods, including XP and Scrum. On the surface, there may appear to be large differ-

ences in these methods and the ways we work with them. As an example, you can cap-

ture requirements with features or with use cases. But there is a common basis for the two

methods, which I capture in my kernel elements.

Then we draw on this kernel element to describe widely used and proven methods and

practices: architecture, Scrum, components, iterations, etc. Today around 15 such prac-

tices have been developed. Since the kernel is agnostic in relation to any specific practice,

we can simply find out what is the actual difference between different practices, not just

on the surface but in depth. This decreases the element of religion in which every method

is embedded. The education will become more logical since it focuses on individual ideas

instead of the particular soup of ideas that forms every method, process, or methodology. I

believe students will love it.

Download at Boykma.Com

U M L 323

It would be excellent if our technical institutes or universities would educate students in

the basics of software engineering, followed up by training the students in a set of good

practices using that base. There is also space for a lot of relevant research here.

Remember Kurt Lewin’s words: “there is nothing as practical as a good theory.” A good

theory makes it easy to learn and develop your knowledge without going overly religious.

You travel a lot. Have you noticed different approaches to programming or design in

various parts of the world?

Ivar: Of course, but what’s happening right now in the U.S. is about to happen in the rest

of the world, too. Perhaps the U.S. is a little ahead trying new things faster than others,

but they also throw out things they have. Many companies in the U.S. are more prepared

to give up what they have to run after new things, whereas in Europe people think twice

before doing so.

In East Asia they are lagging behind a couple of years in terms of new technologies, but on

the other hand, they might not necessarily make the same mistakes.

I have seen one trend very clearly in China. They want to follow India, and so adoption of

CMMI became very popular, peaking around five years ago. They have now seen that

CMMI handles only the process improvement part of the problem. However, before you

improve a process, you need to have one worth a name, so they are now finding that they

need good practices to help them develop good software quickly at a low cost.

How much is the culture involved in the way we design software?

Ivar: I don’t know. I typically see that Finnish people have in some ways more a cowboy

mentality than the rest of Scandinavia. They are more down to earth and they get results.

A special word in Finnish, sisu, means “never give up,” and they take this concept seri-

ously, so they don’t do unnecessary things. Many people would probably say that the

Finnish nature is very close to Agile, and that’s a positive thing.

The rest of Scandinavia has also been very good at developing software. You can take

Ericsson as an example, but I don’t think we should exaggerate this topic because I don’t

have enough evidence to elaborate.

The Role of the People

How can we know if someone is the right person to be the architect of a software project?

Ivar: Let me be very clear. I think architecture is very important, but I am cautious about

labeling individuals as architects, for many reasons. Many times I have seen companies

with a team of architects that they send to other organizations to work on projects. That

may be fine if they work inside a particular project, but companies such as big banks usually

have a group of enterprise architects that sit and draw representations of the architecture.

Download at Boykma.Com

324 C H A P T E R F O U R T E E N

Then they throw this over the wall to the developers. The developers just ask themselves:

“What is this? It’s useless.” In many companies, enterprise architects sit in an ivory tower

without doing anything useful.

I never believed that we should have architects as a special class of people, because soft-

ware is developed by teams, not by stove-piped organizations.

Many companies try to organize software development as a number of departments, divi-

sions, or groups. They have one group for requirements, one group for architecture and

design, one for coding, one for testing, and maybe others. Then they throw all kinds of

projects into this organization, so you have a project manager who works with these dif-

ferent groups. The responsibility for requirements is in the hands of the leader of the

requirements group. Testing is in the hands of the leader of the testing group. These are

not teams, just groups, so you really don’t know where the project is. The project manager

is just an administrator, not a manager who can give directions. The result is very slow

and expensive development of poor software, because the requirements written by the

requirements group are difficult for other people to understand.

Instead we work with teams that include people who are competent to manage require-

ments, or competent to design software, and so on. The team is lead by a manager or a

coach, and the team is self-organized. It’s like a soccer team: you have people that are for-

wards, defenders, and goalkeepers, but they switch around as needed. Sometimes a forward

defends or a defender scores a goal. This is the model we need in software.

We need to have a team that fights together, and where people help each other, and

where the people who write requirements understand the difficulties of the people who

do development. The requirements people can then make sure that the requirements are

testable, not written for the sake of filling a document.

We have a new model: the team model, instead of the organization model.

How do you define the term “social engineering”?

Ivar: Social engineering is about making people work together. It’s about organizing a

team. It’s about organizing your time daily, weekly, monthly, etc. It’s not about technol-

ogy; it’s about how you make your people motivated and excited about what they are

doing, and about how to get results.

We have always had a lot of management books in this space, but it’s a new area in the

software space. The Agile movement, which is primarily about just that, came about when

methodologies like CMMI and RUP stiffed the organizations.

I never believed that people would work according to RUP as people have tried to do, because

you have to use RUP more as a knowledge base, a thinking base, and then work according to

what makes sense for people. I have always said that. Unfortunately, RUP became under-

stood as a prescriptive methodology like cooking food. None of us who have developed soft-

ware would even dream that you really do it step by step, following a checklist.

Download at Boykma.Com

U M L 325

Why are we so slowly improving programming methods and processes?

Ivar: That is the real question. From my perspective, the industry is very immature. It’s

little more mature than it was 20 years ago, but we build much more complex systems

today. Twenty years ago we started from a programming language and an operating sys-

tem. Now we have all kinds of frameworks.

The software industry is the most fashion-conscious industry I know of. People want to have

a new buzz every two to three years; otherwise they don’t see any progress. The way we take

in new ideas is not only to throw out bad or old ideas we need to replace, but basically to

throw out everything and start all over. We don’t move forward by systematically changing

what we have and adding new stuff, so we stand still in a way. We don’t really feel progress.

The new, popular methodologies today are not very different from what we had 20 or 30

years ago, but they have a new emphasis and new ways of talking about them. We’ve also

seen counterreactions to the big processes that have been quite successful, like CMMI and

RUP. The counterreaction means that everything that belongs to these or other similar camps

are bad, and now we need something new and fresh—but it’s not really new and fresh. These

new methodologies are not really new, but just variations of what we already had.

Actually, Agile does embody something new: the heightened emphasis on people and

social engineering. Even this is familiar to most people who developed successful software

in the past. People are the most important asset when it comes to software development.

Having competent and motivated people is the most important prerequisite to get good

software quickly and at a low cost. Sometimes we forget about that.

Another problem I think we have is that the people who come from universities are edu-

cated in the latest silver bullets, but really don’t know how to deal with commercial soft-

ware they’ve inherited from past practices. When they come out young and fresh and

energetic, we cannot make them start with something that they consider old-fashioned.

They would just not take the job, particularly in good times. These young and inexperi-

enced but well-studied people become quite dominant in organizations and the result is

that we don’t move forward.

How can we approach the problem of legacy software?

Ivar: Software traditionally has been developed by people who never had any explicit

methodology. They couldn’t describe what they were doing. They didn’t document what

they did. It is still very hard to understand the system structure if you come in later, so you

don’t understand the architecture or the ideas behind the system. Having new people to

take over that kind of system is very, very difficult.

If in a business all the people leave at the same time, the business will die. Even if you

have money to recruit other people, they would not know what to do. There is nothing

special about software. This is the nature of doing business. It helps if you have a system

that is understandable—if you have a way to train people in the system—but there’s no

magic here.

Download at Boykma.Com

326 C H A P T E R F O U R T E E N

We need software that is understandable, good architecture, and good models. We know

that code without a visible architecture is almost impossible to manage.

A major challenge for most big companies is to change legacy systems and the way they

are developed and/or extended. There are inherent practices linked to these systems that

have evolved over time, and many of those practices are not Agile, or compatible with

Agile. Changing development methods for new systems or products is much less of a chal-

lenge. The approach to be used should be optimized for legacy systems. My view is

expressed in this statement: product development is a change management process,

changing from something to something more. New development is just a special case,

changing from nothing to something. This view should penetrate everything you do and

the practices that you deploy when developing software.

There are basically two approaches to managing legacy systems and improve them.

The first is to just deploy practices that don’t really change the product but improve the

way you work, such as iterative development, continuous integration, test-driven devel-

opment, use-case-driven development, user stories, pair programming, and cross-cutting

teams. The cost and risks of introducing such practices are marginal, but for big companies

still substantial.

The second approach is more fundamental: change the actual product via practices such as

architecture (at a simple level), enterprise architecture, product-line architecture, compo-

nents, etc. You do major reengineering. The costs and the risks are greater, but the return

on investment dramatically higher.

Would using the right method avoid the problem of managing a system without a visible

architecture?

Ivar: No, not avoid, but reduce it. Documenting your software might not have much

effect, because people don’t read documentation anyway. Even so, sound documenta-

tion focusing on the essentials is useful because it makes the system more approachable.

For example, being able to describe your architecture means that you actually have an

architecture!

Still, you can’t expect that people can just leave and other people come in and take over.

You need to have a transition that lets new people learn the structure they will have to

work with. No matter how much you teach people, if there is no visible architecture, there

is no easy way to transfer knowledge about the system.

Download at Boykma.Com

U M L 327

What is the best format to transfer knowledge?

Ivar: In general, people that work with software don’t read books or manuals. It’s only at

universities that people really read, if anywhere. Saying that people use books and manu-

als while they work is just a myth.

I have written a couple of books, and I am very happy that people buy my books, but as

for all other books, they don’t read them. It is a law of nature that people read neither pro-

cess books nor language books.

Instead of learning big methodologies or big languages like UML or Java, focus on practices.

Practices are more manageable. You can become an expert in a practice without being an

expert in a complete methodology. Most of my colleagues that wrote books about methodol-

ogies were not really experts on more than minor pieces of the methodology—practices.

Instead of working on a big methodology or a language, focus on working with one prac-

tice at a time. No single human individual can know all good, useful practices, but possibly

you can compose practices into some way of working. I have been working for the last five

years to make practices much simpler, and keep them separate, but in such a way that

others can compose larger processes (or ways of working) from them.

I also read about the use of cards.

Ivar: Every methodology starts from some new interesting ideas, borrows some other

interesting idea from others, makes a soup of all of it, and calls that soup a methodology,

process, approach, or whatever.

It is great to be able to do that and be consistent, complete, and correct. Some people have

done so successfully. Some have become recognized gurus.

However, doing this is the simple part of the problem. The real difficulty is to get other

people to adopt it. Another problem is to be able to change what you have when new

ideas appear on the frontier.

Thus, we have not been successful in rolling out methods by and large.

People in my company (in particular, Brian Kerr and Ian Spence) have come up with some

important innovations to do this. One of these innovations is to use cards to describe the

essentials about something you do or something you produce when developing software.

Using cards is an agile way to describe practices. They hold the essentials; you can figure

out the rest by yourself.

Download at Boykma.Com

328 C H A P T E R F O U R T E E N

UML

How do you define UML?

Ivar: UML is a blueprint language for software applied to specifying, architecting, design-

ing, testing, and using it.

How does it interact with different software engineering methods?

Ivar: All the different software engineering methodologies that OMG identified in the

early 1990s (26 methodologies, as I recall it) had their own notation, but most of them

have now adopted UML.

Did your group of three designers provide design advantages, or did it just oblige you all

to compromise?

Ivar: We had our passionate discussions, but these discussions helped us to design a better

language than anyone of us would have done individually. We wouldn’t have been able to

do what we did without the contributions from people such as David Harel, Jim Odell, Cris

Kobryn, Martin Griss, Gunnar Overgaard, Steve Cook, Bran Selic, and Guus Ramacker.

What would you change in the future? What might change in UML?

Ivar: The most important are:

• The language is too complex. We need to change that. Eighty percent of all applications

can be designed with less than 20% of UML. In my company we have defined a pure

subset of UML to become the Essential Unified Modeling Language. We also use a very

different way of describing UML that is much more attractive to ordinary users. Tradi-

tional UML is designed for methodologists or tool vendors.

• I would love to restructure UML as a set of domain-specific languages (DSLs). I would

like to do that similar to the way we redesigned the Unified Process in my company. A

DSL is an aspect of a modeling language (of which UML is an example). You create

your modeling language as a composition of many such DSLs (aspects) in a way similar to

how you compose a software system from many cross-cutting concerns. While I claim that

the language was not designed for users but for methodologists and for tool vendors, I

claim it was not even good for the latter groups. The semantics of UML are poorly defined.

UML—in particular, UML 2.0—has included so many constructs from so many different

methodological camps that it became impossible to define its semantics clearly. Like many

other languages, UML became, as John Backus said about Ada, “fat and flabby.”

The focus was on concrete syntax (icons) and to some extent on static semantics, but

we left the operational semantics undefined. I expected that we would get this cri-

tique since standard language design practice at that time was to use techniques like

denotational semantics. We didn’t. We just wrote page after page that we knew

were very hard to understand. We could have used the same practices used to define

SDL (the telecom modeling standard was defined using VDM already back in 1984).

Download at Boykma.Com

U M L 329

SDL became a modeling language with a well-defined semantics. Even if major por-

tions of SDL were adopted in UML, we didn’t adopt the language design practices that

were used more than 15 years earlier. Sad!

Having said that, even if UML is not formally defined, it was far better designed than most

other popular OO modeling languages. Basically all competing languages were abandoned

when UML became available. If used right, UML can really help developers to become

successful. Friends of UML shouldn’t fear; there is a great future, but UML should be given

a better structure and it needs a formal definition.

How do you figure out which elements can be removed from UML? What process would

you use to simplify the language?

Ivar: I would start with the basics of the language. I wouldn’t start from the whole language

and remove individual pieces. I know which language constructs are really useful and which

are not. There are language constructs I wouldn’t even bother to look at. I don’t want to go

into particulars, but we have already identified this 20%, at least to some rough level.

When we teach UML, we teach Essential UML, which is based on our experience. We use

the same ideas for describing language elements as we use to describe process or practice

elements; we use cards, and every card represents a language construct such as a compo-

nent, an interface, and so on. We are talking about pedagogy. We are not talking about any-

thing new, or any new language construct. We have just learned that people really don’t

read and don’t like thick language specifications, so we need to find a more approachable

way of learning. You learn object by object, interfaces, classes, components, etc.

How would you “restructure UML as a set of domain-specific languages”?

Ivar: We have a basic universally applicable core in UML. I would identify aspects of that

core, and describe UML by adding aspect after aspect. These aspects of UML are what we

call practices when it comes to processes, and these practice-like things of UML would be

domain-specific languages.

A domain-specific language would, as the name suggests, support a particular domain,

such as a vertical industry sector (enterprise systems, telecom systems, healthcare systems,

etc.) or a discipline (requirements, design, real-time, test, etc.). A rather small aspect of

UML would constitute one domain-specific language. In that way you would compose

UML from different domain-specific languages. These domain-specific languages need to

have a common core and a common semantic, otherwise we’ll have a very difficult prob-

lem in translating between things in different domains.

Are there practices used to design SDL that you could use to improve UML?

Ivar: Fifteen to twenty years earlier when we designed SDL, we used the Vienna Develop-

ment Method (VDM), developed by people at IBM in the late 60s or 70s. It is a language

that can mathematically describe notions such as a language, an operating system, or any

other system. It relies on discrete mathematics: set theory, maps, and so on. In that way

you can actually define mathematically the meaning of every language construct.

Download at Boykma.Com

330 C H A P T E R F O U R T E E N

We first identified an abstract syntax, and we described the abstract syntax using discrete

mathematics. Then we used that to define domains of elements. We defined static seman-

tics by describing what kind of conditions would be true and false for elements in these

domains. Next, we described the operational semantics by describing the meaning of a

particular statement. That was a mathematical way to describe a language. Then finally we

mapped the graphical notation to the abstract syntax.

I was involved quite heavily in SDL, but I couldn’t convince my UML colleagues to do

anything in that direction for UML. They felt it was just academic. With my experience

from working on SDL, I disagreed because as soon as you want to build tools, you need to

know the exact semantics. Otherwise people have to guess.

When Steve Cook from IBM and Bran Selic from Objectime (later acquired by Rational)

joined the team, they said, “This is unprofessional. We are not going to join without defin-

ing the language in a more formal way,” so I suggested a variant in order to compromise. I

said, “Let’s define the abstract syntax and the static semantics mathematically, but let’s

describe the operational semantics using just English.” UML 2.0 is better than UML 1.0,

but it’s not enough if you really want to understand every detail.

What do you think of using UML to generate implementation code?

Ivar: There is no fundamental need for two kinds of languages. Why have a language just

to express your design, given that your design is an abstraction of the implementation?

And then why have another language to describe the implementation? This is the situa-

tion today, and it creates overlap.

There are several reasons why we have these two languages. Maybe the most important is

because we have not been able to get computer scientists in general to see the value of a

modeling language; they feel that a programming language is enough. The reality is that

code is a language designed for machines (compilers, etc.), and doesn’t use all the abilities

of the human brain.

At some point I think we will be able to clearly demonstrate the value of visual modeling

and persuade computer scientists to perform research in this area. A lot of research is

done on UML, so there is no fundamental reason why we should have two kinds of

languages—but we are not there yet.

Is it just a matter of persuading people to focus there?

Ivar: It’s a matter of getting university people to understand that not everything is well

expressed by code. Many of them already understand that, but not enough. We need to

show more successes.

UML is fundamentally better than anything we had before. SDL has been very useful in

the telecom industry, but UML is a more universal language (includes important language

constructs not available in SDL). UML was created in the late 90s, so because there is

nothing fundamentally better, you can expect that it will take another 20–30 years before

UML will be replaced. However, until then, we can improve the way we teach UML.

Download at Boykma.Com

U M L 331

I believe the value of UML will be proved as time goes by. We need something like UML to

help people scale software development. Maybe more people with real experience in soft-

ware development will go into research. Maybe they will demonstrate that how we teach

new students now is not scalable.

Is there a size for a software project under which using UML might add more complexity

and work without adding benefits?

Ivar: If, to the cost of the project, you add training and education in UML, and training

and education in tools to use and support UML, it might be too expensive to motivate the

adoption of UML. But if people starting a new project are forced to understand UML and

how to use at least one tool that supports UML, you have a different situation.

If you want to teach people basic software engineering during normal working hours, it

might be hard to motivate them, especially in an existing small project. For large projects

the motivation is very different, because the risks involved in not doing proper modeling

are so high.

Suppose that I am wary of using of UML. What could you say to persuade me that it

would help my team?

Ivar: The answer to this question depends on who you are.

If you know nothing about software, it is rather easy to say that you need a drawing lan-

guage because writing code is not a good way for humans to work. Code is good for

machines to interpret but not for humans to work with.

If you are an experienced programmer, I would ask how you describe your system, the

components, and how they interact. How do you describe a particular scenario from a

user perspective? Will it be implemented through interactions between your components

or your objects? No programming language can do that in a reasonable way, and so that’s

an example of where you can use UML. There are plenty of similar examples.

Some people I would never be able to convince because they have worked with code for

many, many years. But if you ask them how they would feel if they had to work with a

completely unfamiliar language like Prolog, or a new class of languages such as declarative

languages, or functional programming languages like Scheme or Lisp, they would proba-

bly feel that they would get a lot of help by using graphical language as well.

I never had a real problem convincing people to use UML once they have understood the

demands of systems they are building.

Knowledge

How much knowledge of software engineering is linked to a particular programming

language?

Ivar: Very little. Universities teach programming languages, so people believe that the

language is the central point. The real problem is understanding software in general.

Download at Boykma.Com

332 C H A P T E R F O U R T E E N

How do you capture requirements? How do you know if you are building the right sys-

tem? How do you test whether you have built the system right? How do you do configu-

ration management and version control? How do you do the 30 or 40 practices that you

don’t learn at school?

People learn the easy things at school. That’s why they’re taught at school. Programming

languages are relatively easy to teach and learn. When I was at MIT, I took the class 6001,

where we used Scheme, a variant of Lisp, to describe several phenomena in the computer

science world. People took that class directly from high school—they wrote code during

the class—and it was one of the most fantastic classes I have taken. You used a language to

describe phenomena such as compilation, execution, interpretation, and many of the

interesting phenomena in the computer science world. You also learned the basic ideas of

programming, so programming actually became simple.

Now we have frameworks, but learning a framework is much harder. Still these things are

relatively easy; they are just one of the several things you need to know to be a good soft-

ware developer. We have to raise our competence level in software engineering.

We should find a way to deliver the knowledge when we need it instead of before.

Ivar: Yes, and you should not throw away what you have. Start from where you are.

Everyone that develops software today has some practices that are not that good, but are

still useful. We should not try to change everything at once, but improve what needs the

most improvement.

It might be that they know how to do programming or configuration management, but

maybe they really don’t know how to do good requirements and testing. There are prac-

tices for that. They can keep the things they are doing today and change what they need

to change without throwing out everything they have just to incorporate something new.

This is a natural evolution of process.

I read that you see a future where intelligent agents will partner with us for pair

programming. How?

Ivar: Developing software is not rocket science. Look at the 5–10 million people who call

themselves software developers. Very few of them really do anything creative or funda-

mentally new. Unfortunately the outside world thinks that programmers are creative and

brilliant people, and that’s far from reality.

There is scientific evidence that 80% of what a software developer does in a day—different

steps and small microsteps—it’s not brain work. They do what they have done 50, 100,

1,000 times before. They just apply a pattern to new situations.

Of course there is creative work, but most people don’t do that. Twenty percent is brain

work. It is still not rocket science; they might have to think in a way they might not neces-

sarily have thought in before.

Download at Boykma.Com

U M L 333

Eighty percent of work is rule-based. Given a particular context, you can apply pattern

after pattern to develop software. These patterns are not necessarily defined, so you may

actually apply the wrong patterns and thus develop bad software. People don’t always

apply the same patterns, so some of their software is good and some software is bad.

There is a way to describe and apply these rules through tools. This is the idea behind

intelligent agents. Intelligent agents understand the context and the activity you need to

apply, and they apply that activity. They might do a lot of things by themselves because

they know these are trivial rules, or they might ask advice from the developer working

with the agent.

The company I founded, Ivar Jacobson International, developed intelligent agents to sup-

port software development and achieved dramatic results. Tata Consulting Services cut

their costs by 20% with a rather small set of rules. They increased quality and shortened

training time for programmers and developers. They could quickly get their new employ-

ees up to speed to do something useful.

In my mind there is no doubt that this technology works. The problem is that we still have

so many diverse platforms and many different kinds of tools people want to use. If you

really want to develop this kind of software, you have to adapt it to a lot of tools and many

different kinds of platforms, so developing these agents is hard to do for a small company.

It becomes feasible when you reach the scale of a big company such as TCS.

Potentially, an 80% cut in the costs is achievable using a technique like intelligent agents.

For example, we have intelligent agents to specify use cases, to design use cases, to test use

cases, and so on. That is just the beginning. I have no doubt: the technology is there, the

problem is there, the money is there.

Is the final goal that everyone will be able to interact with the computer and ask it what

to do, or we will always have a strong difference between programmers and users?

Ivar: I think that more and more work will be done by the user community instead of the

programmers. One method to do that is by using rule-based programming. With rule-

based programming, you don’t really have to understand execution; you just have to

write your rules. A rule engine will interpret them. This is something the AI community

has taught for 40 years, so it is not fundamentally new. Object technology has helped us

understand more how to build modelers. Twenty to thirty years ago, the rule-based sys-

tems were monolithic and very hard to change. Now using agents you have a kind of

object-oriented expert system, and it’s much easier to change.

How do you recognize simplicity?

Ivar: Simplicity is the core idea behind being smart, doing something smart, or general

smartness. Einstein said something like “things should be as simple as possible, but no

simpler.” I agree fully. That is what I call smart.

Download at Boykma.Com

334 C H A P T E R F O U R T E E N

If you are smart, you make something as simple as possible, but no simpler. Everything

you do should be done in a smart way. When you do your architecture, you should model

as little as possible, but as much as you need. If you don’t model, you will spend a lot of

energy trying to describe what you are doing, and you won’t have a necessary overview.

Doing requirements up front, for instance, and trying to identify all the requirements

before you start building anything is not smart. To identify the key use cases, or the key

features and to start implementing them so you get some feedback, is smart. I have identi-

fied about 10–15 such smart cases.

We need to become smart when we work and develop software. Smart is an extension of

agile. Agile is primarily social engineering, although people now have added more things

into it. You don’t need to be smart to be agile, but to be smart you need to be agile. My

new talk is about how to become smart.

Be Ready for Change

You have a B.S. in physics from MIT, an M.S. in astronomy from Caltech, and a Ph.D. in

computer science from MIT. How does your university background affect the way you

think about software design?

James Rumbaugh: I think my varied background adds insights and synergy beyond a

straight computer science curriculum. In physics the concept of symmetry is fundamental,

really at the heart of modern physics. I tried to apply this concept to modeling. For example,

associations provide a more symmetric viewpoint on a situation than the more traditional

approach of pointers incorporated by most programming languages. In my computer science

studies at MIT, I worked in the Computing Structures Group of Professor Jack Dennis, one of

the first groups to investigate fundamental models of computing. That ferment of ideas with

intellectual rigor was a stimulating environment that informs my thinking even now.

Which topics should students study more?

James: I’m not intimately familiar with current academic programs, but it is my impres-

sion that many colleges have adopted a narrow focus for computing science, with an

emphasis on specific programming languages and systems rather than understanding the

important principles underlying computation. For example, I rarely have met a program-

mer who understands the principles of computational complexity and puts them into

practice. Instead they fuss with all kinds of pointless suboptimizations that are “penny

wise and pound foolish.”

I think the most important skill in computing (as in physics and other creative fields) is the

ability for abstraction. Unfortunately my experience has shown me that less than 50% of

programmers can abstract properly. A colleague suggested it was really less than 10%. He

may be right. Unfortunately, many people in the software field may not have the basic

skills needed to do the job right.

Download at Boykma.Com

U M L 335

What is the best format to share knowledge in the software field? I am not sure people

really read thousand-page manuals.

James: If you need to have a thousand pages at your fingertips, there is something wrong

with the system you are working with. It isn’t partitioned well. Unfortunately many peo-

ple in this field worship complexity. IBM made a religion out of complexity. Of course,

that helps in selling consultants.

Engineers learn a variety of skills during their training, first in university classes and then

in on-the-job training working on real-world projects. Most important is to learn general

principles. In engineering that includes the laws of physics and engineering principles of a

particular discipline. In computing that would mean computer science principles such as

algorithms, data structures, and complexity theory, as well as the principles of software

engineering. In any field, it is important to develop a feel for how things are done. If soft-

ware applications follow expected norms and are consistently designed, the skillful devel-

oper can often intuit the structure and behavior of a new system without searching piles

of manuals.

It’s also important to provide guidance on how a system works. It’s not enough to list the

constituent parts and assume someone can figure out how it is all supposed to work when

put together. If you are trying to learn a complicated application such as Photoshop, a

tutorial that shows how to put together basic commands to accomplish common useful

tasks is the best way to get started. You can always use the comprehensive command list

to check details, but it’s a bad way to learn a system. But how many system developers

think they have done their jobs when they simply provide a comprehensive list of com-

mands or procedures that constitute the system? That doesn’t help people understand how a

system works. So the biggest lack in conveying system knowledge is a focus on overly static

decomposition information rather than usage patterns. The Pattern Movement had the right

idea in focusing on usage, although they sometimes took too narrow a view of patterns.

How do you identify the right person to be the architect of a software project?

James: It’s a tricky balance. Good architects have to be able to balance theory and prac-

tice; they need to balance elegance and efficiency; they need to balance experience and

vision. The job of the architect is to get the overall structure of the system correct, to make

the decisions that have global impact. That includes the decomposition into modules, the

major data structures, the communications mechanisms, and the goals to be optimized.

An architect who is obsessed with detailed coding is likely to get the big picture wrong.

An architect must be able to communicate effectively so that the developers and program-

mers are all working together. The last thing you need is an architect who is a genius but

can’t explain things clearly to ordinary people. Political skills are a definite plus; part of the

job of the architect is to get rival factions working together smoothly.

An architect needs experience having worked on large systems. You can’t learn it all from

university classes and books; you need hands-on experience before getting the big job for

the first time.

Download at Boykma.Com

336 C H A P T E R F O U R T E E N

How can we transmit experience in the software field?

James: I used to say that the problem with software compared to other creative fields is

that there is no program museum. If you are a painter, you study paintings by famous art-

ists through the ages, in books and by viewing the original pictures in museums. If you are

an architect, you can visit many different kinds of buildings. In programming, program-

mers were on their own.

The Pattern Movement provided catalogs of useful techniques that can be adapted to

many different situations. That’s a good way to capture best practices from the top pro-

grammers so that everybody else can benefit.

However, people also need large examples of how everything goes together in a complete

application. More recently, the open source movement has provided examples of large

programs that anybody can examine. But not everything in a system is equally good, and

novice developers need someone to walk them through. What we need are annotated

case studies so that software developers can understand what is good and what is bad in

those systems, like a commentary on chess games or a business school case study of a

company. These should illustrate examples of good practice and also point out things that

may not be done so well. As in learning any skill, it is important to see examples of bad

practices to avoid.

How much is the knowledge of software engineering linked to a particular programming

language?

James: Unfortunately far too much effort goes into thinking about specific programming

languages. Most of the effort to design a program can be done in a way that is independent

of the programming language. Of course, you can’t ignore the programming language,

and at the strategic level you have to be aware of the fundamental properties of the lan-

guage, such as how it treats storage, concurrency, etc. But most of the design involves

issues such as data structures, computational complexity, and decomposition into separate

threads of control that transcend a particular programming language.

It’s like natural languages. You can outline a news article without much effect from the

language. If you’re writing poetry, then the language matters a great deal from the begin-

ning. If you are writing programs like poetry, then you are far too self-indulgent. But

when you sit down to write the actual words or the code, you don’t translate them from

your outline, you use your knowledge of the language to choose a good expression.

Will we always see a difference between programmers and so-called users, or will

everyone be able to tell a computer what to do?

James: I have noticed that some people can express themselves clearly in natural lan-

guage and some can’t, so even if you could speak to the computer in your native lan-

guage, some people would have a hard time being understood because they just don’t

think clearly. So there will always be a difference between people who can think and

express themselves clearly and those who can’t.

Download at Boykma.Com

U M L 337

Also some ways of expressing ideas are a lot more concise when the topic is restricted.

Music notation is a wonderfully compact way to capture music, and chess notation is

excellent for chess games. Drawing blueprints is a lot better way to ensure that you get the

building you want than trying to talk to carpenters entirely in natural language. So you

need people who can think clearly and precisely and express themselves using specialized

languages.

I’m not holding my breath that we are going to be able to speak to computers in natural

language any time in the foreseeable future. Remember that COBOL was supposed to be a

way to communicate to computers using English! So there has been a lot of over-optimism

about natural-language communication for a long time.

What do the lessons about the invention, further development, and adoption of your

language say to people developing computer systems today and in the foreseeable

future?

James: First, you need some luck to be successful. I was in the right place at the right

time. We developed OMT as one of the first OO methods and had the good fortune to

write a book that explained things in a simple enough way. Later methods may have been

equally good, but they missed the window. I also had the luck to be working at GE

Research during a period when GE had no serious business in software. I don’t know why

they let us keep working on it so long, but we were able to work on it without having to

tout a bunch of company products, which gave us credibility compared to most other

methods.

My experience at Rational Software was more mixed. Bringing together the inventors of

three leading OO methods gave us the ability to forge UML and get it widely accepted. It’s

not that UML was that much better than many of the existing methods (although it did

manage to round off some of the rough edges that individual methods had), but it got

most people working on the same page, rather than arguing about the merits of different

symbol shapes and various other arcane differences. Unfortunately Rational wasn’t able to

follow up the methodology success by building effective, easy-to-use tools quickly

enough. I don’t believe the upper management or most of the developers really believed

in modeling—they still believed in Heroic Programming—and it showed in the tools. Why

should you buy a tool from people who won’t use it themselves? When that attitude

changed, it was too late. Another lesson is, you have to believe in what you are doing or it

won’t work.

The OMG (Object Management Group) is a case study in how political meddling can dam-

age any good idea. The first version of UML was simple enough, because people didn’t

have time to add a lot of clutter. Its main fault was an inconsistent viewpoint—some

things were pretty high-level and others were closely aligned to particular programming

languages. That’s what the second version should have cleared up. Unfortunately, a lot

of people who were jealous of our initial success got involved in the second version.

Download at Boykma.Com

338 C H A P T E R F O U R T E E N

They felt they could have done just as well as we did. (As things turned out, they couldn’t.)

The OMG process allowed all kinds of special interests to stuff things into UML 2.0, and

since the process is mainly based on consensus, it is almost impossible to kill bad ideas.

So UML 2.0 became a bloated monstrosity, with far too much dubious content, and still

no consistent viewpoint and no way to define one. It’s kind of like a bad appropriations

bill with all kinds of goodies stuffed in. It shows the limitations of trying to do creative

activity by committee.

The whole process illustrates Brooks’s Second System Effect. If you’ve never read Fred

Brooks’s Mythical Man-Month [Addison-Wesley Professional], then get it today and read it.

It’s absolutely the best book ever written on software engineering. The sad thing is that

most of the problems he cites in this 30-year-old book are still happening today. Managers

keep trying to add manpower to late projects which makes them even later, just like

Brooks said.

Maybe this is a good way to state the main problem facing the computing field: most of its

practitioners have no understanding of computing history and so, as Toynbee said about

world history, they are condemned to repeat the same mistakes. Unlike scientists and

engineers who build upon past discoveries, too many computing practitioners treat each

system or language as a new thing, unaware that similar things have been done before. At

the first OOPSLA conference in 1986, the highlight was a presentation of Ivan Suther-

land’s Sketchpad system invented in 1963. It incorporated some of the first OO ideas long

before OO was invented, and did them better than most OO systems do now. It looked

fresh in 1986 and still does over 20 years later. So why do we still have many graphical

tools that are inferior to Sketchpad today?

Why do we still have buffer overflow errors—a prolific source of loopholes for malware—

in operating systems today? Why do we still use languages like C and C++ that don’t

understand the concept of bounded arrays and so facilitate buffer overflow errors? Sure,

C++ can define bounded arrays, but programmers still use naked pointers far too much.

It’s all ignorance, laziness, or arrogance on the part of developers. Computing is difficult,

and it is impossible to avoid logical mistakes in complicated systems, but there is no excuse

for still making this kind of rookie mistake after all these years.

So what are the big questions to ask about development of a new system? First of all,

understand what it is for and who it will serve. Don’t get too ambitious at first—better to

get something useful out the door quickly and then add onto it, rather than trying to think

out everything you might ever need. That’s a good principle from Agile Development. You

can’t be all things to all people, so be prepared to make some hard choices, but also under-

stand that if a system is successful, it will evolve in ways that you can’t predict, so expect

and plan for unexpected change.

Download at Boykma.Com

U M L 339

Using UML

What do you think of using UML to generate implementation code?

James: I think it’s a terrible idea. I know that I disagree with many other UML experts,

but there is no magic about UML. If you can generate code from a model, then it is a pro-

gramming language. And UML is not a well-designed programming language.

The most important reason is that it lacks a well-defined point of view, partly by intent

and partly because of the tyranny of the OMG standardization process that tries to provide

everything to everybody. It doesn’t have a well-defined underlying set of assumptions

about memory, storage, concurrency, or almost anything else. How can you program in

such a language?

The fact is that UML and other modeling languages are not meant to be executable. The

point of models is that they are imprecise and ambiguous. This drove many theoreticians

crazy so they tried to make UML “precise,” but models are imprecise for a reason: we leave

out things that have a small effect so we can concentrate on the things that have big or

global effects. That’s how it works in physics models: you model the big effects (such as

the gravitation from the sun) and then you treat the smaller effects as perturbations to the

basic model (such as the effects of the planets on each other). If you tried to solve the

entire set of equations directly in full detail, you couldn’t do anything.

I think a lot of the recent work on UML has been misguided. It never was meant to be a

programming language. Use it to get the strategy right and write the final program in a

suitable programming language.

Unfortunately I don’t know any really good programming languages. They all have a lot of

flaws that encourage mistakes. The whole C family (C, C++, Java, etc.) is sorely lacking

(the syntax is almost unparseable), but we are stuck with them whether we like it or not.

A lot of new faddish languages demonstrate the ignorance of any serious language theory

on the part of their developers. On the other hand, many of the more academic languages

are too elegant for their own good and disdain important features, such as the need for

multiple teams to work separately on the same system.

What does a language need to be usable by multiple teams of developers?

James: Let me go back to Algol-60, an early programming language that was one of the

first that I used (probably before many of the readers of this interview were born). It intro-

duced many important concepts, such as BNF syntax notation, recursive subroutines, and

structured control constructs. In many ways, it was a much cleaner language than FOR-

TRAN. But it had four major flaws that made it unusable in practice: it had no built-in

input/output constructs; it did not support double precision and matrix arithmetic; it did

not support separate compilation of subroutines; and there was no standard way to inter-

face with machine language and FORTRAN subroutines. These are all fairly minor issues

theoretically, but major software engineering barriers.

Download at Boykma.Com

340 C H A P T E R F O U R T E E N

Lots of academic languages make the same mistake: they solve the interesting mathemati-

cal issues, but overlook the pragmatic issues of how a language will be used in context

because the pragmatic issues aren’t theoretically interesting. It’s these small things that

determine the usability of a language.

First of all, developers need to be able to work on parts of a system in isolation without

either the declarations or the code for the rest of the system. Then they need a way to put

the parts together and make sure that they work as a system; I think this requires some

notion of declared typing. You need to accommodate various kinds of communications

mechanisms, as systems are now highly concurrent. Most languages have no good way to

describe or declare dynamic behavior. I think you need debugging tools that are better

integrated with the language but can be turned on or off at runtime. There is too much of

a separation between coding and testing right now.

Is UML just a tool to coordinate work in a large team of developers?

James: It is first and foremost a tool for guiding and organizing the thinking of individual

developers. You need to work at different levels of abstraction; code is a particular level,

but not the most useful level for understanding how systems work. You need to work at a

higher level, which means getting away from all the details of the code to the things that

are important at the higher level. That’s why it’s a mistake to make UML executable; that

would destroy the whole point of abstraction.

Speaking of architects, you stress the importance of good communications. Does UML

help to solve that problem?

James: It provides a common set of concepts and notation. That helps communication.

You can’t communicate if you don’t share the same vocabulary, or rather, you think you

are communicating and instead different people mean different things, which is even

worse than no communication.

Can an architect communicate better using UML?

James: Well, that’s the whole point, isn’t it?

When I first started pushing object orientation within GE, I paid a visit to GE Aircraft

Engines. We had a great deal of trouble convincing the programmers that OO was a good

idea—they were stuck on existing concepts (such as FORTRAN programming) and didn’t

understand what we were talking about. Several of the aircraft engineers, however,

understood exactly what we were talking about and got excited about the idea of OO. In

their work, they were used to making models and abstracting high-level concepts, such as

“engine performance curve” or “stall speed versus angle of attack.” They were used to cre-

ating mental objects to represent physical concepts. The programmers could not see the

forest for the trees—they were stuck in the code and did not realize that the purpose of

code is to represent higher-level concepts. Many of them still don’t realize that.

Download at Boykma.Com

U M L 341

Robin Milner, the creator of ML, illustrated the idea of a hierarchy of models linking

together everything from high-level design languages such as UML to low-level assembly

code, to the physics model behind the hardware, to additional models as part of the

environment where the hardware was used. He gave the example of an airplane, where

you have the high-level code that goes down to the hardware, the hardware with its own

models, and then the whole airplane “hardware” is designed according to the

aerodynamics and physics and weather models! When a pilot pushes a button, all these

models are involved.

Should we reduce the number of levels (toward one universal model/language), or

increase the abstraction (and the number of levels)?

James: Excellent point. One of the major concepts from physics (or rather, science in gen-

eral) is the idea of multiple levels of emergent views. Each view is built on top of the one

below it but, once built, is self-consistent and self-meaningful. So we have levels such as

quantum physics, chemistry, microbiology, biological organisms, populations, ecosystems,

environments. Another hierarchical tower is computation: physics of materials, semi-

conductors, circuits, digital systems, computers, firmware, operating systems, application

frameworks, applications, networks. No one level is the “right” or “true” or “fundamental”

level. Each is meaningful in its own terms and can be defined in terms of the next lower

level. But that doesn’t mean it can be understood at the lower level. The meaning of each

level is unique and can only be understood at that level. That’s an emergent system: the

meaning of each level emerges from a simple lower level but must be understood in its

own terms. So to understand any complex system (the universe being the ultimate exam-

ple, of course), we need to work on multiple levels simultaneously, no one of which can

claim to be primary.

The tower of emergent levels is something that modeling languages have not captured

well. We need a way to model a system on multiple levels simultaneously. I’m not talking

about the OMG 4-level metamodel. It came about because some people made the same

mistake as Bertrand Russell in assuming that you can’t model something in terms of itself.

You can, of course; see Douglas Hofstadter’s writings, such as I Am a Strange Loop [Basic

Books]. There is also the failure of code hackers who disdain modeling. They think that

the code is the only thing that matters. That’s like saying circuits are the only thing that

matters, or semiconductor physics is the only thing that matters. All the levels matter, and

you need to work at the right level for a particular purpose. I would submit that the code

level is a poor level to understand how a large, complex system performs useful activities

for humans.

A single universal language won’t work. What we need is a framework that allows us to

work at multiple levels of abstraction. That’s what UML 2.0 should have done, and it

didn’t. It’s not that the added details are wrong, but they make things more complicated;

the cost/benefit analysis is bad. The major thing that is lacking is a clean way to build lay-

ers of emergent models, keeping the various levels separate.

Download at Boykma.Com

342 C H A P T E R F O U R T E E N

For example, UML contains fairly low-level concepts more suitable for programming lan-

guages, such as permissions or pointers, as well as high-level concepts, but there is no

good way to separate the low-level concepts from the high-level concepts. Profiles were an

attempt, but they don’t really do the trick. A lot of the fights during the construction of

UML as well as its schizophrenia were caused by this tension between programming-

language concepts and high-level logical concepts.

The other major issue is a difference in tone between different parts developed by different

people. For example, the message sequence chart contribution to UML was very helpful,

but it has a very different style from the activity diagram stuff.

What process would you use to simplify the language?

James: I doubt it can be simplified through a standards process, such as the OMG process

that produced UML 2.0. There are too many competing interests all trying to stuff their

own ideas into the pie. The problem is that standardization processes place too little

emphasis on consistency, simplicity, and uniform style; instead they overemphasize exces-

sive content. In fact, I’m not a big believer in standardization bodies; they tend to produce

overstuffed products lacking in elegance and usability. I was reluctant to get involved in

them in the first place; my fears about their negative effects have been realized.

The best approach would be for one or more people to make up their own cut-down ver-

sions of UML and let the public decide through usage. The result would not necessarily be

called “UML,” because that term may have particular legal and emotional baggage. It is

important that any language developers clearly state the purpose of their versions, rather

than trying to be all things to all people.

How do you recognize simplicity?

James: It requires a willingness to do too little rather than doing too much. Remember, a

modeling language is not a programming language; if some capability is missing from the lan-

guage, the modeler can always make up something to bridge the gap. If you have to carry

around a large scorecard to remember all the features in the language, it isn’t simple. If you

constantly are faced with four or five alternate ways to model a straightforward situation, it

isn’t simple.

Suppose that I am skeptical about UML. How would you persuade me that it can help me?

James: I’m skeptical about a lot of it myself. I think it has gotten terribly bloated by too

many cooks in the OMG kitchen. Also people have tried to promote it as the answer to all

things for all people. The whole computing field has a tendency to hype any new develop-

ment beyond reason. There is also a tendency to look for a single solution for all problems.

Life and computing are too complicated for simple solutions.

UML is a very useful tool for data structure design, moderately useful for decomposition of

systems into layered modules, not so useful for dynamic things that it doesn’t handle so

well. It’s helpful, but it doesn’t solve all of your problems. You need many other skills and

tools as well.

Download at Boykma.Com

U M L 343

Is there a size for a software project under which using UML might add more complexity

and work without adding benefits?

James: No, but that doesn’t mean that you would use it the same way on very small and

very large projects. On a small project, you would have a lot less “ceremony” in the use of

tools, models, software processes, etc. On a small project, class diagrams of the classes and

data structures would still be useful, but maybe not so much round-trip design. So UML

provides a way to sketch out the initial design, but eventually you end up in a program-

ming language and stay there.

