

SPECIFICATION

BY EXAMPLE

SPECIFICATION
BY EXAMPLE

How successful teams deliver the right software

Gojko Adzic
�

MANNING

Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
�
Manning Publications Co.
�
20 Baldwin Road
�
PO Box 261
�
Shelter Island, NY 11964
�
Email: orders@manning.com
�

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Manning Publications Co. Development Editor: Jeff Bleiel
20 Baldwin Road Copyeditors: June Eding, Linda Recktenwald
PO Box 261 Illustrator: Martin Murtonen
Shelter Island, NY 11964 Designer: Leslie Haimes

ISBN 9781617290084
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

http://www.manning.com
mailto:orders@manning.com

	 	 			

Contents

Contents v
�
Preface xiii
�
Acknowledgments xxii
�
About the author xxiii
�
About the cover illustration xxiv
�

PART 1 Getting Started

1 Key benefits 3
�

Implementing changes more efficiently . . 6

Higher product quality. . 8

Less rework. . 12

Better work alignment . . 14

Remember. . 16

2	 Key process patterns 17
�

Deriving scope from goals. . 19

Specifying collaboratively . . 19

Illustrating using examples. . 20

Refining the specification. . 20

Automating validation without changing specifications . . 21

Validating frequently. . 23

Evolving a documentation system . . 24

A practical example. . 24

Business goal . . 24

An.example.of.a.good.business.goal. . 24

Scope . . 25

User.stories.for.a.basic.loyalty.system. . 25

Key examples . . 25

Key.Examples:.Free.delivery. .. 26

Specification with examples . . 26

Free.delivery. . 26

Examples. . 26

Executable specification. . 27

Living documentation . . 27

Remember. . 28

3 Living documentation 29
�

Why we need authoritative documentation . . 30

Tests can be good documentation . . 31

Creating documentation from executable specifications. . 32

Benefits of the documentation-centric model . . 34

Remember. . 35

4 Initiating the changes 36
�

How to begin changing the process. . 37

Implement.Specification.by.Example.as.part.of.a.wider.process.change

Start.with.functional.test.automation

Introduce.a.tool.for.executable.specifications

Use.test-driven.development.as.a.stepping.stone

Avoid.“agile”.terminology

Keep.one.person.on.legacy.scripts.during.migration

Track.who.is.running—and.not.running—automated.checks

Get.sign-off.on.exported.living.documentation

Get.sign-off.on.scope,.not.specifications

Get.sign-off.on.“slimmed.down.use.cases”

Introduce.use.case.realizations

. When:.On.greenfield.projects. . .38

Focus.on.improving.quality. . 38

. When:.Appying.to.an.existing.project. . .39

. When:.Testers.own.test.automation. . .41

. When:.Developers.have.a.good.understanding.of.TDD . . 42

How to begin changing the team culture. . 43

. When:.Working.in.an.environment.that’s.resistant.to.change . . 43

Ensure.you.have.management.support . . 44

Sell.Specification.by.Example.as.a.better.way.to.do.acceptance.testing 45

Don’t.make.test.automation.the.end.goal. . 46

Don’t.focus.on.a.tool. . 47

. When:.Introducing.functional.automation.to.legacy.systems. . 48

. When:.Developers.are.reluctant.to.participate. . 49

How teams integrated collaboration into flows and iterations. . 49

Global talent management team at ultimate software. .. 51

Sierra team at BNP paribas. . 52

Sky Network services . . 53

Dealing with sign-off and traceability. . 55

Keep.executable.specifications.in.a.version.control.system. . 56

. When:.Signing.off.iteration.by.iteration. . 56

. When:.Signing.off.longer.milestones. . .57

. When:.Regulatory.sign-off.requires.details. . 57

. When:.All.details.are.required.for.sign-off. . 59

Warning signs. . 59

Watch out for tests that change frequently. . 60

Watch out for boomerangs. . 60

Watch out for organizational misalignment. . 61

Watch out for just-in-case code . . 61

Watch out for shotgun surgery. . 62

Remember. . 62

	 	 									

	 	 			

PART 2 Key process patterns

5 Deriving scope from goals 65
�

Building the right scope . . 67

Have.developers.provide.the.“I.want”.part.of.user.stories

Make.sure.teams.deliver.complete.features

Understand.the.“why”.and.“who” . . 68

Understand.where.the.value.is.coming.from. . 69

Understand.what.outputs.the.business.users.expect. . 70

. When:.Business.users.trust.the.development.team. . .71

Collaborating on scope without high-level control. . 72

Ask.how.something.would.be.useful. . 73

Ask.for.an.alternative.solution. . 73

Don’t.look.only.at.the.lowest.level. . 74

. When:.Large.multisite.projects. . 75

Further information . . 75

Remember. . 76

6 Specifying collaboratively 77
�

Why do we need to collaborate on specifications?. . 77

Try.big,.all-team.workshops

Try.smaller.workshops.(“Three.Amigos”)

Pair-writing

Have.developers.frequently.review.tests.before.an.iteration

Try.informal.conversations

Hold.introductory.meetings

Undertake.detailed.preparation.and.review.up.front

Have.team.members.review.stories.early

Prepare.only.initial.examples

The most popular collaborative models. . 79

. When:.Starting.out.with.specification.by.example. . 79

. When:.Domain.requires.frequent.clarification. . 81

. When:.Mature.products. . .83

. When:.Analysts.writing.tests. . 84

. When:.Business.stakeholders.are.readily.available . . 85

Preparing for collaboration . . 86

. When:.Project.has.many.stakeholders. . .87

Involve.stakeholders . . 87

. When:.Remote.Stakeholders. . 89

. When:.Analysts/domain.experts.are.a.bottleneck. . 90

. When:.Stakeholders.are.readily.available. . .91

Don’t.hinder.discussion.by.overpreparing. . . 92

Choosing a collaboration model. . 93

Remember. . 94

vii

7 Illustrating using examples 95
�

Illustrating using examples: an example. . 97

Don’t.have.yes/no.answers.in.your.examples

Avoid.using.abstract.classes.of.equivalence

Ask.for.an.alternative.way.to.check.the.functionality

Avoid.making.up.your.own.data

Get.basic.examples.directly.from.customers

Get.precise.performance.requirements

Try.the.QUPER.model

Use.a.checklist.for.discussions

Build.a.reference.example

Examples should be precise . . 99

. When:.The.underlying.concept.isn’t.separately.defined. . .99

. When:.You.can.specify.a.concrete.example. . .100

Examples should be complete. . 100

Experiment.with.data. . 101

. When:.Complex/legacy.infrastructures. . 101

Examples should be realistic. . 102

. When:.Data-driven.projects. . 102

. When:.Working.with.enterprise.customers. . 103

Examples should be easy to understand. . 105

Avoid.the.temptation.to.explore.every.combinatorial.possibility . . 105

Look.for.implied.concepts. . 106

Illustrating nonfunctional requirements. . 107

. When:.Performance.is.a.key.feature. . 108

Use.low-fi.prototypes.for.UI. . 109

. When:.Sliding.scale.requirements. . 110

. When:.Cross-cutting.concerns. . .111

. When:.Requirements.are.impossible.to.quantify. . 112

Remember. . 113

8	 Refining the specification 114
�

An example of a good specification. . 116

Resist.the.temptation.to.work.around.technical.difficulties.in.specifications

Don’t.get.trapped.in.user.interface.details

Free delivery. . 116

Examples. . 116

An example of a bad specification. . 117

What to focus on when refining specifications. . 119

Examples should be precise and testable . . 119

Scripts are not specifications . . 119

Don’t.create.flow-like.descriptions. . 120

Specifications should be about business functionality, not software design. 121

Avoid.writing.specifications.that.are.tightly.coupled.with.code . . 121

. When:.Working.on.a.legacy.system. . .122

. When:.Web.projects. . .124

viii

	 	 	 	 									

9	

Specifications should be self-explanatory . . 124

Show.and.keep.quiet

. When:.Someone.is.working.on.specifications.alone

Start.with.basic.examples;.then.expand.through.exploring

Use.“Given-When-Then”.language.in.specifications

Don’t.explicitly.set.up.all.the.dependencies.in.the.specification

Don’t.always.rely.on.defaults

Use.a.descriptive.title.and.explain.the.goal.using.a.short.paragraph. 125

. In.order.to:.Check.whether.a.specification.is.self-explanatory. . 125

Don’t.overspecify.examples. . 126

. When:.Describing.rules.with.many.parameter.combinations. . 128

. In.order.to:.Make.the.test.easier.to.understand. . 128

. When:.Dealing.with.complex.dependencies/referential.integrity 130

Apply.defaults.in.the.automation.layer. . 131

. When:.Working.with.objects.with.many.attributes. . 131

Specifications should be in domain language . 132
�
Refining in practice. . 132

Remember. . 135

Automating validation without changing specifications 136
�

Is automation required at all?. . 137

To.learn.about.tools,.try.a.simple.project.first

Gain.trust.with.user.interface.tests

Automate.along.system.boundaries

Automate.below.the.skin.of.the.application

Check.only.UI.functionality.with.UI.specifications

Avoid.using.prepopulated.data

Starting with automation . . 139

. When:.Working.on.a.legacy.system. . .139

Plan.for.automation.upfront. . 140

Don’t.postpone.or.delegate.automation. . 141

Avoid.automating.existing.manual.test.scripts. . 142

. When:.Team.members.are.skeptical.about.executable.specifications 143

Managing the automation layer . . 144

Don’t.treat.automation.code.as.second-grade.code. . 145

Describe.validation.processes.in.the.automation.layer. . 146

Don’t.replicate.business.logic.in.the.test.automation.layer . . 147

. When:.Complex.integrations. . 148

Don’t.check.business.logic.through.the.user.interface. . 149

. When:.Checking.session.and.workflow.constraints. . 150

Automating user interfaces . . 152

Specify.user.interface.functionality.at.a.higher.level.of.abstraction. . 153

. When:.User.interface.contains.complex.logic. . 154

Avoid.recorded.UI.tests. . 155

Set.up.context.in.a.database . . 157

Test data management . . 157

. When:.Specifying.logic.that’s.not.data.driven. . 158

ix

Try.using.prepopulated.reference.data

. When:.Data-driven.systems. . .158

Pull.prototypes.from.the.database

. When:.Legacy.data-driven.systems. . .160

Remember. . 161

10 Validating frequently 162
�

Reducing unreliability. . 164

Find.the.most.annoying.thing,.fix.it,.and.repeat

Identify.unstable.tests.using.CI.test.history

Create.simpler.test.doubles.for.external.systems

Selectively.isolate.external.systems

Try.multistage.validation

Execute.tests.in.transactions

Run.quick.checks.for.reference.data

Make.asynchronous.processing.optional

Don’t.use.executable.specifications.as.end-to-end.validations

. When:.Working.on.a.system.with.bad.automated.test.support . . 164

. When:.Retrofitting.automated.testing.into.a.legacy.system. . 165

Set.up.a.dedicated.continuous.validation.environment . . 166

Employ.fully.automated.deployment . . 166

. When:.Working.with.external.reference.data.sources . . 167

. When:.External.systems.participate.in.work. . .168

. When:.Large/multisite.groups. . 168

. When:.Executable.specifications.modify.reference.data. . 169

. When:.Data-driven.systems. . .170

Wait.for.events,.not.for.elapsed.time. . 170

. When:.Greenfield.projects. . 171

. When:.Brownfield.projects. . .172

Getting feedback faster. . 173

Introduce.business.time

Avoid.using.in-memory.databases.for.testing

Separate.quick.and.slow.tests

Keep.overnight.packs.stable

Parallelize.test.runs

Try.disabling.less.risky.tests

. When:.Working.with.temporal.constraints. . .173

Break.long.test.packs.into.smaller.modules. . 174

. When:.Data-driven.systems. . .174

. When:.A.small.number.of.tests.take.most.of.the.time.to.execute 175

. When:.Slow.tests.run.only.overnight. . .176

Create.a.current.iteration.pack. . 177

. When:.You.can.get.more.than.one.test.environment. . 177

. When:.Test.feedback.is.very.slow. . 178

Managing failing tests. .. 179

Create.a.known.regression.failures.pack. . 180

Automatically.check.which.tests.are.turned.off

. When:.Failing.tests.are.disabled,.not.moved.to.a.separate.pack 181

Remember. . 182

x

		

	 	 			 			

Evolving a documentation system 183
11	
Living documentation should be easy to understand. . 183

Avoid.using.technical.automation.concepts.in.tests

Base.the.specification.language.on.personas

Collaborate.on.defining.the.language

Organize.along.UI.navigation.routes

Organize.along.business.processes

Use.tags.instead.of.URLs.when.referring.to.executable.specifications

Don’t.create.long.specifications. . 184

Don’t.use.many.small.specifications.to.describe.a.single.feature . . 184

Look.for.higher-level.concepts. . 185

. When:.Stakeholders.aren’t.technical. . 185

Living documentation should be consistent. . 186

Evolve.a.language . . 187

. When:.Web.projects. .188

. When:.Choosing.not.to.run.specification.workshops. . 189

Document.your.building.blocks. . 190

Living documentation should be organized for easy access . . 191

Organize.current.work.by.stories. . 191

Reorganize.stories.by.functional.areas. . 192

. When:.Documenting.user.interfaces. . 193

. When:.End-to-end.use.case.traceability.required. . 194

. When:.You.need.traceability.of.specifications. . 195

Listen to your living documentation. . 196

Remember. . 197

PART 3 Case studies

12	 uSwitch 201
�

Starting to change the process. . 202

Optimizing the process. . 204

The current process. . 207

The result. . 208

Key lessons. . 209

13	 RainStor 211
�

Changing the process . . 211

The current process. . 213

Key lessons. . 215

14 Iowa Student Loan 217
�

Changing the process . . 217

Optimizing the process. . 218

Living documentation as competitive advantage. . 222

Key lessons. . 223

xi

15	 Sabre Airline Solutions 224
�

Changing the process . . 224

Improving collaboration. . 226

The result. . 228

Key lessons. . 229

16	 ePlan Services 230
�

Changing the process . . 230

Living documentation . . 233

Current process. . 234

Key lessons. . 236

17	 Songkick 237
�

Changing the process . . 238

Current process. . 241

Key lessons. . 242

18	 Concluding thoughts 245
�

Collaboration on requirements builds trust between stakeholders

and delivery team members . . 245

Collaboration requires preparation . . 246

There are many different ways to collaborate. . 247

Looking at the end goal as business process documentation is a useful model. 247

Long-term value comes from living documentation. . 248

Appendix A Resources 250
�

Index 255
�

xii

			

Preface

T he book you hold in your hands, or see on your screen, is the result of a series
of studies of how teams all over the world specify, develop, and deliver the
right software, without defects, in very short cycles. It presents the collective

knowledge of about 50 projects, ranging from public websites to internal back-office
systems. These projects involved diverse teams, from small ones working in the same of-
fice to groups spread across different continents, working in a range of processes includ-
ing Extreme Programming (XP), Scrum, Kanban, and similar methods (often bundled
together under the names agile and lean). They have one thing in common—they all got
the practices of collaborating on specifications and tests right, and they got big benefits
out of that.

Specification by Example

Different teams use different names for their ways of dealing with specifications and
tests, yet they all share a common set of core principles and ideas, which I hold to be
essentially the same thing. Some of the names that the teams used for these practices are

• Agile acceptance testing

• Acceptance Test-Driven Development

• Example-Driven Development

• Story testing

• Behavior-Driven Development

• Specification by Example

The fact that the same practices have so many names reflects the huge amount of inno-
vation in this field at the moment. It also reflects the fact that the practices described in
this book impact the ways teams approach specifications, development, and testing. To
be consistent, I had to choose one name. I settled on Specification by Example, and I’ll
use that in the rest of the book. I explain this choice in detail in the “A few words on the
terminology” section later in this introduction.

In the real world

I present this topic through case studies and interviews. I chose this approach so that you
can see that there are real teams out there right now doing this and reaping big benefits.
Specification by Example is not a dark art although some popular media might make
you think that.

xiii

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

Almost everything in this book is from the real world, real teams, and real experi-
ences. A small number of practices are presented as suggestions without being backed
by a case study. These are ideas that I think will be important for the future, and they’re
clearly introduced as such.

I’m certain that the studies I conducted leading to this book and my conclusions
will be dismissed for not being a serious scientific research by those skeptics who claim
that agile development doesn’t work and that the industry should go back to “real soft-
ware engineering.”1 That’s fine. The resources available to me for this book project are
minute compared to what would be required for a serious scientific research. Even with
those resources, I’m not a scientist, nor do I intend to present myself as such. I’m a
practitioner.

Who should read this book?

If you’re a practitioner, like me, and your bread and butter come from making or helping
software go live, this book has a lot to offer. I primarily wrote this book for teams who
have tried to implement an agile process and ran into problems that manifest themselves
as poor quality, rework, and missed customer expectations. (Yes, these are problems, and
plainly iterating is a workaround and not a solution.) Specification by Example, agile
acceptance testing, Behavior-Driven Development, and all the alternative names for the
same thing solve these problems. This book will help you get started with those prac-
tices and learn how to contribute better to your team, regardless of whether you qualify
yourself as a tester, developer, analyst, or product owner.

A few years ago, most people I met at conferences hadn’t heard of these ideas. Most
people I meet now are somewhat aware of these practices, but many failed to implement
them properly. There’s very little literature on problems that teams face while imple-
menting agile development in general, so every discouraged team thinks that they’re
unique and that somehow the ideas don’t work in their “real world.” They seem sur-
prised how I can guess three or four of their biggest problems after just five minutes of
listening to them. They are often completely astonished that many other teams have the
same issues.

If you work in such a team, the first thing that this book will do for you is show
you that you’re not alone. The teams I interviewed for this book aren’t perfect—they
had tons of issues as well. Instead of quitting after they hit a brick wall, they decided to
drive around it or tear it down. Knowing this is often encouraging enough for people to

1 For more on the delusion that engineering rigor would help software development, as if it
were some kind of second-rate branch of physics, see also http://www.semat.org. For a good
counterargument, see Glenn Vanderburg’s presentation “Software Engineering Doesn’t Work!”
at http://confreaks.net/videos/282-lsrc2010-real-software-engineering.

xiv

http://www.semat.org
http://confreaks.net/videos/282-lsrc2010-real-software-engineering

	

look at their problems in a different light. I hope that after reading the book you’ll feel
the same.

If you’re in the process of implementing Specification by Example, this book will
provide useful advice on how to get past your current problems and learn what you can
expect in the future. I hope you will learn from the mistakes of others and avoid hitting
some problems at all.

This book is also written for experienced practitioners, people with a relatively suc-
cessful implementation of Specification by Example in their process. I started conduct-
ing the interviews expecting that I knew most of what’s out there, looking for external
confirmation. I ended it surprised by how many different ideas people implemented in
their contexts, things I never thought about. I learned a lot from these examples, and
hope you will too. The practices and the ideas described here should inspire you to try
alternative solutions to your problems or realize how you can improve the process of
your team once you read similar stories.

What’s inside?

In part 1, I introduce Specification by Example. Instead of convincing you why you
should follow the principles outlined in the book, I show you—in the true Specification
by Example style—examples of benefits that teams got from this process. If you’re think-
ing about buying this book, skim over chapter 1 and see if any of the benefits presented
there would apply to your project. In chapter 2, I introduce the key process patterns
and key artifacts of Specification by Example. In chapter 3, I explain the idea of living
documentation in more detail. In chapter 4, I present the most common starting points
for initiating the changes to process and team culture and advise what to watch out for
when you start implementing the process.

One of my goals with this book is to create a consistent language for patterns, ideas,
and artifacts that teams use to implement Specification by Example. The community
has a dozen names for the practice as a whole and twice as many for various elements of
it. Different people call the same thing feature files, story tests, BDD files, acceptance
tests, and so on. For that reason, I also introduce what I think are very good names for all
the key elements in chapter 2. Even if you’re an experienced practitioner, I suggest you
read this chapter to make sure that we have the same understanding of the key names,
phrases, and patterns in this book.

In part 2, I present the key practices that the teams from the case studies used to
implement the principles of Specification by Example. Teams in different contexts do
very different things, sometimes even opposing or conflicting, to get to the same effect.
In addition to the practices, I document the contexts in which the teams use them to
implement the underlying principles. The seven chapters in part 2 are roughly broken
down by process areas.

xv

		 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

There are no best practices in software, but there are definitely good ideas that we
can try to apply in different contexts. You will find thumbs-up and thumbs-down icons
next to the sections in part 2, indicating practices that several teams from the survey
found useful or issues they commonly faced. Treat these as suggestions to try out or
avoid, not as prescriptions for something that you must follow. Arrow icons point to
particularly important ideas for each practice.

Software development isn’t static—teams and environments change and the process
must follow. I present case studies showing the journeys of a few selected teams in part
3. I write about their processes, constraints, and contexts, analyzing how the processes
evolved. These stories will help you get started with your journey or take the next step,
find ideas, and discover new ways of doing things.

In the final chapter of the book, I summarize the key things I’ve learned from the
case studies leading to this book.

Beyond the basics

On the traditional Shu-ha-ri2 learning model, this book is at the Ha level. Ha is about
breaking the old rules and showing that there are many successful models. In my book
Bridging the Communication Gap, I presented my model and my experience. In this
book, I try hard not to be influenced by my background. I present things from the proj-
ects I worked on only when there’s an important point to make and I don’t think any
of the teams featured in the book had a similar situation. In that sense, Specification by
Example continues where Bridging the Communication Gap stopped.

I introduce the basic principles briefly in chapter 2. Even if you’ve never heard of
any of these ideas before, this should give you enough information to understand the
rest of the book, but I won’t go into the basics too much. I wrote about the basics of
Specification by Example at length in Bridging the Communication Gap and have no
wish to repeat myself.

If you want to go over the basics in more detail, visit http://specificationbyexample.
com, register a copy of this book, and you’ll get the PDF of Bridging the Communication
Gap free.

I don’t think that I’ll write a follow-up on this subject on the Ri level—because that
level is beyond books. On the other hand, I believe that this book will help you move
to that level. Once you start thinking that the choice of a particular tool is irrelevant,
you are there.

2 Shu-ha-ri is a learning model associated with Aikido. It roughly translates to “obey-detach-
leave.” At the first level (Shu - “obey”), a student learns by closely following one model. At
the second level (Ha - “detach”), the student learns that there are multiple models and solu-
tions. At the third level (Ri - “leave”), the student goes beyond following models.

xvi

http://specificationbyexample

 xvii

This book has no source code and doesn’t explain any tools

This book has no source code or instructions on how
to work with a particular tool. I feel compelled to men-
tion this upfront, because I had to explain it already
several times during the publishing process (typically as
an answer to the question, “What do you mean? A soft-
ware development book without source code? How’s
that possible?”).

The principles and practices of Specification by Example primarily
 affect how people communicate in software delivery teams and how they
collaborate with business users and stakeholders. I’m sure that many
tool vendors will try to sell you a technical solution for that. There are also many
managers who would be happy to pay for their problem to go away instantly. Unfortu-
nately for them, this is mostly a people problem, not a technical one.

Bill Gates said, “The first rule of any technology used in a business is that automa-
tion applied to an efficient operation will magnify the efficiency. The second is that au-
tomation applied to an inefficient operation will magnify the inefficiency.” Many teams
who failed with Specification by Example have magnified their process inefficiency by
automating it. Instead of focusing on a particular tool, I want to address the real reasons
why teams struggle to implement these ideas. Once you get the communication and
collaboration right, you’ll be able to choose the right tool to fit it. If you want to know
more about tools that support specification by example after reading this book, go to
http://specificationbyexample.com and check out the resources section.

A few words on the terminology

If this is your first contact with Specification by Example, Acceptance Test-Driven De-
velopment, agile acceptance testing, Behavior-Driven Development, or any of the other
names people use for this set of practices, you’ve avoided years of confusion caused by
misleading names. You should feel good about that, and you may skip this part of the
introduction. If you have already come into contact with any of those ideas, the names I
use in this book might surprise you. Read on to understand why I use those names and
why you should start using them as well.

While writing this book, I had the same problem practitioners often have when writ-
ing our automated specifications. The terminology has to be consistent to make sense,
but we don’t necessarily see that until we write things down. Because this book is the
result of a series of interviews, and many people I spoke to used different names for the
same thing, it was quite hard to make the story consistent with all the different names.

http://specificationbyexample.com

	

I realized that the practitioners of Specification by Example, myself included, have
traditionally been guilty of using technical terms to confuse both ourselves and everyone
else who tries to implement these practices. Then I decided that one of my goals with
this book would be to change the terminology in the community. If we want to get busi-
ness users more involved, which is one of the key goals of these practices, we have to use
the right names for the right things and stop confusing people.

This lesson is obvious when we write our specifications, and we know that we need
to keep the naming consistent and avoid misleading terms. But we don’t do this when
we talk about the process. For example, when we say continuous integration in the con-
text of Specification by Example, we don’t really mean running integration tests. So why
use that term and then have to explain how acceptance tests are different from integra-
tion tests? Until I started using specification workshop as the name for a collaborative
meeting about acceptance tests, it was difficult to convince business users to participate.
But a simple change in naming made the problem go away. By using better names, we
can avoid many completely meaningless discussions and get people started on the right
path straightaway.

Why Specification by Example?

I first want to explain why I chose Specification by Example as the overall name for the
whole set of practices, as opposed to agile acceptance testing, Behavior-Driven Develop-
ment, or Acceptance Test-Driven Development.

During the Domain Driven Design eXchange 2010 conference3 in London, Eric
Evans argued that agile as a term has lost all meaning because anything can be called
agile now. Unfortunately, he’s right. I’ve seen too many teams who tried to implement
a process that was obviously broken but slapped the name agile on it as if that would
magically make it better. This is in spite of a huge body of available literature on how to
properly implement XP, Scrum, and other less-popular agile processes.

To get around this meaningless ambiguity and arguing whether agile works or not
(and what it is), I avoid using the term agile in this book as much as I can. I use it only
when referring to teams that started implementing well-defined processes built on the
principles outlined in the Agile Manifesto. So without being able to mention agile in
every second sentence, agile acceptance testing as a name is out of the question.

The practices described here don’t form a fully fledged software development meth-
odology. They supplement other methodologies—both iteration and flow based—to
provide rigor in specifications and testing, enhance communication between various
stakeholders and members of software development teams, reduce unnecessary rework,
and facilitate change. So I don’t want to use any of the “Driven Development” names.
Especially not Behavior-Driven Development (BDD). Don’t take this as a sign that I

3 http://skillsmatter.com/event/design-architecture/ddd-exchange-2010
xviii

http://skillsmatter.com/event/design-architecture/ddd-exchange-2010

	
	

have anything against BDD. Quite the contrary, I love BDD and consider most of what
this book is about actually a central part of BDD. But BDD suffers from the naming
problem as well.

What BDD actually means changes all the time. Dan North, the central authority
on what BDD is and what it is not, said that BDD is a methodology at the Agile Specifi-
cations, BDD, and Testing Exchange 2009.4 (Actually he called it “a second-generation,
outside-in, pull-based, multiple-stakeholder, multiple-scale, high-automation, agile
methodology.”) To avoid any confusion and ambiguity between what North calls BDD
and what I consider BDD, I don’t want to use that name. This book is about a precise
set of practices, which you can use within a range of methodologies, BDD included (if
you accept that BDD is a methodology).

I also want to avoid using the word test too much. Many managers and business us-
ers unfortunately consider testing as a technical supplementary activity, not something
that they want to get involved in. After all, they have dedicated testers to handle that.
Specification by Example requires an active participation of stakeholders and delivery
team members, including developers, testers, and analysts. Without putting tests in the
title, story testing, agile acceptance testing, and similar names are out.

This leaves Specification by Example as the most meaningful name with the least
amount of negative baggage.

Process patterns

Specification by Example consists of several process patterns, elements of the wider soft-
ware development life cycle. The names I use for process patterns in this book are a
result of several discussions at the UK Agile Testing user group meetings, Agile Alliance
Functional Testing Tools mailing list, and workshops. Some of them have been in use
for a while; some of them will be new to most readers.

A popular approach in the community is to use the name of a practice or tool to
describe a part of the process. Feature Injection is a good example—it’s a popular name
for extracting the scope of a project from the business goals. But Feature Injection is
just one technique to do that, and there are alternative ways to achieve the same goal. In
order to talk about what different teams do in different contexts, we need a higher-level
concept that includes all those practices. A good name describes the expected outcome
and clearly points to the key differentiating element of this set of practices.

In the case of Feature Injection and similar practices, the outcome is a scope for a
project or a milestone. The key differentiator from the other ways of defining the scope
is that we focus on the business goals. So I propose that we talk about deriving scope
from goals.

4 http://skillsmatter.com/podcast/java-jee/how-to-sell-bdd-to-the-business
xix

http://skillsmatter.com/podcast/java-jee/how-to-sell-bdd-to-the-business

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	

One of the biggest issues teams have with Specification by Example is who should
write what and when. So we need a good name that clearly says that everyone should be
involved (and that this needs to happen before the team starts programming or testing),
because we want to use acceptance tests as a target for development. Test first is a good
technical name for it, but business users don’t get it, and it doesn’t imply collaboration.
I propose we talk about specifying collaboratively instead of test first or writing accep-
tancIt sounds quite normal to put every single numerical possibility into an automated
functional test. Why wouldn’t we do it if it’s automated? But such complex tests are
unusable as a communication tool, and in Specification by Example we need to use tests
for communication. So instead of writing functional tests, let’s talk about illustrating
using examples and expect the output of that to be key examples to point out that we want
only enough to explain the context properly.5

Key examples are raw material, but if we just talk about acceptance testing then
why not just dump complicated 50-column, 100-row tables with examples into an
acceptance test without any explanation? It’s going to be tested by a machine anyway.
With Specification by Example, the tests are for humans as well as for machines. We
need to make it clear that there’s a step after illustrating using examples, where we ex-
tract the minimal set of attributes and examples to specify a business rule, add a title and
description, and so on. I propose we call this step refining the specification.6

The result of this refinement is at the same time a specification, a target for develop-
ment, an objective way to check acceptance, and a functional regression test for later.
I don’t want to call this an acceptance test because it makes it difficult to justify why
this document needs to stay in domain language, be readable, and be easily accessible.
I propose we call the result of refining a specification with examples, which immediately
points to the fact that it needs to be based on examples but also contain more than just
raw data. Calling this artifact a specification makes it obvious that everyone should care
about it and that it needs to be easy to understand. Apart from that, there’s a completely
different argument as to whether these checks are there to automatically accept software
or to automatically reject the code that doesn’t satisfy what we need.7

I just don’t want to spend any more time arguing with people who’ve already paid
a license for QTP that it’s completely unusable for acceptance tests. As long as we talk
about test automation, there’s always going to be a push to use whatever horrible con-
traption testers already use for automation, because it’s logical to managers that their
teams use a single tool for test automation. Agile acceptance testing and BDD tools
don’t compete with QTP or tools like that; they address a completely different problem.

5 Thanks to David Evans who suggested this.

6 Thanks to Elisabeth Hendrickson who suggested this name.

7 http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too

xx

http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too

	

A specification shouldn’t be translated into something technical just for automation.
Instead of talking about test automation, let’s call automating a check without distorting
any information automating validation without changing specifications. The fact that we
need to automate validation without changing the original specification should help us
avoid the horror of scripting and using technical libraries directly in test specifications.
An executable specification should be unchanged from what it looked like on the white-
board; it shouldn’t be translated into Selenium commands.

After the validation of a specification is automated, we can use it to validate the
system. In effect, we get executable specifications.

We want to check all the specifications frequently to make sure that the system still
does what it’s supposed to do and, equally important, to check that the specifications
still describe what the system does. If we call this regression testing, it’s very hard to
explain to testers why they shouldn’t go and add five million other test cases to a previ-
ously nice, small, focused specification. If we talk about continuous integration, then
we get into the trouble of explaining why these tests shouldn’t always be run end to end
and check the whole system. For some legacy systems, we need to run acceptance tests
against a live, deployed environment. Technical integration tests run before deployment.
So let’s not talk about regression testing or continuous integration; let’s talk about vali-
dating frequently.

The long-term payoff from Specification by Example comes from having a reference
on what the system does that’s as relevant as the code itself but much easier to read. That
makes development much more efficient long term, facilitates collaboration with busi-
ness users, leads to an alignment of software design and business models, and just makes
everyone’s work much easier. But to do this, the reference really has to be relevant, it has
to be maintained, and it has to be consistent internally and with code. We shouldn’t have
silos of tests that use terms we used three years ago, and those we used a year ago, and
so on. Going back and updating tests is difficult to sell to busy teams, but going back to
update documentation after a big change is expected. So let’s not talk about folders filled
with hundreds of tests, let’s talk about evolving a living documentation system. That makes
it much easier to explain why things should be self-explanatory, why business users need
access to this as well, and why it has to be nicely organized so that things are easy to find.

So there it is: I chose the names not because of previous popularity but because they
make sense. The names for these process patterns should create a mental model that
actually points out the important things and reduces the confusion. I hope that you’ll
see this and adopt this new terminology as well.

xxi

Acknowledgments

T his book would not exist without the support and contributions of many
people. Primarily, I’d like to thank all those who let me tap into their brains
and shared their experiences: Adam Knight, André Brissette, Andrew Jack-

man, Aslak Hellesøy, Børge Lotre, Channing Walton, Christian Hassa, Cindy Bartz,
Clare McLennan, Damon Morgan, Francesco Rizzi, Gaspar Nagy, Geoff Bache, He-
mal Kuntawala, Ian Cooper, Ismo Aro, Jodie Parker, Johannes Link, Jon Neale, Jonas
Bandi, Justin Davis, Kumaran Sivapathasuntharam, Lance Walton, Lisa Crispin, Marco
Milone, Marta Gonzalez Ferrero, Martin Jackson, Matthew Steer, Mikael Vik, Mike
Vogel, Maykel Suarez, Pascal Mestdach, Peter Janssens, Phil Cowans, Pierre Veragen,
Rakesh Patel, Rob Park, Scott Berger, Stuart Ervine, Stuart Taylor, Stephen Lloyd, Su-
zanne Kidwell, Tim Andersen, Tony To, Wes Williams, and Xu Yi. You wrote this book;
I just wrote it down.

Elisabeth Hendrickson, David Evans, Matt Wynne, Pekka Klärck, and Ran
Nyman generously helped me get in touch with their colleagues, clients, and
associates for this research. Adam Geras, Joseph Wilk, Markus Gärtner, Mike
Stockdale, Rick Mugridge, Robert Martin, Dan North, Tom Vercauteren, and
Tom Roden helped me refine all the ideas and explain them better. The following
reviewed the manuscript during development and I thank them for their feedback:
Bas Vodde, Craig Smith, Alex Bepple, John Stevenson, Joseph Wilk, Michele
Mauro, Oleksandr Alesinskyy, Robert Martin, Robert Wenner, and Saicharan Manga.
And special thanks to Rick Mugridge for his final proofread of the manuscript
during production.

Jeff Bleiel, June Eding, Linda Recktenwald, Barbara Mirecki, Leslie Haimes, Martin
Murtonen, and Mary Piergies from Manning were instrumental in transforming this set
of stories into an actual book.

Thanks also go to Craig Larman, Jim Shore, and Harvey Wheaton for taking the
time to answer my emails.

xxii

	 	 	 												

About the author

Gojko Adzic got bitten by the Specification by Example bug five years ago.
Since then, he has helped numerous teams implement these practices, written
two books on the subject, and contributed to several open source projects for

Specification by Example. Gojko is a frequent speaker at leading software development
and testing conferences and runs the UK agile testing user group.

Over the last 12 years, he has worked as a developer, architect, technical director,
and consultant on projects delivering equity and energy trading, mobile positioning,
e-commerce, online gaming, and complex configuration management.

Gojko runs Neuri Ltd., a UK-based consultancy that helps ambitious teams, from
web startups to large financial institutions, implement Specification by Example and
agile testing practices.

To get in touch, write to gojko@neuri.com or visit http://gojko.net.

Author Online

You can also contact the author through the Author Online forum run by Manning
Publications at www.manning.com/SpecificationbyExample. Manning’s commitment
to our readers is to provide a venue where a meaningful dialogue between individual
readers and between readers and the author can take place. It isn’t a commitment to
any specific amount of participation on the part of the author, whose contributions to
the book’s forum remain voluntary (and unpaid). The Author Online forum and the
archives of previous discussions will remain accessible from the publisher’s website as
long as the book is in print.

xxiii

mailto:gojko@neuri.com
http://gojko.net
http://www.manning.com/SpecificationbyExample

About the cover illustration

T he figure on the cover of Specification by Example is captioned “A Trav-
eler” and is taken from a 19th-century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each il-

lustration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
reminds us vividly of how culturally apart the world’s towns and countries were just 200
years ago. Isolated from each other, even if by only several miles, people spoke different
dialects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now difficult to tell apart the inhabitants of different continents,
let alone different towns or regions. Perhaps we have traded cultural diversity for a more
varied personal life—certainly for a more varied and fast-paced technological life.

At a time when it is hard to tell one computer book from another, Manning
celebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

xxiv

PArT 1
�

Getting started
�

	 	 	 	

1
Key benefits

In the internet age, delivery speed is the theme of the day in software develop-
ment. A decade ago, projects lasted several years and project phases were mea-
sured in months. Today, most teams’ projects are measured in months and project

phases are reduced to weeks or even days. Anything that requires long-term planning
is dropped, including big up-front software designs and detailed requirements analysis.
Tasks that require more time than an average project phase are no longer viable. Good-
bye code freezes and weeks of manual regression testing!

With such a high frequency of change, documentation quickly gets outdated. De-
tailed specifications and test plans require too much effort to keep current and are
considered wasteful. People who relied on them for their day-to-day work, such as
business analysts or testers, often become confused about what to do in this new world
of weekly iterations. Software developers who thought they weren’t affected by the lack
of paper documents waste time on rework and maintaining functionality that’s not
required. Instead of spending time building big plans, they waste weeks polishing the
wrong product.

In the last decade, the software development community has strived to build soft-
ware the “right” way, focusing on technical practices and ideas to ensure high-quality
results. But building the product right and building the right product are two different
things. We need to do both in order to succeed.

3

	 	 	

		 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

4 Specification by Example

Figure 1.1 Specification by Example helps teams build the right software product,
complementing technical practices that ensure that the product is built right.

To build the right product effectively, software development practices have to provide
the following:

• Assurance that all stakeholders and delivery team members understand what
needs to be delivered in the same way.

• Precise specifications so delivery teams avoid wasteful rework caused by ambi-
guities and functional gaps.

• An objective means to measure when a piece of work is complete.

• Documentation to facilitate change, in terms of both software features and
team structure.

Traditionally, building the right product required big functional specifications, docu-
mentation, and long testing phases. Today, in the world of weekly software deliveries,
this doesn’t work. We need a solution that gives us a way to

• Avoid wasteful over-specifying; avoid spending time on details that will change
before a piece of work is developed.

• Have reliable documentation that explains what the system does so we can
change it easily.

• Efficiently check that a system does what the specifications say.

• Keep documentation relevant and reliable with minimal maintenance costs.

• Fit all this into short iterations and flow-based processes, so that the

information on upcoming work is produced just-in-time.
�

	 	 	 	 	 			 	 														

	 	 	 	 	 	 	
	 	 	 	

5 Chapter 1 Key benefits

Figure 1.2 Key factors for the right kind
of documentation for agile projects

Although these goals might seem in conflict at first, many teams have succeeded at
fulfilling all of them. While researching this book, I interviewed 30 teams that imple-
mented around 50 projects. I looked for patterns and common practices and identified
underlying principles behind these practices. The common ideas from these projects
define a good way to build the right software: Specification by Example.

Specification by Example is a set of process patterns that helps teams build the right
software product. With Specification by Example, teams write just enough documenta-
tion to facilitate change effectively in short iterations or in flow-based development.

The key process patterns of Specification by Example are introduced in the next
chapter. In this chapter, I’ll explain the benefits of Specification by Example. I’ll do so
using Specification by Example style; instead of building a case for this book in a theo-
retical introduction, I’ll present 18 real-world examples of teams that got big dividends
from Specification by Example.

Before I begin, let me emphasize that it’s hard to isolate the impact or effect of
any single idea on a project. The practices described in this book work with—and en-
hance—the effectiveness of other, more established agile software development prac-
tices (such as test-driven development [TDD], continuous integration, and planning
with user stories). When considering a range of projects in different contexts, patterns
emerge. Some of the teams I interviewed were using an agile process before implement-
ing Specification by Example, and some implemented Specification by Example while
transitioning to an agile process. Most of the teams used iteration-based processes, such
as Scrum and Extreme Programming (XP), or flow-based processes, such as Kanban—
but some even used these practices in an environment that wouldn’t be considered agile
by any standard. Yet most reported similar benefits:

	 	 	

6 Specification by Example

• Implementing changes more efficiently—They had living documentation—
a reliable source of information on system functionality—which enabled them
to analyze the impact of potential changes and share knowledge effectively.

• Higher product quality—They defined expectations clearly and made the
validation process efficient.

• Less rework—They collaborated better on specifications and ensured a shared
understanding of the expectations by all team members.

• Better alignment of the activities of different roles on a project—Improved
collaboration led to a more regular flow of delivery.

In the next four sections, we’ll take a closer look at each of these benefits using
real-world examples.

Implementing changes more efficiently
In the course of researching this book, the most important lesson I learned concerned
the long-term benefits of living documentation—in fact, I consider it one of this book’s
most important messages, and I cover it extensively. Living documentation is a source
of information about system functionality that’s as reliable as programming language
code but much easier to access and understand. Living documentation allows teams to
collaboratively analyze the impact of proposed changes and discuss potential solutions.
It also allows them to make use of existing documentation by extending it for new re-
quirements. This makes specifying and implementing changes more efficient over time.
The most successful teams discovered the long-term benefit of living documentation as
a result of implementing Specification by Example.

The Iowa Student Loan Liquidity Corporation, based in West Des Moines, Iowa,
went through a fairly significant business model change in 2009. The financial market
turmoil during the previous year made it nearly impossible for lenders to find funding
sources for private student loans. Because of this, many lenders were forced to leave the
private student loan market or change their business models. Iowa Student Loan was
able to adapt. Instead of using bond proceeds to fund private student loans, it pooled
funds from banks and other financial institutions.

In order to adapt effectively, they had to perform a “dramatic overhaul of a core
piece of the system,” according to software analyst and developer Tim Andersen. The
team used living documentation as a primary mechanism for documenting business re-
quirements when they were developing their software. The living documentation system
made it possible for them to ascertain the impact of new requirements, specify required
changes, and ensure that the rest of the system works as it had before. They were able

	 	 	 	 	 			 	 														

7 Chapter 1 Key benefits

to implement fundamental change to the system and release it to production in only
one month. A living documentation system was essential for this change. Andersen said,

Any system that didn’t have the tests [living documentation] would
halt the development and it would have been a re-write.

The Talia project team at Pyxis Technologies in Montreal, Quebec, had a similar experi-
ence. Talia is a virtual assistant for enterprise systems, a chat robot with complex rules
that communicates with employees. From the first day of development, the Talia team
used Specification by Example to build a living documentation system. A year later, they
had to rewrite the core of the virtual agent engine from scratch—and that’s when the
investment in living documentation paid off. André Brissette, the Talia product director,
commented,

Without that, any major refactoring would be a suicide.

Their living documentation system made the team confident that the new system would
work the same as the old one when the change was complete. It also enabled Brissette to
manage and track the project’s progress.

The team at Songkick, a London-based consumer website about live music, used
a living documentation system to facilitate change when redeveloping activity feeds on
their site. They had realized that the feeds were implemented in a way that wouldn’t scale
to the required capacity; living documentation supported them when they were rebuild-
ing the feeds. Phil Cowans, the CTO of Songkick, estimates that the team saved at least
50% of the time needed to implement change because they had a living documentation
system. According to Cowans,

Because we had such a good coverage and we really trusted
the tests [in the living documentation system], we felt very confident
making big changes to the infrastructure rapidly. We knew that the
functionality wouldn’t change, or if it did change, it would be picked up
by a test.

The development team at ePlan Services, a pension service provider based in Denver,
Colorado, has used Specification by Example since 2003. They build and maintain a
financial services application with numerous stakeholders, complex business rules, and
complex compliance requirements. Three years after starting the project, a manager with
unique knowledge about the legacy parts of the system moved to India. According to
Lisa Crispin, a tester working for ePlan Services and author of Agile Testing: A Practical

	 	 	

8 Specification by Example

Guide for Testers and Teams (Addison Wesley, 2009), the team worked hard to learn what
the manager knew and build it into living documentation. A living documentation
system enabled them to capture the specialist’s knowledge about their business pro-
cesses and make it instantly available to all the team members. They eliminated a
bottleneck in knowledge transfer, which enabled them to efficiently support and ex-
tend the application.

The Central Patient Administration project team at the IHC Group in Oostkamp,
Belgium, implemented a living documentation system with similar results. The ongoing
project, which started as a rewrite of a legacy mainframe system, began in 2000. Pascal
Mestdach, a solution architect on the project, said that the team benefited greatly:

There were just a few people who knew what some functionality on
the legacy system did—that became much clearer now because the team
has a growing suite of tests [living documentation] against that function-
ality and it describes what it does. Also questions can be answered when a
specialist is on holiday. It’s more clear to other developers what a piece of
software is doing. And it is tested.

These examples illustrate how a living documentation system helps delivery teams share
knowledge and deal with staff changes. It also enables businesses to react to market
changes more efficiently. I explain this in more detail in chapter 3.

Higher product quality
Specification by Example improves collaboration between delivery team members,
facilitates better engagement with business users, and provides clear objective targets for
delivery—leading to big improvement in product quality.

Two case studies stand out. Wes Williams, an agile coach from Sabre Holdings,
and Andrew Jackman, a consultant developer who worked on a project at BNP Paribas,
described how projects that had failed several times before succeeded with Specification
by Example. The approach described in this book helped their teams conquer the com-
plexity of business domains that were previously unmanageable and ensure high quality
of deliveries.

At Sabre Holdings, Wes Williams worked on a two-year airline flight-booking
project complicated by global distribution and data-driven processes. The project
involved 30 developers working in three teams on two continents. According to
Williams, the first two attempts to build the system failed, but the third—which used
Specification by Example—succeeded. Williams had this to say:

	 	 	 	 	 			 	 														9 Chapter 1 Key benefits

We went live with a large customer [a big airline] with very few issues
and had only one severity 1 issue during [business acceptance] testing,
related to fail-over.

Williams estimates that Specification by Example was one of the keys to success. In ad-
dition to ensuring higher quality, Specification by Example also facilitated trust between
developers and testers.

At BNP Paribas, the Sierra project is another great example of how Specification by
Example leads to high-quality products. Sierra is a data repository for bonds that con-
solidates information from several internal systems, rating agencies, and other external
sources and distributes it to various systems inside the bank. Various systems and orga-
nizations used the same terms with different meanings, which caused a lot of misunder-
standing. The first two attempts to implement the system failed, according to Channing
Walton, one of the developers on the team that helped make the third attempt a success.
The third effort succeeded partially because Specification by Example enabled the team
to tackle complexity and ensure a shared understanding. Product quality of the end
result was impressive. The project has been live since 2005 “with no major incidents in
production,” according to Andrew Jackman, a consultant developer on the Sierra proj-
ect. Most people currently working on the Sierra project were not there when the project
started, but the level of quality is still very high.

Similar results were obtained by Bekk Consulting for a branch of a major French
bank with a car-leasing system. According to Aslak Hellesøy, a member of the original
team and the author of Cucumber, a popular automation tool that supports Specifica-
tion by Example, they had only five bugs reported in the two years since the system went
live, even though the software is now maintained by a completely new team.

Lance Walton worked as a process consultant for a branch of a large Swiss bank in
London on a project to develop an order-management system that had failed to start
several times before. Walton stated that the project was implemented in an environ-
ment where it was assumed that systems required a support team at least as big as the
development team. His team used Specification by Example and delivered a system to
production nine months after the project started, passed the business acceptance testing
in one day, and reported no bugs for six months after that. According to Walton, the
new system required no additional support staff, cost less than predicted, and enabled
the team to deliver a finished product earlier. In comparison, the team next to them had
ten times more people working on support than development. According to Walton,

At the moment the team is still releasing every week and the users are
always happy with it. From the point of quality, it is superb.

	 	 	

10 Specification by Example

The techniques of Specification by Example work for brownfield as well as greenfield
projects. It takes time to build up trusted documentation and clean up legacy systems,
but teams see many benefits quickly, including confidence in new deliverables.

A good example is the foreign exchange cash-management system at JP Morgan
Chase in London. Martin Jackson, a test automation consultant on the project, said that
the business analysts expected the project to be late—instead, it was delivered two weeks
early. High product quality enabled them to successfully complete the business-accep-
tance testing phase in a week instead of four weeks, as originally planned. Jackson said,

We deployed it and it worked. The business reported back to the
board as the best UAT experience they ever had.

Specification by Example also enabled Jackson’s team to quickly implement “quite a
significant technical change” late in the project development, improving the precision
of calculations. Jackson reported:

All the functionality covered by the FitNesse suite [living documenta-
tion] went through the whole of system test, whole of UAT, and live to
production without a single defect. There were several errors outside of
the core calculation components that were captured during system test-
ing. What made the UAT experience so good for the business was that
when calculation errors appeared, we were all pretty certain that the root
cause was going to be upstream from the calculation code itself. As a result
of the FitNesse suite, it was easier to diagnose the source of defects and
hence the cleaner and faster delivery through to production.

The software development team at Weyerhaeuser in Denver, Colorado, writes and
maintains several engineering applications and a calculation engine for wooden frames.
Before applying Specification by Example, construction engineers were not usually
involved in software development, even though the team was dealing with complex sci-
entific calculation formulas and rules. This caused numerous quality issues and delays,
and the process was further complicated by the fact that the engine is used by several
applications. According to Pierre Veragen, the SQA lead on the project, the hardening
phase prior to release would drag on and a release would rarely go out without problems.

After implementing Specification by Example, the team now collaborates on specifi-
cations with structural engineers and automates the resulting validations. When a change
request comes in, the testers work with structural engineers to capture the expected cal-
culation results and record them as specifications with examples before development
begins. The engineer who approves a change later writes the specifications and tests.

	 	 	 	 	 			 	 														

11 Chapter 1 Key benefits

Veragen states that the main benefit of the new approach is that they can make
changes with confidence. In early 2010, with more than 30,000 checks in their living
documentation system, they haven’t noticed big bugs in years and have now stopped
tracking bugs. According to Veragen:

We don’t need the [bug count] metrics because we know it’s not com-
ing back...engineers love the test-first approach and the fact that they have
direct access to automated tests.

Lance Walton worked on a credit risk-management application for a branch of a large
French bank in London. The project began with external consultants helping the team
adopt Extreme Programming (XP) practices, but they did not adopt any of the Specifi-
cation by Example ideas (although XP includes customer tests, which is closely related
to executable specifications). After six months, Walton joined the project and found
the quality of the code to be low. Although the team was delivering every two weeks,
the code was written in a way that made validation complicated. Developers tested
only the most recently implemented features; as the system grew, this approach
became inadequate. “When a release happened, people would sit around nervously,
making sure that everything was still running and we’d expect a few issues to come up
within hours,” said Walton. After they implemented Specification by Example, the qual-
ity and confidence in the product significantly improved. He added:

We were pretty confident that we could release without any issues.
We got to the point where we would quite happily deploy and go out for
lunch without sticking around to see if it was OK.

In contrast, a website-rewrite project at the Trader Media Group in the United Kingdom
suffered from quality problems when the team stopped using Specification by Example.
Initially, the team was collaborating on specifications and automating the validation.
They stopped under management pressure to deliver more functionality earlier and
faster. “We noticed that the quality took a nose dive,” said Stuart Taylor, the test team
leader. “Where before it was quite hard for us [testers] to find defects, later we found that
one story could produce four, five defects.”

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		 	 	
	 	

12 Specification by Example

Not only for agile teams

Collaborating on specifications isn’t something that only agile teams can ben-
efit from. In Bridging the Communication Gap,† I suggested that a similar set of
practices could be applied to more traditional structured processes. After the
book was published, I came across an example of a company that did just that
while researching this book.

Matthew Steer, a senior test consultant at the Sopra Group in the UK, helped
a major telecommunication company with a third-party offshore software
delivery partner implement these practices. The main reason for change was the
realization that projects were suffering from poorly defined requirements. Steer
compared delivery in the year when ideas were implemented to the costs of
delivering software the previous year. Not surprisingly, with a Waterfall
approach these projects did not get to a zero-defect level, but the changes
“increased upstream defect detection and reduced downstream rework and
costs.” According to Steer:

We were able to demonstrate the effectiveness of this approach
by catching many more defects earlier in the life cycle that were tradition -
ally found at later phases. The volumes of defects at the end of the life
cycle significantly reduced and the pile increased at the early phases of
the life cycle .

The end result was a delivery cost savings of over 1.7 million GBP in 2007 alone.

† Gojko Adzic, Bridging the Communication Gap: Specification by Example and
Agile Acceptance Testing (Neuri Limited, 2009).

Less rework
Generally, frequent releases promote quick feedback, enabling development teams to
find mistakes and fix them sooner. But iterating quickly doesn’t prevent mistakes. Often,
teams take three or four stabs at implementing a feature; developers claim this is because
customers don’t know what they want until they get something to play with. I disagree.
With Specification by Example, teams generally hit the target in the first attempt. This
saves a lot of time and makes the delivery process more predictable and reliable.

The Sky Network Services (SNS) group at British Sky Broadcasting Corporation
in London is responsible for broadband and telephony provisioning software with high
business workflow and integration complexity. The group consists of six teams. They
have been using Specification by Example for several years. According to Rakesh Patel,
a senior agile Java developer there, “We do tend to deliver when we say we do,” and

	 	 	 	 	 			 	 														

13 Chapter 1 Key benefits

the group has a great reputation within Sky. At one time, Patel briefly worked with a
different organization; he compared the two teams as follows:

Every time they [developers in the other organization] give software
to testers towards the end of the sprint, testers find something wrong and
it always comes back to the developers. But here [at Sky] we don’t have
that much churn. If we have an issue, we have an issue to make a test go
green during development—it either does or it doesn’t. We can raise it
there and then.

Several other teams noticed a significant reduction of rework, including LeanDog, a
group developing an aggregation application for a large insurance provider in the United
States. Their application presents a unified user interface on top of a host of mainframe
and web-based services and is further complicated by a large number of stakeholders
from across the country. Initially, the project suffered from many functional gaps in
requirements, according to Rob Park, an agile coach at LeanDog who helped the team
with the transition. He said,

As we started figuring stuff out, we needed clarification, and then we
found out that we have to actually do something else.

The team implemented Specification by Example, which resulted in much better specifi-
cations and reduced rework. Although developers continue to have questions for business
analysts when they start working on a story card, “The questions have dropped consid-
erably, as has the amount of back and forth we have to have and the questions are a lot
different,” said Park. For him, the most rewarding aspects of Specification by Example is
“getting the sense of the story and knowing the extent of the story as you start to build it.”

Many teams have also discovered that using Specification by Example to make re-
quirements more precise at the start of a development cycle makes it easier to manage
product backlogs. For example, being able to spot stories that are too vague or have too
many gaps in required functionality early on prevents problems later. Without Specifi-
cation by Example, teams often discover problems in the middle of an iteration, which
interrupts the flow and requires time-consuming renegotiations—in larger companies,
stakeholders who decide on the scope are often not readily available.

Specification by Example helps teams establish a collaborative specification pro-
cess that lowers problems in the middle of an iteration. Additionally, Specification by
Example fits into short iterations and doesn’t require months of writing long documents.