On a large project, half or more of the development process is communication rather than

just capturing the design. In that case, it is essential to have tools and processes for decom-

posing the system, controlling access to models and code, and keeping track of progress;

otherwise, people will step on each others’ toes all the time. I know that a lot of program-

mers whine about having to subject themselves to this kind of discipline. In sports, build-

ing construction, newspaper writing, rocketship design, or almost any other kind of large

cooperative venture, these whiners would be kicked off the team with little regret. It’s

time we adopt that kind of attitude in software if we want to have it taken seriously.

Layers and Languages

In one of your first answers, you said that you think the pattern movement did some

great things, but they had too narrow a view of patterns. Can you expand on that?

James: At a workshop I once attended that included some of the Hillside Group, it came

out that they had this very narrow, almost quasi-religious view of what patterns were,

and they really didn’t want to expand it. They were very protective of their official view of

patterns and this sort of worship of the architect Alexander. They viewed patterns as this

very specific thing, and I think patterns can be applied at many different levels.

Not everyone follows this specific view of small- to medium-range patterns that appear in

things like the Gang of Four’s* Design Patterns book and Hillside Group stuff. Actually, even

within the pattern movement there were some divisions, but I think the idea caught on,

and that was the main thing.

What the pattern people are saying is the same thing that people have said in many other

disciplines, that we should gather up experience from highly skilled people and write it up

in catalogs for more ordinary people to follow. This has happened in things like engineer-

ing and painting and building architecture, in almost any creative field. The computing

field was a bit slow to adopt this concept of learning from the past and it still is. That was

one of my complaints. The computing field has a lot of people that think very well of

themselves and seem to forget that there is any past to build upon. A lot of people keep

reinventing things that have already been discovered.

* This term refers to Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, authors of the

book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional).

Download at Boykma.Com

344 C H A P T E R F O U R T E E N

I think the pattern view goes to counter that problem by saying, “Look, there are things

that we can capture and understand and make available to the broader mass of people in

the field who may not be able to create these things, but if they’re described properly they

can use them.”

That’s true with any field. The number of people that make great breakthroughs is very

small in any field. After the initial breakthrough, other people take the idea and expand it.

It’s been said once the idea is out there, the inventor loses control over it. You can’t let an

inner group control what an idea means. New people will find additional meanings that

the originators did not intend.

I want to draw a parallel to some of the things you’ve already said about your

background in physics, where there are lots of layers. What’s applicable and appropriate

in one layer is not necessarily appropriate at the other layer, but you also can’t deny the

reality of the other layers.

James: That’s the whole concept of emergent systems. That’s what science is all about

and language is all about. That’s one of the concepts from the concept of complexity the-

ory. You get the sense of emergence, and there’s no one fundamental layer. Certainly peo-

ple have understood that in computing for a long time. You have multiple layers, and no

one of them is the true layer.

When you say the pattern movement has left itself very narrow on purpose, do you think

it’s stuck at one layer when it should address the whole stack?

James: Let me be fair to the pattern movement; there are people that worked at different

layers. For example, there are several books on architectural patterns. Maybe the original

Hillside Group had a particular view of what constituted a pattern and tied it into this

whole concept of Alexander’s pattern language. I think you need to apply the word in a

broader way.

One pervasive criticism about the Design Patterns book is that a lot of these patterns

aren’t really effective in languages other than C++ or Java.

James: One of the points of patterns is that they have to be specific to what you’re work-

ing with. You can’t take everything and soften it out to a very general approach. If you’re

writing programming-language patterns, many of them are specific to a particular pro-

gramming language, and some may be general and work across a wide range of program-

ming languages. That works in engineering, too: some things work for steel and not for

wood and vice versa, and some things go across.

Maybe that was my complaint about modeling. The thing that UML didn’t do well was dif-

ferentiate among various uses. There are uses of modeling that apply to specific program-

ming languages, and there are uses of modeling that apply to more logical things. UML

contained both, and it jumbled them all together in one bag. I’ll take part of the respon-

sibility for that. In the first version we mixed a lot of different things together. That hap-

pens in first versions—you don’t have the experience to know how to divide things up.

Download at Boykma.Com

U M L 345

I had hoped in the second version we’d clean it up, so it would allow you to say, “These

features here apply to C or C++,” because there are features in there that smack of C and

C++ and similar languages. It’s OK to have them in there, but they’re not as general as

certain other features that apply across a wide range of languages, and it would be good to

know which is which

There are modeling features that apply at high levels and at low levels. The profiling

mechanism was intended to allow features to be defined for a particular viewpoint, but

unfortunately the profiling mechanism is kind of clunky. It doesn’t allow you to do layer-

ing properly. It says “Here’s a domain,” but that’s in a sense a one-level thing. There’s no

way to do organize them cleanly into modeling levels.

Suppose that you were able to create UML 3.0 and break backward compatibility. How

do you do that without annoying absolutely everybody?

James: By your premises you just guaranteed you’re going to annoy everybody. Of

course, this is the trouble that Microsoft and Apple are always faced with. Do you main-

tain compatibility like Microsoft did over a number of generations or do you break it occa-

sionally as Apple did? There are advantages and disadvantages to both.

You can’t maintain compatibility forever. It just isn’t possible. In any field, you eventually

have to say “I’m sorry, we don’t do it that way anymore,” and “Sorry, you’ve got to buy

something new.” Look at analog television sets. After June 2009 in the U.S., they’re not

going to work off antennas anymore. A lot of people aren’t going to find that out until the

change occurs. Most of the people reading these kind of articles are aware of that kind of

thing, but there’s no easy or painless way to break compatibility. It’s just like the issue of

heritage systems.

People keep wanting some magic solution to the heritage problem and the fact is there is

no easy solution. It’s a big, messy problem. You have to roll up your sleeves and dig in. It’s

not like it’s a specific problem. You’re trying to do two incompatible things and it’s always

going to take pain and work and making some decisions about when you make people

unhappy.

Do you prefer doing that in big steps, once in a very infrequent while, or a very little bit of

unhappiness frequently?

James: On any new system, you find that you made mistakes. You can make local

changes for a while, but eventually you find that some of your basic assumptions and

architecture decisions don’t hold up any more, and you’ve got to make some major

changes and completely rearrange the thing, because otherwise it can’t keep growing. I

call that “taking an earthquake.” You can do that once per system. Twice is kind of push-

ing it, because you have too many built-in commitments. Eventually you end up ossifying

in a way that you can’t make major changes anymore. I think that happens in many sys-

tems—in computer systems, in other various systems we see in the world around us, where

things just get locked up. Eventually somebody comes through with an Alexandrian sword

Download at Boykma.Com

346 C H A P T E R F O U R T E E N

and finds a new solution that replaces the old approach. It’s not that the old thing gets

fixed. Somebody comes around with something new and makes the old issues moot.

I think that’s certainly true of computing. The world’s a hard place, but you’ve got to deal

with it as it is. I don’t know why that should be depressing. The fact is that we’re not stuck

with the same things forever, because people do come along with new things. If you

looked at our transportation problems in the 19th century, you would have said, “We

project that there’s going to be so many horses everywhere, we’ll have horse manure all

over the streets and we can’t lodge all the horses!” In the 20th century, there was talk

about how everybody would be a telephone operator eventually. That comes because peo-

ple can’t think beyond the way they’re doing it right now.

What happens is somebody comes up with a new way of doing things that people hadn’t

thought before that makes the old problems moot. I think that’s encouraging. It may be

discouraging for people who have committed their whole lives to a particular way of doing

things and can’t change. If anything, the last 50 years have shown us that you can’t pick a

career and stick with it without making changes; the days of working at one company all

your life or expecting to retire in the same field that you graduated are over. You have to

be prepared to change.

Heinlein said “Specialization is for insects.”

James: Insects reproduce rapidly and die in large numbers. That’s not a very good human

life. It discourages me that a lot of companies seem to be hiring that way. They want to

hire insects. They hire people specialized to know some very narrow system. They want

them to come running out of the box. They want to cast them aside when they’re done. I

think that’s a discouraging trend. I don’t think it serves us well for the long run. We need

people who can think and change and learn what they need to learn. I don’t see much

value in going to school to learn a particular programming language. You go to school to

learn the concept of a programming language. Learning a new language is easy. We need

people who are able to change. People need to watch what’s happening. It’s been said

everybody needs to continue to educate themselves these days, and that’s true.

Is it possible to fix some of your criticisms of UML?

James: Sure it is. I think this whole concept of standardization was more of a marketing

thing than anything else. Why do you need a standardized model language? You need to

standardize things that you actually execute. I think this whole concept of standardization

is greatly oversold. You don’t need standards to do modeling. If UML is too bloated, people

will carve out the parts that they need to use. Everybody uses class models and a lot of

people use things such as sequence charts and use cases. There are parts of UML that few

people use. That shows the danger of getting too many smart people together with little

ways to enforce decision. They’ll come up with a lot of ideas that seem useful, and there’s

no way to say, “That’s a nice idea, but it’s not useful enough to put in this large pot that is

going to serve a large number of people.”

Download at Boykma.Com

U M L 347

People will use what they want. It’s really no different than using something like Photo-

shop. I can use Photoshop, but I’m not an expert. I don’t remember how to use most of

it—I can look it up if I have to, but I know how to adjust levels and make selections and

other things that I need to do all the time. If I have to do something else I can look it up. A

professional graphics designer would know a lot more. That’s the way people use most

large applications or devices such as cell phones. They don’t know how to use every fea-

ture, because most of the features are put in there just to be sales bullets on the box in the

store.

It’s hard to evaluate modeling languages for usability. I can ask someone to use a

programming language to solve a real problem and give me feedback on how well it

works.

James: If you look at the program languages out there, I would argue that a lot of them

did not follow that paradigm. In many cases, the developers thought of clever ideas and

put them in the language without making good usability tests, causing all kinds of prob-

lems down the road.

Language designers come up with these thought experiments that they feel they have

to solve. Sometimes you should just say, “Well, we don’t need to solve that problem;

people can just work around it another way. It’s not important enough to be part of the

language.”

In something like a modeling language, programming language, or application system,

you want to include features if they’re useful enough to justify the need for people to

remember how they work, and then you need to test them to make sure they work in

practice. If you cram too much in there, nobody can remember how to use it, so it actually

becomes a burden. It’s more likely to cause problems for the system because there’s more

for the developers to test and more things to go wrong. You can’t just ask whether some-

thing is useful; you have to ask if it is useful enough, compared to everything else, to be

worth the cost of remembering how to use it.

One way UML could evolve is for people to use subsets of it, which certainly is what’s hap-

pened all along. I doubt the OMG process is going to resolve anything, because it just

doesn’t lead to decisiveness. I don’t think UML 3.0 done with the OMG would accomplish

anything because you’d just have too many competing interests. Too many people want to

stuff things in that you can’t keep it simple.

I’ll give you your stupid feature if you give me my stupid feature.

James: Exactly. It’s too much of a tradeoff. The other way it could go is that somebody

comes up with something new that’s sort of based on UML but has a new name and some

different basic design decisions. Of course, that’s what eventually happens to almost

everything. Or else people could decide this is not where the action is anymore and move

on to something else.

Download at Boykma.Com

348 C H A P T E R F O U R T E E N

A Bit of Reusability

It seems that the average complexity and size of software grows year after year. Does OOP

scale well in this situation or does it make things more complicated?

James: First of all, it is unclear how fast the size of systems is growing. You can’t just mea-

sure the number of bytes in a program. If you generate code, then it is the number of

source lines that matter, not the number of generated lines or bytes or whatever. If you

use higher-level procedures, then complexity depends on the number of calls, not the

amount of code executed. As we work at higher levels, we get larger systems, but their

inherent complexity may not be all that much greater.

Even if you don’t buy that (and I don’t buy it entirely—systems do seem to be getting

more complex), OO systems are a good way to proceed. But you need to separate OO

from a primary focus on reusability. I know that building reusable parts was put at the

center of OO by the original Smalltalk developers, but I think that is a mistake. You can

have OO structure without focusing obsessively on trying to build a library of reusable

parts containing every class you use in an application. Reusability is good, but it’s not

really the main goal in most systems. It’s really hard to build good reusable libraries—most

programmers can’t do it very well and shouldn’t be encouraged to try. It’s a separate task

from system building. In designing a system, use OO structure to build a clean application

made of classes that are easy to modify if needed, without insisting that they be immedi-

ately reusable by somebody else. If you find that you end up using variations on a class a

lot, then you can go to the trouble of making it truly reusable.

You also have to know when to stop. I’ve seen plenty of beginners fuss over making

reusable objects out of every line of code. When you can express a straightforward algo-

rithm in natural language and just write the code, then don’t bother with chopping it into

smaller pieces—just write the code. OO is all about providing higher-level structure when

things are not so straightforward, not about sweating the small stuff.

How can we be sure that the advantages of OO are more valuable that the

disadvantages?

James: As I said before, you can always use OO structure. The problem is in knowing

how low to go with it. The true believers always want to push it all the way down. There

are a lot of other issues in computing besides OO structure, such as good algorithms, good

data structures, acceptable computational complexity, understandability, etc. It’s not all

about OO; in fact, OO is just a small part of the whole picture. OO provides a useful frame-

work for organizing designs and programs. That’s important, because otherwise you can

get overwhelmed and confused by the problem. But the essential content of any design is

not OO at all—it’s all the other things I mentioned.

Download at Boykma.Com

U M L 349

You mentioned that reusability isn’t the focus of object orientation.

James: I don’t think it should be. Reusability is greatly oversold and has been from the

beginning. It was the marketing point that convinced a lot of managers to buy into it.

Reusability is damned hard. To make things that are truly reusable is a far higher skill level

than most people possess. Someone said, I think it was Brooks or Parnas, that it’s three

times harder to make something work in production than in a laboratory prototype, and

another three times harder to make it work on a reusable basis. To insist when you do

something on a one-shot basis that it be reusable is actually a waste of time and effort

most of the time

You can take some precautions to make changes easier in the future, however. First, don’t

do something in a very specific way if you could do it in a bit more general way. Don’t

paint yourself into corners if you don’t need to. If you can see a way to generalize it with-

out too much additional trouble, go ahead and do it. Design things with an eye to the fact

that you will have to change them. It doesn’t mean that when you write the first version

you have to do all that generalization. You leave the door open. You put in the hooks for

making changes. You write things as methods that can be substituted but you don’t go and

write all those overgeneralized methods right off until you know you need them. The

problem is that it’s very hard to guess what your needs are going to be in the future and

often the guesses are wrong. If you spend a lot of time generalizing one area, you may find

out that’s not the area where the changes need to be.

It’s just like optimization. I really think too many programmers have worried about mak-

ing things run fast in the wrong places. It’s been an obsession in this field for years and

years. Even though computers have gotten so much faster, that doesn’t matter. They’re

still obsessed with what I’ll call the micro-optimizations. They don’t know complexity the-

ory, they don’t understand the “order-of” stuff, but they’re worried about little, itty-bitty

speed improvements.

I wrote a subroutine package and then I went and profiled it. You can’t always guess

where you need to optimize, you’ve got to go measure, and then you fix those problems.

One subroutine took 30% of the time. I fixed that subroutine.

People overoptimize. It makes the program more likely to fail, and it may not be a place

where it matters. I think here’s an area where people just don’t get it. People say, “Effi-

ciency’s important. Embedded things, you know.” Nonsense. Everything’s gotten faster.

Excessive optimization is not worth it at the cost of all the bugs it causes. I just don’t

understand why people fail to do the simple things they could do. Something’s badly

wrong with the mindset of a lot of developers that these things are still happening. I think

some of them like to do it the hard way, like rock climbers without ropes. But if they

climbed the way they program, they’d be dead.

Download at Boykma.Com

350 C H A P T E R F O U R T E E N

If reuse isn’t the goal of object orientation, is there a goal?

James: Reuse is facilitated by object orientation, but I think the main goal of object orien-

tation is use, not reuse. If you structure things in this way it’ll be easier to get it right the

first time and it also will give you modifiability. You may get some reuse, but that’s just a

bonus.

You know you’re going to have to change any application, but you don’t know where, so

building things in an object-oriented fashion helps to facilitate future change because it

produces a structure that’s easier to modify. The point is to make it changeable, but not

usually to build a reusable library. You don’t start building an application with the expec-

tation that everybody else in your company is going to use every class in your application.

Somebody else in your company, it may be you or it may be somebody else, is eventually

going to have to modify that program you wrote. You know for certain that’s going to

happen. Object orientation facilitates future change. I think that’s its main value. Writing

something the first time, it’s just as easy to use any approach. It’s the second version

where OO pays off.

Because you’ve encapsulated things?

James: Right, you’ve actually got a cleaner design that’s less intertwined. This way of

structuring things tends to keep the functionality from tying itself in knots as much. That’s

the real problem that people have a hard time dealing with: very complex functionality. In

a sense you’re reusing it on the next edition of the same application. Call that reusability if

you want. Only a little bit will be reused across many different projects.

Before you start reusing something on a wide basis, you really need to use it three times.

Once is always a special case, twice could be a coincidence, three times, OK, now you

begin to see some patterns in things. Now maybe it’s worth going to the trouble of pulling

out parts of it and making them really robust. You don’t need to reuse everything. You

find the things that are most useful and reuse them.

This reminds me of SOA, where the assumption seems to be that you can define services

that are reusable across a whole enterprise.

James: To my mind, SOA was more of a marketing tool than anything else. I never quite

saw much deeper substance in it. It’s pretty superficial.

A lot of these things are marketing tools. Of course you have to get things adopted. I

learned on an early project that a good name is worth a year of inactivity on a project. I

came up with one great name in my career, but it helped a lot. People are affected by these

things. OMT and UML—trouble is, we couldn’t come up with great names there. I don’t

tend to like acronyms if you can avoid them, but sometimes it’s the best you can do.

Download at Boykma.Com

U M L 351

What links do you see between the OO paradigm and the new focus on concurrency?

James: The concept of an object as a self-contained package of data structure and behav-

ior is ideal for concurrency. In the real world, everything is self-contained and everything

is concurrent, so the idea of objects in modeling is perfect for concurrency.

That doesn’t automatically follow in programming languages, however. Almost all of the

programming languages that people learn are essentially sequential. There may be a few

academic languages that are inherently concurrent, but that’s not what most people learn

to program. You can add in concurrency features to languages like Smalltalk or C++ or

Java, but the underlying computational models and mindset are inherently sequential.

So the problem is not with the OO paradigm, it is with the programming languages and

systems. Sure, you can design concurrent languages. I did one for my Ph.D. thesis in 1975,

and so did several of my fellow grad students in Jack Dennis’s Computation Structures

Group at MIT in the early 1970s. It’s not hard to make up new languages (although it’s

hard to make up ones that are easy to use over a wide range of practical problems). What

is hard is getting them adopted.

There is no money in inventing languages—the essence of a popular language is wide use,

and people don’t want to use a language that is proprietary. It’s hard for a company to

devote the resources needed if they have to give it away (or else you may suspect their

motives if they do give it away). Don’t believe the nonsense about inventing a better

mousetrap—it takes serious marketing to get something adopted. So I’m not very hopeful

that a good concurrent programming language will get widely adopted—I don’t see the

path to motivate it happening.

How can we design an inherently concurrent programming language?

James: I worked with Professor Jack Dennis and his other students at MIT on data flow

languages and computers on my Ph.D. thesis. These were inherently extremely concur-

rent languages. They were very innovative and spawned a lot of follow-on work over the

years. Unfortunately, there were a few problems that I didn’t solve, and neither did any-

body else. So here was a promising idea, but it just didn’t quite work in the long run. I

pulled some of those ideas into UML, but data flow architecture doesn’t seem to replace

von Neumann architecture in most cases. So I had my shot and didn’t quite make it.

There are also cellular automata. I think over half of my fellow grad students tried to build

on them a highly parallel computer. That has to be the right approach, because that’s how

the universe is constructed. (Or maybe not. Modern physics is stranger than fiction. The

latest speculations suggest that space and time arise out of something more primitive.) But

cellular automata seem suited to only certain geometric problems, very important prob-

lems to be sure, but not general-case problems. People haven’t figured out how to pro-

gram them for the general case. Maybe there is no general case.

Download at Boykma.Com

352 C H A P T E R F O U R T E E N

The critical issue seems to be the interface between control flow and data structure. Highly

concurrent control flow doesn’t mesh with large chunks of data, and it is unclear how to

make the data concurrent and still perform the kind of computations we are accustomed

to. Probably we need to perform new kinds of computations. The brain is a highly concur-

rent computer that does not run von Neumann algorithms, but we have no idea how to

program something organized like the brain. Probably you can’t program it: the concept of

effective programmability and extreme concurrency may be mutually exclusive. Maybe it’s a

kind of Heisenberg uncertainty at a higher level (there’s the physics background again).

When you talk about programming languages that are adapted for concurrency, it seems

an obvious connection to functional languages. What are the weaknesses of functional

languages and why won’t they provide the clue to easy concurrency?

James: Functional languages are very good for expressing a world that is so concurrent

that you don’t need to talk about concurrency. The problem is that in the real world, often

you need a middle ground in which you need to talk about some kinds of concurrency

explicitly. I guess this is another one of those broken symmetries. However, functional

languages have a lot of advantages; it would be good to be able to use them selectively

within more imperative languages.

Symmetric Relationships

You said that associations provide a more symmetric viewpoint on a situation than

pointers in most programming languages. Can you elaborate?

James: In the real world, relationships are relationships. They’re not usually encapsulated

to only work in one direction. Occasionally they are, but mostly if A is related to B, then B

is related to A.

Is it a bidirectional relationship?

James: Well, it’s a relationship. Relationships are inherently bidirectional. Mathematical

relations are bidirectional. Even saying bidirectional implies that one is thinking of point-

ers. Relationship is relationship. The things are related and neither side takes precedence,

maybe that’s how to say it. Bidirectional doesn’t mean symmetric, of course—man bites

dog is different from dog bites man.

Thinking of your data structure and your system structure in terms of relations is a good

way to start, rather than starting to think of how you’re going to encapsulate them in

terms of pointers.

At the line of code level, sure, you’re in a specific programming language. At that point

you should be thinking of whatever your programming language provides.

I once made a programming language in which relations were built in, and it worked great.

You didn’t have to make a commitment to directionality—you could go either direction quite

easily. The cost wasn’t that great. I’m surprised more languages don’t provide that.

Download at Boykma.Com

U M L 353

Was this a dataflow language?

James: It was actually a data structure package. I called it DSM, Data Structure Manager.

It was basically a set of data structure procedures, but I set it up so that you could easily

think in relational terms and go either way. If you want to delete tuple from a relation,

you just delete a tuple. I optimized it so you can work from either end and used hashing to

make it of linear complexity, so you didn’t take a major performance hit.

All these techniques are well known, but the average person can’t program them on the

spot. You need to get them out of libraries or built into the language. I doubt that most of

programmers now would know how to use hashing. This wasn’t a big language, but we

included one approach to do hashing for sets and relations and extendable arrays. If you

filled up the array, it doubled in size. It kept the cost linear at the expense of some mem-

ory. Again, we didn’t rewrite a whole language, we sort of did an overlay on something

else. It made a lot of things much easier. We never had the buffer overflow problem. This

kind of approach can be very powerful.

I’m surprised people don’t do more of it. I know that in C++ some former colleagues of

mine built generic template classes. I’m not sure they got used so much. Maybe the whole

mechanism was too hard to use in C++, or maybe programmers were just too lazy to

bother learning them.

One complaint I have is we have this great divide in computing between programming

languages and databases. You have the programming language people who are pointer-

based and obsessive about efficiency and everything, and they have all kind of problems

with programs that have nasty errors in them.

You have the database people who are relational-based. They understand the concept of

relations. That’s where I got the concept of relationships from originally. They are not so

obsessed about efficiency. In a sense a database is highly inefficient from a programming

point of view, but it’s worth it because they want it to be robust. They want the data to be

secure, they don’t want it to crash. There doesn’t seem to be anybody in the middle. It’s

maybe like our political system now, you have people on the ends and we’ve frozen out

the people in the middle. I tried to approach the database people and they didn’t seem to

appreciate the value of anything that’s going on in programming languages and vice versa.

I really think it would help if these two sides would come together and we wouldn’t have

such a strong division. If we have languages where you could do these relational database

types of things easily. You could do the procedural types of things easily and go back and

forth between the two approaches easily, and do things in a safe way most of the time,

using built-in things. That would give you computational complexity efficiency that the

average person couldn’t write out of the box, and with less obsession on this program-it-

yourself micro bit pushing. I think people think they’re getting more efficient. They aren’t,

because they blow the high-level efficiency; don’t see the forest for the trees. They end up

micro-optimizing, but it’s much less efficient at the high levels.

Download at Boykma.Com

354 C H A P T E R F O U R T E E N

I think it’s The Practice of Programming [Addison-Wesley Professional] where Kernighan

said that in one of these old Unix utilities, they used a simple linear scan.

James: Exactly. Why is it we’re still using Unix? What year is this, 2009? Now when was

Unix invented? Forty years of Unix and it’s still got some of the same assumptions in it,

like bytes for characters. You can’t encode a character in a byte. We’ve gone beyond that

and we’re still thinking of strings as arrays of bytes. That doesn’t work these days.

Sure, they’ve updated some of them, but Unix was built originally on the concept of a

PDP-7, with a 64K memory of 18-bit words (not the puny 16-bit stuff) where you would

swap out the entire memory every now and then. I don’t know how many of those con-

cepts are still buried in there waiting to cause problems.

Again, it’s the same problem: some people tried to make new operating systems, but it’s

hard to get them adopted. Here we are using these old things. Windows has code that goes

back to the 1980s. I guess that’s only 20 years. Wow, I’m getting old. When you say it’s

only 20 years, I guess that shows I’ve been around a while.

If you remember history, a lot of the stuff coming out now doesn’t seem so novel any-

more, because you’ve seen it happen three or four times already. People keep making the

same great discovery and thinking it’s new. I’ve seen that happen many times before. To

quote Elrond, “My memory reaches back to the Elder days, and I’ve seen many defeats

and many fruitless victories.”

Let me throw out a different idea here. I know a lot of people have sold the idea that

there’s a software crisis. A lot of the modeling stuff was sold on that basis. I’ve been guilty

of that myself. On the other hand, I can go to Fry’s Electronics and buy devices and soft-

ware that keep getting more and more complicated every year. It costs less each year.

Somehow people keep cranking out new applications. Maybe there is no software crisis.

Maybe it’s overplayed for shock value.

You could also argue about things like security. We’ll get security when people decide it’s

important enough. They say it’s important, but the evidence is people don’t think it’s

important enough to pay for. If it’s important enough, vendors will pay attention to it. It

doesn’t matter what people say if they’re not willing to spend extra for it, cash and cycles

and memory and things like that.

If security is an important consideration, will it be worth it not to write in C or C++ with

their dangerous pointers?

James: Sure. People get what they pay for. Take databases—the database that loses or

corrupts your data doesn’t stay in business very long. When developers are writing a data-

base manager, they spend a lot of effort to make sure it doesn’t lose data. Crashing is one

thing, but if it loses or corrupts your data, that’s much worse.

Download at Boykma.Com

U M L 355

In projects, people often talk about prioritizing bugs before a release. A fatal bug, one that

crashes the application, is usually considered the most important to fix. I think that’s a

misguided approach. Something that corrupts your data and doesn’t crash the system is a

far more serious problem than something that just crashes the system, because you don’t

realize you have a problem and you lose data. In fact, something that’s inconvenient can

be much more serious than a fatal bug.

I built an early modeling tool. I made a list of priorities. It turns out that something low on

the list was hard to do, and you had to do it all the time. This supposedly minor thing was

so annoying in practice that I moved it to number one on the list. Something you do all

the time that annoys you may be much more serious than a bug that crashes the system,

because if it crashes the system, you restart it and go on. If it annoys you every single time

you click on the screen, you won’t use the tool at all.

Most of the credit I’ve received for bugs I’ve fixed has been those kinds of bugs.

James: Right. You mean the ones that really annoy you. I don’t know if you’ve ever read

Edward Tufte’s books. He talked about “chartjunk,” which is the kind of graphs that Excel

puts out—you have ink all over the page showing very little information. His concept is

you want the least ink per amount of information on the screen.

You can apply that same concept to user interfaces. I’ve always felt that the best applica-

tions are ones that make you click the least. If you have to click all over the place, if you

have to do two clicks when one would suffice, it’s a bad design. It’s one of these annoy-

ance things that stops you from using something.

If there is one lesson that designers and developers should take from your experience,

what is it?

James: The one lesson is that everything is going to change. That’s the number one lesson

in life in general. Everything changes.

You need to build for change. When you’re writing applications, you need to write with a

certainty that it will change in the next version. When you’re educating yourself, you

need to educate yourself with a certainty that what you learn in college won’t be the only

thing you’re using by the time you retire, and you may go through several different

careers in your lifetime.

The needs of the business world will change. The problems of today won’t necessarily go

away but they may become insignificant in relation to new problems. Change is every-

where. You need to expect it, embrace it, and learn to live with it, and you’ll succeed.

Those people that can deal with change are the ones that both have a good success and

have a good life. If you can’t, you’re going to be in trouble. It doesn’t matter if you’re in

computing or something else, that’s true of everything these days.

Download at Boykma.Com

356 C H A P T E R F O U R T E E N

UML

How do you define UML?

Grady Booch: The Unified Modeling Language is a graphical language used to visualize,

specify, reason about, document, and construct the artifacts of a software-intensive system.

In my use of the UML, the UML is not a programming language but rather a language with

deep semantics that transcends traditional programming languages, and permits one to

work at a level of abstraction equal to and/or above code.

During which phases of development is UML most effective?

Grady: The UML is suitable for the entire lifecycle of a software-intensive system, from

birth to death to rebirth. My particular bias is that the UML is especially useful in reason-

ing about the architecture of a system. I’m also biased to Kruchten’s 4+1 model view, and

in my work in the Handbook of Software Architecture, I’ve not found a single system for

which the UML has not been sufficient for me to capture valuable design decisions.

How does it interact with different software engineering methods?

Grady: While Jim, Ivar, and I had particular methodological perspectives, there’s really

nothing that we put in the UML that binds it to any reasonable software engineering process.

Suppose that I am skeptical about UML. How would you convince me that it’s useful?

Grady: Two things: use it to document a system you’ve written, and see if it helps you

communicate things that transcend the code; also, scour the Web for examples of its use,

and study how others are using it (from MediaWiki to embedded systems and many

things in between).

What is your opinion on using UML to generate the implementation code?

Grady: The UML was designed—and is still appropriate for—the visualization, specifica-

tion, construction, and documentation of software-intensive systems. To that end, model-

driven development has proven useful in treating the UML as a programming language

from which one can generate executables. At the same time, I’m a greater fan of using the

UML to visualize the design of an as-built or evolving system (the inverse of model-driven).

I’ve read that hospitals only have rooms with two or four beds because discussions

among groups of three often turn into two against one, where the one person is always

the same. Did working on the UML as a group of three present similar difficulties?

Grady: Remember, though, that for about a year it was just two (Jim and I), then for

another year it was three (Jim, Ivar, and I) but after that, it was dozens and then hundreds

(as the UML migrated to become a public standard). As such, the dynamics of the parties

involved varied widely. At any rate, what was interesting was not so much the nature of

compromise, but rather that we did achieve convergence in the presence of many passion-

ate people who approached the problem from a variety of perspectives. This diversity and

the subsequent public exposure are what have made the UML so broadly accepted.

Download at Boykma.Com

U M L 357

If you were to revise UML into UML 3.0, how would you approach the process?

Grady: I can tell you exactly because I’ve given some thought to that. First I’d begin with

the set of use cases for which I want to apply to UML 3.0. One of the things that I lament

in the 1.x and 2.0 process is that a lot of what’s in the UML now came from the bottom up

and it was not driven by exemplars as saying, “Here are problems. Here are points of pain.

How do we solve this? Here’s how we do it in the current UML. Here’s how we can

improve it.”

I’d begin by canvassing a set of use cases from the industry as to what are the kinds of

things we’d like to model. Having done that, I would make an intentional effort to engi-

neer a 3.0 to support those use cases as well as intentionally work on refactoring the meta-

model to simplify it.

What would you change?

Grady: The UML still needs to be made simpler, but this is always one of the hardest

things to do, for there is no end to the elements that one may wish to add in support for a

specific problem. Additionally, I see the UML growing to become more suitable as a system

language.

Is there 20% of UML that everyone uses all the time?

Grady: That’s exactly what I’d say. In the handbook work I’ve done thus far it’s the classic

80/20 rule. There’s probably about 20% of the UML that I need for the work I do. There’s

80% that covers lots of corner cases and details, but it’s really that core that’s the sufficient

part for my purposes.

Remember that there are lots of ways different people use the UML. If I’m using the UML

drive to create code, then boy, I need a lot of those details. On the other hand, if I’m just

using it to reason about a system, to visualize, to make informed decisions, then I don’t

need those details. It is kind of the tyranny of the minority. I’ll put it that way. Because

there are some uses of the UML, particularly from DD, that drive a lot of the complexity in

2.0 and that does complicate it for some other things.

Most of what I’ve seen is a lot of ad hoc whiteboard discussions. Here are my class

models. Here are my entity models. Here are the relationships between them.

Grady: When I began the Booch method, I certainly never intended it to become a pro-

gramming language. If you go down that path and make a visual programming language,

there are lots of things you need to do that haven’t been done. For example, really nailing

the semantics of the notation and the meta model. That doesn’t exist, and it surprises me

that it hasn’t really been an effort for some time.

If I have a box, what does it mean? There honestly is no formal specification of what a box

means. While there’s been focus upon the formal semantics of the UML meta model, not

as much work done between the notation to UML meta model coupling.

Download at Boykma.Com

358 C H A P T E R F O U R T E E N

Are there possible changes to take advantage of distributed development and teamwork?

Grady: I can’t think of a thing. I’ve been cataloging a variety of design patterns for distrib-

uted systems, and there’s no concept that I can’t fit in the UML as it exists today. As for team-

work, I’m spending a great deal of time on the problems of collaborative development

environments, including some exotic stuff in virtual worlds such as Second Life; the UML

helps, and there’s nothing I’d really change in the language itself, for in temporally and geo-

graphically distributed development is the social dynamics that trump the technical issues.

What should developers learn from the invention, evolution, and adoption of the UML?

Grady: A phrase I often use is that the entire history of software engineering can be char-

acterized by rising levels of abstraction. We see this in our tools, our methods, our lan-

guages, our frameworks. The UML, in this context, is simply a natural point on this

evolution. In the earliest generations of computing, the hardware platform dominated; in

the next generation, the choice of language dominated; in the current generation, issues

of software platform have persisted (primarily manifest in the operating system wars,

especially if one takes a broad view and sees the Web as a peer platform). This is not to say

that vestiges of these earlier concerns do not exist. Nay, they all still play a role in contem-

porary systems, to one degree or another. Returning to the UML, it came at a time where

the complexity of software systems was on such a trajectory that the failure or success of a

project relied less on problems of language and programming and more on problems of

architecture and collaboration.

Another phrase I’ve used is that software development has been, is, and will remain fun-

damentally hard. There is, as Dr. Brooks so eloquently states, an essential complexity to

software that will not go away. Thus, we know that, however far our vision might reach,

all future advances will rely on software yet to be written (yet building on software that

currently is). The software-intensive systems of the past appear trivial to us today but in

their time they stressed the state of the practice—just as contemporary systems that

although challenging to us, will likely pale in comparison to the systems of systems of the

future. It is these forces that impel us to keep improving the practice and the profession of

software engineering.

Language Design

What is the link between the design of a language and the design of software written with

that language?

Grady: The question you raise is an old one, albeit cast in a new form: linguists and cogni-

tive scientists have pondered that very question for decades, with much of the controversy

swirling around what is called the Sapir-Whorf hypothesis. Edward Tufte similarly points

out that the right representation can collapse complexity, making it possible to meaning-

fully reason about complex information in an abstract way.

Download at Boykma.Com

U M L 359

To explain further, the Sapir-Whorf hypothesis (from the linquists Edward Sapir and

Benjamin Whorf) posits a connection between language and thought: the syntactic and

semantic elements of a spoken language impacts how a person can perceive the world and

reason about it (and vice versa). Contemporary linquists such as George Lakoff (author of

Women, Fire, and Dangerous Things [University of Chicago Press]) agree. Tufte’s work (The

Visual Display of Quantitative Information [Graphics Press]) focuses on the visualization of

complex data, and through numerous examples makes the point that effective graphics

can make the difference between understandability and obscurity.

How, do you ask, do I know about these issues? Well, building crisp abstractions is a fun-

damental principle of object-oriented development, abstraction is primarily a problem of

classification, and linguists such as Chomsky and Lakoff have influenced my thinking

about classification.

Anyway, to reframe your question to “is there a link between language and software

design?”—assuming that by language we mean both classical textual programming lan-

guages such as Java as well as graphical ones such as the UML—I would answer “probably.“

It is the case that languages that encourage algorithmic decomposition (such as FORTRAN

and C) will lead to particular program organizational styles that are quite distinct from

those that encourage object-oriented decomposition (e.g., Java) or perhaps even function-

ally oriented. In my experience, however, there are many other factors that influence

design to a greater degree: the culture of the development team, the historical context, the

particular forces that weigh upon a system at any given moment. One could argue that

language is some one of a First Cause, but I’d argue otherwise, suggesting that these other

forces dominate.

What differences are there between developing a programming language and developing

a “normal” software project?

Grady: The same difference, perhaps, between drafting some law on public policy and

making that law manifest: they are related, but very different things indeed. A lan-

guage—be it a human one or a programming one—does not have unlimited degrees of

freedom, but rather, technical, business, social, historical, and pragmatic forces shape it.

For programming languages in particular, one must be precise of its syntax and seman-

tics, as ultimately we use these languages to create artifacts that execute. I don’t know

if there’s any such thing as a “common” software project, but therein so many more

ambiguities exist. A language, once defined, is relatively stable; a software project, if its

economically interesting at all, lives in an environment of constant motion. Thus, while

both the language and the project are essentially engineering problems to be solved the

resolution of the forces around them, the forces on a project tend to be far more diverse

and far more dynamic.

Download at Boykma.Com

360 C H A P T E R F O U R T E E N

Do you believe that it’s important to start with some degree of formal specification of a

core of a language and evolve from there?

Grady: Absolutely. In fact, that’s how Jim and I began when we began trying to really

nail the semantics of what would become UML and unifying the OMT and the Booch

methods. We began by writing a meta model using UML itself. And so the challenge is one

person’s formal is another person’s informal. For us the issue was “Is it sufficient formality

to do what we needed to do?” And the answer was yes.

How do you recognize that sufficiency?

Grady: There was a chief justice—this is an oft-quoted story—that was once asked a ques-

tion about how you judge what pornography is. His answer was—you’ve probably heard

this story—“I know it when I see it.” So there you go. You run into these incredibly meta-

physical discussions when you start talking about the meaning of meaning because what

really is formality? Because you can get yourself into a very deep hole of saying, “What

does meaning mean?” There’s a point even in formalisms where one has to stop.

A lot of people might say, “We can rely on Turing completeness or the Lambda calculus,

and beyond this point I know how to apply a function to an argument.”

Grady: I’m very happy that there are such people that care about those things in the

world, but imagine if we applied that same kind of rigor to Java or Vista and how much

stuff is actually written in those languages and those platforms for which there exists no

formalisms. There are operational semantics. We run these things and know how they

work. That’s really good enough for the large part of what we develop software with these

days. That’s not to say that there’s not a place for formalisms. There is. There are certain—

and I’m going to use these words carefully—certain very narrow corners of the industry

for which deep formalisms are very important.

Is it worthwhile to distinguish between language with which people can build systems

and that for which you might want some degree of formalism?

Grady: Sure. But is there a formal semantics for Linux? Is there a formal semantics for

C++? Sure. I would imagine people have worked on some elements of those but it hasn’t

stopped people from building real things.

There’s a very practical concern there, too, then.

Grady: Absolutely. I’m a pragmatist. If it works and it’s good, then I use it, which is what

leads me to using about 20% of the UML. It’s good enough for my purposes.

Your 20% might not be my 20%.

Grady: I would imagine there’s probably going to be a fair degree of overlap. Maybe your

19% and my 19% match.

Download at Boykma.Com

U M L 361

That’s a pretty good match, honestly.

Grady: Yeah. It is indeed.

Where would you start looking for the use cases for that 19%?

Grady: I would look at the way that people have been using the UML. I’d go to real

projects that have been trying to apply the UML and ask them the questions, “Give me

some common cases. Give me the central cases in which you use it, and let’s make sure it’s

easy to do easy things in the UML. Then let’s start looking at some of those corner cases.”

I would go from real use as opposed to expected use.

This is a time for consolidation and simplification. A language that’s in version 3 and is

used in so many places—while there is value in innovation, there’s also value in refactor-

ing. UML 2.0 to some degree, and I’ll say this a little bit harshly, suffered a bit of a second

system effect in that there were great opportunities and special interest groups, if you will,

clamoring for certain specific features which added to the bloat of UML 2.0. Now is a time

to step back and refactor and simplify. In any meaningful system, you do see this growth

and collapse. Now is the time for simplification.

Is there a pattern of even, odd, even, odd?

Grady: I’m just thinking out loud right now in terms of the Microsoft operating system

releases. As I look at Windows 7, yeah, there might be something to that effect, yes.

Or the Star Trek movie effect.

Grady: Now that one certainly is worth lots of formal studies.

To what degree is backward compatibility with UML 2.0 a factor?

Grady: Remember that there are a lot of things in UML 2.0 which if we were to be con-

stantly moving forward and having complete, as you said, being able to have complete

compatibility with the past, it’s going to keep growing in size. There are probably some

small cases where I would be willing to break it to say, “Wow, this thing adds a lot of com-

plexity. It’s simply not worth it. Sorry, I’m going to offend a few folks. Here’s some

workarounds for it.”

If you look at the core in which people are using UML for that 20%, we’re not going to

break those. Having backward compatibility of that—sure, that’s very important.

Just about every programming language designer tries to walk that line, and there are lots

of different approaches. Lisp almost says, “We’re not going to give you an object system;

you can build one. We’re not going to give you certain control structures; you can build

them.” Then everybody went off and did, and they started sharing code. Then Common

Lisp tried to nail down what everyone should use.

Grady: That’s a good model to describe that.

Download at Boykma.Com

362 C H A P T E R F O U R T E E N

To some degree that’s also an evolutionary or a simulated annealing algorithm, where the

community figures out what looks good and the designers bring that back into the core.

Grady: Absolutely. Which is why I pointed out going to the use cases from industry itself.

How have people actually used this? Look at it from the enterprise side where people have

looked at some really large systems. Let’s look at some small ones as well, too.

What’s your view of the standardization process, having gone through this?

Grady: I’ve been involved in a variety of standardizations processes and it is a wonderful,

interesting process that I’d imagine legions of sociologists would have a fun time follow-

ing. It’s hard to generalize in terms of the standards process. There are some standards,

and I’m not going to name any, that get pushed by specific industries and they become

specific companies, they become de facto standards. There are others that are true group

efforts. There are some that are obviously politically motivated and get rammed down the

throats of others. So there’s a whole spectrum of how standards come to be.

The really delightful thing is that despite all of the complaints people have about the stan-

dard systems, it does have its value and it does work. So I’m grateful for organizations

such as the OMG who are willing to spend the resources to shepherd such things and cre-

ate a forum for their evolution. Without such standards, the Web wouldn’t exist.

It’s a painful process and many people involved in these processes, they’re passionate,

they have their own particular view of the world, they know that view of the world is

right; such is the nature of the human experience.

Is it your experience that everyone comes away slightly disappointed, but feeling that

everybody else is slightly disappointed, too, so it works out?

Grady: I’m not sure it’s necessarily that bad, but standards are a degree of compromise all

the way around. Every standard you can imagine is such a case. There will always be

somebody who will walk away disappointed. In fact, there are still people that are disap-

pointed in Obama’s election and they’re happy that Bush is around. But go figure. There

are people that like Britney Spears’s music—no accounting for taste. Again, part of the

human experience and let’s hear it for diversity.

On the Linux kernel, there’s no real standard there beyond POSIX. There’s this taste of

Linus Torvalds and his lieutenants.

Grady: Well, I think that’s a good comparison. In the case of Linux, Linus has been on the

forefront of being its leader for some time. In the case of the UML, Jim Rumbaugh and I

moved away from the standards process and let go of it. There hasn’t been as much of a

driving force, and I think that makes a bit of a difference. Look at C++; Bjarne is still very

much in the midst of C++’s evolution. That steady hand does continue to offer a degree of

intellectual integrity and consistency.

Download at Boykma.Com

U M L 363

They’re working through the standardization process on the new version, too.

Grady: Correct. But like Linux’s case, you have a voice that has great experience and

there’s great expectations from said person and that person has proven themselves. While

they’re not the only voice, they’re a strong clear voice.

Maybe this is two questions. What value is there in pursuing standardization for an idea? To

what degree do you need a strong leader with a strong vision to help you achieve success?

Grady: On the latter, you can ask that question to any human endeavor. Look at the way

changes happen in the world. I’m not comparing our effort to any of these people, but

look at what a Gandhi has done, or a Martin Luther King. The power of an individual to

bring about change is extraordinary in this world.

From a technical perspective you can think of a variety of technical leaders that have

made things happen. Look at Larry and Serge of Google who brought their notions from

Stanford to bear, and now it’s a whole empire. The presence of a strong visionary has

proven itself in so many domains to make a difference.

I don’t want to put those forward as competing ideas.

Grady: It’s just an example that the power of an individual or a small set of people to

bring about fundamental change is proven in many places.

Suppose I were to create a programming language. What value should I expect from

pursuing standardization?

Grady: In producing anything new like that, ultimately the marketplace decides indepen-

dent of whether or not you make it a standard. Many of the scripting languages did not

start through the standards bodies but they simply grew out from the grassroots and as

there was sufficient critical mass people realized, “Oh, we need to more precisely stan-

dardize these things because we need interoperability.” The point here is that you have to

consider in any of these kinds of things what is the value that you’re providing and how is

the marketplace going to react to it. The standards process can then help you get some

critical mass behind making it real, but ultimately the market is going to decide.

The challenge of any new language is that I may come up with the most perfect technical

design but there is a myriad of other things, mostly social, that impact whether or not that

language is going to be successful. Can I build a community of practice? Does it address

the points of pain that are alive and real at that moment for that particular community? Is

there sufficient interest by individuals in organizations to contribute to it in a case where

as it’s in a fledgling state, there’s no obvious business model for it, but it just seems right.

Many of these kinds of early developments start on faith, if you will, and they’re in the

right place at the right time. That’s certainly true of the Booch method and probably if you

ask the same thing of Jim Rumbaugh, the same thing’s true of Objectory and OMT, to

which UML came to bear. We were at the right place in the right time addressing a point

of pain in the marketplace.

Download at Boykma.Com

364 C H A P T E R F O U R T E E N

Now today, does the world need another language? You may come to mind of what about

M, which Microsoft has brought to the marketplace? Will M be successful? It’s technically

very interesting, but whether or not it succeeds will be based upon does it have some trac-

tion in the marketplace. Even though it may be standardized, even though it may be a de

facto standard because of what Microsoft has done, the marketplace will decide.

It sounds like there’s a lot of pragmatism beyond that visionary status.

Grady: Oh, absolutely. I believe that’s true that again, even the best idea, the most techni-

cally well formed, fully formal, well thought-out, completely documented thing will fall

flat if it does not solve real problems for real projects.

People might not like to hear that; there seems to be a real tech-utopianism that still

believes that the best technical project has to win.

Grady: I’m delighted that such people exist because of their optimism. Their optimism

tends to drive us. But I’m more of a solver engineer, where I deal with pragmatics. I am

not a computer scientist. I’m more of an engineer. It’s delightful that we have both world-

views because this dance, this tension, makes both parties more and more honest. I am

driven by my pragmatism, but on the other hand, the pure computer scientist pushes me to

be pure and more formal and that’s not a bad thing. Similarly, I push him to be pragmatic.

Is there a creative tension between those two poles?

Grady: Absolutely. I believe there should be. Part of the issue of creativity is in my mind

the presence of tension, because creativity that tension focuses our creativity to solve real

problems. There’s a delightful site called Gaping Void. He’s basically a PR-type person and

his claim to fame is he does art on the back of business cards. But he has this riff which

has been very popular about how to be creative. You might point your readers to that

one.* It’s quite interesting because it really talks about the importance of that kind of

pragmatic tension.

Training Developers

Why are we moving so slowly in the improvements of programming methods and

processes?

Grady: Well, I object to the premise of your question. Perhaps it seems slow because from

the inside of the industry, we know there is much more we can do, and do better. But

consider that our industry has literally transformed the world in, essentially, one genera-

tion. To me, that’s fast, not slow.

* www.gapingvoid.com

Download at Boykma.Com

www.gapingvoid.com

U M L 365

How can we transmit experience in the software field?

Grady: In the Middle Ages, guilds served as a primary mechanism for the transmission of

tribal memory; today, we lack such apprenticeships in software. Still, a considerable

amount of experience is transmitted via the Web (consider Slashdot, for example), books,

blogs, and technical meetings. It is also that case that raw, running, naked source code is a

source of knowledge from the past—and this is one of the reasons I’ve worked with the

Computer History Museum to preserve the code of classic software for future generations.

What should today’s students study more?

Grady: I’ll answer that question in two ways. From the lens of software, any good course

of study will teach you the basic skills of programming and design. However, I’d recom-

mend three things: learn how to abstract, learn how to work as part of a team, and study

the code of others. From a wider lens, I urge students to pursue their passion with aban-

don, but never forget the value in growing as a whole person.

Study outside your domain (there’s more to the world than software), develop the ability

to continuously learn (for this field will continuously change), and fan your spark of curi-

osity and risk taking (for from such things comes innovation).

What single best piece of advice could you give a novice programmer, drawing on your

experience?

Grady: This is a question that was just asked of me by a student at USC. I gave some lec-

tures at Cal-Poly and USC a few weeks ago. I’ve had some followups from some of those

students, so I’ll offer the same answer that I offered for them back then.

The first is follow your passion and be sure you have fun. There is certainly value in pur-

suing a career and pursing a livelihood but in the end development and all the things we

do, it’s a human experience and you want to be a whole person in this process. So enjoy,

live fully, gain life experiences; please do that. Follow your passion because it’s easy to

find really crappy jobs out there where you can find yourself in a place you just hate.

Please don’t do that. That’s what I encourage.

The second thing I encourage is gain some experience. Get yourself involved in some open

source projects. Find something of interest to you and just do it. Don’t be afraid to try new

things and expose yourself to diversity, insofar as you get exposed to new ideas in differ-

ent domains. Frankly that’s going to help you out no matter what domain you enter.

The idea of music comes up time and time again. The idea of creative arts—especially

writing—does, too.

Grady: Speaking of writing, a question I often ask academics is, “How many of you have

reading courses in software?” I’ve had two people that have said yes. If you’re an English

Lit major, you read the works of the masters. If you want to be an architect in the civil

space, then you look at Vitruvius and Frank Lloyd Wright and Christopher Rennin and

Frank Gehry and others. We don’t do this in software. We don’t look at the works of the

masters. I encourage people to look at the work others have done and learn from them.

Download at Boykma.Com

366 C H A P T E R F O U R T E E N

It would be nice if we had a pattern of body of literature to say, “Here is what a great-

looking Pascal program looks like.”

Grady: That’s what Andy Oram and Greg Wilson’s Beautiful Code from O’Reilly is attempt-

ing to be. There’s a book out by a guy in New Zealand who’s developed a reading list as

well, too. He’s one of the two people that I’ve encountered that have actually done this.

We don’t have a body of knowledge for software literary criticism. The work that Knuth

did on literate programming, I think, was one of the early attempts to try to do that. Most

code is really poorly written. It’s like at the third grade reading level of sentence structure

and the like, if you want to put it. But beautiful code is full of drama and beauty and ele-

gance and it’s well written. I’ve had the opportunity to look at the source code for Mac

Paint, about 10,000 lines of Object Pascal, and it reads beautifully. We don’t have such

examples like that that we give out to the world very much.

Then the challenge is, if I’ve got a system that’s like the Linux kernel, 10 million lines of

code, I’m not going to read that. It’s like reading War and Peace over and over again. What

do I do to expose its beauty and elegance? There’s a conference coming up this January,

Rebooting Computing, led by Peter Denning and Alan Kay—and others are in it—and I’ll

be there. We’re talking about that’s one of the problems. How does one take these incred-

ibly invisible intellectually complex things and expose their beauty to the world?

We have a similar problem with the Computer History Museum. I’m on the Board of

Trustees. We’ve started a Software Collections Committee and we have all these wonder-

ful artifacts. How do you expose the beauty that’s in Vista? There is beauty. How do you

expose, how do you let people read what’s inside there? In civil architecture you can show

them a building. You can show them a painting. They can listen to a piece of music. How

do we expose the music that’s in software?

Maybe we need to document algorithms and data structures.

Grady: I think that’s too low a level. My thesis is you need to document the patterns that

sweep through the system itself.

Creativity, Refinement, and Patterns

How can we address the problem of legacy software?

Grady: The phrase I often use is that while the code is the truth, it’s not the whole truth:

there is a loss of information from vision to execution. My experience is that there are

nine things you can do with old software: abandon it, give it away, ignore it, put it on life

support, rewrite it, harvest from it, wrap it up, transform it, or preserve it. Each of these

things has both technical as well as social elements. From a technical perspective, there’s

interesting research underway to harvest patterns from code; from a social perspective,

the techniques of oral histories can contribute to a solution.

Download at Boykma.Com

U M L 367

Where do you find inspiration for design?

Grady: I find inspiration in the elegance of complex things. These things may be software

(one of the goals of the Handbook is to be able to codify a set of architectural patterns and

to explain their beauty); others may be organic systems (really, any organic system: a sys-

tem that has evolved from millions of years of forces upon it clearly has some things we

can learn); art (there is great beauty in many artists in many mediums); music, product

engineering, quantum physics…the list goes on and on for me.

To what degree do you see creativity as necessary in programming?

Grady: A lot of programming doesn’t require a lot of creativity because you’re solving

known problems and you’re trying to do them in interesting ways. It’s not unlike some-

body building an extension to my house. There are certain constraints in which they live

and there are certain best practices they need to follow. I’m going to hire somebody who’s

not totally out of the box but I want to hire somebody who can follow those best practices.

He or she will need to innovate along the way. It’s like, “Oh, wow, this doesn’t quite line

up, and so I need to think of some innovative ways to do X.” That’s where innovation

comes in for the small, individual developer.

A lot of what we do in software development does not require that much innovation. We

have known technology upon which we’re building it. We need to apply it in novel ways.

We need to shape it, sand off the edges, add a new slot here and there. That’s part of the

fun in the puzzle of so doing. No doubt.

There are certainly places for which unbridled innovation is necessary. We didn’t know

the right way to build software for huge globally scalable searching systems and Serge and

Larry went off and they prototyped it and thus Google was born. We don’t know the right

ways to look at all the data feeds from the tens of thousands, if not millions, of video cam-

eras that are placed in corners around the world in London and New York and Beijing.

What’s the right architecture to do that? We have no good models to do so, and so wild

innovation, unbridled innovation is necessary.

But once you start converging upon the right kind of architecture, then you’ve con-

strained a problem and you start innovating in the small.

You used the words “innovation” and “constraining” again. It seems like a direct parallel

to the evolution of a language.

Grady: Absolutely. The thing that a painter or I as a writer or anyone in the creative field

hates the most is a completely blank page because there are no constraints. There’s noth-

ing to guide me. The moment you start putting constraints on it, in a way it’s a curious

thing. You’re freed because now you can begin working within those constraints and

applying all of your innovative skills to resolve those constraints.

If I am a musician and I say, “Wow, I can do anything.” Well, being unconstrained it’s

like, “Gosh, should I do the piano or should I play something else? Should I do whatever?”

Download at Boykma.Com

368 C H A P T E R F O U R T E E N

It’s actually an embarrassment of riches and it doesn’t focus you. I may say, “Gosh, I could

build my own piano.” Or like Don Knuth did, “I’m writing this book and I don’t like the

way it lays out, so I’m going to stop for a few years and write a language text to actually

lay out books.” Not to condemn what Don did because he did some wonderful things

there, but in the face of no constraints it’s really hard to focus one’s skills.

Do you suggest that we first identify the constraints when we seek to build a new system

and then embrace them?

Grady: I don’t think you can always first do that. You sort of live under them and you

may choose some constraints; every decision I make then makes a decision to not do other

things and that’s not a bad thing. So many of the earliest decisions one makes in any of

these projects is to establish some constraints via a leap of faith. You can’t a priori decide

what all those constraints are and you have to make an attempt to try something, throw it

out in the world, and then follow it. For example, very simple case, I might say, “Gee, I

want to devise a new graphical programming language.” And so I begin. Well, all of a sud-

den I’ve just made some decisions like, “Wow, it’s maybe like a 2D language as opposed to

a 3D language.” Maybe I make the decision that color is important for me and all of a sudden

I realize, “Wow, I’ve just alienated the whole community of color-blind programmers.” Every

one of those things becomes a constraint that I have to work out, and I have to deal with

the consequences of those constraints.

That argues for an iterative process.

Grady: Absolutely. All of life is iterative. It goes back to the point I made earlier, which is

you can’t a priori know enough to even ask the right questions. One has to take a leap of

faith and move forward in the presence of imperfect information.

Is it likely we’ll see a break-out visual programming language or system in the next 10

years?

Grady: Oh, it already exists. It’s National Instruments’ Lab View. The absolutely wickedly

coolest visual programming language I’ve seen. I don’t know if you’re familiar with it. It’s

absolutely amazing. You draw your boxes and lines that represent virtual instruments and

virtual electronic devices. You can if you need to dive into using, I think, C and C++. Basi-

cally you can build virtual instruments and connect them with real-world devices and it’s

just wickedly cool. Such a thing already exists.

What type of instruments?

Grady: Oscilloscopes, monitoring instruments. Imagine taking your PC and having on its

USB port some D2A converters and parallel serial converters and things like that so I can

talk to real world equipment. Now I can build virtual instruments on my PC simply by

drawing things together. Maybe I want to have a strip chart or an oscilloscope or do some

munging of data and present it in some interesting ways in various meters, trivial to do in

Lab View. It is wickedly cool.

Download at Boykma.Com

U M L 369

If you look at the direction further out where Charles Simonyi is trying to head with

Intentional. Charles’s notion—and he’s gathered some prototypes in his case—if I am an

electrical engineer, then I’ll use schematics and I can feed that into my system. I have not

seen a variety of others of his, but that’s one of the classic examples. I choose a visualiza-

tion that is germane to that particular domain.

How about for your standard business application? You have a database backend. You

have business objects. You have a presentation layer.

Grady: Most enterprise systems are architecturally very dull because they are relatively

simple in that regard. They’re a state. There’s a set of design decisions you have to make,

and we know what those decisions are. Why it’s been so difficult is because there’s a tre-

mendous technology churn that’s going on and it’s the embarrassment of riches. There are

so many ways I could go build something.

I mean, if I were to say today, “Gee, I’m going to start building from scratch a banking sys-

tem.” Well, there’s probably a set of standards I need to worry about at first, but gosh I

could choose from a countably finite but very large countably finite set of ways to solve

that problem. That’s where I think much of the challenge and chaos comes into being.

Consider the most volatile piece of business applications these days. It’s been the presenta-

tion layer. How do I deliver this information to people? For a decade or so people were

content to do this just printing things, but now we have these wonderfully open ways via

the Web and mobile devices, and you see a lot of innovation churn in that area because

we haven’t converged upon the right models in which people want to collaborate with

these systems. That’s why you see churn.

The other most volatile piece is the area of business rules. The challenge of the times in the

past because we’ve been so limited by our machines is that we had to throw business rules

in some creepy places, stored procedures and you put it in the browser, but they’re all

over the place. We’re realizing that that’s a bit of a problem because it makes it difficult for

us to react to change when the volatile business rules change very quickly.

You’re seeing the refactoring of many enterprise systems where business rules are being

pulled out. We find ways that the enterprise system sort of looks at this repository of busi-

ness rules and reacts to it. But again, we couldn’t have known that...we built these first

systems; we couldn’t have known that’s where the most volatile pieces would be, and

that’s some of the changes that are going on right now in that space.

Is that open for visualization? You bet. We see the opportunity for being able to find new

languages to express business rules. My personal opinion is the UML was quite sufficient

and we saw some interesting political things happening that led to BPEL (Business Process

Execution Language) coming out as a very separate thing from the UML.

Microsoft might argue that M is an attempt to do that.

Grady: Absolutely, which goes back to the point I raised earlier: will M be successful? The

marketplace will decide.

Download at Boykma.Com

370 C H A P T E R F O U R T E E N

People might not even realize they want a separate layer for business rules.

Grady: Absolutely. There’s a delightful paper written by researchers at IBM called “The

Diary of a Datum.”* We keep adding these layers that perhaps to some degree help us as

humans reason about and visualize these systems, but ultimately in the executability of

our systems we’re adding incredible layers. In “The Diary of a Datum,” they point out

we’re looking at this simple piece of data, and it was astounding the numbers of ways that

that data was transformed, streamed in, streamed out, cached, until something actually

real was done to it. There’s a cost to the layers of abstraction we add to our system.

It seems to me that the average complexity and size of software keep growing year after

year. Does OO help?

Grady: If by OO you mean particular classes of languages, one could make the case that

said languages are indeed more expressive than others and as such represent a higher

level of abstraction (and so require fewer lines of code to represent something). If you

mean OO as simply a philosophy of decomposition—as contrasted with algorithmic or

functional abstractions—then you’d be back to one of Aristotle’s issues in his text Catego-

ries: multiple forms of decomposition are really necessary to express complex things.

I’d observe the complexity is not proven to be isomorphic with size/lines of code. There is

another kind of complexity, perhaps best measured by what I call semantic density (the ratio

of meaning to expression and the measure of the semantic connections among things). Is

semantic density increasing? Yes, I think so, but I think that’s orthogonal with the means

of expression—object-oriented or not—that we use to express such semantics.

Concurrency in software is a big topic these days.

Grady: It’s been an issue for a long time. Simulated concurrency (multitasking) on single

processors is an old concept, and the moment more then one computer existed in the

world, people began to think about how to make those things work together. Today we

have islands of computing, but more often than not, one has loosely coupled distributed

concurrency (e.g., the Web) or intimate concurrency (multicore ships to massively parallel

computers). In short, this has always been a “big topic” and, frankly, it’ s a really hard

problem. The average developer does not know how to build distributed, concurrent, and

secure systems, because these properties require systemic solutions.

What about concurrency in development? Will we ever be able to reduce development

time by adding more people?

Grady: Again, I have to question the premise of your question.

“Reducing development time” is one possible benefit, but other viable ones are “improve

quality,” “increase functionality,” “reduce complexity,” and others are desirable results of

* Mitchell, Nick et al. “The Diary of a Datum: Modeling Runtime Complexity in Framework-Based

Applications,” IBM Research (2007).

Download at Boykma.Com

U M L 371

adding more people. It is pretty much undeniable that adding people increases available

labor cycles but also increases noise, communication overhead, and project memory costs.

The reality is that most economically interesting software—intensive systems simply

require a goodly handful of people—and really interesting ones require hundreds if not

more stakeholders. So, in some ways, you’ve asked an uninteresting question. :-)

What limits the effectiveness of collaboration during software development?

Grady: My experience suggests that there are a number of points of friction in the daily

life of the developer that individually and collectively impact the team’s efficiency:

• The cost of startup and ongoing working space organization

• Inefficient work product collaboration

• Maintaining effective group communication, including knowledge and experience,

project status, and project memory

• Time starvation across multiple tasks

• Stakeholder negotiation

• Stuff that doesn’t work

I wrote about all this in the CDE papers found here: http://www.booch.com/architecture/blog.

jsp?part=Papers.

How do you recognize simplicity in a system?

Grady: Dave Parness asked me this very question. I wrote an article for our IEEE software

recently in my column on architecture dealing with complexity and I started out saying,

“Look at a huge multiton boulder of granite. It’s huge but it’s very simple. Look at a strand

of DNA. It’s small but it’s very complex.” Dave wrote me to challenge me on that saying,

“Defend why you believe that’s so.” I quoted back to him some of the work that Herbert

Simon has done in The Sciences of the Artificial [MIT Press]. Simon notes that if you look at

complex systems, complex systems that we can understand tend to have a variety of char-

acteristics in common. They tend to be hierarchical. They’re layered in some way or

another. There tends to be a tremendous amount of repetition within them.

Simon in his time saw that in terms of structural repetition. I’m going to update his

notions to say it’s not just repetition of the structures. It’s also repetition of the design pat-

terns we see within the system. Having had the opportunity to work with lots and lots of

projects in just about every domain you might imagine, I’ve seen some really gorpy sys-

tems. I’ve seen some beautiful systems. The ones that tend to be beautiful and simple tend

to have that commonality through a set of design patterns that transcend the system, that

cut across many of the individual component, and offer tremendous simplicity to them.

In fact, if you look at where the folks in DNA research are headed, they’re trying to find

those common things. We, the royal we, thought there was all this junk encodens we’d

find in DNA and we thought, “Oh, this is crap from evolutionary times and it’s mean-

ingless.” As we dive into it deeper we realize, “Wow, this junk is not necessarily junk.”

Download at Boykma.Com

http://www.booch.com/architecture/blog.jsp?part=Papers
http://www.booch.com/architecture/blog.jsp?part=Papers

372 C H A P T E R F O U R T E E N

We called it junk because we didn’t understand it. This is the God of the Gaps problem,

but I won’t get metaphysical on you on that one. As people in that space began to unpack

the beautiful, fierce elegance within these systems, there’s some amazing patterns that are

emerging. That’s where I find that simplicity and elegance.

What do you mean by a “design pattern that transcends the system”?

Grady: I’ll mention a Wall Street system. I won’t mention its name. I went through an

archeological dig with these guys recently and we were trying to mine some of the deci-

sions they’d made. This is a huge system. Millions of lines of code written in every con-

ceivable language you might imagine, from assembly language to contemporary languages

of today. If you look at the overall architecture of the system, there are some guiding prin-

ciples that are very common. There’s a security aspect of this system. You really don’t

want people coming in and not knowing that they’re doing it, shaving off a thousandth of

a percent of a transaction. If you’re doing a trillion dollars’ worth of transactions every

day, nobody’s going to notice it.

How do you prevent that kind of thing? Very simple business rule. All state changing

things must be in stored procedures in the database so that there can be no way, because

this is checked through walkthroughs and a variety of formal mechanisms, there’s no way

you can inject code that has state-changing ways without doing that. That’s a very simple,

elegant principle that transcends all that code out there. It’s things like that.

Design patterns are ultimately names of societies of classes that work together in a harmo-

nious way. Just by looking at an individual line of code you can’t see those kinds of things.

That’s the challenge of architectural mining, by the way, because the code’s not the whole

truth and being able to find those things and discover those patterns. It’s often locked up

in the heads of individuals.

That almost implies that you can’t always look at a system and understand and see its

simplicity or see its underlying organization until you understand those constraints or

rules or design decisions.

Grady: Absolutely. We have to learn by inference, too. You look at a whole bunch of

these things and the patterns begin to emerge. You can’t look at just one instance and say,

“Wow, there’s a pattern,” because that’s not the nature of the patterns themselves. This is

one of the areas where I tend to use the UML a lot in visualizing the architecture of as-

built systems. There’s “green field” development out there, no doubt, but by and large

most of the software in the world, to quote a term from Chris Winter, is “brown field.” It

sounds icky and malodorous. It is to some degree—but most of the interesting systems we

build are systems that are adaptations or accretions upon existing systems.

Maybe we should embrace the term “brown field development.”

Grady: I think it’s a great thing. It’s not a bad thing at all. That’s where UML comes into

play for me because it allows me to visualize things that I can’t see in just the individual

code itself.

Download at Boykma.Com

U M L 373

It’s a level of abstraction beyond that where these patterns can become obvious. I can

imagine that if you’re drawing diagrams or producing UML artifacts for an existing system,

there’s a very satisfying feeling when you can unify concepts.

Grady: Absolutely.

You (and many other interviewees) cited OO development as a major element of correct

design. How much is it fundamental?

Grady: This may sound very curious coming from me, but OO is, IMHO, an effect and not

a first cause. Having had an opportunity to examine many complex systems in many

domains, I observe that the best ones—most useful, most elegant, most cunning, most...

whatever measure you may choose—have a number of common characteristics in their

development, namely a focus on crisp abstractions, a good separation of concerns, and a

balanced distributions of responsibilities. Abstraction is largely a problem of classification,

and object-oriented mechanisms are particularly well suited to classifying the world.

At OOPSLA about 20 years ago, Ward Cunningham and Kent Beck first proposed software

design patterns, based on the work of the architect Christopher Alexander. Has that been

a success, a moderate success?

Grady: My personal opinion, not that of anybody living or dead or my company or any-

body yet to be born, is that Alexander’s work, I think, is interesting and it has been an

inspiration for many in terms of its flow over into the software space. There’s a small com-

munity that has, I think, benefited from it, but the large community has not. It’s also the

case that the language of patterns, while I find this in many places, it’s probably not as

dominant as it could be or should be.

When you say language of patterns, do you mean something closer to what Alexander

said, which was, “Let’s create a vocabulary by which we can talk about recurring ideas of

design”?

Grady: Absolutely correct. In many of the industries in which I go into, many of the

projects into which I go into, the notion of the Gang of Four patterns there might be a

reading knowledge of it, but not an actual application to building their systems or their

architectures. There are places where it has made a big difference, but it’s not gotten as

deeply into the roots of mainstream as I would have liked to see. It’s not the specifics. It’s

the way of thinking about the problem.

What might solve that?

Grady: What I tend to do when I go into projects is help them develop a language of pat-

terns. They need to understand. They need to get the working knowledge of what patterns

are all about. Then I try to encourage them to find the patterns and name the patterns that

they have developed themselves in their systems and start documenting them, making the

patterns their own.

Download at Boykma.Com

Some of those patterns might reflect business rules and constraints.

Grady: Some of them might not. It depends upon the nature of that domain. What are

the unique value-added ways, the innovative ways they have solved their problems?

Those are the design patterns.

I’m working with a satellite project right now. It’s only about 50,000 lines of Ada. There

are some amazing patterns that are potential, that exist in the minds of these developers.

And the challenge has been getting to name those things so they can communicate them

well. These are brilliant architects but insofar as you can’t name a thing, then it’s hard to

talk about it and name it and manipulate it and communicate it to others.

Let’s take APL. Certain flows of data in there might not necessarily translate directly to

other languages.

Grady: Right. Ada is a wonderful language in so many ways. Look at the features that we

see coming into Java and C++ and others. The issues of concurrency built into the lan-

guage, exception mechanisms, generic mechanisms, abstract data types—Ada was ahead

of its time.

Download at Boykma.Com

375

Chapter 15 C H A P T E R F I F T E E N

Perl
Larry Wall

Perl fans call it the “Pathologically Eclectic Rubbish Lister” and the “Swiss-Army

Chainsaw”, flaunting the motto, “There’s More Than One Way to Do It!” Creator

Larry Wall sometimes describes it as a kind of glue language, originally intended

as a sweet spot between the Unix shell and C to help people get things done. It

incorporates linguistic principles and design decisions from Unix (and sports per-

haps the largest repository of libraries of any language in the CPAN). Many pro-

grammers anxiously await the long-developed revision of Perl 6, a language

designed to last at least 20 years.

Download at Boykma.Com

376 C H A P T E R F I F T E E N

The Language of Revolutions

How do you define Perl?

Larry Wall: Perl is an ongoing experiment in how best to incorporate some of the princi-

ples of natural language into computer language, not at a shallow syntactic level like

COBOL, but at a much deeper pragmatic level. Some of the fundamental principles of

human language are—well, here, let me paste you a list:

• Expressiveness is more important than learnability.

• It’s quite OK to speak in “baby talk” if you happen to be a baby.

• A language can be useful even before you have learned the whole language.

• There are often several good ways to say roughly the same thing.

• Every linguistic utterance gets meaning from many contexts at once.

• Your language is agnostic about which context you should optimize for today.

• Your language does not enforce any particular paradigm in exclusion to others.

• Efficient communication requires a certain amount of linguistic complexity.

• Semantic networks do not generally map well into orthogonal spaces.

• Shortcuts abound; common expressions should be shorter than uncommon expressions.

• Not everything can be easy to express; it’s OK if some things are hard but possible.

• Languages naturally have slots for verbs, nouns, adjectives, adverbs, etc.

• Humans are good at syntactic disambiguation when the slots are obvious.

• Languages are naturally punctuated by pauses, intonation, stress, pacing, etc.

• Languages make use of pronouns when the topic of conversation is apparent.

• Languages should ideally express solutions, not talk about their own constructs.

• Healthy culture is more important than specific technology to a language’s success.

• The primary purpose of language is to communicate with people who are different

from you.

• It’s OK to speak with an accent as long as you can make yourself understood.

• Subcultures have special problems and often generate useful dialects or sublanguages.

• People learn to do “frame shifting” when confronting dialectic or accentual differences.

• Frame shifting is more efficient when you can easily tell which sublanguage you’re

dealing with.

• For any living language, evolution is not preventable over the long term.

• For most communication, worse-is-better is fine, but sometimes better-is-better is better.

• It’s particularly important for written documents to be evaluated in historical context.

Download at Boykma.Com

P E R L 377

Each of these principles has had profound influence on the design of Perl over the years.

Doubtless each of them could be expanded to a paragraph, or a chapter, or a dissertation.

Even ignoring computer languages, linguistics is a huge field with many specialties.

On the other hand, most of these principles have largely been ignored in other computer

languages. For various historical reasons, many language designers tend to assume that

computer programming is an activity more akin to an axiomatic mathematical proof than

to a best-effort attempt at cross-cultural communication.

To be sure, it also goes the other way—concentrating on these linguistic principles has

upon occasion led me to ignore some important ideas from computer science. We’re

working on fixing some of those warts now.

Which ideas are those?

Larry: One of the major places where we kind of fell down in the early design of Perl—or

maybe I should be honest and say “I fell down”—is this notion of the proper scoping of

things. True, Perl 5 does have lexical scopes for variables, but there are many places where

it doesn’t really quite have the right scoping. And it still has lots of global variables.

Perl 5 also has a lot of action-at-a-distance. Perl made much the same mistake that lan-

guages like Ruby are currently making with monkey typing, that is, reaching in and mon-

keying with the innards of things, which results in spooky action-at-a-distance.

We’ve learned that there are a number of different proper scopes for things. Classically we

can attach information to an object or a lexical scope or a dynamic scope, of course, but

we also have file scopes, process scopes, threads, types, metaclasses, roles, prototypes,

events, grammars, and transactions, to name a few. You can even think of things like pre-

cedence levels as a strange kind of scope. Each location in space or time has things that are

naturally associated or attached to it, and those things are misplaced if attached some-

where else. That’s something that I’ve been learning slowly over time. Some would say

too slowly.

Another principle is the importance of knowing which of your data structures are mutable

and immutable. That’s something that will become even more important in the coming

years because of parallelism; you really cannot do a good job with concurrency unless you

keep track of what might change when. That’s something that Perl has historically swept

under the carpet. We treated everything as mutable.

Mutable even by observing it sometimes.

Larry: Yeah. It’s a mindset that works well for small programs and naïve users—it doesn’t

violate the expectations of newcomers if they are not very sophisticated.

On the other hand, it does make it more difficult to scale up to programming in the large,

where you have to pay more attention to mutable versus immutable, public versus pri-

vate, the kinds of distinctions that let you know when you are allowed to change things

Download at Boykma.Com

378 C H A P T E R F I F T E E N

and when you aren’t. These sorts of things have become increasingly important in the

design of Perl, especially with Perl 6.

At the same time, we want to try to keep the same feeling and, where possible, hide some

of the high-falutin’ concepts so that a new user can still pretty much ignore them. But just

because they’re hidden doesn’t mean they aren’t there; if Perl’s really doing the right

thing underneath, then we can at least have some hope of detecting when something is

going wrong, and some hope of knowing when it is reasonable to spread the work out

over multiple cores without worrying too much about things happening in a bad order. To

do that, you have to track the data dependencies. That really implies knowing when a

pointer can be treated as a value and when it must be treated as an object.

Perl was born as a collection of tools to manipulate text and simplify the job of system

administration. What is it now?

Larry: Perl is actually two things right now. First, in its Perl 5 form, it’s a very stable

example of what it started out to be: an API glue language that is really good at text pro-

cessing (augmented by vast quantifies of extensions lovingly crafted by a pathologically

helpful culture). That’s why the Web was largely prototyped in Perl—because HTML is

text, and people wanted to write HTML that glued in data from various sources including

databases. The extensions to do that were already there, or were easy to write.

But Perl is also Perl 6, where we’re trying to fix everything that’s wrong with Perl 5 with-

out breaking anything that’s right with Perl 5. We recognize that this is impossible, but

we’re going to do it anyway. We’re completely redesigning the language while keeping

the same underlying design principles.

Even in its current, partially implemented form, Perl 6 is already a spectacularly cool lan-

guage in many people’s opinion, and when it’s done it will, hopefully, be both self-

describing and self-parsing using highly derivable grammars, and thus optimized to evolve

smoothly into any kind of a language we might want 20 years from now. It will come with

knobs to adjust its many different dimensions, including the ability to hide all those

dimensions that you aren’t currently interested in thinking about, depending on which

paradigm appeals to you to solve the problem at hand.

Well, that’s our dream, anyway….

How did you go from writing a tool to manipulate text and simplify the life of sysadmins

to a complete programming language? Was this a deliberate step or a gradual transition?

Larry: Hmm, those are not mutually exclusive, which is a good thing because I would

characterize the process as a deliberate gradual transition. A language is a wonderful play-

ground, and it was obvious to me from the start that I would continue to develop it into

whatever I needed for “today”. But of necessity such a process must be gradual, regardless

of how deliberate it might be, if for no other reason than that you have to wait for “today”

to change until you know what you’ll really want next.

Download at Boykma.Com

P E R L 379

That being said, there was a point when I realized that Perl was not just about making easy

things easy but also about making hard things possible. Perl 2 could only handle textual

data, so I said to myself, “Perl is just a text-processing language; if I teach Perl how to han-

dle binary data, who knows where it will stop?” Then I realized that there are a great

many problems in the world that are mostly textual, but that require handling a little bit

of binary data; adding solutions for that problem space would greatly increase the applica-

bility of Perl, even if the handling of binary data was only rudimentary. So Perl 3 handled

binary data, and who knows where it’ll stop?

Also, I came to see all this as a continuation of my earlier notion that Perl wasn’t going to

have any arbitrary limits such as those that plagued early Unix tools. Truncating a string

merely because it contains a accidental null character is just about as bad as truncating it

because your buffer is too short. You might even say that the process of generalizing a lan-

guage is simply the removal of various kinds of arbitrary limits, on one level or another.

Do you prefer freedom or order? Do you prefer one way to do one thing, or a thousand

ways to reach the same goal?

Larry: That’s not a terribly meaningful question unless you define what you mean by

“way” and “reach”, which optimizations you allow, and how the various permutations

and combinations of options are allowed to multiply. Natural languages are like old-world

cities where precious few of the streets meet at right angles, and there are typically several

more or less decent ways to get where you’re going. Obviously, if you count up all the

possible ways to get somewhere, not just the best ones, you have might have a googolplex

of them or more.

Even in a completely orthogonal city built on a strict rectangular grid, you can reach your

destination in countless different ways, unless you constrain the solution to treat the

dimensions as ordered, as in a mathematical vector giving a spatial location, and specify

that you want a minimal path. But as a person, your motion in a city is not simply defined

as a vector. You optimize for many different kinds of externalities as you navigate through

a city or through a language. There may or may not be a single best solution, or a solution

at one time of day may not be the right solution for a different time of day. You could opti-

mize for visiting all the parks along the way, or you might just want to stay out of the

river. Or in the river.

So, to actually answer your question, either of those extremes is suboptimal. I suspect the

fractal dimensionality of natural language is rather larger than 1 but much, much smaller

than 1,000. If you really only have one way to say something, then you could be replaced

by a robot programmer. If you really have a thousand seemingly equivalent ways to do

something, you’ll very quickly come up with some kind of razor to trim the choices down

to a manageable number at every choice point.

Download at Boykma.Com

380 C H A P T E R F I F T E E N

Language

Many people credit Perl for being very, very good at text processing. Is there a connection

between that and the linguistic concerns you had in mind when you created the

language?

Larry: Ooh, that is a good question. One is tempted to say yes, and one would probably be

wrong.

The telltale evidence is that, though it was designed to work on certain levels the same

way a natural language works, Perl was really no good at parsing Perl code. (It used yacc

for that.) I rather suspect that if the answer had been yes to your question then Perl 1

would’ve been much more aimed toward the sort of language parsing that Perl 6 is now

aimed at. But it wasn’t. Call it compartmentalization if you will, but the task that Perl 1

was trying to address was a much more limited form of text processing than what we do in

our brains when we’re thinking about natural language.

I reviewed the test suite for Perl 1 a few years ago, and even then the code was

recognizably Perlish, even considering that many Perlish notions such as context have

evolved over time. How much of the intrinsic Perlishness did you have in mind from the

start?

Larry: Certainly the notion of context was important from the start, and Perl 4 even had a

fairly well-developed notion of context. I think, however, that it only dawned on me

gradually how important context is. As a linguist, I’ve always known about context; under

tagmemics, one of my favorite linguistic theories, multiple levels of context are exceed-

ingly important. How a word is classified lexically is very different from how you use it.

You know “verb” is a noun even while you’re verbing it. So I always had this notion float-

ing around in my brain that you can put a particular construct to use in various ways

driven not only by the construct’s own structure and type, but also by its semantic and

cultural context. I think where the contextual design actually shows up the most in early

Perl is not so much in the low-level syntax of things like scalar versus list, but more in the

notion that when you are trying to do a job, you are programming in the context of the

thing you’re trying to accomplish outside the program. Therefore, it is useful to have a

language in which there are multiple ways to express things so that you can optimize for

externalities.

In other words, your program should represent the context of your problem more than

trying to express the problem in the context of your language.

Larry: Yes, the question is who’s to be master, that’s all. There will usually be a number of

different ways of representing a particular problem, especially if you consider the various

programming paradigms. Some of those will more naturally map to some problem spaces,

and others will more naturally map to other problem spaces. If you’re thinking of your

problem as some sort of a mathematical proof, then something more like functional pro-

gramming is better, something more declarative, where things have universal meaning

Download at Boykma.Com

P E R L 381

that never changes—you know, when there’s a lot of immutable state built into the con-

cepts you’re directly working with. But if you are doing something more like a simulation,

then you will be thinking of the problem more in terms of objects that change over time.

For a given problem that you’re trying to solve, these may be provably isomorphic views,

but the different programming paradigms force you into placing your mutable state in one

place or another. It’s obvious where the state is in objects; that’s what objects are for. It’s

not so obvious where the state is in functional programming—the state is implicitly hid-

den in the stack and in the way the various monads and function calls have been

arranged.

So, one form of context is how you prefer to view such things as a programmer.

It’s sort of a weak Sapir-Whorf hypothesis. I don’t believe in the strong version of that....

You were predestined not to believe in strong.

Larry: Yeah. I chose to be predestined. Or maybe it’s just that my brain is not wired lin-

guistically in the first place, so I do a lot of nonlinguistic thinking. And therefore I don’t

think language has control of my brain. Be that as it may, the weaker form of the hypoth-

esis is fine by me: the language in which you choose to express something certainly has

some influence on how you choose to express it. Therefore, if you actually want to have a

single language that has a better impedance match with many different kinds of problems,

then you need a language that does not, in fact, force you to think in any one particular

way.

There are several subtle contexts: the Unix one-liner, where you can express a useful,

working Perl program. There’s the shell-script context, where you have what looks like a

shell script with all of the power of Perl 5 behind it. There’s the standalone single-page

CGI program context. To some degree, it is a different context for getting things done. You

can recognize it both as distinctly Perl and distinctly that style. It’s a Perl one-liner or it’s a

shell script written in Perl.

Larry: In linguistic theory, we call that “pragmatics,” a step or two away from semantics

toward sociology. Some linguists tend to focus down on the low-level phonology or syn-

tax. You see the same tunnel vision in many computer language designs; the designers

haven’t really thought much about how utterances are used to do practical things. If

you’re talking in terms of one-liners and shell scripts, essentially you see the same sorts of

things happening in natural language. There are utterances that you can say to somebody

at the bus stop that are one-liners that communicate. English is full of pithy utterances. At

the other extreme, there are all sorts of literary genres that you might think of as compa-

rable to programming paradigms. There are various levels of discipline that you can exer-

cise in composing literary efforts. These genres have various rules that you are allowed to

break from time to time. And sometimes you’d be stupid to break them, but the language

itself is not trying to enforce any one particular style.

Download at Boykma.Com

382 C H A P T E R F I F T E E N

Natural language is neutral on that score. Language is the servant of the poet—it’s the

artistic medium in which the artist is trying to do Something Else. That Something Else is

what is driving the whole process and should rightfully drive the whole process.

There’s a sense in which natural languages are extremely humble. They don’t tell you

how you have to talk. Your grammar school teacher told you how you have to talk, but by

and large, people ignore that, and it’s a good thing.

Nevertheless, there are the equivalent of grammar school teachers for computer lan-

guages, and for certain kinds of utterances, you should follow the rules unless you know

why you’re breaking them. All that being said, computer languages also have to be under-

standable to computers. That imposes additional constraints. In particular, we can’t just

use a natural language for that, because in most cases when we’re communicating with

natural language, we are assuming an extreme intelligence on the hearing end who will in

turn assume extreme intelligence on the speaking end. If you expect such intelligence

from a computer, then you’ll be sorely disappointed because we don’t know how to pro-

gram computers to do that yet.

Even though Perl is the first postmodern computer language, computers are really bad at

understanding irony.

Larry: Indeed. They really don’t understand when they should ask for feedback. That’s

because they don’t understand when they should be unsure. Mind you, there’s a lot of

people who do not understand when they should be unsure either, but it’s a matter of

degree there. Computers are very quickly promoted to the level of their incompetence.

You’ve often said something to the effect that computer language designers should pay a

lot more attention to linguists than mathematicians because linguists actually know how

to communicate with people.

Larry: Let’s just say they know how real people communicate.

Mathematicians know how to communicate with each other, but that doesn’t say whether

you want to consider mathematicians to be real people or not; I’m sure the mathemati-

cians could find some way in terms of set theory to decide that they are real. Nonetheless,

I think that linguists pay a little bit more attention to psychology and pragmatics than

mathematicians usually do. So maybe linguists can help computers get a little bit smarter

about those things.

Do you believe that the idea of a small, rigorous, and provable model of a programming

language may not work in the real world where people have to work with it?

Larry: There will always be some subset of people who are willing to pour their minds

through very small funnels. To the extent that you can find people who are willing to do

that, a given language will be successful for the problem space that it is intended, barring

other catastrophes.

Download at Boykma.Com

P E R L 383

It is not necessarily the case that the opposite holds. A language that is large enough may

not achieve success for a number of reasons. It may be too difficult to implement. It may

be too difficult to get people over the hump of learning a useful subset. I suppose those are

the two main difficulties in getting a larger language accepted.

Nonetheless, none of the computer languages that have been invented so far come any-

where close to the complexity of natural language, I think. And people are demonstrably

willing—well, perhaps not Americans—let’s say that most people who do not speak

English are demonstrably willing to learn multiple languages.

I’ve tried learning several natural languages, and they’re really hard. The lexical complex-

ity, the strange grammatical rules that vary from language to language, the ways in which

languages make you think about things in different orders, the way some languages make

you say things that other languages don’t make you say and vice versa, and so on. It’s dif-

ficult to learn a natural language. The question is, can one actually make a computer lan-

guage that is rich enough that people are willing to cross that learning barrier? Can the

language be made such that people can usefully learn a pidgin subset of it? We see how

pidgins and creoles arise in natural language when people are sufficiently motivated to

find a common language somehow.

Can we tap into that dynamic? Can we design the language such that it is no more compli-

cated than it really needs to be? Those are all really good questions that every language

designer answers differently. Perl has hierarchical namespaces, but some computer lan-

guages just have a flat namespace and put everything into one lexicon. Arguably, English

does that. Especially if your name is Webster or Johnson.

English does support the notion of jargons and implicit communication forms.

Larry: Certainly it does. That points out the notion of lexical scoping that is so important

to the control of language diversity in Perl 6. It’s very important to us at every point in the

lexical scope to know exactly which language we are speaking. Not so much because it’s

important to the human; it is, but the human is smart enough to puzzle it out eventually.

The compiler probably isn’t that smart, so it’s crucially important to the compiler to keep

track of which language it’s parsing.

If we can keep the compiler from getting confused, I suspect we can keep the people from

getting confused, too. Different lexical scopes, different passages in literature—different

frames, as they call them in psycholinguistics—use different languages. People do frame

shifting all the time. They know when to talk casual, and they know when to speak prop-

erly. People make adjustments all the time without being aware of it. It’s part of the tool-

box of natural language.