Less rework is a major advantage for the Global Talent Management team at
Ultimate Software in Weston, Florida. Collaborating on specifications had a significant
impact on focusing the development effort. According to Scott Berger, a senior develop-
ment engineer in test at Ultimate Software:

	 	 	14 Specification by Example

Meeting with our product owners to review our test scenarios prior
to the team accepting a story readily allows the working group (product
owner, developer, tester) to clarify ambiguous or missing requirements.
On occasion, the outcome of the meeting has even resulted in the cancel-
lation of stories, for example, when test scenarios reveal hidden complexity
or conflicting requirements within the system. After one such discussion,
the decision was made to nearly redesign an entire feature! Product own-
ers are afforded the opportunity to rewrite and reslice the specifications,
as opposed to having the development effort begin and halt or cancel the
story midstream. By holding these meetings, we find ourselves being both
more productive and efficient, because waste is reduced and vague and
missing specifications are minimized. It also allows the team to come to a
common understanding of what is expected.

Most teams have significantly reduced or completely eliminated rework that occurred as
a result of misunderstood requirements or neglected customer expectations. The prac-
tices described in this book allowed teams to engage better with their business users and
ensure a shared understanding of results.

Better work alignment
Another important benefit of Specification by Example is the capacity to align differ-
ent software development activities into short iterative cycles. From my experience and
according to the case studies in this book, one of the most common stumbling points
for teams moving to Scrum is the inability to fully complete tasks inside an iteration.
Many teams hold onto the “old world” concepts: finish development first, then finish
testing, and, finally, polish the product enough for it to be deployable. This fosters the
illusion that development is completed in stages, when in fact subsequent testing and
fixing are required for completion. One “done” column on the Scrum board means a
developer thinks something is finished, a “done-done” column means the tester agrees,
and so on (there are even reports of “done-done-done” columns). Work often falls into
this pattern, and the results from testing affect the next cycle, causing much variability
and making the delivery process less predictable.

Specification by Example resolves this issue. The practices described in this book
enable teams to clearly define a target that’s universally understood and objectively mea-
sured. As a result, many teams find that their analysis, development, and testing activi-
ties became better aligned.

	 	 	 	 	 			 	 														

15 Chapter 1 Key benefits

A good example of improved alignment occurred at uSwitch, one of the busiest
websites in the United Kingdom. uSwitch implemented Specification by Example in
2008 because they had difficulty knowing when a feature was completed. “We’d finish
something, give it over to the QA department, and they would immediately say to us
that we forgot to test it in a certain scenario. This caused a lot of problems for us,” said
Stephen Lloyd, a developer who works on the website. By implementing Specification
by Example, they overcame that problem. Lloyd said that they’re now better integrated
as a team and have a better understanding of the needs of the business. The process
changes also resulted in improved software quality. Hemal Kuntawala, another devel-
oper working on the site, had this comment:

Our error rates have dropped significantly, across the site. The
turnaround of fixing problems is much quicker than it was previously.
If a problem does occur on the live site, we can normally get a fix out
within a few hours, where previously it took days or weeks to get some-
thing fixed.

The team at Beazley, a specialist insurance company, also experienced improved align-
ment. Their business analysts work from the United States with developers and testers in
the United Kingdom. They implemented Specification by Example primarily to ensure
that software is finished when an iteration ends. Ian Cooper, a development team leader
at Beazley, said:

We’ve always done unit testing but the problem was that there was a
gap around these tests telling us if the software works, not if it does what
the customer wanted. We didn’t even use to have testers testing in the
same cycle. They were feeding back the information from the previous
iteration into the current iteration. That’s gone now. We have a much
clearer idea of acceptance.

The team working from New Zealand on AdScale.de, a marketplace for online advertis-
ing, had similar experiences. Two years after the project started, increasing complexity of
the user interface and system integrations made the code base too large to be effectively
managed just with unit testing. Developers would think that something was done, move
on, and then have to redo the work after the testers’ review. Because of the disconnect
between testers and developers, it took a long time to find problems. Issues from pre-
vious iterations were affecting future ones, disrupting the flow of development. After
implementing Specification by Example, development and testing were more closely
aligned. Clare McLennan, a developer/tester working on the project, declared:

http:AdScale.de

	 	 	

16 Specification by Example

It took a lot of pressure from the release process—because the feed-
back is instantaneous. Previously, developers would be frustrated at us
because their features hadn’t gone out. At the same time we were frus-
trated at them because they haven’t fixed the thing so we couldn’t test their
features. We were waiting for them and they were waiting for us. That’s
gone now because it only takes an hour to do all the testing. The features
aren’t coming back into the next iteration.

Specification by Example allows teams to define expected functionality in a clear, objec-
tive, and measurable way. It also speeds up feedback, improving the development flow
and preventing interruptions to planned work.

Remember

• Building the product right and building the right product are two different
things. You need to do both in order to succeed.

• Specification by Example provides just enough documentation at the right
time, helping to build the right product with short iterations or flow-based
development processes.

• Specification by Example helps to improve the quality of software products,
significantly reduces rework, and enables teams to better align analysis,
development, and testing activities.

• In the long term, Specification by Example helps teams create a living
documentation system, a relevant and reliable description of the functionality
that’s automatically updated with the programming language code.

• The practices of Specification by Example work best with short iterative
(Scrum, Extreme Programming [XP]) or flow-based (Kanban) development
methods. Some ideas are also applicable to structured development (Rational
Unified Process, Waterfall) processes, and there have been cases where
companies saved millions as a result.

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

2
Key process patterns

Specification by Example is a set of process patterns that facilitate change in soft-
ware products to ensure the right product is delivered effectively. The key pat-
terns that are commonly shared by the most successful teams that I interviewed

in researching this book, along with their relationships, are shown in figure 2.1. Most
of the teams implemented new process ideas by trial and error during their search for
ways to build and maintain software more efficiently. By revealing the patterns in their
processes, I hope to help others implement these ideas deliberately.

Why patterns?

The process ideas presented in this book make up patterns in the sense that
they are recurring elements used by different teams; I am not referring to Chris-
topher Alexander’s pattern definitions. Process ideas that I have cited occur in
several different contexts and produce similar results. I haven’t documented the
forces and changes expected in more traditional pattern books. Due in part to
the case studies in this book, the Agile Alliance Functional Testing Tools group
organized several pattern-writing workshops to document and build a catalog
of patterns in a more traditional sense, but this work will take some time to
complete. I’ve decided to leave expanding the patterns into a more traditional
format for future editions of this book.

In Bridging the Communication Gap, I focused mostly on the tangible outputs of Speci-
fication by Example, such as specifications and acceptance tests. I neglected to consider
that teams in various contexts might need radically different approaches to produce the
same artifacts. In this book, I focus on process patterns, how artifacts are created, and
how they contribute to later artifacts in the flow.

17

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

		 	 	 	 	 	 	 	

18 Specification by Example

Just-in-time

Successful teams don’t implement the entire sequence at one time or for all
the specifications, as shown in figure 2.1—especially not before development
starts. Instead, teams derive the scope from goals once a team is ready for more
work, for example, at the beginning of a project phase or a milestone. They pro -
ceed with specifications only when the team is ready to start implementing an
item, such as at the start of the relevant iteration. Don’t mistake the sequence
in figure 2.1 for big Waterfall specifications.

Figure 2.1 The key process patterns of Specification by Example

			 	 	 														

		 	 	 	 	 	

19 Chapter 2 Key process patterns

In this chapter, I present a brief overview of the key process patterns. Then we’ll go over
the key challenges and ideas for implementing each of these patterns in different contexts
in part 2.

Deriving scope from goals
Implementation scope offers a solution to a business problem or a means to reach a
business goal. Many teams expect a customer, a product owner, or a business user to
decide on the scope of work before the implementation starts (everything that occurs
before the implementation is often ignored by the software development team). After
business users specify exactly what they want, software delivery teams implement it. This is
supposedly what will make the customers happy. In fact, this is when issues with
building the right product begin.

By relying on customers to give them a list of user stories, use cases, or other relevant
information, software delivery teams are asking their customers to design a solution. But
business users aren’t software designers. If the customers define the scope, the project
doesn’t benefit from the knowledge of the people in the delivery team. This results in
software that does what the customer asked but not what they really wanted.

Instead of blindly accepting software requirements as a solution to an unknown
problem, successful teams derive scope from goals. They begin with a customer’s business
goal. Then they collaborate to define the scope that will achieve that goal. The team
works with the business users to determine the solution. The business users focus on
communicating the intent of the desired feature and the value they expect to get out
of it. This helps everyone understand what’s needed. The team can then suggest a solu-
tion that’s cheaper, faster, and easier to deliver or maintain than what the business users
would come up with on their own.1

Specifying collaboratively
If developers and testers aren’t engaged in designing specifications, those specifications
have to be separately communicated to the team. In practice, this leaves many opportu-
nities for misunderstanding; details can get lost in translation. As a consequence, busi-
ness users have to validate the software after delivery, and teams have to go back and
make changes if it fails validation. This is all unnecessary rework.

Instead of relying on a single person to get the specifications right in isolation, suc-
cessful delivery teams collaborate with the business users to specify the solution. People
coming from different backgrounds have different ideas and use their own experienced-
based techniques to solve problems. Technical experts know how to make better use

1 For some good examples, see http://gojko.net/2009/12/10/challenging-requirements

http://gojko.net/2009/12/10/challenging-requirements

	 	 	

20 Specification by Example

of the underlying infrastructure or how emerging technologies can be applied. Testers
know where to look for potential issues, and the team should work to prevent those
issues. All this information needs to be captured when designing specifications.

Specifying collaboratively enables us to harness the knowledge and experience of the
whole team. It also creates a collective ownership of specifications, making everyone
more engaged in the delivery process.

Illustrating using examples
Natural language is ambiguous and context dependent. Requirements written in such
language alone can’t provide a full and unambiguous context for development or test-
ing. Developers and testers have to interpret requirements to produce software and test
scripts, and different people might interpret tricky concepts differently.

This is especially problematic when something that seems obvious actually requires
domain expertise or knowledge of jargon to be fully understood. Small differences in
understanding have a cumulative effect, often leading to problems that require rework
after delivery. This causes unnecessary delays.

Instead of waiting for specifications to be expressed precisely for the first time in a
programming language during implementation, successful teams illustrate specifications
using examples. The team works with the business users to identify key examples that
describe the expected functionality. During this process, developers and testers often
suggest additional examples that illustrate edge cases or address areas of the system that
are particularly problematic. This flushes out functional gaps and inconsistencies and
ensures that everyone involved has a shared understanding of what needs to be delivered,
avoiding rework that results from misinterpretation and translation.

If the system works correctly for all the key examples, then it meets the specification
that everyone agreed on. Key examples effectively define what the software needs to do.
They’re both the target for development and an objective evaluation criterion to check
to see whether the development is done.

If the key examples are easy to understand and communicate, they can be effectively
used as unambiguous and detailed requirements.

Refining the specification
An open discussion during collaboration builds a shared understanding of the domain,
but resulting examples often feature more detail than is necessary. For example, busi-
ness users think about the user-interface perspective, so they offer examples of how
something should work when clicking links and filling in fields. Such verbose descrip-
tions constrain the system; detailing how something should be done rather than what
is required is wasteful. Surplus details make the examples harder to communicate and
understand.

			 	 	 														

21 Chapter 2 Key process patterns

Key examples must be concise to be useful. By refining the specification, successful
teams remove extraneous information and create a concrete and precise context for de-
velopment and testing. They define the target with the right amount of detail to imple-
ment and verify it. They identify what the software is supposed to do, not how it does it.

Refined examples can be used as acceptance criteria for delivery; development isn’t
done until the system works correctly for all examples. After providing additional in-
formation to make key examples easier to understand, teams create specifications with
examples, which is a specification of work, an acceptance test, and a future functional
regression test.

Automating validation without changing specifications
Once a team agrees on specifications with examples and refines them, the team can use
them as a target for implementation and a means to validate the product. The system
will be validated many times with these tests during development to ensure that it meets
the target. Running these checks manually would introduce unnecessary delays, and the
feedback would be slow.

Quick feedback is an essential part of developing software in short iterations or in
flow mode, so we need to make the process of validating the system cheap and efficient.
An obvious solution is automation. But this automation is conceptually different from
the usual developer or tester automation.

If we automate the validation of the key examples using traditional programming
(unit) automation tools or traditional functional-test automation tools, we risk intro-
ducing problems if details get lost between the business specification and technical auto-
mation. Technically automated specifications will become inaccessible to business users.
When the requirements change (and that’s when, not if) or when developers or testers
need further clarification, we won’t be able to use the specification we previously auto-
mated. We could keep the key examples both as tests and in a more readable form, such
as Word documents or web pages, but as soon as there’s more than one version of the
truth, we’ll have synchronization issues. That’s why paper documentation is never ideal.

To get the most out of key examples, successful teams automate validation with-
out changing the information. They literally keep everything in the specification the
same during automation—there’s no risk of mistranslation. As they automate validation
without changing specifications, the key examples look nearly the same as they did on a
whiteboard: comprehensible and accessible to all team members.

An automated Specification with Examples that is comprehensible and accessible
to all team members becomes an executable specification. We can use it as a target for
development and easily check if the system does what was agreed on, and we can use
that same document to get clarification from business users. If we need to change the
specification, we have to do so in only one place.

	 	 	

		 	 	 	 	 	

	 	 	 	 	

22 Specification by Example

If you’ve never seen a tool for automating executable specifications, this might seem
unbelievable, but look at figure 2.2 and figure 2.3. They show executable specifications
fully automated with two popular tools, Concordion and FitNesse.

Figure 2.2 An executable specification automated with Concordion

Figure 2.3 An executable specification automated with FitNesse

Many other automation frameworks don’t require any translation of key examples. This
book focuses on the practices used by successful teams to implement Specification by
Example rather than tools. To learn more about the tools, visit http://specificationby
example.com, where you will be able to download articles explaining the most popular
tools. See also the “Tools” section in the appendix for a list of suggested resources.

http://specificationby
http:example.com

			 	 	 														

		 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

23 Chapter 2 Key process patterns

Tests are specifications; specifications are tests

When a specification is described with very concrete examples, it can be used to
test the system. After such specification is automated, it becomes an executable
acceptance test. Because I write about only these types of specifications and
tests in this book, I’ll use the words specifications and tests interchangeably; for
the purposes of this book, there’s no difference between them.

This doesn’t mean there aren’t other kinds of tests—for example, exploratory
tests or usability tests are not specifications. The context-driven testing com-
munity tries to distinguish between these classes of tests by using the name
checks for deterministic validations that can be automated and tests for non-
deterministic validations that require human opinion and expert insight. † In the
context-driven language, this book addresses only designing and automating
checks. With Specification by Example, testers use expert opinion and insight to
design good checks in collaboration with other members of the team. Testers
don’t execute these checks manually, which means they have more time for
other kinds of tests.

† See www.developsense.com/blog/2009/08/testing-vs-checking

Validating frequently
In order to efficiently support a software system, we have to know what it does and
why. In many cases, the only way to do this is to drill down into programming code or
find someone who can do that for us. Code is often the only thing we can really trust;
most written documentation is outdated before the project is delivered. Programmers
are oracles of knowledge and bottlenecks of information.

Executable specifications can easily be validated against the system. If this validation
is frequent, then we can have as much confidence in the executable specifications as we
have in the code.

By checking all executable specifications frequently, teams I talked to quickly
discover any differences between the system and the specifications. Because executable
specifications are easy to understand, the teams can discuss the changes with their busi-
ness users and decide how to address the problems. They constantly synchronize their
systems and executable specifications.

http://www.developsense.com/blog/2009/08/testing-vs-checking

	 	 	

24 Specification by Example

Evolving a documentation system
The most successful teams aren’t satisfied with a set of frequently validated executable
specifications. They ensure that specifications are well organized, easy to find and ac-
cess, and consistent. As their projects evolve, the teams’ understanding of the domain
changes. Market opportunities also cause changes to the business domain models. The
teams that get the most out of Specification by Example update their specifications to
reflect those changes, evolving a living documentation system.

Living documentation is a reliable and authoritative source of information on sys-
tem functionality that anyone can access. It’s as reliable as the code but much easier to
read and understand. Support staff can use it to find out what the system does and why.
Developers can use it as a target for development. Testers can use it for testing. Business
analysts can use it as a starting point when analyzing the impact of a requested change
of functionality. It also provides free regression testing.

A practical example
In the rest of this book, I’ll focus on process patterns rather than artifacts of the process.
To put things into perspective and ensure that you understand these terms, I’ve included
an example of artifacts produced during the entire process, from business goals to the
living documentation system. The discussion of the example indicates the chapters in
which I’ll discuss each part of the process.

Business goal

A business goal is the underlying reason for a project or project milestone. It’s the guid-
ing vision that got the business stakeholders, internal or external, to decide to invest
money in software development. Commercial organizations should be able to clearly see
how such goals can either earn, save, or protect money. A good start for a business goal
could be “Increase repeat sales to existing customers.” Ideally, a goal should be measur-
able, so it can guide the implementation. The right software scopes for “Increase repeat
sales to existing customers by 10% over the next 12 months” and “Increase repeat sales
to existing customers by 500% over the next 3 months” are most likely very different.
A measurable goal makes it possible to ascertain whether the project succeeded, to track
progress, and to prioritize better.

An example of a good business goal

Increase repeat sales to existing customers by 50% over the next 12 months.

			 	 	 														

25 Chapter 2 Key process patterns

Scope

By applying the practices that I’ll describe in chapter 5, we derive the implementation
scope from the business goals. The implementation team and the business sponsors
come up with ideas that can be broken down into deliverable software chunks.

Let’s say we identify a theme for a customer loyalty program that can be broken
down into basic loyalty system features and more advanced bonus schemes. We decide to
focus on building a basic loyalty system first: customers will register for a VIP program,
and VIP customers will be eligible for free delivery on certain items. We’ll postpone any
discussion on advanced bonus schemes for later. Here’s the scope for this example:

User stories for a basic loyalty system

• In order to be able to do direct marketing of products to existing customers, as
a marketing manager I want customers to register personal details by joining a
VIP program.

• In order to entice existing customers to register for the VIP program, as a mar-
keting manager I want the system to offer free delivery on certain items to VIP
customers.

• In order to save money, as an existing customer I want to receive information
on available special offers.

Key examples

By applying the practices described in chapters 6 and 7, we produce detailed specifica-
tions for the appropriate scope once our team starts implementing a particular function.
For example, when we start working on the second item of the scope—free delivery—
free delivery must be defined. During collaboration, we decide that the system will offer
free delivery on books only, to avoid logistical problems related to shipping electron-
ics and large items. Because the business goal is to promote repeat sales, we try to get
customers to buy several items; “free delivery” becomes “free delivery for five or more
books.” We identify key examples, such as a VIP customer buying five books, a VIP
customer buying fewer than five books, or a non-VIP customer buying books.

This leads to a discussion about what to do with customers who purchase both
books and electronics. Some suggestions relate to expanding the scope: for example,
splitting the order in two and offering free delivery for the books only. We decide to
postpone this option and implement the simplest thing first. We won’t offer free delivery
if there is anything other than books in the order. We add another key example to the
current set, to be revisited later:

	 	 	

	 	

	

	

	 	

	 	 	 	

26 Specification by Example

Key Examples: Free delivery

• VIP customer with five books in the cart gets free delivery.

• VIP customer with four books in the cart doesn’t get free delivery.

• Regular customer with five books in the cart doesn’t get free delivery.

• VIP customer with a five washing machines in the cart doesn’t get free delivery.

• VIP customer with five books and a washing machine in the cart doesn’t get
free delivery.

Specification with examples

By applying the practices from chapter 8, we refine the specification from the key ex-
amples and create a document that’s self-explanatory and formatted in a way that will
make it easy to automate the validation later (as shown below):

Free delivery

• Free delivery is offered to VIP customers once they purchase a certain number
of books. Free delivery is not offered to regular customers or VIP customers
buying anything other than books.

• Given that the minimum number of books to get free delivery is five, then we
expect the following:

Examples

Customer type Cart contents Delivery

VIP 5 books Free, Standard

VIP 4 books Standard

Regular 10 books Standard

VIP 5 washing machines Standard

VIP 5 books, 1 washing machine Standard

This specification—a self-explanatory document—can be used as a target for imple-
mentation and as a driver for an automated test so we can objectively measure when the
implementation is done. It’s stored in a repository of specifications, to become part of
the living documentation. An example would be a FitNesse wiki system or a directory
structure of Cucumber feature files.

			 	 	 														

27 Chapter 2 Key process patterns

Executable specification

When our developers start working on the feature described in the specification, the test
based on this specification will initially fail because it’s not yet automated and the feature
isn’t yet implemented.

The developers will implement the relevant feature and connect it to the auto-
mation framework. They’ll use an automation framework which pulls the inputs from
the specification and validates the expected outputs without requiring them to actu-
ally change the specification document. The ideas and practices in chapter 9 will help
automate the specification efficiently. Once the validation is automated, the specifica-
tion becomes executable.

Living documentation

All the specifications for all implemented features will be validated frequently, most
likely by an automated build process. This helps to prevent functional regression issues
while ensuring that specifications stay current. The team will use the practices from
chapter 10 so that frequent validation goes smoothly.

When the entire user story is implemented, someone will first validate that it’s done
and then restructure the specifications so that they fit in with the specifications for
features that were already implemented. They’ll use the practices from chapter 11 to
evolve a documentation system from the specifications in increments. For example, they
might move the specification for free delivery into the hierarchy of features related to
delivery, potentially merging them with other free-delivery examples triggered by differ-
ent factors. In order to make the documentation easier to access, they might set up links
between the specification for free delivery and the specifications for other delivery types.

Then the cycle starts again. Once we need to revisit the rules for free delivery—for
example, when working on the advanced bonus schemes or in order to extend the func-
tionality to split orders with books from orders with other items—we’ll be able to use
the living documentation to understand the existing functionality and specify changes.
We can use the existing examples to make specifying collaboratively and illustrating us-
ing examples more effective. We’ll then produce another set of key examples, which will
lead to an increment of the specification for free delivery that will ultimately be merged
with the rest of the specifications. And the cycle will repeat.

Now that we have had a quick overview of key process patterns, we’ll take a closer
look at living documentation in chapter 3. In chapter 4, I present ideas on how to start
adopting Specification by Example, followed by ideas on implementing individual pro-
cess patterns in part 2.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	

	 	 	 	 	 	 	 	 	 	
		

28 Specification by Example

Remember

•	The key process patterns of Specification by Example are deriving scope from
goals, specifying collaboratively, illustrating specifications using examples,
refining the specifications, automating validation without changing the specifi-
cations, validating the system frequently, and evolving living documentation.

•	With Specification by Example, functional requirements, specifications, and
acceptance tests are the same thing.

•	 The result is a living documentation system that explains what the system
does and that is as relevant and reliable as the programming language code
but much easier to understand.

•	Teams in different contexts use different practices to implement process
patterns.

Chapter title 29 	 	 	 	 	 	 														

	 	 	 	

		 	 	 	 	
	 	 	 	 	

3
Living documentation

T here are two popular models today for looking at the process and artifacts
of Specification by Example: the acceptance-testing-centric model and the
system-behavior-specification model.

The acceptance-testing-centric model (often called acceptance test-driven develop-
ment, ATDD, or A-TDD) focuses on the automated tests that are part of the Specifica-
tion by Example process. In this model, the key benefits are clearer targets for develop-
ment and preventing functional regression.

The system-behavior-specification-centric model (often called behavior-driven de-
velopment or BDD) focuses on the process of specifying scenarios of system behavior.
It centers on building shared understanding between stakeholders and delivery teams
through collaboration and clarification of specifications. Preventing functional regres-
sion through test automation is also considered important.

I don’t consider one of these models superior to the other; different models are
useful for different purposes. The acceptance-testing-centric model is more useful for
initial adoption if a team has many functional quality issues. When things are running
smoothly, the behavior-specification-centric model is useful for explaining the activities
of short-term and mid-term software delivery.

Preventing functional regression through test automation is the key long-term
benefit of Specification by Example in both models. Although regression testing is
certainly important, I don’t think that’s where the long-term benefits come from. First,
Specification by Example isn’t the only way to prevent functional regression. The team at
uSwitch, for example, disables many tests after implementing the related functional-
ity for the first time (more on this in chapter 12); they still maintain a high level of
quality. Second, Capers Jones, in Estimating Software Costs, points out that the average
defect-removal efficiency of regression testing is only 23%.1 That can’t justify the long-
term investment made by successful teams to implement Specification by Example.

1 See Capers Jones, Estimating Software Costs: Bringing Realism to Estimating (McGraw-Hill
Companies, 2007), 509. Also see http://gojko.net/2011/03/03/simulating-your-way-out-of-
regression-testing

29

http://gojko.net/2011/03/03/simulating-your-way-out-of-regression-testing
http://gojko.net/2011/03/03/simulating-your-way-out-of-regression-testing
http://gojko.net/2011/03/03/simulating-your-way-out-of-regression-testing

	 	 	

30 Specification by Example

While researching this book, I had the privilege of interviewing teams that had
used Specification by Example for five years or more. Their experiences, especially those
in recent years, helped me see things from a different perspective—a documentation-
centric one. Many of the teams I interviewed realized that the artifacts of Specification
by Example are valuable as documentation over the long term. Most discovered this after
years of experimenting with ways to define specifications and tests. One of my main
goals as author of this book is to present living documentation as a first-class artifact of
Specification by Example. This should help readers implement a living documentation
system quickly and deliberately, without years of trial and error.

In this chapter, I’ll cover the documentation model and its benefits. This model fo-
cuses on business-process documentation and ensures effective long-term maintenance
and support of business processes. This model is particularly useful for ensuring the
long-term benefits of Specification by Example. It also prevents many common test
maintenance implementation problems (more on this later in the chapter).

Why we need authoritative documentation
I’ve lost count of the number of times someone has given me a lengthy book about a
system and included a warning that it’s “not entirely correct.” Like cheap wine, long
paper documentation ages rapidly and leaves you with a bad headache if you try to
use it a year after it was created. On the other hand, maintaining a system without any
documentation also causes headaches.

We need to know what a system does to be able to analyze the impacts of suggested
changes, support it, and troubleshoot. Often, the only way to find out what the sys-
tem does is to look at the programming language source code and reverse-engineer the
business functionality. When I interviewed Christian Hassa, owner of TechTalk, for
this book, he called the process of digging out functionality from the code “system
archeology.” He explains a situation that will no doubt be familiar to most readers:

We had a project where we needed to replace a legacy system. None
of the stakeholders knew how certain calculations/reports were created.
The users just consumed the result and trusted the old system blindly.
It was horrible to reverse-engineer the requirements from the old
application, and of course it turned out that some things the old system
did were wrong.

Even when the undocumented code is correct, reverse engineering is an impossible task
for business users, testers, support engineers, and, on most projects, even the average
developer. Clearly this approach doesn’t work. We need something better.

	 	 	 	 			 	 														31 Chapter 3 Living documentation

Good documentation is useful for more than software development. Many compa-
nies could benefit greatly from having good documentation about their business pro-
cesses, especially as more and more businesses are becoming technology-driven. Busi-
ness-process documentation is as hard to write and as costly to maintain as any kind of
system documentation.

The ideal solution would be a documentation system that’s easy and cheap to main-
tain, so that it can be kept consistent with the system functionality even if the under-
lying programming language code is changed frequently. The problem with any kind
of comprehensive documentation is, in fact, costly maintenance. From my experience,
changing the parts that are outdated doesn’t contribute significantly to cost. Often, cost
is the result of time spent on finding what needs to be changed.

Tests can be good documentation
Automated tests suffer from the opposite problem. It’s easy to find all the places that
need to be updated; automated tests can be frequently executed, and any tests that fail
are obviously no longer in sync with the underlying code. But unless the tests are de-
signed so they’re easy to modify, updating them after a system change can take a lot of
time. One of the pitfalls of the acceptance-test-centric approach is that it neglects this
effect.

Teams that focus on tests and testing often neglect to write tests that will be easy to
maintain. Over time, problems lead these teams to look for ways to specify and auto-
mate tests so they will be easier to update. Once the tests become easy to maintain, the
teams start seeing many other long-term benefits from Specification by Example. Adam
Knight’s team at RainStor, a UK-based provider of online data-retention solutions, real-
ized that if tests reveal the underlying purpose, they can be easily maintained. He says:

As you develop a harness of automated tests, those can become your
documentation if you set them up properly to reveal the purpose behind
them. We produced HTML reports that listed tests that were run and
their purpose. Investigation of any regression failures was much easier.
You could resolve conflicts more easily because you could understand the
purpose without going back to other documentation.

For me, the most important point is in the last sentence: they don’t have to use any other
kind of documentation once the tests are clear.

Lisa Crispin of ePlan Services said that one of the biggest ah-ha moments for her
was when she understood how valuable the tests were as documentation:

	 	 	32 Specification by Example

We get this loan payment and the amount of interest we applied isn’t
correct. We think there is a bug. I can look at the FitNesse test and put in
the values. Maybe the requirements were wrong, but here’s what the code
is doing. That saves so much time.

Andrew Jackman said that the Sierra team uses test results as a knowledge base for
support:

Business analysts see the advantage of this all the time. When some-
one asks where some data in Sierra comes from, they often just send the
link to a test result—and it is reasonable documentation. We don’t have
specifications in Word documents.

I mentioned that the team at the Iowa Student Loan Liquidity Corporation used their
tests to estimate the impact of a business model change and guide the implementation.
The team at SongKick used their tests to guide the implementation of a system change
and saved an estimated 50% of the time required as a result. I heard similar stories from
many other teams.

When a team uses a piece of information to guide development, support the system,
or estimate the impact of business changes, it’s misleading to call that information a
“test.” Tests aren’t used to support and evolve our systems; documentation is.

Creating documentation from executable specifications
When a software system is continuously validated against a set of executable specifica-
tions, a team can be certain that the system will do what the specifications say—or, to
put it differently, that the specifications will continue to describe what the system does.
Those specifications live with the system, and they’re always consistent. Because we find
out about any differences between specifications and the underlying system functional-
ity right away, they can be kept consistent—at a low cost. Tim Andersen of Iowa Student
Loan said that he trusts only this kind of documentation:

If I cannot have the documentation in an automated fashion, I don’t
trust it. It’s not exercised.

Executable specifications create a body of documentation, an authoritative source of
information on the functionality of a system that doesn’t suffer from the “not entirely
correct” problem and that’s relatively cheap to maintain. If specifications with examples
were pages, the living documentation system would be the book.

	 	 	 	 			 	 														

	 	

33 Chapter 3 Living documentation

A living documentation replaces all the artifacts that teams need for delivering the
right product; it can even support the production of external user manuals (although
probably not replace them). It does that in a way that fits nicely with short iterative
or flow processes. Because we can define the specifications as we grow the underlying
software system, the resulting documentation will be incremental and cheap to write.
We can build business-process documentation at the same time as the supporting sys-
tems and use that documentation to evolve the software and help run the business.
The world doesn’t have to stop for six months while someone is compiling 500 pages
of material. André Brissette from Pyxis says this is one of the least-understood parts of
agile development:

Beginners think that there is no documentation in agile, which is not
true. It’s about choosing the types of documentation that are useful. For
people who are afraid that there is no documentation, this kind of test
is a good opportunity to secure themselves and see that there is still
documentation in an agile process, and that’s not a two-feet-high pile
of paper. This is something lighter, but bound to the real code. When
you ask, “does your system have this feature?” you don’t have a Word
document that claims that something is done; you have something
executable that proves that the system really does what you want. That’s
real documentation.

Most automation tools used for Specification by Example already support managing
specifications over websites or exporting test results in HTML or PDF form, which is
a good start for creating a documentation system. I expect there will be a lot of innova-
tion in the tools over the next several years to assist with building up documentation
from specifications with examples. One interesting project is Relish,2 which imports
specifications with examples from several automation tools and formats them to create a
documentation system that’s easy to use. See figure 3.1.

2 See www.relishapp.com

http://www.relishapp.com

	 	 	

		 	 	 	 	 	 	

34 Specification by Example

Figure 3.1 Relish builds documentation websites from executable specifications.

Benefits of the documentation-centric model
The documentation-centric model of Specification by Example should help teams avoid
the most common issues with long-term maintenance of executable specifications. It
should also help teams create useful documentation that will facilitate software evo-
lution over time and help to avoid maintenance problems caused by a lack of shared
knowledge.

Many teams I interviewed replaced the heart of their system or rewrote large parts
of it while keeping specifications with examples and using them to guide the whole ef-
fort. This is where the investment in living documentation really pays off. Instead of
spending months on system archeology and verifications, a living documentation system
already provides requirements for technical updates and changes.

I think teams should consider living documentation as a separate artifact that’s as
important as the system they’re delivering. The idea that the documentation is a key de-
liverable is at the core of the documentation-centric model. I expect this model resolves
most of the common problems that, over time, cause teams to fail with Specification
by Example. Although it hasn’t been proven by any of the case studies in this book, I

	 	 	 	 			 	 														

35 Chapter 3 Living documentation

consider this premise important for the future. I hope that the readers of this book will
be able to get great results easier and faster because of looking at the process from this
different perspective.

For example, understanding that living documentation is an important artifact
instantly determines whether to put the acceptance tests in a version-control system.
A focus on business-process documentation avoids overly technical specifications and
keeps the specifications focused on what the system is supposed to do from a business
perspective, not on test scripting. Cleaning up test code no longer requires a separate
explanation. Enhancing the structure or clarity of tests is no longer something to put
on the technical debt list: It’s part of the standard list of tasks for delivery. The flaw in
delegating the work on acceptance tests to junior developers and testers suddenly
becomes obvious. The fact that useful documentation has to be well organized should
prevent teams from piling up thousands of incomprehensible tests in a single directory.

By considering the living documentation a separate artifact of the delivery process,
teams can also avoid overinvesting in it. They can discuss up front how much time they
want to spend building the living documentation system and avoid falling into the trap
of gold-plating the tests at the expense of the primary product.

I suspect that keeping specifications too abstract might be a potential pitfall of the
documentation model. I expect this model to work better for software systems that are
built to automate complex business processes. User-interface centric projects where the
complexity isn’t in the underlying processes might not benefit as much.

Remember

• There are several models of looking at Specification by Example. Different
models are useful for different purposes.

• Specification by Example allows you to build up a good documentation system
incrementally.

• Living documentation is an important artifact of the delivery process, as vital as
code.

• Focusing on creating a business-process documentation system should help you
avoid the most common long-term maintenance problems with specifications
and tests.

4
Initiating the changes

Many ideas central to Specification by Example have been around for decades.
In the late 80s, Gerald Weinberg and Donald Gause wrote about commu-
nication problems with software requirements in Exploring Requirements:

Quality Before Design.1 The authors suggested that the best way to check for com-
pleteness and consistency of requirements is to design black-box tests against them—
effectively suggesting the duality of specifications and tests in Specification by Example.
In 1986, the German army used what later became the V Model to describe ways to
build acceptance tests before implementation for validation. Today, we use the same
method but refer to acceptance tests as specifications with examples. Ward Cunningham
applied the practices of illustrating using examples and automating validation without
changing specifications on the WyCASH+ project in 1989.2

Unfortunately, these ideas didn’t catch on at the time. Long development phases
made them impractical to execute. People spent months trying to write abstract require-
ments for projects that would last years. Detailing everything upfront with examples
would delay that even longer.

Agile development changed the way the industry thinks about software delivery
phases—and shortened these phases significantly. This made Specification by Exam-
ple feasible. Iteration and flow-based projects can benefit greatly from Specification by
Example. With so little time to complete a delivery phase, we need to eliminate as much
unnecessary work as possible. Common problems that require fixing are rework, dupli-
cated tasks caused by miscommunication, time wasted working back from code in order
to understand the system, and time spent repeatedly executing the same tests manually.

1 Gerald M. Weinberg and Donald C. Gause, Exploring Requirements: Quality Before Design
(Dorset House Publishing Company, 1989).

2 http://fit.c2.com/wiki.cgi?FrameworkHistory

36

http://fit.c2.com/wiki.cgi?FrameworkHistory

	 	 	 	 			 	 	 														37 Chapter 4 Initiating the changes

Effective delivery with short iterations or in constant flow requires removing as many ex-
pected obstacles as possible so that unexpected issues can be addressed. Adam Geras puts
this more eloquently: “Quality is about being prepared for the usual so you have time to
tackle the unusual.” Living documentation simply makes common problems go away.

Specification by Example is the solution: a means for dealing with the usual so that
we have more time to deal with the unusual within the few days or weeks of a software
delivery cycle. Living documentation is now a requirement for success.

In this chapter, we’ll look at how to begin changing process and team culture so you
can implement Specification by Example. We’ll review three team case studies that rep-
resent different ways to integrate collaboration on specifications into iterations and flow
development. Finally, I present useful ideas for fitting this process into development
environments that require sign-off and traceability on requirements.

How to begin changing the process
Starting a process change is never easy, especially if you’re trying to fundamentally change
how team members collaborate. To get over the initial resistance and build a case for
further changes, most teams started by implementing a practice that improved product
quality or saved time over the short term. The most common starting points were these:

• If there’s already a process change going on, use it to implement key ideas of
Specification by Example.

• Use the ideas of Specification by Example as inspiration for improving
product quality.

• Implement functional test automation, for teams that don’t have automated
functional tests.

• Introduce automated executable specifications, for teams that have test
automation separate from development.

• Use test-driven development (TDD) as a stepping-stone, for teams that
practice it.

All of these starting points will produce benefits in the short term and lead to further
improvements.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

		 	 	 	
	 	 	

38 Specification by Example

Implement Specification by Example as part of a
wider process change
When: On greenfield projects

Four teams I interviewed implemented the core ideas of Specifica-
tion by Example when moving to an agile software development
process. There was no need to fight resistance to process changes or
obtain management support.

Implementing Scrum, XP, or any other agile process is a shock
therapy anyway, so if you can, you might as well try to imple-
ment Specification by Example at the same time.

Teams that were able to do this reported fewer problems and implemented the process
more quickly than teams that started from a dysfunctional Scrum environment. This is
most likely because all four of these teams had significant support as part of their agile
migration (three had consultants on site, and the fourth had a team member with prior
exposure to Specification by Example).

Focus on improving quality

Instead of focusing on a particular target process, the team at uSwitch (see chapter 12)
decided to focus on improving product quality. They asked all members to present sug-
gestions for improvement and used these as inspiration. They ended up implementing
most of the process patterns of Specification by Example with little resistance.

From a management perspective, this is a particularly good approach if individuals
on the team are likely to resist a process change. People might complain against Scrum,
agile, Specification by Example, Kanban, or anything else that’s process related. An open
initiative to improve quality is less likely to cause complaints. David Anderson advocates
focusing on quality in Kanban3 as the first step of his recipe for success.

Start by identifying the biggest obstacle to delivering high-quality software;
then solve it.

If developers and testers aren’t working closely together and have a difference of opinion
about whether something is of acceptable quality, it might be useful to visualize activities

3 David Anderson, Kanban: Successful Evolutionary Change for Your Technology Business
(Blue Hole Press, 2010).

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

39 Chapter 4 Initiating the changes

related to releasing a product. At LMAX, an electronic trading exchange, Jodie Parker
made all the release activities visible by creating a release candidate board, which showed
a high-level view of the three teams’ progress. It featured the status of all the planned
deliverables, the main focus of the release, a set of tasks that would have to be done
before a release, and critical issues that would have to be addressed before a release. All
the teams could see this information and then come up with suggestions for improving
delivery flow.

Start with functional test automation
When: Applying to an existing project

The majority of teams I interviewed adopted Specification by Example by starting with
functional test automation and then gradually moving from testing after development
to using executable specifications to guide development. That seems to be the path of
least resistance for projects that already have a lot of code and that require testers to run
their verifications manually.

Several teams sought to solve the problem of bottlenecks at the testing phase, a
result of testers having to constantly catch up with development. With short delivery
cycles (weeks or even days), extensive manual testing is impossible. Testing then piles
up at the end of one iteration and spills over into the next, disrupting flow. Functional
test automation removes the bottleneck and engages testers with developers, motivating
them to participate in the process change. Markus Gärtner says:

For a tester who comes from “testing is the bottleneck” and continu-
ous fighting against development changes, it was very, very, very appealing
to provide valuable feedback even before a bug was fixed with automated
tests. This is a motivating vision to work toward.

If you don’t already have functional test automation, know that this is a low-
hanging fruit—an easy way to start the journey to Specification by Example that
provides immediate benefits.

Automating functional tests works well as a first phase of adoption of Specification by
Example, for several reasons:

• It brings immediate benefit. With automated tests, the length of the testing
phase is significantly reduced, as is the number of issues escaping to production.

• Effective test automation requires a collaboration of developers and testers and
starts to break down the divide between these two groups.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

40 Specification by Example

• Legacy products rarely have a design that supports easy testing. Starting
with functional test automation forces the team to address this and make the
architecture more testable, as well as sort out any issues around test reliability
and test environments. This prepares the ground for automating executable
specifications later.

• When most testing is manual and the team works in short cycles, testers are
often a bottleneck in the process. This makes it virtually impossible for them
to engage in anything else. Test automation gives them time to participate in
specification workshops and start looking at other activities, such as
exploratory testing.

• Initial test automation enables the team to run more tests, and run them more
frequently, than manual testing. This often flushes out bugs and inconsistencies,
and the sudden increase in visibility helps business stakeholders see the value of
test automation.

• Writing and initially automating functional tests often requires involvement
of business users, who have to decide whether an inconsistency is a bug or
the way the system should work. This leads to collaboration among testers,
developers, and business users. It also requires the team to find ways to
automate tests so business users can understand them, preparing the way
for executable specifications.

• Faster feedback helps developers see the value of test automation.

• Automating functional tests helps team members understand the tools
required to automate executable specifications.

Isn’t this just shifting work?

A common objection to freeing up testers by getting programmers to collabo -
rate on test automation is that programmers will have more work and this will
slow down delivery of functionality. In fact, the general trend in the industry
is for teams to have more programmers than testers, so moving work from
testers to developers is not necessarily bad—it might remove a bottleneck in
your process.

Implementing functional test automation will get the team to work closer and prepare
the system for the use of executable specifications later. To get the most out of this
approach, automate functional tests using a tool for executable specifications and
design them well, using the ideas from chapter 9 and chapter 11. Automating tests using
traditional tester record-and-replay tools won’t give you the benefits you need.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	

41 Chapter 4 Initiating the changes

Start by automating high-risk parts of the system

Working to cover all of a legacy system with automated tests is a futile effort.
If you use functional test automation as a step to Specification by Example,
develop enough tests to show the value of test automation and get used to the
tools. After that, start implementing executable specifications for changes as
they come and build up test coverage gradually.

To get the most out of initial functional test automation, focus on automating
the parts of the system that are risky; these are the areas where problems can
cost you a lot of money. Preventing issues there will demonstrate immediate
value. Good functional test coverage will give your team more confidence. The
benefits from automating parts with less risk are probably not as noteworthy. †

† See http://gojko.net/2011/02/08/test-automation-strategy-for-legacy-systems

Introduce a tool for executable specifications
When: Testers own test automation

On projects that already have functional test automation fully owned by testers, a key
challenge is to break the imaginary wall between testers and developers. There’s no need
to prove the value of test automation or to flush out issues around test environments,
but the mindset of the team has to become more collaborative.

This problem is mostly cultural (more on that soon), but sometimes it’s also
financial. With an expensive test automation framework such as QTP, licensed per seat,
developers and business analysts are intentionally kept far from the tests. Once the
attitude toward collaboration changes, a team can work together on specifications and
automate the validation without changing them.

Several teams got pushed in this direction when they had a problem that couldn’t be
appropriately tested with their existing automation toolkit. They used this situation as a
good excuse to start using one of the automation tools for executable specifications. (See
the “Tools” section in the appendix for examples or additional articles on tools at http://
specificationbyexample.com)

Teams discovered that using an automation tool for executable specifications
got developers more engaged in test automation and provided business users
with a greater understanding of the tests.

http://gojko.net/2011/02/08/test-automation-strategy-for-legacy-systems
http://specificationbyexample.com
http://specificationbyexample.com

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	

42 Specification by Example

Developers then became more engaged in test automation and began running tests on
their machines; they were able to see the value of quick feedback from functional tests.
Business users could understand automated tests using a tool for executable specifica-
tions and participate in specifying related acceptance criteria. After that, changing the
process to design executable specifications and tests up front was relatively simple.

When working with a large insurance provider, Rob Park’s team used a proof of
insurance PDF as an excuse to introduce a tool for automating executable specifications
and move functional testing to an earlier stage in the development cycle. Park says:

QTP wasn’t able to test it—it could verify that the window would
pop up without an error message, but that’s it. I wanted to be able to have
the developers run tests in the first place on their machines, which was
one of the limitations of QTP [due to cost per seat]. I went with JBehave.
We kind of threw it all in all at once, and it really just took off in a week.
We can now let these acceptance tests themselves drive the design of the
underlying controller.

At Weyerhaeuser, Pierre Veragen and the team worked with a custom test automation
tool that recorded tests through the user interface. The cost of maintenance was high.
After a change that broke many tests, he was able to justify moving to FitNesse after
estimating that rewriting existing tests in the new tool would take less time than re-
recording all the broken tests. Moving to FitNesse allowed the team to work more
closely with engineers on executable specifications and sparked the move to Specifica-
tion by Example.

Use test-driven development as a stepping stone
When: Developers have a good understanding of TDD

Another common strategy for adopting Specification by Example is to grow
the process from (unit) test-driven development, especially when working on a
greenfield project.

Test-driven development practices are much better documented and understood in the
community than Specification by Example. If a team already has good TDD practices
in place, there’s probably no need to demonstrate the value of automated tests or change
the design to make their software more testable. Executable specifications can be seen
as an extension of test-driven development to business rules. (The term acceptance-test-
driven development is a popular synonym for Specification by Example.)

At ePlan Services, Lisa Crispin used this approach when they were first implement-
ing Specification by Example:

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

43 Chapter 4 Initiating the changes

I couldn’t get people interested in acceptance tests. On Mike Cohn’s
suggestion, I just picked a story, went to the developer working on a
story, and asked, “Could we pair up writing a test on this story?” De-
velopers would see how easy it is. In the next sprint I picked a different
story and a different person. We right away found a bug, where he didn’t
really understand the requirement. So the developers immediately saw the
value.

When a team has a good understanding of TDD, making the case for executable speci-
fications is easy: Explain them as tests for business functionality.

How to begin changing the team culture
For the most part, implementing Specification by Example involves a cultural change—
getting people to think about collaborating on requirements and changing the way busi-
ness people, developers, and testers contribute to specifications. Here are some helpful
ideas for changing your team culture.

Avoid “agile” terminology
When: Working in an environment that’s resistant to change

Agile software development methods are plagued with terminology and buzzwords.
Scrums, stand-ups, user stories, backlogs, masters, pair programming, and other terms like
these are easily misunderstood and cause confusion. To some, they can even be over-
whelming and scary. Anxiety caused by jargon is one of the biggest reasons why people
push back and resist any change to their process—or passively wait for it to fail. In my
experience, many business users find it hard to understand technical terms used by the
development team, making it hard for them to grasp ideas related to process improve-
ment and engage with the team.

It’s entirely possible to implement Specification by Example without using tech-
nical terminology. If you work in an environment that’s resistant to change,
avoid jargon when you start out.

Don’t refer to user stories, acceptance tests, or executable specifications—implement
Specification by Example without offering definitions. This will provide people who
want to oppose you with less ammunition. Explain Specification by Example as the
process of gathering examples to clarify requirements, deriving tests, and automating
them. Everything else will be left to discovery.

	 	 	

44 Specification by Example

Adam Knight implemented most of the key elements of Specification by Example at
RainStor without making a big deal about it. The process grew without up-front plan-

ning, and Knight says that nobody else in the company knows
about Specification by Example. “People aren’t really aware of
anything specific,” he said. For his team, it’s just a process they
created themselves.

Pierre Veragen used a similar approach to improve one
team’s software process at Weyerhaeuser. The team maintains a
legacy application with over a million lines of code. They were
resistant to implementing anything with the name agile. With-
out using any big words, Veragen suggested automating tests

below the user interface to make testing more efficient. When the team got their heads
around that, he then suggested that developers start running tests on their machines to
get faster feedback and align testing and development. With some hand holding and
monitoring, Veragen ultimately got the team members to stop thinking about testing as
something that comes after development. This took about six months, mostly because
the automated test suite had to become big enough for developers to start seeing test
failures when they introduced problems into the code. Veragen commented:

People working in engineering realized that failing tests on their ma-
chine were actually pointing to problems in their code. When this hap-
pened to a developer, he got the idea and stopped questioning why he had
to run the tests.

To implement a process change without technical terminology, make the problems
visible and gently push people in the right direction to solve them. When the team
comes up with a solution to a problem, even with some help, they’ll have a sense of
ownership and commit to following through on process changes.

Ensure you have management support

Most teams significantly changed the way they worked while implementing Specifica-
tion by Example. For many, this meant changing the way they approached specifica-
tions, development, and testing—and learning how to collaborate better within a team
and with external stakeholders.

Many people got confused when roles started changing. Testers had to get much
more involved in analysis. Developers had to get more involved in testing. Analysts had
to change the way they collected and communicated requirements. Business users had to
take a much more active role in preparing specifications. Such big changes require man-
agement support; otherwise, they’re destined to fail. Clare McLennan had this to say:

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

45 Chapter 4 Initiating the changes

You need to get the management support for the project, especially if
you have an existing system already, because it’s going to take quite a bit
of time to get to a point where you actually have a good, stable test sys-
tem. You’ve got to go through all the iterations, see where it’s not stable or
where it gives you strange answers, fix that, and repeat again. If you spend
time over a year or so, you’ll get an invaluable system. If you don’t, or if
you think it’s a quick fix to get UI tests with click, click, click, then you’ll
get something unmaintainable and with little value.

At the beginning, automation of executable specifications was a challenge for many
teams, because it’s conceptually different from what both testers and developers were
used to when automating tests (more on this in chapter 9). Teams had to learn how to
use a new tool, find a good way to design executable specifications, and structure their
living documentation. For the first several months, the productivity of the development
team drops before it increases. This also requires management understanding, approval,
and support.

Without management buy-in and support, the chances of success with a
process change are slim.

If management responds with pressure rather than support, people will fall back into
their old ways of doing things and start protecting their position rather than collabo-
rating. Sharing the success stories and benefits outlined in chapter 1 should help with
getting that support, but if that fails, it’s better to look at less-ambitious ways to improve
the process or take smaller steps.

Sell Specification by Example as a better way to do

acceptance testing
�

Several teams, including the ones working in strictly regulated environments, got to
the point where user acceptance testing as a phase in software delivery was no longer
needed. (Some companies call this phase customer acceptance testing or business accep-

tance testing.) This doesn’t mean that they weren’t testing for user
acceptance. Specifying and checking the acceptance criteria is
different from user acceptance testing as a software delivery phase.
It’s so important that it shouldn’t be left to the end. Executable
specifications and frequent validation make development teams
check for user acceptance continuously. The product doesn’t get
delivered to the users unless all their acceptance tests pass.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

46 Specification by Example

Once the executable specifications are comprehensive enough and validated fre-
quently, the trust between a development team and its customers increases to the level
that verifying software manually after delivery becomes unnecessary. (This doesn’t mean
that testers shouldn’t perform exploratory testing before delivery.)

I expect that most teams will be able to justify the cost of implementing Speci-
fication by Example on the basis of avoiding late acceptance testing. Changing
the process so that a team can get there faster should have measurable financial
benefits, which can then justify an investment in process change.

Short iterations or flow-based development significantly increase the frequency of po-
tential releases. Let’s say that you want to have 12 releases over the next 12 months (most
of the teams I interviewed would do twice that figure), and that the user acceptance test-
ing takes an average of 3 days. This means that over the next year you’ll spend 36 days in
user acceptance testing, assuming the best-case scenario: You never catch any problems
and software is always accepted (in which case, why test it for 3 days?). More realistically,
acceptance testing at the end, rework, and retesting will take at least 2 months over a
12-month period.

If you begin by collaborating to specify the acceptance criteria and automate the
validation, you won’t have to waste time with manual testing and rework. There’s a cost
to pay for the automation, but Specification by Example can reduce time-to-market
significantly.

Specification by Example has many other benefits, but this is the easiest one to
present to business stakeholders and the easiest to quantify. If you need to sell this
process change to your business stakeholders, try selling it as a way to get to the market
two months earlier every year.

Don’t make test automation the end goal

One of the most common early mistakes made by the teams
I interviewed was setting functional test automation as the
end goal of the process change. Business users generally
think of functional test automation as something to do with
testing and hence something they don’t need to get involved
in. Unless developers understand that automated tests need
to be human readable to improve communication, they’ll
automate them in a way that minimizes development effort.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

47 Chapter 4 Initiating the changes

When teams focused only on test automation, they didn’t get better
collaboration.

This approach often leads to tests that are too technical and that are scripts rather than
specifications, a common failure pattern (see “Scripts aren’t specifications” in chapter 8).
In the long term, tests automated in this way became an impediment to change, not a
facilitator.

If you use functional test automation as a step toward Specification by Example,
make sure that everyone on the team is aware of the end goal. When functional test
automation takes hold, it’s time to move on.

Don’t focus on a tool

Three people I interviewed started the journey by selecting a tool they wanted to use.
Developers had heard about FitNesse or Cucumber and decided to try it out on their
project. I’ve been guilty of that myself as well; this approach has a small chance of suc-
cess.

Specification by Example isn’t programmer centric, and programmers using a
tool in isolation aren’t going to get far.

This approach often ends up with programmers using a nontechnical tool, intended for
executable specifications, to manage technical, developer-oriented tests. This is a waste
of time.

Of the three cases where developers focused on using a par-
ticular tool, only Ian Cooper’s team at Beazley succeeded in creat-
ing a good process. They pushed hard to involve testers and busi-
ness analysts and then adjusted the way they wrote and organized
tests to support that. They were also critical of the benefits they
were getting from the tool and looked for easier ways to get those
benefits.

In the other two cases, teams focused on a tool, not on high-
level collaboration and process changes. They ended up wasting

a lot of time and effort building a suite of technical tests that business users and testers
weren’t able to use. They paid a big price in terms of effort and time spent on test main-
tenance without any of the benefits of Specification by Example.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

		 	 	 	 	 	 	 	 	
	

48 Specification by Example

Keep one person on legacy scripts during migration
When: Introducing functional automation to legacy systems

Rewriting functional tests and automating them using a new tool takes time. Until the
new validation system grows, any existing tests might need to be maintained and kept
up-to-date. A good way to address this issue is to delegate that work to a single person
and write off that person’s time while planning for the immediate future.

James Shore and Shane Warden describe a pattern for process change on legacy
projects called “the Batman” in The Art of Agile Development.4 The Batman is a dedicated
person who jumps in to solve urgent issues and resolve important bugs, while the rest
of the team keeps on working on new functionality. Markus Gärtner used this approach
to gradually move a set of tests to an automation tool for executable specifications. He
detailed his experience:

When we transitioned our tests from shell-based scripts to tests based
on FitNesse, we started with two members working on the new stuff,
while three team members maintained the old legacy test scripts. Over
time, we got more and more testers involved in the new approach. First
three, then another one, and finally we were able to throw the old scripts
away completely.

The underlying idea was the Batman, who dove in to solve problems.
I remember that some of my colleagues even bought a toy car from Hot
Wheels—the Batmobile—and gave that to our Batman at that time.
Initially, I had the idea to rotate the Batman but never applied this, since
my colleagues were knowledge silos at that time. We changed that with
the new approach, and I try to rotate the Batman role so that everyone
gets to deal with the old stuff and the new stuff during the transition.
Getting everyone’s buy-in is crucial.

By delegating the work required to update legacy items to a single person,
teams are able to move more quickly toward the goal of migrating to a new
process.

This idea is similar to Alistair Cockburn’s “Sacrifice One Person” strategy,5 where one
person is assigned to handle distracting tasks and the rest of the team moves forward at
full speed.