Download at Boykma.Com

384 C H A P T E R F I F T E E N

How do you know if the problem you are trying to solve requires a tool or a language to

be solved?

Larry: That’s really a fuzzy boundary; the notion of single tool blends into the notion of

sets of tools, and I suppose you can view a language as a set of tools, so it’s not a hard and

fast distinction. Is a Swiss Army knife one tool or many?

Perhaps a more important distinction is how well the set of tools plays together. The Swiss

Army knife may be a handy set of tools, but it’s rather difficult to use multiple bits of it at

the same time.

I’d say that languages tend to differ from tools or even sets of tools in how general they can

be (though of course there are special-purpose languages as well as general-purpose).

While a language can be viewed as a mere tool, languages really excel at putting ideas

together in unforeseen ways. If your problem requires such composability, and is not

overly penalized by the linear nature of language, then defining a language can be a good

choice for solving your specific problem—or at least some reasonable subset of your problem.

Beyond that first problem, your language may subsequently provide you with a machine

shop that you can make other tools with more easily, and to the extent that it does so,

you’ve improved your life in a permanent way. Sometimes, knowing that in advance, you

go out of your way to invent a language even though it might no be the fastest route to

solving the first problem you apply it to. But if you’re Truly Lazy, you’ll figure out how to

amortize the extra effort over all the eventual uses of the language.

How does a language change as it starts to move away from a specialized domain? It may

be fair to characterize earlier versions of Perl as a cleaned-up dialect of Unix designed as

an API for gluing things together. How does a language change when it moves from a

specific purpose like that to something more general?

Larry: In my experience, when you have a domain-specific language like that, you have

various constructs which feel very natural but are all, in some sense, defined in an ad hoc

fashion. They feel more rational than they perhaps are.

Is that the human brain trying to make connections with things?

Larry: Yes, and when that happens people will leap to conclusions that don’t necessarily

follow. You end up with a large set of Frequently Asked Questions. If you look at the Perl

set of Frequently Asked Questions, there’s quite a few of them, which could be construed

as evidence for this process of what you might call false generalization. When you are

evolving a language into a more general-purpose language, you go back and look at all of

those places and you say “Why did people generalize that way? Should the language have

supported that? What are the minimal changes that we can make to how it actually works

underneath that will actually do what they expect rather than what they don’t expect?”

That process to the nth degree is, as you know, the Perl 6 design process. We’ve been in

that mindset for the past few years.

Download at Boykma.Com

P E R L 385

Can you give an example?

Larry: In Perl 5, $var is a scalar, @var is an array, and %var is an associative array. New

users often generalize that to think that @var[$index] and %foo{$key} are how you write the

indexed forms, but for historical reasons that’s not how Perl 5 does it. The documents go

through contortions to explain why things aren’t the way people expect. In Perl 6, we

decided it would be better to fix the language than fix the user.

In Perl 5, various functions default to an argument of $_ (the current topic) if no argument

is supplied, and you basically have to memorize the list of functions that do so. If you

don’t, you’re likely to falsely generalize that capability to all functions. In Perl 6, we chose

to not have any functions default that way, so there is no longer any danger of false gen-

eralization. Instead there is some lightweight but explicit syntax for calling a method on

the current topic.

Any time your language compels you to memorize an arbitrary list, the very arbitrariness

of the list indicates that someone will think certain things should be in the list that aren’t,

or vice versa. These things tend to creep into your design gradually. When Unix culture

first invented their regular-expression syntax, there were just a very few metacharacters,

so they were easy to remember. As people added more features to their pattern matches,

they either used up more ASCII symbols as metacharacters, or they used longer sequences

that had previously been illegal, in order to preserve backward compatibility. Not surpris-

ingly, the result was a mess. You could see the false generalization right there in many

programs; panicking users would backslash anything symbolic in a regex because they

couldn’t remember which characters were actual metacharacters. In Perl 6, as we were

refactoring the syntax of pattern matching we realized that the majority of the ASCII sym-

bols were already metacharacters anyway, so we reserved all of the nonalphanumerics as

metacharacters to simplify the cognitive load on the programmer. There’s no longer a list

of metacharacters, and the syntax is much, much cleaner.

One word that I use to describe Perl’s design is “syncretic.” You pick and choose good bits

from other places and try to combine them in a coherent whole. How do you balance

syncretism with the idea of generality of ideas and coherence between ideas and

features?

Larry: Badly, some would say.

It is the sad plight of language designers that they can only go by their gut feelings on how

to balance those.

History doesn’t support experiments very well.

Larry: Agreed, at least in general. It has been a rare privilege in the Perl space to actually

have a successful experiment called Perl 5 that would allow us to try a different experi-

ment that is called Perl 6.

We’re actively looking to strike a different balance this time based on what we’ve learned.

Certainly, many bad guesses were made, if not in terms of feature set, at least in terms of

Download at Boykma.Com

386 C H A P T E R F I F T E E N

what the default behavior should be for a given feature. We want to make different mis-

takes this time.

It will be interesting to see if it works. When we taught people earlier versions of Perl, we

had to do a lot of explaining why things had to be the way they were. Now we have to

come back and say, “Well, what we were thinking back then was wrong. Which means

what you’re thinking now is wrong.” It becomes an interesting cultural problem whether

and to what extent you can lead people out of where you led them into. To use a Biblical

metaphor, you led them into Egypt, now you’re trying to lead them back out to the Prom-

ised Land.

Some people will follow you, and some people will hanker for the leeks and onions.

Community

You’ve always encouraged the community to participate in design and implementation.

Was this a necessity for getting things done? Is it a reflection of your style of work or your

sense of aesthetics?

Larry: I’m sure it must be a combination of factors.

Certainly the early motivation for building a community is simply to have people both giv-

ing you positive and negative feedback. Preferably positive, but the negative also helps.

From a linguistics perspective, a language that has a very small community of speakers is

not going to do very well. It was pretty obvious on that level that a community certainly

helps the vitality of a project.

More than that, I just wanted my stuff to be used by lots of people because I like to help

people. As things progressed, the project got large enough that I needed help, too. About

the end of Perl 4, I realized that things were diverging in all directions, and people were

compiling up different versions of the Perl executable. It was obvious at that point that

Perl was going to need a modular extension mechanism, and that various people would be

in charge of various modules.

Pretty soon after Perl 5 itself came out, it became quite clear that even Perl itself was get-

ting too large for any one person to perform as integration manager (let alone designer)

for any extended period of time, without completely burning out. That job needed to be

handed off. Basically, I figured out in the early stages of Perl 5 that I needed to learn to

delegate. The big problem with that, alas, is that I haven’t a management bone in my

body.

I don’t know how to delegate, so I even delegated the delegating, which seems to have

worked out quite well. I don’t make people do things, but other people step up and exert

management force in appropriate directions and come up with to-do lists and coordinate

other people. It’s been interesting to see that despite my inability to micromanage, or

maybe because of my inability to do so, the community is in some ways healthier for it.

Download at Boykma.Com

P E R L 387

It’s possible I do have one management skill: I’ve never hesitated to tell people what they

should do, though usually in such abstract terms that they haven’t the foggiest idea what

I’m talking about.

You said that you aren’t interested in being a manager and you don’t think you have

capabilities to do so. Yet still you guide the Perl community. Is that your most important

job, or do you just want people to get along and you’re willing to do what it takes and

necessary?

Larry: I probably want people to get along on a slightly deeper level than Rodney King.

Mostly I think it’s my job to notice when things are kind of going a little wrong and just

put a little pressure to keep them from going wronger where I can. I don’t often get to the

point of having to take drastic actions; only once have I ever called up someone in the Perl

community on the phone and yelled at them.

It worked, by the way.

Certainly I think if my management skills were stronger, I would be able to minimize

some of the corrosive currents that do, in fact, flow through portions of Perl culture. There

are places in Perl Town you shouldn’t go after dark, but not even the most benevolent and

omniscient and omnipotent ruler can tell everyone what they ought or ought not to do all

the time.

Arguably, not even God tries to do that with us. As He says in Time Bandits, “I think it has

something to do with free will.”

One of the greatest successes of Perl 5 is the CPAN, and that seems to me to be the primary

form of extensibility. Did you make specific design decisions to encourage such a thing to

form or was it a serendipitous accident of history?

Larry: Well, as usual with this sort of historical question, the answer is yes, I did, and no,

I didn’t.

It was fairly implicit in the design of the modular system that various people would come

up with modules and publish them, and even that there would be repositories of these

modules. Other languages have had repositories of reusable software of various sorts.

What, of course, I did not anticipate was the scale of the thing and the sheer wackiness of

the things that people hooked Perl up to.

From the very beginning, it’s always been my concern to try to make Perl talk to as many

different APIs as possible, whether that’s shell or the environment variables or the operat-

ing system directly or the terminal. I was the first person to hack in an XML parser. It’s

always been important to me at various stages that Perl be a language that is not trying to

pull everything into itself, but to connect to the outside world in as many ways as possible.

That’s the essence of a glue language. Contrast that with a language like Icon, which has

tried to define everything internally in an insular fashion.

Now, I don’t want to oversimplify; to a greater or lesser extent, all languages reinvent at

least part of the wheel.

Download at Boykma.Com

388 C H A P T E R F I F T E E N

There’s always this pressure to have solutions in 100% Perl or 100% Java or 100% what-

ever. That simplifies things like configuration and testing. That makes distribution nicer. It

may make it easier to hire programmers. On the other hand, if your language is entirely

that way and your culture is entirely that way, it’s really a damaging form of hubris.

There needs to be a balance. Perl has always tried to err on the side of too many external

APIs rather than too few. But it’s best to support both approaches.

I built in these philosophies of connectivity and pragmatics. I did not anticipate the scale of

the thing when the World Wide Web came about. Perl really took off in a way that I had

never anticipated, but in a sense it was implicit there, too.

You deliberately put mechanisms in place to enable that serendipity to happen or to

exploit that when it happened.

Larry: For some definition of deliberate, which may or may not be left-brained or right-

brained, hind-brained or fore-brained or mid-brained. Usually pretty scatter-brained. Cer-

tainly a lot of this is “out-brained” in the sense of a great deal of the contribution of Perl

from the beginning has been from brains outside of my own brain.

Many languages have library repositories, but CPAN has an advantage in that the

implementors (Jarkko, Andreas, et al.) built just enough infrastructure to encourage

development without constraining it. Were there features of the language or community

you encouraged which made that possible?

Larry: I can’t take responsibility for the good choices of the CPAN implementors (or the

bad ones either), but I will say that I think CPAN hit some kind of a sweet spot in the

application of Sturgeon’s Law (“90% of everything is crud.”). Especially when you’re pro-

totyping something new, it’s easy to overdesign it to try to keep out most of the 90% code,

with the result that you keep out most of the 10% code as well. Certainly we’ve seen

some of that cruddy code later evolve to be not-so-cruddy, so it often pays to be patient

and take the worse-is-better approach. And some people are just late bloomers. We’re all

learning as we go.

As for what made it possible in the language, that was probably the most important design

goal of Perl 5: to allow anyone to extend the language via modules. From the viewpoint of

Perl 6 hindsight, I botched the design of Perl 5 modules in various ways, but it was Good

Enough, and CPAN was the result. I suppose I also said a few things now and then to

encourage the community in that endeavor, though only in the most general of terms. By

and large, however, it really just comes down to the fact that most Perl developers are

pathologically helpful people. I waved the flag a bit at the start to help nucleate the pro-

cess, but people mostly just brought themselves to the party and stayed because they

found some kindred spirits. And it delights me to see that cooperative spirit spreading to

other communities as well.

Download at Boykma.Com

P E R L 389

Were there surprising community contributions?

Larry: I don’t know if there really were or not. I suppose maybe the whole culture of

mandatory strictness and warnings was a bit of a surprise to me—people asking for more

discipline than was given by default. It became culturally acceptable to the point where we

decided to just build it into Perl 6. That was kind of a small surprise.

The biggest surprise to me came when we went to start redesigning Perl for Perl 6. We

asked for suggestions in the form of RFCs (Request For Change), and I expected to get

maybe 20. We got 361. Part of the surprise was in how much pain there actually was,

approximately 15 times more than I expected. The double whammy was how many dif-

ferent things that people thought could be fixed in isolation, which really couldn’t be. So

the need for a systematic redesign was the biggest surprise from the community for me

over the last 20 years. I have also been surprised (positively) at the success of some of the

cultural hacks. The original dual-licensing hack in Perl 3 has stood Perl in very good stead,

both among the hacker communities who were afraid of corporate culture and the corpo-

rate culture that was afraid of the hacker communities.

Both communities found reassurances in that approach without me ever actually having

to force anybody to decide whether they were actually following the GPL or the Artistic

License.

I’ve almost never seen anyone ever actually choose which one they were following.

Larry: Yeah. It was a quantum superposition of licenses that people just didn’t observe. I

suppose I’ve been negatively surprised by the fact that we coined the term dual licensing for

that, and it has since come to mean forcing the user to pick one license or another. You

never can coin a term and make it mean what you want it to mean. There’s always this

dance between what you think you can get and what you can actually get.

Evolution and Revolution

In software design and development, what is your approach: evolution or revolution?

Larry: I’m a bear-of-very-little-brain in some ways, so I personally take an evolutionary

approach when I’m programming. When developing a Perl program I typically make a

change, run it, make another change, with a cycle time of maybe 30 seconds. I don’t

spend much time debugging because it’s usually pretty obvious whether the last thing I

did was right or wrong. Every now and then I refactor, but that also tends to be evolution-

ary, alternating between making a change and making sure that nothing really changed.

As far as language design is concerned, my basic approach has always been similar: to take

an evolutionary approach, but “rev up” the mutation rate so that if you took two snap-

shots far enough apart, it would look like a revolutionary change.

To Unix lovers, Perl 1 looked like a radical change from awk and sed and shell, but actu-

ally a great deal of Unix culture was distilled down into Perl at that point in order to keep

Download at Boykma.Com

390 C H A P T E R F I F T E E N

it acceptable to people. Any new language has to worry about migration, so new lan-

guages tend to borrow heavily from existing languages. (We have since regretted some of

that borrowed culture; in particular, regex syntax has only gotten cruftier over the years,

and Perl 6 will remedy that, we hope.)

To many people, Perl 5 looked like a revolutionary change from Perl 4, but in fact the

implementation evolved through various intermediate forms that the outside world never

saw. At one point, some of the opcodes were interpreted by the old “stackful” interpreter

while others were interpreted by the new “stackless” one. Perl 5 was also still very conser-

vative in its backward compatibility; in fact, Perl 5 still runs most Perl 1 scripts correctly.

With Perl 6 we’re finally making a major compatibility break, “throwing out the proto-

type,” as it were, and rapidly evolving the syntactic and semantic design while attempting

to preserve the underlying “feel” that makes Perl what it has always been. This time,

though, I’ve done a better job of involving the community in the incremental redesign

process.

When we first announced the Perl 6 effort, we got those 361 RFCs, and most of them

assumed an incremental change from Perl 5 without any other changes. In a sense, the

Perl 6 design is simply the result of summing up, simplifying, unifying, and rationalizing

those incremental suggestions, but the actual leap from Perl 5 to Perl 6 will certainly feel

revolutionary to anyone who did not participate in the design process. Yet most Perl 6

programs will look quite similar to what you’d write in Perl 5, because the underlying

thought process will be similar. At the same time, Perl 6 will also make it much easier to

branch out into the functional or OO modes of thought, if that’s how you think. Some

people will think that’s revolutionary.

To me, revolutions are mostly just people pretending they didn’t go through all the inter-

mediate steps. Perl is designed to help people go through the intermediate steps as expedi-

tiously as possible so they can pretend to be revolutionaries, which is fun.

What revolution is this?

Larry: I’m talking about private revolutions here. The revolution that happens when

somebody who doesn’t know Perl comes up to a Perl programmer and says, “I’m trying to

do this and I don’t know how.” And the Perl programmer says, “Oh, that’s easy. Here,”

and writes a little program that is both obvious and fast enough and gets the job done, and

the person says, “Oh, cool.” Whenever someone says, “Oh, cool,” it’s a little revolution.

In a sense, it’s a continuum from evolution to revolution in it’s just how loudly you say,

“Oh, cool”—or if you happen to be the aristocracy, “Oh, crap.” A good revolution has

more people saying “Oh, cool,” than “Oh, crap.”

I guess I really believe that there can be good revolutions. Maybe that goes back to theol-

ogy, too, at least on a personal level. I believe that, given the proper nudge, people can

reorient themselves drastically in a short period of time.

Download at Boykma.Com

P E R L 391

Whether they intend to or not.

Larry: Yes. It’s like the difference between modern scientists and the Greek philosophers

who were trying to puzzle everything out from first principles. They eked out a certain

amount of knowledge, but without empirical testing you don’t get the unintentional dis-

coveries of science where the serendipitous results come in and knock you upside the

head and completely subvert the way you were thinking before in a very nice way.

Perl 5 on the Web, for example.

Larry: Perl 5 on the Web. Also arguably many of the intermediate forms that crawled

onto land or crawled into holes when asteroids hit or any number of other contingencies

that existence has thrust upon our ancestry. There’s just these general principles that you

should be open to, both the small steady improvements and the large epiphanies.

Are these large epiphanies inductive? That reminds me of the lambda calculus where you

start with four or five separate principles, then reason and deduct your way to the world

of usable Turing completeness.

Larry: Yeah, but reality usually whacks us by hitting us at a different scale than we were

expecting. I might be optimizing for maintaining my current body temperature in a very

benign climate, but sometimes asteroids come in size XXXL. Induction will help you with

the gradual revelations. It just does not necessarily help you anticipate the changes that

will occur when large numbers of your premises are cut out from under you. That’s when

you want to have a large gene pool. Genes are the tools in your toolbox, and you want lots

of them, especially in asteroid context.

You want to give people tools to use to adapt to new circumstances if they find

themselves in those situations.

Larry: It’s the whole mutable versus immutable thing again. Induction is built on the

notion that your premises are immutable.

Induction or deduction?

Larry: Both. I think they are kind of two sides of the same coin, and sometimes the coin

lands on the edge. Probability theory assumes the probability of that is zero. But it isn’t;

I’ve done it myself. It was a most amazing thing. I was a kid playing football with my

neighbor, and we were flipping a coin. He said, “Call it.” I said, “Edge.” And it came down

on edge, because it wedged in between the stiff blades of grass. Sometimes context trumps

probability theory.

I guess the story of my life has been calling “edge” and being right a good part of the time.

What’s your rationale behind the notion of potentially multiple competing or cooperating

implementations of Perl 6?

Larry: There are several parts to the rationale for that. We already mentioned that you

want a large gene pool. A healthy gene pool requires the exchange of lots of genes, which

Download at Boykma.Com

392 C H A P T E R F I F T E E N

can be fun. Another reason is that the different implementations will tend to keep each other

honest. Different people will naturally view the specification in different ways and if there’s

any ambiguity in a specification, they will likely discover it. Then it becomes a process of

negotiation among the various implementations as to what the spec really ought to mean.

That sounds like a parenting strategy: “First, you cut the cake in half, and then your

brother picks which slice he wants.”

Larry: Yeah. It’s a way of foisting off some of the design work onto the implementers,

which is a necessity for somebody who is as lousy a designer as I am.

Another facet of the multiple implementation strategy is that people’s interests vary. They

will want to prototype different parts of the implementation first. Rather than writing half

of a project and then discovering that you’ve made assumptions that make it very difficult

to implement the other half because nobody’s ever really tried to do it, it’s better if differ-

ent people are playing around with prototypes of the different aspects of the design and

can then share with each other the danger points.

We’ve just seen this in the last week or two with the SMOP folks who really don’t have a

lot by way of implementation yet, but they’re thinking very detailed ways about exactly

how lists and captures and signatures and all of these crucial concepts really play together at

a low level, and how laziness and iterators and arrays actually ought to work semantically.

It’s one of those scientific simplifications: we’ll ignore the whole rest of the problem and

just examine this particular aspect of it. I think that’s very valuable in forcing us to think

through the design in places that we haven’t thought through yet.

Is this because they’re intended to be full implementations or because someone’s

prototyping specific parts?

Larry: I almost don’t care. If somebody is prototyping a portion of the implementation,

it’s really up to them how far they want to run with that—how much energy they have,

how many other people they can recruit to the effort. That’s another example of my dele-

gating the delegation to other people. A new continent has opened up, and people need to

explore in every direction.

By not blessing one potential implementation, you are actually encouraging

experimentation.

Larry: Yeah, we’re encouraging a flooding algorithm, which is not really what you neces-

sarily want to do if you’re someone like a corporation. Instead, you design a project with

one major goal in mind, and you have a particular burn rate and it has to be done on

such-and-such a date. But the fact is, we’ve got this great parallel processor called the

open source community, and flooding algorithms seem to scale rather nicer to parallel

hardware than to serial hardware. But it’s not a stupid flooding algorithm; it’s more like

an ant colony seeking food. So really we’re just optimizing the process to the engine that

we’ll be running on. It’s not a symmetric multiprocessor—more like a Beowulf cluster of

hackers. And hackers are not all the same architecture.

Download at Boykma.Com

P E R L 393

Shared memory is also a problem, especially when the state is so immutable.

Larry: It’s not just memory—the open source community is a Non-Uniform Everything

Architecture, but I think that our approach is playing to the strengths of that rather than

the weaknesses of it. And certainly shared memory doesn’t seem to be a big problem for

the ants.

Does any particular implementation of Perl 6 constrain what happens at higher semantic

levels?

Larry: Well, even if you try to create a Newspeak, no language can exert absolute control

over everything, and implementations are just one of the things that a language can’t

have absolute control over. To the extent that we try to exercise control, the definition of

the language really comes down to what we choose to include in the test suite, or exclude

from it, and I think those sorts of decisions should primarily be the result of negotiation

among the various implementors, with occasional input from the language designer. This

is one of the reasons we think it’s important to have multiple implementations, because

they tend to wear off each other’s rough edges.

Do you have particular concerns about the availability of resources?

Larry: I think that different locuses of effort tend to be self-limiting anyway in terms of

how big they can scale usefully. When programming teams they get bigger than six or

twelve people, they end up dividing themselves into different subprojects anyway. It’s

really only a resource drain to the extent that people are reinventing wheels identically

without looking at the other work that’s going on.

To the extent that they are reinventing wheels differently; well, that’s an interesting

experiment in widening the gene pool. Certainly, there is some inefficiency in any

approach you take. Whether that is amortized across the world of programmers simulta-

neously or whether it’s something that comes back and bites you later because you

couldn’t do everything first, there’s going to be inefficiencies any way you work the

project.

There’s some argument that spreading the inefficiencies across the world of hackers is

actually likelier to get it done sooner than if you try to serialize it. Always assuming you

have enough hackers to throw at the problem, and that the problem is parallelizable, and

that you can get the volunteers talking to each other.

You can’t tell volunteers what to do. You can, but it doesn’t work.

Larry: That’s the other major thing. They’re going to do whatever they want anyway. So

as the saying goes, if you can’t fix it, feature it.

I really like the quote from you: “They say worse is better, but we’re just hoping for one

better-is-better cycle here with Perl 6.”

Larry: Right. That’s my current “edge” call. I hope you’re feeling edgy.

Download at Boykma.Com

Download at Boykma.Com

395

Chapter 16 C H A P T E R S I X T E E N

PostScript
Charles Geschke and John Warnock

PostScript is a concatenative programming language most commonly used to

describe documents for desktop and electronic publishing. John Warnock and

Charles Geschke invented the language after founding Adobe Systems in 1982.

Apple’s LaserWriter shipped with PostScript in 1985, making desktop publishing

possible. PostScript quickly became the de facto standard for document inter-

change. Since then, its successor PDF has supplanted PostScript in that realm.

Download at Boykma.Com

396 C H A P T E R S I X T E E N

Designed to Last

How do you define PostScript?

Charles Geschke: PostScript is a programming language whose primary purpose is to

provide a high-level description of the content of (printed) pages in a device-independent

representation.

John Warnock: PostScript is an interpretive programming language that emulates a sim-

ple, stack-oriented virtual machine. In addition to the normal operators found in most

programming languages, PostScript has a very rich set of image, graphic, and font rendering

operators. With PostScript, an application can emit PostScript commands in a resolution-

independent manner that will define the appearance of a printed page (or display).

I think PostScript was successful because it is so flexible and has a well-defined underlying

imaging model. Other printer protocols of the time attempted to statically define pages with

data structures. These protocols invariably would fail at describing some intuitively simple

pages.

What made you create the language PostScript and not a data format? A printer’s going to

interpret this; what’s the effective difference between a language and a data format anyway?

John: When we started doing this at Xerox PARC there was a language called JaM. We

were doing research in graphics and wanted an interpretive language where you could

run very quick experiments to try things out, and interface into the hardware of the Alto

at that time and into the programming interfaces in the Alto, and do experiments without

having to go through a huge compile cycle and a lot of program try, program compile,

assemble, load, try. We used an interpretive language, and it turned out to be very effec-

tive in trying out lots of new ideas.

Charles: What this allows you to do over time is if you decide that there are certain key

things that you’ve evolved in your language that are not nearly efficient enough to run

interpretatively, you can codify them into a set of extensions to the language by introducing

new operators and implement them at a much lower level so that they run more efficiently.

Really the whole idea of language was because we didn’t know what kind of devices, what

kind of environments, and to a certain extent what new opportunities there would be in

the future with the way we would want to control and describe the appearance of a printed

page. This gave us an ultimate flexibility that you could never get from data structures.

It has the same operations and controls that other Turing-complete languages contain but,

of course, the Church-Turing thesis observes that it cannot be mathematically proven.

John: There are many instances of command protocols in our industry that are not full

programming languages. It was our judgment at the time, that because how a protocol is

used is always open-ended and unknown, a full programming language would allow use

to program our way out of things we forgot or did not anticipate. This “completeness”

allowed PostScript to have a longevity that even we did not anticipate.

Download at Boykma.Com

P O S T S C R I P T 397

One of the benefits of a concatenative language is that if you do need to codify a new

feature, you can do that in hardware on certain platforms and you can emulate it in

software for older platforms. If you define a new word, you can define that word in terms

of other word primitives in the language so it runs on older machines, but if you need to

have support for that word in the interpreter, you can add it in newer versions. Is that

right?

Charles: Yes.

John: We actually made it so that even the primitive operators could be redefined. The

add instruction can be redefined in PostScript to do anything you want it to do. That piece

of flexibility actually made PDF possible because we defined the primitive graphic opera-

tors to grab their operand stack and put that out as a static data structure as opposed to

retaining the programmatic nature of PostScript.

Was this partly to work around the possibility of bugs in ROM?

John: Absolutely.

Charles: At the time it was produced, the LaserWriter had the largest amount of software

ever codified in a ROM.

Half a megabyte?

John: Yes.

Was this standard practice at the time?

John: This was a huge piece of software to put in a piece of masked ROM. If you had

bugs, you better get yourself some escape hatches. Having to be a programming language

where you could really program around errors was extremely useful.

Charles: Any project of this sophistication you have to go in with the knowledge that

there will be and are bugs. You can’t somehow cross your fingers and hope that won’t be

true.

Basically we put in the mechanism to allow us to patch around bugs, because if you had

tens of thousands or hundreds of thousands of printers out there, you couldn’t afford to

set out a new set of ROMs every month.

John: At the cost of masked ROMs in those days, you couldn’t afford to send them out at all.

Was hardware a consideration at the time, beyond the necessity to have a piece of

hardware?

John: No, the original language happened at a company called Evans & Sutherland. We

were building these huge graphic projection simulators and when the spec for the project

came around the hardware wasn’t built yet and yet we had to build the databases for this.

We had to leave ourselves lots of room to do late binding. The late binding property is just

so important because you didn’t have an idea of how this thing would evolve and what

your target machine would be.

Download at Boykma.Com

398 C H A P T E R S I X T E E N

Charles: John, you might tell him a little bit about the database. It was the entire port of

New York.

John: It was all the buildings in Manhattan—not all the buildings in Manhattan, but the

skyline of Manhattan, the Statue of Liberty, and it was to train people to bring tankers into

the port of New York. It was a miracle project because it got executed in about a year.

That’s a lot of data.

John: It was a lot of data, especially when we were dealing with essentially PDP 15s. They

were teeny, teeny, teeny, teeny machines in comparison. You had 32K bytes of memory.

The leap to a laser printer must have seemed like a luxury.

John: Even the laser printer at the time was the biggest processor that Apple had ever

built. For them this was a huge piece of processing equipment. Then they already had the

Mac interfaces to the graphics.

We actually used the PostScript programming language to build a sympathetic interface in

some sense to their graphics interface so that we could take their data structures and do

the equivalent thing in PostScript and those were PostScript programs.

The Mac was just a 256K Mac or a 512K Mac at that point and it had really very little flex-

ibility in what it could do with Mac Draw and what it could do with Write at that time.

The LaserWriter actually downloaded a whole set of programs to interpret their commands.

Did the Mac produce PostScript at that point?

John: It was producing PostScript, but it was sort of the quick-draw version of PostScript.

Charles: Right; it was producing PostScript, but through a set of PostScript subroutines

that took in Quick Draw and spit out PostScript. Those macros or subroutines were actu-

ally running in the printer.

Did you make changes to PostScript as you supported more devices?

John: We had a hard thing that we had to have laser printers. We did finally port Post-

Script to a dot-matrix printer.

Charles: It wasn’t the most satisfying project.

John: No, it wasn’t.

What is like to think in two dimensions (graphically) at the very foundation of a

language?

Charles: One must have designed in the mechanisms to support two-dimensional trans-

formations that allow the programmer to program in his/her own coordination system but

ultimately transform that space to the coordinate system of the actual device.

Download at Boykma.Com

P O S T S C R I P T 399

John: I think it is easy to think in two dimensions when you imagine each two-dimensional

construct as being drawn (or imaged) by a subroutine. One of the successes of PostScript is

that each object or set of objects can be wrapped in its own coordinate system. By doing

this, objects can be instanced around the page in different sizes and orientations without

regard to the details within. This simple idea makes it easy to think about how to make up

a page or portion of a page.

You are mathematicians by training. How did your background help during the design of

PostScript?

Charles: In terms of understanding the transformational logic of the imaging model, it

was obvious to both John and me that that’s the way you’d want to have it operate

because you wanted to have linear transformation mechanism just built in inherently at

the base of the imaging model. That isn’t a language-specific thing.

I don’t know how much impact it had, but just by happenstance, at least in my back-

ground, was not only the mathematics but also a very close familiarity with the entire

printing process. My grandfather and my father were letterpress photo engravers. I under-

stood a lot about how printing actually worked, particularly in terms of half-tone genera-

tion and things. With a little bit of all of that background, it helped with PostScript, but I

would hesitate to say that the mathematics was a major contributor. Having that in your tool-

kit is always extremely helpful when you’re working with abstraction definitions.

How did you manage your ideas? Did you ever disagree? How did you find common

solutions?

Charles: I hired John in 1978, so we have worked together now for 30 years. During that

entire time, he and I never parted company angry at one another. We always had suffi-

cient respect for one another’s ideas that if our ideas were different, we immediately tried

to figure out why they were different and either which idea was better or how to come up

with some way of integrating those two things together.

It almost never arose to the level of disagreement, that I can remember. It’s a fairly unique

partnership in that regard. Very few people have had that experience in their work life. A

lot of people have had that experience in friendships or marriage or other places, but in a

work environment it’s pretty rare that you get that level of mutual respect, as well as the

ability to unify around your ideas so quickly.

A lot of people compare PostScript to Forth because they’re both stack-based languages.

Was there an influence?

John: No; actually when we’d finished the language at E&S we came across all these dis-

cussions of Forth and Forth is quite similar, but in a lot of respects very, very different. So

there really wasn’t much influence. It was totally coincidence.

Charles: I fully agree.

Download at Boykma.Com

400 C H A P T E R S I X T E E N

I’d always assumed a connection, but now it sounds like similar requirements led to

similar designs.

John: The cool thing about PostScript is that you can implement it with a very, very small

amount of programming because it’s emulating a hardware environment. It’s very easy to

build the basic machinery and then add operators as you need them.

Charles: The core interpreter of PostScript was only a few kilobytes.

John: Pretty small.

Charles: Quite small.

What problems did the stack-based design solve? Would PostScript have suffered if it

were more directly a descriptive language?

John: The stack-based design of PostScript is straightforward to implement, and also can

be interpreted and executed quickly. On the machines of the day when PostScript was

introduced (Motorola 68000s), this simplicity and efficiency was very important.

I think the following were the most important design decisions in defining PostScript:

• PostScript was a complete programming language with variables, conditionals, itera-

tion, etc.

• PostScript operators can be redefined in the language itself. This capability allowed us

to reinterpret existing PostScript files to produce Acrobat (PDF) files. This also allowed

us to fix bugs in an implementation that was burned into read-only memory.

• The imaging model allowed one to isolate and graphically manipulate substructures

that then could be incorporated into larger elements. For instance, PostScript allows

one to take a description of a page, scale it down, and make it a component of another

page. This flexibility and ease of use was not present in any other printer protocols.

• PostScript allowed the user to deal with type like any graphical element: it could be

scaled, rotated, or transformed like any other graphical element. This capability was

introduced with PostScript.

• Although the first PostScript printers were black and white, the design of PostScript

anticipated the use of color.

Was the runtime stack usage bounded?

John: I think the execution stack was limited to 256 levels and I think all those stacks

were limited by byte length.

Charles: The machine it was running on inside the LaserWriter only had—I should say

only for its time it was a lot, but it had a megabyte and a half of RAM, one megabyte of

which was just the frame buffer. You’re running in half a megabyte of RAM for all of the

executions.

Download at Boykma.Com

P O S T S C R I P T 401

Did you have half a megabyte of ROM as well?

Charles: Yes.

John: Yes.

Would you map that ROM into RAM and then runtime patch if necessary?

John: No, what you would do is you would just add an operator with downloaded code

into the RAM and that would either supersede the built-in operator, as I said you could

redefine operators or it would either supersede it or add new functionality.

What about formal semantics? Some designers nail down the semantics of the language,

then prove a small set of core features.

John: We had a dictionary facility for looking up names and symbols. We had arrays. We

had all the number things. We had this very simple stack machine that could take up to

256 operators if you wanted to go that far, but it’s a very simple machine, and once you

get the basic interpreter working, it’s really easy to debug.

I think we were convinced that this was robust. I don’t think we went through any formal

exercises.

Did you intend for people to write PostScript by hand?

John: No; a lot of people wrote it by hand. You get used to it after a while. I prefer Java-

Script now.

Charles: All of the early brochures that we wanted to show off the capability of PostScript

on were done by designers who had to learn to program.

I think one of the other reasons that a language can have a long, healthy life is going back

to the comment I made earlier about the size of the interpreter. It’s small enough. It’s hard

to imagine that people couldn’t take a long coffee weekend and port it anywhere you

want to do it.

John: It might take more than a weekend.

Charles: It’s when you do things that are sophisticated in the graphics realm that things

get a little more complicated.

John: The other thing about PostScript and what made it successful is there was a lan-

guage part of it, but then there were the problems we actually solved. The scaling of fonts

from outlines was by far the biggest thing. It made good-looking type out of outlines and

no one had been able to do that.

Some people thought that was impossible.

John: We weren’t sure it was possible.

Download at Boykma.Com

402 C H A P T E R S I X T E E N

Charles: Yeah; that was a bet-your-future kind of thing. We decided we had to do it that

way because the alternative was to hire armies of people to hand-tune bitmaps. That

wouldn’t fit the whole philosophy of the arbitrary linear transformation mechanisms of

PostScript because as soon as you rotated a character a few degrees, you had to do a whole

new bitmap.

John: There were a couple of key ideas that made all of that work. We were the first to do it.

Charles: I think the other area that was very successful with PostScript is the eventual

ability to do absolute state-of-the-art quality half-toning for color. There had been a lot of

work done in that area, but I think the implementation that evolved with Adobe by the

end of the 1980s was clearly understood to be as good or better than the sort of electro-

mechanical kind of systems that people used to use.

Do you credit that to your background researching graphics?

Charles: Well, it wasn’t just the two of us.

John: No; it wasn’t just the two of us. We actually did the first set of half-toning by just

emulating what real half-tones do, the mechanical ones, but then we hired some mathe-

maticians—a guy named Steve Schiller who really did a lot of work in half-toning and

really understood it at a much more fundamental level.

Charles: John and I had both been around printing a lot. My father and grandfather were

photo engravers. When I brought some of the early stuff home to my dad he’d look at it

and say, “Hm, not so good.”

Then Schiller and some of the other guys got involved. Eventually we got to the point

where we got even my dad’s blessing on it. That was cool.

Did you have in mind just rotations for bitmap fonts?

Charles: Arbitrary scaling and resolution. It becomes less critical as you get up to very

high resolutions and relatively normal point sizes, but for a laser printer, or God forbid, a

screen, it wasn’t going to work.

John: The fundamental idea that made all of this work was people had tried to take the

prototypical outline of a character and try to figure out what bits to turn on. We didn’t do

it that way.

We noted the frequency of the raster image and we morphed the outlines to align with

the bitmap and then turned on the obvious bitmaps. That’s what made all of the stem

weights the same. It made all of the serifs the same. It made all of the bolds work right and

it was a very, very simple idea, but no one had ever done it.

Charles: You can tolerate something be a little thicker or thinner than something else,

except if the element is repetitive within the character your eye will pick out differences.

John: Very small differences.

Download at Boykma.Com

P O S T S C R I P T 403

How do you handle kerning and ligatures?

John: You position the start on a raster boundary and then pick the closest thing. If it’s

pair kerning and sophisticated kerning you still do the same thing. You align the character

on a raster boundary and then pick the spacing between that and the next character to the

nearest pixel. It works as well as it’s ever going to work. Ligatures are just different charac-

ter designs.

Charles: Then you get to do all of this for Chinese and Japanese for the kanji characters.

John: We had a guy who worked for us named Bill Paxton. When we started doing the

Chinese characters, not only the spaces between the strokes were important, but the holes

and little rectangles were important—that they didn’t disappear or get overscanned. He

built a very complex set of rules of how to distort a character to the raster frequency so

that it would preserve all the critical parts of the character.

Did you have to identify those critical parts for each character?

John: Pretty much so, yes.

Charles: But you’re only going to do it once. Actually designing the PostScript description

of a Chinese typeface obviously takes much longer than Roman, simply because there are

so many more characters, but once you’ve paid that price, then it doesn’t matter.

Can you share that information across fonts?

John: You build a strategy and you can automate a lot of that stuff and say, “Here is this

kind of situation. Deal with it this way.”

When TrueType was built, it used the same strategy, but it would do it specifically for

every character. Whereas the strategy we used in PostScript was pretty much across an

entire alphabet. In other words, on a lowercase h you want to identify the left stem and

the right stem. Now the left stem and the right stem identification works on a small n, it

works across the whole thing. The x-height on the character is a constant across the whole

font.

We would identify those properties and then the algorithms would deal with that. If you

change the design of the n, you really didn’t have to do much. It was much easier to build

a PostScript font than a TrueType font.

Modern printers can interpret PostScript (as well as PDF) without an intermediate

translation. Is this a benefit of the flexibility and elegance of the design of PostScript?

John: It is very important to remember, when PostScript was first implemented, the avail-

able memory on machines was very small. The original LaserWriter had 1.5 megabytes of

memory and 0.5 megabytes of masked read-only memory. One megabyte of RAM was

reserved for the page buffer, and therefore we only had 0.5 megabytes for all working

storage. The masked ROM was used for the PostScript implementation.

Download at Boykma.Com

404 C H A P T E R S I X T E E N

PostScript was designed so that it held very little state. There was not enough memory to

hold the entire PostScript program in most cases. That meant that the program processed

and printed pages as they were encountered in the PostScript program as it was read by

the printer. This strategy allowed us to print very complex jobs without the luxury of

much memory.

Acrobat is not like that. The location of each page is found at the end of the file, which

means that printers with Acrobat capability must read the file before starting. In today’s

world of gigabytes, this is not a problem.

Having said that, PostScript and PDF have identical print imaging models, and therefore

are closely related.

Are there features of PostScript’s problem domain that make it difficult to write a clear

PostScript program?

John: It was really nice in the graphics domain because the stack, the way you nest trans-

formations and the way that there are recursive calls on things is really nice when you’re

dealing with graphics. You can draw an image and then bottle it up and put transforma-

tions around it and it takes care of all of the internal stuff and does all the right stuff.

Charles: I can’t help but interject a little bit of an anecdote here from the Xerox PARC

days. There were always a lot of debate there between a very structured language, Mesa,

between the people who loved Lisp and the folks who were just as happy going back to

fairly primitive BCPL.

One of our programming languages guys proposed a competition in which people would

program the same problem in all three of those and we’d see who could do it the shortest,

the fastest and the most elegant kind of thing according to his judgment.

It turned out the only thing we figured out is it all depended where the brightest program-

mer went, who happened to be Bob Sproull, who did it all in BCPL and he didn’t need any

of this other fancy stuff. At the end of the day, that’s probably so many more order of

magnitude more of an impact that the particular language probably doesn’t mean much.

PostScript Level II adds features such as garbage collection. Are there further evolutions

in the language you can foresee?

John: Still in JavaScript there are no graphics interfaces that allow me to print a page.

Whereas if I want to lay out type I always actually write that stuff in PostScript and run it

through the distiller to produce PDF files. Well, I certainly couldn’t maintain half of my

life without it.

Charles: If you’re specifically talking about PostScript, my suspicion is there’s certainly

not going to be any accelerated evolution at this point in its life. What it’s doing is mor-

phing the graphics imaging model of PostScript into other environments, like Flash.

Download at Boykma.Com

P O S T S C R I P T 405

John: Yeah, for Flash to be able to do all of the text things it’s got to have the traditional

Adobe text engines. All of that stuff’s going to end up on phones.

Apple uses PDF to describe graphical aspects of the Mac OS X desktop. I read that,

essentially, there was a project that used PostScript to do such a thing.

Charles: When we did the original deal with Apple back in 1983, we gave them license

rights to Display PostScript as part of the deal. That’s something that Steve Jobs really

wanted to have as part of that contract. When Steve left Apple, Apple decided to go their

own way and drop that, but Steve understood that he wanted to have the same imaging

model both on the display as well as on the printed page so there would never be a dis-

continuity between the two. When he went to NeXT, we did a deal with him and Display

PostScript was the graphics imaging model for the NeXT computer environment.

I can see how that would work from a desktop publishing standpoint, where you want as

much accuracy as possible between display devices.

John: Actually from a general system point of view, once we were able to scale the font to

screen-display resolutions and that was also Bill Paxton’s work; it was really a very consis-

tent graphics model that had a lot of power.

Charles: Imagine how much more interesting the Web would have been had HTML

started out with a PostScript imaging model instead of all the silliness you have to do now

to simulate.

John: It’s really funny. Adobe today—Flash is getting enhanced so that it can deal with the

fonts. It’s really interesting. They were never strong on fonts. They were never strong on

the graphics engines. Flash is evolving to be much, much stronger in those areas.

Charles: In effect it will become we think a Display PostScript for the Web.

Do you think it might migrate into printers?

John: No.

Charles: No.

Will printers matter?

John: Less and less so.

Charles: What we have seen is a lot of the printers now, many of the printers, are actually

PDF printers, not PostScript printers, which just means the interpretation is done back in

your computer.

John: But computers are a little bit different size now than they were then.

Charles: The fact that you can drive an ink printer from your computer at 20 pages a

minute tells you a lot.

Download at Boykma.Com

406 C H A P T E R S I X T E E N

Research and Education

Is there anything that really surprised you in the way that software and hardware evolved

since the 70s? Many of the ideas in use today were present in the 70s at PARC.

Charles: I think it’s important to understand how PARC came to be, what it was. The

story begins at the time of the transfer of control of government here in the United States

from Eisenhower to Kennedy.

Eisenhower took Kennedy aside and said he had been advised by some of the brighter

people in the U.S. defense industry that in order for the U.S. to continue to expand its mil-

itary presence around the world, it had to convert from analog communications to digital.

I don’t think either President Eisenhower or President-elect Kennedy probably under-

stood what that statement meant, but Kennedy took him very seriously.

He took the most technical-oriented person in his Cabinet, McNamara, aside and said

Eisenhower has told me this. I want you to look into it. You have the biggest budget. I

want you to take enough money to have an impact in terms of getting this started, but

small enough that Congress isn’t going to spend a lot of time asking us questions about it

because I want to get it started quickly and effectively.

McNamara, in turn, selected a guy out of MIT. His name was J. C. R. Licklider and he had

been hanging around the research labs at MIT where they had started to do research on

using computing technology, not to calculate but to communicate. What he saw was that

the researchers at MIT had built up a set of relationships with other academic and a few

industrial research labs around the country and he went to visit all of them, found them to

be exceptionally bright people. They were at places like Caltech, UCLA, Stanford, Berkley,

Utah, Michigan, and, of course, a bunch of East Coast places like MIT, Carnegie Tech, and

a few others.

He decided to take a few tens of millions of dollars and distribute it in small packages to

about a dozen of these universities and a couple of research labs like Bolt Beranek and

Newman, and the RAND Corporation. He said “I’m not going to micromanage you. I’m

going to give you this money and you can depend on it for a few years to get you up and

started and what I want you to do is to do research so that if Congress ever does come and

ask us questions, we can point to how the money was being used. But more importantly,

especially for the academic institutions, I want you to train a whole new cadre of people

who are experts in this field.”

If you go through my background, John’s background, we were all ARPA students. In fact,

if you go through the genealogy of Silicon Valley, almost all of the corporate founders and

senior researchers in this field were all educated by the Advanced Research Project Agency

of the Defense Department during an era in which, as I said, you were not micromanaging

this research.

That’s where the principal people came to PARC because what Xerox did is hire the guy

who took over from J. C. R. Licklider, a guy named Robert W. Taylor, and he knew where

Download at Boykma.Com

P O S T S C R I P T 407

all of us had gone to school. He recruited all these people to come to PARC. PARC was the

first industrial manifestation of the quality of the people who had been developed by

ARPA during the preceding decade or so. By getting all those people together in one orga-

nization at PARC, they had a tremendous impact on the field.

Charles, you formed the Imaging Sciences Laboratory at Xerox PARC, where you directed

research activities. What is your advice on how to direct a research group?

Charles: The most absolute, most important thing is to hire the brightest people you can

find. I probably made the best hiring decision in my life by hiring John to come work in

that laboratory, plus there were already a couple of researchers in the lab that were also

extremely talented. Having those people as a core base for a research activity means that

they tend to attract other high-quality people, particularly younger people coming out of,

in the case of research, typically graduate degrees. We were able to build a very strong

team of people.

From the beginning a lot of our research was not limited to being done just by a group

formed within the lab but we reached out to other parts of Xerox and, to a certain extent,

the academic research community. That kind of integration is also a very valuable way to

do research because it brings a diversity of points of view.

How do you recognize a good researcher?

Charles: There’s no test to give. It’s mostly for people who have been in the field for a

while by just looking what their impact has been. I had known John by reputation since

he got out of graduate school, but he and I had never worked together or actually formally

met until I interviewed him. I knew from what he had accomplished at Evans and Suther-

land that he had a combination of creative insight and he was a finisher.

He’s someone who didn’t just propose ideas and let them go off to someone else, but he

actually worked through the implementation of his ideas. I always found that to be a very

valuable aspect of anyone doing research, that they would take their idea and follow it

through to actually developing a really high-quality representation of what the idea was.

Maybe it’s the difference between pure research and applied research.

Charles: I don’t think it’s the difference between them. I think the same criterion holds in

either one. I have found over my career, whether it be researchers or engineers, that in

addition to the sort of intellectual skills that they manifest, if they are people who finish

what they set out to do, they tend to be much more productive and have a much larger

impact.

How do you recognize which projects look promising?

Charles: Some of it is peer review—whether it attracts the interest of people who are col-

leagues who want to come and join the activity. I remember when we began working on

a project called InterPress for Xerox, where we were developing the precursor of Post-

Script, we got people from a variety of different places, in addition to Xerox, who wanted

to engage in the plan.

Download at Boykma.Com

408 C H A P T E R S I X T E E N

We had a professor from Stanford, we had a professor from Carnegie Mellon, a Xerox

researcher who was working on his own on the East Coast. Actually, it’s interesting.

Except for John and myself, the six of us who worked on that project were never in the

same physical location until after we completed the project. We did it all by email and

using the ARPAnet to transfer information around during the entire design project.

My strategy always was to set general direction. People had an understanding of what the

particular focus of the laboratory was to be and then within that it was up to their creativ-

ity to decide what to do. My job as their manager to help them shape and represent what

they wanted to do and then get them the resources to be able to do it.

In a business where you’re running primarily development, there you typically have a

much greater focus on getting something done that will eventually go to market, and we

try to put a schedule around a set of criteria that make it possible for that particular project

to be successful in the marketplace.

I asked about managing the research lab because I know that you had problems in

building a product from InterPress.

Charles: The research management was fine. The problem was there was no attempt to

really figure out how you take the ideas out of research and get them effectively imple-

mented in the development part of the corporation and that’s really where the slip was,

between those two spots. It was a failure at a more senior level of management than just

research.

Although in fairness, I think we in research thought if we came up with great ideas that

the development people would just flock to them and do them. That gets back to my com-

ment earlier. A really good researcher—this didn’t occur to me when I was young—has to

take that idea and follow it almost all the way to its final implementation if they really

want it to be successful.

What’s the difference between a leader and a manager?

Charles: A leader is a person who has an idea of where he or she wants to go and a pretty

good idea of how to get there and has to have the skills to recruit and motivate other peo-

ple to work with them to achieve that objective. That’s what a leader does.

A manager primarily focuses on making sure that sort of the underpinnings of things like

budgets and modes of communication and other things occur between the individual

working on a project, but that person may have little or no visionary idea of where they

want to go.

Any complex organization needs to have both, but it often ends up with disastrous results

if you confuse the difference, because some leaders can also be managers. If you think

you’re hiring someone to be a leader and they really have primarily the skills of a man-

ager, you’re probably be disappointed in what they do. Conversely if what you need is to

manage a large organization and you pick a leader who spends most of his or her time

thinking about great ideas off in the future, they probably won’t be a very good manager.

Download at Boykma.Com

P O S T S C R I P T 409

There are different skills and they are both critical, and you can’t confuse them when you

ask someone to do something. They either have the skills of a leader or a manager and in

a few rare cases, both.

How do you recognize a good programmer?

Charles: Mostly by the experience of working either with them, beside them, for them—

by having an active working relationship. I don’t know of any way to tell it in the abstract.

I’ve had the good fortune of working with a variety of people. One person—in addition to

John—that really sticks in my mind is a guy you may never have heard of. His name is Ed

Taft. I first hired Ed in 1973 to work for me at Xerox PARC. The thing about Ed is he is the

best programmer that I have ever had the opportunity to work with. He is very careful in

his description of what problem we were trying to implement, and he’s very determined

to do it at a level that allows him the most flexibility for you to change your mind about

how you really want it to work.

In some sense, he delays binding just like we talked about PostScript doing, but he is a fin-

isher. When he has a piece of code and he says it’s done, it is rock-solid and he is a great

finisher. From concept level to completion, he’s the full package. If I could clone Ed, I

would. It would be a wonderful opportunity to build a great organization.

Is there any particular topic that college students should focus on regarding computer

science?

Charles: I’ve been a fairly conservative person with regards to undergraduate education

in computer science. I think you should take as much physics and mathematics as you can

while you’re an undergraduate and leave more of computer science to a Master’s and Ph.D.

level, but that’s just my attitude. Obviously, universities go wherever their students

demand that they go and so I understand why they give undergraduate degrees in com-

puter science.

Unless you have a strong background in math and science, obviously, if you want to go

into hardware, you need to have that background and some combination of chemistry

and physics. That’s just my particular prejudice.

For your general education, I believe very strongly in the liberal arts. What good is it to be

a scientist with great ideas in your brain, if you can’t communicate them effectively and

convince other people to follow your direction? Your ability to write and to speak are

absolutely critical to your success. If you don’t have all of that, you’re really not a fully

educated person and I’ll think you’ll be less effective.

I strongly encourage as much liberal arts education as possible as part of an undergraduate

degree program, along with science and math.

What lesson should other people learn from your experience with PostScript?

Charles: One of the beautiful ideas behind PostScript is that you delay binding yourself to

something explicit as long as possible. In other words, you compute, calculate, and do

Download at Boykma.Com

410 C H A P T E R S I X T E E N

most of your work at a reasonably abstract level. It’s only at the final moment of deciding

which bits you’re going to turn on in this raster image or not that you bind yourself to the

specific algorithms that do that.

By living at that higher level of abstraction, you’re able to build a reasonable high-level

description of the image that you want to produce, which is inherently importable to a

whole array of devices. It’s that same philosophy in imaging model that gives us the

opportunity to do something we were talking about much earlier, which is to produce the

same kind of imaging model that runs, not only on your personal computer, but on the

Web and on all of the digital imaging devices you might have from televisions to tele-

phones to various web appliances, and so on.

That’s the beauty of PostScript. You can run at that higher level in terms of how you

describe what you want to produce and only bind it at the last moment to a specific

device.

Interfaces to Longevity

How can a designer think about longevity for a general programming language? Are there

specific steps to take?

John: A lot of languages go after a specific problem. Remember the one Atkinson did,

HyperCard. He made what I would believe is the most common mistake that people make

and that’s not to make it a full programming language. You have to have control, you

have to have branching, you have to have looping, you have to have all the mathematics

and everything that makes up a full programming language or else you’ll hit a brick wall

at some point in the future.

People would look at us and say, “Why are you putting in all the trig functions? What are

you going to use those for?”—and they all got used. An important thing in language

design is at the outset recognize that it’s got to be complete. You’ve got to have access to

the filesystem. You’ve got to have all kinds of stuff to make it complete. I think that’s

really important.

There are PostScript machines 25 years later today that are still running, still the same and

still running PostScript. It’s enhanced a lot, but the basic program still runs.

Charles: I have a second-generation LaserWriter that I keep using because it has the

best manual feed of any product I’ve seen. It still works. But Canon thought there would

only be 100,000 prints and then the printer would be thrown away. They clearly way

overdesigned it.

Download at Boykma.Com

P O S T S C R I P T 411

What’s the difference in designing a language intended for human consumption versus

machine consumption, or human production versus machine production? Are there

factors that come to mind when you’re designing it when you think it’s OK to do this a

little bit because no human’s going to sit down and unroll this loop this whole way?

John: The one big downside to PostScript is it’s very tough to debug. That’s because you

write the code once and your mind gets around it. After you’ve done that and try to come

back to it six months later, it’s a little rough. Whereas the standard infix notation languages

where there isn’t a lot of state hanging around are much easier to read and much easier to

debug.

You don’t have to have the whole state of the stack in your mind.

John: Right.

Did you address that dichotomy when you designed PostScript?

John: Because it was easy to add new operators, you had a tendency to write very, very

short subroutines and try to separate the functionality as cleanly as you could as a pro-

gramming practice, but no, the syntax just doesn’t lend itself to human programming.

You mentioned that you had designers writing PostScript programs to make brochures. In

the 80s, you had administrative assistants writing LaTeX by hand. How was it teaching

designers to write a program to write a brochure?

John: That’s an interesting question. The little-known fact that Adobe has never commu-

nicated to anybody is that every one of our applications has fundamental interfaces into

JavaScript. You can script InDesign. You can script Photoshop. You can script Illustrator

with JavaScript.

I write JavaScript programs to drive Photoshop all the time. As I say, it’s a very little-

known fact, but the scripting interfaces are very complete. They give you real access, in

the case of InDesign, into the object model if anybody ever wants to go there.

Charles: This is not for the faint of heart.

Even using JavaScript to script the HTML document model is not for the faint of heart

sometimes.

John: No, it’s not. I do that all the time and it’s not for the faint of heart, especially since the

character sets are different and almost everything is different about the two environments.

But anyway, people do. If you want to automate document production, the best way to do

it is to get into JavaScript and script the incredible typesetting engines inside of InDesign

or the incredible imaging engines inside of Photoshop. You can build massive numbers of

things in an automated way in a fairly straightforward fashion.

Download at Boykma.Com

412 C H A P T E R S I X T E E N

This sounds like the longevity argument again. Make it general purpose and allow people all

these operations and possibilities, but give them control to write loops and control flow.

John: It’s really true. There are projects and I’ve got a couple. I have this one website that

is 90,000 pages. If I didn’t automate the production of that website, you couldn’t do it. It’s

just too many HTML pages.

Did designers ask for this, or did someone show them how to do it?

John: In maintaining and extending Photoshop and extending InDesign and extending a

lot of these things—for instance, most people don’t know that Bridge, which is a program

that deals with the file structure and the viewing of images between Illustrator and Photo-

shop and InDesign, that’s all written in JavaScript.

You’re just translating back and forth between object models.

John: That’s right. It is a lot of JavaScript, but the fact that it hangs together is amazing.

It’s completely portable.

From your point of view, how should developers think of hardware? Does software lead

innovation?

Charles: I think it’s a yin and a yang. Back in the days when all of this “innovation” was

occurring at PARC, it was done on very small machines with relatively little disk storage, only

modest-level network performance and so on, and within those constrained environments, a

lot of creativity was used to make the software do things that in some sense surprised the

people who used those computers because they’d never seen anything quite like that.

Today, we’re in a situation in which the environment has changed dramatically and hard-

ware has continued to evolve so quickly that we have gigabytes of storage at very modest

costs and we have processor speeds that are lightning-fast.

I think one of the things that’s interesting is that when you remove those restrictions of

relatively slow performance and relatively modest memory size, it’s easy for people to get

a little bit lazy in terms of just assuming that they’re using all of this. Then they come

across an extremely complex problem where all of a sudden, once again, the hardware is

the limitation and that’s where the creativity and the software has to be really developed

in order to be able to solve the particular problem.

There is sort of a balance always going on between the hardware and the software envi-

ronment. In terms of what applications are, I think Vista is a good example of where

development got a little lazy and assumed that these machines would be able to cope with

the inherent inefficiencies and the way certain things were done. And it didn’t work.

Now they’re going back and in some sense restricting their expectations of what the hard-

ware will do for them and they’ll probably bring out a better version of Windows, cer-

tainly, than the Vista experience has been.

Download at Boykma.Com

P O S T S C R I P T 413

Is making a language popular easier today?

Charles: No, not really. I think when people are first learning how to develop and pro-

gram, they tend to come up within some kind of environment which shapes a lot of the

way they think about doing software development. It’s very hard for them to break that

bond between that experience and new tools that come out. In order for a new program-

ming language to become really popular, you have to find an environment in which a lot

of people begin using it early on and get them engaged in it. To a certain extent, it comes

more out of the educational environment than it does out of a sort of independent organi-

zation trying to bring a new language to the market.

We see such an evolution now in the notion of cloud computing, for example, where the

distribution of where computing and access to information occurs is broadly spread

between someone’s desktop and the Internet and servers and a whole variety of things.

It’s very conceivable to me, and this is not an area in which I’ve done any work, but that

opens up an opportunity for a language that will allow you to more directly address that

diversity of environment than any of the current languages do, maybe. I say maybe

because I don’t know if it’s a language issue or not. Certainly if you look at organizations

like Google and Microsoft and to a certain extent, Adobe, which are really focusing a lot

on being able to provide our customers a seamless experience in that environment, we

may find, over time, that the tools become a limitation to doing that. Whether that’s a

programming language per se or, more importantly, a language plus—and this always

goes along with a programming language—a programming environment in which that

language resides, need to be enhanced above the tools that are available today.

Now, the issue is, there aren’t a lot of natural environments. There is no longer a Bell Labs

like there used to be, or an IBM Research or for that matter, a Xerox PARC. We aren’t in

any sort of an “industrial labs” where this kind of research and development would be tak-

ing place. There certainly are a variety of very high-quality academic environments, but

most of them are now being funded by very targeted research projects that are supported

by primarily the U.S. government either through NSF or DARPA.

The environment in which a Berkeley Unix was developed or the environment in which,

when I was working on my thesis I was working with William Wulf and we developed a

higher-level language for doing systems programming called BLISS. We could get the

funding because of the way that ARPA managed funds in those days. Today that’s not so

easily available in a research environment. It’s hard for me to know where this kind of

development is going to happen.

It’s very difficult for a corporation, with its need to generate revenue and profits to put this

kind of investment in it unless it has an entity off to the side that it can independently

fund as a research organization. Most corporations today, particularly in software and

Internet environments, do not have such an entity within the company.

Download at Boykma.Com

414 C H A P T E R S I X T E E N

Maybe an open source project?

Charles: Maybe, but the problem with open source from my point of view, is if a concept

is already pretty well developed and a sort of structural integrity has been established and

is well understood, then open source contribution can work well. Taking a blank sheet of

paper and calling it open source and getting something started, I think would be very diffi-

cult to pull off.

Would you suggest to make it an open standard in any case?

Charles: You’ve got to do that in this day and age. People need it to be open and, frankly,

you need to have a way to have people add their own tools to it. Something you may not

be aware of is that, and I can only speak of Adobe because it’s what I know best, but all of

Adobe’s products have an open JavaScript-style interface to every one of them so that

third parties can build very sophisticated add-on to any of our products from InDesign to

Photoshop to Acrobat and so on, and do it all in a sort of platform-neutral, independent,

scripted way. A lot of companies and individual groups do things like that all the time.

It’s not open source in the sense of handing out the C code for the guts of Photoshop, but

it is a way to maintain the integrity of the core component and then give a lot of freedom

to third parties to experiment and add value.

Standard Wishes

What is the next outstanding problem to solve in the realm of computer programming or

computer science?

John: Well, in the world I live in today I have probably 30 or 40 manuals on my book-

shelf that all have to do with the Web. They’re all thick and they’re all mutually contradic-

tory. I would love to see cleaning up the imaging models, cleaning up the programming

environments, cleaning up all the things that make up the Web today, because there

really is no reason to have any of that stuff.

The terribleness of the different browsers and dealing with that because of the different

implementations with HTML has to go away.

With Flash what we’re trying to do is both beef it up and make it robust enough so that at

least you can get one language that’s platform-independent and will move from platform

to platform without hitting you every time you turn around with different semantics.

Charles: I totally agree. It is so frustrating that this many years later we’re still in an envi-

ronment where someone says if you really want this to work you have to use Firefox. We

should be way past that point by now! The whole point of the universality of the Web

would be to not have those kind of distinctions, but we’re still living with them.

It’s always fascinating to see how long it takes for certain pieces of historical antiquity to

die away. The more you put them in the browsers you’ve codified them as eternal, and

that’s stupid.

Download at Boykma.Com

P O S T S C R I P T 415

Do you see this as a failure of the standards process we have today?

John: Well, the standards process is less about solving problems than in codifying history.

Charles: My personal attitude is a lot of the standards activity, the sprinkling holy water

on what’s already a fete complete. It’s not there to actually create anything, as John said.

It’s just to codify it and its historical generation.

Unless there’s an active, vibrant organization who takes ownership of the standard and

either polices or makes so easily and readily available the implementation of that standard

that no one tries to do it on their own, you don’t have a standard. That’s always the

dilemma we dealt with in the early days with PostScript. If the clones had managed to

wrest control of PostScript away from us, we would never have gotten to PostScript 3. It

would have by that point devolved into a set of incompatibilities that would have made its

whole premise pointless.

John: The same thing is true of PDF. We finally got the U.S. Archives to adopt it and it’s a

subset of the current stuff, but at least it’s a spec.

When we did Acrobat we said we really have to have it so that these files really live and

we sign up for making them completely backward compatible so that really, really old

Acrobat files will still be read by the readers. That’s a big job. Acrobat is a huge piece of

code, but it serves such a purpose on the Web that I can’t even imagine the Web not hav-

ing it.

Should these standards be driven by one main implementation or can they arise from

rough consensus?

John: With PostScript it was our implementation that really defined what the standard

was and that’s pretty much true of Acrobat, too.

The dilemma is if you had Netscape and then you had Microsoft, Microsoft wasn’t in any-

way motivated to keep them compatible. I think that’s tragic.

Charles: They did the same thing with Java.

Could we have a better Web if we used PostScript instead of HTML and JavaScript?

Charles: Well, we have been working on our new platform for the Web, the current

name for it is Adobe AIR. The Adobe Internet Runtime is a way to bring the level of

sophistication of the graphics of the Web up to the same level that you see in our applica-

tions and you see in the kernel of the PostScript imaging model, bringing that to the Web

in such a way that you can build applications that seamlessly sort of blur the distinction

between what goes on on the desktop and what goes on on a web application. We believe

that that is a way to get PostScript-like imaging and graphics out to the Web in a way that

HTML really does not support effectively.

HTML has two problems. It’s basically a bitmap-oriented representation of information,

number one. Number two, it’s not a standard. The way I say it’s not a standard is if you

Download at Boykma.Com

416 C H A P T E R S I X T E E N

take any of the most popular web browsers and point them at a specific HTML page,

they’ll all produce different results. To me that’s just not acceptable because what it means

is that if you really want to build a sophisticated website, you have to do browser-specific

programming in order to get the website to give the appearance of being the same no mat-

ter which browser you use. It’s going back in time. It’s like the bad old days.

That’s happened because HTML was left as sort of an “open standard.” I believe that

there’s an inherent contradiction in that. You can have the implementation of a standard

be open, but the standard itself needs to be very well designed and thought out in such a

way that you don’t see that kind of disparity.

I remember when Java was first introduced by Sun. They eventually did a deal with

Microsoft, and one of the first things Microsoft did is change Java. There was no unifor-

mity between various implementations. That sort of flies in the teeth of the whole concept

of a standard. If you’re going to have a standard, it has to be a standard and everybody has

to adhere to it. Typically that means having one fairly autocratic organization maintain the

standard, not the implementation.

We think there’s some real opportunities to bring the quality of what you can do up on

the Web to a whole new level. We’ve been working in this area. We’ve got a lot of inter-

esting applications that third parties have already done using the AIR platform, and we’re

going to continue to focus on that. It makes the operating system and the platform that

you’re running your local laptop or PC on pretty much irrelevant. It just doesn’t matter.

You can see why, to a certain extent, Apple and Microsoft view that as a challenge

because they would like you to buy into their implementation of how the seamless inte-

gration with the Web goes. What we’re saying is it really shouldn’t matter. That cloud

ought to be accessible by anybody’s computer and through any sort of information sitting

out on the Web.

Download at Boykma.Com

417

Chapter 17 C H A P T E R S E V E N T E E N

Eiffel
Bertrand Meyer

Eiffel is an object-oriented programming language designed primarily by Bertrand

Meyer in 1985, now managed by a standards committee at Ecma International,

which produced an ISO standard released in 2006. It provides a wide range of fea-

tures now considered modern and widespread: garbage collection, generic pro-

gramming, and type safety. Its most important contribution may be the idea of

Design by Contract, where the language enforces interface preconditions, post-

conditions, and invariants; this improves the reliability and reusability of compo-

nents. Eiffel’s influence is apparent in languages such as Java, Ruby, and C#.

Download at Boykma.Com

418 C H A P T E R S E V E N T E E N

An Inspired Afternoon

Why did you choose to create a programming language?

Bertrand Meyer: Very few people create a programming language just for the sake of

it. Eiffel was born out of a necessity. I designed a programming language because I

needed to write software and everything I had was unsatisfactory.

Did you need a tool to, for example, implement Design by Contract?

Bertrand: That part was obvious, but in general I needed an object-oriented language. Let

me give you the context. We started a company in 1985, Interactive Software Engineering.

It is now called Eiffel Software. We were actually going to build software-engineering

tools. We were funded by a Japanese company to build a program editor, or a syntax-

directed editor, which we did build and which enjoyed moderate success.

This was a very small company. I was still teaching at the University of California, Santa

Barbara, so this was kind of a business on the side. We had Unix workstations that had

been given to us by the Japanese customers, as they were one of their products. This was

’85 and I had already been programming in an object-oriented way for almost 10 years. I

had been very fortunate in the 70s to run into Simula 67, which hooked me right away. I

knew this was the way to program.

On the kinds of machines we were looking at, there was no Simula compiler, and I liked

Simula very much. As Tony Hoare said of Algol, it was an improvement over many of its

successors. Still, Simula had neither multiple inheritance nor genericity; by then I under-

stood that you needed both, inheritance and genericity. I explained the reasons in an arti-

cle presented at the first OOPSLA, “Genericity versus Inheritance.” So we looked at what

was available. C++ was there, so I opened the book but closed it very quickly—really this

was not the kind of thing I had in mind; the idea of making a bit of object-orientation pal-

atable to C programmers was interesting, but surely it could only be a temporary stepping

stone to something more consistent. Objective-C was there, too, but it was very Smalltalk-

oriented and had little to do with the kind of software engineering principles we were

interested in. The same holds for Smalltalk itself. Smalltalk was a fascinating development,

but it had little to do with the kind of concerns that we had. Eiffel was born as a combina-

tion of object-oriented techniques and software engineering principles and practices that

had been developed over the previous decade. Smalltalk had this very nice experimental

programming flavor, which we felt was inappropriate for the kind of things that we were

going to do; for example, the absence of static typing was already a killer. So there were

lots of exciting ideas but nothing around that we really wanted to use.

What I did was to write a report. It was a UC–Santa Barbara report that actually described

not the language, but the library of data structures and algorithms, because I was very

much into reuse and wanted to have a standard library to cover the fundamental data

structures of computer science, what I sometimes call “Knuthware.” What later was called

Download at Boykma.Com

E I F F E L 419

EiffelBase was at that time just called the Data Structures Library. So I wrote this paper

describing arrays, linked lists, stacks, queues, and so on; it used that particular notation,

and I said we were going to implement it. I thought it would take three weeks to imple-

ment it. We are still at it. But this was already Eiffel.

The language was not a focus in itself. The focus was on reusable components, and I had

realized that to have good reusable components you needed classes; you needed generic-

ity, which was there right from the beginning; you needed multiple inheritance; and you

needed a careful combination of genericity and multiple inheritance, as my OOPSLA

paper demonstrated. You needed deferred classes. You needed contracts, of course, which

to me were the most trivial thing. Everyone else makes a big fuss about them, but I still

today don’t understand how people can program without contracts. Also something I

knew was needed was a good streaming or serializing mechanism, so this was one of the

first things that we built. I actually had learned this from a language called SAIL, Stanford

Artificial Intelligence Language, which was very well designed—not object-oriented but very

interesting—that I had used at Stanford 10 years earlier. So that was there and absolutely

fundamental from the very beginning. Garbage collection, of course, was obviously needed.

How did you come up with this philosophy? Was your experience as a practical

programmer sufficient to identify how to improve how we build software?

Bertrand: Partly that and partly of course reading the literature. When I was a student

at Stanford in ‘73 I read the book Structured Programming by Dahl, Dijkstra, and Hoare

[Academic Press]. It is really three monographs under a single cover. The first, by Dijkstra,

is the famous one about structured programming. The second, by Hoare, is about data

structuring, which is also great, and there’s the third one. One of the great lessons I have

learned about life is that people read the beginning of books, so—actually this is a tip to

people who write books—you have to be very careful about what you put in the first 50

pages of your book because 90% of the people will read 50 pages and then stop, even if

the book is very good. Most people read the first part of Structured Programming, the part by

Dijkstra. Some people read the second part by Hoare. I think few people actually went to

the end and read the third part, which was by Ole-Johan Dahl with the help of Tony

Hoare, called “Hierarchical Programming Structuring.” What it really was is an introduc-

tion to Simula and object-oriented programming. I was an earnest student: I had been told

to read this book, and I read it from beginning to end. I loved the first and second part, and

found the last one just as illuminating.

This also explains why a few years later when object-oriented programming came onto

the scene and most people said it is what comes after structured methods, to me that made

no sense. It was part of structured methods right from the beginning. Structured program-

ming was for programming-in-the-small aspects, and object-oriented programming was

for programming-in-the-large, but there was no gap between the two. Having read Dahl’s

and Hoare’s text, I knew this was the right way to program. When I went to industry in

the mid-70s, I was fortunate that my boss let me buy a Simula compiler, which was quite

expensive, but the compiler was very good. I used it a lot in the company I was working for,

Download at Boykma.Com

420 C H A P T E R S E V E N T E E N

to develop quite interesting software. To me it was absolutely obvious that there was no

other reasonable way to program, but most other people thought I was completely crazy.

Object-oriented programming was still very amorphous at the time.

In the mid-70s, just out of school, I had written a book with my friend Claude Baudoin, in

French; it was titled Méthodes de Programmation [Eyrolles], “Programming Methods”, and

was a kind of a compendium of everything we knew, everything we had learned at Stan-

ford and other places. The book was very successful. Actually it is still in print today,

which is kind of crazy for a 1978 book. It served to train, I think I can say without exag-

geration, a couple of generations of French software engineers—also Russian software

engineers because it was translated into Russian in the Soviet Union at that time. It was

also quite successful in Russia; I still meet people when I go to Russia who tell me they

learned programming through that book. It used a pseudocode to explain programming

techniques, to explain algorithms and data structures.

I showed the book to Tony Hoare, who said that he was interested in having it translated

into English for his famous international series in computer science at Prentice Hall and so

I said, “Yes, sure,” and then he said, “You speak some English, so why don’t you do the

translation yourself?” and I was stupid enough to say yes, instead of insisting that he find

someone to translate it. It was really the stupidest thing I did in my life: of course, as I was

translating the book, I was rewriting it because it was three or four years after the original

publication. I had already matured and I had more ideas. I called the book Applied Pro-

gramming Methodology, and it was never published because I never finished it. I was rewrit-

ing every sentence. It was very unproductive, but in writing it I improved the pseudocode

that I had used for the first book. In particular I felt I could not really express programs or

algorithms properly without contracts. The Eiffel notation for contracts comes from there.

Another event was quite important. I was in industry, but I took a sabbatical in academia

at the University of California at Santa Barbara, and so as a visitor I was given some

courses that no one wanted to teach. There was a sequence of courses, 130A and 130B,

Data Structures and Algorithms, which had a very interesting role because it had really

three purposes. The official purpose was to teach data structures and algorithms. But there

were two undocumented purposes, the really important ones. One was to make it suffi-

ciently hard that it would fail a good number of students, so the ones who survived would

be worthy of being computer science students. The second secret goal was that it should

teach students C because they had to know C for other courses.

This was completely absurd because whatever C is good at, it is not a good language for

expressing algorithms, let alone teaching them. It was a horrible experience because

instead of talking about what I wanted to talk about in the course, I was essentially help-

ing students debug their programs with C pointers gone wild and such. This taught me

two things: first, that I never wanted to touch C again as a language for humans. C is a

reasonably good language for compilers to generate, but the idea that human beings

Download at Boykma.Com

E I F F E L 421

should program in it is completely absurd. Second, I learned that the only way to present

fundamental data structures and algorithms was to equip them throughout with loop invari-

ants, loop variants, and pre- and postconditions all over the place. So to a certain extent,

when at the end of that year I had to design a notation for our own work in the company

that we had by then just started, I used the language that I would have liked to use for my

course at UCSB. More generally, this was all the result of reading a lot, immersing myself for

years in modern work on software engineering from Dahl, Dijkstra, Hoare, Wirth, Harlan

Mills, David Gries, Barbara Liskov, John Guttag, Jim Horning, people like that, and basically

following the evolution of programming languages. To me it was the obvious thing to do.

Really I think I can say Eiffel was designed—I was going to say in an afternoon, but not even

that. Eiffel was designed in 15 minutes. It was the absolutely obvious thing to do.

Did the Eiffel language lead you to the idea of Design by Contract?

Bertrand: No, it is more the other way around. That is to say, the concepts were there

before. The language is just there to reflect that. To me, this is not a meaningful question

to ask, or rather, the question should be directed to people who do not use Design by Con-

tract; they should be asked why. I just cannot understand why people would write soft-

ware elements without taking the trouble to express what the elements are there for. It’s a

question to ask Gosling, Stroustrup, Alan Kay, or Hejlsberg. How can they write software,

or design a language for people to write software in, without providing this kind of mech-

anism? I just do not see how anyone can write two lines of code without this. Asking why

one uses Design by Contract is like asking people to justify Arabic numerals. It’s those

using Roman numerals for multiplication who should justify themselves.

I’ve heard that design by contract in an OO language enforces a Liskov Substitution

Principle. Do you think that’s true?

Bertrand: I have never understood what the Liskov Substitution Principle was. The way I

see it, it’s just polymorphism.

I think that’s true with the catch that you have to have complete substitutability. You can’t

constrain your inherited type to do less than what the parent tack does, for example.

Basically you have to enforce the same contract as the parent class.

Bertrand: Well, I think this was what Eiffel introduced in ’85, this idea of weakening the

precondition and strengthening the postcondition when you redefine a routine. So if the

Liskov Substitution Principle says this, the answer I guess is yes. But Eiffel didn’t wait for

Barbara Liskov.

I like those notions of converging discoveries.

Bertrand: The part of Barbara Liskov’s work on which we directly rely is the notion of

abstract data type, work from ’74; that had been seminal. Of course, there was all the

work in the CLU language at MIT, which was also influential. But the Liskov Substitution

Principle never struck me as anything new.

Download at Boykma.Com

422 C H A P T E R S E V E N T E E N

How does Design by Contract help a team of developers?

Bertrand: It makes it possible for the various parts of the team to know what their part-

ners are doing without having to know how they are doing it. This enables you to get

snapshots of the products of all the teams, based solely on the specification and not tied to

particular choices of representation. It is also very good for managers.

Isn’t there a risk of overspecifying the solution?

Bertrand: No, actually not. The risk is always to underspecify. People rarely overspecify with

contracts. The risk of overspecification arises when people commit early to an implementa-

tion instead of staying at the specification level, but that cannot happen with contracts since

they describe intent, not realization. The problem with contract-based specification is the

reverse: people don’t say enough because it’s difficult to specify everything.

I read that when using contracts the code must never try to verify the contract conditions.

The whole idea is that the code should fail hard. Could you explain this decision?

Bertrand: There may be many people who claim to apply Design by Contract principles

and who are not bold enough to apply this rule. The idea is very simple. It applies to pre-

conditions. If you have a precondition to a routine that says, “These are the conditions I

want to meet,” then the routine’s code itself should never check the contracts; that is, any

responsibility for checking the contracts at run time, assuming you suspect some clients

may be buggy and not ensure the precondition, lies with someone else. It lies with some

automatic mechanism that will be used during testing and debugging. But if you are both

having a precondition and testing for the same condition in the code and something is

wrong, you are doing the same thing twice; it means you are not able to make up your mind

as to whether the condition, the constraint, is the responsibility of the client or the supplier.

This is the real test of whether people are applying Design by Contract, rather than some

kind of defensive programming: are they willing to remove the checks? Few people actually

have the guts to do this.

In Design by Contract there is a very clear rule, which is that the precondition is a constraint

imposed on the client, on the caller, so if there’s a precondition violation, it’s the client’s

fault. It is not the responsibility of the routine. For the postcondition, it’s the responsibility of

the supplier, of the routine. If you have a precondition, meaning the caller’s responsibility,

but then the routine itself checks it, then you haven’t made up your mind and you are actu-

ally going to have lots of useless code. This of course is very dangerous, especially since often

this code will not have been exercised during testing and debugging, during development.

It’s really just a matter of being serious about specification.

How important is the distinction between specification and implementation?

Bertrand: That’s a really good question. The distinction is very important, but it’s a rel-

ative distinction. That is to say, it is absolutely impossible to say that something is speci-

fication in the absolute or that something is implementation in the absolute. One of the

characteristics of software is that any software element you look at is the specification of

something that is more concrete and the implementation of something that is more abstract.

Download at Boykma.Com

E I F F E L 423

You take even a construct that sounds absolutely like implementation—say, an assign-

ment := A+1 or A := B. Most people would say this is pure implementation. But in fact

if you are a compiler writer, for you this is a specification of something to be expanded

into maybe a dozen machine-language or C instructions. The distinction is important, but

what really creates the difficulty of software is that with a big enough size, at a certain scale,

the techniques used to write implementations are very similar to the techniques used to write

specifications.

For example, there is a striking phenomenon for anyone who writes formal specifications:

when you write big enough formal specifications, you end up doing things and asking your-

self questions that are remarkably close to the kind of things you do and the kind of ques-

tions you ask if you are writing actual programs. So the distinction is always relative. The

reason is that in software we do not deal with physical stuff. We never deal with concrete,

tangible, material elements. All that we deal with are abstractions, and so the difference

between implementation and specification is fundamentally one of abstraction level. So it is

usually meaningless to say that something is an implementation or a specification. What

you can say is that X is a specification of Y; in other words, Y is an implementation of X. That

is a statement that makes sense; it is falsifiable. But the statements “X is a specification” or “X

is an implementation” are not falsifiable. They do not have a precise yes/no answer.

What is the link between a programming language and the design of software written

with that language?

Bertrand: One of the really unique aspects of Eiffel—one of the obvious properties of

software that no one else seems to consider obvious or even true—is that the chain

between concept and realization is completely continuous. That’s what we call seamless

development, and it probably is the most important aspect of Eiffel. Everything else is

there to support it. It is this idea that, for example, there is no real distinction between

design and implementation. Implementation, to paraphrase a famous saying, is just design

carried out by other means. The difference is only the level of granularity and the level of

abstraction. In particular, Eiffel is designed as much to be an analysis and design language as

an implementation language. Overall, it is fundamentally a method rather than a language,

but the part that is a language is as much for analysis and design as for implementation.

People who use Eiffel typically do not use UML or such tools, which to an Eiffel designer

are largely noise with little connection to what’s useful for software. Eiffel is a tool that is

meant to help you—you’re talking about design, but I would say one starts at the level of

specification and analysis, continues with design, and then with implementation—to sup-

port you in this process. But there is no fundamental gap between the tasks, in my view or

in the view of Eiffel developers in general.

The other point to mention is that the language should be as unobtrusive as possible. Many

of the languages that are around today are what I would call “high-priest languages,” with

lots of strange symbols and conventions that you need to understand to be admitted into

the inner circle. For example, many of the dominant languages of today essentially go

back to C. They are a result of successive additions to and removals from C, and you need

to understand a lot of baggage to master them.

Download at Boykma.Com

424 C H A P T E R S E V E N T E E N

The idea with Eiffel—I cannot claim that Eiffel is completely devoid of any baggage, but

there’s very little—is that when you are doing a design you think about the design and not

about the language. The best compliment that I have heard from people using Eiffel is that

when they use the language, they are focusing on their problem only. That is the best

influence that a language can have on a design.

Have you ever considered other solutions beyond handling objects at the language level?

Maybe components like little tools that built the Unix system and that were put together

via pipes to build complex features. After all, when you write a message or a letter to

someone and you want to describe something you don’t use the idea of objects in French,

in Italian, in English, etc.

Bertrand: Certainly the Unix mechanisms are very elegant, but they are too fine-grained

for what we need to do in building big software. In my experience objects are the only

mechanism that has proved that it can scale up for big systems. The only other approach

that I would probably have considered would have been functional programming, but I

don’t think it works. It is an attractive idea, very elegant, and there is much to be learned

from it, but at the highest level it loses to objects. Objects—I should say classes—are much

more effective at capturing the large-scale structure of systems.

The analogy is not so much human language; rather, mathematics. Again it is classes more

than objects. Classes are nothing more than the transposition to programming of the notion

of structure that works so well in mathematics: groups, fields, rings, and so on. That is, math-

ematics takes objects that can be very different in nature—say, numbers and functions—and

shows that in both cases you have the same structure, defined by operations that have the

same properties. Then you abstract this into a single notion of, for example, groups or

monoid or field. This notion has worked very well for mathematics in the past 200 years. In

this respect, classes or objects are not such a new concept. They are just a direct transposition

of this standard notion of mathematical structure.

Many modern systems are componentized and spread out over a network. Should a

language reflect those aspects of the network?

Bertrand: It’s a desirable property and you can do this in Eiffel, but I would not claim this is

the part where Eiffel shines most. There are lots of developments at the moment in dynamic

updating and concurrency that will be visible in the next few months, but which are not

there yet. Yes, I think it is important. One can argue whether it should be in the language or

in the implementation, but some language support will be needed.

What link do you see between the object-oriented paradigm and concurrency?

Bertrand: I think concurrency is extremely important. I have written extensively about

this. There is in particular a whole literature about the so-called SCOOP model of concur-

rent object-oriented programming that we have developed. A basic operation is that the

naïve approaches do not work. There is a certain tendency to say, “Oh yes, concurrency,

objects, that’s kind of the same idea, that must work very nicely, objects are naturally

Download at Boykma.Com

E I F F E L 425

concurrent,” and assume everything into place; this simply just doesn’t work. It does not

work if you try to combine object-oriented ideas with concurrent ideas on an elementary

level.

Let me just say a couple words about SCOOP. The basic realization is that the standard

notion of contract cannot have the same interpretation in a concurrent context as in a

sequential one. What SCOOP is about is a way to take a sequential object-oriented pro-

gramming model and extend it in the simplest possible way that will support concurrency.

This idea is very different from what many others are doing. For example, if you take all

the process calculi, they take exactly the reverse approach: ask what is the best scheme for

concurrency, then add the rest of programming on top of it. This gives something that is

very different from the usual ways of programming. The idea of SCOOP is that people

have trouble reasoning in a concurrent fashion, but can reason much more effectively in a

sequential fashion; so SCOOP hides much of the complexity of concurrency in the imple-

mentation, in the model. Then it lets programmers program in a concurrent way, but one

that is very close to sequential programming and allows them to retain their usual modes

of thinking.

At what level should we deal with concurrency? For example, the JVM manages some

things almost transparently.

Bertrand: Obviously Java threading has been very useful for many applications, but the

concepts are not closely connected with the object-oriented fabric of things. It’s basically

semaphores in the Dijkstra sense. Actually there is a library in Eiffel called EiffelThreads,

which does more or less the same; I think it’s clear to everyone that such solutions are

good in the short term but do not scale up. There are still too many possibilities of data

races and deadlocks. The goal should be to protect programmers automatically from these

problems; this requires working at a higher level of expression. As you indicate, this

means that more and more work is going to be done by the implementation.

Reusability and Genericity

How does Eiffel deal with change and the evolution of the programs?

Bertrand: Together with reusability, extensibility was a major goal from the start. To a

certain extent, this is the reason why Eiffel continued because, as I said, we had initially

devised Eiffel as a tool for internal use, not as something that we would sell to the rest of

the world. The event that really made us reconsider and think about making Eiffel more

widely available was when developers started saying that the big difference with lan-

guages that we were using before was that they could change their minds much more eas-

ily and not be punished for their hesitations.

I think that several aspects are critical. First, information hiding is done quite carefully in

Eiffel to isolate the various modules showing changes in one another. There is no informa-

tion hiding for descendants because it does not make sense, but there is information hiding

Download at Boykma.Com

426 C H A P T E R S E V E N T E E N

for clients. For example, it is really striking and a bit shocking to see that in recent object-

oriented languages, you can still assign directly to an attribute, to a field of an object. This you

cannot do in Eiffel because it violates information hiding. It’s a catastrophe for software.

Then the inheritance mechanism is very flexible and enables you to write software by

variation over existing patterns. Genericity gives an extra level of flexibility.

The absence of a language mechanism above the class makes it possible to combine classes

in a very flexible fashion. Contracts also help there because what is really important when

you change software is to know what you are changing—in particular, whether you are

changing aspects of the specification or only aspects of the implementation. When you

change software, you have to decide whether this is a purely internal change that will not

affect the contracts, in which case you know that the clients are completely unaffected, or

whether this also changes the contracts; if so, of course, you have to see exactly how. This

gives you a level of granularity in controlling the extent of changes. I think these are some

of the mechanisms that are most fundamental in supporting extensibility.

How should developers think of reusability? I’m asking this because some of the people

that I have interviewed essentially have said that even if you are building classes, you

should forget the reusability part because it requires a lot of work, and you should focus

on reusability only if you discover that you are using a particular class in different types

of context a lot of times. At that point, is it worth spending additional time to make it

reusable?

Bertrand: I think that is only the case if you are not good at reusability or if you are a

novice. It is true that if you do not have any experience in reusability, then when you try

to make your software more general than needed by the requirements of the moment,

you are going to spend a lot of time, and you might not succeed. But I would contend that

once you become good at reusability, once you have had a long experience working with

reusable components produced by others and have had experience in making your own

software reusable as well, then you just do it right.

I think the mistake that many people make is not to understand that there are two aspects

of reusability and that one must precede the other. They are the consumer aspect and the

producer aspect. In the consumer form of reuse, you are just reusing existing software for

your own applications; many people do this basically to save time. In the producer form of

reuse, you make your own software more reusable. If you try to be a reuse producer right

from the start, you will fail because producing reusable software indeed requires specific

techniques. What you are going to do is spend a lot of time making your stuff more gen-

eral, but you will have to guess in what directions it might be generalized later on, and

usually you will guess wrong because that is difficult.