4 James Shore and ShaneWarden, The Art of Agile Development (O’Reilly Media, 2007).
5 http://alistair.cockburn.us/Sacrifice+one+person+strategy

http://alistair.cockburn.us/Sacrifice+one+person+strategy

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	

49 Chapter 4 Initiating the changes

Track who is running—and not running—automated checks
When: Developers are reluctant to participate

In cases where developers came from a more structured process background—where
programmers write code and testers test it—teams had problems getting programmers
to participate in the process. This has to change for Specification by Example to work.

Pierre Veragen had a unique solution to get programmers involved in the process.
He created a simple centralized reporting system that told him when and where the
executable specifications were checked:

In the fixture code I put a little thing that told me when people were
running tests on their machines. That group was pretty shy. I used this to
find out when people aren’t running the tests to go and talk to them and
see what’s wrong and whether they had any problems. The idea was to get
a more objective feedback than “Yes, it worked fine.”

By tracking who isn’t running tests before committing, he was able to focus his efforts
on the team members who had issues or required assistance. Veragen says that all the
programmers knew about the process from the start, so that instead of monitoring the
actual test results, he tracked only whether someone executed tests.

Monitor when tests are being run, so programmers will run automated checks.

This is an interesting approach for larger teams, where a coach cannot work with all
the members all the time. I expect the effects to be similar to publishing the locations
of speed cameras on highways—programmers will know that someone is looking, and
they’ll take more care to run the checks.

How teams integrated collaboration into flows and iterations
Understanding how to fit collaboration into a delivery cycle is one of the biggest
challenges when teams start implementing Specification by Example.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		
	 	

 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	 	 	 	

	

50 Specification by Example

Differences between Specification by Example
and Waterfall analysis

Many people I meet at conferences misunderstand and think that incrementally
building up a documentation system means going back to the Waterfall ideas of
big up-front analysis. During his presentation “How to Sell BDD to the business” †

in November 2009, Dan North said that BDD is effectively V-Model compressed
into two weeks. This isn’t an entirely accurate description, but it’s a good start.

There are a few crucial differences between the Waterfall analysis approach and
what Specification by Example is trying to achieve. It’s important to understand
these underlying principles because that will help you fit the practices into your
process, whatever it is. These are the key factors differentiating Specification by
Example from more established analysis: 	

•	�Provide fast feedback and focus through quick turnaround; get small
chunks of software done efficiently, instead of trying to handle large
chunks at once.

•	�Emphasize effective, efficient communication instead of long, boring
documents.

•	�Establish shared ownership so specifications aren’t handed over or
thrown over imaginary walls to become code or tests.

•	�Integrate cross-functional teams where testers, analysts, and
developers work together to build the right specification of the
system instead of working alone.

† http://skillsmatter.com/podcast/agile-testing/how-to-sell-bdd-to-the-business

There’s no universal solution for a process change, and each team will need to decide
how best to extend their way of delivering software. Following are some nice repre-
sentative examples that will help you get started. I’ve chosen three good case studies,
one for each popular process. The Global Talent Management team works according to
a flow-based Kanban framework. The Sierra team delivers software using an Extreme
Programming iteration-based process. The Sky Network Services group runs iterations
based on Scrum.

http://skillsmatter.com/podcast/agile-testing/how-to-sell-bdd-to-the-business

	 	 	 	 			 	 	 														51 Chapter 4 Initiating the changes

Global Talent Management team at Ultimate Software

The Global Talent Management team at Ultimate Software is one of 16 teams working
on their human resources management system. The team consists of a product owner, a
user experience expert, four testers, and ten developers. When I interviewed Scott Berger
and Maykel Suarez, who were part of this team, their project had been under way for
eight months. The team uses a Kanban flow process.

Because the product analyst (a combination of an analyst and a product owner) is
busy, the team tries to use his time efficiently when collaborating on specifications. The
product analyst explains a story at a high level with “story points” (in their case, story
points aren’t estimates of complexity but bullet-list items that explain stories). They
avoid technology-specific language as much as possible when writing story points. The
story is then added to the Kanban board as part of the backlog.

In a daily meeting, limited to 30 minutes, the lead engineers meet with the product
analyst and anyone else on the team who is interested in the backlog. They quickly run
through the stories in the backlog, checking that each story is sliced correctly, that it
makes sense, and that it’s implementable in four days or less—as a team, they imposed
this deadline for each story. During the meeting, they also clarify any open questions
and look at story dependencies.

The story then goes into a queue for writing specifications with examples, which are
used as acceptance tests. A team member who will work on implementing the story pairs
up with someone who will focus on the testing to write the outlines of these specifica-
tions. (They don’t have formal tester or developer roles in the team, but I’ll use those
roles to refer to this pair of people in this section to make it clearer.) Berger explained:

By leveraging this pair, we’re able to cut down on the necessary tests
required for this story, because a developer has more intimate knowledge
of the code. This has proven quite successful, because these pairs generally
root out any inconsistencies and design flaws that exist and aren’t caught
in the initial story review.

After they define an outline, the tester usually completes the scenarios in a Given-When-
Then format. The pair and the product analyst meet and review the scenarios in an
in-depth Story Knowledge and Information Transfer (SKIT) session. This addresses the
risk that a programmer and a tester won’t be able to come up with good specifications
without an analyst. When the product analyst approves the scenarios, the team regards
them as the requirements. Other than minor text alterations, no further changes are al-
lowed to these requirements until the story is delivered.

	 	 	

52 Specification by Example

The developer will then automate the scenarios, usually prior to implementing pro-
duction code. This allows the tester to spend more time completing exploratory testing.
The tester might also work on automation, but that’s no longer his focus. Berger said
that this collaboration allows them to work productively:

Developers who intimately know the code are much quicker in terms
of automating, and actually write code that allows them to query their
objects (instead of automating through the user interface), and derive a
greater benefit while developing, since many more error conditions and
combinations are explicitly described. Since we are now testing under the
GUI, our test execution is much quicker and more stable. Testers are free
to spend more time exercising the code and providing feedback.

All the executable specifications have to pass for the development stage to finish. All the
tests are executed again during the run-tests phase, this time integrated with the work of
other teams. While waiting for approval phase, the team does a quick product demo for
the product analyst and obtains a sign-off.

According to Berger, this process leads to results that are of exceptionally high quality:

By working closely with our product analysts, and using our tests as a
basis for requirements, we are able to achieve an exceptionally high level
of quality. The business has collected metrics, and one specifically that I
think adequately provides an insight into our efforts in terms of our com-
mitment to quality is Defect Detection Efficiency (DDE). Upon mea-
suring the Global Talent Management team, it was determined that our
DDE is 99% [for Q1-Q3 2010]!

Sierra team at BNP Paribas

The Sierra team at BNP Paribas builds a back-office reference data management and
distribution system. The team consists of eight developers, two business analysts, and a
project manager. Because there are no dedicated testers, everyone on the team is respon-
sible for testing. Their stakeholders are off-site business users. Change requests typically
require a lot of analysis and work with the stakeholders.

The project has been under way for about five years, so it’s reasonably mature,
and business analysts have many existing executable specifications to use as examples.
Andrew Jackman, who was a member of this team when I interviewed him, says this is
one of the rare examples in the financial services industry where Extreme Programming
is applied almost by the book.

	 	 	 	 			 	 	 														53 Chapter 4 Initiating the changes

Their development process starts with the project manager, who selects the stories
for an iteration in advance. The business analysts work with remote stakeholders to
prepare the acceptance criteria in detail before an iteration starts. They use examples of
existing specifications to drive structure of the new ones. If the new specifications are
significantly different from any existing ones, a pair of developers will review the tests to
provide early feedback and ensure the tests can be automated.

Their iterations start every second Wednesday. When an iteration starts, the whole
team gets together for a planning meeting and reviews the upcoming stories in the order
of priority. The goal is to ensure that all the developers understand what the story is
about, to estimate the stories, and to check for technical dependencies that would make
a different order of delivery better. They’ll also break down the story into tasks for devel-
opment. By the time a story is reviewed in a planning meeting, the acceptance criteria
for that story are generally already well specified.

The team occasionally discovers that a story wasn’t well understood. When they
were running weeklong iterations, such stories could disrupt the flow, but two-week iter-
ations allow them to handle such cases without much interruption to the overall process.

The stories are then implemented by pairs of developers. After a pair of developers
implements a story and all the related tests pass, a business analyst will spend some time
doing exploratory testing. If the analyst discovers unexpected behavior, or realizes that
the team has not understood all the effects of a story on the existing system, he will ex-
tend the specification with relevant examples and send the story back to the developers.

Sky Network Services

The Sky Network Services (SNS) group at the British Sky Broadcasting Company main-
tains a system for broadband provisioning. The group consists of six teams, and each
team has five to six developers and one or two testers. The entire group shares six busi-
ness analysts. Because the teams maintain separate functional components that differ in
terms of maturity, each team has a slightly different process.

The entire group runs a process based on Scrum in two-week sprints. One week be-
fore a sprint officially starts, they organize a preplanning coordination meeting attended
by two or three people from each team. The goal of that meeting is to prioritize the
stories. By the time they meet, the business analysts have already collected and specified
some high-level acceptance criteria for each story. After the meeting, testers will start
writing the specifications with examples, typically collaborating with a business analyst.
Before the sprint officially starts, each team will have at least one or two stories with
detailed specifications with examples ready for automation.

	 	 	54 Specification by Example

The iterations start every second Wednesday, with a cross-team planning meeting to
inform everyone about overall progress and the business goals of the upcoming iteration.
The teams then go into individual planning meetings. Some teams spend 15 minutes
going through the stories briefly; others spend a few hours going over the details. Rakesh
Patel, a developer who works on the project, says that this is mostly driven by the matu-
rity of the underlying component:

At the moment we’re working on a component that’s been there for a
long time and adding more messages to it. There is not really much need
for the whole team to know what that involves; we can wait until we pick
up the story card. Some other teams are building a new GUI, completely
new functionality, and then it might be more appropriate for the whole
team to sit down and discuss this in depth and try to work out what needs
to be done. At that point we might also discuss nonfunctional require-
ments, architecture, etc.

After the planning meeting, the developers start working on the stories that already
have specifications with examples. Business analysts and testers work on completing
the acceptance criteria for all the stories planned for the iteration. Once they finish the
specifications for a story, they’ll meet with a developer designated to be the “story cham-
pion” (see the sidebar) and go through the tests. If everyone thinks they have enough
information to complete a story, the story card gets a blue sticker, which means that it’s
ready for development.

Once development is completed, the business analysts will review the specifications
again and put a red sticker on the card. Testers will then run additional tests on the story
and add a green sticker when the tests pass. Some stories will involve their support team,
database administrators, or system administrators, who review the story after the testers.
Database administrators put a gold star on the story card, and system administrators add
a silver star when they’ve reviewed the results. Stickers ensure that everyone who needs
to be involved in a story knows about it.

Instead of big specification meetings, the teams at SNS organize a flow process.
They still have a two-phase specification process, with business analysts and testers pre-
paring all the examples upfront and then reviewing them with a developer later. This
gives developers more time to focus on development work. Instead of involving all the
developers in the review to ensure they understand a story, the story champion is effec-
tively responsible for transferring the information while pairing with other developers.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

55 Chapter 4 Initiating the changes

The previous three examples show how teams can fit collaboration into short itera-
tions and even flow-based processes, demonstrating that there’s no generic and univer-
sally applicable approach to structuring the process. All the teams successfully integrated
collaboration into their short release cycles but used different approaches depending
on the team structure, availability of their business users, and complexity of changes
coming into the delivery pipeline. For some nice ideas on designing a process to fit your
team, see “Choosing a collaboration model” in chapter 6. For more examples, see the
case studies in part 3.

Story champion

SNS teams use story champions to ensure an efficient transfer of knowledge
while switching pairs of developers who work on a story. Kumaran Sivapatha-
suntharam, a business analyst working on the project, explains this idea:

The story is assigned to a particular developer who stays with
the story until it’s completed. This ensures that there’s one point of
contact for a story—so if you have an issue with a story, you can talk
to the story champion. One person can stay on the story from start to
finish so an entire pair doesn’t get stuck on it, and they can keep
changing the pairs but still having the continuity throughout.

The Global Talent Management team at Ultimate Software has a similar role,
called story sponsor. According to Maykel Suarez, the sponsor is responsible for
communication with other teams, tracking the progress on the Kanban board,
checking status at stand-up meetings, and eliminating roadblocks.

Dealing with sign-off and traceability
For some teams, a big problem with little or no documentation on agile projects is the
lack of requirements. This makes sign-offs on requirements or deliverables difficult. As
a whole, the software development industry is much less concerned with sign-offs than
it was 10 years ago. In some cases, sign-offs are still required because of regulatory con-
straints or commercial arrangements.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

			 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

		 	 	 	 	 	
	 	 	

56 Specification by Example

Specification by Example provides artifacts around requirements—living documen-
tation—that can be used for traceability. This enables agile processes to be applied to
regulated industries. Bas Vodde and Craig Larman wrote about the first agile develop-
ment project in the U.S. nuclear industry6 in Practices for Scaling Lean and Agile.7 The
team working on that project used executable specifications to ensure full traceability of
requirements, which is critical in nuclear and other safety-critical domains. On the other
hand, because of a highly dynamic, iterative, and collaborative approach to building
these artifacts, up-front sign-off is practically impossible. Here are some ideas on how to
deal with sign-off and traceability constraints.

Keep executable specifications in a version control system

Several people I interviewed said that keeping executable specifications in the
same version control system as the product source code is one of the most im-
portant practices for a successful process implementation.

Many automation tools work with executable specifications in plain-text files, so they
work nicely with version control systems. This allows you to easily tag and branch the
specifications along with the source code. It gives you a current and correct version of
tests that can be used to validate any version of your product.

Version control systems are great for traceability because they allow you to find who
changed any file, when, and why in an instant. If you store your executable specifications
in a version control system, you’ll get traceability on requirements and specifications for
free. With Specification by Example, the executable specifications will be directly linked
to the programming language code (through the automation layer), which means that it
will be relatively straightforward to prove code traceability as well.

Executable specifications in a version control system are also less likely to disappear
than those stored in a separate requirements or test tool.

Get sign-off on exported living documentation
When: Signing off iteration by iteration

Specification by Example should help build trust between project sponsors and the deliv-
ery team and remove the need for sign-off. If you do need to get requirements signed off
for commercial or political reasons, you can use the living documentation system for that.

6 I would have loved to include that case study in this book as well, but unfortunately I
couldn’t get in touch with anyone willing to talk about it.

7 Craig Larman and Bas Vodde, Practices for Scaling Lean and Agile Development: Large, Multi-
site, and Offshore Product Development with Large-Scale Scrum (Pearson Education, 2010).

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

57 Chapter 4 Initiating the changes

If you need to get sign-off on specifications before starting to implement func-
tionality, and it’s possible to organize this for each iteration, then you can create
a Word or a PDF document from the executable specifications planned for the
next iteration and get sign-off on that.

Some automation tools, such as Cucumber, support exporting to PDF directly, and this
might help you with the process.

Get sign-off on scope, not specifications
When: Signing off longer milestones

If you need to get sign-off on batches of software larger than what a single itera-
tion can deliver, try to get sign-off on scope and not on detailed specifications.
For example, obtain sign-off on user stories or use cases.

Rob Park applied this approach when working with a large U.S. insurance provider. His
team kept a Waterfall approval process for sign-off but significantly cut down on the
material that required it. Park explained:

There is kind of a bigger process outside of everything we have under
our control. The business analysts work on Word documents using a tem-
plate, but they cut the template down from eight pages to two. There is a
story card approval process where the people who pay for the project actu-
ally sign off on these story cards before anyone except the business analyst
actually sees them. So they have this Waterfall process in the company at
a high level, but once it gets into the team it becomes different.

Word documents are used in this case purely because contractual obligations dictate that
there be paperwork before a story makes it into development. The team uses executable
specifications as their only source of requirements after the scope is approved.

Get sign-off on “slimmed down use cases”
When: Regulatory sign-off requires details

Getting sign-off on scope might not work in a heavily regulated environment. Mike
Vogel of Knowledgent Group worked on a project for the pharmaceutical industry us-
ing a process based on Scrum and XP extended to satisfy regulatory requirements. His
team used use cases, because the standards of a regulated system can’t be met with user
stories alone.

	 	 	

	 	 	 	 	 	

58 Specification by Example

The team used slimmed-down use cases (they called them
“structured stories”) so that initial capture and ongoing evolu-
tion wasn’t a big problem. Those use cases would avoid most de-
tails about data and decisions (these were extracted into separate
data sections). Vogel explained that approach:

In a use case you would have a nickname for
a piece of data, something that the customer under-

stands as part of the domain language. The data section describing that
gives the structure and the rules describing the data—not examples. Ex-
amples are in the [acceptance] tests/requirements-by-example where we
walk the use case building examples that cover and show variations of all
our named chunks of data. You vary your examples of the chunks of data
that they have factored out.

Get sign-off on “lighter” use cases—without examples.

Vogel’s team built a requirements document with those lightweight use cases but
without any examples. The result was a document less than 100 pages long for a large
project “with all the regulatory required boilerplate,” according to Vogel. Throughout
the project, they collaborated with the customer to specify the use cases and examples:

We sit with the customer in the team room and try to work out one
use case at a time along with the examples. Discussions are about detailed
examples. We end up putting in some details after that and the customer
reviews it.

This approach allows the team to get a sign-off on something that closely resembles tra-
ditional specifications without overprescribing them. Details come from an iterative and
collaborative process; the backlog the customer works with is based on the high-level use
cases and the details come later.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	

59 Chapter 4 Initiating the changes

Introduce use case realizations
When: All details are required for sign-off

Matthew Steer worked on several projects based on a structured process (Rational Uni-
fied Process). The process required full sign-off on all the details, and specifications were
captured as use cases. In addition to use cases, Steer and his team introduced use case
realizations that effectively illustrated use cases with examples. This allowed them to use
Specification by Example in a structured process. Steer says:

The requirements were captured as use cases and supplementary
specifications for nonfunctional requirements—quite traditional, by-the-
book capture. With use cases we produced use case realizations, examples
and scenarios that use cases would fulfill. We created tables with lots of
parameters and hooked up data from there and then had flows to show
how the use case would be realized. Use case realization was a working
version of what that meant to the business, using real scenarios.

Adding details such as use case realizations is a good idea to get Specification
by Example into a formal process—under the radar of the methodology police.
It can also help to implement the ideas of Specification by Example when
commercial contracts require sign-off on requirements but still allow for later
variability in detail.

Steer’s team, as well as others mentioned in the previous section, used examples—even if
disguised as use-case realizations—instead of only using use cases or tests made against
more generic requirements. This made their delivery process more effective.

Technically, a living documentation system instantly provides traceability in re-
quirements changes, because teams use version control systems to store their executable
specifications. Iterative development is generally at odds with up-front sign-offs, but
you can use the tips from this section to deal with that while the process changes and
the delivery team gains trust from the business users. The visibility that a living docu-
mentation system provides, along with collaboration on specifications, should help to
eliminate the need for sign-offs.

Warning signs
You can track your progress to check if you’re implementing Specification by Example
properly. As with any metrics, make sure that metrics themselves don’t become a goal;
otherwise, you’ll locally optimize a process to get the numbers right but hurt the long-
term results. Use these as measurements to check if the process needs adjustment.

	 	 	

	

60 Specification by Example

Watch out for tests that change frequently

At XPDay 2009, Mark Striebeck talked about what Google is doing to advance its test-
ing practices.8 One of the ideas that impressed me was how they measure whether a
(unit) test is good or not. When a test breaks, they track changes in the source code until
the test starts passing again. If the underlying code was changed, they consider the test
to be a good one. If the test changed and the code did not change, they consider it to
be bad. By collecting these statistics, they hope to analyze unit test patterns and identify
what makes a test good or bad.

I believe that the same criteria can be applied to executable specifications. If a vali-
dation fails and you change the code, that means you found and fixed a problem. If a
validation fails and you have to change the specification, that means it wasn’t written
properly.

Business rules should be much more stable than the technology that implements
them. Watch out for executable specifications that change frequently. Look for ways to
write them better.

You can also measure the time your team spends on refactoring specifications and
related automation code in order to keep it under control. If you spend a significant
portion of your iteration doing this, look for better ways to automate tests (see chapter
9 for some good tips).

Watch out for boomerangs

Another good metric to check if you’re doing something wrong is checking for the pres-
ence of boomerangs. A boomerang is a story or a product backlog item that comes back
into the process less than a month after it was released. The team thought it was done,
but it needs rework. But it’s not a boomerang when the business later extends existing
requirements to incorporate innovation as the product evolves.

Once you implement Specification by Example, the number of boomerangs should
be reduced significantly until they’re a rare occurrence. Collaboration on specifications
and better alignment of testing and development should eliminate wasteful rework
caused by misunderstanding. Reviewing your boomerang trends over several months
will show you how much you’ve improved. If the rate doesn’t drop, it means that there’s
something wrong with the way you implemented the process.

Tracking boomerangs doesn’t take a lot of time, usually a few minutes every itera-
tion, but it can help a lot when the time comes to challenge or prove that Specification
by Example is working. In larger companies, it can also provide compelling evidence
that it’s worth doing with other teams. For more complex statistics, you can also track

8 http://gojko.net/2009/12/07/improving-testing-practices-at-google

http://gojko.net/2009/12/07/improving-testing-practices-at-google

	 	 	 	 			 	 	 														

		 	 	 	 	 	
	 	

61 Chapter 4 Initiating the changes

the time spent on boomerangs, because this figure directly translates into wasted devel-
opment/testing time and money. If people complain about the time spent on automat-
ing executable specifications as unnecessary overhead, compare that to the time they
spent working on boomerangs several months earlier. This should be more than enough
to build a business case for Specification by Example.

Once the number of boomerangs goes down and they occur relatively rarely, you
can stop tracking them. If a boomerang occurs, try to understand where it’s coming
from. One of my clients had many boomerangs coming from their financial depart-
ment. This pointed to a communication problem with that particular part of the com-
pany; as a result, they looked for better ways to engage the department.

Tracking boomerangs is also a good way to build a business case for introducing
Specification by Example. It can help a team pinpoint the waste caused by vague require-
ments and functional gaps in specifications.

Watch out for organizational misalignment

Many teams started implementing Specification by Example as a way to better align
their activities with iterations. After you become familiar with executable specifications
and the automation code becomes stable, you should be able to implement a story and
completely finish testing it (including manual exploratory testing) inside the same itera-
tion. If your testers are lagging behind development, you’re doing something wrong.
A similar warning sign is misaligned analysis. Some teams start analysis ahead of the
relevant iteration, but they still have regular intervals and flow. Analyzing too much
up front, analyzing things that won’t be implemented immediately, or being late with
analysis when details are needed are signs that the process is wrong.

Watch out for just-in-case code

In Lean Software Development 9 Mary and Tom Poppendieck wrote that the biggest
source of waste in software development is just-in-case code—software that was writ-
ten without being needed. I’m not sure whether it’s the biggest source of waste, but I’ve
certainly seen lots of money, time, and effort wasted on things that nobody needed or
asked for. Specification by Example significantly reduces this problem because it helps
us build a shared understanding of what we need to deliver. Jodie Parker says that the
conversations and collaboration on specifications helped her team achieve just that:

9 Mary Poppendieck and Tom Poppendieck, Lean Software Development: An Agile Toolkit
(Addison-Wesley Professional, 2003).

	 	 	

62 Specification by Example

When the developers got a story card, they’d very much want to
deliver everything within it, to make it technically as fabulous as possible,
even though the steer was “do the minimal thing possible to get the value
given.” It’s got to be efficient, but we can always bring in the stories later to
refine it. This was addressed using conversations and continually working
out if we’re able to draw the business model that we’re trying to achieve.
By domain modeling you can very easily break down this into tasks. Those
tasks are then the only thing you can do. Because the tasks are small, you
can go off on one of them, but if you do it’s very easily spotted by the rest
of the team and the team would speak up. When someone’s been on a task
for several days, we’d have that conversation in the standup.

Watch out for people who implement more than what was agreed on and specified with
examples. Another good way to avoid just-in-case code is by discussing not only what
you want to deliver but also what’s out of scope.

Watch out for shotgun surgery

Shotgun surgery is a classic programming antipattern (also called code smell) that occurs
when a small change to one class requires cascading changes in several related classes.
This telling sign can be applied to living documentation; if a single change in produc-
tion code requires you to change many executable specifications, you’re doing something
wrong. Organize your living documentation so that one small change in code leads to
one small change in tests (see “Listen to your living documentation” in chapter 11 for
some good tips on how to do so). This is one of the key steps to reducing maintenance
costs of automation over the long term.

Remember

• Specification by Example is a good way to provide development teams with
just-in-time specifications, so it’s a key factor for success with short iterations
or flow-based development.

• Handle small chunks of software efficiently to enforce quick turnaround time
and feedback.

• Emphasize effective, efficient communication instead of long, boring

documents.

• Integrate cross-functional teams where testers, analysts, and developers work
together to build the right specification of the system.

• Plan for automation overhead upfront.

PART 2
�

Key process patterns
�

	 	 	 	

		 	 	 	 	 	 	 	
		 	 	 	 	 	

	 	

5
Deriving scope from goals

T he F-16 Fighting Falcon is arguably the most successful jet fighter ever de-
signed. This is all the more remarkable because it succeeded against all odds.
In the 70s, when the F-16 was designed, jet fighters had to be built for speed;

range, weaponry, and maneuverability were of little importance to get a production
contract.1 Yet it was the range and maneuverability of the F-16 that made it ideal for its
role in combat and ensured its success.

In 97 Things Every Architect Should Know,2 Einar Landre quotes Harry Hillaker,
the lead designer of the F-16, saying that the original requirement for the aircraft was
that it reach speeds of Mach 2-2.5. When Hillaker asked the U.S. Air Force why that
was important, they responded that the jet had to “to be able to escape from combat.”
Although Hillaker’s design never got above Mach 2, it allowed pilots to escape from
combat with superior agility. It featured many innovations, including a frameless bubble
canopy for better visibility, a reclined seat to reduce the effect of g-forces on the pilot,
a display that projects combat information in front of the pilot without obstructing his
view, and side-mounted control sticks to improve maneuverability at high speed. With
these features, the F-16 was superior to alternative designs—and less expensive to pro-
duce. It won the design competition. More than 30 years later, it’s still in production.
With more than 4,400 aircraft sold to 25 countries,3 the model is a great commercial
success. It’s also one of the most popular fighter jets and is often featured in action films,
such as X2 and Transformers: Revenge of the Fallen.

The F-16 was successful because the design provided a better and cheaper solution
than what the customer asked for. The original requirements, including the demand for
Mach 2.5 speed, formed one possible solution to a problem—but this problem wasn’t

1 See Kev Darling’s book F-16 Fighting Falcon (Combat Legend) (Crowood Press, 2005).
2 Richard Monson-Haefel, 97 Things Every Software Architect Should Know (O’Reilly Media,

2009).
3 See http://www.lockheedmartin.com/products/f16

65

http://www.lockheedmartin.com/products/f16

	 	 	

66 Specification by Example

effectively communicated. Instead of implementing the requirements, the designers
sought a greater understanding of the problem. Once they had it, they could pinpoint
the real goals and derive their design from those, rather than from suggested solutions
or arbitrary expectations about functionality. That’s the essence of successful product
design, and it’s just as important in software design as in aircraft development.

Most of the business users and customers I work with are inclined to present re-
quirements as solutions; rarely do they discuss goals they want to achieve or the specific
nature of problems that need solutions. I’ve seen far too many teams suffer from the
hazardous misconception that the customers are always right and that what they ask for
is set in stone; this leads teams to blindly accept suggested solutions and then struggle to
implement them. Successful teams don’t do this.

Like the F-16 designers, successful teams push back for more information about the
real problem and then collaborate to design the solution. They do this even for scope.
Scope implies a solution. Instead of passing the responsibility for defining scope onto
someone else, successful teams are proactive and collaborate to determine good scope
with the business users, so that their goals are met. This is the essence of deriving scope
from goals.

Collaborating on deriving scope from goals is undoubtedly the most controversial
topic in this book. In the last five years, the surge in popularity of value chains in soft-
ware development has increased awareness of the idea of collaborating on scope and de-
riving it from business goals. On the other hand, most teams I work with still think that
project scope isn’t under their control and expect customers or business users to fully
define it. In the course of my research for this book, I found a pattern of teams deriving
their project scope from goals collaboratively—but this practice is much less common
than other key patterns.

I originally thought about leaving this chapter out. I decided to include it for three
reasons:

• Defining scope plays an important role in the process of building the right
software. If you get the scope wrong, the rest is just painting the corpse.

• In the future, this will be one of most important software development topics,
and I want to raise awareness about it.

• Defining scope fits nicely into designing processes from value chains, which are
becoming increasingly popular because of lean software development.

In the following two sections I present techniques for influencing scope for teams that
have direct control over it and for teams that don’t. Teams that have high-level control
of their project scope can be proactive and begin to build the right scope immediately.
Unfortunately, many teams in several of the large organizations I work with don’t have
that kind of control—but this doesn’t mean they can’t influence scope.

	 	 	 	 			 	 	 	 														

		 	 	 	 	

67 Chapter 5 Deriving scope from goals

Building the right scope
�
Use cases, user stories, or backlog items provide a broad definition of a project’s scope.
Many teams consider such artifacts to be the responsibility of the business users, product
owners, or customers. Asking business users to provide the scope is, in effect, relying
on individuals who have no experience with designing software to give us a high-level
solution. Designing a solution is one of the most challenging and most vital steps. Now
is the time for a mandatory Fred Brooks quote: In The Mythical Man-Month 4 he wrote,
“The hardest single part of building a software system is deciding precisely what to
build.” Albert Einstein himself said that “the formulation of a problem is often more
essential than its solution.”

Currently, user stories are the most popular way to define the scope for agile and lean
projects. User stories did a fantastic job of raising awareness of business value in software
projects. Instead of asking business users to choose between developing an integration
platform and building transaction CRUD (Create Update Delete) screens, user stories
allowed us to finally start talking to them about things that they could understand and
reasonably prioritize. It’s important to note that each story should have a clearly associ-
ated business value. Business users often choose that value statement arbitrarily (and it’s
usually the tip of the iceberg). But when we know what a story is supposed to deliver,
we can investigate that further and suggest an alternative solution. Christian Hassa of
TechTalk explains:

People tell you what they think they need, and by asking them “Why”
you can identify new implicit goals they have. Many organizations aren’t
able to specify their business goals explicitly. However, once you derived
the goals, you should again reverse and derive scope from the identified
goals, potentially discarding the originally assumed scope.

This is the essence of a practice I call challenging requirements in Bridging the Commu-
nication Gap. I still think that challenging requirements is an important practice, but
doing so is reactive. Although that’s definitely better than passive—which best describes
the way most teams I’ve seen work with scope—there are emerging techniques and prac-
tices that allow teams to be much more proactive in achieving business goals. Instead of
reacting to wrong stories, we can work together with our business users on coming up
with the right stories in the first place. The key idea is to start not with user stories but
with business goals and derive scope from there collaboratively.

4 Fred Brooks, The Mythical Man-Month: Essays on Software Engineering (Addison-Wesley, 1975).

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

68 Specification by Example

Understand the “why” and “who”

User stories generally have three parts: “As a __ I want __ in order to __ .” Alternative
formats exist, but all have these three components.

Understanding why something is needed and who needs it is crucial to
evaluating a suggested solution.

The same questions can be applied to project scope on a much higher level. In fact,
answering those questions at a higher level can push a project into a
completely different direction.

Peter Janssens from iLean in Belgium worked on a project where
he was on the other end—he was the person giving requirements
in the form of solutions. He was responsible for an application that
stored local traffic sign information. It started as a simple Access da-
tabase for Belgium but quickly grew to cover most of the countries in

the world. The company had a data collector in each country, and they were all using
local Access databases, which were occasionally merged.

To make the work more efficient and prevent merging problems, they decided to
take the database online and make a web application to maintain it. They spent four
months contacting suppliers and comparing bids before finally selecting one offer. The
estimated cost for this application was 100,000 euros. But the project took a completely
different turn once they thought about who needed to use the application and why.
Janssens says:

The day before the go/no a guy from engineering asked again for the
problem, to understand it better. I said, “We need a web solution for the
central database.” He said, “No, no, let’s not jump to conclusions. Don’t
elaborate immediately which solution you want, please explain it to me.”
I explained again. And then he said, “So, your problem is actually that you
need a single source to work on because you are losing time on merging.”
“Yes,” I said, “correct.”

He had a second question: “Who is working on it?” I said, “Look, at this
moment we have 10 groups of countries, so 10 people.” We had a look at
the databases and understood that this type of traffic information doesn’t
change that often, maybe once or twice a year per country. He said, “Look
Peter, your problem will be solved by tomorrow.” By tomorrow he added
the database to their Citrix (remote desktop) server.

	 	 	 	 			 	 	 	 														

69 Chapter 5 Deriving scope from goals

The application had to support ten users in total, and they were using it only to update
traffic sign information, which changed infrequently. The Access application could cope
with the volume of data; the only real problem they had was merging. Once a technical
engineer understood the underlying problem, he could offer a much cheaper solution
than the one originally suggested. Janssens explains:

What I learned is that this was a real confrontation situation—it’s
always important to understand the core problem that leads to a request.
So understanding “why” is important. Eventually, the Citrix solution
came to him when we talked about the “who” question. On average there
was one user a month working on it.

Even at a scope level, the solution is already implied. Without going into the possible
user stories or use cases and discussing specifications for tasks, the fact that someone sug-
gested a web application implies a solution. Instead of spending five months selecting
a supplier and even longer to deliver the project, they solved the problem with a quick
fix that cost nothing. This is an extreme case, but it demonstrates that understanding
why someone needs a particular application and how they’ll use it often leads to better
solutions.

Understand where the value is coming from

In addition to helping us design a better solution, understanding where the value comes
from is immensely helpful when it comes to prioritization. Rob Park’s team at a large
U.S. insurance provider looks at prioritization only from a higher feature level, which
keeps them from going through the same process on the lower story level and saves a lot
of time. Park says:

We keep things at a high level, describe the business value and what’s
really core to the feature. We break the feature down into stories, which we
try to make as small as possible. An example of a feature would be: Deliver
proof of insurance as PDF for 14 states. The big thing I’ve been trying to
push, especially from the business side, is “how much is this worth, put
the dollar value behind it.” In that particular case we were able to get one
of the senior guys to say, “Well, 50% of the calls were for this and 50% of
those calls were for the proof of insurance cards, so 25% of the calls were
dealing with that.” They know how many calls they have and how much
they would be able to save by generating this PDF instead of having to do
all the copy and paste stuff that they were doing before, so they were actu-
ally able to put some numbers behind this, which was really cool.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	

		 	 	 	 	 	
	 	 	

70 Specification by Example

Raising the discussion to the level of the goals allows teams to deal with scope
and priorities more efficiently than just doing so at the story level.

One good example of an area where this helps is effort estimation. Rob Park’s team
found that discussing goals enabled them to stop wasting time on estimating effort for
individual stories:

We don’t really want to bother with estimating stories. If you start
estimating stories, with Fibonacci numbers for example, you soon realize
that anything eight or higher is too big to deliver in an iteration, so we’ll
make it one, two, three, and five. Then you go to the next level and say
five is really big. Now that everything is one, two, and three, they’re now
really the same thing. We can just break that down into stories of that size
and forget about that part of estimating, and then just measure the cycle
time to when it is actually delivered.

In Software by Numbers,5 Mark Denne and Jane Cleland-Huang describe a formal meth-
od for prioritization that’s driven by business value by dividing scope into Minimum
Marketable Features. From my experience, predicting how much money something is
going to earn is as difficult and prone to error as predicting how long it’s going to take
to implement that feature. But if your domain allows you to put numbers on features,
this will help get the business users involved. Asking them to prioritize features or even
business goals works better than asking them to prioritize low-level stories or tasks.

Understand what outputs the business users expect

When goals are hard to pin down, a useful place to start is the expected outputs of the
system: Investigate why they’re needed and how the software can provide them. Once
you nail down expected outputs, you can focus your work on ful-
filling the requirements that come with them. Analyzing why those
outputs are required leads to formulating the goals of the project.

Instead of trying to collaborate with business users on speci-
fying how to put things into the system, we should start with

examples of outputs. This helps engage business users in the

discussion and gives them a clear picture of what they’ll get
out of the system.

5 Mark Denne and Jane Cleland-Huang, Software by Numbers: Low-Risk, High-Return
Development (Prentice Hall, 2003).

	 	 	 	 			 	 	 	 														

71 Chapter 5 Deriving scope from goals

Wes Williams worked on a project at Sabre where a delay in building the user inter-
face caused a lot of rework:

The acceptance tests were written against a domain [application
layer], before our customer could see the GUI. The UI was delayed for
about four months. The customer thought completely differently about
the application when they saw the UI. When we started writing tests for
the UI they had much more in them than the ones written for the domain
[layer]. So the domain code had to be changed, but the customer assumed
that that part was done. They had their test there, they drove it and it was
passing, and they assumed it was done.

Expected outputs of a system help us discover the goals and determine exactly what
needs to be built to support them. Adam Geras used this idea to focus on building the
right thing even before agile projects:

We’ve used something that we call “report-first” on many of our proj-
ects, but it is at the epic story level and our experience with it is mostly
in the ERP implementation space. Not agile projects. It has served us
extremely well because the rework required to find that one data element
that was missing on a report can be extensive. We’ve been able to avoid
that rework by thinking about the outputs first.

Starting with the outputs of a system to derive scope is an idea from the BDD commu-
nity. This idea has been getting a lot of attention recently because it eliminates a com-
mon problem. On many of my early projects, we focused on process flow and putting
the data into the system initially. We left the end results of processes, such as reports,
for later. The problem with this approach is that the business users can become engaged
only when they see results at the visible output stage, which often causes rework. Work-
ing from the outputs ensures that the business users can always provide feedback.

Have developers provide the “I want” part of user stories
When: Business users trust the development team

The team at uSwitch collaborates with their business users to define
user stories. The business users specify the parts of the story that
name a stakeholder and an expected benefit, and the development
team specifies the part that implies a solution. In the standard
user story format, this would mean that the business users provide
direction for the “as a __” and “in order to __” statements, whereas
the developers provide content for the “I want __” statement.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

 	 	

 	 	 	

 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

72 Specification by Example

A great way to obtain the right scope for a goal is to firmly place the
responsibility for a solution on the development team.

If you are fortunate enough to have high-level control of project scope, make sure to in-
volve developers and testers in the discussions about it and focus the suggested solutions
on fulfilling clearly defined business goals. This eliminates a lot of unnecessary work
later on and sets the stage for better collaboration on specifications.

Parts of a user story

A user story describes how a user will get a specific value out of a system. User
stories are commonly used by teams to plan and prioritize the scope of short-
term work. They’re often defined in three parts:

• As a stakeholder

• In order to achieve something valuable

• I want some system function

For example, “As a marketing manager, so that I can market products directly to
customers, I want the system to request and record personal information when
customers register for a loyalty program.”

Different authors suggest different ordering and phrasing of these three parts,
but all agree that those three need to be captured. For the purposes of this
book, variations in ordering or naming in parts of a user story are irrelevant.

Collaborating on scope without high-level control
For most teams I work with, especially those in big companies, scope is something
passed to them from a higher instance. Many teams think that it’s impossible to argue
about business goals when they maintain only a piece of a large system. Even in those
situations, understanding what the business users are trying to achieve can help you
focus the project on things that really matter.

Here are some tips for effectively collaborating on project scope when you don’t
have a high-level control of the project.

	 	 	 	 			 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

73 Chapter 5 Deriving scope from goals

Ask how something would be useful

Stuart Ervine worked on a back-office application for a large bank that allowed business
users to manage their counterparty relationships in a tree-like hierarchy—a perfect ex-
ample of a small piece of a large system. Even then, they were able to push back on tasks
and get to the real requirements.

Ervine’s team was tasked with improving the performance of the hierarchy, which
sounds like a genuine business requirement with a clear benefit. But the team could
not replicate any performance issues on their part, so any serious improvements would
require infrastructural changes.

They asked the users to tell them how improved performance would be useful. It
turned out that the business users had been manually performing a complex calculation
by going through the hierarchy and adding account balances. They had to open and
close tree branches in the user interface for a large number of counterparties and add
account balances—a slow and error-prone calculation process.

Instead of improving the performance of the hierarchy, the team automated that
calculation for the business users. This made the calculation almost instantaneous and
significantly reduced the possibility of errors. This solution delivered better results and
was cheaper than the one originally requested.

Instead of a technical feature specification, we should ask for a high-level
example of how a feature would be useful. This will point us towards the real
problem.

In Bridging the Communication Gap, I advise asking why and repeating the question
until the answer starts mentioning money. I now think that asking for an example of
how a feature will be useful is a much better way to get to the same result. Asking why
something is needed can sound like a challenge and might put the other person in a
defensive position, especially in larger organizations. Asking how something would be
useful starts a discussion without challenging anyone’s authority.

Ask for an alternative solution

In addition to asking for an example of how something would be useful, Christian Hassa
advises discussing an alternative solution to get to the real business goals. Hassa explains:

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	
	 	 	 	

74 Specification by Example

Sometimes people still struggle with explaining what the value of a
given feature would be (even when asking them for an example). As a fur-
ther step, I ask them to give an example and say what they would need to
do differently (work around) if the system would not provide this feature.
Usually this helps them then to express the value of a given feature.

A good strategy for discovering additional options from a business perspective
is to ask for an alternative solution.

Asking for alternative solutions can make whoever is asking for a feature think twice
about whether the proposed solution is the best one. It should also start a discussion
about alternatives with the delivery team.

Don’t look only at the lowest level

Many teams, influenced by the need to slim down delivery items so
that they can fit into an iteration, now break down backlog items to a
low level. Although this helps streamline process flow, it might cause
the team to lose sight of the big picture.

As a process, Specification by Example works both for high-level

and lower-level stories. Once we have a high-level example of

how something would be useful, we can capture that as a high-level

specification. Such high-level examples allow us to objectively measure

whether we’ve delivered a feature.

Ismo Aro worked on a project at Nokia Siemens Networks where his team experienced
setbacks because they didn’t have higher-level specifications. He says:

User stories have to fit into the sprint. When there is a bunch of those
that are done, they’re tested in isolation. The larger user story isn’t actually
tested. When the user stories are small grained you can’t really tell from
the backlog whether things are really done.

Splitting larger user stories into smaller ones that can be delivered individually is good
practice. Looking at higher-level stories is still required in order to know when we’re done.
Instead of a flat, linear backlog, we need a hierarchical backlog to look at both levels.

Lower-level specifications and tests will tell us that we’ve delivered the correct logic
in parts; a higher-level acceptance test will tell us that all those parts work together
as expected.

	 	 	 	 			 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	

Chapter 5 Deriving scope from goals 75

Make sure teams deliver complete features
When: Large multisite projects

Wes Williams blamed the division of work for the problem de-
scribed in the section “Understand what outputs the business users
expect.” Teams delivered components of the system (in this case the
domain layer and the user interface), which made it hard to divide
the work so that they could discuss the expected output for each
team with their customers. So they reorganized work into teams
that could deliver complete features. Williams commented:

It took us about six months to put it to feature teams. This made a big
difference especially in the sense that it removed some duplication, a lot
of repeating, and a lot of rework. Fortunately, we already had a lot of tests
that helped us do this. We did have to go back and add features but it was
mostly adding—not changing.

When teams deliver features end-to-end, they can get more thoroughly engaged
with business users in designing scope and determining what needs to be built,
simply because they can discuss full features with the users. For more informa-
tion on feature teams, see the Feature Team Primer.6

Even without high-level control of project scope, teams can still influence what gets
built by:

• Actively challenging requirements

• Understanding the real business goals

• Understanding who needs what functionality and why

The result will not be as effective as it would be if the right scope had been derived from
business goals from the start. But this approach prevents unnecessary rework later in the
process and ensures that the business users get what they need.

Further information
At the moment there’s a lot of innovation in this field. True to the nature of this book,
I’ve only written about techniques utilized by the teams I interviewed.

6 http://www.featureteams.org

http://www.featureteams.org

	 	 	

		 	 	 	 	 	
	

	
			 	 	 	 	 	 	 	 	 	 	

		

		

76 Specification by Example

Emerging techniques deserve to be written about, but that’s material for another
book. To learn more about cutting-edge techniques for deriving scope from goals and
mapping out the relationship between them, look for resources on these topics:

• Feature injection—A technique to iteratively derive scope from goals through
high-level examples

• Effect mapping—A visualization technique for project scope through hierarchi-
cal analysis of goals, stakeholders, and features

• User story mapping—A hierarchical mapping technique for user stories that
provides a “big picture” view

Unfortunately, there’s little published material on any of the emerging practices. As far
as I know, the only published work about feature injection is a comic7 and the next best
thing is a set of scans from Chris Matts’s notebook on Picasa.8 The only published ma-
terial on effect maps is a book in Swedish with a poor English translation called Effect
Managing IT 9 and a whitepaper I published online.10 Jeff Patton features a lot of great
material about passive and reactive scoping problems on his blog,11 and he’s been writ-
ing a book on agile product design, which I hope will offer more coverage of this field.

Remember

• When you’re given requirements as tasks, push back: Get the information you
need to understand the real problem; then collaboratively design the solution.

• If you can’t avoid getting tasks, ask for high-level examples of how they would
be useful—this will help you understand who needs them and why, so you can
then design the solution.

• To derive the appropriate scope, think about the business goal of a milestone
and the stakeholders who can contribute or be affected by that milestone.

• Start with the outputs of a system to get the business users more engaged.

• Reorganize component teams into teams that can deliver complete features.

• Investigate emerging techniques, including feature injection, user story
mapping, and effect mapping to derive scope from goals effectively.

7 See www.lulu.com/product/file-download/real-options-at-agile-2009/5949486 to download a
free copy.

8 http://picasaweb.google.co.uk/chris.matts/FeatureInjection#
9 Mijo Balic and Ingrid Ottersten, Effect Managing IT (Copenhagen Business School Press,

2007).

10 http://gojko.net/effect-map

11 www.agileproductdesign.com

http://www.lulu.com/product/file-download/real-options-at-agile-2009/5949486
http://picasaweb.google.co.uk/chris.matts/FeatureInjection#
http://gojko.net/effect-map
http://www.agileproductdesign.com
http:online.10

	 	 	 	

6
Specifying collaboratively

Specification by Example is conceptually different from traditional specification
or testing processes, especially in the way it relies on collaboration. Specification
by Example won’t work if we write documents in isolation, even if we imple-

ment all the other patterns described in this book.
In Bridging the Communication Gap, I focused on large, all-team specification work-

shops as the primary tool for collaborating on specifications. Probably the biggest lesson
I’ve learned in working on this book is that the situation is a lot more complicated. Dif-
ferent teams in different contexts have their own way of collaborating on specifications,
to the extent that even teams from the same group approach collaboration differently.

In this chapter, I present the most common models for collaboration on specifica-
tions, including big workshops, smaller workshops, and the most popular alternatives
to workshops. This will help you understand the benefits and downsides of various ap-
proaches to collaborative specifications. I also present good practices for preparing for
collaboration and ideas that will help you choose the right collaboration model for your
team. But let’s first deal with the question of whether collaboration is required at all.

In order to properly present an example of a collaboration on specifications, we also
need to review a related practice: illustrating using examples. You’ll read an example of
how a specification workshop would play out in chapter 7, in the section “Illustrating
using examples: an example.”

Why do we need to collaborate on specifications?
Specifying collaboratively is a great way to build a shared understanding of what needs
to be done and to ensure that different aspects of a system are covered by the specifica-
tions. Collaboration also helps teams produce specifications that are easy to understand
and tests that are easy to maintain.

77

	 	 	

78 Specification by Example

According to Jodie Parker, failure to collaborate on specifications was one of the
biggest problems when they started implementing Specification by Example at LMAX.
She says:

People just don’t realize how valuable a conversation could have been.
Developers initially thought that testers aren’t interested in the conversa-
tions because they were technical, but testers could learn about how to
interrogate the code base or they could advise on the potential impact on
other tests or changes to the language. Testers also thought that they were
too busy. You can only see how valuable this [collaborating on specifica-
tions] is by doing it.

Even with perfect understanding of the business domain covered by a software
system (and I’ve never seen a team with that), it’s still worth collaborating on speci-
fications. Analysts and testers may know what they want to specify and test but not
necessarily how to organize that information to make it easy to automate and drive
development—programmers will. Marta Gonzalez Ferrero worked on a project where
the testers initially wrote all the acceptance tests themselves, without thinking of them as
specifications. She says that, frequently, the developers couldn’t use such tests:

At the very beginning, testers were working on FitNesse tables and
handed them over to developers. This caused problems because develop-
ers were coming back saying that pages weren’t easy to understand or easy
to automate. After that, they started working together.

A failure to collaborate on defining specifications and writing acceptance tests is guar-
anteed to lead to tests that are costly to maintain. This was one of the most important
lessons about test design for Lisa Crispin. She explained:

Whenever we had to make a change, we had too many tests [execut-
able specifications] that we had to change. It’s hard to refactor when you
have many tests. I should have paired with developers to help me design
the tests. I could easily formulate the questions; I see what’s wrong. Tes-
ters knew basic concepts as Don’t Repeat Yourself but didn’t have a good
understanding of the tools.

Because Crispin didn’t collaborate with developers on writing and automating execut-
able specifications, she wrote too many specifications and they weren’t automated in a
way that made long-term maintenance easy.

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

79 Chapter 6 Specifying collaboratively

Many teams I interviewed made similar mistakes early on. When developers wrote
specifications in isolation, those documents ended up being too closely tied to the soft-
ware design and hard to understand. If testers wrote them in isolation, the documents
were organized in a way that was hard to maintain. In contrast, successful teams quickly
moved on to more collaborative work models.

The most popular collaborative models
Although all the teams I interviewed collaborated on specifications, the ways they ap-
proached that collaboration varied greatly, from large all-hands workshops to smaller
workshops, and even to informal conversations. Here are some of the most common
models for collaboration along with the benefits the teams obtained.

Try big, all-team workshops
When: Starting out with Specification by Example

Specification workshops are intensive, hands-on domain and scope exploration exercises
that ensure that the implementation team, business stakeholders, and domain experts
build a consistent, shared understanding of what the system should do. I explain them
in detail in Bridging the Communication Gap. The workshops ensure that developers and
testers have enough information to complete their work for the current iteration.

Big specification workshops that involve the entire team are one of the most
effective ways to build a shared understanding and produce a set of examples
that illustrate a feature.

During these workshops, programmers and testers can learn about the business domain.
Business users will start understanding the technical constraints of the system. Because
the entire team is involved, the workshops efficiently use business stakeholders’ time and
remove the need for knowledge transfer later on.

Initially, the team at uSwitch used specification workshops to facilitate the adoption
of Specification by Example. Jon Neale describes the effects:

It particularly helped the business guys think about some of the more
obscure routes that people would take. For example, if someone tried to
apply for a loan below a certain amount, that’s a whole other scenario
[than applying for a loan in general]. There’s a whole other raft of business
rules that they wouldn’t have mentioned until the last minute.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

		 	 	 	 	 	

	 	

80 Specification by Example

Specification workshops helped them think about those scenarios up front
and helped us go faster. It also helped the development team to interact
with the other guys. Having that upfront discussion helped drive the whole
process—there was a lot more communication straight away.

Implementing Specification workshops into PBR workshops

Product Backlog Refinement (PBR) workshops are one of the key elements of
well-implemented Scrum processes. At the same time, I’ve found that most
teams that claim to run Scrum actually don’t have PBR workshops. PBR work-
shops normally involve the entire team and consist of splitting large items on
the top of the backlog, detailed analysis of backlog items, and re-estimation. In
Practices for Scaling Lean and Agile,† Bas Vodde and Craig Larman suggest that
PBR workshops should take between 5 and 10 percent of each iteration.

Illustrating requirements using examples during a Product Backlog Refinement
workshop is an easy way to start implementing Specification by Example in
a mature Scrum team. This requires no additional meetings and no special
scheduling. It’s a matter of approaching the middle portion of the PBR workshop
differently.

The Talia team at Pyxis Technologies runs their workshops like this. André
Brissette explains this process:

‘‘This usually happens when the product owner and the Scrum
master see that the top story on the backlog is not detailed enough. For
example, if the story is estimated at 20 story points, they schedule a
maintenance workshop during the sprint. We think that it’s a good habit
to have this kind of a session every week or every two weeks in order to
be certain that the top of the backlog is easy to work with. We look at the
story; there is an exchange between the product owner and the develop-
ers on the feasibility of it. We draw some examples on the whiteboard,
identify technical risk and usability risks, and developers will have to
make an evaluation or appraisal of the scope. At this time we do planning
poker. If everyone agrees on the scope of the feature and the effort that
it will take, then that’s it. If we see that it is a challenge to have a com-
mon agreement, then we try to split the story until we have items that are
pretty clear and the effort is evaluated and agreed to. ’’† Craig Larman and Bas Vodde, Practices for Scaling Lean & Agile Development:

Large, Multisite, and Offshore Product Development with Large-Scale Scrum
(Pearson Education, 2010).

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	
	 	 	 	 	

		 	 	 	 	 	 	
	 	

Chapter 6 Specifying collaboratively 81

Large workshops can be a logistical nightmare. If you fail to set dates on a calendar up
front, people might plan other meetings or not be readily available for discussions. Reg-
ularly scheduled meetings solve this issue. This practice is especially helpful with senior
stakeholders who want to contribute but are often too busy. (Hint: call their secretary to
schedule the workshops.)

If you have a problem getting enough time from business users or stakeholders, try
to fit into their schedule or work on specifications during product demos when they’re
in the room. This is also effective if the business users and delivery team don’t work from
the same location.

Large workshops are an effective way to transfer knowledge and build a shared
understanding of the requirements by the entire team, so I highly recommend them for
teams that are starting out with Specification by Example. On the other hand, they cost
a lot in terms of people’s time. Once the process matures and the team builds up domain
knowledge, you can move on to one of the easier alternatives.

Try smaller workshops (“Three Amigos”)
When: Domain requires frequent clarification

Having a single person responsible for writing tests, even
with reviews, isn’t a good approach if the domain is complex
and testers and programmers frequently need clarification.

Run smaller workshops that involve one developer, one
tester, and one business analyst.

A popular name for such meetings is Three Amigos. Janet Gregory and Lisa Crispin
suggest a similar model for collaboration in Agile Testing,1 under the name The Power
of Three. (I used to call such workshops Acceptance Testing Threesomes until people
started complaining about the innuendo.)

A Three Amigos meeting is often sufficient to get good feedback from different
perspectives. Compared to larger specification workshops, it doesn’t ensure a shared
understanding across the entire team, but it’s easier to organize than larger meetings
and doesn’t need to be scheduled up front. Smaller meetings also give the participants
more flexibility in the way they work. Organizing a big workshop around a single small
monitor is pointless, but three people can sit comfortably and easily view a large screen.

1 Lisa Crispin and Janet Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams
(Addison-Wesley Professional, 2009).

	 	 	82 Specification by Example

To run a Three Amigos meeting efficiently, all three participants have to share a
similar understanding of the domain. If they don’t, consider allowing people to prepare
for the meeting instead of running it on demand. Ian Cooper explains this:

The problem with organizing just a three-way is that if you have an
imbalance of domain knowledge in the team, the conversation will be led
by the people with more domain expertise. This is similar to the issues you
get with pairing [pair programming]. The people knowledgeable about
the domain tend to dominate the conversation. The people with less do-
main expertise will sometimes ask questions that could have quite a lot of
interesting insight. Giving them an option to prepare beforehand allows
them to do that.

A common trick to avoid losing the information from a workshop is to produce some-
thing that closely resembles the format of the final specification. With smaller groups,
such as the Three Amigos, you can work with a monitor and a keyboard and produce
a file. Rob Park worked on a team at a large U.S. insurance provider that collaborated
using Three Amigos. Park says:

The output of the Three Amigos meeting is the actual feature file—
Given-When-Then. We don’t worry about the fixtures or any other layer
beneath it, but the acceptance criteria is the output. Sometimes it is not
precise—for example, we know we’d like to have a realistic policy number
so we would put in a note or a placeholder so we know we’re going to have
a little bit of cleanup after the fact. But the main requirement is that we’re
going to have all these tests in what we all agree is complete, at least in
terms of content, before we start to code the feature.