However, if you take a slightly more humble attitude and start out as a consumer—study

high-quality reusable libraries, how they are produced, how they are designed, what their

APIs are—then you can apply the style you learned from this experience to your own soft-

ware. This is very much the way it works in the Eiffel world. People learn to program in Eiffel

by looking at the standard libraries like EiffelBase or EiffelVision for graphics; these are quite

Download at Boykma.Com

E I F F E L 427

high-quality libraries that serve as a model for good software. If you study them, then you are

able to apply the same principles to your own software and make it much, much better and

more reusable in particular. This is the way to go: start as a consumer and learn from your

experience to become a producer. In my experience, if you work like this, then it actually

works. This was the idea behind my book Reusable Software [Prentice-Hall].

With this approach you can make your software reusable. The agile or extreme program-

ming view is that you should not worry about reuse, it’s a waste of time. I think it only

applies to people who are not very good at reusable programming because they have not

taken the trouble to learn how to produce good reusable software by looking at good

models.

Maybe it’s also a matter of the programming language that they are using.

Bertrand: It certainly is; you do not need to push me much on this. Eiffel was designed

fundamentally to achieve three things. One was of course correctness, and more generally

reliability. The second one was extensibility, the ease of changing software, and the third

one was reusability. So reuse is built throughout. For example, it is really striking to see

that we had generic classes right from the start. This was absolutely fundamental to reus-

ability, but over the years people laughed at this again and again. At the first OOPSLA in

1986, the company had a booth where there was a sign that talked about it, and people

were coming to our booth to laugh at this word genericity, which they said was not even an

English word. No one had a clue what it was about.

Then a few years later C++ introduced templates. When Java came out in 1995, there

were no generics, and people were saying it is not necessary, it’s one of the complications

of object-oriented programming that makes languages messy. Sure enough, 10 years later,

genericity was introduced in a complicated and, in my opinion, not fully satisfactory way,

not so much because of a bad design but because of the constraints of compatibility. Then

I could not believe my eyes when I saw that C# came out without genericity again, even

though there had been this experience with Java and sure enough, seven years later or so,

genericity was added.

This is the kind of thing that Eiffel had seen right from the start, motivated by reusability.

The particular details of the inheritance mechanism, the particular mix of renaming,

redefinition, undefinition, that are present in Eiffel, the mechanism for repeated inherit-

ance—all this is justified and motivated by reusability. Contracts, of course, are essential for

reusability. I said earlier that I do not understand why people can program without contracts,

but something that is even harder to understand is how people can have supposedly reusable

components without a clear specification of what the supposed reusable elements do.

Little by little, people are understanding this. You may not have seen it yet, but .NET 4.0

has been announced with a contract library, Code Contracts, and all of the base libraries;

Mscorelib is going to be redocumented and rearchitected with contracts. It’s only like 23

years after Eiffel. People are finally understanding that you cannot have reuse without

contracts. It has taken time. Of course, during that time Eiffel has continued to introduce

new ideas to remain ahead of the game.

Download at Boykma.Com

428 C H A P T E R S E V E N T E E N

When and how did you realize that genericity was as important as classes?

Bertrand: This particular point or this particular realization, I think, came more of the

academic context than an immediate industrial need. In my career I have mostly been in

industry, but I have had my stints in academia. A couple of times, in 1984 and 1985, I

taught a course at USCSB in Santa Barbara entitled “Advanced Concepts in Programming

Languages.” It was pretty free-ranging.

I wanted to look at what was at that time at the forefront of programming languages. I

included both Ada, which was generating a lot of heat, and Simula, which was not gener-

ating any heat, but which I knew was the wave of the future thanks to its object-oriented

concepts.

The question became even inevitable as I was teaching that course, because one week I

would talk about genericity and the next week I would talk about inheritance, or the other

way around. The question arose naturally of how these two things compared. I do not recall

this being a particular student’s question, although it might have been. I just recall asking

myself, “Am I going to be Dr. Genericity one week and Mr. Inheritance the next week?”

This led me to ask myself the question, “What can I do with one that I cannot do with the

other?” and the converse. Of course, this was the result of many discussions and reflections

before, but the programming language community was split between those who thought

that Ada was the be-all and end-all of programming language flexibility and the little club of

those who had discovered object-oriented programming and inheritance.

These discussions were common in working groups—“I can do better with my language.”

“No, no I can do better with mine.” As far as I can tell, no one had really gone further and

tried to understand exactly what the relationship was and how exactly did the expressive

power of each mechanism compare.

For my course, I presented a kind of comparative analysis of the two. Then the call for

papers for the first OOPSLA came, and this was the obvious thing to submit to OOPSLA.

I sat and wrote down what I thought I had understood, and that was “Genericity versus

Inheritance” in the first OOPSLA proceedings.

You published that paper before most common OO languages even realized that was a

problem. Even Smalltalk doesn’t take an approach on that.

Bertrand: Smalltalk does not care, because Smalltalk being dynamically typed does not

need any of this. Actually it was very strange. I mean this Schopenhauer quote, which is

something like first they laugh at you and then they...

. . . first they ignore you, then they laugh at you. Yeah.

Bertrand: Actually, it was true, literally. The first OOPSLA, I had my paper under the

USCSB umbrella, so it was a truly academic paper, and the company also had a booth,

Download at Boykma.Com

E I F F E L 429

which was quite makeshift, because we didn’t have any money at all. The booth signs

were handmade, partly hand-written.

People would come to our booth and essentially laugh at us, and then they would bring

their friends to share the laugh. As I mentioned earlier, one of the things they laughed at

was the word genericity. There were these big guys from HP, and when I say “big,” I really

mean big. Some suits from HP came to our booth several times, bringing a different friend

each time, and pointing them to the word. “How do you pronounce this? That must be

French or something.” They were loudly pretending to try various pronunciations: “It

must be generisissyty!” and so on.

That really was the spirit of the time. Then, of course, 20 years later I get to referee papers

that say that genericity was invented by Java. That’s part of the fun of life.

Proofreading Languages

You speak at least three natural languages I’ve heard: English, obviously, French, and

German. Has being multilingual or a polyglot influenced you as a language designer?

Bertrand: The short answer is yes. My German is actually not great. French is my native

tongue. English, I do my best. I speak fairly fluent Russian. Actually I have a Master’s degree

in Russian, although I don’t speak anywhere close to the level of one who has a Master’s

degree. I speak reasonable Italian. Actually I can lecture in Russian without too much

trouble. I can lecture in Italian for 15 minutes, and then my mind kind of overheats. Any-

way, that was to be more accurate, but the answer to your question is definitely yes.

I was drawn to computer science partly because of my interest in languages. Knowing that

there are several ways to say something, that they are not in one-to-one correspondence

with one another, that you can take a different tack at things, that sometimes a noun will

be the right solution, sometimes a verb would express the nuance that you are trying to

convey—this has definitely influenced and helped me a lot. I also think that you speak your

own native tongue better if you know at least one foreign language.

In addition, much of what one does in technical endeavors and in programming in particular

is not just writing programs, but writing English or another natural language. Having spent a

little time on writing skills and on learning one or more languages helps tremendously.

Do you approach programming from a mathematical perspective or a linguistic

perspective, or some combination of the two?

Bertrand: I wish I would approach programming more mathematically than I do. I’m

convinced that 50 years from now, programming will just be a branch of mathematics.

Some people have been promoting the mathematical approach to programming for a long

time. It has not really caught on, except in a few select areas when people really do not have

a choice when they are building fairly small, life-critical systems. In the end, programming is

operational mathematics; mathematics that can be interpreted by a machine. I think pro-

gramming will be even more mathematical in the future.

Download at Boykma.Com

430 C H A P T E R S E V E N T E E N

As to my own approach, I think it’s a mix of what you call a linguistic approach, the more

spontaneous and creative and discursive approach, and an attempt to be rigorous and

mathematical. Certainly Eiffel is more influenced by mathematics than most other existing

languages, except perhaps for functional languages, like Haskell.

I’ve asked a lot of designers about starting with a small, rigorous core language and

building on that—take the lambda calculus. You can build anything computable once

you have function application. What do you think of that approach?

Bertrand: I don’t think it helps that much. The problem of programming is the combina-

tion of science and engineering. One aspect of programming is essentially scientific, and as

I said fundamentally programming is mathematics. But the other side is the engineering

side. If you take some of the programs that exist today, they are more complex than just

about any artifact that humankind has built before. The big operating systems—like a

Linux distribution, Vista, Solaris—are in the tens of millions of lines of codes, often over

50 million; these are incredibly complex engineering constructions. Many of the issues

that they have to address are essentially engineering issues.

The difference between science and engineering, to simplify things a bit, is that in science

you need a few very smart ideas; in engineering you need to take care of very large

amounts of details, most of which are not very complicated, but they are very numerous.

The contrast is between a few smart things and a very large number of not particularly dif-

ficult things. What is interesting about programming is that you need both. I seem to be

contradicting what I said a moment ago, that in a few decades programming would be

essentially mathematical, but I think there is no contradiction. Let me try to explain.

Fundamentally programming is nothing more than mathematics, but the emphasis is on

the word fundamentally. In practice, programming also involves all these engineering

issues that you have to take care of. If you are writing an operating system, you must deal

with the problem of thousands of device drivers written by naïve programmers and make

sure they don’t crash your operating system. You have to take care of all the human lan-

guages and dialogs that people use. You need to have a very complex set of mechanisms

for user interfaces; even though the basic ideas might be simple, the details are numerous.

The difficulty of programming is twofold: the scientific difficulty and the engineering diffi-

culty. Having a very strong mathematical basis, for example, lambda calculus, will help

you with the first half, but not with the second one, and it helps you with the part that is

the best understood today. Lambda calculus is very good to model the core part of a pro-

gramming language at a level of something like Pascal or Lisp, but more modern program-

ming languages are far more ambitious than that.

In the end, we must reduce everything to very simple mathematical principles, but the

mathematical principles themselves are not enough to tackle the challenges of large-scale

programming today.

Download at Boykma.Com

E I F F E L 431

Is that the difference between an academic programming language and an industry

programming language?

Bertrand: Absolutely. At the time of the design of Ada, people were criticizing it as being

too big and too complex, and Jean Ichbiah, its designer, said in an interview that “Small

languages solve small problems.” There is a certain amount of truth in that. I think he was

essentially answering criticism by people like Wirth, who is very much into “small is beau-

tiful,” but he was largely right.

What’s in between structured programming and OO? You mentioned that you thought

structured programming was a good way to structure small programs and object

orientation was a good way to structure large programs. Is there a scope of programs in

between, size-wise?

Bertrand: No, I would not use anything other than object-oriented programming. I

basically learned the two at the same time, and I see no reason ever to use any non-OO

technique for any development except possibly small throw-away scripts. “Object-oriented”

simply means applying the mathematical notion of structure to programs, and there is

no good argument against that.

You have either small programs or big programs.

Bertrand: There is no clear reason not to use classes. I am not sure what Dijkstra thought of

this. He was never a great proponent of object-oriented programming, but I also did not hear

him criticize it; he could be extremely outspoken and loud if he didn’t like something.

You mentioned that one of the things you really needed for Eiffel was a streaming

serialization mechanism. Can I ask why you needed that?

Bertrand: The first application we built was the Smart Editor that I mentioned, which

was commercialized as ArchiText. All the time what you need to do with an editor is to

work on a small data structure, which is in memory, and then to store it. One way is to

parse or unparse the text each time, which is an absurd way to go. Assume that you are

editing a text and you have reconstructed a small structure for the text, and you have an

abstract syntax tree or other effective internal representation; you do not want to unparse

it to text and then reparse it the next time around. You want to use the abstract structure

all the time. When you need to store it, you just press a button, which is what the stream-

ing mechanism does for you.

That was the first application, but every subsequent application has been like this, too. If

you are writing a compiler, it’s the same thing. Assume that you have several passes in

your compiler; each pass takes the data structure from the previous pass, decorates it,

massages it a little more, and then stores the result to disk. You do not want to have to

write this in a specific way each time. You just want to press a button. Dozens of applica-

tions need this kind of thing.

You can add more stages in between.

Bertrand: Right. You are not restricted to one particular processing structure.

Download at Boykma.Com

432 C H A P T E R S E V E N T E E N

You mentioned something called “seamless development,” and said this was a real

fundamental idea in Eiffel. What is seamless development?

Bertrand: It is the idea that you have unity through the process of constructing software:

a single set of issues, a single set of solutions to these issues, and then a single notation to

express the results, which is what the Eiffel language tries to be.

This is completely going against the grain of the evolution of the industry for the past 20

years, which I disapprove in this respect. The tendency has been for separation, because it

is good for business, because people then have to buy analysis tools and design tools and

IDEs, and use consultants at each level.

Also I think it’s because people do not realize that, for example, specifications are software

in essentially the same way that implementation is software. Historically, programming

languages were very low-level, so the idea that you could think in a programming lan-

guage was absurd, but with what we can do today there is no reason to retain these gaps.

People have trouble escaping the mindset that we had in the punch card era where you

submitted your program as a batch job and came back the next day, and if you had a

compilation error you were in trouble. You had to sit and think really, really hard

beforehand.

Bertrand: Right. There is nothing wrong in thinking hard beforehand, but it does not

mean that you should be using completely different schemes of thinking and then, as a

consequence, tools and languages at the different stages.

People see this almost in moral terms. There is this implicit idea that analysis is noble and

great, and that implementation is dirty and despicable. This was true to a certain extent

when you had to program in assembly language, or even in things like FORTRAN. FOR-

TRAN is a remarkable achievement for its time, but not something that most people would

want to think in. Hence this idea that the noble part of the work is this early thinking, and

then at some point someone—not necessarily the same person—implements the whole,

rolls up his sleeves, and does the lowly work, like opening the hood of the car and starting

to dirty his hands.

This was true up to a point, but with modern programming languages, and certainly with

Eiffel, it does not have to be that way. Instead of trying to make our analysis and design

methods more implementation-oriented, we start from the other end. We start from the

programming end and make the programming language so expressive, so elegant, so close to

productive modes of thinking, that we can do all of our work in it. The first versions of the

program will be abstract and descriptive, then later versions will be more operational and will

actually execute. There need not be any gaps between those various stages of the process.

It is the reverse, for example, of model-driven development, which says you have the

model and then you have something completely different, the program.

Download at Boykma.Com

E I F F E L 433

Your model in that case, whether it’s visual or not, is akin to the source code, because it’s

what you generate, and the source code is sort of an afterthought.

Bertrand: This is good as long as you have the absolute guarantee that no one will ever

touch the source code, either to debug it or to change it, for example. This is always what

people say initially—“Sure, we only work on the model and no one will ever touch the

source code”—but the practice is often quite different.

The source code is the artifact of the design.

Bertrand: The question is what do you debug? If you really debug the model, then there is

nothing to criticize. Then of course it means that what you call the model is just a program.

Maybe it is a very high-level program, but it is a program. You have developed a very high-

level programming language, and then you need to build a complete development environ-

ment around it.

On the other hand, if the program that you debug is the generated program, then you will

run into all the difficulties of a split development. This is the key question to ask people

who say they do model-driven development: which version do you debug? Which version

do you change when the customer wants a new feature for yesterday?

Can one prove programs or are contracts just for testing?

With this contract mechanism present right from the start in Eiffel, the idea has always been

that contracts would be used to proof programs in the long term, but in the short term they

would be used to test programs. One consequence is that you can enable runtime monitoring

of contracts, and then when a contract is violated, you get an exception.

The next step, which actually took a long time to carry out, was to say, let’s use this as the

basis for completely automated testing. This is the research we have done in the past few

years in my group at ETH, which is now integrated in the tools.

The basic question was: what is difficult in testing?

One, we have to automate the testing process. This has been solved by JUnit and all these

great tools that people use now to automate that part of the process.

There are two more things to automate, which essentially no one else has automated, but

they’re the most difficult. One is test-case generation, because you need to create all test

cases—potentially thousands, or tens of thousands, or hundreds of thousands of them.

Third and last, even if you did the first two, you still have a problem, because you are

going to run these thousands of tests and someone has to decide whether the test is suc-

cessful or not, each one of them, so that also has to be automated with test oracles. What

we can do with contracts is to have test oracles taken care of simply by saying: if the post-

condition or invariant is satisfied, then the test succeeds; if the postcondition or the invari-

ant is violated, then the test has failed. This is automatic.

What remains is generating the test cases, and for this we use the approach that seems the

most silly at first, and in fact, works remarkably well: random or quasi-random generation.

Download at Boykma.Com

434 C H A P T E R S E V E N T E E N

The tool creates objects almost randomly, and then it calls all the routines, all the methods

of the corresponding classes, with mostly random arguments. Then we just wait. We call

this “Test While You Lunch.” We start the push-button test, and come back from lunch an

hour later, and see the postcondition violations.

This works remarkably well, because basically you have nothing to do. You just wait for

the automatic-generation mechanism to exercise your software. But you can only do this

with a language that has contracts built in, because otherwise people would have to add

on the contracts and the contract-checking mechanism. If you do have support for con-

tracts, it’s actually a remarkable way to test your software.

What do you think about program provability? Is that useful? Is that always going to be a

pipe dream?

Bertrand: It is becoming more and more realistic. For the academic part of my work, it

occupies a good deal of our efforts. It has been very frustrating, because the basic ideas

have been there for almost 40 years, essentially since the publication of Tony Hoare’s axi-

omatic semantics paper in ’69. The practical realization has been very slow to come, but

no, it is not a pipe dream.

Certainly in the past 5 to 10 years there’s been considerable progress. The work at

Microsoft Research with Spec# is very interesting. There’s the work that we are doing with

Eiffel at ETH, which has not registered that much yet because we are very ambitious, so

we have to solve lots of problems before we can really impress the world. But I think it is

promising.

There’s the work on SPARK. It is a very interesting development. They are actually able to

produce programs that are proved. Now the catch is that it is a language that no one

would want to program in. They call it a subset of Ada. It’s really a subset of Pascal, with

modules. The price to pay is that you have to renounce all the pleasures of life. No classes,

no dynamic object creation, no genericity, no inheritance, no pointers. By taking such a

reduced language they have been able to build effective proof tools. That is a real achieve-

ment because it makes it possible to build significant systems, typically military or aero-

space, and prove their correctness. Now you would not want to program in that language.

I would not, and 99% of the programmers in the world would not. Still, it’s a major

achievement.

What we are trying to do with our proof effort, at ETH, is something similar, but for a lan-

guage that people will want to program in. The difficulty is to include all the programming

language mechanisms that we have come to know and love. Of course, as soon as you

have pointers, for example, you have aliasing, and this immediately complicates the prob-

lem considerably. The challenge is no longer to prove programs. It is to prove programs

written in a modern realistic programming language. It will happen.

Download at Boykma.Com

E I F F E L 435

One has to realize that we are essentially dealing with undecidable problems. In the end

there will always be parts of programs that we cannot prove, and that is also why the

other side of what we are doing is tests. The development is going much faster. This is cer-

tainly the most exciting thing that we have done for the past two or three years, and it is

now completely integrated with the environment. So basically one of the benefits of hav-

ing contracts is that you can test completely automatically. We have this Eiffel Testing

Framework, now completely integrated in Eiffel Studio, which is essentially push-button

testing. You don’t have to write test cases. You don’t have to write test oracles. You just

call the Testing Framework, which creates instances of classes and calls the methods on

these classes, and then waits for a contract to fail. The other cool side of the Testing

Framework is the test synthesis part: when an execution fails, the tool automatically cre-

ates a test out of it, which you can rerun to help fix the bug, and keep as part of your

regression test suite.

To relate this to your question, there are proofs and there are tests, and the two aspects

will always remain necessary. But proofs definitely are becoming possible.

Proofs and contracts seem like different stops along a sliding scale.

Bertrand: As I mentioned we started with dynamic evaluation of contracts, but the idea

has always been that the eventual aim was to prove that classes satisfy their contracts.

There was not the industrial possibility until recently. People were just not ready for

proofs.

Should we expect to see this in Eiffel in the next few years?

Bertrand: Absolutely. This is still partly research, so it is difficult to give an exact dead-

line. The research work on testing started about four years ago and now the first results

are part of the environment. For proofs, I think we are going to see the first outcomes in

about that same time; I would say three years from now.

OK, so it’s definitely a production goal for you?

Bertrand: Absolutely.

You mentioned areas of unprovability in code. Haskell uses the concept of monads to

separate functionally pure code from impure code—code that has side effects. Could

there be a similar mechanism to isolate unprovable code?

Bertrand: We have to separate the parts we can prove from the parts we cannot prove,

but I don’t think we will use monads for that. Monads are a very interesting concept. They

can be used in the context of proving for something else: they make an incremental

approach possible by defining a base language that supports provability and then adding

more advanced language constructs like exceptions or others in a more incremental way.

Download at Boykma.Com

436 C H A P T E R S E V E N T E E N

Managing Growth and Evolution

You said that you designed Eiffel in about an afternoon, but it took about 20 years to

implement that vision.

Bertrand: The key ideas really are very simple and all the rest is commentary, as they say.

To a certain extent, that’s what we did. We have expanded on the basic concept for the

past 20 years.

You take classes, you take inheritance, especially multiple inheritance. You take genericity,

you take contracts, and then a number of language principles, like for example, something

that is very important in Eiffel, which is that you need to provide one good way to do any-

thing. Also the idea of high signal-to-noise ratio: that the language should not pursue small

size as such, but should select features on the basis of how much power each feature adds and

how little complication it brings. You take a couple dozen ideas like this, some of them lan-

guage ideas, other meta-ideas about language design, and basically that’s it. But to turn this

into something that is useful to write applications that simulate the U.S. ballistic missile

defense system, or manage billions of dollars, you need the engineering part, which takes a

lot of time.

Anyone has limited resources, and it is not a matter of being a small versus a large com-

pany, because every innovative design comes from a small group. The only exceptions are

projects that are essentially engineering projects. You send a man to the moon; well, this

takes thousands of people for a few years. Or maybe the human genome, you know how to

do it initially—you just need what I would call engineering. But those are the exceptions.

If you take really innovative ideas, I have never seen a breakthrough product in software that

was built by more than 10 people, and usually it is somewhere between 2 and 5. Anyone has

limited resources, so the key decisions that you make are what to do and what not to do.

Certainly along the way we have made a few mistakes. For example, we invested in an OS/2

version, which was a complete waste of effort; we should have put the work into making the

basic version better. These are the decisions that you have to make on a day-to-day basis, and

some of them have been mistakes.

Did it take 20 years to reach the point where you were satisfied with the language, where

the implementation, the polish, and the applicability met your original design goals?

Bertrand: I would not say that, because if you do not have a certain amount of chutzpah,

you don’t go into something like this. In a way the first implementation was already

something that the whole world should have used already. One can also be much more

modest and say we are not there yet.

We’re working on it every day, improving the implementation and doing things that we

think are absolutely indispensable. It’s never going to be perfect, certainly not during my

lifetime, but the question is what you work on at any particular point in time, what you

decide is important, and what you decide is an accessory. One can always revisit past

choices and wonder whether the emphasis was the right one or not.

Download at Boykma.Com

E I F F E L 437

Certainly there have always been aspects of the implementation that people would criti-

cize, often rightly. On the other hand, we have people who have been using Eiffel for 10,

15 years, some almost since the first implementation appeared, and they seem to have

been very happy with it all along.

So on the one hand, I’m never satisfied with the implementation; on the other hand, I

think that Eiffel throughout its existence has provided an excellent solution, far ahead of

the pack, to people who wanted to use it.

You have to have the chutzpah to believe you can spend 20 years on a project, but you

also have to work on a project you think you can love for 20 years.

Bertrand: Right. The decision of what to do and what not to do is very hard, because for

example, we were one of the first commercial companies to introduce a version for Linux.

At the time this sounded like a completely crazy decision. Take Linux versus OS/2. The

effort on OS/2 was for absolutely nothing. On the other hand, someone told me at some

point, in ’93 I think, really early, “We’re using this thing called Linux. Could you have a

version for Linux?” No one wanted to do it within the company. I told them it claims to be a

variant of Unix—we covered dozens of Unix variants because at the time commercial Unix

had many variants, we had worked very hard to develop a highly portable technology—so

just try to recompile the stuff under Linux and see if it works, and if it’s going to be one

month of work, it’s not worth it. If it’s going to be one day of work, it may be worth it.

Actually it was no work at all. The whole thing compiled on Linux at the push of a button.

The guy who had asked me for a Linux version was very happy, and then suddenly

requests started coming in.

From a conventional wisdom standpoint, Linux was a stupid thing to do and OS/2 was the

smart thing to do, and it turned out that it was exactly the reverse. Having an early Linux

version helped us tremendously. It’s very difficult to make these decisions, and you of

course are working with limited information, with people giving you advice who often

really do not know what they are talking about.

The lesson is that you have to rely on everyone’s input, but in the end you must know what

you are doing and can only rely on yourself, on your own judgment.

What criteria do you use to analyze those decisions?

Bertrand: Consistency. Is it consistent with the idea of the organization? Is this consis-

tent? Is this starting us in a direction that is going to pull us away from our core ideas and

competence and pleasure, because you have to take pleasure in what you’re doing, or is

this going to be a new experience that teaches us something new and adds to what we

already know?

Today, how do you choose which features to add to Eiffel? How do you grow a language?

Bertrand: Until ’98, almost 2000–2001, basically I was in charge of the evolution, and

then things changed with the creation of the Eiffel standards committee at Ecma, which

led to an Ecma standard in 2005 and an ISO standard in 2006. To answer the question

Download at Boykma.Com

438 C H A P T E R S E V E N T E E N

administratively, the changes that go into the language are those approved by the committee.

Now to answer it more technically, we have been extremely careful about the growth of

Eiffel; some of what we have done as a committee and community are fairly original.

First we have this principle that in the language, there should be one good way to do any-

thing. This is the best way we have to resist creeping featurism. It is not that we do not

want new features, but we do not want to include new features in the language that are

going to be redundant with existing mechanisms. The criterion is that if a programmer

wants to do something, he needs to have one good way to do it. As a counterexample,

some languages have both dynamic binding and arrays of function pointers. As a pro-

grammer, especially as a novice OO programmer, you do not know which of these tech-

niques to use if you have the problem of calling a different function depending on a

certain object type. Eiffel causes almost no such dilemmas. The principle cannot be

achieved 100%, but we are close.

Another guiding principle is to maximize what one may call the signal-to-noise ratio. It’s

interesting to compare this with the Niklaus Wirth approach to languages. Wirth really

likes to have small languages, and he has this phobia of bloat. I think that many of the

mechanisms of Eiffel would seem to him to make the language too big. I greatly admire

this view, but Eiffel rests on a slightly different one. A language should not necessarily be

small for the sake of size; it’s more that the signal-to-noise ratio should be very high,

meaning very little noise. What I call “noise” are language features that are not very useful

but just complicate the language without bringing a lot of expressive power, and “signal”

means expressive power. As an example of this, we added about 12 years ago a notion of

“agent” that has proved tremendously successful. It’s a form of closures, full-fledged

lambda expressions, and there was some concern that it would be redundant with existing

mechanisms, but this has not happened. That is an example of a major addition to the lan-

guage that has proved extremely popular with the users and made possible things we

could not do elegantly before. All signal, very little noise.

The third principle is to make sure that everything we do is compatible with the goals of

Eiffel and the spirit of Eiffel, and in particular, to improve the reliability of the language

and decrease the possibility of errors for programmers. Some really major developments

have occurred in this respect in the past two to three years. I think Eiffel is the first com-

mercial language that is void-safe. What that means is no null pointer referencing any-

more. This is fully implemented with the latest release, 6.4, with the libraries completely

converted. Void safety is the standard problem of object-oriented languages or actually

even of C or Pascal that x.f could crash because x is null, or void in Eiffel terminology. For

Eiffel programmers the risk is completely gone. I think it is a major achievement because it

removes the major potential runtime problem that still exists with object-oriented devel-

opment. This is the kind of thing that we want to do to increase the reliability of software

developers.

Download at Boykma.Com

E I F F E L 439

There are more principles, but let me mention just one more, which is that the standards

committee has been pretty bold. We are not shy about changing the language. In particu-

lar, we will not hesitate to remove language mechanisms if we feel that there is a better

way to do things. Of course, we do this extremely carefully because there is an installed

base and if a customer has millions of lines of code we cannot afford to break the code, so

typically the old mechanisms are still supported for several years. We offer migration tools

and various aids, but if at some point we come to the conclusion that there was a certain

way A of doing things and we have found a way B of achieving the same result that is bet-

ter (in the sense of being simpler, safer, more extensible, and so on), then we just remove

something that was there and replace it by the mechanism that we think is better.

How do you handle concerns of backward and forward compatibility?

Bertrand: This is at the center of our concerns. I would say if you have been in business

and have had a product for some time, this quickly becomes one of the dominant consid-

erations, and it takes up an incredible amount of our time.

It is an extremely hard question if you are not the dominant player. If you are the domi-

nant player in the market, you can do whatever you like. All the big names in the industry

do this once in a while. They basically change overnight, and customers have no choice

but to follow.

The Eiffel community is a little special in this respect in that it is more open to innovation

than most other communities—in particular, language communities. People accept that

things have to change, but because the people who use Eiffel tend to be forward-looking,

interested in really good solutions that are elegant and creative, they accept that things

change, even if they have millions of lines of code to manage. What they don’t like, and what

no one anywhere likes, is for someone to point a pistol at their head and say, “change now or

die.” If this is your approach to change, you are not going to be very popular with your users.

The strategy that we have in the Ecma committee is to try to see all the ins and outs of the

situation and take every issue into consideration. If we decide something has to change,

then we change it. We are not going to reject change with the excuse that things have

been done one particular way for years. If we have to change, we will change, but change

has to be planned very carefully. I’m simplifying, because there are language changes,

there are library changes, there are tool changes, and the strategy is not necessarily the

same for each case, but these are the basic rules:

• Do your homework and be absolutely convinced that this is the right change.

• Make a plan.

• You have to explain why you are making the change. This is very important. You have

to assume that you are talking to intelligent people. If you have indeed done your

homework and thought very carefully about the reasons for the change and are able to

explain it to and convince your closer colleagues, then you will be able to convince

other intelligent people as well.

Download at Boykma.Com

440 C H A P T E R S E V E N T E E N

• Give people time. Almost always a significant language change implies a two-step pro-

cess, sometimes three steps. There is one release in which the new mechanism is

optional and the old one is still the default, but you can try the new mechanism as an

option, typically on a class-by-class basis, so that you can try it on parts of your system.

Then there is a version that reverses the defaults.

We very seldom remove something completely. Even if something is deprecated, it still

remains available as an option. It is unfortunately not always possible to do this,

because sometimes an incompatibility exists between the old mechanism and the new

mechanism.

• Provide migrations aids if you can: tools, libraries, whatever can help people move from

the old mechanism to the new one.

We have gone through this many times, especially in the past five or six years. If you take

the history of the Eiffel language, there have been two major upheavals. The first version

was in 1985–1986. The second version was in 1988, but this was essentially additions, so it

did not cause any incompatibility problem. Then we moved to Eiffel 3 between 1990 and

1993; this was definitely a major upheaval, but the benefits were so big that it didn’t cause

too much trouble.

The language did not change very much until the start of the standards process in 2001.

The standard was published in 2005 and became an ISO standard in 2006. It introduced

some substantial language changes, which took several years to implement; the imple-

mentation is almost complete now. We are currently in the midst of probably one of the

most difficult instances of the problem, and it is really worth it. It’s the attached type

mechanism, solving the void safety problem that I brought up earlier, the guarantee that

no x.f call will ever be executed if x is null. The compiler catches such cases and rejects the

program if it could cause a void call (a null pointer dereferencing). But the mechanism

does cause incompatibilities with existing code, if only for the good reason that in existing

codes, there are cases in which there could indeed be void calls. The mechanism was essen-

tially implemented for 6.2, and the finishing touches were put in 6.3; the full library conver-

sion to void safety, which turns out to be a large endeavor, is for 6.4. (We work with a “clock

cycle” scheme, producing two releases a year, one in the spring, one in the fall.)

Conversion of existing code has turned out to be a delicate issue. We cannot afford to

make existing code obsolete, ever. What we can do is to tell users: if you want to take

advantage of this new mechanism that is going to be available now, here is what you have

to do, and we have done it ourselves, so we know that it’s worthwhile, and we also know

how much effort it is. We provide you with all the benefits of our experience, and tools to

help you do it.

What should people learn from your experience?

Bertrand: Disregard fashion and choose the solution that is right intellectually.

Download at Boykma.Com

441

Chapter

Afterword

A SINGLE WORD DESCRIBES MY CHIEF PLEASURE FROM WORKING ON THIS PROJECT—ENTHUSIASM.

Every interviewee offered the rewards you might expect—deep knowledge, historical lore,

and practical insights—but it was their enthusiasm for the subject of language design,

implementation, and growth that proved infectious.

For example, Anders Hejlsberg and James Gosling made me excited about C# and Java

again. Chuck Moore and Adin Falkoff convinced me to explore Forth and APL, two lan-

guages invented before I was born. Al Aho enticed me by describing his compiler class.

Everyone we interviewed gave me multiple ideas I wish I had the time to explore!

My debt of gratitude is great, not just for the time they gave Federico and me, but because

they blazed trails to a rich and fertile field of invention. The best lessons I’ve taken away

from this experience are:

• Never underestimate the value of simplicity of design or implementation. You can

always add complexity. A master removes it.

Download at Boykma.Com

442 A F T E R W O R D

• Pursue your curiosity with passion. Many of the best inventions and discoveries

occurred when someone was in the right place at the right time, ready to chase the

right answer.

• Know the field, past and present. Every one of the interviewees worked with other

smart, hardworking people. Our field depends on this sharing of information.

The languages du jour may change continually, but the problems each of these master-

minds faced still haunt us—and their answers still apply. How do you maintain software?

How do you find the best solution to a problem? How do you surprise and delight users?

How do you handle the inevitable desire for change without disrupting solutions that

must continue to work?

I have better answers to those questions now. I hope this book has helped you in your

own search for wisdom.

—Shane Warden

Download at Boykma.Com

443

Chapter

Contributors

Alfred V. Aho is the Lawrence Gussman professor in the computer science department at

Columbia University. He served as chair of the department from 1995 to 1997, and in the

spring of 2003.

Professor Aho has a B.A.Sc. in engineering physics from the University of Toronto and a

Ph.D. in electrical engineering/computer science from Princeton University.

Professor Aho won the Great Teacher Award for 2003 from the Society of Columbia

Graduates.

Professor Aho has won the IEEE John von Neumann Medal and is a Member of the U.S.

National Academy of Engineering and the American Academy of Arts and Sciences. He

received honorary doctorates from the Universities of Helsinki and Waterloo, and is a Fel-

low of the American Association for the Advancement of Science, the ACM, Bell Labs, and

the IEEE.

Professor Aho is well known for his many papers and books on algorithms and data struc-

tures, programming languages, compilers, and the foundations of computer science. His

book coauthors include John Hopcroft, Brian Kernighan, Monica Lam, Ravi Sethi, Jeff

Ullman, and Peter Weinberger.

Download at Boykma.Com

444 C O N T R I B U T O R S

Professor Aho is the “A” in AWK, a widely used pattern-matching language; “W” is Peter

Weinberger; and “K” is Brian Kernighan. The Aho-Corasick string-matching algorithm is

used in many bibliographic search and genomic analysis programs. He also wrote the ini-

tial versions of the string pattern-matching programs egrep and fgrep that first appeared

on Unix.

Professor Aho’s current research interests include programming languages, compilers,

algorithms, software engineering, and quantum computers. Professor Aho has served as

chair of ACM’s Special Interest Group on Algorithms and Computability Theory, and chair

of the Advisory Committee for the National Science Foundation’s Computer and Informa-

tion Science and Engineering Directorate. He is currently the coeditor-in-chief of the con-

tributed articles section of the Communications of the ACM.

Prior to his current position at Columbia, Professor Aho was vice president of the Comput-

ing Sciences Research Center at Bell Labs, the lab that invented UNIX, C, and C++. He was

also a member of technical staff, department head, and director of this center. Professor

Aho was also the general manager of the Information Sciences and Technologies Research

Laboratory at Bellcore (now Telcordia).

Grady Booch is recognized internationally for his innovative work in software architec-

ture, software engineering, and collaborative development environments. He has devoted

his life’s work to improving the art and the science of software development. Grady served

as chief scientist of Rational Software Corporation since its founding in 1981 and through

its acquisition by IBM in 2003. He now is part of the IBM Thomas J. Watson Research

Center serving as chief scientist for software engineering, where he continues his work on

the Handbook of Software Architecture and also leads several projects in software engi-

neering that are beyond the constraints of immediate product horizons. Grady continues

to engage with customers working on real problems and is working to build deep relation-

ships with academia and other research organizations around the world. Grady is one of

the original authors of the Unified Modeling Language (UML) and was also one of the

original developers of several of Rational’s products. Grady has served as architect and

architectural mentor for numerous complex software-intensive systems around the world

in just about every domain imaginable.

Grady is the author of six bestselling books, including the UML Users Guide and the seminal

Object-Oriented Analysis and Design with Applications (both Addison-Wesley Professional). He

writes a regular column on architecture for IEEE Software. Grady has published several

hundred articles on software engineering, including papers published in the early 80s that

originated the term and practice of object-oriented design (OOD), plus papers published

in the early 2000s that originated the term and practice of collaborative development

environments (CDE).

Grady is a member of the Association for Computing Machinery (ACM), the American

Association for the Advancement of Science (AAAS), and Computer Professionals for

Download at Boykma.Com

C O N T R I B U T O R S 445

Social Responsibility (CPSR), as well as a senior member of the Institute of Electrical and

Electronics Engineers (IEEE). He is an IBM Fellow, an ACM Fellow, a World Technology

Network Fellow, a Software Development Forum Visionary, and a recipient of Dr. Dobb’s

Excellence in Programming award, as well as three Jolt Awards. Grady was a founding

board member of the Agile Alliance, the Hillside Group, and the Worldwide Institute of

Software Architects, and now also serves on the advisory board of the International Asso-

ciation of Software Architecture. Additionally, Grady serves on the boards of the Iliff

School of Theology and the Computer History Museum. He is also a member of the IEEE

Software editorial board. Grady helped establish work at the Computer History Museum

for the preservation of classic software and therein has conducted several oral histories for

luminaries such as John Backus, Fred Brooks, and Linus Torvalds.

Grady received his B.S. from the United States Air Force Academy in 1977 and his M.S. in

electrical engineering from the University of California at Santa Barbara in 1979.

Don Chamberlin is co-inventor, with Ray Boyce, of SQL, the world’s most widely used

database query language. He was also one of the managers of System R, the research

project that produced the first implementation of SQL and developed much of the basic

technology underlying IBM’s family of database products.

Don is also a coauthor of the “Quilt” proposal, which became the basis for the XQuery lan-

guage. He served as IBM’s representative to the W3C XML Query Working Group during

the development of XQuery and as editor of the XQuery language specification.

Don is currently an adjunct professor of computer science at University of California,

Santa Cruz. He is also an IBM Fellow (Emeritus), affiliated with IBM Almaden Research

Center, where he worked for many years. For the past 11 years, he has also served as a

judge and problem contributor to the annual ACM International Collegiate Programming

Contest.

Don holds a B.S. degree in engineering from Harvey Mudd College, and a Ph.D. in electri-

cal engineering from Stanford University. He is an ACM Fellow and a member of the

National Academy of Engineering. He is also a recipient of the ACM Software Systems Award

for his contributions to the design and implementation of relational database systems.

Dr. Brad Cox is currently chief architect for Accenture, where he specializes in SOA secu-

rity, interoperability, standards, and component-based engineering for clients within gov-

ernment and industry.

He was part of the faculty of the George Mason Program on Social and Organizational

Learning (PSOL), an interdisciplinary department that concentrates on overcoming obsta-

cles to change, development, and learning as firms transition to a global information-

intensive economy. His interests were in applying Internet, television, and groupware

technology to expediting experiential and collaborative learning. Courses included Taming

the Electronic Frontier, Internet Literacy, and Advanced Object Technology.

Download at Boykma.Com

446 C O N T R I B U T O R S

He coauthored the book Object-Oriented Programming: An Evolutionary Approach (Addison-

Wesley), often credited with today’s enthusiasm for object technology and component-

based engineering. His second book, Superdistribution: Objects As Property on the Electronic

Frontier (Addison-Wesley), proposes a technosocial solution to buying, selling and owning

property made of bits as distinct from the atoms from which goods have been composed

since antiquity.

He was a cofounder of the Stepstone Corporation, where he originated the Objective-C

programming language and Software-IC libraries.

At Schlumberger-Doll Research, he applied artificial intelligence, object-oriented, Unix,

and workstation technologies to oil field wireline services.

At the Programming Technology Center at ITT, he applied Unix and object-oriented tech-

nologies in support of the development of a large, highly distributed telephone switching

system, System 1240.

His Ph.D. from the University of Chicago is for theoretical and experimental work in neu-

rophysiology in an area since known as neural networks. His post-graduate experimental

studies were at the National Institutes of Health and at the Woods Hole Marine Biological

Laboratories.

Adin D. Falkoff (B.Ch.E., CCNY 1941; M.A., mathematics, Yale 1963), prior to a stint in

U.S. Navy during WWII, worked in the development of materials and methods for the

mass manufacture of precision optical instruments. He subsequently worked in the design

of airborne antennas for military aircraft, before joining IBM in 1955 where he was the

manager of research publications during the formative years of the IBM Research Divi-

sion. He started work on various aspects of computer science in the late 1950s, and after

attending Yale University under the IBM Resident Scholarship Program in 1960, he con-

centrated on computer science, including APL. He was a member of the visiting faculty at

the IBM Systems Research Institute for several years, and a visiting lecturer in computer

science at Yale University. From 1970 to 1974, Mr. Falkoff established and managed the

IBM Philadelphia Scientific Center, and from 1977 to 1987 was the manager of the APL

Design Group at the Thomas J. Watson Research Center. He has received IBM Outstand-

ing Contribution Awards for the development of APL and the development of APL\360,

and was the first recipient of the ACM Iverson Award for contributions to APL. He

authored or coauthored publications including “Algorithms for Parallel Search Memories,”

“A Formal Description of System 360,” “The Design of APL,” “A Note on Pattern Match-

ing: Where do you find the Empty Vector,” “A Pictorial Format Function,” “Semicolon-

bracket notation: A hidden resource in APL,” “The IBM Family of APL Systems,” and

many others. Mr. Falkoff holds patents in materials and methods for manufacture of preci-

sion optical instruments and the design of computer systems.

Luiz Henrique de Figueiredo holds a D.Sc. in mathematics from IMPA, the National

Institute for Pure and Applied Mathematics in Rio de Janeiro, where he is an Associate

Researcher and a member of the Vision and Graphics laboratory. He is also a consultant

Download at Boykma.Com

C O N T R I B U T O R S 447

for geometric modeling and software tools at Tecgraf, the Computer Graphics Technology

Group of PUC-Rio, where he helped to create Lua.

Besides his work on Lua, his current research interests include computational geometry,

geometric modeling, and interval methods in computer graphics, especially applications of

affine arithmetic.

He has held post-doctoral positions at the University of Waterloo in Canada and at the

National Laboratory for Scientific Computation in Brazil. He is a member of the editorial

board of the Journal of Universal Computer Science.

James Gosling received a B.Sc. in computer science from the University of Calgary, Can-

ada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in

1983. The title of his thesis was “The Algebraic Manipulation of Constraints.” He is cur-

rently a VP & Fellow at Sun Microsystems. He has built satellite data acquisition systems, a

multiprocessor version of Unix, several compilers, mail systems, and window managers.

He has also built a WYSIWYG text editor, a constraint-based drawing editor and a text edi-

tor called Emacs for Unix systems. At Sun, his early activity was as lead engineer of the

NeWS window system. He did the original design of the Java programming language and

implemented its original compiler and virtual machine. He has been a contributor to the

Real-Time Specification for Java, and a researcher at Sun Labs, where his primary interest

was software development tools. He was the chief technology officer of Sun’s Developer

Products Group and is now the CTO of Sun’s Client Software Group.

Charles (Chuck) Geschke cofounded Adobe Systems Incorporated in 1982. A leader in

the software industry for more than 35 years, Geschke retired from his position as presi-

dent of Adobe in 2000 and continues to share the chairmanship of the board with Adobe’s

cofounder John Warnock.

Geschke actively participates on several boards of educational institutions, nonprofits,

technology companies, and arts organizations. In 1995, he was elected to the National

Academy of Engineering. In 2008, he was elected to the American Academy of Arts and

Sciences. He recently completed his term as chairman of the Board of Trustees of the Uni-

versity of San Francisco. He is a member of the Board of Governors of the San Francisco

Symphony and the board of the Commonwealth Club of California. He also serves on the

computer science advisory board of Carnegie-Mellon University, the board of the Egan

Maritime Foundation, the board of the National Leadership Roundtable On Church Man-

agement, the board of directors of Tableau Software, and the board of the Nantucket Boys

and Girls Club.