Stuart Taylor’s team at TraderMedia has informal conversations for each story and
produces tests from that. A developer and a tester work on this together. Taylor explains
the process:

When a story was about to be played, a developer would call a QA
and say, “I’m about to start on this story,” and then they would have a
conversation on how to test it. The developer would talk about how he is
going to develop it using TDD. For example, “For the telephone field, I’ll
use an integer.” Straightaway the QA would say, “Well, what if I put ++,
or brackets, or leading zeros, etc.”

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

83 Chapter 6 Specifying collaboratively

The QA would start writing [acceptance] tests based on the business ac-
ceptance criteria and using the testing mindset, thinking about the edge
cases. These tests would be seen by the BA and the developer. During
showcasing we’d see them execute.

Producing a semiformal test collaboratively ensures that the information won’t get dis-
torted during automation later on. It also helps to share knowledge about how to write
good specifications with examples; this is only feasible if the entire group can sit around
a single monitor and a keyboard. Don’t try to draft semiformal documents in an all-
hands workshop, because it won’t encourage everyone to get involved.

Teams that work on mature products and already have a good knowledge of
the target domain don’t necessarily have to run meetings or have separate con-
versations to discuss the acceptance criteria for a story. Developers and testers
might not necessarily need to provide as much input up front into the specifica-
tions, and they can resolve small functional gaps and during implementation.
Such teams can collaborate with informal conversations or reviews.

Pair-writing
When: Mature products

Even in cases where the developers knew enough to work without big workshops, teams
found it useful to collaborate on writing specifications with examples.

Analysts can provide the correct behavior but developers know the best way to
write a test so that it’s easy to automate later and fits into the rest of the living
documentation system.

Andrew Jackman’s team at BNP Paribas works on a relative-
ly mature product. They have experimented with different
models of writing tests and concluded that they need to get
both business analysts and developers involved in writing the
tests. He says:

When developers were writing the tests, it was easy to misunderstand
what the story is about. If you don’t have the interaction with the business
analysts, it’s only the developers’ view of a thing. We moved to BAs writ-
ing the tests and that made a big difference. The challenge is when they
write a story, that story might influence a number of existing tests, but

	 	 	

	 	 	 	 	 	 	

84 Specification by Example

they can’t foresee that. The BAs like to write a test that shows a workflow
for a single story. Generally that leads to a lot of duplication because a lot
of the workflows are the same. So we move bits of the workflow into their
own test.

Some teams—particularly those in which the business analysts cause a bot-
tleneck or don’t exist at all—get testers to pair with programmers on writ-
ing tests. This gives the testers a good overview of what will be covered by execut-
able specifications and helps them understand what they need to check separately
The team at Songkick is a good example. Phil Cowans explains their process:

QA doesn’t write [acceptance] tests for developers; they work
together. The QA person owns the specification, which is expressed
through the test plan, and continues to own that until we ship the
feature. Developers write the feature files [specifications] with the
QA involved to advise what should be covered. QA finds the holes in
the feature files, points out not covered, and also
produces test scripts for manual testing.

things that are

Pairing to write specifications is a cheap and efficient way to get several different per-
spectives on a test and avoid tunnel vision. It also enables testers to learn about the best
ways to write specifications so that they’re easy to automate, and it allows developers to
learn about risky functional areas that need special attention.

Have developers frequently review tests before an iteration
When: Analysts writing tests

Get a senior developer to review the specifications.

The business users that work with Bekk Consulting on the Norwegian Dairy Herd
Recording System don’t work with developers when writing acceptance tests, but they
frequently involve developers in reviewing the tests. According to Mikael Vik, a senior
developer at Bekk Consulting, this approach gives them similar results:

We’re always working closely with them [business users] on defin-
ing Cucumber tests. When they take their user stories and start writing
Cucumber tests, they always come and ask us if it looks OK. We give
them hints on how to write the steps and also come up with suggestions

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

85 Chapter 6 Specifying collaboratively

on how our Cucumber domain language can be expanded to effectively
express the intention of the tests.

If developers aren’t involved in writing the specifications, they can spend more time
implementing features. Note that this increases the risk that specifications won’t contain
all the information required for implementation or that they may be more difficult to
automate.

Try informal conversations
When: Business stakeholders are readily available

Teams that had the luxury of business users and stakeholders sitting close by (and read-
ily available to answer questions) had great results with informal ad hoc conversations.
Instead of having big scheduled workshops, anyone who had a stake in a story would
briefly meet before starting to implement it.

Informal conversations involving only the people who will work on a
task are enough to establish a clear definition of what needs to be done.

“Anyone who has a stake” includes the following:

• The analysts who investigate a story

• The programmers who will work on implementing it

• The testers who will run manual exploratory tests on it

• The business stakeholders and users who will ultimately
benefit from the result and use the software

The goal of such informal conversations is to ensure that everyone involved has the same
understanding of what a story is about. At LMAX, such conversations happened in the
first few days of a sprint. Jodie Parker explains:

Conversations would be done on demand. You’ve got the idea and
your drawings, and you really understand how it is going to be imple-
mented. If you’ve not already written down the acceptance tests, a de-
veloper and a tester can pair on this. If the conversations didn’t happen,
things would end up being built but not being built right.

Some teams, such as the one at uSwitch.com, don’t try to flush out all the acceptance
criteria at this point. They establish a common baseline and give testers and developers
enough information to start working. Because they sit close to the business users, they
can have short conversations as needed (see chapter 12 for more information).

http:uSwitch.com

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

86 Specification by Example

Some teams decide whether to have an informal discussion or a larger specification
workshop based on the type of the change introduced by a story. Ismo Aro at Nokia
Siemens Networks used this approach:

We have an agreement to have ATDD test cases [specifications], not
necessarily a meeting. If the team feels it’s coming naturally, then it’s OK
not to do the meeting. If it seems harder and they need input from an-
other stakeholder, then they organize an ATDD meeting [Specification
workshop]. This might be due to the team knowing a lot about the do-
main. When you are adding a small increment to the old functionality, it’s
easier to figure out the test cases.

Preparing for collaboration
Collaborating on specifications is a great way to ensure shared understanding and flush
out intricate details that people would never think about in isolation. If the topic of dis-
cussion requires a lot of up-front analysis or the team members don’t have the same level
of knowledge, starting from scratch in the discussions can be inefficient and frustrating.
To address this, many teams introduced a preparatory phase, shown in figure 6.1, to
ensure that the features are described in enough detail to facilitate a fruitful discussion.

Figure 6.1 Teams generally fall into four groups depending on when they start working on
examples. Those who need more time for analysis and chasing open questions start earlier.

This preparation involves working with stakeholders upstream to prepare some initial
examples and initial analysis. Depending on the availability of team members, it can
be done by either a single person—often in an analyst role—or a small group of senior
people.

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	

Chapter 6 Specifying collaboratively 87

Hold introductory meetings
When: Project has many stakeholders

Teams with many stakeholders (for example, when the software is used by many depart-
ments inside a company or has several external customers driving requirements) in gen-
eral you should run an introductory meeting several days before the start of an iteration.
Some teams call this meeting pre-planning.

The purpose of an introductory meeting is to gather some initial feedback
on upcoming stories and filter the ones that are too vague to be accepted
into planning.

The introductory meeting isn’t supposed to deliver perfectly refined specifications
but to give the team enough time to gather external feedback on key issues that could
be quickly identified. This isn’t the iteration planning or Scrum planning meeting.
Running the introductory meeting several days before the start of a sprint gives the
team an opportunity to discuss open questions with remote stakeholders before the real
specification refinement or planning meeting.

Many teams define high-level acceptance criteria in this introductory meeting, with
bullet points rather than detailed examples. This helps focus the later work by specifying
the basic cases they will test.

With smaller teams, such as the team at ePlan Services, developers, stakeholders, the
project manager, and the product owner participate in this introductory meeting. With
larger teams or groups of teams, only a few people participate. At Sky Network Services,
which has six teams, each team sends two or three people to this meeting.

Involve stakeholders

A collaborative specification process works because it taps into the collective brain of

specifications in the same way.
Many teams involved their business analysts or prod-

uct owners, but not the customer stakeholders, in the dis-
cussions. In those cases, the teams consistently delivered
products that met the business analysts’ or product owners’
expectations. But these expectations often weren’t what the
end users wanted. As far as I’m concerned, business analysts are part of the delivery team,
not customer representatives.

business users and development team members and ensures that they all understand the

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

88 Specification by Example

To get the best results, actual stakeholders have to be involved in the collabo-
ration on specifications. They are the ones who can really make decisions.

When a project has many interested parties, all the requirements are often funneled
through a single person, typically called a product owner. This works well for scope and
prioritization but not specifications. Lisa Crispin’s team at ePlan Services ran into this
problem. She says:

The product owner wanted to own everything but at the same time
he can’t get everything right. He is doing the job of three or four people.
Nobody has the bandwidth to do everything. Sometimes we need an an-
swer to complete a story, but he can’t provide that answer. He didn’t un-
derstand the accounting requirements, for example. We still had to go and
talk to stakeholders directly to understand that.

He felt that we were going around him, so we had to really find the balance
of keeping the product owner in the loop and still getting the information
from the people who are going to be using that functionality. If there was
a difference, we had to get them in the room to discuss it.

A single person can’t possibly know everything about everything. Having a single deci-
sion maker on board to determine priorities is a must, but once the top-priority story gets
selected, the team must try to collaborate with the relevant stakeholders on specifications
for particular stories. In Practices for Scaling Lean and Agile, Larman and Vodde make the
distinction between clarification and prioritization. They argue that prioritization must
always be done by one person but that clarification can be done by the team itself.

It’s important to involve the end stakeholders even if the team thinks they know the
domain well enough to build good specifications by themselves. Mike Vogel worked on
a technical data management project where the developers understood parts of the do-
main and its technical constraints better than the end users. To meet the project sched-
ule, they were frequently forced to limit or exclude the stakeholders from collaboration
on specifications—which Vogel thinks was one of their biggest mistakes. He says:

We started doing too much of the test creation and definition of the
acceptance criteria ourselves. So we could set up the meta programming
that drove the system faster than them and we were under heavy schedule
pressure. But there would be subtleties that neither we nor the customer
understood, and they weren’t able to pick that up from the tests.

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

89 Chapter 6 Specifying collaboratively

If possible, include the actual stakeholders in the collaboration on specifications. This
will ensure that you get the right information from an authoritative or dependable
source and reduce the need for up-front analysis.

In larger organizations this might require some persuasion and politics, but it will
be worth it. If your team has one, work with the product owner on finding a way to get
in touch with stakeholders directly without interfering with the product owner’s stake-
holder management responsibilities.

Undertake detailed preparation and review up front
When: Remote stakeholders

Teams with remote stakeholders should have at least one person working on
preparing detailed examples ahead of the team.

In the teams I interviewed, the person who worked ahead of the team was typically a
business analyst or a tester. They worked with the stakeholders to analyze the require-
ments, agree on the structure of the examples, and capture the values for the most im-
portant cases. Teams working with vague requirements that needed a lot of analysis and
clarification also had one person working ahead of the team.

In most teams, a developer also reviewed the initial examples early to provide tech-
nical feedback. This guaranteed that the team detected most functional gaps and ques-
tions early on. Stakeholders could then answer these questions up front, so the team
wouldn’t get stuck when collaboratively reviewing a story.

Many teams failed to implement this step when they started out, especially if they
based their process on time-bound iterations. It seems logical that everything related to a
particular story should be done within a single sprint or a single iteration. If the domain
is complex, time-boxing both the specification and the development effort to a single
iteration can cause developers to get stuck frequently.

The Sierra team at BNP Paribas tried to time-box everything in the same iteration,
but they found this approach didn’t allow them to work efficiently. Instead, their busi-
ness analyst started working one step ahead of the rest of the team. Andrew Jackman
says:

Our project manager who’s effectively the product owner will have pre-
pared in advance the stories that he wants us to play. He and the business
analyst already had them for the next iteration up on the board, and the
business analyst went though preparing the acceptance tests. We used to not
do this, but when developers tried to write a [acceptance] test we suddenly
asked questions and found out that we were missing analysis.

	 	 	

90 Specification by Example

Putting the initial examples together ahead of an iteration also enabled the team mem-
bers to be better prepared for the collaborative discussion. Ian Cooper’s team at Beazley
uses this approach. Their business analysts and stakeholders are based in the United
States, but the development team is in the UK. He says:

Given the nature of the product and the fact that we’re serving U.S.
customers, time zones became an issue and there is no real easy access to
the customer. Business analysts are proxies and they often took questions
to answer later. Developers knew a lot about the domain, so analysts and
developers were running the show. Testers didn’t really participate.

We found it easier to get the analyst to do the first pass through what
was required and then come to the meeting. Testers will quite often run
through all possible scenarios and ask about edge cases. Testers are given
more time to read through stuff and understand it, to think about what
the issues might be. This enables them to participate much better.

If stakeholders can’t participate in the collaboration for specifications, then the risk that
the delivery team will misunderstand their goals increases substantially. To reduce risk,
teams with remote users performed more analysis up front than the teams who had di-
rect access to their business users. Doing so requires an analyst to work upstream with
the business users and stakeholders, so other team members may need to take over some
of the analysts’ downstream tasks.

If you decide to start analysis before the iteration, be sure that this responsibility
is assigned to a dedicated team member to avoid dragging the entire team into it; this
defeats the point of iteration scope.

Have team members review stories early
When: Analysts/domain experts are a bottleneck

If analysts or subject matter experts cause a bottleneck in the process, they won’t be able
to conduct much analysis before the relevant iteration. This might not be a problem if
the stakeholders are readily available to answer questions or if the product is mature;
functional gaps won’t appear late in development.

On the other hand, if the team finds that they don’t have
enough information to write the executable specifications,
someone has to provide analysis earlier. That someone doesn’t
necessarily have to be a business analyst or a subject matter expert.
It could be a tester or a developer.

	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

91 Chapter 6 Specifying collaboratively

Developers and testers can help to take the load off domain experts (when
they’re causing a bottleneck) and do a first-pass review to spot the common
problems. This increases the overall throughput of the team and also helps to
build cross-functional teams.

Clare McLennan worked on a web advertising project where the stakeholders were in
Germany and the team was in New Zealand—almost 12 hours apart. The testers played
the role of local analysts. They couldn’t make decisions for the customers, so they worked
ahead of the team. McLennan says:

To avoid the time zone problems we had to make sure that we have a
handle on a story. If the testers read through it and it makes sense to them,
they interrupt a programmer to make sure that it makes sense to them as
well.

For the Global Talent Management team at Ultimate Software, the product owner is
busy so the rest of the team helps with analysis work. A “cell” consisting of two develop-
ers and a tester reviews each story early on to prepare for the meeting with the product
owner, identifying any open questions. Maykel Suarez says that this approach helped
them use everyone’s time more efficiently:

The bigger team, around 17 people, put a lot of pressure on
decision-making. The solution was to create cells. Now a cell (one
tester, two developers) is able to make decisions more quickly. The flow
process allowed working on those preparation meetings in chunks
smaller than two-week iterations, usually just two-three stories. So,
having three people in a meeting for 15–30 minutes every 3–5 days
didn’t seem like a waste of time or resources.

Prepare only initial examples
When: Stakeholders are readily available

The teams with stakeholders who are readily available to answer questions didn’t spend
too much time preparing detailed examples up front. They still found it useful to iden-
tify some initial examples, to get the basic structure in place before the discussion.

Identifying initial examples gets the basic structure in place and helps
discussions run more efficiently.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

92 Specification by Example

André Brissette often uses examples provided by the external customers to start the
work on specifications for the Talia project at Pyxis Technologies. He’s the business
stakeholder for the development team and also works with external customers. When
the customers propose new functionality, they send examples of how the system would
work; those examples become part of the future specification.

The team at uSwitch works in the same location as their stakeholders, so they don’t
need a lot of up-front preparation. Anyone on the team can suggest a new story during
a stand-up meeting; the person who makes the suggestion often prepares basic examples
beforehand.

Having initial examples ready from the beginning helps run the discussion more
efficiently because the team doesn’t have to experiment with the best structure of ex-
amples to illustrate a requirement or identify key attributes. They can instead focus on
understanding the initial examples and extending them.

Don’t hinder discussion by overpreparing

A preparatory phase shouldn’t replace collaboration. It should just make the collabo-
ration more effective. Some teams prepared too much information up front because
testers approached the executable specifications from the perspective of combinatorial
functional regression checking. They specified every possible combination of input ar-
guments in the tests.

Complex specifications are hard to understand, so most people won’t be able to
identify functional gaps and inconsistencies in such specifications.

With complex specifications, the effect of up-front analysis will be similar to what oc-
curs when traditional requirements are handed down from analysts to developers. In-
stead of collaborating to build a shared understanding, developers just take the require-
ments, leading to misunderstanding and a higher probability that functional gaps won’t
be identified until late in the process.

Jodie Parker’s team at LMAX took preparation too far and ended up with examples
that seemed complete. This made them skip the discussions—and resulted in functional
gaps in specifications. Parker advises preparing “just enough” examples up front:

Because we were all very new to the process, at first our developers said
that it’s not enough information to work on. Then the business analysts
completely prescribed very much everything and our hands were tied.
When the time came to do any development on the cards, there was no
creativity, no way to do a simpler solution, because it was too prescribed.

	 	 	 	 			 	 														

93 Chapter 6 Specifying collaboratively

If you read a card and say, “OK, I completely understand that,” you just
go off and work, and you could have made a million and one assump-
tions. If you read a card and there is enough of “I’m not quite sure,” it
pushes you to have a conversation, drawing it out at the start of an itera-
tion, and then talking about different implementations and their effects.
The testers would then consider how this impacts tests. BAs could think
about what’s also coming up soon and see how that fits in. “Just enough”
means that your developer, BA, and QA are standing against a board and
really discussing how this needs to work.

Whether you decide to have someone work one week ahead to prepare initial examples
or hold an introductory meeting to identify open questions, remember that the goal is
to prepare for the discussion later, not replace it.

Choosing a collaboration model
I don’t think there’s a one-size-fits-all heuristic that will help you choose the best model
for your team, including the balance between individual up-front work and more hands-
on collaboration. After comparing the teams who had similar processes, I suggest basing
your decision on the following criteria:

• How mature is the product?

• How much domain knowledge is there in the team?

• How much analysis do typical changes require?

• How close are the business users to the development team? Are they readily
available to discuss and verify examples?

• Where’s the bottleneck in the process?

Immature products require big workshops and lots of up-front analysis. With immature
products, it’s important to get testers and developers to contribute to specifications more
actively, because the underlying system is changing frequently and they have insights
that the business users won’t have.

Mature products might allow for less analysis up front and other models of col-
laboration. A mature product probably means that there will be few surprises. Business
analysts and product owners most likely have a good idea of what the technology can
give them, and they can do a good job of preparing examples up front.

If the team is relatively new or if testers and developers don’t have a solid under-
standing of the business domain, it’s worth running big workshops. All-hands work-
shops are a great way to efficiently transfer the knowledge about the business domain
to the entire team. Once the team understands the business domain better, smaller and
more focused discussions might be sufficient.

	 	 	

94 Specification by Example

If typical changes require a lot of analysis, then someone in an analyst role should
work ahead of the team to prepare detailed examples with stakeholders. Otherwise, any
discussion during the workshops will end quickly and with too many open questions. If
relatively small and well-understood features normally come into development, prepar-
ing some basic examples up front to make the discussion run more smoothly might be
sufficient.

Teams with remote business users typically have to do more work up front than
those with business users who are readily available to answer open questions. If the
business users aren’t available for specification workshops at all, most questions and
functional gaps have to be identified and addressed up front.

Finally, there’s no point in overloading team members who are already a bottleneck
in the process. The teams where testing is a bottleneck should get developers and busi-
ness analysts much more engaged in up-front work. Likewise, the teams where business
analysts or subject matter experts are the bottleneck should get testers to help with up-
front analysis.

Remember

• Specification by Example relies heavily on collaboration between business
users and delivery team members.

• Everyone on the delivery team shares the responsibility for the right
specifications. Programmers and testers have to offer input about the
technical implementation and the validation aspects.

• Most teams collaborate on specifications in two phases: Someone works up front
to prepare initial examples for a feature, and then those who have a stake in the
feature discuss it, adding examples to clarify or complete the specification.

• The balance between the work done in preparation and the work done during
collaboration depends on several factors: the maturity of the product, the level
of domain knowledge in the delivery team, typical change request complexity,
process bottlenecks, and availability of business users.

	 	 	 	

7
Illustrating using examples

Examples are a good way to avoid ambiguities and communicate with precision.
We use examples in everyday conversation and in writing without even think-
ing about it—when I searched online for the phrase “for example,” Google

returned more than 210 million pages that use this term.
With traditional specifications, examples appear and disappear several times in the

software development process. Business analysts often get examples of existing orders,
invoices, and reports from business users, which they translate into abstract require-
ments. Developers invent examples to explain edge cases and clarify them with business
users or analysts and then translate the cases to code, without recording the examples.
Testers design test cases that are examples of how the system is expected to work; they
keep these examples to themselves and don’t communicate them to programmers or
analysts.

Everyone invents their own examples, but there’s nothing to ensure that these exam-
ples are even consistent, let alone complete. In software development, this is why the end
result is often different from what was expected at the beginning. To avoid this, we have
to prevent misinterpretation between different roles and maintain one source of truth.

Examples are a good tool for avoiding communication problems. We can avoid
playing the telephone game by ensuring that we capture all the examples—from start to
finish—and use them consistently in analysis, development, and testing.

Marta Gonzalez Ferrero was working as a test lead at Beazley when they intro-
duced Specification by Example. According to her, the development team was com-
mitting to more work than they could produce, and they often realized they need-
ed a lot more information than they were getting at the start of the implementation.
The situation was further complicated by the fact that they were running six-week
iterations, and the development team and the business analysts were on different
continents. The acceptance criteria that the programmers were receiving from the
business analysts was relatively abstract (for example, “make sure that for this business

95

	 	 	

		 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	

96 Specification by Example

unit all correct products are displayed”). Finding out that something important was
missing halfway through an iteration would seriously disrupt the output. One iteration end-
ed with customers saying that the team delivered something completely different from what
was expected. The last week of each iteration was reserved for the model office: effec-
tively, an iteration demonstration. Ferrero traveled to the United States for one model
office and worked with business analysts on illustrating requirements with examples for
two days. As a result, the team committed to 20% less work for the next iteration and
delivered what they promised.

“The feeling in the team was also much better,” said Ferrero. “Before that, [the de-
velopers] were working with a feeling that they were making it up as they go, and had to
wait for feedback from business analysts.” According to Ferrero, the amount of rework
dropped significantly after they started illustrating requirements using examples.

Ferrero’s wasn’t the only team to experience results like these. Almost all the teams
profiled in this book confirmed that illustrating requirements using examples is a much
more effective technique than specifying with abstract statements. Because examples are
concrete and unambiguous, they’re an ideal tool for making requirements precise—this
is why we use them to clarify meaning in everyday communication.

In Exploring Requirements,1 Gerald Weinberg and Donald Gause write that one of
the best ways to check if requirements are complete is to try designing black-box test
cases against them. If we don’t have enough information to design good test cases, we
definitely don’t have enough information to build the system. Illustrating requirements
using examples is a way to specify how we expect the system to work with enough de-
tail that we can check that assertion. Examples used to illustrate requirements are good
black-box tests.

From my experience, it takes far less time to illustrate requirements with examples
than to implement them. Concluding that we don’t have enough information to illus-
trate something with examples takes far less time than coming to the same realization
after trying to implement the software. Instead of starting to develop an incomplete
story only to see it blow up in the middle of an iteration, we can flush such problems out
during the collaboration on specifications while we can still address them—and when
the business users are still available.

In May 2009 I ran a three-hour workshop on Specification by Example2 during the
Progressive .NET tutorials. Around 50 people, mostly software developers and testers,
participated in this workshop. We simulated a common situation: A customer directs
the team to a competitor site and asks them to copy some functionality.

1 Gerald M. Weinberg and Donald C. Gause, Exploring Requirements: Quality Before Design
(New York, Dorset House, 1989).

2 See http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies

http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

97 Chapter 7 Illustrating using examples

I copied the rules of a blackjack game from a popular website and asked the par-
ticipants to illustrate those rules using examples. Although the requirements were taken
from a real website and fit on a single sheet of paper, they were ambiguous, redundant,
and incomplete. In my experience, this is often the case when requirements are captured
as Word documents.

The participants were divided into seven teams, and each team had only one person
with knowledge of blackjack. After the workshop, all the participants agreed that dis-
cussing realistic examples helped flush out inconsistencies and functional gaps. By run-
ning a feedback exercise (see sidebar), I measured the level of shared understanding. Six
out of seven teams came up with the same answers to difficult edge cases, even though
most people on the team had no previous exposure to the target domain. Illustrating
requirements with examples is a very effective way to communicate domain knowledge
and ensure a shared understanding. I’ve seen this effect on real software projects, as have
many teams that I interviewed for this book.

Feedback exercises

Feedback exercises are a good way to check whether a group of people has a
shared understanding of a specification. When someone suggests a special case
after a story has been discussed, the person running the workshop should ask
the participants to write down how they think the system should work. The en-
tire group then compares the answers. If they all match, everyone understands
the specification in the same way. If the answers don’t match, then it’s useful to
organize the results into clusters and get one person from each cluster to ex-
plain their answers. The discussion will reveal the source of misunderstanding.

Illustrating requirements using examples is a simple idea, but it’s far from easy to imple-
ment. Finding the right set of examples to illustrate a requirement turns out to be quite
a challenge.

In this chapter, I begin by putting things in perspective using an example of the
process. Then, I present good ideas for identifying the right set of examples to illustrate
a business function. Finally, I cover ideas for illustrating cross-cutting functionality and
concepts that aren’t easy to capture with precise values.

Illustrating using examples: an example
To clarify how illustrating a requirement using examples works, let’s take a look at an
example involving a fictional company, ACME OnlineShop. This is the only fictional
company in the book, but I had to invent one to keep the example simple. Acme is a
small web store whose development team started a Specification workshop. Barbara, a

	 	 	

98 Specification by Example

business analyst, spent some time the week before with Owen, the company owner, to
get some initial examples. She’s facilitating the workshop and introduces the first story:

BarBara: The next thing on the list is free delivery. We have arranged deal with
Manning to offer free delivery on their books. The basic example is this: If a
user purchases a Manning book, say Specification by Example, the shopping cart
will offer free delivery. Any questions?

David, a developer, spots a potential functional gap. He asks: Is this free deliv-
ery to anywhere? What if a customer lives on an island off South America? That
free delivery will cost us much more than we earn from the books.

BarBara: No, this isn’t worldwide, just domestic.

Tessa, a tester, asks for another example. She says: The first thing I’d check
when this comes for testing is that we don’t offer free delivery for all books. Can
we add one more case to show that the free delivery is offered only for Manning
books?

BarBara: Sure. For example, Agile Testing was published by Addison-Wesley. If
a user buys that, then the shopping cart won’t offer free delivery. I think this
is relatively simple; there isn’t a lot more to it. Can anyone think of any other
example? Can we play around with the data to make it invalid?

DaviD: There aren’t any numerical boundary conditions, but we could play
with the list in the shopping cart. For example, what happens if I buy both Agile
Testing and Specification by Example?

BarBara: You get free delivery for both books. As long as a Manning book is in
the shopping cart, you get free delivery.

DaviD: I see. But what if I buy Specification by Example and a fridge? That deliv-
ery would be much more expensive than our earnings from the book.

BarBara: That might be a problem. I didn’t talk about that with Owen. I’ll
have to get back to you on this. Any other concerns?

DaviD: Not apart from that.

BarBara: OK. Do we have enough information to start working, apart from
the fridge problem?

DaviD anD Tessa: Yes.

BarBara: Great. I’ll get back to you on that fridge problem early next week.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

99 Chapter 7 Illustrating using examples

Examples should be precise
Good examples help us avoid ambiguities. In order to do that, there must be no room
for misunderstanding. Each example should clearly define the context and how the
system should work in a given case and, ideally, describe something we can easily check.

Don’t have yes/no answers in your examples
When: The underlying concept isn’t separately defined

When describing processes, many teams I interviewed oversimplified examples by using
yes/no answers. This can be misleading and give people the false sense that they have
shared understanding when they don’t.

For example, TechTalk had this issue when illustrating the requirements for email
alerts in a web-based refund system. They had examples of conditions about when to
send emails, but they didn’t discuss the email contents. “The customer expected us to in-
clude the failing case and the resolution, and we didn’t capture that,” said Gaspar Nagy,
a developer who worked on this system.

I ran a specification workshop for a major investment bank. The team was discuss-
ing how payments are routed to different systems. They started by listing examples in
a table with conditions on the left and different subsystems on the right, marking the
columns yes or no depending on whether the destination receives a transaction or not.
Instead of yes/no, I asked them to write down the key attributes of the messages sent
to each of the systems. At that point, several interesting cases came up that most of the
developers misunderstood. For example, instead of a transaction update, one of the
systems was expecting two messages: one to cancel an existing transaction and one to
book a new one.

Watch out for examples that have yes/no answers and try to rewrite them to be
more precise.

You can still leave yes/no in examples as long as the underlying concept is illustrated
separately. For example, one set of examples can tell you whether an email is sent or not,
while another set of examples illustrates the email’s contents.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

100 Specification by Example

Avoid using abstract classes of equivalence
When: You can specify a concrete example

Classes of equivalence (such as “less than 10”) or variables can create an illusion of
shared understanding. Without choosing a concrete example, different people might,
for example, be unclear on whether negative values are included or left out.

When equivalence classes are used as input parameters,
expected outputs have to be specified as formulas with variables
representing the input values. This effectively replicates the
description of the functionality. It doesn’t provide a concrete
example to verify it; the value of illustrating using examples
is lost.

Classes of values have to be translated into something concrete for automation,
which means that whoever automates the validations will have to translate the specifica-
tions into automation code. This means more opportunities for misunderstanding and
misinterpretation.

From my experience, the things that seem obvious in requirements can trick us the
most. Confusing concepts are discussed and explored. But the ones that seem clear—
with different people understanding them differently—will go undetected and cause
problems.

Instead of classes of equivalence, always use a representative concrete example.
Concrete examples allow us to automate the validation of specifications without
changing them and ensure that all team members have a shared understanding.

You can safely use equivalence classes as expected outputs, particularly when the process
you’re trying to describe isn’t deterministic. For example, stating that the result of an
operation should be between 0.1 and 0.2 still makes a specification testable. A concrete
value makes it more precise if the process is deterministic; try to use concrete values,
even for outputs.

Examples should be complete
We should have enough examples to describe the entire scope of a feature. Expected be-
havior in primary business cases and simple examples are a good start, but they’re rarely
the sum of what needs to be implemented. Here are some ideas on how to extend an
initial set of examples to provide a full picture of functionality.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

Chapter 7 Illustrating using examples 101

Experiment with data

Once you have a set of examples that you think is complete, look at the struc-
ture of the examples and try to come up with valid combinations of inputs that
could violate the rule. This helps reveal what you might have missed, making
the specification more complete and stronger.

If the examples include numerical values, try to use large and small numbers around
different boundary conditions. Try to use a zero or negative numbers. If the examples in-
clude entities, consider whether you can use more than one object, whether an example
without that entity is still valid, and what happens if the same entity is specified twice.

When collaborating on specifications, I expect testers in particular to help with
finding examples like these. They should have techniques and further heuristics to iden-
tify potential problematic cases.

Many of the technical edge cases you identify won’t represent valid examples; that’s
fine. Don’t cover them in detail unless you’re demonstrating error messages for invalid
arguments (in which case these are valid examples for that business function). Thinking
about these different cases might flush out inconsistencies and edge cases you might not
have thought about earlier.

One risk of experimenting with data is that the output will have too many examples
with insignificant differences. This is why the next step, refining the specification (de-
scribed in the next chapter), is important.

Ask for an alternative way to check the functionality
When: Complex/legacy infrastructures

In complex IT systems, it’s easy to forget about all the places where you should send a
piece of information.

To test whether you have a good set of examples specifying

a story, ask the business users to think of an alternative way

to verify the implementation.

“How else would you be able to test this?” is a good question to
kick off that discussion. Bas Vodde also suggests asking, “Is there
anything else that would happen?” When I asked this question
in the same specification workshop discussed in “Don’t have yes/no answers in your ex-
amples,” we discovered a legacy data warehouse that some people thought should receive
the transaction and that others thought should be ignored. This discovery prompted us
to have a discussion and close this functional gap.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

102 Specification by Example

Pascal Mestdach had similar experiences on the Central Patient Administration
project at IHC. They often had problems when customers presumed data stored in a
new application would also be sent to the legacy application during the migration pe-
riod, but the team didn’t understand these requirements. Asking the customers for an
alternative way to test the feature would have revealed their expectation that they see the
information in the legacy system as well.

Asking for an alternative way to check functionality is also a useful way to help the
team discuss the best place to automate the validation.

Examples should be realistic
Ambiguities and inconsistencies are flushed out when we illustrate a feature with ex-
amples, because examples focus the discussion on real cases instead of abstract rules.
For this to work, the examples have to be realistic. Invented, simplified, or abstracted
examples won’t have enough detail or exhibit enough variation for this. Watch out for
abstract entities, such as “customer A.” Find a real customer who has the characteristic
you want to illustrate, or, even better, focus on the characteristic and not the customer.

Avoid making up your own data
When: Data-driven projects

Using real data is important on data-driven projects, when a great deal can de-
pend on slight variations and inconsistencies.

Mike Vogel from Knowledgent Group worked on a greenfield project using metadata-
driven ETL to populate a data repository for pharmaceutical research. They used Speci-
fication by Example, but both the team and the customer invented examples to illustrate
the functionality instead of looking at real data samples. He says the approach didn’t
help them avoid inconsistencies:

They [customer representatives] were making up examples; they didn’t
deal with real variations. They assumed they could do certain things and
left it out of examples. When the data from real systems came in, there
were always too many surprises.

This is an even greater problem with projects that involve legacy systems, because legacy
data often defies expected consistency rules (and rules of logic in general).

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

103 Chapter 7 Illustrating using examples

Jonas Bandi worked at TechTalk on rewriting a legacy application for school data
management where significant complexity resulted from understanding existing legacy
data structures and relationships. They expected that Specification by Example would
protect them from boomerangs (see “Watch out for boomerangs” in chapter 4) and
bugs, but this didn’t happen. They were inventing examples based on their understanding
of the domain. The real legacy data often had exceptions that surprised them. Bandi says:

Even when the scenarios [test results] were green and everything
looked good, we still had a lot of bugs because of the data from the legacy
application.

To reduce the risk of legacy data surprising the team late in the iteration, try to use realis-
tic data from the existing legacy system in the examples instead of specifying completely
new cases.

Using existing data might require some automated obfuscation of sensitive infor-
mation, and it has an impact on data management strategies for automation. For some
good solutions to this problem, see “Test data management” in chapter 9.

Get basic examples directly from customers
When: Working with enterprise customers

Teams that sell enterprise software to several customers
rarely have the luxury of involving customer representatives
in collaborative specification workshops. Product managers
collect requirements from different customers and decide on
release plans. This introduces the possibility of ambiguity
and misunderstanding. We can have perfectly precise and
clear examples that don’t capture what the customers want.

Ensure that the examples used to illustrate the specifications are realistic.
Realistic examples contain data that comes from the clients.

We can apply the same trick used to ensure shared understanding inside the team when
we work with external stakeholders. André Brissette uses customer emails as a starting
point for the discussion about automated dialogs in the Talia system:

They would write an email such as, “It would be easier if I could ask
this to Talia, and she would tell me this, and then I would be able to do
that.” In this case, the user provides the first draft of the dialog.

	 	 	

		 	 	 	 	 	 	 	 	 	 	 	 	

104 Specification by Example

Brissette records emails like these and uses them as the initial examples to illustrate
the required features. This ensures that the external stakeholders’ requests are satis-
fied. See figure 7.1 for an example of the resulting specification. Note that this example
should ideally be further refined later. See the section “Scripts are not specifications” in
chapter 8.

Figure 7.1 Example of a customer dialog used as a specification for the Talia system

Adam Knight’s team at RainStor uses this approach to develop an archiving system for
structured data. They work with customers to get realistic data sets and expected targets
for representative queries. When the customer can’t give them a specific use case, they
push back and ask for examples, sometimes organizing workshops with the custom-
ers. A common example when customers can’t give them a specific use case is when a
reseller who doesn’t yet have a buyer wants the system to support something because they
suspect it will make it easier to sell. One example is a request to mirror functionality
available in email archiving systems. Knight says:

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	
	 	 	

105 Chapter 7 Illustrating using examples

They looked at an email archiving system and said we need to be
able to work in the same way. An email archiving system would have
thousands of emails, but in our system you could have billions of records.
Do you want the same level of granularity? What about logging? That
is the most difficult kind of requirement. Generally we try to push back
and get examples. We arrange demos to prototype functionality and walk
through that.

To avoid ambiguities and misunderstanding between what the product manager thinks
the customers need and what they ask for, insist on examples when communicating
with customers. These examples can then be used to kick-start the discussion during
specification workshops. They should be included in the final executable specifications
to ensure that the customers’ expectations are met.

Examples should be easy to understand
A common mistake teams make when starting out with Specification by Example is to
illustrate requirements using complex and convoluted examples. They focus on captur-
ing realistic examples in precise detail and create huge, confusing tables with dozens of
columns and rows. Examples like these make it hard to evaluate consistency and com-
pleteness of specifications.

One of the main reasons I prefer examples over abstract statements as requirements
is that they allow me to think about functional gaps and inconsistencies. Making things
precise makes it easier to spot missing cases. This requires an understanding of the entire
set of examples for a particular feature. If the examples aren’t easy to understand, we
won’t be able to evaluate their completeness and consistency. Here are some ideas on
how to avoid that problem and still keep the examples precise and realistic.

Avoid the temptation to explore every combinatorial possibility

When teams start illustrating their requirements using examples, testers often misun-
derstand the purpose of that process and insist on covering every possible combination
of arguments. There isn’t much point in going through examples that illustrate existing
cases; that doesn’t improve understanding.

When illustrating using examples, look for examples that move the discussion
forward and improve understanding.

I strongly advise against discarding any examples suggested as edge cases without dis-
cussion. If someone suggests an edge case example that the others consider to have

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

		 	 	 	 	
	 	 	

106 Specification by Example

been covered already, there might be two possible reasons: Either the person making
the suggestion doesn’t understand the existing examples, or they have genuinely found
something that breaks the existing description that the others don’t see. In both cases,
it’s worth discussing the example to ensure that everyone in the room has the same level
of examples suggested as edge casesunderstanding.

Look for implied concepts

When you use too many examples to illustrate a single function or the examples are
complex, this often means that the examples should be described at a higher level of
abstraction.

Look at the examples and try to identify concepts that are hidden and implied.
Make those concepts explicit and define them separately. Restructuring exam-
ples like this will make the specifications easier to understand and will lead to
better software design.

Looking for missing and implied concepts and making them explicit in system design is
one of the core ideas of domain-driven design.3

I facilitated a workshop for a team that was rewriting an account-
ing subsystem and gradually migrating trades from the legacy system
to the new product. The workshop was focused on a requirement to
migrate Dutch trades to the new system. We started writing examples
on a whiteboard and quickly filled all the available space. Looking at
the examples, we discovered that we were explaining three things: how
to decide which trades are Dutch, how to decide which trades are mi-
grated, and what happens to a trade once it’s migrated.

Because we were illustrating all these things at the same time, we had a combinato-
rial explosion of relevant cases to deal with. When trying to summarize the examples,
we identified two implied concepts: a trade location and a migration status. We then
broke this requirement into three parts and used a separate, focused set of examples to
illustrate each part. We had a specification of how to decide whether a trade is Dutch or
not (how to calculate the location of a trade). Another focused set of examples illustrated
how the location of a trade affects its migration status. In that set, we used Netherlands
only once, without having to go through all the cases that constitute a Dutch trade. The
third set of examples illustrated the difference in processing between migrated and non-
migrated trades.

3 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Boston,
Addison-Wesley Professional, 2003).

	 	 	 	 			 	 	 														107 Chapter 7 Illustrating using examples

Splitting the specification this way allowed the team to significantly improve the
design of the system—because three different sets of examples clearly pointed to modu-
lar concepts. The next time they had a requirement to migrate a set of trades, they
could focus only on changing the definition of a migrated trade. What happens to the
trade after it’s migrated stays the same. Likewise, the way a trade location is determined
doesn’t change.

Separating the concepts also facilitated a much more meaningful discussion about
trade locations because we were dealing with a small and focused set of examples. We
discovered that some people thought the registered location of the company whose stock
is being traded determines the location, whereas others thought that only the stock ex-
change where the company is listed was relevant.

Looking for missing concepts and raising the level of abstraction is no different than
what happens in daily communication. Try to give a simple instruction such as “If you
come by car, book parking in advance” without using the word car; instead, focus on
its properties. One way to specify a car is as a transport vehicle with four wheels, four
doors, four seats, and a diesel engine. But we also have two-door cars, other types of
engines, different numbers of seats, and so on. Listing all those examples would make
the instructions ridiculously complicated; instead, we create a higher-level concept to
improve communication. How a car is made is irrelevant to parking instructions; what’s
important is whether the person will arrive by car or not.

Whenever you see too many examples or complicated examples in a specification,
try to raise the level of abstraction for those descriptions and then specify the underlying
concepts separately.

By illustrating requirements using precise realistic examples and structuring them
to be easy to understand, we can capture the essence of required functionality. We also
ensure that we’ve explored the requirements in enough detail for developers and testers
to have enough information to start working. These examples can replace abstract re-
quirements in the delivery process and serve as a specification, a target for development,
and a verification for acceptance acceptance testing.

Illustrating nonfunctional requirements
Illustrating isolated functional requirements with examples is relatively intuitive, but
many teams struggle to do this with functionality that’s cross-cutting or difficult to
describe with discrete answers. At most of my workshops on Specification by Example,
there’s usually at least one person who claims that this is possible for “functional” re-
quirements but there’s no way that this could work for “nonfunctional” requirements
because they aren’t that precise.

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	

I

108 Specification by Example

What are nonfunctional requirements?

Characteristics such as performance, usability, or response times are often
called nonfunctional because they aren’t related to isolated functionality.
generally disagree with the practice of categorizing requirements as functional
or nonfunctional, but that’s probably a topic for another book. Many features
commonly termed nonfunctional imply functionality. For example, performance
requirements might imply a caching function, persistence constraints, and so
on. From my experience, what most people think of when they say nonfunc-
tional are functional requirements that are cross-cutting (for example, security)
or not discrete but measurable on a sliding scale (for example, performance).
Dan North points out † that requirements listed as nonfunctional usually imply
that there’s a stakeholder whom the team hasn’t yet explicitly identified.

ł In private communication

So far, I haven’t seen a single nonfunctional requirement that couldn’t be illustrated using
examples. Even usability, perhaps the vaguest and most subjective concept in software
development, can be illustrated. Ask your usability expert to show you a website that she
likes; that’s a good, realistic example. The validation of such examples might not be auto-
matable, but the example is realistic and precise enough to spark a good discussion. Here
are some ideas that will help you capture nonfunctional requirements with examples.

Get precise performance requirements
When: Performance is a key feature

Because performance tests often require a separate environment and hardware similar
to what’s used in production, many performance-critical systems developers can’t run
any relevant tests on their hardware. This doesn’t mean that teams
should skip a discussion about performance requirements.

Having the performance criteria clearly specified and illus-
trated using examples will help build shared understanding

and provide the development team with a clear target for

implementation.

At RainStor, performance is critical for their data-archiving tools, so they make sure to
express the performance requirements in detail. Performance requirements are collected
in the form “The system has to import X records within Y minutes on Z CPUs.” De-
velopers then either get access to dedicated testing hardware or have the testers run tests
for them and provide feedback.

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	

109 Chapter 7 Illustrating using examples

Remember that “faster than the current system” isn’t a good performance
requirement. Tell people exactly how much faster and in what way.

Use low-fi prototypes for UI

User interface layouts and usability can’t be specified easily with examples fitting into
truth tables or automated tests. This doesn’t mean that we can’t discuss examples.

I often create paper prototypes that are glued together from cutouts of user interface
elements and website prints. Going through one or two examples is a good way to en-
sure that we have all the information a customer needs on a screen.

Business users often find it hard to think beyond the user interface, because that’s
what they work with. This is why boomerangs often happen when a client looks at the
software on a screen.

Instead of discussing backend processing, we can sometimes get more concrete
information up front by working through a user interface example.

Several teams I interviewed use Balsamiq Mockups,4 a web/desktop application for low-fi
user interface prototyping. I find paper prototypes easier to work with because we can
use cutouts and write notes, but a software system works better when we want to share
our work.

At RainStor, Adam Knight took this approach even further by creating an interac-
tive prototype to explore vague requirements with clients. He says:

Rather than a paper prototype we put together some example com-
mand line prototype interfaces using shell scripts and then walked these
through with the customer, asking them to give us details on how they’d
use the new functionality in our system.

This interactive workshop provided functional examples that the development team
later used to illustrate requirements. Teams can use this approach to identify scope as
well. (See “Don’t look only at the lowest level” in chapter 5.)

4 www.balsamiq.com/products/mockups

http://www.balsamiq.com/products/mockups

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

		 	 	 	 	 	
	 	 	

110 Specification by Example

Try the QUPER model
When: Sliding scale requirements

When requirements don’t lead to discrete, precise results, they’re hard to argue about.
When was the last time you had a meaningful discussion about why web pages should
load in less than two seconds, rather than three seconds or one second? Most of the time,
requirements like these are accepted without discussion or understanding.

At the Oresund Developer conference in 2009, Björn Regnell presented QUPER,5

an interesting model for illustrating requirements that aren’t discrete but that work on a
sliding scale (for example, startup time or response times). I haven’t tried this on a proj-
ect yet, but because it provides some interesting food for thought, I decided to include
it in the book.

QUPER visualizes sliding-scale requirements along the axes of cost, value, and qual-
ity. The idea of the model is to estimate cost-benefit breakpoints and barriers on the
sliding scale and expose them for discussion.

The QUPER model assumes that such requirements produce benefits on the S
curve and that there are three important points on the curve (called breakpoints). Utility
is the point where a product moves from unusable to usable. For example, the utility
point for startup time of a mobile phone is one minute. Differentiation describes when
the feature starts to develop a competitive advantage that will influence marketing. For
example, the differentiation point for mobile phone startup is five seconds. Saturation
is where the increase in quality becomes overkill. It makes no difference to the user if a
phone takes half a second or one second to start, making one second a possible satura-
tion point for mobile phone startup. Regnell argued that going beyond the saturation
point means that we’re investing resources in the wrong area.

Another assumption of the model is that increases in quality don’t lead to linear cost
increases. At some point, cost becomes steep. The product might have to be rewritten
using a different technology or there will be a significant impact on architecture. These
points are called cost barriers in the model.

Defining barriers and breakpoints for sliding scale requirements allows us to
have a more meaningful discussion on where the product fits in the market and
where we want it to be.

We can use breakpoints and barriers to define relevant targets for different phases of the
project and make sliding scale requirements measurable. Regnell suggested setting these
as intervals rather than discrete points because this works better with the continuous

5 See http://oredev.org/videos/supporting-roadmapping-of-quality-requirements and the IEEE
Software journal, Mar/Apr 2008.

http://oredev.org/videos/supporting-roadmapping-of-quality-requirements

	 	 	 	 			 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

111 Chapter 7 Illustrating using examples

nature of quality requirements. For example, the target for a feature that just needs to
work as well as in competing software should most likely be close to the utility point,
definitely not going over the differentiation point. The target for unique selling points of
a product should be between the differentiation and saturation points. Visualizing cost
barriers on the same curve will help the stakeholders understand how far they can push
the targets without having to invest significantly more than ethan expected.

Use a checklist for discussions
When: Cross-cutting concerns

Often, the customers feel safer when they impose a global generic requirement. I’ve par-
ticipated in many projects where performance requirements were defined globally; for
example, “All web pages will load in less than a second.” In most cases, implementing
that requirement (and other global requirements like it) is a waste of money. Most often,
only the home page and some key functions had to load in less than a second; many
other pages could load more slowly. In the QUPER model language, only the loading
time of a small number of key pages needs to be close to the differentiation point. Other
pages might load in a period of time closer to the utility point.

The problem is that these requirements are defined close to the start of a project,
when we still don’t know what the product is going to look like.

Rather than taking such requirements at face value, Christian Hassa suggests using
these cross-cutting requirements as a checklist for discussions. Hassa says:

It’s easy to specify “The system should respond in 10 milliseconds”
globally for the whole system, but you don’t necessarily need that level of
response time for every feature. What exactly does the system have to do
in 10 milliseconds? Does it need to send an email, record the action, or re-
ply? We create acceptance criteria for each feature with this nonfunctional
criteria in mind.

A checklist for discussions will ensure that you begin to consider all the impor -
tant questions when reviewing a story. You can use it to decide which of the
cross-cutting concerns apply to a particular story and then focus on illustrating
those aspects.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

	

112 Specification by Example

Build a reference example
When: Requirements are impossible to quantify

Because it’s subjective and depends on many factors, usability is hard to quantify. But
that doesn’t mean that it can’t be specified by example. In fact, it can only be specified
that way.

Usability and similar nonquantifiable features, such as playability and fun, are key
for video games. These qualities can’t be easily specified with documents that detail
traditional requirements. Supermassive Games, a video game studio based in the UK,
applies an agile process to game development. The teams at Supermassive use checklists
to ensure that different aspects of quality are covered in detail, but that isn’t enough to
deal with the uncertainty and subjectivity of those features.

Harvey Wheaton, studio director at Supermassive, said that these features have “elu-
sive quality” during his presentation at SPA2010 conference.6 According to Wheaton,
they typically focus on getting one feature finished to the final level of quality early on;
then, the team can use that as an example what “done” means:

We build what we call a “vertical slice” as early on in the process as we
can, typically at the end of our pre-production phase. This vertical slice
is a small section of the game (e.g., one level, part of a level, the game
introduction) and is to final (shippable) quality. This is usually supple-
mented by a “horizontal slice,” i.e., a broad slice of the whole game but
blocked out and in low fidelity, to give an idea of the scale and breadth
of the game.

You can get a lot of use out of reference or concept art to illustrate
the visual look and fidelity of the final product and employ people specifi-
cally for this, to produce high quality artwork that shows how the game
will look.

Instead of trying to quantify features that have an elusive quality, Supermassive Games
builds a reference example against which team members can compare their work.

Building a reference example is an effective way to illustrate nonquantifiable
features using examples.

6 http://gojko.net/2010/05/19/agile-in-a-start-up-games-development-studio

http://gojko.net/2010/05/19/agile-in-a-start-up-games-development-studio

	 	 	 	 			 	 	 														

113 Chapter 7 Illustrating using examples

In summary, instead of using the categorization “nonfunctional requirements” to avoid
a difficult conversation, teams should ensure they have a shared understanding of what
their business users expect out of a system, including cross-cutting concerns. Even if the
resulting examples aren’t easy to automate later on, having an up front discussion and
using examples to make expectations explicit and precise will ensure that the delivery
team focuses on building the right product.

Remember

• Using a single set of examples consistently from specification through devel-
opment to testing ensures that everyone has the same understanding of what
needs to be delivered.

• Examples used for illustrating features should be precise, complete, realistic,
and easy to understand.

• Realistic examples help spot inconsistencies and functional gaps faster than
implementation.

• Once you have an initial set of examples, experiment with data and look for
alternative ways to test a feature to complete the specification.

• When examples are complex and there are too many examples or too many
factors present, look for missing concepts and try to explain the examples at a
higher level of abstraction. Use a set of focused examples to illustrate the new
concepts separately.

8
Refining the specification

‘‘In its rough form, a diamond is a lusterless, translucent crystal

that resembles a chip of broken glass. For it to be transformed into a

jewel, it must be cut into a particular gem shape and then polished, facet

by facet.’’ —Edward Jay Epstein, The Diamond Invention1

Collaborative discussion is a great way to build a shared understanding, but that
isn’t enough to drive any but the simplest of projects. Unless the team is very
small and the project is very short, we need to record this knowledge in a way

that doesn’t depend on peoples’ short-term memory.
Taking a photo of the whiteboard after a discussion on key examples is a simple way

to capture this knowledge, but the examples are just raw material. Raw examples are like
uncut diamonds—very valuable but not nearly as much as in a processed form. Separat-
ing real diamonds from rock, polishing them, and breaking them into sizes that are easy
to sell increases the value significantly. The same can be said for the key examples we use
to illustrate a requirement. They’re a great starting point, but in order to get the most
value out of them we have to refine them, polish them to show the key points clearly,
and create specifications that teams can use both now and in the future.

One of the most common reasons for failing with Specification by Example is not
taking the time to process these raw examples. Discussion about specifications often
leads to experimentation. We discover new insights and restructure examples to look at
them from a higher level of abstraction. This results in some great examples but also a lot
of dead ends and rejected ideas. We don’t necessarily need to capture all these intermedi-
ary examples or record how we got to the result.

1 http://www.edwardjayepstein.com/diamond/chap11.htm

114

http://www.edwardjayepstein.com/diamond/chap11.htm

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	
	 	

Chapter 8 Refining the specification 115

On the other hand, just recording the key examples we want to keep without any
explanation won’t allow us to communicate the specification effectively to anyone who
hasn’t participated in the discussions.

Successful teams don’t use raw examples; they refine the specification from them.
They extract the essence from the key examples and turn it into a clear and unambigu-
ous definition of what makes the implementation complete, without any extraneous
detail. This acceptance criterion is then recorded and described so that anyone can pick
up the resulting specification and understand it at any time. This specification with
examples captures the conditions of satisfaction, the expected output of a feature, and
its acceptance test.

Specifications with examples are acceptance tests

A good specification, with examples, is effectively an acceptance test for
the described functionality.

Ideally, a specification with examples should unambiguously define the required func-
tionality from a business perspective but not how the system is supposed to implement
it. This gives the development team the freedom to find the best possible solution that
meets the requirements. To be effective in these goals, a specification should be

• Precise and testable

• A true specification, not a script

• About business functionality, not about software design

Once the functionality is implemented, the specification that describes it will serve a
different purpose. It will document what the system does and alert us about functional
regression. To be useful as long-term functional documentation, the specification has
to be written so that others can pick it up months or even years after it was created and
easily understand what it does, why it’s there, and what it describes. To be effective in
these goals, a specification should be

• Self explanatory

• Focused

• In domain language

This chapter focuses on how to refine specifications to achieve all these goals. But first,
to put things into a more concrete perspective, I show examples of good and bad speci-
fications. At the end of this chapter, we’ll refine the bad specification by applying the
advice given in this chapter.

	 	 	

	 	

	

	

	 	

	 		
							 	 	

116 Specification by Example

An example of a good specification
An example of a very good specification with examples is shown here.

Free delivery

• Free delivery is offered to VIP customers once they purchase a certain number
of books. Free delivery is not offered to regular customers or VIP customers
buying anything else than books.

• Given that the minimum number of books to get free delivery is five, then we
expect the following:

Examples

Customer type Cart contents Delivery

VIP 5 books Free, Standard

VIP 4 books Standard

Regular 10 books Standard

VIP 5 washing machines Standard

VIP 5 books,
1 washing machine

Standard

This specification is self-explanatory. I often show this example to people at conferences
and workshops, and I’ve never had to say a single word to explain it. The title and the
introductory paragraph explain the structure of the examples so that readers don’t need
to work back from the data to understand the specified rule. Realistic examples are also
there, to make the specification testable and explain the behavior in edge cases, for ex-
ample, what happens when someone buys exactly 10 books.

This is a specification, not a script for how someone might test the examples. It
doesn’t say anything about application workflow or session constraints. It doesn’t explain
how the books are purchased, just what the available delivery mechanism is. It doesn’t
try to talk about any implementation specifics. That’s all left to the developers to work
out in the best way possible.

This specification is focused on a particular rule for free delivery. It includes only the
attributes relevant for that rule.

	 	 	 	 			 	 	 													

		 	 	

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	

Chapter 8 Refining the specification 117

An example of a bad specification
Compare the previous specification to the example shown in figure 8.1. This is a great
example of a very bad specification.2

Simple Acceptance Test for Payroll
First we add a few employees

Employees

id name address salary

1 Jeff Languid 10 Adamant St; Laurel MD 20707 1005.00

2 Kelp Holland 128 Baker St; Cottonmouth, IL 60066 2000.00

Next we pay them.

Pay day

pay day check number

1/31/2001 1000

We make sure their paychecks are correct. The blank cellls will be filled in by the

Paycheckinspector fixture. The cells with data in them already will be checked.

Paycheck inspector

id amount number name date

1 1005

2 2000

Finally we make sure that the output contained two, and only two paychecks,

and that they had the right check numbers.

Paycheck inspector

number

1000

1001

Figure 8.1 A confusing specification

Although it has a title and some text around the tables, seemingly to explain what’s
going on, the effect of that is marginal. Why is this document called “simple”? It’s
payroll related, obviously, but what exactly is it specifying?

It’s not really clear what this document is specifying. We need to work backwards
from the test data to understand the rules. It seems to verify that the checks are printed
with unique numbers, starting from a number that’s given as a parameter. It also seems
to validate the data printed on each check. It also explains in words that one check is
printed per employee.

2 This example is from areal project and was previously included with FitNesse. We used it in
a workshop on refining the specifications in June 2010 in London. As a result, the example
was changed in the FitNesse distribution.

http:FitNesse.We

	 	 	

118 Specification by Example

This document has a lot of seemingly incidental complexity—names and addresses
aren’t really used anywhere in the document apart from the setup. Database identifiers
appear in the tables, but they’re irrelevant for the business rules. The database identifiers
are used in this example to match employees with the Paycheck Inspector, introducing
technical software concepts into the specification.

The Paycheck Inspector was obviously invented just for testing. When I read this
for the first time, I imagined Peter Sellers in a Clouseau outfit inspecting checks as they
go out. I’m sure that this isn’t a business concept.

Another interesting issue is the blank cells in the assertion part of this specification,
and the two Paycheck Inspector tables seem unrelated. This example is from FitNesse,
and blank cells in that tool print test results for troubleshooting without checking any-
thing. That effectively makes this specification an automated test that a human has to
look over—pretty much defeating the purpose of automation. Blank cells in FitNesse
are typically a sign of instability in tests, and they’re a signal that something is missing.
Either the automated test is hooking into the system in the wrong place, or an implicit
rule is hidden there that makes the test results unrepeatable and unreliable.

The language used in the specification is inconsistent, which makes it hard to make
a connection between inputs and outputs. What is the 1001 value in the table at the
bottom? The column header tells us that it’s a number, which is a technically correct but
completely useless piece of information. The second box has a check number, but what
kind of a number is that? What’s the relationship between these two things?

Presuming that the addresses are there because checks are printed as part of a state-
ment with an address for automated envelope packaging, the test based on this specifica-
tion fails to verify at least one very important thing: that the right people got paid the
right amount. If the first person got both checks, this test would happily pass. If they both
got each other’s salaries, this test would pass. If a date far in the future was printed on
the checks, our employees might not be able to cash them, but the test would still pass.

Now we come to the real reason for the blank cells. Ordering of checks is not speci-
fied. This is a functional gap that makes the system hard to test in a repeatable way.
The author of this FitNesse page decided to work around that technical difficulty in the
specification, not in the automation layer, and created a test that gives false positives.

Without more context information it’s hard to tell whether this test is verifying one
thing only. If the check printing system is used for anything else, I’d prefer to pull out
the fact that check numbers are unique and start from a configured value in a separate
page. If we only print salary checks, it’s probably part of salary check printing.

We’ll refine this horrible document later in this chapter. But first, let’s first go over
what makes a good specification.

	 	 	 	 			 	 	 													

Chapter 8 Refining the specification 119

What to focus on when refining specifications
In the introduction to this chapter I laid out some goals for good specifications. Here are
some good ideas on how to achieve those goals.

Examples should be precise and testable

A specification needs to be an objective measure of success, something that will un-
ambiguously tell us when we’re finished with development. It has to include verifiable
information—combinations of parameters and expected outputs that can be checked
against the system.

In order to satisfy these criteria, a specification has to be based on precise realistic
examples. See the “Examples should be precise” section in chapter 7 for some good tech-
niques on how to ensure that the examples are precise.

Scripts are not specifications

Business users will often think about performing an action through the user interface or
through several steps, explaining how they’d use the system to achieve something instead
of what the system is supposed to do. Such examples are scripts, not specifications.

A script explains how something can be tested. It describes business functionality
through lower-level interactions with a system. A script requires the reader to work back
from the actions and understand what’s really important and what exactly is being il-
lustrated. Scripts also bake the test into workflow and session constraints, which might
change in the future even when the underlying business rules don’t change.

A specification explains what the system does. It focuses on the business functional-
ity in the most direct way possible. Specifications are shorter because they describe the
business concepts directly. That makes them easier to read and understand than scripts.
Specifications are also a lot more stable than scripts, because they won’t be affected by
changes in workflow and session constraints.

Here’s an example of a script:

1 Log on as user Tom.

2 Navigate to the home page.

3 Search for Specification by Example.

4 Add first result to shopping cart.

5 Search for Beautiful Testing.

6 Add second result to shopping cart.

7 Verify that number of items in cart is 2.

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

120 Specification by Example

This script tells us how something is done but doesn’t directly explain what we’re specify-
ing. Take a piece of paper and try to write down what exactly this example is specifying
before continuing to read the next paragraph. Were you able to write down anything at
all? If so, do you think that’s the only thing that the example could possibly describe?

There are so many possibilities for what this example describes. One option is that
multiple items can be added to the shopping cart. An equally possible option is that the
shopping cart is empty after a user logs on. A third option is that the first search result
for Specification by Example and second search result for Beautiful Testing can be added
to the shopping cart.

This is a very precise and testable example; we can execute it and confirm whether
the system gives us the expected result or not. The problem with this script is that it
doesn’t contain any information on what functionality it actually represents. The people
who wrote it might know exactly what it’s supposed to do when they implement the
functionality for the first time. Six months later, that will no longer be obvious.

This script isn’t a good communication tool. We can’t really tell what this is about or
know which part of the system is wrong. If the test based on this script suddenly starts
failing, someone will have to spend a lot of time analyzing many different areas of code.

The step in which Tom logs on at the start is most likely required because of work-
flow constraints of the website. Unless this example illustrates a business rule related to
this user in particular, the fact that Tom is the person who logs on is irrelevant. If his
user account is disabled for any reason, this test will start failing, but the system might
not necessarily have a problem. Someone will have to waste a lot of time to discover that.

Capturing acceptance criteria with scripts instead of specifications costs a lot of time
in the long term, and we can save this time if we take a few minutes to restructure the
examples up front. For an example of how to refine such scripts to more useful specifica-
tions, see the “Refining in practice” section at the end of this chapter. Rick Mugridge
and Ward Cunningham have a lot of good advice on restructuring scripts to be better
specifications in Fit for Developing Software (Prentice Hall, 2005).

Don’t create flow-like descriptions

Watch out for descriptions of flows (first do this, then do
that, ...). Unless specifying a genuine process flow, this is often a
sign that a business rule is illustrated using a script. Such scripts
will cause a lot of long-term maintenance problems.

Watch out for descriptions of how the system should
work. Think about what the system should do.

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

Chapter 8 Refining the specification 121

Ian Cooper’s team at Beazley realized that about six months after they started imple-
menting Specification by Example. During a team retrospective, they started arguing
that their acceptance tests are too costly to maintain. Looking for ways to reduce the
cost, they restructured scripts into specifications. Cooper said:

Models we had for doing tests were the same as manual tests, trans-
lated into scripts. Our early tests were following a scripting approach;
the test was a sequence of things with some checks at the end. Once we
changed over to “what should it do,” it became a lot easier.

Describing acceptance tests as scripts instead of specifications is one of the most com-
mon mistakes teams make early on. Scripts work relatively well as a development target
with short iterations, because people still remember what the script describes when they
implement it for the first time. But they’re hard to maintain and understand later. It can
take several months for this problem to show up, but when it does, it will hurt badly.

Specifications should be about business functionality,
not software design

Ideally, a specification should not imply software design. It should explain the business
functionality without prescribing how it’s going to be implemented in software. This
serves two purposes:

• It allows developers to find the best possible solution now.

• It allows developers to improve the design in the future.

Specifications that focus on business functionality, without describing the implementa-
tion, enable the implementation to change more easily. A specification that doesn’t say
anything about software design won’t need to change when the design improves. Such
specifications facilitate future change by acting as an invariant. We can run the tests un-
modified based on those specifications after we improve the software design, to ensure
that all the previous functionality is still there.

Avoid writing specifications that are tightly coupled with code

Specifications that are tightly coupled with code and closely reflect the software
implementation result in tests that are brittle.

Changes in software design break such tests, even when the business functionality de-
scribed by the test doesn’t change. Specifications with examples that produce brittle tests

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

122 Specification by Example

introduce additional maintenance costs instead of facilitating change. Aslak Hellesøy
points this out as one of the key lessons he learned about Specification by Example:

We wrote too many acceptance tests, and sometimes they were too
tightly coupled with our code. Not quite as coupled as unit tests would
have been, but still coupled. In the worst case it would take up to eight
hours after a big refactoring to update the test scripts. So we learned a lot
about striking a good balance between how many tests you have and how
you write them.

Watch out for names and concepts in specifications that come from software im-
plementations and do not exist in the business domain. Examples are database
identifiers, technical service names, or object class names that aren’t first-order
domain concepts, and concepts invented purely for automation purposes. Re-
structure the specifications to avoid these concepts, and they’ll be much easier
to understand and maintain long term.

Technical tests are important, and I’m not arguing against having such tests that are
closely coupled with the software design. But such tests should not be mixed with ex-
ecutable specifications. A common mistake for teams starting with Specification by Ex-
ample is to drop all technical tests, such as the ones at the unit or integration level, and
expect that executable specifications will cover all aspects of the system. Executable spec-
ifications guide us in delivering the right business functionality. Technical tests ensure
that we look at low-level technical quality aspects of the system. We need both, but we
shouldn’t mix them. Technical test automation tools are much better suited for technical
tests than the tools we use to automate executable specifications. They’ll enable the team
to maintain such tests much easier.

Resist the temptation to work around technical
difficulties in specifications
When: Working on a legacy system

Legacy systems often have lots of technical quirks, and they’re hard to change. Users
have to work around these technical difficulties, and it becomes difficult to distinguish
the real business process from workarounds.

Some teams fell into a trap by including these process workarounds in their specifi-
cations. This binds the specifications not only to the implementation but also to those
technical issues. Such specifications are ineffective as a facilitator of change in legacy
systems. They quickly become expensive to maintain. One small change in code might
require hours of updating executable specifications.

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

		 	 	 	 	 	 	 	 	 	

Chapter 8 Refining the specification 123

Johannes Link worked on a project where about 200 different objects had to be
constructed to run the basic test scenarios. Those dependencies were specified in the
executable specifications, not pushed to the automation layer. A year later, test mainte-
nance became so costly that the team was pushing back on changes. Link says:

Changing one feature broke a lot of tests. They couldn’t afford to
implement some new requirements, because this would have been too
costly in terms of the tests, and they knew they needed the tests to keep
the bug rate low.

Most automation tools3 for executable specifications separate the specification from the
automation process (more on this in the “How does this work?” tip at the beginning of
chapter 9). The specification is in human-readable form, and the automation process is
captured using a separate automation layer of programming language code.

Solve technical difficulties in the automation layer. Don’t try to solve them in the
test specifications.

This will allow you to change and improve the system more easily. Solving technical
difficulties in an automation layer allows you to benefit from programming language
features and tools when describing and maintaining technical validation processes. Pro-
grammers can apply techniques and tools to reduce duplication, create maintainable
code, and easily change it. If the technical workarounds are contained in the automation
layer, the specifications will be unaffected when you improve the technical design and
the workarounds are no longer required.

Pushing technical workflows into the automation layer also makes specifications
shorter and easier to understand. The resulting specification will explain the business
concepts at a higher level of abstraction, focusing on the aspects that are important for a
particular set of examples (more on this in the “Specifications should be focused” section
later in this chapter).

3 See http://specificationbyexample.com for more information on tools that support
automation.

http://specificationbyexample.com

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

124 Specification by Example

Don’t get trapped in user interface details
When: Web projects

When starting out with Specification by Example, many teams wasted a lot of
time by describing irrelevant examples of minor user interface details. They
were following the process of Specifying by Example for the sake of the process,
not to extend their understanding of the specification.

The user interface is visual, so it’s easy to think about. I’ve seen projects where teams
and customers spent hours describing navigation menu links. But that part of the user
interface carried virtually no risk, and that time could have been spent discussing much
more important functions.

Phil Cowans had a similar experience at Songkick when they started implementing
Specification by Example, and he thinks about that as one of the key early mistakes.

Early on we spent too long testing trivial bits of user interface,
because that was easy to do. We didn’t spend enough time digging into
edge cases and alternative paths through the application. It’s quite easy to
test what you can see, but ultimately you need to have a deep understand-
ing of what the software does rather than what the user interface looks
like. Thinking in terms of user stories and paths through the application
really helps.

Instead of dwelling on user interface details, it’s more useful to think about user journeys
through the website. When specifying collaboratively, invest time in parts of the specifi-
cations in proportion to their importance to the business. Items that are important and
risky should be explored in detail. Those that aren’t that important might not need to
be specified so precisely.

Specifications should be self-explanatory

When an executable specification test fails because of a functional regression, someone
has to look at it, understand what went wrong, and find out how to fix it. This can hap-
pen years after the specification was originally written, when the people who wrote it
are no longer working on the same project. That’s why it’s important for specifications
to be self-explanatory.

Of course, ensuring that a specification is self-explanatory also helps to avoid any
misunderstanding when we develop the specified functionality for the first time.

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

Chapter 8 Refining the specification 125

Use a descriptive title and explain the goal using a short paragraph

Just a few words at the start of a specification can make a big difference and
save a lot of time later.

If a specification contains only inputs and expected outputs, anyone who reads that
document will have to reconstruct the business rule from the examples.

It’s crucial to choose a descriptive title for a specification. The title should sum-
marize the intent. Think about what you’d type into Google’s search box to look for a
specification if it were somewhere on the web, and use that as the title. This will make

it easy for readers to discover the appropriate specification when
searching for an explanation of a piece of functionality.

A reader also needs to understand the structure of the speci-
fication and its context. Explain the goal of the specification and
the structure of examples in a few words—no more than a short

paragraph—and put it in a header. A good trick for writing the description is to write
only the examples first and then try to explain them to someone else. Capture what you
said while explaining the examples, and put that in the header of the specification.

Show and keep quiet
When: Someone is working on specifications alone
�
In order to: Check whether a specification is self-explanatory
�

To check if a specification is self-explanatory, get someone else to look at the
document and try to understand it, without you saying a word about it.

To ensure that a specification is really self-explanatory, ask the
other person to explain what they understood and see if that
matches your intention.

If I show a specification to someone and I find myself hav-
ing to explain it, I write down the explanation and put it in
the header. Explaining the examples often leads me to use more
meaningful names or insert comments to make the examples
easier to understand.

	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	

126 Specification by Example

Don’t overspecify examples

Many teams made the mistake of extending specifications to include all the possible
combinations of input parameters once they put the basic automation infrastructure in
place. A common explanation for this was that testers were trying to verify additional
examples by reusing the automation framework.

The problem with this approach is that the original key examples
get lost in a sea of other values. Specifications become hard to under-
stand, which means that they’re no longer self-explanatory.

A specification that defines three key examples properly
is much more useful than one that specifies a hundred
examples poorly.

An additional problem with this approach is that executing many more examples to
verify the same cases requires more time, so it slows down test execution and gives the
delivery team slower feedback.

Lisa Crispin’s team ran into this problem while working on automated compliance
testing, with rules that are prescribed by the regulators and don’t necessarily follow any
logic. Crispin collaborated with her product owner to specify algorithms dealing with
many permutations, so they wrote a lot of complex executable specifications several
sprints ahead of development. Developers were overwhelmed when they started looking
at these specifications. Crispin elaborated:

They [developers] looked at the tests [executable specifications] and
were confused; they couldn’t see the forest for the trees. They could not
use the tests because they did not know what to code. So we found out
that the tests should give us the big picture but not necessarily all the
detail right away.

A specification should list only the key representative examples. This will help to keep
the specification short and easy to understand. The key examples typically include the
following:

• A representative example illustrating each important aspect of business
functionality. Business users, analysts, or customers will typically define these.

• An example illustrating each important technical edge case, such as technical
boundary conditions. Developers will typically suggest such examples when
they’re concerned about functional gaps or inconsistencies. Business users, ana-
lysts, or customers will define the correct expected behavior.

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

Chapter 8 Refining the specification 127

• An example illustrating each particularly troublesome area of the expected
implementation, such as cases that caused bugs in the past and boundary condi-
tions that might not be explicitly illustrated by previous examples. Testers will
typically suggest these, and business users, analysts, or customers will define the
correct behavior.

There is, of course, benefit in reusing the automation structure put in place for key ex-
amples to support testers who want to do more testing. Sometimes the easiest way to ex-
plore the system behavior with different boundary values is to bolt on more examples to
existing specifications. This can make the specifications longer, less focused, and harder
to understand.

Instead of complicating the main specification, create a separate automated test and
point to it from the main one. If you use a web-based system for living documentation,
you could use a web link to connect the two pages. With file-based systems, use a file
path or a shortcut in the description of the specification.

The new test can use the same structure as the original specification and list many
additional examples. The main specification of a feature will still be useful as a commu-
nication tool and provide quick feedback. Additional tests can explore all different com-
binations for the purpose of extensive testing. The primary specification can be validated
at every change to provide quick feedback. Supplementary tests can run overnight and
on demand to give the team confidence in all the additional cases.

Don’t try to cover every single case

A common cause for overspecifying examples is a fear by analysts or customers that
they will be blamed for any missing functionality. With a collaborative specification
process, the responsibility for getting the specifications correct is shared, so there’s
no justification to do this. André Brissette, the Talia product director at Pyxis, points
that out as one of the key lessons learned:

Decide what to cover and what not to cover depending on the
conditions of success for the story. If you think that with those tests you
can really cover the conditions of success, then you are OK. If that is not
the case, you have a problem. If at the end of the sprint, or in the future,
it turns out that you were missing something, one thing is clear: What you
made was the condition of success and pretty much the contract between
everybody. At that point, it [additional functionality] was not needed. As
an analyst, you don’t have to take the blame.

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

128 Specification by Example

Start with basic examples; then expand through exploring
When: Describing rules with many parameter combinations

To solve the problem described in the previous section, Crispin’s team decided to write
only high-level specifications before starting to work on a story,
leaving detailed tests for later.

A tester and a developer specified a happy path together when
they started to work on a story. A developer then automated the
specification and wrote the code, allowing testers to reuse the au-
tomation framework and add test cases. Testers then explored the
system and experimented with different examples. If they found a
failing test case, they went back to the programmers to extend the
specification and get the problem fixed.

Instead of overcomplicating the specification, basic examples help drive the
happy path and put the automation structure in place.

Additional examples can then be tried based on risk, and specification can be extended
gradually. This is an interesting solution to handle cases where classes of equivalence
aren’t easy to determine at first and where the implementation drives edge cases.

Specifications should be focused

A specification should describe a single thing—a business rule, a function, or a step of a
process. Such focused specifications are easier to understand than the ones that specify
several related rules. A specification should also be focused on only the key attributes of
examples that are important for the item it’s trying to demonstrate.

Focus brings two important benefits to specifications: Focused specifications are
short, so they’re easier to understand than longer, less-focused ones. They’re also easier
to maintain. A specification that covers several rules will be influenced by changes in
all of the involved areas of the system. This will cause the automated tests based on the
specification to break more often. Even worse, when such a test breaks, it will be hard
to pinpoint problems.

Use “Given-When-Then” language in specifications
In order to: Make the test easier to understand

As a rule of thumb, a specification should declare the context, specify a single
action, and then define the expected post-conditions.

	 	 	 	 			 	 	 													

	
	

Chapter 8 Refining the specification 129

A good way to remember this is Given-When-Then or Arrange-Act-Assert. Given-When-
Then is a common format for specifying system behaviors, popularized by the early
behavior-driven-development articles. It requires us to write scenarios of system behav-
iors in three parts:

• Given a precondition

• When an action happens

• Then the following post-conditions should be satisfied

Some automation tools, such as Cucumber4 and SpecFlow,5 use exactly that language for
executable specifications. See figure 8.1 for an example. Even with different tools that
might use a tabular, keyword-based or free-form text system, structuring specifications
to follow a Given-When-Then flow is an excellent idea.

Triggering a single action is crucial. This ensures that a specification is focused on
only that action. If a specification lists several actions, a reader will have to analyze and
understand how these actions collaborate to produce the final effect in order to under-
stand the results.

If a set of actions is important from a business flow perspective, it’s probably im-
portant enough to be given a name and used as a higher-level concept, so it should be
captured in a higher-level method in the domain code. This higher-level method can
then be listed in the specification.

A specification can still define several preconditions and postconditions (multiple
items in the Given and Then sections) as long as they’re all directly related to the func-
tion specified by the test. The following example of a Cucumber test has two precondi-
tions and two postconditions:

Scenario: New user, suspicious transaction

Given a user with no previous transaction history,
�

And the user’s account registration country is the UK,
�

When the user places an order with delivery country U.S.,
�

Then the transaction is marked as suspicious,
�

But the user sees order status as “Pending.”

A potential pitfall with Given-When-Then language is that it’s like prose, which often
encourages people to think about flows of interactions rather than expressing business
functionality directly. Use the advice from section “Scripts are not specifications” earlier
in this chapter to avoid such problems.

4 http://www.cukes.info
5 http://specflow.org

http://www.cukes.info
http://specflow.org

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

130 Specification by Example

Don’t explicitly set up all the dependencies in the specification
When: Dealing with complex dependencies/referential integrity

In data-driven projects that require complex configuration, objects can rarely be created
in isolation. For example, the domain validation rules for a payment method might re-
quire that it belongs to a customer, that a customer must have a valid account, and so on.

Many teams made the mistake of putting all the configuration and setup for
all prerequisites into the specification. Although this makes the specification
explicit and complete from a conceptual perspective, it can also make it difficult
to read and understand.

In addition, any change to any of the objects or attributes in the configuration will break
the test based on this specification, even if it isn’t directly related to the specified rule.

Describing all dependencies explicitly can also hide data-related issues, so this is
especially dangerous on data-driven projects.

Jonas Bandi worked on a project to rewrite a legacy data management system for
schools, where one of the biggest problems was understanding the existing data. The
team wrote specifications that were setting up the entire context dynamically. The con-
text in the specifications was based on the understanding of the team, not on realistic
data variations. The team detected many gaps and inconsistencies in requirements only
when they connected the code to the data coming from the legacy system, in the middle
of the iterations (see the “Examples should be realistic” section in chapter 7).

The Bekk Consulting team working on the Norwegian Dairy Herd Recording
System had a similar issue but from a different perspective. Their project is also data
driven, with many objects requiring complex setup. At first, they were defining the
entire context in each executable specification. This required people to perfectly guess
all the dependencies. If some data was missing, the tests based on the specifications
would fail because of data integrity constraints, even though the code was implemented
properly.

These issues can be solved better in the automation layer, not in the specification.
Move all the dependencies that aren’t related to the goal of the specification to the au-
tomation layer, and keep the specification focused on only the important attributes and
objects. Also see the “Test data management” section in chapter 9 for some good solu-
tions to technical data management problems.

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

Chapter 8 Refining the specification 131

Apply defaults in the automation layer

Push the responsibility for creating a valid object to the automation layer.

The automation layer can prepopulate objects with sensible defaults and set up depen-
dencies so that we don’t have to specify them explicitly. This allows us to focus on only
the important attributes when we write specifications, making them much easier to
understand and maintain.

For example, instead of requiring all address details to set up a customer and all
credit card attributes to register a valid credit card, we can just specify that a user have
$100 available on the card before making a payment. Everything else can be constructed
dynamically by the automation layer.

Such defaults can be set in the automation layer or provided in a global configura-
tion file, depending on whether the business users should be able to change them or not.

Don’t always rely on defaults
When: Working with objects with many attributes

Although relying on sensible defaults makes specifications easier to write and under-
stand, some teams took that approach too far. Removing duplication is generally a good
practice in programming language code but not always in specifications.

If a key attribute of an example matches the default value provided by the au-
tomation layer, it’s still wise to specify it explicitly, although it can be omitted.

This ensures that the specification has a full context for the readers and also allows us to
change the defaults in the automation layer. Ian Cooper warns:

Even if it [an attribute of an example] is actually the same as the de-
fault, don’t rely on that. Define it explicitly. This allows us to change the
default later. It also makes it obvious what is important. When you read
the specifications, you can see that the example is specifying these values
on a product and you can ask, “Why is this important?”

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

		 	 	 	
	 	

132 Specification by Example

Specifications should be in domain language

Functional specifications are important to users, business analysts, testers, developers,
and anyone else trying to understand the system. In order for a specification to be ac-
cessible and readable to all these groups, it has to be written in a language that everyone
understands. The language used in the documentation also has to be consistent. This
will minimize the need for translation and the possibility of misunderstanding.

The Ubiquitous Language (see sidebar) fits both requirements very nicely. Ensure
that you use the Ubiquitous Language in specifications, and watch out for class names
or concepts that seem to have been invented for the purpose of testing and sound like
software implementation concepts.

Ubiquitous Language

Software delivery teams often develop their own jargon for a project, based on
technical implementation concepts. This jargon is different from the jargon of
business users, leading to a constant need for translation when the two groups
communicate. Business analysts then act as translators and become a bottle-
neck for information. Translation between the two jargons often leads to a loss
of information and causes misunderstanding.

Instead of letting different jargons emerge, Eric Evans suggested developing
a common language as a basis for a shared understanding of the domain in
Domain Driven Design.† He called this language the Ubiquitous Language.

† Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley Professional, 2003).

By ensuring that specifications fulfill the goals laid out in this section, we get a good
target for development, and we get documents that have long-term value as communica-
tion tools. They will support us in evolving the system and incrementally building up a
living documentation.

Refining in practice
Let’s now clean up that bad specification we saw early in this chapter and improve it.
First, we should give it a nice descriptive title, such as “Payroll Check Printing,” to make
sure that we can find it easily later. We should also add a paragraph that explains the goal
of this specification. We’ve identified the following rules:

• The system prints one check per employee, with the employee’s name, address,
and salary on the check.

• The system prints the payment date on the checks.

	 	 	 	 			 	 	 													

Chapter 8 Refining the specification 133

• Check numbers are unique, starting from the next available check number, in
ascending order.

• Checks are printed for employees in alphabetic order by employee name.

A check has a payee name, an amount, and a payment date. It doesn’t have a name or a
salary; those are attributes of an employee. If we print checks as part of letters that will
be sent out automatically, we can say that the check also has an address that will be used
for automatic envelope packaging. Let’s enforce the Ubiquitous Language and use these
names consistently.

A combination of a name and address should be enough for us to match employees
with their check—we don’t need the database identifiers.

We can make the system more testable by agreeing on an ordering rule, whatever it
is. For example, we can agree to print the checks in alphabetic order by employee name.
We could suggest this to a customer as a way to make the specifications stronger.

To make the specification self-explanatory, let’s pull out the context and put it in the
header. Payroll date and the next available check number are part of the context, along
with employee salary data. We should also make it explicit what the number is for, so
that people who read this specification don’t have to figure this out for themselves in
the future. Let’s call it the “Next available check number.” We can also make the speci-
fication easier to understand by making the context stick out visually, to show that it
prepares the data and does not verify it.

The action that gets kicked off doesn’t necessarily need to be listed in the specifica-
tion. A payroll run can be executed implicitly by the table that checks payroll results.
This is an example of focusing on what is being tested instead of how it’s being checked.
There’s no need to have a separate step that says, “Next, we pay them.”

Paycheck Inspector is an invented concept, and it violates the Ubiquitous Language
rule. This isn’t a special concept in the business domain, so let’s explain what it does in
a way that means something. Because we want to ensure that whoever automates the
validation inspects all printed checks, let’s use “All checks printed.” Otherwise, someone
might use subset matching, and the system might print every check twice and we won’t
notice.

The cleaned-up version is shown in figure 8.2.

	 	 	

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	 	 	 	 	 	

	 	 	 	 	 	

	 	

	 	 	 	 	 	

	 	 	 	 	 	

134 Specification by Example

Payroll Check Printing
The system will automaticall print payroll checks:

• one check per employee, with employee’s name, address, and salary on the check

• using the payroll date
• the check numbers will be unique
• starting from the next available check number in ascending order
• in the alphabetic order based on employee name

▼ PAYROLL	CONTEXT

Payroll date 10/10/2010

Next available check number 1000

Employees in the system

name address salary

Jeff Languid 10 Adamant St; Laurel MD 20707 1005.00

Kelp Holland 128 Baker St; Cottonmouth, IL 60066 2000.00

All checks printed in the payroll run

check number check date payee address amount

1000 10/10/2010 Jeff Languid 10 Adamant St; Laurel MD 20707 1005.00

1001 10/10/201/ Kelp Holland 128 Baker St; Cottonmouth, IL 60066 2000.00

Figure 8.2 A refined version of the bad specification shown in figure 8.1. Note that it’s
shorter and self-explanatory and has a clear title.

This version is shorter and has no incidental clutter compared to the original. It’s much
easier to understand. After refining the specification, we can attempt to answer the ques-
tion, “Are we missing anything?” We can see if the specification is complete by experi-
menting with input arguments and trying to think of edge cases that might represent
valid inputs but violate the rules. (There’s no need to consider invalid employee data,
because that should be checked in another part of the system.)

One of the heuristics for experimenting with data is to use numerical boundary
conditions. For example, what happens if an employee has a salary of 0? This is a valid
case; an employee might have been on unpaid leave or suspended or no longer working
for us. Do we still print the check? If we keep the rule “One check per employee,” any
employees that were fired years ago and no longer receive salaries would still get checks
printed, with zeroes on them. We could then have a discussion with the business on
making this rule stronger and ensuring that checks don’t go out when they don’t need to.

Depending on whether payroll is the only use case for check printing, we might
want to refine this further and split it into several specifications. One would describe
generic check printing functionality such as unique sequential check numbers. Another
would describe payroll-specific functionality, such as the number of checks printed, cor-
rect salary, and so on.

	 	 	 	 			 	 	 													

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

Chapter 8 Refining the specification 135

It’s not about the tool

Many people complain about FitNesse because of the kind of broken executable
specifications shown in figure 8.1. Tools such as Concordion are intentionally
built to prevent this kind of problem. Other tools such as Cucumber promote a
textual Given-When-Then structure to avoid the trap of tables that are hard to
understand.

Before jumping to conclusions that a certain tool is the solution for this, you
should know that I’ve seen similarly bad specifications written with almost all
the major tools. The problem isn’t in the tools; likewise, the solution isn’t in the
tools either. The problem is mostly in teams not putting in the effort to make
the specifications easy to understand. It doesn’t take much more effort to refine
the specification, but the result will bring a lot more value.

The benefits of refining are sometimes not obvious instantly because collaboration helps
us build a shared understanding of expected functionality. That’s why many teams didn’t
consider refining important and ended up with huge sets of documents that are difficult
to understand. Refining from key examples is a crucial step, which ensures that our
specifications have long-term value as communication tools and that they will create a
good foundation for a living documentation system.

Remember

• Don’t just use the first set of examples directly; refine the specification

from them.
�

• To get the most out of the examples, the resulting specification should be
precise and testable, self-explanatory, focused, in domain language, and
about business functionality.

• Avoid scripts and talking about software design in specifications.

• Don’t try to cover every single case. Specifications aren’t replacements for
combinatorial regression testing.

• Start with one example for each important set of cases and add examples that
illustrate particular areas of concern to programmers and testers.

• Define and use the Ubiquitous Language in specifications, software design,
and tests.

9
Automating validation
without changing specifications

A fter we refine the specification of a feature, it becomes a clear target for imple-
mentation and a precise way to measure when we’ve finished. The refined speci-
fication also allows us to check in the future whether our system still has the

required functionality, every time we change it. Because of the level of detail that we get
from illustrating the specifications using examples, it becomes impossible to manually
run all the checks within short iterations, even for midsize projects. The solution is obvi-
ous: We have to automate as many of these checks as possible.

The right automation for validating specifications with examples is quite different
from traditional test automation in software projects. If we have to significantly change
the specification while automating it, the telephone game starts all over again and the
value of refining the specification is lost. Ideally, we should automate the validation
processes for our specifications without distorting any information. This introduces an
additional set of challenges on top of the usual test automation issues.

In this chapter I present advice on how to get started with automating validation of
specifications without changing them and how to control the long-term maintenance
costs of automation. I then cover the two areas that caused the most problems for the
teams I interviewed: automating user interfaces and managing data for automated test
runs. The practices I present here apply to any tool. I won’t be discussing individual
tools, but if you’re interested in researching more about that topic visit http://specifi-
cationbyexample.com and download additional articles. Before we start with that, I’ll
address a question that’s often raised in mailing lists and online forums—do we need
this new type of automation at all?

Because automation is a highly technical problem, this chapter is going to be more
technical than the others. If you’re not a programmer or an automation specialist, you
might find it hard to follow some parts. I suggest you read the first two sections and then
skip the rest of this chapter. You won’t lose anything that interests you.

136

http://specifi-cationbyexample.com
http://specifi-cationbyexample.com
http://specifi-cationbyexample.com

137 Chapter 9 Automating validation without changing specifications

How does this work?

All the most popular tools for automating executable specifications work with
two types of artifacts: specifications in a human-readable form and automation
code in a programming language. Depending on the tool, the specifications are
in plain text, HTML, or some other human-readable format. The tools know how
to extract inputs and expected outputs from those specifications, so that they
can pass that on to the automation code and evaluate whether the expectations
matched the results. The automation code, with some tools called fixtures or
step definitions, calls the application APIs, interacts with the database, or ex-
ecutes actions through the application user interface.

The automation code depends on the specifications but not the other way
around. That’s how these tools allow us to automate the validation of specifica-
tions without changing them.

Some tools require teams to store examples in programming language code and
produce human-readable specifications from that. Technically they achieve the
same effect, but such tools effectively prevent anyone who’s not proficient with
programming language code from writing or updating a specification.

Is automation required at all?
The long-term maintenance cost of executable specifications is one of the biggest issues
that teams face today when implementing Specification by Example. The tools for au-
tomating executable specifications are improving rapidly, but they’re still far from more
established unit-testing tools in terms of the ease of maintenance and development tool
integration. Automation also introduces additional work for the team. This frequently
causes discussions as to whether automation is required at all and whether it costs more
than it’s worth.

The argument against automation is that it increases the amount of work to develop
and maintain software and that teams can get a shared understanding of what needs to
be done by illustrating using examples and not automating them at all. Phil Cowans said
that this view neglects the long-term benefits of Specification by Example:

It feels like you’re writing twice as much code to build the same func-
tionality. But the number of lines of code is probably not the limiting fac-
tor in your development process, so this is quite naive. You’re not taking
into account the fact that you spend less time maintaining what you’ve al-
ready built or dealing with miscommunication between your testing and
development.

	 	 	

		 	 	 	 	 	 	 	 	 	
	

	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

138 Specification by Example

Automation in general is important for larger teams because it ensures that we have an
impartial, objective measurement of when we’re finished. Ian Cooper has a nice analogy
for this:

When I’m tired, and I wash the dishes, I don’t want to dry the dishes.
I’ve washed everything; it’s almost done. Missus looks at that and doesn’t
think that I’m done. For her, “done” is when the dishes have been dried
and put away and the sink is clean. It [automation] is forcing developers
to be honest. They can’t do just the bits that interest them.

Automation is also very important long term because it enables us to check more cases
more frequently. Pierre Veragen said that the managers in his company quickly under-
stood this value:

All of the sudden the managers realized that instead of having some-
thing that checks two or three numbers during a test, now we had some-
thing that checked 20 or 30 numbers more and we could pinpoint prob-
lems easier.

Some teams reduce the cost of automation by moving it to technical tools. While I was
preparing for interviews for this book, I was very surprised that Jim Shore, one of the
thought leaders in the agile community and an early adopter of Specification by Ex-
ample, actually gave up on automating executable specifications because of that cost.1

Shore wrote that in his experience, illustrating using examples brings more value than
automating validation without changing the specifications:

My experience with FIT and other agile acceptance testing tools is
that they cost more than they’re worth. There’s a lot of value in getting
concrete examples from real customers and business experts, not so much
value in using “natural language” tools like FIT and similar.

From my experience, this push back on automation of executable specifications can save
time in the short term but prevents the team from getting some of the most important
long-term benefits of Specification by Example.

1 Parts of our email conversation are published online. See http://jamesshore.com/Blog/
Alternatives-to-Acceptance-Testing.html, http://jamesshore.com/Blog/The-Problems-With-
Acceptance-Testing.html, and http://gojko.net/2010/03/01/are-tools-necessary-for-accep-
tance-testing-or-are-they-just-evil/. You’ll also find the links to opinions of other community
members on this topic in those articles. I strongly suggest reading those articles, especially
Shore’s discussion about alternatives to automation of executable specifications.

http://jamesshore.com/Blog/
http://jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html
http://jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html
http://gojko.net/2010/03/01/are-tools-necessary-for-accep-tance-testing-or-are-they-just-evil/
http://gojko.net/2010/03/01/are-tools-necessary-for-accep-tance-testing-or-are-they-just-evil/
http://gojko.net/2010/03/01/are-tools-necessary-for-accep-tance-testing-or-are-they-just-evil/

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

Chapter 9 Automating validation without changing specifications 139

When deciding whether to automate the validation of specifications using a techni-
cal tool or one for executable specifications, think about which benefits you want to get
out of it. If we automate examples with a technical tool, we get easier automation and
cheaper maintenance but lose the ability to use them for communication with business
users later. We get very good regression tests, but the specifications will be accessible
only to developers. Depending on your context, this might or might not be acceptable.

Automating validation of specifications without changing them is a key part of
getting to living documentation. Without it, we can’t guarantee the correctness of hu-
man-readable specifications. For many teams, the long-term benefit of Specification by
Example comes from living documentation. Instead of dropping automation that pre-
serves the original specifications, we can work on controlling the cost of maintenance.
You’ll find many good techniques that teams used to reduce long-term maintenance
costs in the “Managing the automation layer” section later in this chapter, as well as in
chapter 10.

Starting with automation
Automated validation of executable specifications is quite different from unit testing,
recorded and scripted functional automation that developers and testers are often used
to. Automating something but keeping it human readable requires teams to learn how to
use new tools and to discover the best way of hooking the automation into their system.
Here are some good ideas on how to start to implement the automation process and a
look at some mistakes the teams I interviewed commonly made while doing that.

To learn about tools, try a simple project first
When: Working on a legacy system

Several teams used a simple project or a spike to learn how to use a new automation
tool. If you have a small, relatively isolated piece of work in the pipeline, that might be
a good strategy.

A small project minimizes risk and helps you focus on learning how to use a tool
instead of dealing with complex integrations and business rules.

This approach is especially effective if you want to implement
Specification by Example at the same time as moving to an agile
development process.

At uSwitch, they took this approach when introducing
Cucumber, another popular tool for automation of executable spec-
ifications. They got the entire development team to start converting

	 	 	

140 Specification by Example

existing tests to the new tool. This gave everyone on the team some experience with the
new tool quickly. Stephen Lloyd says that it also showed them the power of executable
specifications:

We realized that there is a whole extra level of testing that needed to
be done, and that testing at the end of the cycle didn’t make sense.

A mini-project gives you a way to learn and practice new skills without much risk to on-
going development, so it might be a lot easier to get approval for that than to experiment
with something that’s much riskier.

It might be a good idea to get the result reviewed by an external consultant. Once
you have done something that can be reviewed, external consultants will be able to
provide much more meaningful feedback and discuss better solutions. By then, your
team would also have had a chance to play with the tool and go over some basics, so
they’ll be able to understand more advanced techniques and get more value out of the
consultant’s time.

Plan for automation upfront

Teams that work on systems that haven’t been designed up front for automated testing
should expect their productivity to actually drop at first when they start automating
executable specifications.

Even without learning how to use a new tool, automated validation initially adds
a significant overhead on a project. Automation is front loaded—a disproportional
amount of work has to be done when you start automating. This includes creating basic
automation components, deciding on the best format of executable specifications and
the best way to integrate with the system, resolving issues with test stability and dedi-
cated environments, and many others. We deal with most of those issues in this chapter
and in chapter 10, but for now it’s important to understand that productivity will drop
when you start automating.

Once those issues are resolved and the structure of the executable specifications
stabilizes, we can reuse the basic automation components when working on new speci-
fications. As the project matures, the automation effort drops significantly and the pro-
ductivity surges.

In several projects, developers didn’t consider this when estimating the effort re-
quired to implement a story. But when the automation is just starting, it might take
much more effort to automate an executable specification than to implement the re-
quired change in production code.

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

141 Chapter 9 Automating validation without changing specifications

Make sure to plan for a drop in productivity up front. The team should under-
commit on scope to allow for automation to be done within an iteration.

Unless this planning is done, automation is going to overrun into the next iteration and
interrupt the flow. This is one of the key lessons André Brissette, the Talia product direc-
tor at Pyxis Technologies, learned:

If I had to do it all over again, from the start I would be more directive
about the need to write tests [executable specifications]. I knew that it was
a challenge for a team to write these kinds of tests, so I was patient. Also I
could have let more room in the sprint [iteration] for making tests. We’d
start, and then I’d talk about executable specifications and the team would
say, “We don’t really have the time for this learning curve because we’re
pretty loaded in this sprint.” In fact, one of the reasons why they were
pretty loaded was because I was filling the sprint with a lot of features.
Because of this, it started slowly, and it took many iterations before having
a decent set of specifications.

Maybe it would pay off more to break that wall at the beginning and de-
cide to do fewer features at the start. That’s the choice that I would make
the next time. When you spread the integration of that kind of practice
over a long time, you have the cost of it without having the benefit. It ends
up being more expensive.

One idea to ensure that the initial automation effort is planned for is to consider the
automation toolkit as a separate product with its own backlog and then devote a certain
percentage of team’s time for that product. Just to make things clear, both the primary
product and the automation framework should still be developed and delivered by the
same team, in order to ensure that the team is familiar with the automation later. I advise
treating it as a separate product purely to limit the impact on the delivery of the primary
work.

Don’t postpone or delegate automation

Because of the automation overhead, some teams delayed it. They described specifica-
tions with examples and then wrote code, leaving the automation for later. This seems to
be related to projects where the development and test automation teams were separate or
where external consultants were automating tests. This caused a lot of rework and churn.

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	

142 Specification by Example

Developers were marking user stories as done without having an objective auto-
mated criterion for that. When the acceptance tests finally got automated, problems
often popped out and stories had to be sent back for fixing.

When automation is done along with implementation, developers have to design
the system to make it testable. When automation is delegated to testers or consultants,
developers don’t take care to implement the system in a way that makes it easy to vali-
date. This leads to more costly and more difficult automation. It also causes tests to slip
into the next iteration, interrupting the flow when problems come back.

Instead of delaying automation of executable specifications because of the
overhead, deal with the automation problems so that the task becomes easier
to do later.

Postponing automation is just a local optimization. You might get through the stories
quicker from the initial development perspective, but they’ll come back for fixing down
the road. David Evans often illustrates this with an analogy of a city bus: A bus can go
a lot faster if it doesn’t have to stop to pick up passengers, but it isn’t really doing its job
then.

Avoid automating existing manual test scripts

Creating an executable specification from existing manual test scripts might seem to be
a logical thing to do when starting out. Such scripts already describe what the system
does and the testers are running them anyway, so automation will surely help, right? Not
really—in fact, this is one of the most common failure patterns.

Manual and automated checks are affected by a completely different set of con-
straints. The time spent preparing the context is often a key bottleneck in manual test-
ing. With automated testing, people spend the most time trying to understand what’s
wrong when a test fails.

For example, to prepare for a test script that checks user account management rules,
a tester might have to log on to an administrative application, create a user, log on as
that new user to the client application, and change the password after first use. To avoid
doing this several times during the test, a tester will reuse the context for several manual
scripts. So she would create the user once, block that account and verify that the user
can’t log on, reset the password to verify that it is reenabled, and then set some user
preferences and verify that they change the home page correctly. This approach helps the
tester run through the script more quickly.

With automated testing, the time spent on setting up the user is no longer a prob-
lem. Automated tests generally go through many more cases than manual tests. When

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

143 Chapter 9 Automating validation without changing specifications

they run correctly, nobody is really looking at them. Once an automated test fails, some-
one has to go in and figure out what went wrong. If the test is described as a sequence
of interdependent steps, it will be very hard to understand what exactly caused the
problem, because the context changes throughout the script.

A single script checking 10 different things is more likely to fail than a smaller and
more focused test, because it’s affected by lots of different areas of code. In the previous
example with user account management, if the password reset function stops working,
we won’t be able to set the user preferences correctly. A consequence is that the check
for home page changes will also fail. If we had 10 different, smaller, focused, and inde-
pendent tests instead of one big script, a bug in the password reset function wouldn’t
affect the test results for user preferences. That makes tests more resilient to change and
reduces the cost of maintenance. It also helps us pinpoint the problems more quickly.

Instead of plainly automating manual test scripts, think about what the script is
testing and describe that with a group of independent, focused tests. This will
significantly reduce the automation overhead and maintenance costs.

Gain trust with user interface tests
When: Team members are skeptical about executable specifications

Many tools for automating executable specifications allow us to integrate with software
below the user interface. This reduces the cost of maintenance, makes the automation
easier to implement, and provides quicker feedback (see the “Automate below the skin
of the application” section later in this chapter).

But business users and testers might not trust such automation initially. Without
seeing the screens moving with their own eyes, they don’t believe that the right code is
actually being exercised.

When you’re starting out with Specification by Example, if your team members
doubt the automation, try to execute the specifications through the user in-
terface. Note that you shouldn’t change the specifications to describe the user
interface interactions, but you can hide those activities in the automation layer.

Getting the business users to trust executable specifications was one of the key challenges
on the Norwegian Dairy Herd Recording System project. Børge Lotre, a manager at
Bekk Consulting who worked on that project, says that they built the trust gradually as
the number of checks in executable specifications increased:

	 	 	

144 Specification by Example

They [business users] used to insist on manual testing in addition to
Cucumber. I think they are seeing the value of the Cucumber tests be-
cause they are not capable of [manually] testing the old requirements each
time we add new functionality.

Executable specifications should generally be automated through the user interface only
as a last resort, because user interface automation slows down feedback and significantly
increases the complexity of the automation layer. On the other hand, executing auto-
mated specifications through a user interface might be a good solution to gain trust
from the nontechnical users initially. Make the automation layer flexible so that you can
switch to integrating below the skin of the application later.

Running executable specifications through the user interface is also a good option
when working with a legacy system that doesn’t have a clean integration API (in which
case the only way to automate tests is end to end, starting with the front-end user inter-
face and validating the results either in the database or by using the user interface again).
Making the automation layer flexible is a good idea in this case as well, because you’ll
probably want to move it below the user interface once the architecture becomes more
testable.

Apart from gaining trust, allowing people to see the application screens during au-
tomated testing sometimes helps them think about additional examples.

According to my experience and in many of the case studies for this book, executing
tests through a user interface doesn’t scale well. You might want to reduce the number of
tests executed through the UI later, once you gain the trust of the stakeholders.

If you decide to automate specifications through a user interface, apply the ideas
described in the “Automating user interfaces” section later in this chapter to get the
most out of it and to ensure that you’ll be able to move the automation below the user
interface when needed.

Managing the automation layer
Controlling the cost of maintenance for a living documentation system is one of the
biggest challenges the teams I interviewed faced in the long term. A huge factor in that
is managing the automation effectively.

In this section, I present some good ideas that the teams used to reduce the long-
term maintenance cost of their automation layers. The advice in this section applies
regardless of the tool you choose for automation.

			 	 	 	 	 														

145 Chapter 9 Automating validation without changing specifications

Don’t treat automation code as second-grade code

One of the most common mistakes that teams made was treating specifications or
related automation code as less important than production code. Examples of this
are giving the automation tasks to less-capable developers and
testers and not maintaining the automation layer with the same
kind of effort applied to production code.

In many cases, this came from the misperception that Speci-
fication by Example is just about functional test automation
(hence the aliases agile acceptance testing and Acceptance Test-
Driven Development), with developers thinking that test code
isn’t that important.

Wes Williams said that this reminded him of his early experiences with unit-testing
tools:

I guess it’s a similar learning curve to writing JUnit. We started do-
ing the same thing with JUnit tests and then everyone started writing,
“Hey guys, JUnit is code; it should be clean.” You ran into maintainability
problems if you didn’t do that. The next thing we learned was that the test
pages [executable specifications] themselves are “code.”

Phil Cowans listed this as one of the biggest mistakes his team made early on when
implementing Specification by Example at Songkick. He added:

Your test suite is a first-class part of the code that needs to be main-
tained as much as the regular code of the application. I now think of [ac-
ceptance] tests as first class and the [production] code itself as less than first
class. The tests are a canonical description of what the application does.

Ultimately the success is more about building the right thing than build-
ing it well. If the tests are your description of what the code does, they
are not just a very important part of your development process but a very
important part of building the product and understanding what you built
and keeping the complexity under control. It probably took us a year to
realize this.

Clare McLennan says that it’s crucial to get the most capable people on the task of de-
signing and building the automation layer:

	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

146 Specification by Example

When I went back the other day, one of the other developers said that
the design of the test integration framework is almost more important
than the design of the actual product. In other words, the testing frame-
work needs to have as good a design as the actual product because it needs
to be maintainable. Part of the reason why the test system succeeded was
that I knew about the structure and I could read the code.

What typically happens on projects is they put a junior programmer to
write the tests and the test system. However, automated test systems are
difficult to get right. Junior programmers tend to choose the wrong ap-
proximations and build something less reliable. Put your best architects
on it. They have the power to say: If we change this in our design, it will
make it much better and easier to get tested.

I wouldn’t go as far as saying that the automation code is more important than produc-
tion code. At the end of the day, the software is built because that production code will
help reach some business goal. The best automation framework in the world can’t make
the project succeed without good production code.

Specifications with examples—those that end up in the living documentation—
are much longer lived than the production code. A good living documentation
system is crucial when completely rewriting production code in a better tech-
nology. It will outlive any code.

Describe validation processes in the automation layer

Most tools for automating executable specifications work with specifications in plain
text or HTML formats. This allows us to change the specifications without recompiling
or redeploying any programming language code. The automation layer, on the other
hand, is programming language code that needs to be recompiled and redeployed if we
change it.

Many teams have tried to make the automation layer generic in order to avoid
having to change it frequently. They created only low-level reusable components in the
automation layer, such as UI automation commands, and then scripted the validation
processes, such as website workflows, with these commands. A telling sign for this issue
is specifications that contain user interface concepts (such as clicking links or opening
windows) or, even worse, low-level automation commands such as Selenium operations.

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

147 Chapter 9 Automating validation without changing specifications

For example, the Global Talent Management team at Ultimate Software decided
at some point to push all workflow out of the automation layer and into test specifica-
tions. They were using a custom-built, open source UI automation tool called SWAT, so
they exposed SWAT commands directly as fixtures. They grouped SWAT commands
together into meaningful domain workflows for specifications. This approach made
writing specifications easier at first but caused many maintenance issues later, according
to Scott Berger and Maykel Suarez:

There is a central team that maintains SWAT and writes macros. At
some point it was impossible to maintain. We were using macros based
on macros. This made it hard to refactor [tests] and it was a nightmare. A
given [test context] would be a collapsible region, but if you expanded it,
it would be huge. We moved to implementing the workflow in fixtures.
For every page [specification], we have a fixture behind.

Instead of describing validation processes in specifications, we should capture
them in the automation layer. The resulting specifications will be more focused
and easier to understand.

Describing validation processes (how we test something as opposed to what’s being test-
ed) in the automation layer makes that layer more complex and harder to maintain, but
programming tools such as IDEs make that task easier. When Berger’s team described
workflows as reusable components in plain-text specifications, they were essentially pro-
gramming in plain text without the support of any development tools.

We can use programming tools to maintain the implementation of validation pro-
cesses more efficiently than if they were described in plain text. We can also reuse the
automated validation process for other related specifications more easily. See the sidebar
“Three levels of user interface automation” later in this chapter for more information
on this topic.

Don’t replicate business logic in the test automation layer

Emulating parts of the application business flow or logic in the automation layer
can make the tests easier to automate, but it will make the automation layer
more complex and harder to maintain. Even worse, it makes the test results
unreliable.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	

148 Specification by Example

The real production flow might have a problem that wasn’t replicated in the automa-
tion layer. An example that depends on that flow would fail when executed against a
real system, but the automated tests would pass, giving the team false assurance that
everything is okay.

This is one of the most important early lessons for Tim Andersen at Iowa
Student Loan:

Instead of creating a fake loan from test-helper code, we modified our
test code to leverage our application to set up a loan in a valid state. We
were able to delete nearly a third of our test code [automation layer] once
we had our test abstraction layer using personas to leverage our applica-
tion. The lesson here is don’t fake state; fantasy state is prone to bugs and
has a higher maintenance cost. Use the real system to create your state. We
had a bunch of tests break. We looked at them and discovered that with
this new approach, our existing tests exposed bugs.

On legacy systems, using production code in automation can sometimes lead to very
bad hacks. For example, one of my clients extended a third-party product that mixed
business logic with user interface code, but we couldn’t do anything about that. My
clients had read-only access to the source code for third-party components. Someone
originally copied and pasted parts of the third-party functionality into test fixtures, re-
moving all user interface bindings. This caused issues when the third-party supplier
updated their classes.

I rewrote those fixtures to initialize third-party window classes and access private
variables using reflection to run through the real business workflow. I’d never do any-
thing like that while developing production code, but this was the lesser of the two evils.
We deleted 90% of the fixture code and occasionally had to fix the automation when
the third-party provider changed the way private variables are used, but this was a lot
less work than copying and modifying huge chunks of code all the time. It also made
tests reliable.

Automate along system boundaries
When: Complex integrations

If you work on a complex heterogeneous system, it’s important to understand
where the boundaries of your responsibility lie. Specify and automate tests
along those boundaries.

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Chapter 9 Automating validation without changing specifications 149

With complex heterogeneous systems, it might be hard or even
impossible to include the entire end-to-end flow in an auto-
mated test. When I interviewed Rob Park, his team was working
on an integration with an external system that converts voice to
data. Going through the entire flow for every automated case
would be impractical, if not impossible. But they weren’t de-
veloping voice recognition, just integrating with such a system.

Their responsibilities are in the context of what happens to
voice messages after they get converted to data. Park says that they decided to isolate
the system and provide an alternative input path to make it easier to automate:

Now we’re writing a feature for Interactive Voice Response. Policy
numbers and identification get automatically transferred to the applica-
tion from an IVR system, so the screens come up prepopulated. After the
first Three Amigos conversation, it became obvious to have a test page
that prepares the data sent by the IVR.

Instead of automating such examples end to end including the external systems, Park’s
team decoupled the external inputs from their system and automated the validation for
the part of the system that they’re responsible for. This enabled them to validate all the
important business rules using executable specifications.