Prior to cofounding Adobe Systems, Geschke formed the Imaging Sciences Laboratory at

the Xerox Palo Alto Research Center (PARC) in 1980, where he directed research activities

in the fields of computer science, graphics, image processing, and optics. From 1972 to

1980, he was a principal scientist and researcher at Xerox PARC’s Computer Sciences Lab-

oratory. Before beginning full-time graduate studies in 1968, he was on the faculty of the

mathematics department of John Carroll University in Cleveland, Ohio.

Download at Boykma.Com

448 C O N T R I B U T O R S

Industry and business leaders, including the Association for Computing Machinery

(ACM), the Institute of Electrical and Electronics Engineers (IEEE), Carnegie-Mellon Uni-

versity, the National Computer Graphics Association, and the Rochester Institute of Tech-

nology, have honored Geschke’s technical and managerial achievements. He received the

regional Entrepreneur of the Year Award in 1991 and the national Entrepreneur of the

Year Award in 2003. In 2002, he was elected a Fellow of the Computer History Museum

and in 2005 he was given the Exemplary Community Leadership Award by the NCCJ of

Silicon Valley. Geschke received the Medal of Achievement from the American Electronics

Association (AeA) in 2006. He and John Warnock are the first software leaders to receive

this award. In 2007, he received the John W. Gardner Leadership Award. In 2000,

Geschke was ranked the seventh most influential graphics person of the last millennium

by Graphic Exchange magazine.

Geschke holds a Ph.D. in computer science from Carnegie-Mellon University and an M.S.

in mathematics and an A.B. in Latin, both from Xavier University.

Anders Hejlsberg is a technical fellow in the Server and Tools Business Unit at Microsoft.

Anders is recognized as an influential creator of development tools and programming lan-

guages. He is the chief designer of the C# programming language and a key participant in

the development of the Microsoft .NET Framework. Since its initial release in 2000, the C#

programming language has gained widespread adoption and is now standardized by

ECMA and ISO.

Before joining Microsoft in 1996, Anders was one of the first employees of Borland Inter-

national Inc. As principal engineer, he was the original author of Turbo Pascal, a revolu-

tionary integrated development environment, and chief architect of its successor, Delphi.

Anders coauthored The C# Programming Language, published by Addison-Wesley, and has

received numerous software patents. In 2001, Anders was the recipient of the prestigious

Dr. Dobbs Excellence in Programming Award, and in 2007 he and his team were awarded

Microsoft’s Technical Recognition Award for Outstanding Technical Achievement. Anders

studied engineering at the Technical University of Denmark.

Paul Hudak is a professor in the department of computer science at Yale University. He

has been on the Yale faculty since 1982, and was chairman from 1999-2005. He received

his B.S. in electrical engineering from Vanderbilt University in 1973, his M.S. in electrical

engineering and computer science from MIT in 1974, and his Ph.D. in computer science

from the University of Utah in 1982.

Professor Hudak’s research interests center on programming-language design, theory, and

implementation. He helped to organize and chair the Haskell Committee, which in 1988

released the first version of Haskell, a purely functional nonstrict programming language.

Hudak was co-editor of the first Haskell Report, and has written a popular tutorial and a

textbook on the language. His early work also involved parallel functional programming,

abstract interpretation, and declarative approaches to state.

Download at Boykma.Com

C O N T R I B U T O R S 449

More recently, Professor Hudak has been involved in the design of domain-specific lan-

guages for a diverse set of application domains, including mobile and humanoid robotics,

graphics and animation, music and sound synthesis, graphical user interfaces, and real-

time systems. He has also developed techniques for embedding such languages in Haskell,

including the use of abstract models of computation such as monads and arrows. His most

recent focus has been on the use of Haskell in computer music and sound synthesis for

both education and research.

Professor Hudak has published more than 100 papers and one book. He is editor-in-chief of

the Journal of Functional Programming, and a founding member of IFIP Working Group 2.8

on Functional Programming. Among his honors, Professor Hudak is an ACM Fellow, and

is a recipient of an IBM Faculty Development Award and an NSF Presidential Young

Investigator Award.

Born in North Wales in 1958, John Hughes spent an influential year (1974–1975)

between school and university as a programmer in the late Christopher Strachey’s

research group at Oxford University. As well as helping Strachey install a modem during

the interview, it was here that John was introduced to functional programming, and

developed a passion for it that has yet to fade. While studying mathematics at Cambridge,

he co-developed perhaps the first compiler for GEDANKEN, John Reynolds’s thought-

experiment in programming language design. He returned to Oxford for his doctoral stud-

ies in 1980, completing a thesis on implementation techniques for functional languages in

1983. There he met his wife, Mary Sheeran, another research student in the same group.

In 1984–1985, John spent a postdoctoral year at Chalmers University in Gothenburg,

Sweden, where seminal work on compiling lazy languages like Haskell was under way. He

loved both the research environment, and the beauty of western Sweden. When the year

ended, John returned briefly to Oxford as a lecturer, then in 1986 took up a Chair at Glas-

gow University in Scotland.

The Glasgow department was expanding strongly at the time, and John was able to found

the Glasgow Functional Programming Group, which grew to be one of the best in the

world—including both Phil Wadler and Simon Peyton Jones. The annual research group

workshops became well known, and eventually developed into the Trends in Functional

Programming symposium, which continues to this day.

But in 1992, John was offered a Chair at Chalmers, and took the opportunity to return to

Sweden. There he continues to work in functional programming, and since 1999, on soft-

ware testing using an automated tool called QuickCheck. In 2006 he founded Quviq, a

startup that markets and develops QuickCheck, and he now spends half his time at the

company.

John is now a Swedish citizen, and has made a fair attempt at learning both the Swedish

language and how to ski—the latter from a very unpromising start! He has two sons, one

of whom is both blind and autistic.

Download at Boykma.Com

450 C O N T R I B U T O R S

Roberto Ierusalimschy is an associate professor of computer science at PUC-Rio (Pontif-

ical Chatolic University in Rio de Janeiro), where he works with programming-language

design and implementation. He is the leading architect of the Lua programming language

and the author of the book Programming in Lua (Lua.org; now in its second edition and

translated to Chinese, Korean, and German).

Roberto has a M.Sc. Degree (1986) and a D.Sc. Degree (1990) in Computer Science, both

from PUC-Rio. He was a visiting researcher at the University of Waterloo, (Canada, 1991),

ICSI (CA, USA, 1994), GMD (Germany, 1997), and at UIUC (IL, USA, 2001/2002). As a

professor at PUC-Rio, Roberto was the advisor of several students that later became influ-

ential members of the Lua community. Lately he has been developing LPEG, a novel pat-

tern-maching package for Lua.

Dr. Ivar Jacobson was born in Ystad, Sweden, on September 2, 1939. (His full name is

Ivar Hjalmar Jacobson, but he never uses the middle name.) Dr. Jacobson got his Master’s

of electrical engineering at Chalmers Institute of Technology in Gothenburg in 1962. He

received his Ph.D. at the Royal Institute of Technology in Stockholm in 1985 with a thesis

on Language Constructs for Large Real-Time Systems. He was a visiting scientist at the

Functional Programming and Dataflow Architecture Group at MIT in 1983–1984. On May

3, 2003, he was awarded the Gustaf Dalén Medal by the Chalmers Alumni Association.

Ivar founded the Swedish company Objectory AB, which merged with Rational in 1995.

He was with Rational during its outstanding growth until it was acquired by IBM in 2003.

Then he departed from Rational as an employee, but he stayed as an executive technical

consultant of the company for more than a year, until May 2004.

Concurrently with working for Rational, he has pursued other interesting ideas. One of

them involves working at Jaczone AB, a company he founded April 2000 with his daugh-

ter Agneta Jacobson. Jaczone is implementing an old vision—make software process

active instead of passive. An active process executes and assists the developers in carrying

out their project.

Ivar also recognizes that the software development community desperately needs to

improve in applying software development capability. In 2004, he founded Ivar Jacobson

International, which aims to promote and help project teams across the world apply good

software development practices. Ivar Jacobson International is now operating through

separate companies in six countries: the U.K., the U.S., Sweden, China, Australia, and Sin-

gapore. In 2007, his new company acquired Jaczone, so the two companies are now con-

solidated.

Simon Peyton Jones, M.A., MBCS, CEng, graduated from Trinity College Cambridge in

1980. After two years in industry, he spent seven years as a lecturer at University College

London, and nine years as a professor at Glasgow University, before moving to Microsoft

Research (Cambridge) in 1998.

Download at Boykma.Com

C O N T R I B U T O R S 451

His main research interest is in functional programming languages, their implementation,

and their application. He has led a succession of research projects focused around the

design and implementation of production-quality functional-language systems for both

uniprocessors and parallel machines. He was a key contributor to the design of the now-

standard functional language Haskell, and is the lead designer of the widely used Glasgow

Haskell Compiler (GHC). He has written two textbooks about the implementation of func-

tional languages.

More generally, he is interested in language design, rich type systems, software compo-

nent architectures, compiler technology, code generation, runtime systems, virtual

machines, and garbage collection. He is particularly motivated by direct use of principled

theory to practical language design and implementation—that’s one reason he loves func-

tional programming so much.

Brian Kernighan received his B.A.Sc. from the University of Toronto in 1964 and a Ph.D.

in electrical engineering from Princeton in 1969. He was in the Computing Science Research

center at Bell Labs until 2000, and is now in the computer science department at Princeton.

He is the author of eight books and some technical papers, and holds four patents. He was

elected to the National Academy of Engineering in 2002. His research areas include pro-

gramming languages, tools, and interfaces that make computers easier to use, often for non-

specialist users. He is also interested in technology education for non-technical audiences.

Thomas E. Kurtz was born near Chicago, Illinois, on February 22, 1928. He attended

Knox College in Illinois, graduating in 1950. He then attended Princeton University, earn-

ing a Ph.D. in mathematics in 1956. Kurtz was on the faculty of Dartmouth College from

1956 until retirement in 1993, teaching statistics, numerical analysis, and, eventually,

computer science. In 1963–1964, he and John Kemeny (who later became president of

Dartmouth College) devised the BASIC programming language. Aided by the Time Shar-

ing and Personal Computer Revolutions, BASIC was for several decades the most widely

used programming language around the world. He was the director of the Kiewit Compu-

tation Center at Dartmouth from 1966 to 1975.

He has served on numerous boards and committees, and written several books on pro-

gramming with Dr. Kemeny. Upon his retirement from Dartmouth, he was active in True

BASIC, Incorporated, which developed and marketed the BASIC computer language and

other educational software products for personal computers.

Tom Love earned a Ph.D. in cognitive science from the University of Washington where

he studied the cognitive characteristics of successful computer programmers. Tom’s first

post-graduate job was with General Electric Company doing user interface design for a

proprietary text search machine—Google in a box! A few months later he was contacted

by the Office of Naval Research to find out whether he was interested in continuing his

Ph.D. research. That led to the formation of the Software Psychology group at GE.

Download at Boykma.Com

452 C O N T R I B U T O R S

Tom was attracted from GE to create a group of leading software researchers at ITT. It was

in this group that the first object-oriented extension to C language was conceived and

developed by Brad Cox. The ITT group was also exploring groupware, distributed comput-

ing, and interactive development environments in 1982! Based upon this experience, Tom

subsequently became the first commercial user of Smalltalk in 1982.

In 1983, Tom and Brad Cox founded the first object-oriented products company, Step-

stone. At Stepstone, they promoted object technology, originated the Software-IC con-

cept, and marketed the first standalone set of reusable classes, IC-pak 201. Among other

accomplishments, they convinced Steve Jobs to use Objective-C as the system program-

ming language for the NeXT Computer (later the basis for Apple’s OS X operating system).

Tom also had the idea and organized the initial group of volunteers who created ACM’s

OOPSLA Conference.

After spending five years as a one-person consultant, Tom joined IBM Consulting and

founded the Object Technology Practice—an application development organization that

did major application development projects for major IBM customers. Based upon this

success, he was attracted to Morgan Stanley, where he delivered a redesigned corporate,

credit risk-management system two days before the Barings disaster.

In 1997, Tom teamed up with Dr. John Wooten to found ShouldersCorp. At ShouldersCrop,

he has led more than a dozen successful 100-day projects, including the largest known

Agile Development project, completed in 2001. Many experiences with object technology

are recorded in his 1993 book, Object Lessons, published by Cambridge University Press.

Bertrand Meyer is professor of software engineering at ETH Zurich (the Swiss Federal

Institute of Technology), and Chief Architect at Eiffel Software, based in Santa Barbara,

California. He pursues a diverse career as software project manager (having overseen the

development of tools and libraries totaling several million lines of code), software archi-

tect, educator, researcher, book author and consultant.

He has published 10 books including several bestsellers such as Object-Oriented Software

Construction (Prentice Hall, Jolt Award 1998), and Eiffel: The Language, Object Success, and

Introduction to the Theory of Programming Languages (Prentice-Hall PTR). His latest book, an

introductory programming textbook using the full extent of object technology and con-

tracts, entitled Touch of Class: An Introduction to Programming Well and due for publication by

Springer-Verlag in March 2009, is the result of six years of teaching the introductory pro-

gramming class at ETH.

As a researcher, he has published over 200 papers on software topics; his main contribu-

tions have been in the area of software architecture and design (Design by Contract), pro-

gramming languages (Eiffel, now an ISO standard), testing and formal methods. His main

current research areas, in cooperation with members of his group at ETH, are safe and

simple programming for concurrent and multicore architecture (SCOOP), automated testing

(AutoTest), program proofs, pedagogical tools (Trucstudio), computer science pedagogy,

Download at Boykma.Com

C O N T R I B U T O R S 453

development environments (EiffelStudio, Origo), reuse and component-based develop-

ment, the software process, and object persistence.

He is the recipient of the ACM Software System Award (2006) and the first Dahl-Nygaard

prize for object technology (2005), a fellow of the ACM, and a member of the French

Academy of Technologies.

Robin Milner graduated from the University of Cambridge in 1958. After short posts, he

joined the University of Edinburgh in 1973, where he cofounded the Laboratory for Foun-

dation of Computer Science in 1986. He was elected Fellow of the Royal Society in 1988,

and in 1991 won the ACM’s AM Turing Award. He rejoined Cambridge University in

1995, headed the Computer Laboratory there for four years, and retired in 2001. His

research achievements (often joint) include: the system LCF, a model that underlies many

later systems for interactive reasoning; Standard ML, an industry-scale but rigorously based

programming language; the Calculus of Communicating Systems (CCS); and the pi calculus.

Currently, he works on Bigraphs, a topographical model for mobile interactive systems.

This model combines the power of the Pi Calculus, which emphasizes how mobile agents

can modify their linkage, with the power of Mobile Ambients (Cardelli and Gordon),

which emphasize how they move in a nested space. The combination of these two fea-

tures treats them as independent of one another: “Where you are does not affect whom

you can talk to.” This yields a generic model that not only subsumes many process calculi,

but also aims to provide a rigorous platform for the design of ubiquitous computing sys-

tems that will dominate computation in the 21st century.

Charles H. Moore was born in 1938; grew up in Michigan; received a B.S. in physics

from MIT; married Winifred Bellis; has a son, Eric. He presently lives in Incline Village, on

beautiful Lake Tahoe; drives a WRX; hikes the Tahoe Rim Trail and the Pacific Crest Trail;

reads a lot. He delights in finding simple solutions, changing the problem if necessary.

During the 60s, he worked as a freelance programmer until inventing Forth in 1968.

(Forth is a simple, efficient, and versatile computer language of which he’s very proud.)

He used it to program telescopes at NRAO. And in 1971, cofounded Forth, Inc. to program

other real-time applications.

In 1983, fed up with clumsy hardware, he cofounded Novix, Inc. and designed its NC4000

microprocessor chip. This morphed into the Harris RTX2000, which was space-qualified

and is orbiting Saturn on Cassini.

As Computer Cowboys, he used custom software to design ShBoom, Mup20, F21 and i21;

all Forth-architecture microprocessors. He’s equally proud of these small, fast, low-power

chips.

In this century, he cofounded IntellaSys and invented colorForth to program design tools

for a multicore chip. As of 2008, a 40-core version is being produced and marketed by

Intellasys. He is presently porting his design tools to this amazing chip.

Download at Boykma.Com

454 C O N T R I B U T O R S

James Rumbaugh received a B.S. in physics from MIT, an M.S. in astronomy from

Caltech, and a Ph.D. in computer science from MIT. His doctorate work at MIT was in Pro-

fessor Jack Dennis’s Computation Structures Group, which pioneered research into fun-

damental models of computing. His thesis presented a language and hardware architecture

for a data flow computer, a maximally concurrent computer architecture.

For 25 years, he worked at the General Electric Research and Development Center in

Schenectady, New York, on a wide variety of research projects, including one of the first

multiprocessor operating systems, algorithms for the reconstruction of X-ray tomography

images, a VLSI design system, an early framework for graphical interfaces, and an object-

oriented language. Working with GE colleagues, he developed the Object Modeling Tech-

nique (OMT) and wrote the book Object-Oriented Modeling and Design (Prentice Hall), which

popularized OMT. He wrote a popular monthly column in the Journal of Object-Oriented

Programming (JOOP) for six years.

In 1994, he joined Rational Software Corporation in Cupertino, California, where he and

Grady Booch combined their modeling methods to produce the Unified Modeling Lan-

guage (UML), with subsequent inputs from Ivar Jacobson and collaborators from the

Object Modeling Group (OMG). Standardization of UML by the OMG led to its widespread

adoption as the leading software modeling language. Books by Rumbaugh, Booch, and

Jacobson presented the UML to the public. He helped guide the further development of

UML and evangelized for the use of good engineering principles in the development of

software. After Rational was acquired by IBM, he eventually retired in 2006.

James is an expert skier, a poor golfer, and a weekly hiker. He attends opera, theater, bal-

let, and art museums. He enjoys fine food, traveling, photography, gardening, and foreign

languages. He reads about cosmology, evolution, cognitive science, epic poetry, mythol-

ogy, fantasy, history, and public affairs. He and his wife live in Saratoga, California. They

have two sons in college.

Bjarne Stroustrup designed and implemented C++. Over the last decade, C++ has

become the most widely used language supporting object-oriented programming by mak-

ing abstraction techniques affordable and manageable for mainstream projects. Using C++

as his tool, Stroustrup has pioneered the use of object-oriented and generic programming

techniques in application areas where efficiency is a premium; examples include general

systems programming, switching, simulation, graphics, user-interfaces, embedded sys-

tems, and scientific computation. The influence of C++ and the ideas it popularized are

clearly visible far beyond the C++ community. Languages including C, C#, Java, and

Fortran99 provide features pioneered for mainstream use by C++, as do systems such as

COM and CORBA.

His book The C++ Programming Language (Addison-Wesley, first edition 1985, second edi-

tion 1991, third edition 1997, “special” edition 2000) is the most widely read book of its

kind and has been translated into at least 19 languages. A later book, The Design and Evo-

lution of C++ (Addison-Wesley, 1994) broke new ground in the description of the way a

Download at Boykma.Com

C O N T R I B U T O R S 455

programming language was shaped by ideas, ideals, problems, and practical constraints. A

new book Programming Principles and Practice Using C++ is finding a role as a first introduc-

tion to programming and C++. In addition to his six books, Stroustrup has published more

than a hundred academic and popular papers. He took an active role in the creation of the

ANSI/ISO standard for C++ and continues to work on the maintenance and revision of

that standard.

Born in Aarhus, Denmark, Bjarne received his Master’s degree in mathematics and com-

puter science from the University of Aarhus. His Ph.D. for work on distributed computing

is from Cambridge University, England. From 1979 to 2002, he worked as a researcher

and later as a manager in Bell Labs and AT&T Labs in New Jersey. He is currently the Col-

lege of Engineering chair in Computer Science Professor at Texas A&M University. He is a

member of the U.S. National Academy of Engineering, an ACM fellow, and an IEEE fel-

low. He has received numerous professional awards.

Guido van Rossum is the creator of Python, one of the major programming languages

on and off the Web. The Python community refers to him as the BDFL (Benevolent Dicta-

tor For Life), a title that could have been taken from a Monty Python skit (but wasn’t).

Guido grew up in the Netherlands and worked for a long time at CWI in Amsterdam,

where Python was born. He moved to the U.S. in 1995, where he lived in northern Vir-

ginia, got married, and had a son. In 2003, the family moved to California, where Guido

now works for Google, spending 50% of his time on the Python open source project and

the rest of his time using Python for internal Google projects.

Philip Wadler likes to introduce theory into practice, and practice into theory. Two

examples of theory into practice: GJ, the basis for Sun’s new version of Java with generics,

derives from quantifiers in second-order logic. His work on XQuery marks one of the first

efforts to apply mathematics to formulate an industrial standard. An example of practice

into theory: Featherweight Java specifies the core of Java in less than one page of rules. He

is a principal designer of the Haskell programming language, contributing to its two main

innovations: type classes and monads.

Wadler is professor of theoretical computer science at the University of Edinburgh. He

holds a Royal Society-Wolfson Research Merit Fellowship, is a Fellow of the Royal Society

of Edinburgh, and is an ACM Fellow. Previously, he worked or studied at Avaya Labs, Bell

Labs, Glasgow, Chalmers, Oxford, CMU, Xerox Parc, and Stanford, and lectured as a guest

professor in Paris, Sydney, and Copenhagen. He appears at position 70 on Citeseers list of

most-cited authors in computer science, is a winner of the POPL Most Influential Paper

Award, served as editor-in-chief of the Journal of Functional Programming, and served on

the Executive Committee of the ACM Special Interest Group on Programming Languages.

His papers include “Listlessness is better than laziness,” “How to replace failure by a list of

successes,” and “Theorems for free,” and he is a coauthor of XQuery from the Experts

(Addison-Wesley, 2004) and Java Generics and Collections (O’Reilly, 2006). He has delivered

invited talks in locations ranging from Aizu to Zurich.

Download at Boykma.Com

456 C O N T R I B U T O R S

Larry Wall was educated at various places, including the Cornish School of Music, the

Seattle Youth Symphony, Seattle Pacific University, Multnomah School of the Bible, SIL

International, UC Berkeley, and UCLA. Though trained primarily in music, chemistry, and

linguistics, Larry has been working with computers for the last 35 years or so.

He is most famous for writing _rn_, _patch_, and the Perl programming language, but pre-

fers to think of himself as a cultural hacker whose vocation in life is to bring a bit of joy

into the dreary existence of programmers. For various definitions of “work for,” Larry has

worked for Seattle Pacific, MusiComedy Northwest, System Development Corporation,

Burroughs, Unisys, the NSA, Telos, ConTel, GTE, JPL, NetLabs, Seagate, Tim O’Reilly, the

Perl Foundation, and himself. Larry is currently employed by NetLogic Microsystems in

Mountain View, California. To get to work, he walks past both the Computer History

Museum and the Googleplex, which must mean something. Preferably something absurd.

John E. Warnock is cochairman of the board of directors of Adobe Systems, Inc., a com-

pany he cofounded in 1982 with Charles Geschke. Dr. Warnock was president of Adobe

for his first two years and chairman and CEO for his remaining 16 years at Adobe. War-

nock has pioneered the development of world-renowned graphics, publishing, web, and

electronic document technologies that have revolutionized the field of publishing and

visual communication. Dr. Warnock holds six patents.

Warnock’s entrepreneurial success has been chronicled by some of the country’s most influ-

ential business and computer industry publications, and he has received numerous awards

for technical and managerial achievement. A partial list of awards includes: Entrepreneur of

the Year from Ernst & Young, Merrill Lynch, and Inc. Magazine; University of Utah Distin-

guished Alumnus Award; Association for Computing Machinery (ACM) Software Systems

Award; Award for Technical Excellence from the National Graphics Association; and the first

Rhode Island School of Design Distinguished Service to Art and Design International Award.

Dr. Warnock has also received the Edwin H. Land Award from the Optical Society of Amer-

ica, the Bodleian Medal from Oxford University, and the Lovelace Medal from the British

Computer Society. Warnock is a distinguished member of the National Academy of Engi-

neering, and a member of the American Academy of Arts and Sciences. He has received

honorary degrees from the University of Utah and the American Film Institute.

Warnock has been a member of the board of directors of Adobe Systems Inc., Knight-

Ridder, Octavo Corporation, Ebrary Inc., Mongonet Inc., Netscape Communications, and

Salon Media Group. He is a past chairman of the Tech Museum of Innovation in San Jose.

He also has serves on the Board of Trustees of the American Film Institute, and is on the

Board of the Sundance Institute.

Before cofounding Adobe Systems, Warnock was the principal scientist at Xerox Palo Alto

Research Center (PARC). Prior to joining Xerox, Warnock held key positions at Evans &

Sutherland Computer Corporation, Computer Sciences Corporation, IBM, and the University

of Utah.

Warnock holds B.S. and M.S. degrees in mathematics and a PhD in electrical engineering

all from the University of Utah.

Download at Boykma.Com

C O N T R I B U T O R S 457

Peter Weinberger has been at Google New York since the middle of 2003, working on

various projects that handle or store large amounts of data.

Before that (from the time that AT&T and Lucent split apart), Peter was at Renaissance

Technologies, a fabulously successful hedge fund (for which he takes no credit at all),

where he started as Head of Technology, responsible for computing, software, and infor-

mation security. The last year or so, he escaped all that and worked on a trading system

(for mortgage-backed securities).

Until AT&T and Lucent split, he was in Computer Science Research at Bell Labs in Murray

Hill. Before ending up in management, Peter worked on databases, AWK, network file-

systems, compiling, performance and profiling, and no doubt some other Unix stuff. He

then slipped into management, for which his penultimate title was Information Sciences

Research Vice-President (a title only a large corporation could love). Peter managed about

one-third of Research, including mathematics and statistics, computer science, and speech.

His last year at AT&T was spent in Consumer Long Distance, trying to look ahead.

Before working at Bell Labs, Peter taught mathematics at the University of Michigan in

Ann Arbor, publishing a bunch of papers the last of which was superseded in 2002, mak-

ing them not even of academic interest.

Peter received his B.S. from Swarthmore College in Swarthmore, Pennsylvania, and his

Ph.D. in mathematics (number theory) from the University of California, Berkeley.

Download at Boykma.Com

Download at Boykma.Com

459

I N D E X C H A P T E R 0

A

abstraction

in functional programming, 180

in SQL, 232

abstractions, pointers within, in C++, 4

Ada, 374

agents, on Internet, 222

Aho, Alfred V., 101, 443

Aho-Corasick algorithm, 116

automata theory, 115

command-line tools, limitations of, 107

compilers course taught by, 111–113

complex algorithms, understandability

of, 103

creativity involved in programming, 104

data size handled by AWK, 102

debugging, designing languages to make

easier, 106

debugging, role of compiler or language

in, 115

debugging, teaching, 113

documentation leading to better software

design, 111–113

domain, languages specialized to, 106, 108

“file” concept applied to Internet, 107

formalizing semantics of languages, 108

graphical interfaces, limitations of, 107

hardware availability, affecting

programming, 102

hardware efficiency, relevance of, 107

improving programming skills, 104

knowledge required to use AWK, 105

large programs, good practices for, 102

lex, knowledge required to use, 106

mathematics, role in computer science, 115

pattern matching

evolution of, 103

using concurrency, 115

portability of Unix, 110

programming language design, considering

users for, 104

programming languages, longevity of, 109

programming, resuming after a hiatus, 114

purposes appropriate for use of AWK, 102,

105, 107

research in computer science, 114

role in AWK development, 102

security and degree of formalism, 108

“Software and the Future of Programming

Languages”, 110

teaching programming, 105

theory and practice as motivation, 111

utility of programming language, 104

yacc, knowledge required to use, 106

Aho-Corasick algorithm, 116

algebraic language, BASIC as, 82

allocated memory, compiler handling, 89

API design, 38, 292, 310

APL, 43

character set for, 45, 52

collections in, 54

design history of, 44, 51

design, longevity of, 47

file handling in, 55

general arrays in, 52

implementation on handheld devices, 46

learning, difficulty of, 46

lessons learned from design of, 56

namespaces, 55

parallelism with, 53–56

regrets about, by designer, 57

resources used efficiently by, 46

shared variables, 54

standardization of, 47

successful aspects of, 58

syntax for

based on algebraic notation, 45, 49

simplicity/complexity of, 45, 49, 53

teaching programming with, 48

Download at Boykma.Com

460 I N D E X

APL\360, 44

applications (see programs)

arbitrary precision integers, in Python, 24

architects, identifying, 335

aspect orientation, 319

Aspect-Oriented Software Development with

Use Cases (Jacobson; Ng), 319

asymmetrical coroutines, in Lua, 164

asynchronous operation, in Forth, 70

audio applications, language environment

for, 92

automata theory, 115

automatic code checking, 289

AWK, 101, 102

compared to SQL, 138

data size handled by, 102

initial design ideas for, 137

knowledge required to use, 105

large programs

good practices for, 102

improvements for, 149

longevity of, rewriting scripts for, 143

programming advice for, 121

programming by example, 154–159

purposes appropriate for use of, 102, 105,

107, 120

regrets about, by Peter Weinberger, 141

AWT, 279

B

backward compatibility, 199

for potentially redesigned UML, 345

with Java, 279

with JVM, 298

with UML, 361

BASIC, 79

comments, 90

compiler

one pass for, 81, 86

two passes for, 83

design of

considerations for, 80, 86

holding up over time, 93

encapsulation, 83

GOTO statements, 80, 86

hardware evolution influencing, 85

large programs, suitability for, 82

lessons learned from design of, 92

libraries, building, 97

line numbers in, 80, 95

number handling, 80, 85

performance of, 83

teaching programming using, 81, 82

True BASIC, 82, 83

variable declarations not required in, 87

whitespace insensitivity, 82, 94

bitmap fonts, handling in PostScript, 402

Booch, Grady, 317, 444

Ada, 374

backward compatibility with UML, 361

benefits of UML, persuading people of, 356

body of literature for programming, 365

brown field development, 372

business rules, 369

complexity and OOP, 370

complexity of UML, 357

concurrency, 370

constraints contributing to innovation, 367

creativity and pragmatism, tension

between, 364

design of UML, teamwork for, 356

design patterns, 372, 373

implementation code, generating with

UML, 356

language design compared to

programming, 359

language design influencing programs, 358

language design, inspiration for, 367

legacy software, approaches for, 366

lessons learned by design of UML, 358

OOP influencing correct design, 373

percentage of UML used all the time, 357,

360

purposes of UML, 356

redesigning UML, possibilities for, 357

simplicity, recognizing, 371

standardization of UML, 362–364

teams, effectiveness of, 371

training programmers, 364–366

visual programming languages, 368

books and publications

Aspect-Oriented Software Development

with Use Cases (Jacobson; Ng), 319

The Design and Evolution of

C++(Stroustrup), 14

“The Design of APL” (Falkoff; Iverson), 44

Design Patterns: Elements of Reusable

Object-Oriented Software (Gamma;

Helm; Johnson; Vlissides), 344

The Elements of Programming Style, 118

“The Formal Description of System 360”

(Falkoff; Iverson; Sussenguth), 44

“HOPL-III: The development of the

Emerald programming language”, 11

“Learning Standard C++ as a New

Language” (Stroustrup), 7

literature for programming, 365

Méthodes de Programmation (Meyer), 420

“A Note on Pattern Matching: Where do

you find the match to an empty array”

(Falkoff), 48

The Practice of Programming (Kernighan;

Pike), 119

A Programming Language (Iverson), 44

Download at Boykma.Com

I N D E X 461

Programming: Principles and Practice Using

C++ (Stroustrup), 17

“Software and the Future of Programming

Languages”, 110

Structured Programming (Dahl; Dijkstra;

Hoare), 419

“Why C++ is not just an Object-Oriented

Programming Language”, 8

“Zen of Python” (Peters), 21, 25, 31

bottom-up design

with C++, 5

with Forth, 61

with Python, 29

Boyce, Raymond, 225, 226

bricks analogy (see components)

brown field development, 372

BSD kernels, language written in, 8

bugs

in language design, 214

millenium bug, lessons learned from, 215

proving absence of, 205

(see also errors)

business rules, 369

C

C

as system programming language, 280

kernels written in, reasons for, 8

longevity of, 130

moving code to C++, reasons for, 8

Objective-C as extension of, 242

performance of, importance of, 281

quality of programs in, compared to C++, 8

signedness in, 152

size of code, compared to Objective-C, 252

stacks, using, 288

type system of, 2

C#, 295

as replacement for C++, 306

debugging, 310

design team for, managing, 307

ECMA standardization for, 308

evolution of, 306

formal specifications for, 309

Java as inspiration for, 288

longevity of, 306

user feedback for, 301, 307

C++, 1

backward compatibility with C, 131

C# as replacement for, 306

“close to the hardware” design for, 5

compared to Objective-C, 242, 259

compatibility requirements of, 20

complexity of, 3, 243

concurrency support in, 11

data abstraction in, 3

debugging, 6

for embedded applications, 7

evolution of, 303

as extension of C, 2

future versions of, 13

generic programming techniques in, 3

history of, 1

kernels not written in, reasons for, 8

lessons learned from design of, 14

moving code to, from C, reasons for, 8

multiple paradigms supported by, 2, 8, 9

multithreading in, problems with, 289

OO as one paradigm supported by, 8

performance influencing design of, 6

pointers in

compared to Java, 3

problems with, 288

popularity of, 243

quality of programs in, compared to C, 8

resource management used in, 5

for system software, 7

testing, 6

type safety and security, 7

value semantics supported by, 5

C++ 2.0, 13

C++0x, 11, 13

Calculus of Communicating Systems

(CCS), 206

CCS (Calculus of Communicating

Systems), 206

Celes, Waldemar, 161

Chamberlin, Don, 225, 445

complexity of SQL, 236

concurrent data access in SQL, issues

of, 230

data models, for language design, 229

declarative nature of SQL, 229

design history of SQL, 226–228

design principles of SQL, 231

determinism, importance of, 238

Excel compared with relational database

systems, 237

external visibility of, effects of, 233

formalisms benefitting language

design, 228

Halloween problem in SQL, 231

injection attacks on SQL, 236

knowledge required to use SQL, 237

languages, interest in, 229

popularity of SQL, 233

Quell compared with relational database

systems, 237

scalability of SQL, 235

SQL’s influence on future language

design, 231

standardization of SQL and XQuery, 239

success, defining, 240

teams of programmers, size of, 240

usability tests on SQL, 235

Download at Boykma.Com

462 I N D E X

Chamberlin, Don (continued)

user feedback on SQL, 235

users of SQL, primarily programmers, 237

views in SQL, uses of, 230

XML, 238

XQuery, 238

character set, for APL, 45, 52

class system, in Haskell, 187

classes, modeling and developing, 255

(see also object-oriented programming)

“close to the hardware” design for C++, 5

closure

in Lua, 164

in SQL, 231

Codd, E. F., 225, 226

code browsing, with dynamic languages, 25

code examples

in programming manuals, 117

in text books, 17

code reuse, necessity and purposes of, 88

collections

design implications of, 53

large unstructured, APL handling, 54

operations on each element of, 53

color, half-toning in PostScript for, 402

colorForth, 62

command line

AWK used with, 107

compared to graphical interface, 128

composing programs on, using pipes, 108

limitations of, 139

resurgence of, for Internet, 132

tools for, limitations of, 107

comments, 76, 216

in BASIC, 90

in C#, 311

role of, 168

(see also documentation of programs)

communication

among interactive agents, 221

programming as form of, xi

role in informatics, 221

compilers

quality of code in, 76

writing, 66, 89, 111–113

completeness, in SQL, 232

complex algorithms, understandability of, 103

componentization, language reflecting, 424

components, 260, 263–269, 304

computer science

current problems in, 311

future of, 414

problems of, 218, 266

research in, 114, 222

role of mathematics in, 48, 115, 166, 220

whether it is a science, 166, 272, 275

computer science education

advanced topics, when to teach, 209, 249

age languages are learned, xi

approaches for, 142, 194

beginning programming, 17, 27, 48, 80, 89

code examples in textbooks, 17

functional languages, role in, 194

learning by teaching, 105

multiple languages, learning, 91, 116

success of, measuring, 100

teaching languages, 81, 82, 83, 296

teamwork in, 111–113

topics needed in, 250, 257, 275, 290, 315,

320, 331, 334, 409

concurrency, 370

adding to language, 301

analyzing concurrent systems, 206

approaches for, 68

in C++, 11

in C++0x, 13

challenges of, 311, 313

design affected by, 285

framework handling, 314

functional languages and, 352

language design affected by, 314

in Lua, 164

network distribution and, 12

OOP and, 10, 261, 351, 424

pattern matching using, 115

in Python, 37

requirements for, domain-specific, 285

in SQL, 230

conditionals, in Forth, 74

consistency, in SQL, 232

constraints, contributing to innovation in

programming, 367

cooperative multithreading, in Forth, 70

Corasick, Margaret, 116

Cox, Brad, 241, 445

components, 260, 263–269

computer science

problems of, 266

whether it is a science, 272, 275

concurrency and OOP, 261

configurability, 260

economic model of software, 265, 266,

269–272

educational background of, 272

encapsulation, 263

garbage collection, 259, 260

lessons learned from design of Objective-

C, 262, 263

lightweight threads, 263

multiple inheritance, not included in

Objective-C, 259

Download at Boykma.Com

I N D E X 463

namespaces not supported in Objective-

C, 259

Objective-C as extension of C and

Smalltalk, 258, 259

Objective-C compared to C++, 259

OOP increasing complexity of

applications, 262

open source model, 271

protocols in Objective-C, 260

quality of software, improving, 269–272

security of software, 267

service-oriented architecture (SOA), 261,

264, 266, 267, 273

single inheritance in Objective-C, necessity

of, 260

specialization of labor, 267, 268, 273

superdistribution, 268, 274

teaching programming, 275

trusting software, 267

CPAN, for Perl, 387, 388

creative arts, study of, benefitting

programming, 365

creativity

as role of programmer, 305

importance of, 321

in programming, whether there is, 104

necessity of, 367

opportunity to use, 332

and pragmatism, tension between, 364

stimulating in programmers, 141, 240

tension from, benefits of, 364

customer vocabulary, using in Forth, 61

D

Dahl, Ole-Johan (Structured

Programming), 419

data abstraction, in C++, 3

data models, for language design, 229

data sizes, growth of, 158

debugging code

C#, 310

C++, 6

design considerations for, 289

ease of, language design affecting, 106, 128

functional programming and, 183

language design considerations for, 148,

305

Lua, 174

PostScript, difficulty of, 411

Python, 37

role of compiler or language in, 115

teaching, 96, 113, 119, 141, 167

debugging languages, 20

declarations, not used in APL, 55

The Design and Evolution of C++

(Stroustrup), 14

Design by Contract, 421–422

“The Design of APL” (Falkoff; Iverson), 44

design patterns, 372, 373

Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma; Helm;

Johnson; Vlissides), 344

determinism, importance of, 238

Dijkstra, E. W. (Structured Programming), 419

documentation of programming language, 117

documentation of programs

comments, 76, 77, 168, 311

content of, 77, 216

importance of, 158

Javadoc tool for, 290

leading to better software design, 111–113

programmers writing, 310

domain-driven design, 61, 95, 106, 108, 285

domain-specific languages (DSL), 303

disadvantages of, 301, 303

existence of, 311

growth of, 120

Lua used as, 172

moving to general-purpose, 384

programs as, 50

UML redesigned as set of, 328, 329

dynamic languages

benefits of, 30

code browsing with, 25

security and, 30

trend toward, 41, 312

dynamic typing, 25

E

ECMA standardization for C#, 308

economic model of software, 265, 266, 269–272

education (see computer science education)

Eiffel, 417

adding features to, decisions for, 437

backward compatibility for, 439

evolution of, 436–440

extensibility of, 425

forward compatibility for, 439

history of, 418–421

information hiding, 425

proofs in, 435

reusability of, 427

streaming serialization, 431

The Elements of Programming Style

(Kernighan), 118

embedded applications

C++ for, 7

Forth for, 65

emergent systems, 344

encapsulation, 263, 350

advantages of, 93

in BASIC, 83

Download at Boykma.Com

464 I N D E X

engineering

links to informatics, 220

programming as, 321

error messages

in Lua, 174

quality of, 149

errors

detecting, in Forth, 65, 74

handling, in functional programming, 183

language design reducing number of, 147

reduced by language design, 147

(see also bugs)

Excel, comparison with relational database

systems, 237

extensibility, in SQL, 232

F

Falkoff, Adin D., 43, 446

built-in and user-created language

elements, treating differently, 51

character set for APL, 45, 52

collections, design implications of, 53

collections, large unstructured, APL

handling, 54

collections, operations on each element

of, 53

computer science, role of mathematics

in, 48

declarations as unnecessary, 55

“The Design of APL”, 44

design of APL

history of, 44, 51

longevity of, 47

file handling in APL, 55

“The Formal Description of System

360”, 44

general arrays in APL, 52

handheld devices implementing APL, 46

language design influencing program

design, 51

language design, personal approach for, 50

learning APL, difficulty of, 46

lessons learned from design of APL, 52, 56

namespaces in APL, 55

parallelism, 53–56

Perl influenced by APL, 56

pointers not used in APL, 55

programmers, type of, design

considerations for, 45

programs as domain-specific languages, 50

regrets about APL, 57

relational database design influenced by

APL, 56

resources, efficient use of, 46

shared variables in APL, 54

standardization of APL, 47

successful aspects of APL, 58

syntax for APL

based on algebraic notation, 45, 49

simplicity/complexity of, 45, 49, 53

teaching programming with APL, 48

Figueiredo, Luiz Henrique de, 161, 446

asymmetrical coroutines in Lua, 164

comments, role of, 168

design of Lua, influencing future

systems, 169

dialects of users, 172

documentation of programs, 168

environments changing design of Lua, 173

error messages in Lua, 174

hardware availability, affecting

programming, 168

limited resources, designing for, 171

local workarounds versus global fixes in

code, 171

mathematicians designing programming

languages, 167

mathematics, role in computer science, 166

mistakes in Lua, 165

parser for Lua, 175

programmers

improving skills of, 166

recognizing good, 167

programming in Lua, advice regarding, 162

programming language design, 169–176

purposes appropriate for use of Lua, 162

regrets about Lua, 165

security capabilities of Lua, 162

success, defining, 165

tables in Lua, 163

teaching debugging, 167

testing code, 167

testing Lua, 171

VM for Lua, choice of ANSI C for, 173

file handling, in APL, 55

“file”, everything as, applied to Internet, 107

first-class functions, in Lua, 163

font scaling in PostScript, 401

for loop, in Lua, 169

“The Formal Description of System 360”