Business users naturally will think about acceptance end to end. Automated tests
that don’t include the external systems won’t give them the confidence that the fea-
ture is working fully. That should be handled by separate technical integration tests. In
this case, playing a simple prerecorded message and checking that it goes through fully
would do the trick. That test would verify that all the components talk to each other
correctly. Because all the business rules are specified and tested separately, we don’t need
to run high-level integration tests for all important use cases.

For more tips on how to deal with large complex infrastructures, see the next chapter.

Don’t check business logic through the user interface

Traditional test automation tools mostly work by manipulating user interface objects.
Most automation tools for executable specifications can go below the user interface and
talk to application programming interfaces directly.

Unless the only way to get confidence out of automated specifications for a fea-
ture is to run them end to end through the user interface, don’t do it.

User interface automation is typically much slower and much more expensive to
maintain than automation at the service or API level. With the exception of using

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

150 Specification by Example

visible user interface automation to gain trust (as described earlier in this chapter), go-
ing below the user interface is often a much better solution to verifying business logic
whenever possible.

Automate below the skin of the application
When: Checking session and workflow constraints

Workflow and session rules can often be checked only against the user interface layer.
But that doesn’t mean that the only option to automate those checks is to launch a
browser. Instead of automating the specifications through a browser, several teams de-
veloping web applications saved a lot of time and effort going right below the skin of the
application—to the HTTP layer. Tim Andersen explains this approach:

We’d send a hash-map that looks a lot like the HTTP
request. We have default values that would be rewritten with what’s
important for the test, and we were testing by basically going right
where our HTTP requests were going. That’s how our personas
[fixtures] worked, by making HTTP requests with an object. That’s
how they used real state and used real objects.

Not running a browser allows automated checks to execute in parallel and
run much faster. Christian Hassa used a similar approach but went one level

lower, to the web controllers inside the application. This avoided the HTTP calls as well
and made the feedback even faster. He explains this approach:

We bound parts [of a specification] directly to the UI with Selenium
but other parts directly to a MVC controller. It was a significant overhead
to bind directly to the UI, and I don’t think that this is the primary value
of this technique. If I could choose binding all specifications to the con-
troller or a limited set of specifications to the UI, I would always choose
executing all the specifications to the controller. Binding to the UI is op-
tional to me; not binding all specifications that are relevant to the system
is not an option. And binding to the UI costs significantly more.

Automating just below the skin of the application is a good way to reuse real
business flows and avoid duplication in the automation layer. Executing the
checks directly using HTTP calls—not through a browser—speeds up validation
significantly and makes it possible to run checks in parallel.

Browser automation libraries are often slow and lock user profiles, so only one such check
can run at any given time on a single machine. There are many tools and libraries for

			 	 	 	 	 														

	
	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

151 Chapter 9 Automating validation without changing specifications

direct HTTP automation, such as WebRat,2 Twill,3 and the Selenium 2.0 HtmlUnit driv-
er.4 Many modern MVC frameworks allow automation below the HTTP layer, making
such checks even more efficient. These tools allow us to execute tests in parallel, faster,
and more reliably because they have fewer moving parts than browser automation.

Choosing what to automate

In Bridging the Communication Gap, I advised automating all the specifications.
After talking to many different teams while preparing this book, I now know that
there are situations where automation would not pay off. Gaspar Nagy gave me two
good examples:

‘‘If the automation cost would be too high compared to the benefit
of that acceptance criteria—for example, displaying in a sortable grid.
The user interface control [widget] will support sorting out of the box. To
check whether the data is really sorted you need lots of test data edge
cases. This is best left to a quick manual check.

Our application required offline functionality as well. Very special offline
edge cases might be hard to automate, and testing manually is probably
good enough.’’In both these cases, a quick manual check can give the team a level of confidence

in the system that was acceptable to their customers. Automation would cost much
more than the time it would save long term.

Checking layout examples is, in most cases, a bad choice to automate. Automating
them is technically possible, but for many teams the benefits of that wouldn’t justify
the costs. Automating reference usability examples (such as the ones suggested
in the “Build a reference example” section in chapter 7) is practically impossible.
Usability and fun require a human eye and a subjective measurement. Other good
examples of checks that are probably not worth automating are intuitiveness or as-
serting how good something looks or how easy it is to use. This doesn’t mean that
such examples aren’t useful to discuss, illustrate with examples, or store in a speci-
fication system; quite the contrary. Discussing examples will ensure that everyone
has the same understanding, but we can check the result more efficiently by hand.

Automating as much as we can around those functions can help us focus manual
checks only on the very few aspects where initial automation or long-term mainte-
nance would be costly.

2 http://wiki.github.com/brynary/webrat
3 http://twill.idyll.org
4 http://seleniumhq.org/docs/09_webdriver.html#htmlunit-driver

http://wiki.github.com/brynary/webrat
http://twill.idyll.org
http://seleniumhq.org/docs/09_webdriver.html#htmlunit-driver

	 	 	152 Specification by Example

Although I’ve mostly presented web applications as examples when talking about user
interfaces, the same advice is applicable to other types of user interfaces. Automating just
below the skin of the application allows us to validate workflow and session constraints
but still shorten the feedback time compared to running tests through the user interface.
After looking into managing automation in general, it’s time to cover two specific areas
that caused automation problems for many teams: user interfaces and data management.

Automating user interfaces
When it comes to automation, dealing with user interfaces was the most challenging
aspect of Specification by Example for the teams covered by my research. Almost all the
teams I interviewed made the same mistake early on. They specified tests intended to be
automated through user interfaces as series of technical steps, often directly writing user
interface automation commands in their specifications.

User interface automation libraries work in the language of screen objects, essen-
tially software design. Describing specifications in that language directly contradicts the
key ideas of refining the specification (see the “Scripts are not specifications” and “Speci-
fications should be about business functionality, not software design” sections in chapter
8). In addition to making specifications hard to understand, this makes automated tests
incredibly hard to maintain long term. Pierre Veragen worked on a team that had to
throw away all the tests after a small change to the user interface:

User interface tests were task oriented (click, point) and therefore
tightly coupled to the implementation of the GUI, rather than activity
oriented. There was a lot of duplication in tests. FitNesse tests were orga-
nized according to the way UI was set up. When the UI was updated, all
these tests had to be updated. The translation from conceptual to techni-
cal changed. A small change to the GUI, adding a ribbon control, broke
everything. There was no way we could update the tests.

The investment they put into tests up to that point was wasted, because it was easier for
them to throw away all those tests than to update them. The team decided to invest in
restructuring the architecture of the application to enable easier testing.

If you decide to automate validation for some of your specifications through a user
interface, managing that automation layer efficiently is probably going to be one of the
key activities for your team. Here are some good ideas on how to automate tests through
a user interface and still keep them easy to maintain.

			 	 	 	 	 														

Chapter 9 Automating validation without changing specifications 153

Specify user interface functionality at a higher level of abstraction

Pushing the translation from the business language to the language of user interface
objects into the automation layer helps to avoid long-term maintenance problems. This
essentially means specifying user interface tests at a higher level of abstraction. Aslak
Hellesøy says that this was one of the key lessons he learned early on:

We realized that if we could write tests on a higher level,
we could achieve a lot of benefits. This allowed us to change
the implementation without having to change a lot of feature
scripts. The tests were a lot easier to read, because they were
shorter. We had hundreds of these tests, and just by glancing
over them it was much easier to see where the things were.
They were much more resilient to change.

Lance Walton had a similar experience, which resulted in creating classes in the integra-
tion layer that represented operations of user interface screens and then raising the level
of abstraction to workflows and finally to higher-level activities. He explains:

We went through the predictable path of writing tests in “type this,
click this button” style with lots of repetition between tests. We had a
natural instinct to refactor and realized we needed a representation of the
screens. I very much go with the early XP rules: If you have a small expres-
sion that has a meaning, refactor it to a method and give it a name. It was
predictable that we’ll have to log in for every single test, and that should
be reusable. I didn’t quite know how to do it, but I knew that was going
to happen. So we came up with screen classes.

The next thing to realize was that we kept going through the same se-
quence of pages—it was a workflow. The next stage was to understand
that the workflow still had to do with the solution we designed, so actually
let’s forget about workflow and focus on what the user is trying to achieve.

So we had pages that contained the details, then we had the task level
above that, then we had the whole workflow on top of that, and then
we finally had the goal that the user is trying to achieve. When we got to
that level, the tests could be composed very quickly, and they were robust
against the changes.

Reorganizing the automation layer to handle activities—and focusing tests on specifica-
tions, not scripts—helped reduce the maintenance costs of automated tests significantly,
Walton said:

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

154 Specification by Example

Early on you had to log in to see anything. At one point there was a
notion that you could see a whole bunch of stuff before logging in, and
you would only be asked to log in when you followed a link. If you have a
whole lot of tests that log in at the start, the first problem you have is that,
until you remove the login step, all your tests break. But you have to log in
after you follow a link, so a whole bunch of tests would break because of
that. If you have abstracted that away, the fact that your test is logging in
as a particular person doesn’t mean that it’s doing that immediately—you
just store that information and use it when asked to log in.

The tests move smoothly through. Of course, you need additional tests
to check when you are required to log in, but this is a different concern.
All the tests that are about testing whether the users can achieve their goal
are robust even with that fairly significant change. It was surprising and
impressive to me that we could make this change so easily. I truly began
to see the power we have to control this stuff.

The fact that a user had to be logged in for a particular action was separated from the
actual activity of filling in the login form, submitting it, and logging in. The automa-
tion layer decided when to perform that action in the workflow (and if it needed to be
performed at all). This made the tests based on the specifications much more resilient
to change. It also raised the level of abstraction for user interface actions, allowing the
readers to understand the entire specification easier.

Specifying user interface functionality from a higher level of abstraction allows
teams to avoid the translation between business and user interface concepts.
It also makes the acceptance tests easier to understand and more resilient to
change, reducing the long-term maintenance costs.

See the sidebar “Three levels of user interface automation” later in this chapter for an
idea how to organize UI test automation to keep all the benefits of refining the specifica-
tion and reduce long-term maintenance costs.

Check only UI functionality with UI specifications
When: User interface contains complex logic

If your executable specifications are described as interactions with user inter -
face elements, specify only user interface functionality.

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

155 Chapter 9 Automating validation without changing specifications

The only example where tests described at a lower technical level didn’t cause huge
maintenance problems later on was the one I saw from the Sierra team at BNP Pariba-
sin London. They had a set of executable specifications described as interactions with
user interface elements. The difference between this case and all the other stories, where
such tests caused headaches, was that the Sierra team specifies only user interface func-
tionality, not the underlying domain business logic. For example, their tests check for
mandatory form fields and functionality implemented in JavaScript. All their business
logic specifications are automated below the user interface.

Raising the level of abstraction would certainly make such tests easier to read and
maintain. On the other hand, that would complicate the automation layer significantly.
Because they have relatively few of these tests, creating and maintaining a smart automa-
tion layer would probably take more time than just changing the scripts when the user
interface changes. It’s also important to understand that they maintain a back-office user
interface where the layout doesn’t change as much as in public-facing websites, where
the user interface is a shopping window.

Avoid recorded UI tests

Many traditional test automation tools offer record-and-replay user interface automa-
tion. Although this sounds compelling for initial automation, record-and-replay is a ter-
rible choice for Specification by Example. This is one of the areas where automation of
executable specifications is quite different than traditional automated regression testing.

Avoid recording user interface automation if you can. Apart from being almost
impossible to understand, recorded scripts are difficult to maintain. They reduce
the cost of creating a script but significantly increase the cost of maintenance.

Pierre Veragen’s team had 70,000 lines of recorded scripts for user interface regression
tests. It took several people six months to re-record them to keep up with significant
user interface changes. Such slow feedback would completely invalidate any benefits of
executable specifications. In addition to that, record-and-replay automation requires a
user interface to exist, but Specification by Example starts before we develop a piece of
software.

Some teams didn’t understand this difference between traditional regression testing
and Specification by Example at first and tried to use record-and-replay tools. Christian
Hassa’s story is a typical one to consider:

The tests were still too brittle and had a significant overhead to main-
tain them. Selenium tests were recorded, so they were also coming in too
late. First we tried to record what was there at the end of the sprint. Then

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	

		

156 Specification by Example

we tried to abstract the recording to make it more reusable and less brittle.
At the end, it was still the tester who had to come up with his own ideas
on how to test. We found very late how the tester interpreted the user ex-
pectations. Second, we were still late in becoming ready to test. Actually it
made things worse because we had to maintain all this. Six months later
the scripts we used were no longer maintainable.

We used the approach for a few months and tried to improve the practice,
but it didn’t really work, so we dropped it by the end of the project. The
tests we wrote were not structured the way we do it now, but rather the way
a classical tester would structure tests—a lot of preconditions, then some
asserts, and the things to do were preconditions for the next test.

Three levels of user interface automation

To write executable specifications that are automated through a user interface,
think about describing the specification and the automation at these three levels:

• Business rule level—What is this test demonstrating or exercising? For ex-
ample: Free delivery is offered to customers who order two or more books.

• User workflow level—How can a user exercise the functionality through the
UI, on a higher activity level? For example: Put two books in a shopping
cart, enter address details, and verify that delivery options include free
delivery.

• Technical activity level—What are the technical steps required to exercise
individual workflow steps? For example: Open the shop home page, log in
with “testuser” and “testpassword,” go to the “/book” page, click the first
image with the “book” CSS class, wait for the page to load, click the Buy
Now link, and so on.

Specifications should be described at the business rule level. The automation
layer should handle the workflow level by combining blocks composed at the
technical activity level. Such tests will be easy to understand, efficient to write,
and relatively inexpensive to maintain.

For more information on three levels of UI tests, see my article “How to imple-
ment UI testing without shooting yourself in the foot.” †

† http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-
yourself-in-the-foot-2

http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

157 Chapter 9 Automating validation without changing specifications

Set up context in a database

Even when the only way to automate executable specifications is through a user
interface, many teams found that they can speed up test execution significantly
by preparing the context directly in their database.

For example, when automating a specification that describes how editors can approve
articles, we could pre-create articles using database calls. If you use the three layers (de-
scribed in the previous sidebar), some parts of the workflow layer can be implemented
through the user interface and some can be optimized to use domain APIs or database
calls. The Global Talent Management Team at Ultimate Software uses this approach
but splits the work so that testers can still participate efficiently. Scott Berger explains it:

The developer would ideally write and automate the happy path with
the layer of this database automation that sets up the data. A tester would
then pick that up and extend with additional cases.

By automating the whole path early, developers use their knowledge of how to optimize
tests. Once the first example is automated, testers and analysts can easily extend the
specification by adding more examples at the business rule level.

Setting up the context in a database leads us to the second biggest challenge the
teams from my research face when automating executable specifications: data manage-
ment. Some teams included databases in their continuous validation processes to get
more confidence from their systems or because their domains are data driven. This cre-
ates a new set of challenges for automation.

Test data management
To make executable specifications focused and self-explanatory, specifications need to
contain all the data that’s important to illustrate the functionality with examples but
omit any additional information. But to fully automate the examples against a system
that uses a database, we often need additional data because of referential integrity checks.

Another problem with automated tests relying on data stored in a database is that
one test can change the data required by another test, making the test results unreliable.
On the other hand, to get fast feedback, we can’t drop and restore the entire database
for every test.

Managing test data efficiently is crucial to gain confidence from data-driven systems
and make the continuous validation process fast, repeatable, and reliable. In this section,
I present some good practices that the teams I interviewed used to manage the test data
for their executable specifications.

	 	 	

	 	 	 	 	 	 	 	

158 Specification by Example

Avoid using prepopulated data
When: Specifying logic that’s not data driven

Reusing existing data can make specifications harder to understand.

When executable specifications are automated to use a database, the data in the database
becomes part of the automation context. Instead of automating how the contextual
information is put into the database before a test, some teams reused existing data that
suits the purpose. This makes it easier to automate the specifications but makes them
harder to understand. Anyone who reads such specifications has to also understand the
data in the database. Channing Walton advises against this:

Setting up databases by prepopulating a standard baseline data set al-
most always causes a lot of pain. It becomes hard to understand what the
data is, why it is there, and what it is being used for. When tests fail, it’s
hard to know why. As the data is shared, tests influence each other. People
get confused very quickly. This is a premature optimization. Write tests to
be data agnostic.

If the system is designed in a way not to require a lot of referential data setup, then
specifications can be automated by defining only a minimal set of contextual informa-
tion. Looking at this from the other side of the equation, Specification by Example
guides teams to design focused components with low coupling, which is one of the most
important object-oriented design principles. But this isn’t easy to do with legacy data-
driven systems.

Try using prepopulated reference data
When: Data-driven systems

Defining the full context for data-driven systems is difficult and error-prone. It might
not be the best thing to do from the perspective of writing focused specifications. Gas-
par Nagy’s team tried to do that and found that specifications became hard to read and
maintain:

We had an acceptance test where we had to set up some data in the
database to execute a step. When we did this setup description, it was
looking like a database. We didn’t say “table” in the text, but they were
tables. Developers were able to understand it very well, but you couldn’t
show this to a businessperson.

			 	 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

159 Chapter 9 Automating validation without changing specifications

For example, we had a table for the countries. We didn’t want to hard-

code any logic in test automation on what were the countries, so for each

of the tests we defined the countries that were relevant for this test. This

turned out to be completely stupid because we always used Hungary and

France. We could have just loaded all the countries of the world into the

database with a “given the default countries are in the system.” Having a

default data set would be helpful.
�

Marco Milone had a similar problem while working on a project in the new media
industry:

At the beginning, for the sake of getting the tests to run, we weren’t
doing things well. Setup and teardown were in the test, and they were so
cluttered. We started centralizing the database setup and enforced change
control on top of that. Tests just did checks; we didn’t bother with enter-
ing data in the tests. This made the tests much faster and much easier to
read and manage.

On data-driven systems, creating everything from scratch isn’t a good idea. On the other
hand, hiding information can cause a ton of problems as well. A possible solution for
this is a strategy implemented by the teams at Iowa Student Loan. They prepopulate
only referential data that doesn’t change. Tim Andersen explains this approach:

We “nuke and pave” the database during the build. We then populate
it with configuration and domain test data. Each test is responsible for
creating and cleaning up the transaction data.

Using prepopulated reference data is a good strategy to make test specifications
shorter and easier to understand, while at the same time speeding up feedback
and simplifying the automation layer.

If you decide to use prepopulated reference data, see the “Run quick checks for reference
data” section in chapter 10 for information on how to make tests more reliable.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

160 Specification by Example

Pull prototypes from the database
When: Legacy data-driven systems

Some domains are so complex that even with prepopulated reference data, setting up a
new object from scratch would be a complex and error-prone task. If you face this on a
greenfield project, where the domain model is under your control, this might be a sign
that the domain model is wrong (see the “Listen to your living documentation” section
in chapter 11).

On legacy data-driven systems, changing the model might not be an option. In such
cases, instead of creating a completely new object from scratch, the automation layer can
clone an existing object and change the relevant properties. Børge Lotre and Mikael Vik
used this approach for the Norwegian Dairy Herd Recording System. They said:

Getting the correct background for the test so that it is as complete
as possible was a challenge because of the complexity of the domain. If
we were testing a behavior of a cow and we had forgotten to define a test
case where she had three calves, we didn’t see the code failing and didn’t
spot the error before we tested it manually on real data. So we created a
background generator where you could identify a real cow and it pulls its
properties from the database. These properties were then used as the basis
for a new Cucumber test. This not only was useful when we wanted to
re-create an error but also turned out be a real help when we start on new
requirements.

When the Bekk team identifies a missing test case, they find a good representative ex-
ample in the real database and use the “background generator” to set up an automated
acceptance test using its properties. This ensures that complex objects have all the
relevant details and references to related objects, which makes validation checks more
relevant. To get faster feedback from their executable specifications, the background
generator pulls the full context of an object, which enables the tests to run against an
in-memory database.

Find a representative example in the database, and use those properties to set
up tests.

When this approach is used to create objects on the fly instead of creating the context
for a test (in combination with a real database), it can also simplify the setup required
for relevant entities in executable specifications. Instead of specifying all the properties

			 	 	 	 	 														

161 Chapter 9 Automating validation without changing specifications

for an object, we can specify only those that are important to locate a good prototype.
This makes the specifications easier to understand.

Automating the validation of specifications without changing them is conceptually
different from traditional test automation, which is why so many teams struggle with it
when they get started with Specification by Example. We automate specifications to get
fast feedback, but our primary goal should be to create executable specifications that are
easily accessible and human readable, not just to automate a validation process. Once
our specifications are executable, we can validate them frequently to build a living docu-
mentation system. We’ll cover those ideas in the next two chapters.

Remember

• Refined specifications should be automated with as little change as possible.

• The automation layer should define how something is tested; specifications
should define what is to be tested.

• Use the automation layer to translate between the business language and user
interface concepts, APIs, and databases. Create higher-level reusable compo-
nents for specifications.

• Automate below the user interface if possible.

• Don’t rely too much on existing data if you don’t have to.

10
Validating frequently

‘‘Stray too far out of your lane and your attention is immediately riveted
by a loud, vibrating baloop baloop baloop.’’ —David Haldane1

In the 1950s, the California Department of Transportation had a problem with
motorway lane markers. The lines were wearing out, and someone had to repaint
them every season. This was costly, caused disruption to traffic, and was danger-

ous for the people charged with that task.
Dr. Elbert Dysart Botts worked on solving that problem and experimented with

more-reflective paint, but this proved to be a dead end. Thinking outside the box, he
invented raised lane markers, called Botts’ Dots. Botts’ Dots were visible by day or night,
regardless of the weather. They didn’t wear out as easily as painted lane markers. Instead
of relying just on drivers’ sense of sight, Botts’ Dots cause a tactile vibration and audible
rumbling when drivers move across designated travel lanes. This feedback proved to be
one of the most important safety features on highways, alerting inattentive drivers to
potential danger when they drift from their lane.

Botts’ Dots were introduced to software development as one of the original 12
Extreme Programming practices, called continuous integration (CI). Continuous integra-
tion alerts inattentive software teams when they start to drift from a product that can
be built and packaged. A dedicated continuous integration system frequently builds
the product and runs tests to ensure that the system doesn’t work only on a developer’s
machine. By flagging potential problems quickly, this practice allows us to stay in the
middle of the lane and take small and cheap corrective action when needed. Continuous
integration ensures that once the product is built right, it stays right.

1 http://articles.latimes.com/1997-03-07/local/me-35781_1_botts-dots

162

http://articles.latimes.com/1997-03-07/local/me-35781_1_botts-dots

	 	 			 	 														

		 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

163 Chapter 10 Validating frequently

The same principles apply to building the right product. Once the right product is
built, we want to ensure that it stays right. If it drifts from the designated direction, we
can solve the problem much more easily and cheaply if we know about it quickly and
don’t let problems accumulate. We can frequently validate executable specifications. A
continuous-build server2 can frequently check all the specifications and ensure that the
system still satisfies them.

Continuous integration is a well-documented software practice, and many other
authors have already done a good job of explaining it in detail. I don’t wish to repeat
how to set up continuous-build and integration systems in general, but some particular
challenges for frequent validation of executable specifications are important for the topic
of this book.

Many teams who used Specification by Example to extend existing systems found
that executable specifications have to run against a real database with realistic data, ex-
ternal services, or a fully deployed website. Functional acceptance tests check the func-
tionality across many components, and if the system isn’t built up front to be testable,
such checks often require the entire system to be integrated and deployed. This causes
three groups of problems for frequent validation in addition to those usual for continu-
ous integration with just technical (unit) tests:

• Unreliability caused by environmental dependencies—Unit tests are largely
independent of the test environment, but executable specifications might
depend heavily on the rest of the ecosystem they run in. Environment issues
can cause the tests to fail even if the programming language code is correct. To
gain confidence in acceptance test results, we have to solve or mitigate these
environmental problems and make the test execution reliable.

• Slower feedback–Functional acceptance tests on brownfield projects will often
run an order of magnitude slower than unit tests. I’d consider a unit test pack
slow if it runs for several minutes. Anything close to 10 minutes would be
definitely too slow, and I’d seriously start investigating how to make it run
faster. On the other hand, I’ve seen acceptance test packs that had to run for
several hours and couldn’t be optimized without reducing confidence in the
results. Such slow overall feedback requires us to come up with a solution to
get fast feedback from selected parts of the system on demand.

• Managing failed tests—A large number of coarse-grained functional tests that
depend on many moving parts required some teams, especially when they
started implementing Specification by Example, to manage failing tests instead
of fixing them straight away.

2 Software that automatically builds, packages, and executes tests when anyone changes
any code in the version control system. If you’ve never heard of one, google CruiseControl,
Hudson or TeamCity.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

164 Specification by Example

In this chapter, I explain how teams from my research handled these three problems.

Reducing unreliability
An unreliable validation process can undermine a team’s confidence in a product and
the process of Specification by Example. Investigating intermittent failures that aren’t
caused by real problems is a huge waste of time. If that happens often, developers will
have an excuse not to look at validation problems at all. That will allow real issues to pass
undetected, defeating the whole point of continuous validation.

Legacy projects rarely support automated functional testing easily, so executable
specifications might need to be automated through unreliable user interfaces or suffer
from nondeterminism caused by asynchronous processes. This is especially problematic
when developers need convincing to participate in the process and see it only as an im-
provement on functional testing (in other words, not their problem).

Clare McLennan faced this issue with her team. “Developers didn’t care about tests
because they weren’t stable, but we needed their knowledge to make them stable,” she
said. This presented a chicken-and-egg problem for her team. To get the developers to
participate, she had to show them the value of executable specifications. But to do that,
the executable specifications had to be reliable, which required developers to change the
system design and make it easier to plug in automated tests.

To get the long-term benefits of Specification by Example, many teams had to invest
significant effort into making their validation processes reliable. In this section I present
some good ideas for that.

Find the most annoying thing, fix it, and repeat
When: Working on a system with bad automated test support

One of the most important things to understand about making the system more reliable
for automated testing is that this won’t happen overnight. Legacy systems aren’t easy to
change; otherwise, they wouldn’t be legacy. When something was built without a test-
able design for years, it won’t suddenly become clean and testable.

Introducing too many major changes quickly would destabilize
the system, especially if we still don’t have good functional test cover-
age. It would also severely interrupt the flow of development.

Instead of trying to solve a problem with one big hit, a more
useful strategy is to make many small changes iteratively.

For example, McLennan’s team realized that slow test data processing was causing tests
to time out. Their database administrator improved the database performance, which

	 	 			 	 														

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

165 Chapter 10 Validating frequently

led them to discover that some tests were starting before the updated test data was pro-
cessed, so the system was serving old data. They introduced messages to tell them when
the latest data from the database was being served, so that they could reliably start the
tests after that and avoid false negatives. When that source of entropy was eliminated,
they discovered that HTTP cookie expiry was causing problems. They introduced the
concept of business time, so that they could change the time the system thinks it’s using.
(See the “Introduce business time” section later in this chapter.)

As a strategy to achieve stability under automated testing, McLennan advises an
incremental approach:

Find the most annoying thing and fix it, then something else will
pop up, and after that something else will pop up. Eventually, if you keep
doing this, you will create a stable system that will be really useful.

Improving the stability iteratively is a good way to build a reliable validation process
without interrupting the delivery flow so much. This approach also enables us to learn
and adapt while we’re making the system more testable.

Identify unstable tests using CI test history
When: Retrofitting automated testing into a legacy system

On a legacy system that’s not susceptible to automated testing, it’s often hard to decide
where to start with iterative cleanup because there are so many causes of instability. A
good strategy for this is to look at the test execution history. Most continuous-build
systems today have a feature that tracks test results over a time.

Once executable specifications are plugged into a continuous-build system,
the test run history will allow us to see which tests or groups of tests are the
most unstable.

I completely overlooked this feature for years because I was mostly working on green-
field projects built up to be testable up front or systems where relatively small changes
introduced stability. In such projects, tracking the history of test executions is useless:
The tests pass almost all the time and are fixed as soon as they fail. The first time I tried
to retrofit automated testing into a system that suffered from occasional timeouts, net-
working issues, database problems, and inconsistent processing, seeing the test history
helped me focus my efforts to increase stability. That showed me which groups of tests
were failing the most often so that I could fix them first.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

166 Specification by Example

Set up a dedicated continuous validation environment

If your application needs to be deployed and running for functional testing,
the first step to reproducibility is to secure a dedicated environment for

deployment.

Continuous validation has to work in a reproducible way to be reliable. In some larger
organizations it’s harder to get a new set of machines than it is to hire a known poisoner
as a chef in the company cafeteria, but fighting for better equipment is well worth it.
Many teams tried to use the same environment for demonstrating features to business
users, manual testing, and continuous validation. This regularly caused data consistency
issues.

Without a dedicated environment, it’s hard to know whether a test failed because
there’s a bug, whether someone changed something on the test environment, or whether
the system is just unstable. A dedicated environment eliminates unplanned changes and
mitigates the risk of unstable environments.

Employ fully automated deployment

Once we have a dedicated environment, we want to ensure that the software is deployed
in a reproducible way. Unreliable deployment is the second most common cause of
test result instability. For many legacy systems, deployment is a process done overnight
that involves several people, lots of coffee, and ideally a magic wand. When we have to
deploy once every year, this is acceptable. When we have to deploy every two weeks, it
becomes a major headache. For continuous validation, we might need to deploy several
times a day, and magic-aided manual deployment is completely unacceptable.

Without a fully automated deployment that can reliably upgrade a system, we’ll
frequently get into situations where many tests suddenly start failing and someone has
to spend hours troubleshooting to find the culprit, only to hear “but it works on my
machine” from the back of the room.

Fully automated deployment will ensure that there’s a single standard procedure
for upgrading. It will also ensure that all the developers have the same system
layout as the test environments.

This eliminates the dependency of executable specifications on a particular environment
and makes continuous validation much more reliable. It also makes problems easier to
troubleshoot, because developers can use any environment to reproduce problems.

	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	

167 Chapter 10 Validating frequently

For this to work, it has to be fully automated. No manual intervention should be
required—or allowed—at all. (Note that I’m talking about a fully automated deploy-
ment that can be executed on demand, not necessarily firing off automatically as well.)
Installers that require you to poke around an administration console, half-automated
manual scripts, and things like that don’t count as fully automated. In particular, this
includes automated database deployments.

I’ve seen many teams who claim to have automated deployment, only to find out
that someone has to run database scripts manually afterward.

Fully automated deployment brings other benefits as well, such as being able to
upgrade production systems more easily. This will save you a lot of time long term. Fre-
quent deployment is a good practice regardless of Specification by Example.

Create simpler test doubles for external systems
When: Working with external reference data sources

Many teams had problems with external reference data sources or external systems that
participated in their business workflow. (By external I mean outside the scope of a team,
not necessarily belonging to a different organization.) In large enterprises with complex
networks of systems, a team might work on only one part of the workflow, and its test
system will talk to the test systems of other teams. The problem is that the other teams
have to do their own work and testing so their test servers might not be always available,
reliable, or correct.

Create a separate fake data source that simulates the interaction with the
real system.

Rob Park’s team at a large U.S. insurance provider was building a system that looked
up reference policy data on an external auto policy server. If the auto policy server went
down, all their executable specifications would start failing. For functional testing, they
used an alternative version of the external service. The simpler version read the data from
a file on a local disk.

This allowed Park’s team to test their system even when the auto policy server was
offline. Creating a separate reference data source also gave the team full control of the
reference data. Expired policies wouldn’t be served by the real system, so tests that de-
pended on a policy that had expired would start failing.

	 	 	

	 	 	 	 	 	 	 	 	 	
	

168 Specification by Example

The simpler version of the reference data source served everything from the con-
figuration file, which avoided the temporal issues. They kept the data in an XML file
that was checked into a version control system, so that they could easily track changes
and package the correct version of the test data with the correct version of the code. This
would be impossible with an external system. A local service that reads from a file is also
faster than the external system, speeding up the overall feedback.

A risk with test doubles is that the real system will evolve over time, and the double
will no longer reflect the realistic functionality. To avoid that, be sure to check periodi-
cally whether the double still does what the original system is supposed to do. This is
particularly important when the double is representing a third-party system over which
you have no control.

Selectively isolate external systems
When: External systems participate in work

double would have to start implementing parts of the real
functionality of external systems. This brings significant
overhead in development and more maintenance problems.

Ian Cooper’s team at Beazley took an interesting
pragmatic approach to solve this problem. They selectively
turned off access to some services based on the goal of each
executable specification. This made their tests significantly
faster but still involved the minimal set of real external
systems in each test. The solution didn’t completely protect them from external
influences, but it made troubleshooting a lot easier. If a test failed, it was clear which
external dependency might have influenced it.

Isolating a system completely isn’t always a good idea. When a system participates in a
larger workflow where the external systems provide more than just reference data, a test

Selectively isolating some external services can make tests faster and
troubleshooting easier.

Try multistage validation
When: Large/multisite groups

With legacy systems, running all the executable specifications often takes longer than the
average time between two committed changes to the underlying source code. Because
of that, it might be hard to associate a problem with a particular change that caused it.

	 	 			 	 														

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

169 Chapter 10 Validating frequently

With larger groups of teams, especially if they’re spread across several sites, this can
cause problems to accumulate. If one team breaks the database, the other teams won’t be
able to validate their changes until the problem gets fixed. It might take a several hours
to find out that there’s a problem, determine what it is, fix it, and rerun the tests to con-
firm that it’s fixed. A broken build will always be someone else’s problem, and very soon
the continuous-validation test pack will always be broken. At that point, we might as
well just stop running the tests.

Employ multistage validation. Each team should have an isolated continuous-
validation environment; changes should be first tested there.

First integrate a change with the other changes from the same team. If the tests pass
there, the push changes to the central continuous-validation environment, where they’re
integrated with all the changes from the other teams.

This approach prevents problems of one team influencing the other teams in most
cases. Even if the central environment is broken and someone is fixing it, individual
teams can still use their own environments to validate changes.

Depending on how long all executable specifications take to run, we can execute
the full test pack in both environments or just run a representative subset of tests in the
one of the environments to provide a quick smoke test. The Global Talent Management
Team at Ultimate Software, for example, runs most of their tests just in the local team
environments. Slower tests don’t run on the central environment in order to provide
quick feedback.

Execute tests in transactions
When: Executable specifications modify reference data

Database transactions can provide isolation from outside influences.

Transactions can prevent our process from influencing other processes running at the
same time and make tests more reproducible.

If we create a user during our test, the test might fail the next time we run it because
of a unique constraint on the username in the database. If we run that test inside a
transaction and roll back at the end of the test, the user won’t be stored, so the two test
executions will be independent.

This is a good practice in many cases, but it might not work with some transactional
contexts (for example, if database constraint checks are deferred until a transaction com-
mit or in the case of nested autonomous transactions). Such advanced transactional
topics are outside the scope of this book.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

170 Specification by Example

In any case, keep transaction control outside the specifications. Database transac-
tion control is a crosscutting concern that’s best implemented in the automation layer,
not in the description of executable specifications.

Run quick checks for reference data
When: Data-driven systems

In data-driven systems, executable specifications depend extensively on reference data.
Changes to the reference data, such as workflow configuration, might break the test even
if the functionality is correct. Such problems are difficult to troubleshoot.

Set up a completely separate group of tests to verify that the reference data is
still as we expect it to be.

Such tests can run quickly before executable specifications. If that test pack fails, there’s
no point in running the others. These tests will also pinpoint reference data problems
and allow us to fix them quickly.

Wait for events, not for elapsed time

Asynchronous processes seem to be one of the most problematic areas for executable
specifications. Even when parts of a process execute in the background, on different ma-
chines, or get delayed for several hours, business users see the whole process as a single
sequence of events. At Songkick, this was one of the key challenges to overcome for a
successful implementation of Specification by Example. Phil Cowans says:

Asynchronous processing has been a real headache for us. We do a lot
of background processing that is asynchronous for performance reasons,
and we ran into a lot of problems because the tests work instantly. The
background processing hadn’t happened by the time the test moved to the
next step.

Reliably validating asynchronous processes requires some planning and careful design
in the automation layer (and often in the production system). A common mistake with
asynchronous systems is to wait a specific time for something to happen. A symptom of
this is a test step such as “Wait 10 seconds.” This is bad for several reasons.

Such tests might fail even when the functionality works correctly but the continu-
ous validation environment is under a heavy load. Running these tests on a different
environment might require more time, so they become dependent on a particular de-
ployment. When a continuous validation environment is much more powerful than the

	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

		 	 	 	 	 	 	
	 	

171 Chapter 10 Validating frequently

machines that the developers have, the developers won’t be able to validate changes on
their systems with the same timeout configuration. Many teams set high timeouts on
tests to make them more resilient to environment changes. Such tests then delay feed-
back unnecessarily.

For example, if a test unconditionally waits 1 minute for a process to end, but it
finishes in just 10 seconds, we delay the feedback unnecessarily for 50 seconds. Small
delays might not be an issue for individual tests, but they accumulate in test packs. With
20 such tests, we delay the feedback for the entire test pack for more than 15 minutes,
which makes a lot of difference.

Wait for an event to happen, not for a set period of time to elapse. This will make
tests much more reliable and not delay the feedback any longer than required.

Whenever possible, implement such tests to block on a message queue or poll a database
or a service in the background frequently to check whether a process has finished.

Make asynchronous processing optional
When: Greenfield projects

When building the system from the ground up, we have the option to design it to
support easier testing. Depending on the configuration, the system can either queue a
message to process the transaction in the background or directly execute it. We can then
configure the continuous validation environment to run all processes synchronously.

One good way to deal with test stability is to make asynchronous processing
optional.

This approach makes executable specifications run much more reliably and quickly. But
it means that functional acceptance tests don’t check the system end to end. If you turn
off asynchronous processing for functional tests, remember to write additional techni-
cal tests to verify that asynchronous processing works. Although this might sound like
doubling the work, it isn’t. Technical tests can be short and focused just on the technical
execution, not verifying the business functionality (which will be separately checked by
functional tests).

For some good technical options on automating validation of asynchronous
processes, see Growing Object Oriented Software, Guided by Tests.3

3 Steve Freeman and Nat Pryce, Growing Object-Oriented Software, Guided by Tests (Addison-
Wesley Professional, 2009).

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

172 Specification by Example

Don’t use executable specifications as end-to-end validations
When: Brownfield projects

Many teams, especially those working with existing legacy systems, used executable
specifications as both functional tests and end-to-end integration tests. This gave them
more confidence that the software worked correctly overall but made the feedback a lot
slower and increased the maintenance costs for tests significantly.

The problem with this approach is that too many things get tested at the same time.
Such end-to-end tests check the business logic of the process, the integration with the
technical infrastructure, and that all the components can talk to each other. Many mov-
ing parts mean that a change in any of them will break the test. That also means that
we have to run through the entire process end to end to validate every single case, even
though we could possibly check what we want in only a part of the flow.

Don’t test too many things at the same time with one big executable specification.

Most asynchronous processes consist of several steps that each have some business logic,
which needs to be defined using executable specifications. Most of them also include
purely technical tasks, such as dispatching to a queue or saving to a database. Instead of
checking everything with one big specification that takes long to execute, think about
the following when you implement such a process:

• Clearly separate the business logic from the infrastructure code (for example,
pushing to a queue, writing to the database).

• Specify and test the business logic in each of the steps separately, possibly
isolating the infrastructure, as described earlier in this chapter. This makes it
much easier to write and execute tests. The tests can run synchronously, and
they don’t need to talk to a real database or a real queue. These tests give you
confidence that you’ve implemented the right business logic.

• Implement technical integration tests for the infrastructure code, queue, or
database implementations of repositories. These tests can be fairly simple
because they don’t have to validate complicated business logic. They give you
confidence that you are using the infrastructure correctly.

Have one end-to-end integration test that verifies that all the components talk to each
other correctly. This can execute a simple business scenario that touches all the compo-
nents, blocks on a queue waiting for a response, or polls the database to check for the
result. This gives you confidence that the configuration works. If you use high-level
examples, as suggested in the “Don’t look only at the lowest level” section in chapter 5,
they’re good candidates for this test.

	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

173 Chapter 10 Validating frequently

Moving down this list from business logic over infrastructure to end-to-end tests, I’d
normally expect to see the number of tests decrease and time to execute individual tests
increase significantly. By isolating complicated business logic tests from the infrastruc-
ture, we improve reliability.

Getting feedback faster
Most teams found that running the all their executable specifications after every change
of the system isn’t feasible. A large number of checks (especially if they can only be ex-
ecuted against a website, database, or external services) make the feedback from a full
test run too slowly. In order to support development efficiently and facilitate change,
most teams changed their continuous validation systems to provide feedback in several
stages, so that they get the most important information quickly. Here are some of the
strategies that the teams I interviewed used to keep their feedback loop shorter.

Introduce business time
When: Working with temporal constraints

Temporal constraints are a common reason for slow feedback in automated functional
testing. End-of-day jobs might normally run at midnight, and any tests that depend on
them would produce slow feedback, because we’d have to wait 12 hours on average to
see the results. Cache headers might affect whether a document is retrieved from the
backend system or not, and to test this functionality properly we might have to wait
several days for results.

A good solution for this problem is to introduce the concept of business time into
the system, a configurable replacement for the system clock.

The system should use the business clock when it wants to find out the current
time or date. This allows us to travel in time easily during a test. That increases
the complexity of the system a bit, but it allows us to test it very quickly.

A quick and dirty way to implement business time is to automate clock changes on the
test environment, which doesn’t require any design changes. Beware of applications that
cache time, though, because they might require restarting after system clock updates.
Changing the system clock might make test results more confusing if that time is used
anywhere else, for example, in test execution reports. A more comprehensive solution is
to build the business time functionality into the production software.

Introducing business time as a concept also solves the problem of expiring data.
For example, tests that use expiring contracts might work nicely for six months and
then suddenly start failing when the contracts expire. If the system supports business

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

174 Specification by Example

time changes, we could ensure that those contracts never expire and reduce the cost of
maintenance.

A potential risk with introducing business time is introducing synchronization
problems with external systems that we can’t influence. To address this, apply the test
double or isolation ideas from earlier in this chapter.

Break long test packs into smaller modules

After several months of years of building executable specifications, many teams ended
up with tests packs that take several hours to run. Because hundreds of tests are executed,
people take it for granted that the feedback will be slow. They don’t notice when some-
thing starts taking 20 minutes longer than it normally does. Such problems quickly
accumulate, and the feedback gets even longer.

Instead of a big set of executable specifications that takes six hours to run, I’d
rather have 12 smaller sets that each take no longer than 30 minutes. Generally,

I break those apart according to functional areas.

If I want to fix a problem in the accounting subsystem, for example, I can quickly rerun
just the accounting tests to check if the problem is gone. I don’t have to wait six hours
for all the other tests to finish.

If a single group of tests suddenly starts taking 10 minutes longer,
I can easily spot that by looking at the test history for a particular
group of tests. A 10-minute increment over six hours isn’t as visible
as a 10-minute increase over 30 minutes. This allows me to keep the
feedback delay under control because I’ll start looking for ways to
optimize that particular test pack. By splitting a big test pack into
several smaller packs, I recently helped a client realize that just one

functional area was causing very long delays, and we cut that down from almost one
hour to just nine minutes. Divide and conquer!

Avoid using in-memory databases for testing
When: Data-driven systems

Some teams with data-driven systems tried to speed up the feedback by running con-
tinuous validation tests against an in-memory database instead of a real database. This
allows the system to still execute SQL code but makes all SQL calls run a lot faster. It

	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

175 Chapter 10 Validating frequently

also makes test runs better isolated, because each test can run with its own in-memory
database. But in practice, many teams found that running tests like this costs more than
it’s worth long term.

An executable specification that includes a database is most likely a functional ac-
ceptance test and an end-to-end integration test at the same time. Whoever wrote it like
that wants to check SQL code execution as well. Minor SQL dialect differences between
the real production database type and the in-memory database implementations might
make test results misleading. This also often requires maintaining two sets of SQL files
and managing data changes in two places.

If you use an in-memory database, the end-to-end integration test will validate
that the system can work correctly against the in-memory database, not the real
database that you’ll use in production.

I’ve already mentioned some better solutions to this problem. Running tests in trans-
actions provides better isolation. Mixing end-to-end integration tests and functional
acceptance tests might not be the best idea (as mentioned earlier in this chapter), but if
you really want to do that, then use the real database and look for ways to speed it up.

The team at Iowa Student Loan used in-memory databases for testing but gave up
on that later. Tim Andersen says:

We used SQL Server for our database and replaced it with Hypersonic
to make it run in memory. That saved us 2 minutes of a 45-minute build.
Once we added indexes to the database, SQL Server was actually faster.
Hypersonic was more maintenance and didn’t improve the build time that
much.

If the tests are running slowly on realistic data, it probably means that the system is
going to work slowly in production, so improving the performance of the database
for testing actually makes sense in the grand scheme of things anyway. Note that the
context of this tip is data-driven systems where executing specific database code is
often required. In-memory databases can be a perfectly good solution for speeding up
database-agnostic checks.

Separate quick and slow tests
When: A small number of tests take most of the time to execute

If a small subset of tests takes the majority of time to run, it might be a good
idea to run only the quick tests frequently.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

176 Specification by Example

Many teams organized their executable specifications into two or three groups based on
the speed of execution. At RainStor, for example, they have to run some of the tests with
very large data sets to check the system performance. They have a functional pack that runs
after every build and takes less than one hour. They also run customer scenarios overnight,
with realistic data obtained from customers. They run long-running suites every weekend.
Although this doesn’t provide a full validation every time, it significantly reduces the risk
of changes introducing problems while still providing relatively quick feedback.

Keep overnight packs stable
When: Slow tests run only overnight

A big problem with delayed execution of slow tests is that any issues in those tests won’t
get discovered and fixed quickly. If an overnight test pack fails, we find about that in
the morning, try to fix it, and get the results the next morning. Such slow feedback can
make the overnight build break frequently, which can mask additional problems intro-
duced during the day.

Include tests into packs that run overnight only when they’re unlikely to fail.

A good idea to keep the overnight packs stable is to move any failing tests
into a separate test pack (see the “Create a known regression failures pack”
section later in this chapter).

Another idea is to add tests into overnight packs only when they’ve been
passing reliably for a while. Test-run history statistics (discussed earlier in this
chapter) can help us decide when a test is good enough for an overnight pack.

If these tests are too slow to be executed continuously, a possible solu-
tion is to execute them periodically on demand until they become stable

enough for delayed execution. Adam Knight at RainStor uses this strategy:

Tests were executed manually until they were deemed reasonably
stable and then executed through the nightly test [pack]. Having the
separation of tests has benefited us in many ways. If a test fails, we get it
fixed. A significant failure becomes our top priority.

By adding specifications into the overnight packs only when they’re unlikely to fail, the
team at RainStor reduced the risk of the packs with slower feedback failing because of
features currently in development. This significantly reduced the maintenance costs for
overnight packs. They’ll still catch unexpected and unpredictable changes, which appear
rarely. Considering that, slower feedback for such features is a good trade-off for lower
maintenance costs.

	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

Chapter 10 Validating frequently 177

Create a current iteration pack

A common special case of breaking long tests into smaller packs is creating the current
iteration pack. This pack contains the executable specifications that are affected by the
current development phase.

Having a current iteration pack, clearly separated, allows us to get very quick
feedback on the most volatile and the most important area of the system for
our current changes.

When the current iteration pack is split from the rest of the tests, we can safely include
in it even the tests for the functionality that was planned but not yet implemented.
Running all the tests for the current iteration will enable us to track the development
progress easier and know exactly when we’re finished. The current iteration pack might
fail as a whole most of the time, but this won’t affect the main regression validation.

A variant of this is to create a pack for the current release if we need to validate such
specifications more frequently. Note that many automation tools allow us to create par-
allel hierarchies so the same specification can belong to multiple packs at the same time.

Parallelize test runs
When: You can get more than one test environment

If you’re privileged enough to work in a company where setting up an additional
test environment isn’t a problem, once you divide a big test pack into several
smaller ones, try to run them in parallel. This will give you
the fastest feedback possible.

If some tests have to run in isolation and can’t be executed in
parallel, it’s worth splitting them out into a separate pack as
well. At LMAX, Jodie Parker organized continuous integration
and validation in this way:

Commit build ran all unit tests and statistical analysis within 3 min-
utes. If that passed, sequential boxes executed tests that needed to be
run one after another or not in parallel. Then 23 virtual machines ran
acceptance tests in parallel. After that, a performance test kicked off. They
[executable specifications] typically ran between 8 and 20 minutes.

	 	 	

	

178 Specification by Example

At the end, if the tests passed a certain amount, the QA instance was
available to deploy to run smoke tests and exploratory tests and provide
feedback to development. If the commit build failed, everyone had to
stop (a complete embargo) and fix it.

If you’re not paranoid about security, or don’t work under regulatory constraints that
prevent you from deploying the code outside your organization, emerging cloud com-
puting services can help with parallel test runs. Deploying the code remotely takes some
time, but this allows you to run tests on a very large number of machines at the same
time. At Songkick, they use Amazon’s EC2 cloud to run acceptance tests. Phil Cowans
said that helped them cut down build time significantly:

Running the full test suite on a single machine would take 3 hours but
we parallelize. We just learned how to do this on EC2 to bring it down to
20 minutes.

Some continuous build systems, such as TeamCity,4 now offer test execution on EC2 as a
standard feature. This makes it even easier to use computing clouds for continuous vali-
dation. There are also emerging services that offer automation through cloud services,
such as Sauce Labs, which might be worth investigating.

Try disabling less risky tests
When: Test feedback is very slow

The team at uSwitch has a unique solution for slow feedback of long-running test packs.
They disable less risky tests after the features described by those tests are implemented.
Damon Morgan said:

‘‘Sometimes you write acceptance tests (which are very good to drive

development) that aren’t that important to keep around once a feature

has been developed. Something that is not moneymaking—e.g., sending

delayed emails—is not a truly core part of the site but adds functionality

to it.... They [executable specifications] were very good to help us drive

the development, but after that, keeping them running as a regression

pack wasn’t that useful to us. It was more hassle to maintain them than to

throw them away. We do have the tests in our source control; they are just

not running. If we have to extend the functionality, we can still modify

an existing test.
�

4 http://www.jetbrains.com/teamcity

http://www.jetbrains.com/teamcity

	 	 			 	 														

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

179 Chapter 10 Validating frequently

For me, this is quite a controversial idea. I’m of the opinion that if a test is worth
running, it’s worth running all the time.5

Most of the tests at uSwitch run through the web user interface, so they take a long
time and are quite expensive to maintain, which is what pushed them in this direction.
With a system that doesn’t make you run tests end to end all the time, I’d prefer trying to
automate the tests differently so that they don’t cost so much (see the “Automate below
the skin of the application” section in chapter 9).

One of the reasons why uSwitch can afford to disable tests is that they have a sepa-
rate system for monitoring user experience on their production website, which tells
them if users start seeing errors or if the usage of a particular feature suddenly drops.

After covering faster feedback and more reliable validation results, it’s time to tackle
something much more controversial. As the size of their living documentation system
grew, many teams realized that they sometimes need to live with failing tests occasion-
ally. In the following section, I present some good ideas for dealing with failing tests that
you might not be able to fix straightaway.

Managing failing tests
In Bridging the Communication Gap, I wrote that failing tests should never be disabled
but fixed straightaway. The research for this book changed my perspective on that issue
slightly. Some teams had hundreds or thousands of checks in continuous validation,
validating functionality that was built over several years. The calculation engine system
at Weyerhaeuser (mentioned in the “Higher product quality” section in chapter 1) is
continuously validated by more than 30,000 checks, according to Pierre Veragen.

Frequently validating so many specifications will catch many problems. On the
other hand, running so many checks often means that the feedback will be slow, so
problems won’t be instantly spotted or solved. Some issues might also require clarifica-
tion from business users or might be a lesser priority to fix than the changes that should
go live as part of the current iteration, so we won’t necessarily be able to fix all the prob-
lems as soon as we spot them.

This means that some tests in the continuous validation pack will fail and stay
broken for a while. When a test pack is broken, people tend not to look for additional
problems they might have caused, so just leaving these tests as they are isn’t a good idea.
Here are some tips for managing functional regression in the system.

5 To be fair, I picked this idea up from David Evans, so if you want to quote it, use
him as a reference.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

180 Specification by Example

Create a known regression failures pack

Similar to the idea of creating a separate pack of executable specifications for the current
iteration, many teams have created a specific pack to contain tests that are expected to fail.

When you discover a regression failure and decide not to fix it straightaway,
moving that test into a separate pack allows the tests to fail without breaking
the main validation set.

Grouping failing tests in a separate pack also allows us to track the number of such prob-
lems and prevent relaxing the rules around temporary failures from becoming a “get out
of jail free” card that will cause problems to pile up.

A separate pack also allows us to run all failing tests periodically. Even if the test fails,
it’s worth running to check if there are any additional failures. At RainStor, they mark
such tests as bugs but still execute them to check for any further functional regression.
Adam Knight says:

One day you might have the test failing because of trailing zeros. If
the next day that test fails, you might not want to check it because you
know the test fails. But it might be returning a completely wrong numeric
result.

A potential risk with a pack for regression failures is that it can become a “get out of jail
free” card for quality problems that are identified late in a delivery phase. Use the pack
for known failures only as a temporary holding space for problems that require further
clarification. Catching issues late is a warning sign of an underlying process problem.
A good strategy to avoid falling into this trap is to limit the number of tests that can be
moved to a known regression pack. Some tools, such as Cucumber, even support auto-
mated checking for such limits.

Creating a separate pack where all failing tests are collected is good from the project
management perspective, because we can monitor it and take action if it starts growing
too much. One or two less-important issues might not be a cause to stop a release to
production, but if the pack grows to dozens of tests, it’s time to stop and clean up before
things get out of hand. If a test spends a long time in the known regression pack, that
might be an argument to drop the related functionality because nobody cares about it.

	 	 			 	 														

	 	 	 	 	 	 	 	 	

181 Chapter 10 Validating frequently

Automatically check which tests are turned off
When: Failing tests are disabled, not moved to a separate pack

Some teams don’t move failing tests into a separate pack, but they disable them so that
a known failing test won’t break the overall validation. The problem with this approach
is that it’s easy to forget about such disabled tests.

A separate pack allows us to monitor the problems and ensure that they eventually
get fixed or that we don’t waste time troubleshooting a similar problem again until the
issue gets fixed. We can’t do this easily with tests that are disabled. An additional prob-
lem is that someone might disable a high-priority failure without understanding that it
should actually be fixed straightaway.

If you have tests that are disabled, automatically monitor them.

The team at Iowa Student Loan has an automated test that checks to see which tests are
disabled. Tim Andersen said:

People were turning tests off because we needed a decision or we were
writing a new test and weren’t sure how this old test fit in. There were
conversations that never got followed up on, or people just forgot to turn
the test back on. Sometimes the tests were turned off because people were
working on it and there was no code behind it yet.

We used FitNesse to find the tests that were turned off, and we had a page
that checked all of those test names. We’d use that to list the tests that
were intentionally turned off and put a JIRA [an issue-tracking system]
ticket next to each test. So a turned-off list acts as another test. It has to
match what you say you turned off. At the end of an iteration, we follow
up on those tests that were turned off. We could say, “This is no longer
applicable, let’s just delete the test,” or “Oh, there’s a difference and we
didn’t really hear back from the business,” and in these cases we’d have to
fix the test.

If you opt for temporarily disabling broken tests instead of moving them out into a
separate pack, make sure that you can monitor them easily and prevent people from
forgetting about the disabled tests. Otherwise, the living documentation system you
build will quickly get outdated. Disabling executable specifications is a quick and dirty
temporary fix for a broken test, but it defeats the whole point of continuous validation.

	 	 	

182 Specification by Example

Once we have specifications that are continuously validated, it becomes easy to as-
sert what a system does from a functional perspective, at least for the parts of it that are
covered with executable specifications. The specifications then become a living docu-
mentation system that explains the functionality. In the next chapter, I present some
good ideas on how to get the most out of your set of executable specifications by evolv-
ing a documentation system.

Remember

• Validate executable specifications frequently to keep them reliable.

• Compared to continuous integration with unit tests, the two main challenges
for continuous validation are fast feedback and stability.

• Set up an isolated environment for continuous validation and fully automate
deployments to make it more reliable.

• Look for ways to get faster feedback. Split quick and slow tests, create a pack
for current iteration specifications, and divide long-running packs of executable
specifications into smaller packs.

• Don’t just disable failing tests—either fix the problems or move the tests to a
pack for low-priority regression issues that’s closely monitored.

	 	 	 	

11
Evolving a documentation system

In chapter 3, I introduced the concept of living documentation and explained
why it’s important, without discussing how to build it. In this chapter, I cover the
practices that teams used to implement a living documentation system.

A living documentation is more than a directory full of executable specification files.
To experience the benefits of living documentation, we have to organize specifications
so they make sense together and add relevant contextual information that will allow us
to understand individual parts.

Ideally, a living documentation system should help us understand what our system
does, which means that the information must be

• Easy to understand

• Consistent

• Organized for easy access

In this chapter, I present the techniques that the teams from my research used to fulfill
those three goals.

Living documentation should be easy to understand
By rigorously refining the specification, as described in chapter 8, we create executable
specifications that are focused and self-explanatory and make use of the domain lan-
guage of a project. As a living documentation system grows, we add information to its
specifications and merge or split them. Here are some useful ideas for keeping the living
documentation easy to understand as it grows.

183

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

184 Specification by Example

Don’t create long specifications

Documentation grows as you add functionality to the underlying system; you create
new specifications and extend the existing ones. Watch out for specifications that be-
come too long as a result.

Specifications that are too long are often a sign that something is wrong.
The longer a specification is, the harder it will be to understand.

Here are some examples of things that might be wrong when a specification is too long:

• The concepts aren’t explained at the appropriate level of
abstraction. Ask yourself, “What are we missing here?” and
try to identify the missing concepts that would allow you to
break the test apart. Identifying missing concepts can lead to
design breakthroughs. See “Look for implied concepts” in
chapter 7 for more on this.

• Instead of being focused on a single function, the specification
describes several similar functions. Break it apart into separate speci-

fications. See “Specifications should be focused” in chapter 8 for more details.

• You’re describing the functionality using a script, not a specification. Restruc-
ture the information and focus it on what the system is supposed to do instead
of how it’s done. See “Scripts are not specifications” in chapter 8 for further
information.

• The specification contains a lot of unnecessary contextual information.
Clean it up by focusing on important attributes that illustrate the goal of
this particular test.

Don’t use many small specifications to describe a single feature

As a system evolves, our understanding of the domain changes. Concepts that start out
differently might start to look similar—we discover that they are two sides of the same
coin. Similarly, we might break complex concepts into smaller elements that suddenly
start looking similar to existing concepts. In these cases, multiple
specifications in a living documentation system that describe the
same feature should be merged.

Rakesh Patel’s team at Sky Network Services went too far in
breaking down the specifications at one point. A single specifica-
tion no longer described an entire feature. Patel said:

	 	 	 			 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	

185 Chapter 11 Evolving a documentation system

If you have lots of examples in one file, it makes that file a bit more
difficult to work with because you see a lot of similar code and you might
be in a wrong part of it. I used to prefer having a lot of different files with
different examples, but then you have a lot of files so that becomes hard
to track as well.

If someone has to read 10 different specifications to understand how a feature
works, it’s time to think about reorganizing the documentation.

Look for higher-level concepts

In the course of adding functionality to the system, we sometimes end up with similar
specifications that have only minor differences.

Step back and look at what your specifications describe from a higher level of
abstraction.

Once we’ve identified a higher-level concept, a whole set of specifications can
typically be replaced with a single specification that focuses only on the attributes that are
different. This makes the information easier to understand, find, and access. Identify-
ing missing concepts might also lead to breakthroughs in system design, similar to the
process described in the “Look for implied concepts” in chapter 7.

Avoid using technical automation concepts in tests
When: Stakeholders aren’t technical

Instead of creating a communication tool, some teams focused on functional regression
testing with their executable specifications and wrote technical acceptance tests. This al-
lows developers to write tests quicker, but it also makes the tests harder to read and often
impossible to understand for anyone who isn’t a developer. Johannes Link had such an
experience on his first project using FIT:1

We ended up with lots of tests with lots of duplication. Developers
could understand the tests, but they were cryptic for anyone from the busi-
ness side. They took longer to run and longer to maintain than just JUnit
tests. We threw away some of them and rewrote them in JUnit.

1 The first automation tool for executable specifications

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

186 Specification by Example

Specifications described in a technical language are ineffective as a communica-
tion tool. If business users care about an executable specification, then it should
be described in a language they understand. If the business users don’t care
about a specification, it should be captured with a technical test tool.

A living documentation system that contains technical automation concepts, such as the
command to wait until a given time for a process to complete, is a signal for a team to
revisit the design of the underlying software system. The need to use technical concepts
in living documentation often points to problems with system design, such as reliability
of asynchronous processes (see “Listen to your living documentation” at the end of this
chapter).

Using technical language is acceptable only when the stakeholders are technical as
well and can understand what’s going on in the technical language (such as SQL queries,
DOM identifiers, and so on). Note that even if the stakeholders are technical, using
such technical language tends to describe how something is tested rather than what the
functionality is. Although such tests might initially be quicker to write, they might cause
maintenance problems in the long term. See “Scripts aren’t specifications” in chapter 8
for more information.

Mike Vogel used DbFit, a database test script extension for FitNesse that I wrote, to
describe acceptance tests in a project with technical stakeholders who could understand
scripts. In hindsight, he thinks this was a mistake:

In the beginning they were happy because they could quickly use Db-
Fit and not write custom fixtures, so they had automated tests from day
one. Later on, as the complexity of the solution increased, there was no
time in the release plan to go back and create test fixtures to make the tests
simpler and more understandable and to make the system more testable.
We ended up with too brittle, too complicated tests.

Living documentation should be consistent
Living documentation is probably the longest living artifact of a project. Technologies
will come and go, code will be replaced with other code, but the living documentation
system describes how the business works. We’ll add content to it over several months
or years and we need to be able to understand it later. One of the biggest challenges for
many teams was keeping the structure and the language of their living documentation
consistent. Stuart Taylor explains it nicely:

	 	 	 			 	 	 	 														

187 Chapter 11 Evolving a documentation system

There’s a danger when you start writing very clear BDD tests [execut-
able specifications] that you’ll end up with 57 ways to navigate to a page
because it’s different every time. It’s important to keep refactoring the
language and get it to a point that it’s not so abstract that it’s cumbersome,
but it’s not so detailed that it isn’t BDD.

A consistent language also allows us to automate executable specifications more
efficiently. For Gaspar Nagy, this is one of the key guidelines for development:

It’s very important to use consistent wording and consistent expres-
sion language for acceptance criteria. It’s easier for developers to spot that
it’s the same structure as before and easier for automation.

To keep a living documentation consistent, we have to constantly refine it and keep it
in sync with the current model that’s applied to the software system. As concepts evolve
in software, that needs to be reflected in the living documentation system as well. This
maintenance has costs, but without it there’s no living documentation.

Evolve a language

Almost all the teams ended up evolving a kind of a specification language, a set of
reusable patterns for specifications. For some teams, this language evolved over several
months and was often instigated by maintenance problems.

Andrew Jackman explained that the Sierra team at BNP Paribas started evolving a
language when they noticed that their automation layer grew too much:

We have so much fixture code now that it’s becoming a maintenance
issue. We had a lot of very specific fixtures that used a very wordy de-
scription that worked for only one test, but we tried to boil it down to a
generic language. We developed a mini domain-specific language in FIT
for our web tests. That has reduced a lot of fixture code.

Some teams evolved the basics of this language quickly. Rob Park’s team at a large U.S.
insurance provider is a good example:

The language evolved very quickly. The first three or four fixture [au-
tomation] classes were individual. We were making it work and focusing
on the conversational part. We immediately noticed some kind of dupli-
cation in the step files [automation classes] and we started moving away
from that. For each story we’d have one Gherkin file [executable specifica-
tion], but we had five or six story cards for the same feature.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	
	 	 	 	

188 Specification by Example

For the most part, the steps were very similar, so we found that having a
single step file for the all of the stories that belonged to that one piece of
business functionality was really better. Otherwise, even though they were
one-liners, we had a lot of duplication.

Evolving a language helps reduce the cost of maintaining the automation layer
because reusing existing phrases to describe new specifications leads to con-
sistency of specifications.

The fact that a living documentation system is automated and connected directly to
software ensures that the software model aligns with the business model. Because of
that, evolving a language for the living documentation system is a great way to create
and maintain the ubiquitous language (as discussed in chapter 8).

Base the specification language on personas
When: Web projects

Some teams described user stories through personas, especially when developing web-
sites. In those cases, the specification language can come from the activities that different
personas can perform.

Personas can help simplify executable specifications and

make them easier to maintain.

The team at Iowa Student Loan aligned the language used in
their specifications with personas. Tim Andersen said:

Instead of users as an amorphous blob, we talked about different peo-
ple and what their motivations to use the system are, how they use the
system, and what they want to get out of it. We put names on different
people. Boris was a borrower. Carrie was a co-signer.

Personas helped us because they made us think about how the system
needs to behave from the perspective of a user. There are a bunch of posi-
tive side effects of using personas that we didn’t anticipate—for example,
personas were test helpers [automation components] that were able to
interact with our system at a more appropriate entry point.

	 	 	 			 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

189 Chapter 11 Evolving a documentation system

Personas don’t make as much sense for projects that have little user interaction. Based
on the success of using personas on a previous project, Andersen tried to apply the same
concept to a technical data processing system. He eventually gave up and changed the
language to a process flow model.

Data comes from multiple sources and is loaded into a phone system
so people can make phone calls. The phone data is updated, and we send
it back to the entities who sent it to us. It is a batch process. Nobody actu-
ally uses it; it just runs. Personas weren’t a good fit. We tried to get tests
defined with personas and we got blank stares from the businesspeople.
So I deleted all my persona code, and we changed it to be process based
using the Given-When-Then keywords. That made it a lot clearer, and it
made more sense to everyone.

Evolving the ubiquitous language around the activities of user personas allows us to en-
sure that our understanding of what individual personas need is aligned with how they
use the system. This drives the structure and language used in specifications and helps
us make the documentation system consistent.

Collaborate on defining the language
When: Choosing not to run specification workshops

If you decide not to run big workshops and instead use one of the alternative
approaches, make sure to collaborate on defining the language.

Christian Hassa says that collaborating on a language was one of the biggest challenges
for his team:

Building a domain language that was consistent and bound well was
completely impossible without guidance. Testers wrote things that devel-
opers had to rephrase. Sometimes this was because the way testers were
writing them down was unclear or not easy to bind [automate]. When
the tester had written already a lot of things, we had to rephrase a lot of
things. If we tried to bind [automate] the first example immediately, we
would notice that it was not easy to do.

It’s like doing pair programming compared to doing code reviews after-
wards. If you do pair programming, the pair will tell you immediately if
he thinks you are doing something wrong. If you do reviews, you say: Yes,
next time I’ll do it differently, but this time let’s leave it like this.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

190 Specification by Example

Instead of catching consistency problems and having to go back and fix them, Christian
Hassa suggests getting developers and testers to write specifications in pairs as a way to
prevent such problems. This is similar to the way a pilot and a co-pilot in an airplane
work to prevent problems. The risk of someone writing bad specifications is significantly
reduced because the other person validates the specifications as they’re writing them and
watches out for problems.

The Sierra team at BNP Paribas has a relatively stable language, one that evolved
over many years, and their business analysts use this language to write new specifications
themselves. To avoid inconsistent language or specifications being hard to automate,
they ask the developers to review anything that has a structure significantly different
from the existing specifications. When working on the Norwegian Dairy Herd Record-
ing System, the Bekk Consulting team used a similar process. Their business users write
specifications with examples, but the developers review the work and advise on how to
make them more consistent with the rest of the living documentation system.

Document your building blocks

It’s good practice to document the building blocks for specifications; this helps
people reuse components and keep the language consistent.

Some teams have built a separate documentation area for their building blocks. At Iowa
Student Loan, they have a page with all the personas. It doesn’t have any assertions,
but instead shows which specification building blocks are already available. The page
is built from the underlying automation code, creating a living dictionary of the living
documentation.

But there’s an even easier way to build good documentation about your project
language. When asked what advice they would give a new team member on writing a
good specification, almost all the research participants suggested looking at examples of
existing specifications. A nice way to document specification building blocks is to extract
good representative examples from the existing set of specifications. Because these speci-
fications are already executable, this documentation of building blocks is guaranteed to
be accurate and consistent.

Because living documentation supports a team as it builds a
project over a long period of time, there’s a danger that parts will
stay in jargons that are no longer used. One part might use a lan-
guage that the team used three years ago; another might be using
terminology from two years ago, and so on, depending when the
specifications were originally written. This pretty much defeats the

	 	 	 			 	 	 	 														191 Chapter 11 Evolving a documentation system

point of having a documentation system, because we’ll need to have people translate the
old language into the new one.

It doesn’t take a lot of effort to keep the entire documentation consistent when the
language evolves, and a consistent documentation will give the team much more value
over the long term.

Living documentation should be organized for easy access
Living documentation systems grow quickly. As a project moves forward, the imple-
mentation team will frequently add new specifications to it; it isn’t uncommon to have
hundreds of specifications in a documentation system after a few months. I interviewed
several teams that had more than 50,000 checks in their living documentation systems
built up over the course of several years.

For the living documentation to be useful, users have to be able to find a description
of a required function easily, which means that the whole documentation set has to be
nicely organized and that individual specifications have to be easy to access.

Phil Cowans says that, for him, one of the biggest lessons about living documenta-
tion was that teams should think about high-level structure early:

We didn’t think about the high-level structure of the tests. We were
just adding new tests when we needed. As a result, it’s hard to find which
tests cover which functionality. Getting the description of what the fea-
ture set of the site is and organizing the test suite along those lines (rather
than just the last thing we built) would have helped. I think that’s useful
in terms of developing a product and maintaining a code base that’s rela-
tively easy to understand.

If we have to spend hours trying to piece together the big picture from hundreds of
seemingly unrelated files every time we want to understand how something works, we
might as well read the programming language code. To get the most out of living docu-
mentation, information has to be easy to find. Here are some tips on how to do that.

Organize current work by stories

Many tools for automating executable specifications allow us to group specifications
into hierarchies, either as website sections and subsections or file directories and sub-
directories.

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 		
	 	

192 Specification by Example

If you work with a tool for automating executable specifications, it’s
generally a good practice to group all them together for the work that’s

currently in progress.

Grouping specifications into hierarchies allows us to quickly execute all those specifica-
tions as a test pack, as suggested in “Create a current iteration pack” in chapter 10.

A user story will typically require us to change several functional areas. For example,
a story about enhanced registration might affect a back office report for users and how
the system does age verification. It might also require us to implement new integrations
with PayPal and Gmail. All these functions should be described by separate and focused
executable specifications. We also want to have a clear definition of when each story is
done; everything related to a story should be grouped together to facilitate easy execu-
tion of all those tests.

See the suggested organization in figure 11.1: the Current Iteration branch.

Reorganize stories by functional areas

User stories are excellent as a planning tool, but they aren’t useful as a way to organize
existing system functionality. Six months after PayPal integration was implemented, the
fact that it initially came into the system as part of story #128 is largely irrelevant (unless
you need traceability for regulatory purposes, for example). If anyone wants to under-
stand how PayPal integration works, they’ll need to remember the exact story number
so they can find it.

Most teams reorganize their executable specifications into hierarchies by
functional areas once they’ve been implemented. This makes it easy find
an explanation of a feature by navigating through the hierarchy based on
business functionality.

In figure 11.1, this is shown in the branch under Feature Sets. Once story #128 is
implemented, we should move the specification of how PayPal integration works into
payments, change back-office user reports into user management, and so on. Organiz-
ing a living documentation system in this way enables us to quickly find all the existing
examples related to MasterCard payments when we want to discuss a change request in
that feature.

If you still want to know how some functionality was part of a particular story,
there are tools that will allow you to cross-reference the same specification from
different hierarchies.

	 	 	 			 	 	 	 														

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

193 Chapter 11 Evolving a documentation system

Figure 11.1 Living documentation hierarchy organized by functional areas (such as Pay-
ments and User Management). Specifications for the current iteration are organized by stories
and features. Known issues waiting for more information are also in a separate holding place.

Organize along UI navigation routes
When: Documenting user interfaces

Replicate your user interface navigation structure in your living documentation
system.

Ian Cooper’s team at Beazley implemented an innovative organization for their living
documentation system. Instead of functional areas, they replicated the user interface
navigation structure in their living documentation system. Cooper says:

FitNesse tests allowed us to pick a story and find out what’s involved
in a story. But it was exceptionally hard to navigate in that form. How did
you know where to find the story that represented a part of the software?

We restructured it so that the FitNesse page looks like a help page. I’m in
this page, and I’ve got a FitNesse test to tell me everything I can do on this

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

194 Specification by Example

page. And if I click a link next to this dialog, it will take me to another
page that explains the dialog. That made it much easier to find out where
to go to get information on how something works.

This approach is intuitive for systems with clearly defined navigational routes, such as
back-office applications. But it might cause maintenance problems if the UI naviga-
tional routes change often.

Organize along business processes
When: End-to-end use case traceability required

Structuring the living documentation system along the lines of business pro-
cesses makes it easy to trace the functionality provided by a system in end-to-
end use cases.

Mike Vogel worked on a software system to support pharmaceutical research where the
team organized their living documentation system along the lines of business processes.
He explains this approach:

We organized our [FitNesse] tests to align with our use cases. Our use
cases are organized in a hierarchy, with the top-level use case naming a sys-
tem goal. Each top-level use case is also the definition of the end-to-end
business processes for that goal. A use case refers to lower-level use cases,
which are subprocesses.

The table of contents of our requirements document is identical to the
table of contents to our tests. This made it easier to understand how the
tests align with the business processes. It also created direct traceability
from business requirements to tests, which is critical to meet regulatory
requirements in our domain.

These aren’t the only ways to organize a living documentation. Another good approach
is to organize information along the chapters of a help system or user guide. Use these
ideas as inspiration to find the best way to set up the hierarchies for your team.

	 	 	 			 	 	 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

195 Chapter 11 Evolving a documentation system

Use tags instead of URLs when referring to executable
specifications
When: You need traceability of specifications

Many living documentation tools now support tags—freeform textual attributes that we
can assign to any page or file. Metadata like this is generally better for traceability than
for keeping specifications in a hierarchy by user stories or use cases. When the domain
model changes, the living documentation should ideally follow those changes. Specifica-
tions will often get moved, merged, split, or changed. This is impossible if you rely on a
strict static hierarchy for traceability, but it can easily be done if story/case numbers are
assigned to specifications as tags.

Tags are also useful if you want to refer to a living documentation page from another
tool, for example, from an issue-tracking-system ticket or a planning-tool schedule. Us-
ing a URL based on the current location of a page would prevent us from moving it later
because the link would be broken.

Assigning a tag and linking to search results for that tag makes the system
much more resilient to future changes.

Even if you don’t use a web-based tool and instead keep specifications in the project
directory, you can still use tags with the help of a simple script. This is what the Norwe-
gian Dairy Herd Recording System team at Bekk Consulting did. Børge Lotre explains
this approach:

To share Cucumber tests with customers we use Confluence and link
the Cucumber tests directly from Subversion into Confluence. This pre-
vents us from restructuring the file hierarchy of the Cucumber tests with-
out hassle, but utilizing tags has proven to help us overcome this short-
coming. Now we use tags to document which requirements are covered
by which Cucumber tests.

Avoid referring to a particular specification in the living documentation system directly,
because that prevents you from reorganizing the documentation later. Metadata, tags, or
keywords that you can dynamically search for are much better for external links.

A living documentation system is more than just a pile of executable specifications.
Information that’s buried deep inside an unmanageable list of tests is useless as docu-
mentation. To experience the long-term benefits of Specification by Example, we have
to ensure that the documentation is organized in a way that makes it easy for anyone to
quickly find a specification of a particular function and test it.

	 	 	196 Specification by Example

I’ve presented the most common ways of organizing the specifications here, but you
don’t have to stop with these. Find your own way of structuring documents that makes it
intuitive for your business users, testers, and developers to find what they’re looking for.

Listen to your living documentation
At first, many teams didn’t understand that living documentation closely reflects the do-
main model of the system it describes. If the design of a system is driven with executable
specifications, the same ubiquitous language and domain models will be used in both
the specifications and software.

Spotting incidental complexity in executable specifications is a good indicator that
you can simplify the system and make it easier to use and maintain. Channing Walton
refers to this approach as “listen to your tests.” He worked on an order-management
system at UBS where the acceptance criteria for workflows was complex. He says:

If a test is too complicated, it’s telling you something about the sys-
tem. Workflow testing was very painful. There was too much going on
and tests were very complicated. Developers started asking why the tests
were so complicated. It turned out that workflows were overcomplicated
by each department not really knowing what the others are doing. Tests
helped because they put everything together, so people could see that an-
other department is doing validations and handling errors as well. The
whole thing got reduced to something much simpler.

Automating executable specifications forces developers to experience what it’s like to
use their own system, because they have to use the interfaces designed for clients. If
executable specifications are hard to automate, this means that the client APIs aren’t easy
to use, which means it’s time to start simplifying the APIs. This was one of the biggest
lessons for Pascal Mestdach:

The way you write your tests defines how you write and design your
code. If you need to persist patient data in a part of your test to do that,
you need to make a data set, fill a data set with four tables, call a huge
method to persist it, and call some setup methods for that class. That
makes it really hard to come to the part where it actually tests your sce-
nario. If your setup is hard, the tests will be hard. But then, persisting a
patient in real code is going to be hard.

	 	 	 			 	 	 	 														

197 Chapter 11 Evolving a documentation system

Markus Gärtner points out that long setups signal bad API design:

When you notice a long setup, think about the user of your API and
the stuff you’re creating. This will become the business of someone to deal
with your complicated API. Do you really want to do this?

Living documentation maintenance problems can also provide a hint that the archi-
tecture of the system is suboptimal. Ian Cooper said that they often broke many tests
in their living documentation system with small domain code changes, an example of
shotgun surgery. That led him to investigate how to improve the design of the system:

It’s an indicator that your architecture is wrong. At first you struggle
against it, and then you begin to realize that the problem is not FitNesse,
but how you let it interact with your application.

Cooper suggested looking at living documentation as an alternative user interface to the
system. If this interface is hard to write and maintain, the real user interface will also be
hard to write and maintain.

If a concept is defined through complex interactions in the living documentation,
that probably means that the same complex interactions exist in the programming lan-
guage code. If two concepts are described similarly in the living documentation, this
probably means the domain model also contains this duplication. Instead of ignoring
complex specifications, we can use them as a warning sign that the domain model should
be changed or that the underlying software should be cleaned up.

Remember

• To get the most out of your living documentation system, keep it consistent
and make sure that the individual executable specifications are easy to under-
stand and easy to access for everyone, including business users.

• Evolve the ubiquitous language and use it consistently.

• As the system evolves, watch out for long specifications or several small ones
that explain the same thing with minor variations. Look for concepts at a
higher level of abstraction that would make these things easier to explain.

• Organize the living documentation system into a hierarchy that allows you to
easily find all the specifications for the current iteration and any feature that
was previously implemented.

PART 3
�

Case studies
�

12
uSwitch

u Switch.com is one of the busiest UK websites. The website compares pric-
es and services for a variety of companies and products, including energy
suppliers, credit cards, and insurance providers. The complexity of their

software system is driven by high scalability as well as complex integrations with a large
number of external partners.

uSwitch is an interesting case study because it illustrates how a company working in
a Waterfall process with separate development and testing teams on a problematic legacy
environment can still transition to a much better way of delivering quality software.
uSwitch has completely overhauled their software delivery process over the course of
three years.

At uSwitch, I interviewed Stephen Lloyd, Tony To, Damon Morgan, Jon Neale, and
Hemal Kuntawala. When I asked them about their software process, their general an-
swer was, “Someone suggests an idea in the morning and then it gets implemented and
goes live.” Early in my career, I worked for a company with a software process that could
be described the same way—and that experienced fireworks on the production systems
almost daily. But in the case of uSwitch, the quality of the product and the speed with
which they deliver features is enviable.

Although uSwitch didn’t set out to implement Specification by Example in particu-
lar, their current process contains the most important patterns described in this book,
including deriving scope from goals, collaborating on specifications, and automating
executable specifications. To improve the software development process, they focused on
improving product quality by constantly looking for and addressing obstacles to quality.

When looking for a better way to align development and testing, they automated
tests in human-readable form. After that, they discovered that tests can become specifi-
cations. Moving to executable specifications got them to collaborate better. In the course

201

http:Switch.com

	 	 	

202 Specification by Example

of refining the process, they had to make continuous validation more reliable, which led
them to improve how they refine the specifications. When looking for better ways to
engage business users, they started to derive scope from goals.

Starting to change the process
In 2007, uSwitch was using a Waterfall development process, working on long projects
with big designs up front. A new CTO pushed the teams to “go agile” in 2008, and
they introduced three week iterations with Scrum. In October 2008, the average time
to market for a new feature at uSwitch was six to nine weeks. Although this was a huge
improvement over Waterfall, the effort involved in each sprint consisted of roughly 40%
of unplanned work. Scrum works best with cross-functional teams, but because of the
way their development was organized, they never got to that point.

The QA team was separate from the development team. Because the testers used
QTP—which the developers couldn’t access—developers developed and testers tested
without communicating with each other; as a result, developers found it hard to know
when they were finished. Because the criteria for a release was that the QTP tests had to
pass, testing was often a bottleneck in the process.

The deployment process at the end of a sprint took an average of three days, most-
ly because of testing, and they still had numerous quality problems. When the team
moved to short iterations, QTP tests started to require a lot of maintenance. According
to Hemal Kuntawala, “Nobody knew what they did, and they were a complete waste
of time.”

This led to a companywide effort to focus on quality. Everyone was asked to start
thinking about quality. They recognized the problem with developers throwing things
to testers without explanation and decided to merge the testing team and the develop-
ment team. They removed the different job titles; testers became “developers” with a
particular specialty. In the same way that tasks requiring specialist database knowledge
could go to a more experienced database developer, testers were taking on tasks that
required specialist testing knowledge. But they were no longer solely responsible for
testing. Programmers started to look into better ways to write unit tests and functional
tests. The team decided to use Selenium instead of QTP to make tests more lightweight
and accessible to everyone. This enabled developers and testers to collaborate better, but
because Selenium is quite technical, this change didn’t give them a better way to com-
municate with the business users.

Because uSwitch didn’t have any reliable documentation about a system that had
been built over a period of 10 years, legacy business rules often caused problems in un-
derstanding. Kuntawala says:

	 	 	 	 			 														203 Chapter 12 uSwitch

One day we had a legacy business rule in Energy [a subsystem] that I
didn’t know about. It was frustrating. I wanted a way for us to know about
business rules and how the application works without diving into the
code and the unit tests. Not everything was unit tested anyway. Googling
around, we found Cucumber to bridge the gap between tests and portray-
ing what we wanted to achieve—the goal of the feature. We could write
what we wanted in plain English, and it would fit in with the outside-in
approach that developers were trying to achieve.

To get everyone familiar with the new tool, they started to convert Selenium tests to
Cucumber. This was still test automation—checking for problems after the fact—but it
sparked a move to test-first executable specifications. Jon Neale explained:

The Given-When-Then format of Cucumber tests forced us to re-
write the stories and really nail down what we were building, showing us
that we’ve forgotten stuff.

The team started taking business stakeholders through different Cucumber scenarios,
not only to verify edge cases but also to identify which scenarios were important, reduc-
ing the scope and avoiding just-in-case code.

By the time they finished converting Selenium tests to Cucumber and reviewing
them with the business users, they realized that testing at the end of the iteration didn’t
make sense. Neale said:

We realized that we could gain quite a lot by sitting down and hav-
ing specification workshops and drawing out exactly what we wanted to
achieve and how we were going to achieve it.

The team then introduced specification workshops as a way of collaborating with the
business users to nail down the acceptance criteria for future requirements. This signifi-
cantly improved communication within the group. The developers (at this point testers
were also called developers) learned about the domain. Business users learned about edge
cases and more obscure user routes because developers were asking about them.

This change also affected the division of labor. Previously, work was mostly orga-
nized by technical tasks. With such technical chunks of work, they found it hard to work
out a specific acceptance criteria for each task. The team moved the focus away from the
implementation tasks to the value that a feature should deliver. They started describing
stories from the user perspective, which made it easier to discuss and specify the accep-
tance criteria for chunks of work.

	 	 	204 Specification by Example

This new organization also allowed them to release software more often. Because
technical tasks depended on each other, developers were reluctant to deploy a task until
everything in a larger block of work was complete. By focusing on user stories, they
worked on independent, smaller chunks that could be released more often.

Optimizing the process
As the number of executable specifications grew, the team noticed that the test results
were unreliable. Problems with the environment often caused the tests to fail, even when
the functionality in the system was correct. They had no stable environment to run tests
against. They had a development environment, a testing environment, and a staging
environment, but none of these was appropriate for running executable specifications
frequently.

Because the developers used the development environment to try things out, it was
often broken. The testing environment was used for manual testing and deployed on
demand. Any number of changes could occur between two deployments, so when a test
failed it wasn’t clear what caused the problem. Business users were also manually testing
on this environment, which could affect automated Cucumber test results. The staging
environment was a mirror of production and was used for final deployment testing.

uSwitch created one more environment, to be used exclusively for continuous vali-
dation. This was a solution to stability problems: a dedicated environment that could be
used for testing without interrupting other work. This environment was deployed auto-
matically by their continuous build system. With this environment, the feedback from
executable specifications was received quickly and became significantly more reliable.

Once they eliminated environment problems as a source of instability, they could
see which tests or parts of software were unstable by design. Because all the tests were
executing through the user interface, an increase in the number of executable specifica-
tions running the tests caused a bottleneck. Some of the tests were slow, and some were
unreliable. They started removing unreliable tests and looking into the causes of insta-
bility in order to improve them. The tests were written at a technical level, which caused
maintenance issues.

The team started rewriting tests, breaking them apart, and raising the level of ab-
straction. Kuntawala says that this was quite a big step for them:

When we first started writing tests, they would rely on browser-specific
things, for example, DOM identifiers on the page, which would change.
Once we got used to the syntax and the power of Cucumber, we started
writing tests in a real business language. Previously you would say stuff
like, “User enters 100 in box _id.” Now you would say, “The user enters a
valid amount.” A valid amount would be defined in a separate test. Once

	 	 	 	 			 														205 Chapter 12 uSwitch

you have it written, you don’t have to test that explicitly in every other
test. A test for valid amounts would also try negative numbers, letters, and
so on, but it was abstracting away from having that test in every other test.
This was quite a big step.

In order to reduce long-term maintenance costs, the uSwitch team started refining the
specifications, evolving a consistent language for specifications, and looking for missing
concepts to raise the level of abstraction.

With a relatively good functional coverage in executable specifications and a stable
continuous validation environment, the uSwitch team had a lot more confidence in
their code. But their test suite was running slowly and didn’t give them the quick feed-
back they expected. They decided that not every test was worth running for an auto-
mated regression check. Some tests were good to drive development but were unrelated
to the functionality that increased profit.

One example was sending delayed emails. They were automatically running execut-
able specifications while implementing the feature but disabled them once the feature
was developed. Such low-risk tests wouldn’t run as part of the continuous validation
process. This gave them quicker feedback and reduced test maintenance costs. The next
time someone picked up a development task related to that part of the system, they
would reenable the test and clean it up if needed.

Running tests or validating that the system was ready to go live was no longer the
bottleneck; now deployment to production was the slowest part of the process. The
developers paired with the operations engineers to understand what was slowing them
down. It turned out that pre-deployment test execution was causing delays. Some tests
were timing out on the staging environment, which required the operations engineers to
rerun the entire test pack. By identifying differences in the environments and rewriting
the tests to make them more resilient, the developers reduced the execution time for the
entire test pack from two hours to about 15 minutes.

Pairing up also helped to get operations engineers involved in the process. Previ-
ously, they could report that a test pack had failed, but their report lacked details. Once
they understood how to interpret test results, they could provide the developers with a
much more meaningful report if something went wrong.

The next change was getting the business users more involved with the develop-
ment. Although the team was using user stories for planning at this point, they were
writing the user stories themselves. The business users started writing stories with the
development team, taking more ownership over specifications. They would generally
define the benefit (“so that”) and the developers would then define the solution (“I
want”). The business users also became responsible for running specification workshops.
This improved communication on the team. Damon Morgan explained:

	 	 	

206 Specification by Example

They were previously divorced from the process. They would ask,
“Can we have this?” and we’d write it down in some odd language that
they didn’t necessarily get. They would see it move across the board, and
it didn’t really mean anything to them. Once we got into specifications
[workshops] and talked to them a lot more about what should be actually
delivered, having executable criteria for those stories and working with
them to write the stories, they took much more ownership of the whole
thing. We wouldn’t get stories coming back from the business in terms
of “you didn’t do this right.” It would be more in terms of “as a team, we
didn’t think about this scenario.”

With more involvement from the business users, the team at uSwitch built trust and
confidence. This meant that there was no need for long-term prioritization and big
chunks of work. It also meant that the business users would be more open to suggestions
from the development team.

With closer collaboration and more trust, the business users were open to approach-
ing the development scope differently. The team then started breaking down required
functionality into minimal features that would be releasable and still give the business
some value.

One example is the process of rewriting the energy directory, a four-level page hier-
archy that contains an index of energy suppliers and plans. Instead of releasing it all at
once, they were rewriting it one page at a time, hooking up that page to the rest of the
services, and releasing it. Although this approach increased integration costs—because
new pages had to be integrated with the old pages—they got a lot of value out of releas-
ing earlier. One of the reasons for rewriting the directory was search engine optimiza-
tion: Releasing one page at a time meant that Google could index some pages sooner.
Also, the team found that smaller releases mitigated the risk of mistakes. If there was a
problem, it could be attributed to a particular release. By having smaller releases, it was
easier to pinpoint its cause.

Once the team started producing potential deliverables more frequently than the
iterations themselves, the sign-off at the end of an iteration became a bottleneck. Instead
of one big demonstration at the end, they started showing new features to the business
users and getting sign-off as soon as a releasable piece of functionality was done.

The team noticed there was no more need for formal specification workshops, and
they were replaced with informal chat sessions. Handling smaller pieces of work and
receiving fast feedback allowed the team to proceed when they had enough informa-
tion to start working, even though they didn’t necessarily have enough information to
complete the task. According to Damon Morgan:

	 	 	 	 			 														207 Chapter 12 uSwitch

At the beginning the [specification workshop] meetings were a lot
longer and bigger, and we were trying to spec out a lot more. Now it’s
really “We’re going to start work on this feature now,” and it’s a relatively
small feature so we’ll speak with the parties involved. The whole team will
get together to kind of do a mini-specification workshop—but it really
is just a conversation; you don’t even need to go into a room to have it.
And you come up with the criteria for that, you start building it, and you
show it a lot quicker. It’s normally built and delivered in two days, and
you move on to the next thing. We’re much more iterative in the way we
build stuff.

Because the process allowed developers to learn a lot more about the business domain
than they used to, they didn’t have as many problems caused by misunderstood business
requirements, and they could get the right work done with less up-front information.
Stephen Lloyd said:

As a team we are much better integrated and we understand what
the business wants a lot more than we used to. So the whole purpose
of specifying out exactly what they require is less important because we
understand the domain much better now than we did a year ago.

Finally, the team at uSwitch started deploying on demand and moved away from itera-
tions altogether. To help with this process, they started regularly monitoring their pro-
duction systems, tracking error rates and usage of new features. This additional visibility
provided a safety net against unnoticed deployment problems.

The current process
After all those changes, the development process is much simpler. It’s lightweight and
based on flow, rather than iterations.

New ideas come into the backlog when someone suggests them during a daily stand-
up meeting. Anyone can suggest a new idea—including business users or developers. A
new idea is briefly discussed at the stand-up meeting and prioritized. The person who
suggests it might draw some rough diagrams about it or prepare a business case for it
before the meeting, in order to explain the idea better. Apart from that, unless contracts
with external partners need to be signed, there isn’t a lot of up-front preparation.

When the story becomes one of the top-priority items, the team thinks about what
steps would lead to completion. Everyone with an interest in that story will meet to
briefly discuss exactly what’s needed and write down the acceptance criteria. In the past,
the team had tried to produce Cucumber tests during these meetings, but they decided

	 	 	

			 	
	 	

208 Specification by Example

the syntax of Cucumber tests was getting in the way: One person would have to type and
the others would be watching, causing an interruption in the flow of discussion.

The development team and the marketing and email teams sit closely to each other,
so they can work without a lot of detail up front. Developers will start working on the
story and frequently talk to the business users, asking for more information or revisiting
the acceptance criteria.

Acceptance criteria gets converted into Cucumber tests and automated during de-
velopment. Developers will use exploratory testing to understand the existing parts of
the system better before changing them. Sometimes they use customer session logs to
understand how real users interact with a particular feature of the website. Based on
that, they develop Cucumber tests and capture user journey paths that they need to
consider while developing. They usually use browser automation toolkits to automate
tests through the user interface. There’s no manual scripted testing anymore, but they
do a lot of exploratory testing, including trying out different paths through the system
and trying to break it.

Once all the Cucumber scenarios pass, the change gets deployed to a release envi-
ronment and then pushed to the production at some point that same day.

In general, the uSwitch team doesn’t track many technical project metrics. Instead,
they only look into lead time and throughput. They’re much more focused on the busi-
ness performance of the system and on the value added by a feature. To do so, they
monitor user experience metrics such as conversion rates and feature usage rates on the
production website.

At the time of my interview, the uSwitch team was moving away from estimations.
Estimates are useful when the business users don’t trust the development team or when
they want to invest in larger pieces of work; now, neither scenario applies to uSwitch.
The business users have a greater view of development and trust developers more than
before. They also generally work on small increments. Estimating how long a piece of
work is going to take isn’t necessary.

The result
At uSwitch, the average turnaround time for a feature—from the time it gets accepted
for development until it goes live—is currently four days. When I interviewed the
team, they couldn’t remember a single serious production issue over the previous six
months. Boomerangs happen rarely—one every few months. During Hemal Kuntawa-
la’s presentation at the Agile Testing UK user group in 2009,1 one of the development

1	 See http://skillsmatter.com/podcast/agile-testing/how-we-build-quality-software-at-uswitch.
com and http://gojko.net/2009/10/29/upgrading-agile-development-at-uswitch-com-from-
concept-to-production-in-four-days

http://skillsmatter.com/podcast/agile-testing/how-we-build-quality-software-at-uswitch
http://gojko.net/2009/10/29/upgrading-agile-development-at-uswitch-com-from-concept-to-production-in-four-days
http://gojko.net/2009/10/29/upgrading-agile-development-at-uswitch-com-from-concept-to-production-in-four-days
http://gojko.net/2009/10/29/upgrading-agile-development-at-uswitch-com-from-concept-to-production-in-four-days

	 	 	 	 			 														

	

209 Chapter 12 uSwitch

managers from uSwitch said that “quality has increased substantially and conversion
rates have grown.”

The entire development process is now driven by expected business values of fea-
tures. Instead of big plans and large releases, they build small increments, release them
often, and monitor whether the increment added value to the business. Because their
business model depends on immediate web conversion rates, they can easily achieve this
kind of evaluation.

You can see some interesting metrics on how this process evolved in slides from
Mark Durrand and Damon Morgan’s presentation at Spa2010.2

Key lessons

To me, one of the most important aspects of this story is that uSwitch decided to focus
on improving quality instead of trying to implement any particular process (for more
on this, see “Focus on improving quality” in chapter 4). Instead of a big bang approach,
they constantly looked for the most important thing to improve and began work there.
When they were comfortable with the resulting change, they inspected the process again
and moved on to the next issue.

The realization that testing was a bottleneck and that QTP was too expensive and
bulky for developers to work with led the team to adopt Specification by Example
through functional test automation, an approach I suggested in “Start with functional
test automation” in chapter 4. They first adopted Cucumber as a way to automate func-
tional tests but then realized that they could get a lot more out of it because it enabled
them to automate tests while keeping them in a human-readable form. This turned the
specification process on its head.

Another big lesson from this story is that change, though initially driven by a tool,
is mostly cultural. uSwitch removed the division between the testers and the developers
and dropped the tester role, making all team members understand that an issue with
quality is everyone’s problem. They started focusing on delivering business value instead
of implementing technical tasks, which allowed them to increase the involvement of the
business users during the development process. Without such close involvement of the
business users, it would have been impossible to decide what to build, agree on it, imple-
ment it, and verify it within such a short turnaround.

More involvement from the business users meant that they started to understand
and trust the development team a lot more, and the developers learned more about
the domain. Formal specification workshops were an important step to building this
knowledge. Once communication was improved and developers had learned a lot more
about the domain, formal workshops became unnecessary. This is an example of how
the process can be optimized once team knowledge has built up.

2 www.slideshare.net/markdurrand/spa2010-uswitch

http://www.slideshare.net/markdurrand/spa2010-uswitch

	 	 	210 Specification by Example

In my mind, the most controversial step taken by uSwitch was the decision to dis-
able less important tests after the functionality was implemented. I’ve seen and heard
most of the other ideas with other teams, but they’re the only ones who don’t run all the
tests from their living documentation system frequently. Executable specifications for
them are truly executable—there’s a potential to execute them but not an obligation.
The team found that there’s a lot of value in executing them while they develop a feature
but that slower feedback as the result of an ever-growing test suite costs more in the long
term than protection against functional regression in less-risky areas. This is perhaps
because they have other means to protect against problems in production, in particular
the continuous user experience monitoring system.

13
RainStor

RainStor is a UK company that builds high-capacity data archiving and man-
agement systems. RainStor is an interesting case study because they deal with
a technical domain where complexity comes from high data volumes and

high-performance requirements, combined with advanced compression and data man-
agement algorithms.

The company has fewer than 30 employees, and about half of them work in Re-
search and Development, so they have to be efficient in building and supporting their
software. All the developers and testers work as part of the same Scrum team, although
they’re now thinking about splitting it into two.

Their journey to Specification by Example was almost organic, without any big
plans or buzzwords, driven mostly by the testers. When I interviewed Adam Knight,
senior test and support team leader at RainStor, he said, “Nobody else in the company
knows what Acceptance Test-Driven Development means.” Although their process has
almost all the key elements of Specification by Example, they just think about it as their
homegrown way of developing software. They illustrate requirements using examples,
automate them into executable specifications, and validate them frequently to build a
living documentation system. The changes they implemented allowed the development
team to triple in size over three years, at the same time making them more effective.

Changing the process
Three years ago, a new CEO decided to implement Scrum and expanded the team of
four developers by hiring two testers and a test manager. Although they adopted itera-
tions and daily stand-up meetings, the process was actually a mini-waterfall, according
to Knight. He explained:

211

	 	 	

212 Specification by Example

We had requirements as a large document put in at the start of the
sprint. It was supposed to be both the requirements document and the
technical specification. There was too much technical detail in it. It was
set in stone at the start of an iteration. The development would go ahead
against that, and testing was based on the contents of that document.
The document was not maintained with the decisions made during the
development process, so towards the end our test cases differed from the
implementation.

In addition to the problems in coordinating development and testing, they had a prob-
lem with the way tests were executed. Although they had some automated tests, testers
were running most of the validations manually. As the product grew, it became obvi-
ous that manual testing wouldn’t scale. Even if they added more people to run manual
checks, their software handles very high volumes of data, and manually checking queries
that return tens of thousands of records wasn’t feasible.

Knight took over as a test manager in late 2007. He wanted to make testing more
efficient and to support development, preventing the need for manual testing as the
product developed. They implemented a simple automated test harness, which allowed
them to push testing much earlier in the process. They could define tests at the same
time as they were developing the relevant feature. This helped them align development
and testing.

Functional test automation gave them immediate value, because they no longer
had testing tasks pile up toward the end of an iteration. It also gave developers quicker
feedback as to whether a piece of work is done, removing the interruptions to the flow
caused by testing spilling into the next iteration.

Once the team aligned testing and development, they started noticing problems with
scope creep and knowing when they were finished. They often had to rewrite the require-
ments after development started. Boomerangs were coming back from the previous itera-
tions in the form of stories titled “Finish off” During the summer of 2008, Knight
brought in David Evans as a consultant to help them understand how to improve.

As a result, they started to describe scope with user stories instead of using large,
detailed technical requirements up front. This enabled them to start thinking about ac-
ceptance criteria from a business perspective and deriving the tests from that, instead of
receiving requirements in the form of functionality to implement. Knight said that this
allowed them to understand the scope better and have a clear picture of when they’re
finished developing a feature.

They started to break down stories into smaller deliverable items, which gave them
more visibility of what could realistically be delivered in an iteration. This helped the
team to better manage the expectations of their business users.

	 	 	 	 	 	 			 														213 Chapter 13 RainStor

The team then started to use examples to illustrate conditions of satisfaction, even
for requirements such as performance. Knight explained:

We used well-defined acceptance criteria for performance measure-
ment. For example, the system has to import a certain number of records
within 10 minutes on so many CPUs. Developers would either get access
to dedicated testing hardware or testers would run tests and provide feed-
back.

Focusing on user stories allowed the business users to engage better in defining the
expectations from an upcoming piece of work, and illustrating those expectations with
examples allowed the team to measure objectively whether they’ve achieved the targets.

As their customer base started to grow, they were getting more customer-specific
scenarios to implement. In late 2008 the team decided to reach out to the customers as
the final stakeholders and involve them in the specification process. Knight added:

Generally a customer would have an implementation they would like
to put in. They would give us the requirements, and we’d work with them
on getting realistic data sets and expected targets. We’d put this in the test-
ing harness and use that to drive the development.

Putting the customer-specific scenarios with sample data into the system as acceptance
tests ensured that the team met their targets. It also meant that the team didn’t have to
waste time coming up with a separate set of acceptance criteria and prevented any waste-
ful rework caused by potential misunderstandings.

This process worked best when they could involve actual customers with realistic
requirements. RainStor primarily works with reselling partners, who sometimes request
functionality without a specific business case. “That is the most difficult kind of require-
ment,” said Knight. In such cases, they push back and ask for examples, sometimes
organizing workshops with the customers to go through high-level examples on rela-
tively developed prototypes. They use those high-level examples to drive the scope later.
Working on paper prototypes also helps them look at the system outputs first, promot-
ing outside-in design.

The current process
At the moment, the Research and Development team at RainStor works in five-week
iterations. Sprints start on a Tuesday, with a sprint kick-off meeting in which they briefly
go through the stories planned for the iteration. They use the rest of the day to elaborate
those stories. The developers, the testers, the technical writers, and the product manager
collaborate to flesh out the requirements and define some basic acceptance criteria for

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

214 Specification by Example

each story. The testers write down the acceptance criteria based on the notes they took
during that meeting and publish them for the whole team to see.

Once the conditions of satisfaction for a story are published, development and test-
ing start in parallel. Developers work on getting the existing specifications with ex-
amples to pass and testers work on creating more detailed test cases. For some stories,
they might not have any examples automated at the start. In such cases, the developers
initially work on delivering the basic functionality while the testers automate the simpler
examples. The testers then go on to develop further tests, and the developers deliver the
functionality that ensures that these tests pass.

As the functionality is implemented, the testers perform exploratory tests and start
to run automated tests against the new version of the system. When the full functional-
ity is implemented for a story, the testers ensure that all the tests pass and then integrate
them into the continuous validation system.

Top three ah-ha moments

I asked Adam Knight to single out top three key lessons he learned about Speci-
fication by Example. Here’s what he said:

• As you develop a harness of automated tests, those can become your
test documentation if you set them up properly to reveal the purpose
behind it. Metadata made the tests much more readable. We produced
HTML reports that listed tests that were run and their purpose. Inves-
tigation of any regression failures was much easier. You could resolve
conflicts much more easily, because you could understand the purpose
without going back to documentation.

• The acceptance criteria and specifications with examples created as part
of the story process became the requirements. You can have a light-
weight story to get started. Once you have the tests, passing those tests
tells you that the requirements have been met. You don’t have to refer
to anything to find the requirements. That allowed us to spot if future
requirements were conflicting and what the changes were impacting. It
allowed us to maintain the requirements on an ongoing basis. We were
always in a position to know how the product sits against the require-
ments that we implemented. If a test starts failing, we know which re-
quirement wasn’t met.

• The test and test results were part of the product. You need to
store them in the version control with the product. We test different
branches and versions and we need to execute the tests appropriate to
the branch.

http:basis.We
http:morereadable.We

	 	 	 	 	 	 			 														

215 Chapter 13 RainStor

Some tests work with very large data sets or check performance, so they divide the
continuous validation into three stages: regular builds, overnight builds, and weekend
builds. Regular builds take less than one hour. Slower checks run overnight. Checks with
very large data sets, often customer scenarios, run only over the weekend. Because of
such slow feedback, they add tests to the overnight or weekend packs only once they’re
stable. When developers release parts of the functionality, they run tests on their ma-
chines if possible. Testers run tests that require specialist hardware and offer feedback to
developers.

In the last week of the iteration, they close up any unfinished issues. The team
ensures that all the tests are running in the appropriate automated pack; they chase
stakeholders about open issues and fix them. On the last Monday of an iteration, they
run final regression tests and hold a retrospective.

Because RainStor is a relatively small company, their vice president of product en-
gineering is responsible for analysis, along with many other things. He’s not always
available to attend the specification workshops, so the testers sometimes step in to help
and take over some of his analysis tasks. Testers are responsible for gathering a list of
questions and getting clarification before writing specifications with examples.

Key lessons

Although the development team size more than tripled over the last three years, Rain-
Stor still has a relatively small team. The same people have to develop a product, support
the existing customers, and help grow the customer base. They have to be effective to do
so with such a small number of people. Here’s what they accomplished and how:

• Implementing executable specifications eliminated the need to maintain two
sets of documents. It helped align testing and development and eliminate a lot
of wasteful rework.

• Switching to user stories helped them engage their business users better.

• Deriving scope from business goals with high-level examples ensured that they
build the right product and not waste time developing unnecessary features.

• Engaging customers into collaboration on specifications helped them make the
process even more effective, because they get acceptance criteria from the very
start, which ensures that they achieve the targets.

They gradually improved over the course of three years without any big plans or enforc-
ing any particular process. Similar to many other stories, they always looked for the next
big thing to improve, looked for ideas in the community to see which ones could help,
and then figured out how to implement them in their particular context. This led them

	 	 	216 Specification by Example

to implement several unique practices such as running tests manually until they become
stable and creating a living documentation from metadata with a custom-built tool.

Their particular context makes it unlikely that they’d be able to use any of the more
popular tools to get the same effect, so they built a tool that helps them do the job ef-
ficiently. They started with the process and built a tool to support it.

For me, the key lesson here is to focus on the important principles when improving
and to use popular community practices just as an inspiration.

14
Iowa Student Loan

Iowa Student Loan is a financial services company that pushes the ideas of
Specification by Example to the limit. They’re an interesting case study because
their living documentation system gave the business a competitive advantage. It

enabled them to efficiently deal with a major business model change.
The Iowa Student Loan development team builds and maintains a complex system,

from the public website, which takes loan requests, to the back-office systems for under-
writing and origination. Apart from that, the main driver of complexity on their projects
is the data-driven nature of the domain.

I interviewed Tim Andersen, Suzanne Kidwell, Cindy Bartz, and Justin Davis, who
worked on several different projects while the company was improving its software pro-
cess. It was interesting to track how they rolled practices from a smaller project into
rewriting the entire underwriting platform.

Changing the process
In 2004, the Iowa Student Loan development team implemented Extreme Program-
ming by the book to improve the quality of their software. When their next project went
to production, they prepared to handle bugs similarly to the way they did things in the
past. Over the next 12 months, the new system only had half a dozen bugs. This proved
to the management that agile development, especially writing tests first, was a good idea
and that it significantly improves quality.

The tests were, however, very technical. The team used HTTPUnit (a unit-testing
framework for websites). Programmers translated use cases to HTTPUnit tests, which
weren’t readable by anyone. When the system went live, they noticed that they were
missing documentation. They hired a consultant, J. B. Rainsberger, to help them figure
out what they were doing wrong and to give them ideas on improving with tools and
practices. One of the tools he introduced was FitNesse.

217

	 	 	

		

218 Specification by Example

The team was wrapping up the first project in which they used FitNesse as a way to
capture the specifications in July–August 2006. This project allowed the team to learn
how to use the tool and also led them to rethink how they write executable specifica-
tions. The business analysts had technical knowledge, so the specifications they wrote
with developers turned out very technical. As a result, the business users couldn’t under-
stand them. Justin Davis explains that problem:

I could look at tests and read them as a business analyst, and we were
still writing them, but they were very disconnected from the other busi-
ness members of the team.

This was just the start of a larger effort to rewrite the entire underwriting platform and
automate a lot of the work that was previously done manually on paper. The next project
would take three years with a team of six developers, two testers, a business analyst, and
an on-site business user. They brought in a consultant to help them communicate better
with the business users. Tim Andersen says:

David Hussman said that we should work harder on developing tests
that make sense, so that when businesspeople read them, we don’t have to
explain the tests to them. That was pretty hard to do. It took a shift in our
thought process, and we had to be a lot more business savvy. It required
a lot more understanding and conversation about how the system should
work instead of just technical requirements.

They started to describe the system with user personas, which allowed them to consider
how different groups of users were interacting with the system.

Instead of using generic users, they started thinking a lot more about why different
groups of people use the system, what they want to get out of it, and how they use it.
This allowed the business stakeholders to engage better and provide more meaningful
information to the team. You can see some nice examples of the personas they used in
Tim Andersen’s presentation from the Code Freeze 2010 conference.1

Optimizing the process
Because their executable specifications were previously very technical, the automation
layer was complicated and hard to maintain. Tests described technical components as
parts of larger flows, so they had to be automated by faking portions of the user work-
flows. Tim Andersen says that the test results also weren’t reliable:

1 http://timandersen.net/presentations/Persona_Driven_Development.pdf

http://timandersen.net/presentations/Persona_Driven_Development.pdf

	 	 	 	 			 	 	 														

219 Chapter 14 Iowa Student Loan

We were able to show the test working, and then we weren’t able to
show working software. Our tests were lying (false green bar). For ex-
ample, a borrower can borrow money if he is less than 18 years old. We’d
have a test that if they are less than 18 on that day, it would say, “You’re
not allowed to borrow without a co-signer.” If you change the date of
birth to be over 18 years, it would say “OK, you can borrow without a
co-signer.” Our test was green, but when we actually opened a browser
and tried it in development, it didn’t work. Even though we coded the
validation rule, it wasn’t hooked up in the right place. Our test code was
setting up a loan within a fantasy state.

The business users didn’t trust the test results from executable specifications, so they
didn’t consider them important, which was another barrier to get them more engaged in
the process. Andersen says:

There was a lot of frustration on both sides. We asked, “How come
they aren’t reviewing the tests; how come they aren’t valuing the tests?”
At the same time the business team was frustrated: “How come the
developers have a passing test but it doesn’t work?” They did not believe
in those tests.

The team restructured the automation layer for executable specifications to go through
production flows, not trying to fake state. The new way of automating specifications fit
in nicely with the ways they were describing the system with personas. Andersen says:

“Fantasy state” is the term I kept using to let other developers know
that I didn’t trust a test that wasn’t using the correct entry point. Oth-
er symptoms of fantasy state are “thick fixtures”; fixtures shouldn’t have
much logic in them and should be pretty lightweight. Using personas
helped us find the right level of abstraction to identify the appropriate en-
try point in our application. Before we used personas, we often picked an
inappropriate entry point, which led us to heavy fixtures that were prone
to fantasy state.