(Falkoff; Iverson; Sussenguth), 44

formal semantics

benefits for language design, 228

not used for PostScript, 401

usefulness of, 196–198

formal specifications

for C#, 309

for languages, 360

necessity of, 291

Download at Boykma.Com

I N D E X 465

Forth, 59, 60

application design with, 71–77

asynchronous operation, 70

colorForth, 62

comparing to PostScript, 399

conditionals in, 74

cooperative multithreading, 70

customer vocabulary used in, 61

design of

influencing program design, 73

longevity of, 62

error causes and detection, 65, 74

for embedded applications, 65

I/O capabilities of, 69

indirect-threaded code, 63

lessons learned from design of, 63

loops in, 74

maintainability of, 72

minimalism in design of, 62

porting, 69

postfix operators, 65, 66

programmers receptive to, 61

programming in, advice for, 74

readability of, 62, 65

“reusable concepts of meaning” with, 207

simplicity of, 60, 62, 74

stack management in, 74

stack-based subroutine calls, 60, 70

syntax of small words, 60, 62

word choice in, 72

fourth-generation computer language, Forth

as, 60

frameworks, learning, 332

functional closures, in Haskell, 191

functional programming, 180–187

abstraction in, 180

concurrency and, 352

debugging in, 183

error handling in, 183

in computer science curriculum, 315

lazy evaluation in, 180, 191

learning, 184

longevity of, 186

parallelism and, 182

popularity of, 184

Scala for, 286

side effects, lack of, 180, 181, 182

usefulness of, 140

functions

first class, in Lua, 163

higher-order, in ML, 205

G

Gamma, Erich (Design Patterns: Elements of

Reusable Object-Oriented

Software), 344

garbage collection, 259

in JVM, 288

in Lua, 163

in Objective-C, 260

in Python, 35

general arrays, in APL, 52

general resource management, 5

general-purpose languages, 303

generic programming

as alternative to OOP, 3, 10

in C++0x, 13

as paradigm of C++, 8, 9

reducing complexity, 3

generic types, in Haskell, 191

genericity, 428

generics in Java, 188

Geschke, Charles, 395, 447

bitmap fonts, handling in PostScript, 402

bugs in ROM, working around, 397

computer science, topics that should be

taught, 409

concatenative language, benefits of, 397

design team for PostScript, managing, 399

font scaling in PostScript, 401

half-toning for color in PostScript, 402

hardware considerations, 397, 405, 412

history of software and hardware

evolution, 406

Imaging Sciences Laboratory, formed

by, 407

kanji characters in PostScript, 403

kerning and ligatures in PostScript, 403

lessons learned from PostScript, 409

longevity of programming languages, 410

mathematical background, impact on

design, 399

open source projects, success of, 414

open standards, 414

popularity of languages, difficulty in

making, 413

PostScript as language instead of data

format, 396

programmer skill, importance compared to

language design, 404

programmers, good, recognizing, 409

research groups, directing, 407–409

stack-based design of PostScript, 399

standardization, problems with, 415

two-dimensional constructs,

supporting, 398

web use of PostScript, 415

Download at Boykma.Com

466 I N D E X

Gosling, James, 447

adding to Java, versus external

libraries, 292

API design, 292

array subscript checking in Java, 281

automatic code checking, 289

AWT, 279

backward compatibility with Java, 279

C stacks, using, 288

C# inspired by Java, 288

complexity of Java, reducing, problems

of, 278

complexity, different levels of in a

system, 278

computer science, problems in education

of, 290

concurrency, 285–287

debugging, design considerations for, 289

documentation, 290

error prevention and containment in

Java, 283, 289

formal specifications, 291

freeing source code to Java, results of, 292

garbage collection, 288

handheld devices, language design for, 280

Java EE, 279

JIT, 279

JVM

new languages built on, 287

popularity of, design implications

for, 283

satisfaction with, 283

language design affected by network

issues, 281

language design influencing software

design, 289

language designed for personal use of, 287

languages designed by, influences on, 282

languages, growth of, 292

Moore’s Law, 285

multithreading in C++, problems with, 289

OOP, success of, 284

OOP, using well, 284

performance, practical implications of, 282

platform independence, Java

influencing, 293

pointers in C++, problems with, 288

programmers, advice for, 290

references in Java, 289

Scala, 286, 287

simplicity and power, relationship

between, 278

system programming languages,

designing, 280

user feedback for Java, 291

virtual machine for Java, reasons for, 283

GOTO statements, in BASIC, 80, 86

GP (see generic programming)

graphical interface

compared to command line interface, 128

limitations of, 107, 139

H

half-toning for color, in PostScript, 402

Halloween problem, in SQL, 231

handheld devices, language design for, 280

hardware

availability of, affecting programming, 102,

119, 158, 168

computational power of, use of, 68

considerations for, in PostScript, 397, 405

efficiency of, relevance of, 107

influencing evolution of BASIC, 85

innovation driven by, 412

predicting future of, 243, 244

requirements for concurrency, 68

viewing as a resource or a limit, 67

“hardware, close to” design for C++, 5

Haskell, 177

class system for, 187

competing implementations of, 199

design of, influence on future systems, 201

evolution of, 199–201

functional closures, 191

generic types, 191

influencing other languages, 191

lazy evaluation, 180, 191

list comprehensions, 191

team designing, 178–180

type system for, 188–191, 214

(see also functional programming)

Hejlsberg, Anders, 295, 308, 448

adding to language, 301

API design, 310

backward compatibility with JVM, 298

comments in C#, 311

computer science, problems in, 311

concurrency

challenges of, 311, 313

framework handling, 314

language design affected by, 314

debugging C#, 310

debugging, language design considerations

for, 305

design team for C#, managing, 307

documentation of programs, 310

domain-specific languages, 303, 311

dynamic programming languages, 312

evolution of C#, 306

evolution of C++, 303

formal specifications for C#, 309

higher-order functions, 300, 313

Download at Boykma.Com

I N D E X 467

implementing and designing languages,

relationship between, 296

language design, scientific approach

for, 305

lessons learned from language design, 315

leveraging existing components, 304

longevity of C#, 306

OOP, problems with, 315

personal themes in language design, 299

polyglot virtual machines, 297

programmers, improving skills of, 311

programming language design, 296–302

safety versus creative freedom, 305

simplicity in language design, 302

teaching languages, 296

user feedback for C#, 301, 307

Helm, Richard (Design Patterns: Elements of

Reusable Object-Oriented

Software), 344

higher-order functions, 313

higher-order functions in ML, 205

Hoare, C. A. R. (Structured

Programming), 419

Hoare, Sir Tony, x

“HOPL-III: The development of the Emerald

programming language”, 11

HTML, PostScript as alternative to, 415

Hudak, Paul, 448

design of Haskell, influence on future

systems, 201

functional programming, 180–187

Haskell’s influence on other languages, 191

language design influencing software

design, 192

teaching programming and computer

science, 194

teams for language design, 178–180

Hughes, John

functional programming, 180–187

Haskell’s influence on other languages, 191

lazy evaluation, 191

teams for language design, 178–180

hybrid typing, 26

I

I/O, in Forth, 69

Ierusalimschy, Roberto, 161, 450

asymmetrical coroutines in Lua, 164

closures in Lua, 164

code sharing with Lua, 172

comments, role of, 168

computer science, whether it is a

science, 166

concurrency with Lua, 164

debugging Lua, 174

dialects of Lua, 172

documentation of programs, 168

environments changing design of Lua, 173

error messages in Lua, 174

extensibility of Lua, 173

feature set complete for Lua, 171

first-class functions in Lua, 163

for loop in Lua, 169

fragmentation issues with Lua, 172

garbage collection in Lua, 163

hardware availability, affecting

programming, 168

implementation of language affecting

design of, 175

language design affecting program

design, 174

limitations of Lua, 162

limited resources, designing for, 169, 171

local workarounds versus global fixes in

code, 171

mathematics, role in computer science, 166

mistakes in Lua, 165

number handling by Lua, 163

parser for Lua, 175

programmers, improving skills of, 166

programming language design, 169–176

purposes appropriate for use of Lua, 162

regrets about Lua, 165

security capabilities of Lua, 162

simplicity of Lua, effects on users, 172

success, defining, 165

tables in Lua, 163

teaching debugging, 167

teaching programming, 176

testing code, 167

testing Lua, 171

upgrading Lua during development, 170

user feedback on Lua, 170

VM for Lua, choice of ANSI C for, 173

VM for Lua, register-based, 174

implementation, distinct from

specifications, 422

indirect-threaded code, in Forth, 63

informatics

definition of, 221

links to engineering, 220

inheritance, necessity and purposes of, 88

injection attacks, SQL, 236

intelligent agents for programming, 332

interface design, 38, 135

Internet

affecting language design, 281

as representation of agents, 222

“file” concept applied to, 107

Iverson, Kenneth, 43

“The Design of APL”, 44

“The Formal Description of System

360”, 44

A Programming Language, 44

Download at Boykma.Com

468 I N D E X

J

Jacobson, Ivar, 317, 450

aspect orientation, 319

Aspect-Oriented Software Development

with Use Cases, 319

benefits of UML, persuading people

of, 330, 331

complexity of UML, 328, 329

computer science, teaching, 320, 331

designing UML, 328

DSLs, UML as set of, 328, 329

Ericsson, experiences at, 318

frameworks, learning, 332

future possible changes to UML, 328

implementation code, generating with

UML, 330

intelligent agents for programming, 332

knowledge transfer, 320, 327, 332

legacy software, 325

Object-Oriented Software

Engineering, 319

programming approaches in different parts

of the world, 323

programming knowledge linked to

languages, 331

programming methods and processes,

improving, 325

programming, by users, 333

programming, learning, 318

rule-based technology, 333

SDL influencing improvements to

UML, 329

simplicity, recognizing, 333

size of project determining usefulness of

UML, 331

social engineering, 324

teams for programming, organizing, 323

use cases, developing concept of, 319

Java, 277

adding to, versus external libraries, 292

array subscript checking, 281

AWT and, 279

backward compatibility with, 279

C# inspired by, 288

complexity of, compared to C++, 3

error prevention and containment, 283, 289

freeing source code to, results of, 292

generics in, influenced by Haskell, 188

higher-order functions in, 300

JIT for, 279

platform independence influencing, 293

pointers in, compared to C++, 3

reducing complexity of, problems of, 278

references in, 289

user feedback for, 291

virtual machine for, reasons for, 283

Java EE, 279

Javadoc tool, 290

JavaScript, 411, 415

JIT, 279

Johnson, Ralph (Design Patterns: Elements of

Reusable Object-Oriented

Software), 344

Jones, Simon Peyton, 450

backward compatibility, 199

class system in Haskell, 187

competing implementations of

Haskell, 199

design of Haskell, influence on future

systems, 201

evolution of Haskell, 199–201

formal semantics, usefulness of, 196

functional programming, 180–187

language design influencing program

design, 192

teaching computer science, 195

teams for language design, 178–180

JVM

designer’s satisfaction with, 283

garbage collection in, 288

new languages built on, 287

popularity of, design implications, 283

K

kanji characters, in PostScript, 403

Kemeny, John, 79

kernels, languages written in, 8

Kernighan, Brian, 101, 451

backward compatibility versus

innovation, 131

C++, backward compatibility with C, 131

C, longevity of, 130

command line, resurgence of, for

Internet, 132

domain-specific languages (DSL), 120

dropping features, considerations for, 135

The Elements of Programming Style, 118

hardware availability, affecting

programming, 119

implementation considerations for

language design, 129

language design style of, 104

large systems, building, 127

learning programming languages, 116

little languages, evolution of, 131

OOP, usefulness of, 127

The Practice of Programming, 119

programmers, improving skills of, 118

programming

first interest in, 116

revising heavily before shipping, 136

programming language manuals, 117

Download at Boykma.Com

I N D E X 469

programming languages, designing,

121–129

purposes appropriate for use of AWK, 120

rewriting programs, frequency of, 130

success, defining, 120

Tcl/Tk, 134

teaching debugging, 119

testing, writing code to facilitate, 133

transformative technologies, 132–136

upgrading, considerations for, 135

user considerations in programming, 118

Visual Basic, 134

writing text, relationship to

programming, 118

kerning, in PostScript, 403

knowledge transfer, 320, 327, 332, 335, 336

Kurtz, Thomas E., 79, 451

algebraic language, BASIC as, 82

analysis prior to programming, 90

code reuse, necessity and purposes of, 88

comments in BASIC, 90

compilers, writing, 89

debugging code, teaching, 96

design of BASIC, considerations for, 80, 86

encapsulation, advantages of, 93

GOTO statements in BASIC, 80, 86

hardware evolution, influence on

BASIC, 85

inheritance, necessity and purposes of, 88

language design influencing program

design, 90

large programs, BASIC’s suitability for, 82

learning programming, 80

lessons learned from design of BASIC, 92

libraries, 96, 97

line numbers in BASIC, 80, 95

mathematical formalism, in language

design, 94

number handling in BASIC, 80, 85

OOP, usefulness of, 91

performance of BASIC, 83

polymorphism, requiring runtime

interpretation, 87

productivity when programming, 98

programmers, considering in language

design, 94

programming languages, learning, 91

simplicity of languages, goals for, 84

single-pass compiler for BASIC, 86

success in programming, defining, 97

teaching languages compared to

professional languages, 83

teaching programming, 81, 82, 89, 100

True BASIC, 82, 83

users, considering when programming, 97,

99

variable declarations, not required in

BASIC, 87

visual and audio applications, language

environment for, 92

Visual Basic as object-oriented

language, 91

Visual Basic, limitations of, 92

whitespace insensitivity in BASIC, 82, 94

words used in languages, domain

affecting, 95

WYSIWYG editors, effect on

programming, 95

L

language toolkit, Forth as, 60

languages, human, compared to programming

languages, xi

languages, programming (see programming

languages)

lazy evaluation, 180, 191

LCF, 205

limits of, 204

proving theorems with, 204

“Learning Standard C++ as a New Language”

(Stroustrup), 7

legacy software

approaches for, 253, 325, 366

preventing problems of, 254, 268

problems of, 71

legacy software, problems of, 142, 143

“less is more” philosophy, 39

levels of abstraction, 341

lex

as transformative technologies, 133

knowledge required to use, 106

lexical scoping, 383

libraries

as method for extending languages, 110

building, in BASIC, 97

design of, formalisms for, 109

designing, compared to language

design, 300

determining content of, 96

ligatures, in PostScript, 403

lightweight threads, 263

line numbers in BASIC, 80, 95

Linux kernel, not written in C++, reasons

for, 8

Lisp

level of success of, 151

“reusable concepts of meaning” with, 207

list comprehensions, in Haskell, 191

literature, for programming, 365

little languages, making more general, 303

logfiles, manipulating with AWK, 138

Download at Boykma.Com

470 I N D E X

loops

alternatives to, 53

in Forth, 74

Love, Tom, 241, 451

appropriate uses of Smalltalk, 242

classes, modeling and developing, 255

complexity of C++, 243

distributed teams, organizing, 253

hardware, predicting future of, 243, 244

languages

evolution of, 244–249

extensibility of, diminishing need for

new languages, 248

new, necessity of, 248

number of in use, 247

legacy software, reengineering, 253

maintaining software, number of

programmers required for, 251, 252

managers understanding of languages, 255

Objective-C as extension of C and

Smalltalk, 245

Objective-C as extension of C, reasons

for, 242

Objective-C compared to C++, 242

OOP, limited applications of, 244

popularity of C++, 243

productivity

improving, 256

programmer quality affecting, 253

programmers

advice for, 257

recognizing good, 251, 253

programming, predicting future of, 243

real-life experience, necessity of, for

programming, 249

simplicity in design, recognizing, 257

size of code for Objective-C compared to

C, 252

success of a project, measuring, 258

teaching complex technical concepts, 249

teaching programming, 250

training programmers, 250

uses of Objective-C, 243

Lua, 161, 162

asymmetrical coroutines in, 164

closures in, 164

code sharing with, 172

concurrency with, 164

design of, influencing future systems

design, 169

dialects of, written by users, 172

environments used in, changing design

of, 173

error messages in, 174

extensibility of, 173

feature set completed for, 171

feedback from users regarding, 170

for loop, 169

fragmentation issues with, 172

garbage collection in, 163

limitations of, 162

mistakes in, by designers, 165

number handling by, 163

parser for, 175

platform independence of, affecting

debugging, 174

programming in, advice regarding, 162

purposes appropriate for use of, 162

regrets about, by designers, 165

resources used by, 169, 171

security capabilities of, 162

simplicity of, effects on users, 172

tables in, 163

testing features of, 171

upgrading during course of

development, 170

VM

choice of ANSI C for, 173

debugging affected by, 174

register-based, 174

M

M language, 364, 369

Make utility, 133

mathematical formalism

in language design, 94

pipes used for, 108

mathematicians, languages designed by, 150,

167

mathematics

importance of learning, 143

role in computer science, 48, 115, 139, 166,

220

(see also theorems)

metalanguages for models, 207

Méthodes de Programmation (Meyer), 420

Meyer, Bertrand, 417, 452

adding features to Eiffel, decisions for, 437

analysis required before

implementation, 432

backward and forward compatibility of

Eiffel, 439

componentization, language reflecting, 424

concurrency and OOP, 424

Design by Contract, 421–422

evolution of, 436–440

extensibility of Eiffel, 425

genericity, 428

history of Eiffel, 418–421

Download at Boykma.Com

I N D E X 471

information hiding in Eiffel, 425

language design, starting with small core

for, 430

languages influencing programs, 423

lessons to be learned from, 440

mathematical versus linguistic perspective

for programming, 429

Méthodes de Programmation, 420

model-driven development, 433

multilingual background of, influencing

programming language design, 429

objects, handling outside of language, 424

philosophies of programming, 419

program provability, possibility of, 434

reusability, 426

SCOOP model, 424

seamless development, 432

small versus large programs, approaches

to, 431

specification and implementation,

differences between, 422

streaming serialization in Eiffel, 431

structured versus OO programming, 431

microprocessors, source code in, 73

millenium bug, lessons learned from, 215

Milner, Robin, 203, 453

bugs in language design, 214

bugs, proving absence of, 205

CCS and pi calculus, 206

comments and documentation, 216

communication among agents, 221

computer science, problems of, 218

concurrent systems, analyzing, 206

defining as informatic scientist, 221

design issues faced in ML, 216

higher-order functions, necessity of, 205

informatics, links to engineering, 220

language design influencing program

design, 212

language design, defining, 213

languages

revising, 218

validating, 219

languages preventing errors by users

of, 224

languages specific to each programmer, 213

levels of models, 207

limits of LCF, 204

logic expressed by ML, 205

mathematics, role in computer science, 220

metalanguages for models, 207

millenium bug, lessons learned from, 215

models for systems, 207–212, 218

paradigms, influencing programmers, 213

physical processes, models affected by, 208

programmers, improving skills of, 215

programs, computer’s ability to state

meaning of, 215

provability, 212

proving theorems with LCF and ML, 204

purpose of ML, 217

research in computer science, 222

“reusable concepts of meaning” idea, 207

structural problems in programs,

avoiding, 215

teaching theorems and provability, 209

theory of meaning, for languages, 223

type systems

decidability of, 208

restrictions defined by, 214

ubiquitous systems, 222

undecidability in lower levels of

models, 208

minimalism, in design of Forth, 62

ML, 203

design issues faced in, 216

formal specification of, 216

higher-order functions in, 205

logic expressed by, 205

proving theorems with, 204

purpose of, 217

role of, ability to express in other

languages, 205

type system for, 214, 216

model-driven development, 433

models for systems, 207–212, 218

Moore, Charles H., 59, 453

application design, 71–77

asynchronous operation in Forth, 70

bottom-up design with Forth, 61

colorForth, 62

compilers

quality of code in, 76

writing, 66

concurrency, approaches for, 68

conditionals in Forth, 74

cooperative multithreading in Forth, 70

design of Forth, longevity of, 62

documentation of programs, 76

domain-driven design using Forth, 61

elegant solutions, definition of, 66

embedded applications using Forth, 65

error causes and detection, 65, 74

hardware

computational power of, use of, 68

viewing as a resource or a limit, 67

I/O capabilities of Forth, 69

indirect-threaded code in Forth, 63

language design, influencing program

design, 73

Download at Boykma.Com

472 I N D E X

Moore, Charles H. (continued)

language toolkit, Forth as, 60

legacy software, problems of, 71

lessons learned from design of Forth, 63,

67

loops in Forth, 74

maintainability of Forth, 72

microprocessors, source code in, 73

minimalism in design of Forth, 62

networked small computers, applications

for, 71

operating systems, 66, 69

parallel processing, 64

porting Forth, 69

programmers receptive to Forth, 61

programmers, good, recognizing, 75

programming in Forth, advice for, 74

readability of Forth, 62, 65

resuming programming after a hiatus, 67

simplicity of Forth, 74

software patents, 77

stack management in Forth, 74

stack, depth of, 70

stack-based subroutine calls in Forth, 60

teamwork in programming, 75

words, Forth syntax made up of, 60, 62, 72

Moore’s Law, 285

multicore computers, 71

multiple paradigms

in C++, 2, 8, 9

in Python, 26

multithreading

cooperative, in Forth, 70

Java frameworks for, 285

mathematical software and, 285

as precursor to parallel processing, 64

problems in C++ with, 289

synchronization primitives for, 286

music, correlated with good programming

ability, 251, 306, 365

N

namespaces

in APL, 55

Objective-C not supporting, 259

National Instruments Lab View, 368

NetBeans, 290

networked small computers, applications

for, 71

networks

distribution of, concurrency and, 12

influencing software design, 271

SOAs and, 264

superdistribution and, 269

synchronization primitives for, 286

Ng, Pan-Wei (Aspect-Oriented Software

Development with Use Cases), 319

“A Note on Pattern Matching: Where do you

find the match to an empty array”

(Falkoff), 48

number handling

in BASIC, 80, 85

in Lua, 163

in Python, 24

O

Objective-C, 241

as extension of C and Smalltalk, 245, 258,

259

as extension of C, reasons for, 242

compared to C++, 242, 259

compared to Smalltalk, 242

configurability of, 260

lessons learned from design of, 262, 263

multiple inheritance not allowed in, 259

namespaces not supported in, 259

protocols, 260

single inheritance, necessity of, 260

size of code, compared to C, 252

uses of, 243

object-oriented programming (OOP)

as paradigm supported by C++, 8

complexity of, 3, 9

concurrency and, 10, 261, 351, 424

correct design influenced by, 373

encapsulation, 350

generic programming as alternative to, 10

good design using, difficulty of, 10

increasing the complexity of

applications, 262

limited applications of, 244

objects handled outside of language, 424

problems with, 315

reusability and, 349

scalability of, for complex programs, 348,

370

success of, 284

usefulness of, 91, 127

uses of, compared to structured

programming, 431

using well, effort involved in, 284

with Visual Basic, 91

objects, compared to system components, 146

OOP (see object-oriented programming)

open source model, 271

open source projects, success of, 414

open standards, 414

operating systems, 66, 69

(see also kernels)

Oracle, 228

orthogonality, in SQL, 232

Download at Boykma.Com

I N D E X 473

P

papers (see books and publications)

paradigms

influencing programmers, 213

multiple

in C++, 2, 8, 9

in Python, 26

parallel processing, 64

parallelism

in APL, 53–56

functional programming and, 182

uses of, 269

parser for Lua, 175

patch utility, 133

patents for software, 77

pattern matching

algorithms for, using concurrency, 115

evolution of, 103

pattern movement, 336, 343

patterns, design, 372, 373

PEP (Python Enhancement Proposal), 22

performance

influencing design of C++, 6

of BASIC, 83

practical implications of, 282

Perl, 375

APL influencing, 56

community participation in, 386–389

context in, 380–382

CPAN for, 387, 388

dual licensing, 389

evolution of, 380, 384, 389–393

human language principles

influencing, 376, 380

multiple implementations of, 393

multiple ways of doing something, 379

nicknames for, 375

purposes of, 378

scoping in, limitations of, 377

syncretic design of, 385

transition from text tool to complete

language, 378

version 6, 378, 390, 391, 393

Peters, Tim (“Zen of Python”), 21, 25, 31

physical processes, models affected by, 208

pi calculus, 206

Pike, Rob (The Practice of Programming), 119

pipes

composing programs using, 108

used for mathematical formalism, 108

platform independence, Java influencing, 293

pointers

compiler handling, 89

in C++, compared to Java, 3

not used in APL, 55

polyglot virtual machines, 297

polymorphism, requiring runtime

interpretation, 87

postfix operators, in Forth, 65, 66

PostScript, 395

for Apple graphics imaging model, 405

bitmap fonts, handling, 402

bugs in ROM, working around, 397

comparing to Forth, 399

as concatenative language, benefits of, 397

debugging, difficulty of, 411

design decisions for, 400

font scaling in, 401

fonts, building, 403

formal semantics not used for, 401

future evolution of, 404

half-toning for color in, 402

hardware considerations, 397, 405

JavaScript interface, 411

kanji characters, handling, 403

kerning in, 403

as language instead of data format, 396

lessons learned from, 409

ligatures in, 403

for NeXT graphics imaging model, 405

print imaging models, compared to

PDF, 403

purposes of, 396

stack-based design of, 399

two-dimensional constructs in, 398

web use of, 415

writing by hand, 401

The Practice of Programming (Kernighan;

Pike), 119

pragmatism and creativity, tension

between, 364

productivity of programmers

improving, 256

language affecting, 304

measuring, 156

programmer quality affecting, 253

programming language affecting, 146

when working alone, 98

productivity of users, SQL improving, 229,

233, 234

programmers

all levels of, features for, 27

creativity of (see creativity)

general population as, 313

good, recognizing, 27, 75, 409

hiring, 27

improving skills of, 104, 118, 140, 166,

215, 311

knowledge of, tied to language, 331, 336

paradigms influencing, 213

productivity of, 98, 146, 156

Download at Boykma.Com

474 I N D E X

programmers (continued)

productivity of (see also productivity of

programmers), 304

real-life experience, necessity of, 249

recognizing good, 167, 251, 253

skill of, importance compared to language

design, 404

teams of

Design by Contract helping, 422

distributed, organizing, 253

education for, 290

effectiveness of, 371

importance of, 75

in classroom, 111–113

increasingly larger, 126

organizing, 323

productivity of, 98

size of, 240, 393

skills required for, 251

stimulating creativity of, 141, 240

training, 250, 364–366

type of

design considerations for, 26, 45

receptive to Forth, 61

users as, 333, 336

programming

analysis in preparation for, 90, 432

approaches to, in different parts of the

world, 323

compared to language design, 145

compared to mathematical theorems

work, 139, 157

compared to writing text, 118

components in, 260, 263–269

constraints contributing to innovation

in, 367

creativity involved in, 104

debugging (see debugging code)

economic model of, 265, 266, 269–272

as engineering, 321

by example, 144, 154–159

as form of communication, xi

future of, 243, 414

hardware availability affecting, 102, 158,

168

intelligent agents partnering with people

for, 332

linguistic perspective of, 429

mathematical perspective of, 429

methods and processes for, improving, 325

nature of, changed over time, 68

not doing, if you can’t do it well, 159

resuming after a hiatus, 67, 114

seamless development, 432

specialization of labor for, 267, 268, 273

teaching (see computer science education)

testing (see testing code)

users, considering, 97, 99, 118

A Programming Language (Iverson), 44

programming language design, 121–129,

169–176

backward compatibility versus innovation

in, 131

breakthroughs needed in, 149–154

bugs in, 214

by mathematicians, 150, 167

clean design, 156

compared to library design, 300

compared to programming, 145, 359

data models for, 229

debugging considerations for, 148

defining, 213

designer’s preferences influencing, 148

domain-driven (see domain-driven design)

environment influencing, 297

errors reduced by, 122, 147

by extending existing languages, 2

for handheld devices, 280

for system programming, 280

formalisms for

benefits of, 228

mathematical, 94

usefulness of, 108

goals for, 293

implementation affecting, 175

implementation considerations for, 122,

129, 145

implementation related to, 296

improvements to process of, 125, 126

influencing program design, 51, 73, 90,

174, 192, 212, 289, 358

inspiration for, 367

multilingual background influencing, 429

network issues affecting, 281

personal approach for, 50

programmers, considerations for, 94

prototypes for, 124

scientific approach for, possibility of, 126,

148, 305

simplicity in, recognizing, 257, 302

SQL’s influence on, 231

starting with small core set of

functionality, 246, 430

syntax choices for, 148

teams for, 142, 178–180, 356

democratic nature of, 292

managing, 307, 399

user considerations, 104

utility considerations, 104

Download at Boykma.Com

I N D E X 475

programming languages

adding features to, 278, 300

adoption of, obstacles to, 41

compared to human languages, xi

compatibility requirements of, 20

debugging, 20

domain-specific (see domain-specific

languages)

dropping features in, considerations

for, 135

errors reduced by, 224

evolution of, managing, 15, 20, 96,

244–249

experiments of, success of, 385

extensibility of, 40, 110, 150, 248

families of, 213

formal specifications for, 360

general-purpose, ideals for, 123, 150

growth of, 292

implementation of, factors measured

during, 168

influencing programs, 423

interface for, elegance of, 135

linguistics as influence on, 382

little

making more general, 131, 150, 303

resurgence of, 132

longevity of, 109, 410

managers required to understand, 255

moving from specialized to general-

purpose, 384

new, necessity of, 248

number of in use, 247

popularity of, difficulty in making, 413

productivity affected by, 146, 304

reducing complexity of, 382

revising, 218

safety of, versus creative freedom, 305

simplicity of, goals for, 84

size of, increasing, 109

specific to each programmer, 213

strengths of, recognizing, 124

teaching languages, 296

testing new features of, 125

theory of meaning for, 223

upgrading, considerations for, 135

usability of, 339

validating, 219

(see also specific languages)

Programming: Principles and Practice Using

C++ (Stroustrup), 17

programs

beauty or elegance of, 104

complexity of, OOP and, 262, 348, 370

computer’s ability to state meaning of, 215

documentation of (see documentation of

programs)

as domain-specific languages, 50

large systems, building, 127

legacy, reengineering, 253

little, handling nontext data, 138

local workarounds versus global fixes,

142, 171

maintainability of, 142, 151, 251, 252

performance of, 158

problems in, finding, 158

provability of, possibility of, 434

quality of, improving, 269–272

revising heavily before shipping, 136

reworking versus restarting, 144

rewriting, frequency of, 130, 152

size of, continuing to increase, 126

structural problems in, avoiding, 215

success of, measuring, 258

theory and practice motivating, 111

trusting, 267

written in 1970s, rewriting, 68

protocols, in Objective-C, 260

provability, 209, 212

proving theorems, 204, 214, 217

publications (see books and publications)

Python, 19

adding features to, 20–24

bottom-up versus top-down design, 29

concurrency with, 37

design process using, 29

dynamic features of, 30

elegance philosophy for, 25, 31

experts using, features for, 27

future versions of, 41

garbage collection, 35

learning, 30

lessons learned from design of, 40

macros in, 33

maintainability of, 28

multiple implementations of, 34–36

multiple paradigms in, 26

new versions of, requirements for, 23

novices using, features for, 27

number handling in, 24

prototyping uses of, 29

searching large code bases, 37

security of, 30

simple parser used by, reasons for, 32

strict formatting in, 33

type of programmers using, influencing

design of, 26

Python 3.0, 41

Python 3000, 32

Python Enhancement Proposal (PEP), 22

“Pythonic”, meaning of, 21

Download at Boykma.Com

476 I N D E X

Q

Quill, comparison with relational database

systems, 237

R

RAD (rapid application development), 15

RAII (Resource Acquisition Is

Initialization), 5

rapid application development (RAD), 15

readability, of Forth, 65

refactoring, in C++, 10

references in Java, as pointers, 3

regular expressions (see pattern matching)

Reisner, Phyllis, 235

relational databases, APL influencing, 56

research groups, directing, 407–409

resilience, in SQL, 232

Resource Acquisition Is Initialization

(RAII), 5

resources

limited, designing for, 169, 171

management of, 5

reusability, 426

and OOP, 348, 349

and SOA, 350

rule-based technology, 333

Rumbaugh, James, 317, 454

architects, good, identifying, 335

background of, influencing software

design, 334

benefits of UML, persuading people of, 342

change, importance of building for, 355

communication facilitated by UML, 340

computer science, topics that should be

taught, 334

concurrency, 351

emergent systems, 344

encapsulation, 350

implementation code, generating with

UML, 339

knowledge transfer, 335, 336

lessons learned by design of UML, 337

levels of abstraction, 341

pattern movement, 336, 343

programming knowledge linked to

languages, 336

programming, by users, 336

purposes of UML, 340

redesigning UML, issues for, 345, 346

reusability and OOP, 348, 349

scalability of OOP, 348

security, perceived importance of, 354

simplicity, recognizing, 342

simplifying UML, 342

size of project determining usefulness of

UML, 343

SOA, 350

specialization in programming, 346

standardization of UML, necessity of, 346

symmetric relationships, 352–355

universal model/language, 341

usability of languages, 339

S

Scala, 286, 287

SCOOP model, 424

scoping, in Perl, 377

SDL, 328, 329, 330

seamless development, 432

security of software

approaches for, 6

with dynamic languages, 30

formalisms of language affecting, 108

importance of, perceived, 354

language choice affecting, 147

multilevel integration affecting, 267

with Python, 30

type safety and, 7

with Lua, 162

SEQUEL, 227

service-oriented architecture (SOA), 261, 264,

266, 267, 269, 272, 273, 350

shared variables, in APL, 54

shell scripts, AWK used with, 107

simplicity

advice for, 142

of Forth, 74

in language design, recognizing, 302

of languages, goals for, 84

recognizing, 333, 342, 371

relationship to power, 278

in SQL, 232

Simula classes, incorporated in C++, 2

sketching tools, 37

Smalltalk

browser for, 312

incorporated in Objective-C, 245, 259

uses of, 242

SOA (see service-oriented architecture)

social engineering, 324

software (see programs)

“Software and the Future of Programming

Languages” (Aho), 110

software engineering (see programming)

software patents, 77

space insensitivity, in BASIC, 82, 94

specialization in programming, 346

specialization of labor, applying to software

development, 267, 268, 273

I N D E X 477

specifications

distinct from implementation, 422

formal (see formal specifications)

SQL, 225, 226–228

compared to AWK, 138

complexity of, 236

concurrent data access issues of, 230

declarative nature of, 229

design principles of, 231

external visibility of, 233

Halloween problem in, 231

influencing future language design, 231

injection attacks on, 236

knowledge required to use, 237

popularity of, 233

scalability of, 235

standardization of, 239

updates on indexes, 231

usability tests on, 235

user feedback for, 235

users of, primarily programmers, 237

views in, uses of, 230

stack management, in Forth, 74

stack-based design, of PostScript, 399

stack-based subroutine calls, in Forth, 60, 70

standardization

of APL, 47

of C#, 308

of UML, 346, 362–364

problems with, 415

static typing, 25

statically checked interfaces, problems caused

by, 10

Stroustrup, Bjarne, 1, 454

academic pursuits of, 16–17

C++0x FAQ, online, 13

“close to the hardware” design for C++, 5

code examples in textbooks, 17

complexity of C++, compared to Java, 3

complexity of OOP, 9

concurrency and network distribution, 12

concurrency support, in C++, 11

concurrency, linked to OOP, 10

creating a new language, considerations

for, 14

debugging C++ code, 6

The Design and Evolution of C++

(Stroustrup), 14

embedded applications, C++ for, 7

extending existing languages, reasons for, 2

future versions of C++, 13

general resource management, 5

industry connections of, 16

kernels not written in C++, reasons for, 8

“Learning Standard C++ as a New

Language”, 7

lessons from design of C++, 14

moving code from C to C++, reasons for, 8

multiple paradigms, reasons for supporting

in C++, 2

pointers in C++, compared to Java, 3

Programming: Principles and Practice Using

C++, 17

security of software, 6

system software, C++ for, 7

testing C++ code, 6

value semantics, 5

“Why C++ isn’t just an Object-Oriented

Programming Language”, 8

Structured Programming (Dahl; Dijkstra;

Hoare), 419

structured programming, compared to

OOP, 431

superdistribution, 268, 274

Sussenguth, E. H. (“The Formal Description of

System 360”), 44

symmetric relationships, 352–355

System R project, 228

systems

models for, 207–212

wider not faster, 285

T

tables, in Lua, 163

Tcl/Tk, usefulness of, 134

teams of programmers (see programmers,

teams of)

teams of programming language

designers, 142, 178–180, 292, 307,

356, 399

templates, in C++, 10

test cases, as use cases, 319

testing code, 167

C++, 6

for Lua, 171

Python, 37

writing code to facilitate, 133

theorems

proving

as purpose of ML, 217

with LCF and ML, 204

with type system, 214

teaching in computer science, 209

working on, compared to

programming, 139, 157

threading

concurrency and, 261

indirect-threaded code, in Forth, 63

lightweight threads, 263

(see also multithreading)

top-down design

with C++, 5

with Python, 29

478 I N D E X

transformative technologies, 132–136

True BASIC, 82, 83, 91

type checking, errors introduced by, 65

type safety, in C++, 7

type systems

decidability of, 208

in ML, 216

restrictions defined by, 214

U

ubiquitous systems, 222

UML (Unified Modeling Language), 317, 328,

356

as set of DSLs, 328, 329

backward compatibility with, 345, 361

communication facilitated by, 340

complexity of, 328, 329, 357

designing, 328

future possible changes to, 328

generating implementation code

using, 330, 339, 356

lessons learned by design of, 337, 358

percentage of, used all the time, 357, 360

persuading people of benefits of, 330, 331,

342, 356

purposes of, 340, 356

redesigning, possibilities for, 345, 346, 357

removing elements from, 329

SDL influencing improvements to, 329

semantic definitions in, problems

with, 328

simplifying, 342

size of project determining usefulness

of, 331, 343

standardization of, 362–364

standardization of, necessity of, 346

Unified Modeling Language (see UML)

Unix, portability of, 110

use cases, developing concept of, 319

user-created and built-in language elements,

treating differently, 51

users

considering when designing languages, 104

considering when programming, 97, 99, 118

feedback from, about Lua, 170

V

value semantics, 5

van Rossum, Guido, 19, 455

adding features to a programming

language, 20–24

adoption of programming languages,

obstacles to, 41

bottom-up versus top-down design, 29

concurrency with Python, 37

debugging programming languages, 20

debugging Python code, 37

design process using Python, 29

dynamic languages

benefits of, 30

code browsing with, 25

trend toward, 41

dynamic typing, 25

elegance, philosophy for, 25, 31

extensibility of programming

languages, 40

garbage collection in Python, 35

hybrid typing, 26

interface or API design, 38

learning Python, 30

lessons learned from design of Python, 40

macros in Python, 33

maintainability of Python, 28

multiple implementations of Python, 34–36

multiple paradigms in Python, 26

new versions of Python, requirements

for, 23

number handling in Python, 24

parser used by Python, simplicity of, 32

programmers

design considerations for, 26

hiring, 27

recognizing good, 27

programmers, all levels of, features for, 27

prototyping uses of Python, 29

Python Enhancement Proposal (PEP), 22

“Pythonic”, meaning of, 21

resuming programming, 38

searching large code bases, 37

security of Python, 30

sketching tools, 37

skills of, as Python programmer, 28

static typing, 25

strict formatting in Python, 33

testing Python code, 37

visual applications, language environment

for, 92

Visual Basic

as object-oriented language, 91

limitations of, 92

usefulness of, 134

visual programming languages, 368

Vlissides, John (Design Patterns: Elements of

Reusable Object-Oriented

Software), 344

I N D E X 479

W

Wadler, Philip, 455

class system in Haskell, 188

formal semantics, usefulness of, 197

functional closures, 191

generic types, 191

Haskell’s influence on other languages, 191

language design influencing software

design, 193

list comprehensions, 191

type system for Haskell, 189

Wall, Larry, 375, 456

community participation in Perl, 386–389

complexity of languages, reducing, 382

context in Perl, 380–382

CPAN, 387, 388

dual licensing for Perl, 389

evolution of Perl, 380, 389–393

experiments with languages, success

of, 385

human language principles influencing

Perl, 376, 380

languages compared to tools, 384

languages moving from specialized to

general-purpose, 384

lexical scoping, 383

linguistics as influence on programming

languages, 382

multiple implementations of Perl, 393

multiple ways of doing something in

Perl, 379

programming teams, size of, 393

purposes of Perl, 378

scoping limitations in Perl, 377

syncretic design of Perl, 385

transition of Perl from text tool to complete

language, 378

Warnock, John, 395

bitmap fonts, handling in PostScript, 402

bugs in ROM, working around, 397

concatenative language, benefits of, 397

debugging PostScript, difficulty of, 411

design decisions for PostScript, 400

font building for PostScript, 403

font scaling in PostScript, 401

formal semantics not used for

PostScript, 401

future of computer science and

programming, 414

hardware considerations, 397, 405

JavaScript interface, 411

kanji characters in PostScript, 403

kerning and ligatures in PostScript, 403

longevity of general programming

languages, 410

PostScript as language instead of data

format, 396

print imaging models in PostScript,

compared to PDF, 403

stack-based design of PostScript, 399

standardization, problems with, 415

two-dimensional constructs,

supporting, 398

writing PostScript by hand, 401

Warnock, John E., 456

web, PostScript for, instead of HTML and

JavaScript, 415

website resources

C++ Standards Committee, 13

C++0x FAQ (Stroustrup), 13

Weinberger, Peter, 101, 147, 457

AWK compared to SQL, 138

C, signedness in, 152

creativity in programmers, stimulating, 141

debugging considerations, 148

error messages, quality of, 149

extensible languages, 150

functional programming, usefulness of, 140

general-purpose languages, 150

hardware availability, affecting

programming, 158

implementation affecting language

design, 145

implementations by, speed of, 144

initial design ideas for AWK, 137

language design style of, 104

language design, breakthroughs needed

in, 149–154

large programs in AWK, improvements

for, 149

learning new things on Internet, usefulness

of, 139

Lisp, level of success of, 151

little programs, handling nontext data, 138

local workarounds versus global fixes in

code, 142

logfiles, manipulating with AWK, 138

mathematicians designing languages, 150

mathematics, role in computer science, 139

mistakes made by, lessons learned

from, 141

objects compared to system

components, 146

problems in software, finding, 158

productivity affected by language, 146

productivity, measuring, 156

programming by example, 144, 154–159

programming language design, 148–149

480 I N D E X

Weinberger, Peter (continued)

programming, improving skills at, 140

programs

reworking versus restarting, 144

rewriting, 152

regrets about AWK, 141

security, language choice affecting, 147

simplicity, advice for, 142

success, defining, 154

teaching debugging, 141

teaching programming, 142

whitespace insensitivity, in BASIC, 82, 94

“Why C++ isn’t just an Object-Oriented

Programming Language”

(Stroustrup), 8

WYSIWYG editors, effect on programming, 95

X

X Window system, longevity of, 131

XML, 238

XQuery, 238

Y

yacc

as transformative technology, 132

knowledge required to use, 106

Yahoo! Pipes, 128

Z

“Zen of Python” (Peters), 21, 25, 31

A B O U T T H E I N T E R V I E W E R S

Federico Biancuzzi is a freelance interviewer. His interviews have appeared on online pub-

lications such as ONLamp.com, LinuxDevCenter.com, SecurityFocus.com, NewsForge.com,

Linux.com, TheRegister.co.uk, and ArsTechnica.com, as well as in the Polish print maga-

zine BSD Magazine, and the Italian print magazine Linux&C.

Shane Warden has a decade of experience developing free software, including contribu-

tions to the Perl 5 core, the design of Perl 6, and the Parrot virtual machine. In his spare

time, he runs the fiction division of independent publisher Onyx Neon Press. He is coauthor

of The Art of Agile Development (O’Reilly).

C O L O P H O N

The cover fonts are Akzidenz Grotesk, Orator, and Helvetica Neue Ultra Light. The text

font is Adobe’s Meridien; the heading font is ITC Bailey.

	Contents
	Foreword
	Preface
	Organization of the Material
	Conventions Used in This Book
	How to Contact Us
	Safari® Books Online

	C++
	Design Decisions
	Using the Language
	OOP and Concurrency
	Future
	Teaching

	Python
	The Pythonic Way
	The Good Programmer
	Multiple Pythons
	Expedients and Experience

	APL
	Paper and Pencil
	Elementary Principles
	Parallelism
	Legacy

	Forth
	The Forth Language and Language Design
	Hardware
	Application Design

	BASIC
	The Goals Behind BASIC
	Compiler Design
	Language and Programming Practice
	Language Design
	Work Goals

	AWK
	The Life of Algorithms
	Language Design
	Unix and Its Culture
	The Role of Documentation
	Computer Science
	Breeding Little Languages
	Designing a New Language
	Legacy Culture
	Transformative Technologies
	Bits That Change the Universe
	Theory and Practice
	Waiting for a Breakthrough
	Programming by Example

	Lua
	The Power of Scripting
	Experience
	Language Design

	Haskell
	A Functional Team
	Trajectory of Functional Programming
	The Haskell Language
	Spreading (Functional) Education
	Formalism and Evolution

	ML
	The Soundness of Theorems
	The Theory of Meaning
	Beyond Informatics

	SQL
	A Seminal Paper
	The Language
	Feedback and Evolution
	XQuery and XML

	Objective-C
	Engineering Objective-C
	Growing a Language
	Education and Training
	Project Management and Legacy Software
	Objective-C and Other Languages
	Components, Sand, and Bricks
	Quality As an Economic Phenomenon
	Education

	Java
	Power or Simplicity
	A Matter of Taste
	Concurrency
	Designing a Language
	Feedback Loop

	C#
	Language and Design
	Growing a Language
	C#
	The Future of Computer Science

	UML
	Learning and Teaching
	The Role of the People
	UML
	Knowledge
	Be Ready for Change
	Using UML
	Layers and Languages
	A Bit of Reusability
	Symmetric Relationships
	UML
	Language Design
	Training Developers
	Creativity, Refinement, and Patterns

	Perl
	The Language of Revolutions
	Language
	Community
	Evolution and Revolution

	PostScript
	Designed to Last
	Research and Education
	Interfaces to Longevity
	Standard Wishes

	Eiffel
	An Inspired Afternoon
	Reusability and Genericity
	Proofreading Languages
	Managing Growth and Evolution

	Afterword
	Contributors
	index