The team organized the automation along the activities that would be available to a per-
sona. Each persona was implemented as a fixture in the automation layer, talking to the
server using HTTP calls, essentially going in the same way a browser would but without
launching a browser. This enabled them to significantly simplify the automation layer,

	 	 	

220 Specification by Example

but it also made test results much more reliable. Some tests started failing after that, and
the team discovered bugs that had previously passed unnoticed. Around May 2007, the
test results became a lot more reliable and the automation layer was easier to maintain.
Andersen adds:

Changing our test code to leverage the application to set up the state
of a loan exposed these bugs so we could fix them, and our false green bar
symptoms vanished. It also had an impact by dramatically reducing the
cost of test maintenance.

Once the executable specifications were talking about the business functionality on a
level that the business users could understand, the automation layer became a lot sim-
pler—it was connecting to the business domain code. It also made the specifications a
lot more relevant, because they no longer had misleading false positives from tests that
looked at only a part of the flow.

The feedback started to slow down as the number of tests grew. Many slow technical
tests were executed through a browser. Andersen said that looking at the system from the
perspective of personas helped reduce those problems:

We used FitNesse as a tool to make WatiJ [a UI automation library]
configurable. Before using personas, we kind of fell back to the browser
tests as a last resort because “we have to test this somehow to make sure
that it really works.” Those browser tests multiplied like rabbits.

The team rewrote the browser tests to use personas, which significantly improved the
feedback time. Instead of launching a browser every time, the new automation layer
issued HTTP requests directly. They also looked into running tests with in-memory
databases instead of SQL Server, but they decided that they should improve the per-
formance of the real SQL database using indexes instead. The team broke down the
continuous validation process into several modules to get better visibility on what was
slowing down the tests.

Instead of always creating new specifications, the team started thinking about in-
tegrating change requests with existing specifications. This reduced the number of tests
and helped avoid unnecessary setup tasks. Andersen explains:

We started thinking about scenarios. A new feature might not be a fea-
ture by itself; it might be a change to a set of scenarios. Instead of writing a
new test for each requirement, we were thinking about that in the context
of our current system and what tests we need to change versus what new
tests we need to write. That helped keep our build time constant.

	 	 	 	 			 	 	 														221 Chapter 14 Iowa Student Loan

This led them to start reorganizing the specifications to reduce the number of tests. They
would look for smaller partial specifications and consolidate them into bigger ones.
They would break apart large specifications into smaller, more focused ones. “You basi-
cally have to refactor your tests and your test code as much as you would refactor your
old code,” says Andersen.

Iowa Student Loan was an early adopter of Specification by Example, so they had to
deal with immature tools, which got in the way of collaboration several times. Because
the team was using open source tools, they were able to modify the tools to suit their
development process.

Once they started putting executable specifications into a version control system,
the business analysts could no longer change them on their own without access to devel-
opment tools. The developers wrote a plug-in for FitNesse that handled version control
system integration, allowing them to still run a wiki where business analysts can change
specifications.

As the number of tests grew, the team started to have problems with functional
regression. Bugs that should have been caught by existing tests slipped through, because
the relevant tests were disabled. Some tests were disabled because developers were unsure
of how they fit into the new functionality; some were disabled when the team was wait-
ing on a decision from business stakeholders. People then forgot to reenable these tests
or follow up on the discussions. Developers at Iowa Student Loan wrote an automated
check for disabled tests (see the “Automatically check which tests are turned off ” sec-
tion in chapter 10), which reminded them at the end of every iteration what they had
to follow up on.

They used JIRA to manage requirements and FitNesse to manage executable speci-
fications, so rearranging FitNesse pages broke links in JIRA. They extended FitNesse to
support keywords and used keywords to link executable specifications and JIRA web
pages. On another project, they took a different approach and created a business frame-
work. The business framework is a set of pages in FitNesse designed to be a stable docu-
mentation entry point, which then has internal links to tests. This was a start of a good
living documentation system. Justin Davis explains:

One of the goals of the business framework was to create a front to
FitNesse that the business team could use while also allowing developers
to understand the order of the things in the current system. In effect, it
provides a map to how the system behaves. So if you have a context there
in terms of knowing how the system works, you can go to this framework
to find what you want. The system flow would be there, and you can
choose which steps you’d like to view tests and requirements for.

	 	 	

222 Specification by Example

Introducing the business framework and making sure that the executable specifications
actually get validated frequently and stay relevant enabled them to create a useful living
documentation system. They had a relevant source of information on what the system
does, which anyone could access.

Living documentation as competitive advantage
With such a good living documentation system, they were able to handle very big
changes efficiently. Three months before the end of the project, the business model of
the company suddenly had to change. They normally fund loans through a bond sale.
Because of the credit crisis in 2008, the bond sale failed. The business is technology
driven, so this business model change had to be reflected in their software. Andersen
says that the living documentation system helped them understand what was required
to support this business change:

Typically, we use bond proceeds to fund private student loans. How-
ever, we changed our business model and made all of the funding portion
of the system configurable so that we could use lenders to provide funds
and continue to provide loans to the students. It was a dramatic overhaul
of a core piece of the system. Before this new funding requirement, our
system didn’t even have the concept of a lender because we were able to
assume Iowa Student Loan was the lender.

We were able to use our existing acceptance tests and repurpose them to
say, “OK, here’s our funding requirement.” For all of the tests we had,
we discussed the impact and provided funding so they would still work.
We had some interesting discussions based on scenarios where there
is no more funding available, or funding is available but not for this
school or this lender, so we had some edge cases for these requirements,
but it was really making the new funding model more flexible and
configurable.

Once they understood the impacts of this new business model on the software, they
were able to implement the solution efficiently. According to Andersen, such change
would be impossible to implement quickly without a living documentation:

Because we had good acceptance tests, we were able to implement
a solution within a month. Any other system that didn’t have the tests
would halt the development and it would have been a rewrite.

	 	 	 	 			 	 	 														223 Chapter 14 Iowa Student Loan

This is when the investment in the living documentation system paid off. It supported
them in analysis, implementation, and testing of the impact of a business model change,
at the same time enabling them to quickly verify that the rest of the system is unaffected.

Key lessons

They started out by focusing on a tool and quickly realized that it doesn’t help them
achieve the goal of bringing business users into the process. So they started approaching
the specifications from the perspective of a user. This enabled them to communicate
with their business users better and reduce the costs of maintenance for tests. When
the tool prevented them from collaborating effectively, they modified it. This is another
argument for using open source tools.

Implementing Specification by Example at Iowa Student Loan was driven not by
the need to improve quality or automate tests but by the need to build a relevant docu-
mentation system in order to be more effective and engage business users better. They
invested heavily into building a good living documentation system, which paid off well.
It helped them implement a business model change, which was very powerful.

15
Sabre Airline Solutions

Sabre Airline Solutions offers software and services to help airlines plan, operate,
and sell their products. They are an early adopter of Extreme Programming and
Specification by Example and an interesting case study because they applied

SBE on a massive project, with a relatively large distributed team.
The project was Sabre AirCentre Movement Manager, a software system that moni-

tors airline operations and alerts the relevant teams when it finds issues, allowing them
to adjust schedules to minimize the impact to customers and the airline. According to
Wes Williams, an agile coach at Sabre, two previous projects to build similar systems
failed because of the domain complexity and quality issues. Specification by Example
enabled them to complete this project successfully.

Changing the process
Because of the complexity of the domain, the teams at Sabre were looking for a col-
laborative way to specify and automate acceptance testing soon after implementing Ex-
treme Programming. Williams said that they initially tried to do it with a technical
unit-testing tool. That approach didn’t help with collaboration and it wasn’t reusable, so
they abandoned it.

They started looking for a tool to drive collaboration. In 2003, Williams found
FIT, the first widely available tool for automating executable specifications. His team
started implementing acceptance testing with FIT, but they focused on the tool, not
the practices. Williams says that it didn’t give them the improvement in collaboration
they expected:

224

	 	 	 	 			 	 	 														

225 Chapter 15 Sabre Airline Solutions

We liked the idea that a customer could define the test and drive the
value you deliver in an application. In reality, we never got a client to write
FIT tests in HTML. The tests got written most of the time by a developer.
We had a hard time getting the customers to do it. Testers were using
QTP. That never drove collaboration, and developers never ran QTP tests
or got involved in writing them.

The developers were the only ones who wrote executable specifications, and they under-
stood that didn’t give them the benefits they expected. To improve the communication
and collaboration, everyone had to be involved. A single group of people was unable to
do that on their own.

A senior vice president of product development, influenced by the development
team, brought in consultants from ObjectMentor to train everyone. They made the
wider group aware of the goals of Specification by Example and the benefits they could
get out of it. Although they didn’t get everyone on board immediately, the training
helped them get more people enthusiastic about the practices. Williams says:

Not everyone adopted it. Still, there was a core group of people who
believed in it, and they learned a lot. Those who didn’t continued to fight
against it.

That core group of people started with a relatively simple web project—an internal
system for aggregating software build information. They wanted to try out the practices
and get their heads around the tools, which were a lot worse in 2004 than they are
now. The team selected FitNesse to manage executable specifications collaboratively.
They wrote executable specifications either just before the development or roughly at
the same time. The business stakeholder for the project was an internal manager, who
got involved in reviewing the tests. The team initially looked at the automation layer as
second-grade test code and cared little about making it clean, which caused numerous
maintenance problems. They also ended up with a lot of duplication in test specifica-
tions. Williams says:

We learned that we should try to keep fixtures as simple as possi-
ble and that duplication is bad. It [automation layer] is code, like any
other code.

Developers didn’t care much about making the automation layer or executable specifi-
cations maintainable because they just associated them with testing. By the end of the
project, they realized that this approach led to huge maintenance problems. Similar to

	 	 	226 Specification by Example

the team at Iowa Student Loan, the first project allowed the Sabre Airline team to learn
how to use a tool and see the effects and limitations of the way they automated execut-
able specifications. This gave them ideas about how to improve the next project.

After the smaller team better understood the limitations of tools and realized why
they should invest more in writing maintainable specifications with examples, they start-
ed to roll out the process to a large and risky project. This was a rewrite of a C++ legacy
system to Java, with lots of deliveries. The project was data driven and had to support
global distribution. At the end, it took 30 people two years to deliver the whole thing.
They were split in three teams on two continents.

Because of the risk, they wanted to significantly improve the coverage and frequency
of testing. This led them to start using the practices implemented on the smaller project.
Williams says:

Proper manual testing of a large application like this would take
months. We wanted to prevent defects and not have to spend months
testing. We did continuous testing. You can’t even do manual sanity test-
ing daily on applications this big.

Because they now had in-house experience with FitNesse, the people working on the
previous project started to automate functional tests. They involved the business users in
specifying the tests, expecting that this would ensure that their targets were met.

Improving collaboration
The group was split into three teams. The first team was working on the core features,
the second on the user interface, and the third on integrations with external systems. It
took about four months for the first version of the user interface to be delivered. Once
the business users started to look at it, the core features team noticed that their software
missed many customer expectations. Williams explained:

The customer thought completely differently about the application
when they saw the user interface. When we started writing acceptance
tests for the UI, they had much more in them than the ones written for
the domain. So the domain code had to be changed. But the customer
assumed that that part was done. They had their FitNesse test there, they
drove it, and it was passing. People assumed that the back end would
handle everything that the UI mockup screens had on them. Sometimes
the back end didn’t support queries or data retrieval in a form that was
usable to the front end.

	 	 	 	 			 	 	 														227 Chapter 15 Sabre Airline Solutions

They realized the problem was in the division of work between the teams. The cus-
tomers naturally thought about the system at a more detailed level once they could see
something visually, so they couldn’t engage properly in defining the specifications for the
work of the teams that didn’t deliver any user interfaces.

About six months after the project started, the group decided to reorganize the work
so that teams deliver end-to-end features. This allowed the business users to engage with
all the teams. Williams added:

Once we divided in the feature groups, we were in such a mature state
on our user stories and the core of application that we didn’t have story
explosions. The surprises that came up were much lower.

When each team worked to deliver a whole feature end to end, it was much easier for
business users to collaborate with the team to specify the conditions of satisfaction and
engage in illustrating them with examples.

After the group reorganized the work, the teams realized that they need faster feed-
back on implemented stories, so they halved the length of an iteration to one week.
Although they were writing acceptance tests before implementation, they still consid-
ered them tests, not specifications. Testers were charged with writing acceptance tests,
but they couldn’t keep up with such short iterations. To help remove this bottleneck,
the group who implemented FitNesse on a previous project suggested that developers
should help write acceptance tests. Williams says that the testers were initially reluctant
to allow that:

It was a struggle at the beginning to say that it’s OK for a developer
to write a test, because testers thought that they did such a better job of
testing. I think they come from a completely different perspective. Actu-
ally, I’ve found since then that when a developer and a tester talk about
the test together, it comes out significantly better than if one of them does
it on their own.

Williams realized that this required a change of culture. As a coach, he tried to bring
people together and let them expose the problems. When a tester got behind on testing,
he would bring in a developer to help. When testers complained that developers didn’t
know how to write tests, he suggested pairing and writing tests in a group.

They both went away and came back surprised with, “Wow—what I
would have written on my own was nothing like what came out of this!”
You need to get them through this experience.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 														228 Specification by Example Sabre Airline Solutions 228

Williams was surprised by how much trust was built between the testers and the devel-
opers as a result of that:

The trust was amazing. They realized that they do a better job to-
gether, that they are on the same page, and that the other person is not
trying to make things bad for them. At the end, you have a much more
collaborative environment.

Getting people to work together not only helped them address bottlenecks in the pro-
cess but also resulted in better specifications, because different people were approach-
ing the same problem from different aspects. Collaboration helped both groups share
knowledge and build trust in the other group gradually, which made the process much
more efficient long term.

The result
Although the previous two attempts to rewrite the legacy system failed because of qual-
ity problems, this project went live initially with a very big customer and had very few
issues. They discovered only one critical issue, which was related to failover. Williams
said that Specification by Example was “one of the key pieces” for the success.

Key practices for data-driven projects

Wes Williams shared his top five tips for writing good specifications in a data-
driven environment:

• Hide incidental data.

• Remove the duplication.

• Look for the duplication when you do incremental development—look
at the old similar tests and clean up.

• Refactor tests similarly to the code.

• Isolate yourself and don’t depend on third parties where you can’t control
the data. In the airline world, the system is going to talk to some host sys-
tem at the end. They might have a test system as well, but you can’t control
the data. You need to have tests that talk to them, but these are completely
separate tests. During the automated acceptance testing, this is what you
want to mock.

	 	 	 	 			 	 	 														229 Chapter 15 Sabre Airline Solutions

Key lessons

Developers were driving the adoption of SBE as a way to reach out to testers and busi-
ness users, but they quickly found out that focusing on a tool within a closed group
wouldn’t succeed. It was crucial to get everyone engaged. Although the training didn’t
get everyone on board, it gave them a common baseline, and it identified a core group
of people who were genuinely interested in trying out the new ideas.

They used a smaller and less risky project to get their heads around the tools and
discover good ways to write and maintain the specifications and the automation layer.
A small group of people involved in that project acted as a catalyst for the larger group
on the big project.

While the teams were delivering components of the system, the business users
couldn’t engage properly with the teams working on background components, which
caused a lot of rework and missed expectations. Once they restructured into feature
teams, the problem went away.

Getting testers and developers to collaborate on writing acceptance tests produced
much better specifications and helped to build trust between those two groups.

Specification by Example helped them conquer a complex domain by providing a
clear target for development and continuous validation.

16
ePlan Services

e Plan Services is a 401(k) retirement pension service provider based in Denver,
Colorado. It’s a technology-driven business, relying heavily on an effective
software delivery process. According to Lisa Crispin, an agile tester who works

there, they use living documentation to deal with a complex domain and to facilitate
the transfer of knowledge both for software development and for business operations.

The business model of the company is to offer services to small employers, which
benefit from a cheaper cost of operation, resulting in a significant competitive advantage.
Business process automation is a key factor. In 2003, they realized that their software
delivery process would have to change to support the business. “We weren’t getting the
software out of the door; there were too many problems with the quality,” says Crispin.

The need to deliver a cheaper service and automate their business processes got
ePlan Services on a path of improving their software development process, in which they
implemented most of the ideas of Specification by Example.

Changing the process
The company convinced Mike Cohn to take over the development team, and he helped
them implement Scrum. Early on, they spent two days at the end of every iteration do-
ing manual testing. All members of the team, including testers, developers, and database
administrators, were running manual test scripts. This meant that one fifth of their itera-
tion was spent on testing. Because of that, they decided to implement test automation.
According to Crispin, unit testing was the first thing they had to get right:

‘‘Most of the bugs testers found before were unit-level bugs. You spent

all your time with that and didn’t have time for anything else.’’

230

	 	 	 	 	 			 	 														

231 Chapter 16 ePlan Services

While the developers were getting used to unit testing, the testers started with functional
test automation. Without the help from the developers, the testers could automate tests
only through the user interface. Eight months later, they had hundreds of unit tests and
enough automated functional smoke tests to eliminate the need to do manual regression
checking for unit-level bugs. Crispin says that this allowed them to start looking at the
bigger picture:

We found really quickly that once developers had mastered TDD, we
didn’t have these bugs any more. We had more time for exploratory test-
ing. Anything that we reported as a bug was usually because the developer
didn’t understand the requirement. Bugs in production were often some-
thing that we didn’t understand.

Like in so many other cases, without efficient test automation the team had little time
to deal with anything else. Once the technical unit-level bugs were no longer causing
trouble, they could see the other problems as well.

Although they had some automated functional tests in place, this wasn’t enough to
prevent problems. Those tests were very slow, so they ran overnight and only checked
happy-path scenarios. The team started looking at alternative ways to automate func-
tional tests, to run more checks more quickly. They found FitNesse, but that required
developers to help with automation. Crispin says that getting the developers engaged
was a challenge:

Programmers are used to being rewarded for writing production code.
On Mike Cohn’s suggestion, I just picked a story, went to a developer
working on it, and asked if we could we pair up writing FitNesse tests on
it. In the next sprint I picked a different story and a different person. We
found a bug right away, where he didn’t really understand the require-
ment. So developers immediately saw the value.

Collaborating on writing tests brought testers and developers together to discuss re-
quirements and helped them write better tests. Crispin says that this eliminated most of
the big problems:

Within a year after we started doing agile, we felt comfortable that
really bad bugs weren’t going to production.

	 	 	232 Specification by Example

They also realized the importance of collaboration. Crispin says:

The biggest benefit from this is getting us to talk together so that we
have a mutual understanding of the requirements. That’s more impor-
tant than test automation. After we saw the benefits of collaboration, the
product owner got excited about it as well and heard about Acceptance
Test-Driven Development.

Efficient functional test automation required the developers to get involved, which re-
sulted in much tighter collaboration between the developers and the testers. It also gave
the team visible benefits, which helped to build a business case for further improve-
ments. This inspired the team to take the process even further and prevent bugs from
coming into the system instead of catching them with automated tests later.

Working to improve the process even more, they started using acceptance tests as
specifications and collaborating on them. Crispin worked with their product owner
up front to prepare examples. They had some early success, but they still looked at the
examples as functional tests. When the team was working on automating compliance
testing, one of the most complicated parts of the system, they over-specified tests and
had to think much more about what they wanted to achieve with this approach. Crispin
explained:

The product owner and I sat down and wrote all these FitNesse tests
to test algorithms. There are so many permutations, so we wrote a lot of
very complex tests and a couple of sprints in front. When the developers
started coding, they looked at the tests and were confused. They couldn’t
see the forest for the trees.

They realized that the developers couldn’t handle too much information up front. After
several experiments, the team decided only to write a high-level test up front to give the
developers the big picture. When a developer picked up a story, he would pair with a
tester on writing a happy-path scenario test and automate it. A tester could then extend
the specification by adding more examples. Testers used this automated framework for
exploring the system. If they found a case that failed the test, they’d go back to the devel-
oper to get it fixed. This changed the way they look at acceptance tests as specifications,
according to Crispin:

We had a vague idea at first that we could write acceptance tests ahead
of time so that they could be the requirements. What changed over time
is how much detail we need to put into tests up front, how many test
cases is enough. I’m a tester; I could probably test something forever and

	 	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

233 Chapter 16 ePlan Services

keep thinking of things to test, but we have only two weeks. So we had to
figure out how to internalize the risk analysis and say: Here are the tests
we really need; here are the really important parts of the story that have
to work.

As they shifted from thinking about automated tests to thinking about automated speci-
fications, it became clear that the structure of what they specify and automate is primar-
ily a communication tool, not a regression check. They simplified and refined them to
ensure that developers have enough specifications just in time when they need them.

Good test design

Lisa Crispin is a well-known agile tester and the co-author of Agile Testing. I
asked her about what makes good acceptance test design. This was her re-
sponse:

• Good test design is key long term. People start testing and make a big
suite of tests. All of the sudden, the effort they spend maintaining them
is more than they are worth.

• Each test has to be clear about the essence of the test.

• As soon as you have some duplication, you have to extract it.

• Programmers or someone with strong code design skills needs to help
design these tests. Once you have a template, it’s easy to put in details.

Living documentation
Looking at examples more as specifications than tests, the team realized how powerful
they are as documentation. Crispin says that having a living documentation system
saved them a lot of time when they investigated issues:

We’d get a call: “We have this loan payment and the amount of inter-
est we applied isn’t correct. We think there is a bug.” I can look at the
FitNesse test and put in the values. Maybe the requirements were wrong,
but here’s what the code is doing. That saves so much time.

At one point, the person who was a manager and senior developer at ePlan decided to
move back to India and wouldn’t be available for a couple of months. Crispin says that
they started looking at applying Specification by Example to extract the unique knowl-
edge he had about the system:

	 	 	

234 Specification by Example

When there was a strange problem, he always knew how to fix it.
So we really had to get the knowledge that he had about the legacy
parts of the system. We then decided that one person will get some
time during each sprint to go over parts of their business process and
document them.

This led them to start documenting the other parts of the system as well. Although they
wrote tests for anything they were developing, there were still parts of the legacy system
without test automation, and this sometimes caused problems. Creating an automated
living documentation for these areas helped them discover inconsistencies in business
processes. Crispin explains that:

I’d been with the company for four years at that point, but I never
understood how the cash accounting worked. I learned that we have five
different bank accounts outside of the automated application. The money
in these accounts is moved around via emails and phone calls, but the
cash amounts must balance. When they don’t, the accountant needs a
way to research why. After the accountant explained this process to us,
we documented it for future reference on our wiki. We were then able to
produce reports with useful information about money in and out of the
system. Now, when the cash is out of balance, she can use the reports to
find out why.

Building a living documentation system to share the knowledge helped the development
team learn about the business processes, and it gave the business users visibility of what
they were actually doing. Writing things down exposes inconsistencies and gaps. In this
case, it made people think harder about what they’re actually doing from a business
perspective.

Current process
All these changes were implemented a while ago, and with a living documentation sys-
tem the team has a relatively stable process. At the moment, the team consists of four
programmers, two testers, a Scrum master, two system administrators, a database ad-
ministrator, and a manager. They work in two-week sprints. Two days before the start
of a sprint, the team meets with the product owner and the stakeholders. The product
owner introduces all the stories planned for the next sprint, and they write high-level
tests on a whiteboard. This enables the team to provide feedback on the plan and ask
questions before the real sprint planning session.

	 	 	 	 	 			 	 														

	 	 	 	 	 	 	 	 	 	 	 		
	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	

235 Chapter 16 ePlan Services

With such a complex business and a small team, the product owner is a bottleneck.
To enable him to work upstream with the business users, the testers take over some
analysis responsibilities. The product owner often creates a “story checklist” upfront,
containing the purpose of a story and rough conditions of satisfaction. For stories that
involve user interfaces, he adds a UI mock-up into the story checklist. For stories that
deal with complex algorithms, he adds a spreadsheet with examples.

Ultimately, the product owner also took on more work unrelated to software, so he
often doesn’t have enough time to prepare for the meeting. To work around that, the
testers get his approval to get in touch with the upstream stakeholders directly and work
with them on the specifications.

The iteration starts with a planning meeting, when they go through all the stories
again and the product owner answers any open questions. They create screen mockups
and illustrate requirements with examples. Testers merge that information with the story
checklist, if it’s available, and then refine the specifications and put them on a wiki site.

On the fourth day of the sprint, the two testers meet with the product owner and
go over all the specifications and test cases in detail, to make sure they understand every-
thing correctly. This allows the product owner to review the specifications and what the
team is going to do in the iteration.

As soon as the specifications start appearing on the wiki, the developers start imple-
menting the stories, and they show the results to the business users as soon as they are
finished.

Ah-ha moments

I asked Crispin about her key ah-ha moments related to Specification by
Example. She replied:

•	�I didn’t own quality. My job was to help the customer understand quality
and help the whole team define quality and make sure that it happens.

•	�Developers need to be engaged.

•	�The process requires patience. We had to take baby steps and couldn’t
take everything at once.

•	�A tool such as FitNesse can really help with collaboration. You think of it
in a technical sense, that it’s going to help you automate, but it changes
the team culture and helps you communicate better.

•	�The real value of this is that we’re talking.

	 	 	236 Specification by Example

Key lessons

Because of their business strategy, ePlan Services relies heavily on business process au-
tomation and efficient software delivery. As a way to improve quality and speed up
software delivery, they had to move away from manual software testing. They initially
focused on functional test automation but then found out that the shared understand-
ing that comes from collaboration leads to much better software.

At first, they thought about the collaboration from a testing perspective and over-
specified tests, making it hard for developers to use those documents as a target for
development. Instead of covering every possible combination of values, they moved to
specifying key examples, which made the process more efficient and provided developers
with good specifications, just in time when they needed them.

Once they had a comprehensive set of executable specifications for a part of the
system, they realized how useful it is to have living documentation, especially as a way
to capture specialist knowledge. When they started documenting other parts of their
business, a consistent living documentation system exposed inconsistencies and errors
in their existing business processes.

A living documentation system made the software delivery process much more ef-
ficient and enabled them to discover inconsistencies in their business processes.

17
Songkick

Songkick is a UK-based startup that operates Songkick.com, a consumer website
about live music. They are an interesting case study for two reasons. Unlike all
the other companies featured in this book, they implemented Specification by

Example while still at a startup phase, without having to deal with a large legacy system
in the background. Also unlike most other projects covered in this book, user interaction
is one of the most critical aspects of their product, and new features are developed with
a strong emphasis on the user experience, based on observation of how users interact
with the site.

The complexity of the system mostly comes from the number of user experience
subtleties and the number of features they build to give users a rich experience. Songkick
implemented Specification by Example to focus on delivering software that matters and
to be able to grow their development team.

“As a startup you can’t afford to not be delivering value all the time,” says their CTO
Phil Cowans. Here’s what he pointed to as the biggest benefits of SBE:

‘‘Getting to what we actually intended to build quicker because we use

the same language in the tests as we do when we decide what to build

and go through the process of understanding our customers. That helps

reduce communication issues. We aspire to never having a situation where

developers turn around and say: What we built works; you just didn’t ask

for the right thing.’’ For a startup, delivering software that adds real value efficiently is much more important

than it is at more mature companies. The practices of Specification by Example help
Songkick get more value for their investment in software development.

237

http:Songkick.com

	 	 	

238 Specification by Example

Changing the process
Their project started two and a half years ago. After the first year, the team started
growing “beyond the size where everyone can sit around a table and develop the code
together,” according to Cowans. To deal with a code base that’s getting more complex
and a growing team, they decided to implement test-driven development. He says:

Before moving to TDD we relied on trusting that everything we’d
previously built still worked when we released new code. But very soon it
became clear we’d need more confidence that when we’d finished some-
thing, it did what we thought it would and didn’t cause regressions.
It seemed pretty obvious that we were going to start slowing down if
we didn’t find some way to avoid constantly tripping over each other’s
toes and find a better way of communicating requirements and avoiding
regression.

Within three months, they felt that TDD was a natural way to do things. At the same
time, they started looking into Kanban and the ideas of user stories, which led them to
start applying TDD principles to business functionality and effectively start implement-
ing SBE. As a team, they like to experiment with different ways of working, so they just
tried it out without much fuss. Cowans explains:

We were in touch with the guy—who’s now a full-time employee
but who was an adviser at that point—who had used Kanban on earlier
projects. Through him we had some evidence that working in terms of
user stories could be successful, and it seemed to make sense. The deci-
sion to make that part of our process was really just a matter of “there are
some people using this technology to do this; let’s just try it and see how
it works.” It became something that we found very natural to do.

The team started to derive scope from goals to drive the user stories from the business
value. They also used Cucumber to create executable specifications. Cowans says that
the focus of the process shifted from unit tests to business specifications as they got bet-
ter with Cucumber:

Initially we set out to use a mix of Rails test framework and Cucumber.
We used Cucumber to drive out the high-level user stories and unit tests
to specify the detailed behavior. Over time, we were using Cucumber more
and more and found ways to specify things more in Cucumber.

	 	 	 	 	 			 														

239 Chapter 17 Songkick

The new way of specifying helped the team focus on building software that really mat-
ters. Cowans says:

It helps people stay focused on why we’re doing something and see
the value of what we’re doing. It helps people avoid wasting time building
things we don’t need. Everyone approaches the problem from the same
direction, which ensures that the development team and the rest of the
company think about the problem in the same way.

Similar to the team at ePlan Services, Songkick first implemented (unit) test-driven de-
velopment and then extended that to business features. They didn’t actually hit quality
problems that made them change the process, but they did that proactively to be more
efficient.

Cowans says that the key challenges for his team, when implementing Specifica-
tion by Example, were understanding what to test, how to avoid making the executable
specifications brittle, and how to make continuous validation faster.

Once the team got comfortable with how to use the tools, they went too far with
focusing on the user interface functionality, because that was easy to think about. Cow-
ans says:

We spent too long testing trivial bits of the user interface, because that
was easy to do. We didn’t spend enough time digging into edge cases and
alternative paths through the application.

They also automated executable specifications in a way that was closely tied to the user
interface, so the test results were brittle. Cowans says that in some cases this pushed
them to testing after development instead of using tests as specifications:

Someone changing some punctuation on the web page and break-
ing the test is not good. It’s frustrating because it makes it difficult to
predict the effects of a change. So it’s difficult to update the entire test
suite in advance. As a result, in some cases people would code first and
test later.

To address these problems, the team started to make tests more semantic and pushed the
translation between the domain language and user interface concepts into the automa-
tion layer, Cowans explained.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

240 Specification by Example

You develop a familiarity with the process and start understanding
where dependence on the UI is likely to cause a problem in the long
term. Developing more domain-focused step definitions [in the automa-
tion layer] helped to get around that, giving us higher-level ways to work
with the markup.

The changes they implemented were effectively the start of refining the specification
and looking for ways to express the specifications in the business language, not in the
language of user interface terms.

According to Cowans, it took about six months for the team to get comfortable
with the process and the tools they use for Specification by Example:

It’s probably in the last nine to six months that it has felt like this
is a part of what we do. Within the last nine months no one has really
questioned how we specify work; it’s just there in the background.

The team realized exactly how important their executable specifications are when they
had to rewrite a part of the system dealing with activity feeds. An existing set of business-
focused specifications that were automated as tests gave them the confidence that they
didn’t introduce bugs or reduce functionality while rewriting the feeds. Cowans says:

Everyone on the team became aware at that point that this can save us
a lot of time. My gut feeling is that we saved 50% of the time doing the
refactoring because of the tests.

For a startup, saving 50% of the time on a task means a lot. Their set of executable
specifications effectively protects the system from regression issues. According to Cow-
ans, they have so few issues in production that they don’t need a bug-tracking system.
This allows them to focus on delivering new features instead of maintaining the system.

No living documentation yet

At the time I interviewed Cowans, the number of executable specifications
in their system had grown enough for them to start thinking about reorga-
nizing the specifications, essentially starting a living documentation system.

Cowans says:

‘‘When setting this up we didn’t think enough about the high-level
structure of the tests. As the application evolved, we ended up just add-
ing new tests as needed in an ad hoc way. As a result, when modify-

	 	 	 	 	 			 														

	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

241 Chapter 17 Songkick

ing existing code it’s hard to find which tests cover which functionality.
Deciding on a high-level description of the feature set of the site and
organizing the test suite along those lines, rather simply adding new
tests for each new feature we built, would have helped. I think that’s
also useful when it comes to developing a product and maintaining a
code base that’s relatively easy to understand. You end up with a shared
language to describe how things fit in with what’s already there. ’’

Current process
Songkick’s development process is based on Kanban flow. They have a product team
responsible for the roadmap and a development team responsible for implementation.
The product team consists of the head of product development, a creative director, and
an interaction designer. The development team has nine developers and two testers. In
the development team, two people focus more on the client side and user interfaces, and
the rest are more focused on middleware and backend. Cowans, who is the CTO, is also
part of the development team. According to him, the company tries to build in as much
collaboration between product and development as possible, so the boundaries between
the teams are fairly blurred.

Once a feature is of sufficiently high priority that it’s likely to be built, the product
team meets to investigate the user experience and the technology required to implement
it. The outputs of this meeting are wire frames, notes about specific cases, and a first
guess at the list of user stories for the feature.

When the development team has enough capacity to start implementing the fea-
ture, they organize an initial meeting with the product team and any developers or
testers likely to work on the feature. At this meeting they break down the feature into
user stories and jointly brainstorm the acceptance criteria for each story. The acceptance
criteria are defined as a set of things to check, with detailed examples to be filled in later.

The testers own the requirements, including the user stories and the associated list
of acceptance criteria. They are responsible for maintaining that as additional informa-
tion comes through during development. Because of the importance of usability and
user interaction, they manually test the core functionality of every feature after develop-
ment, in addition to running all the executable specifications. So testers start thinking
about a test plan after the initial meeting.

The developers write specifications with examples, and the testers review them,
advising on what else should be covered. The developers then automate them, imple-
ment the required functionality with TDD and make that branch of code available to
the testers.

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

242 Specification by Example

The testers then run their manual tests, start doing exploratory testing, and provide
feedback to the developers. Once the testers and the developers agree that a feature is
ready, it goes into a queue for integration.

Features from the queue are integrated into the master branch. The entire continu-
ous validation suite is then executed, the code is deployed to a staging environment, and
the testers run final core functionality manual tests. After that, the code goes live to a
production environment.

Ah-ha moments

I asked Cowans about the key ah-ha moments for him from related to their
implementation of Specification by Example. He says:

• It’s quite easy to test what you can see, but ultimately you need to have
a deep understanding of what the software does rather than what the
user interface looks like. Thinking in terms of user stories and paths
through the application really helps.

• Treat your test suite as a first-class citizen. It needs careful maintenance
as much as the application code itself.

• The tests are the canonical description of what the application does. Ul-
timately, success is as much about building the right thing as building it
well. If the tests are your description of what the code does, they’re not
just an important part of your development process but an important
part of the wider process of building the product. They can help you
understand what you’ve built and keep complexity under control.

• It’s important to have everyone in the process involved; it’s not just
something that developers do. Ultimately it [Specification by Example]
gives you tests written by the developers that the product owner can
read. You should make good use of that.

Key lessons

The key lesson from Songkick for me was that if you don’t have a massive legacy system
to slow you down, it’s possible to go from TDD to Specification by Example quickly.
At Songkick they just approached it an extension of the TDD process to cover business
functionality.

	 	 	 	 	 			 														243 Chapter 17 Songkick

The team builds and maintains a web system, so they initially automated tests in
a way that was too closely tied to the user interface. This caused lots of maintenance
problems and led them to start refining the specifications and automating user interface
checks at a higher level of abstraction.

It took them about one year to start thinking about a living documentation and see-
ing how important that can be when parts of the system are rewritten.

As a startup, Songkick benefits greatly from focusing on delivering the things that
really matter. A shared understanding from collaborating on specifications ensures that
they all focus on delivering the right product. The second most important benefit for
them comes from executable specifications, because they discover problems early and
can focus on rolling out new functionality rather than wasting time troubleshooting and
fixing bugs.

Chapter title 245 	 	 	 	 	 	 														

	 	 	 	

18
Concluding thoughts

Ibegan my research for this book because I was seeking external confirmation.
I wanted to document that there are many teams that produce great software
using agile techniques. I hoped that they were using BDD, agile acceptance test-

ing, or what I would come to call Specification by Example. I thought I already knew
how these processes worked and that I would find other people applying them in the
same way I was. But the more research I did, the more unexpected lessons I learned.
I found that many teams working in different contexts used a variety of practices and
techniques to get to the same results. This proved that there’s no such thing as a “best
practice.” Software development is incredibly contextual, and what might seem like a
good idea for one team might be completely wrong for another.

Looking back, it surprises me how much I’ve learned about delivering high-quality
software effectively. Some of these discoveries were completely new to me. Some were
the result of viewing something with which I was familiar from a wider perspective,
which gave me a much deeper understanding of the real forces behind the practices. To
conclude this book, I’d like to present the top five things I’ve learned.

Collaboration on requirements builds trust between
stakeholders and delivery team members
In Bridging the Communication Gap, I wrote that specification workshops have two main
outputs. One is tangible: the examples or specifications. Another is intangible: a shared
understanding of what needs to be done that’s the result of a conversation. I stipulated
that shared understanding might be even more important than the examples themselves.
But it turns out the situation is much more complicated; there’s another intangible out-
put that I discovered when researching this book.

The examples of uSwitch, Sabre, Beazley, and Weyerhaeuser show that collabora-
tion on specifications sparks a change in the culture of teams. As a result, development,
analysis, and testing become better aligned and teams become better integrated.

245

	 	 	246 Specification by Example

To quote Wes Williams, after collaborating on specifications, “the trust was amazing.”
Many companies I worked with use a software development model that’s based on a

lack of trust. Business users tell analysts what they need but don’t trust them to specify it
properly and require sign-off on specifications. Analysts tell developers what they need
but don’t trust them to deliver, so testers need to find some way to check independently
that developers are honest. Because developers don’t trust testers—they don’t cut code—
whenever testers report a problem, it’s marked as impossible to reproduce, or it appears
with a note like, “It works on my machine.” Testers are trained not to trust anyone,
almost like master spies.

A model based on mistrust creates adversarial situations and requires a lot of bureau-
cracy to run. Supposedly, requirements have to go through sign-off because users want
to ensure what the analysts will do is right—in truth, sign-off is required so analysts can’t
be blamed for functional gaps later on. Because everyone needs to know what’s going
on, specifications go through change management; really, this ensures that nobody can
be blamed for not telling others about a change. It’s said that code is frozen for testing
to provide testers with a more stable environment. This also guarantees that developers
can’t be blamed for cheating while the system was being tested. On the face of it, all these
systems are in place to provide better quality. In reality, they’re only alibi generators.

All these alibi generators are pure waste! By building up trust among business users,
analysts, developers, and testers, we can remove the alibi generators and the bureaucracy
that comes with them. Collaborating on specifications is a great way to start building
up this trust.

Collaboration requires preparation
Although I stipulated that a good way to implement the process in iterations is to hold
a pre-planning meeting, I didn’t have anything more to say about preparing for work-
shops in Bridging the Communication Gap. I introduced the pre-planning phase because
we spent too much time at the start of each workshop trying to identify important at-
tributes for a set of examples; the real discussion started once we had something to work
with. Now I see that the pre-planning meeting is a part of a much wider practice.

After talking to teams who formalized a preparation phase in different ways, I have
learned that the collaboration on examples is a two-step process. In the first step, some-
one prepares the basic examples. In the second step, these examples are discussed with
the team and extended. The goal of the preparation phase is to ensure that basic ques-
tions are answered and that there’s a suggested format for examples when the team starts
to discuss them. All these things can be done by a single person or two people, making
the larger workshop much more effective.

	 	 	 	 			 	 														

247 Chapter 18 Concluding thoughts

For teams who worked on projects where the requirements were vague and required
a lot of upfront analysis, the preparation phase started two weeks before the collaborative
workshop. This allowed analysts to talk to business users, collect examples from them,
and start refining the examples. Teams that had more stable requirements started work-
ing on examples a few days before, collecting the obvious open questions and addressing
them. All these approaches help to run a bigger workshop more efficiently.

There are many different ways to collaborate
I suggested big, all-team workshops as the best way to collaborate on specifications in
Bridging the Communication Gap. Again, after talking to teams in different contexts, I
know that the reality is much more complex.

Many teams found that, at the start, big workshops were useful as a means to trans-
fer the domain knowledge and align the expectations of developers, testers, and business
analysts and stakeholders. But the majority of teams stopped doing big workshops after
a while because they discovered that they’re hard to coordinate and cost too much in
terms of people’s time.

Once the system is in place, trust improves, and developers and testers learn more
about the domain, and smaller workshops or ad hoc conversations seem to be enough
to produce good specifications. Many teams approached this from a “whoever has an
interest in the story” perspective, involving only the people who would actively work
on a task. When the others need to change it, they would learn about what the software
does from the living documentation system.

Looking at the end goal as business process
documentation is a useful model
If we think of business process documentation as the end goal of Specification by
Example, many of the common automation and maintenance problems disappear. For
example, the flaw in creating overly complex scripts that mimic the way the software is
built becomes obvious; scripts always end up being hard to maintain and the communi-
cation value of such scripts is marginal.

As a community, we noticed this a few years ago, and many practitioners
advised teams not to write acceptance tests as workflows. Although this is good
advice for a majority of cases, that doesn’t help when the domain is about work-
flows, as in processing payments. David Peterson wrote Concordion as a response
to all the misuse of workflows in FIT and got a bit closer to the point by advising
people to write specifications instead of scripts. Again, it’s a useful rule of thumb but
hard to explain to people who deal with websites. The problem is the misalignment

	 	 	

	 	

248 Specification by Example

of models in acceptance tests or specification and the models in business;1 one small
change in the business domain has a shotgun effect on tests, which makes them hard
to maintain.

If we focus on documenting business processes, the model in the specifications will
be aligned with the business model and changes will be symmetric. A small change in
the business domain model will result in a small change in specifications and tests. We
can document business processes well before we start writing software, and they’ll stay
the same when we change technologies. Specifications that talk about business processes
are worth much more over the long term. Business users can participate in documenting
business processes and provide much better feedback than they would on acceptance
tests that pertain to software.

This also tells us what to automate and how to automate it. It’s easy to spot the flaws
in changing specifications to include invented testing concepts or fit it into user inter-
face interactions. If the specifications document business processes, the automation layer
exercises those business processes on software. This is where the technical workflows,
scripts, and simulated user interactions need to go. Automation itself isn’t a goal: It’s a
tool to exercise the business processes.

In order to create reliable documentation, we have to validate it frequently. Auto-
mation offers one inexpensive way to do so, but it isn’t necessarily the only way. Some
things, such as usability, can never be properly automated; but we can still try to validate
parts of specifications frequently. This addresses the problem of specifying things that
are hard to automate, an issue that many teams avoid.

Long-term value comes from living documentation
Almost everyone I spoke with experienced the short-term benefits of faster deliveries
and better quality. But teams who “cleaned up their tests” also got fantastic long-term
benefits from them. As a consultant, I’ve helped many teams implement these practices,
but because I don’t generally stay with anyone for long, I completely miss the long-term
effects. Luckily, some of the earliest adopters of these practices have now been using
them for six or seven years, and they have seen great benefits in the long term as well.

Iowa Student Loan was able to change a business model quickly because they had
reliable documentation. The team at ePlan Services was able to survive the absence of
a key team member. The team working on the Sierra project uses “tests” as supporting
documentation when they get support requests. At that point, I think it is wrong to call
what they used “tests,” because they don’t use them for testing software: They’re docu-
mentation that was built to be reliable and relevant.

Most of these teams adopted living documentation by trial and error, when they

1 See http://dannorth.net/2011/01/31/whose-domain-is-it-anyway

http://dannorth.net/2011/01/31/whose-domain-is-it-anyway

	 	 	 	 			 	 														249 Chapter 18 Concluding thoughts

were looking for easier ways to maintain tests. They restructured tests to make them
more stable, aligning the models in tests and in the business. They restructured the fold-
ers containing tests to make it easier to find all the things that are relevant for a particular
change, evolving a documentation system that’s structured in a way that’s similar to how
business users think about system features.

At this point I feel relatively confident in making the bold assumption that new
teams can get these benefits quicker if they intentionally create a living documentation
system rather than arrive there after years of trial and error.

With that in mind, I invite you and your team to try this yourselves. After you’ve
tried it, please share your experiences with me. You can contact me by sending an email
to gojko@gojko.com.

mailto:gojko@gojko.com

Appendix A
Resources

Books
Gojko Adzic, Bridging the Communication Gap: Specification by Example and Agile

Acceptance Testing (Neuri, 2009).

Gojko Adzic, Test Driven .NET Development with FitNesse (Neuri, 2008).

David Anderson, Kanban: Successful Evolutionary Change for Your Technology

Business (Blue Hole Press, 2010).
�

Mijo Balic, Ingrid Ottersten, and Peter Corrigan, Effect Managing IT (Copenhagen
Business School Press, 2007).

Mike Cohn, Agile Estimating and Planning (Robert C. Martin Series)

(Prentice Hall, 2005).
�

Lisa Crispin and Janet Gregory, Agile Testing: A Practical Guide for Testers and

Agile Teams (Addison-Wesley Professional, 2009).
�

Kev Darling, F-16 Fighting Falcon (Combat Legend) (The Crowood Press, 2005).

Mark Denne and Jane Cleland-Huang, Software by Numbers: Low-Risk,

High-Return Development (Prentice Hall, 2003).
�

Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley Professional, 2003).

Steve Freeman and Nat Pryce, Growing Object-Oriented Software, Guided by Tests
(Addison-Wesley Professional, 2009).

Donald C. Gause and Gerald M. Weinberg, Exploring Requirements: Quality

Before Design (Dorset House Publishing Company, 1989).
�

250

	 	 	 	 	 			 														

251 Appendix A Resources

Capers Jones, Estimating Software Costs: Bringing Realism to Estimating, 2nd ed.
(McGraw-Hill Osborne, 2007).

Craig Larman and Bas Vodde, Practices for Scaling Lean & Agile Development:

Large, Multisite, and Offshore Product Development with Large-Scale Scrum
�
(Pearson Education, 2010).

Richard Monson-Haefel, 97 Things Every Software Architect Should Know:

Collective Wisdom from the Experts (O’Reilly Media, 2009).
�

Rick Mugridge and Ward Cunningham, Fit for Developing Software:

Framework for Integrated Tests (Prentice Hall, 2005).
�

Mary Poppendieck and Tom Poppendieck, Lean Software Development:

An Agile Toolkit (Addison-Wesley Professional, 2003).
�

James Shore and Shane Warden, The Art of Agile Development
�
(O’Reilly Media, 2007).
�

Gerald Weinberg, Quality Software Management: Vol. 1, Systems Thinking
�
(Dorset House Publishing, 1992).
�

Online resources
Here are the URLs of all the online resources mentioned in the book. You can find all these
links and more on the accompanying website: http://www.specificationbyexample.com.

Tools

Concordion: http://www.concordion.org.

Cucumber: http://cukes.info.

FitNesse: http://fitnesse.org.

GreenPepper: http://www.greenpeppersoftware.com.

JBehave: http://jbehave.org.

Robot Framework: http://www.robotframework.org.

SpecFlow: http://www.specflow.org.

TextTest: http://www.texttest.org.

Twist: http://studios.thoughtworks.com/twist-agile-test-automation/.

http://www.specificationbyexample.com
http://www.concordion.org
http://cukes.info
http://fitnesse.org
http://www.greenpeppersoftware.com
http://jbehave.org
http://www.robotframework.org
http://www.specflow.org
http://www.texttest.org
http://studios.thoughtworks.com/twist-agile-test-automation/

	 	 	252 Specification by Example

Videos

Gojko Adzic, “Challenging Requirements,”
http://gojko.net/2009/12/10/challenging-requirements/.

Dan North, “How to Sell BDD to the Business,”
http://skillsmatter.com/podcast/agile-testing/how-to-sell-bdd-to-the-business.

Hemal Kuntawala, “How we build quality software at USwitch.com,” http://skills
matter.com/podcast/agile-testing/how-we-build-quality-software-at-uswitch-com.

Björn Regnell, “Supporting Roadmapping of Quality Requirements,”
http://oredev.org/videos/supporting-roadmapping-of-quality-requirements.

Presentations

Tim Andersen, “Persona Driven Development,” http://www.umsec.umn.edu/
events/Code-Freeze-2010/PDD; http://timandersen.net/presentations/Persona_
Driven_Development.pdf.

Mark Durrand and Damon Morgan, “Creating a Lean business from the inside out:
Technical innovation at uSwitch.com to reduce waste,” http://www.slideshare.
net/markdurrand/spa2010-uswitch.

Articles

Gojko Adzic, “Agile in a Start-up Games Development Studio,”
http://gojko.net/2010/05/19/agile-in-a-start-up-games-development-studio/.

Gojko Adzic: Are tools necessary for acceptance testing, or are they just evil?
http://gojko.net/2010/03/01/are-tools-necessary-for-acceptance-testing-or-are-
they-just-evil.

Gojko Adzic, “Examples make it easy to spot inconsistencies,”
http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies/.

Gojko Adzic: How to implement UI testing without shooting yourself in the foot,
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-
yourself-in-the-foot-2/.

Gojko Adzic: Improving testing practices at Google,
http://gojko.net/2009/12/07/improving-testing-practices-at-google/.

http://gojko.net/2009/12/10/challenging-requirements/
http://skillsmatter.com/podcast/agile-testing/how-to-sell-bdd-to-the-business
http://skills
http://oredev.org/videos/supporting-roadmapping-of-quality-requirements
http://www.umsec.umn.edu/
http://timandersen.net/presentations/Persona_
http://www.slideshare
http://gojko.net/2010/05/19/agile-in-a-start-up-games-development-studio/
http://gojko.net/2010/03/01/are-tools-necessary-for-acceptance-testing-or-are-they-just-evil
http://gojko.net/2010/03/01/are-tools-necessary-for-acceptance-testing-or-are-they-just-evil
http://gojko.net/2010/03/01/are-tools-necessary-for-acceptance-testing-or-are-they-just-evil
http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies/
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/
http://gojko.net/2009/12/07/improving-testing-practices-at-google/
http:uSwitch.com
http:USwitch.com

	 	 	 	 	 			 														253 Appendix A Resources

Gojko Adzic, “QUPER model for better requirements,”

http://gojko.net/2009/11/04/quper-model-for-better-requirements/.
�

Gojko Adzic, “Shock therapy agile adoption at 7Digital,”

http://gojko.net/2009/12/08/shock-therapy-agile-adoption-at-7digital/.
�

Michael Bolton, “Acceptance Tests: Let’s Change the Title, Too,”

http://www.developsense.com/blog/2010/08/acceptance-tests-lets-

change-the-title-too/.
�

Michael Bolton, “Testing vs. Checking,”

http://www.developsense.com/blog/2009/08/testing-vs-checking/.
�

Alistair Cockburn, “Sacrifice One Person,”

http://alistair.cockburn.us/Sacrifice+one+person+strategy.
�

Craig Larman and Bas Vodde, “Acceptance Test-Driven Development with Robot
Framework,” http://code.google.com/p/robotframework/wiki/ATDDWith
RobotFrameworkArticle.

Craig Larman and Bas Vodde, “Feature Teams Primer,”

http://www.featureteams.org/feature_team_primer.pdf.
�

Dan North, “Whose domain is it anyway?”

http://dannorth.net/2011/01/31/whose-domain-is-it-anyway/.
�

Björn Regnell, Richard Berntsson Svensson, and Thomas Olsson, “Supporting

Roadmapping of Quality Requirements,” IEEE Software 25, no. 2 (Mar/Apr

2008): 43–47

James Shore, “Alternatives to Acceptance Testing,”

http://jamesshore.com/Blog/Alternatives-to-Acceptance-Testing.html.
�

James Shore, “The Problems with Acceptance Testing,”

http://jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html.
�

Lance Walton, “Writing Maintainable Acceptance Tests,” http://www.casual

miracles.com/blog/2010/03/04/writing-maintainable-acceptance-tests/.
�

Comics

Chris Matts, “Real Options at Agile 2009,” http://www.lulu.com/product/file-
download/real-options-at-agile-2009/5949486.
�

http://gojko.net/2009/11/04/quper-model-for-better-requirements/
http://gojko.net/2009/12/08/shock-therapy-agile-adoption-at-7digital/
http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too/
http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too/
http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too/
http://www.developsense.com/blog/2009/08/testing-vs-checking/
http://alistair.cockburn.us/Sacrifice+one+person+strategy
http://code.google.com/p/robotframework/wiki/ATDDWith
http://www.featureteams.org/feature_team_primer.pdf
http://dannorth.net/2011/01/31/whose-domain-is-it-anyway/
http://jamesshore.com/Blog/Alternatives-to-Acceptance-Testing.html
http://jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html
http://www.casual
http://www.lulu.com/product/file-download/real-options-at-agile-2009/5949486
http://www.lulu.com/product/file-download/real-options-at-agile-2009/5949486
http://www.lulu.com/product/file-download/real-options-at-agile-2009/5949486

	 	 	254 Specification by Example

Training courses

Gojko Adzic: http://neuri.co.uk/training.
�

Object Mentor: http://objectmentor.com/omTraining/omi_training_index.html.
�

Lisa Crispin and Janet Gregory: http://www.janetgregory.ca/training.htm.
�

Elisabeth Hendrickson: http://www.qualitytree.com/workshops/.
�

Pyxis Technologies: http://pyxis-tech.com/en/our-offer/training.
�

TechTalk: http://www.techtalk.at/training.aspx.
�

Rick Mugridge: http://www.rimuresearch.com/Coaching.html.
�

http://neuri.co.uk/training
http://objectmentor.com/omTraining/omi_training_index.html
http://www.janetgregory.ca/training.htm
http://www.qualitytree.com/workshops/
http://pyxis-tech.com/en/our-offer/training
http://www.techtalk.at/training.aspx
http://www.rimuresearch.com/Coaching.html

	 	 	 	 	

Index

A
abstraction, 106–107
acceptance criteria, 208
acceptance testing, 36

ePlan Services, 232
problems for frequent validation, 163–164
Sabre Airline Solutions, 224
specification by example method of, 45–46

acceptance-testing-centric model, 29
ACME OnlineShop example, 97–98
AdScale.de website, 15–16
Agile Alliance Functional Testing Tools group,

17
agile software development, 36–37
alignment, work, 14–16
all-team workshops, 79–81
alternative solutions, 73–74
Amazon EC2 cloud, 178
analysis, misaligned, 61
Andersen, Tim

aligning specification language with
personas, 188–189

automatically checking turned-off tests,
181

communication with business users, 218
improving performance of database for

testing, 175
living documentation system, 6–7, 222
prepopulated reference data, 159
reliability of test automation layer,

148–150
trust in automated documentation, 32

Anderson, David, 38
Aro, Ismo, 74
Arrange-Act-Assert language, 129
Art of Agile Development, The (Shore and

Warden), 48
asynchronous processes, 170–172
ATDD (acceptance test-driven development),

41. See also acceptance-testing-centric
model

automated testing
preventing functional regression through,

29
automated checks, tracking who is running,

49
automated executable specifications, 37
automated testing

as documentation, 30–31
Iowa Student Loan, 218
RainStor, 215
retrofitting into legacy system, 165
Sabre Airline Solutions, 224
systems with bad support for, 164–165

automating
choosing which specifications to use for,

151
�
deployment, 166–167
�
executable specifications, 45
�
validation, without changing

specifications, 21–22
automating validation, 136–161

automation layer
describing validation processes in,

146–147
not replicating business logic in,

147–148
below skin of application, 150–152
importance of automation code, 145–146
not automating existing test scripts,

142–143
not checking business logic through user

interface, 149–150
not postponing or delegating, 141–142
planning for upfront, 140–141
within system boundaries, 149
test data, 157–161

not using prepopulated data, 157–158
pulling prototypes from databases,

160–161
using prepopulated reference data,

158–159
tools for, 139–140

255

http:AdScale.de

	 	 	256 Specification by Example

with user interface tests, 143–144,

152–157
�
avoiding recorded UI tests, 155–157
�
at higher level of abstraction, 153–154
�
setting up context in database, 157
�
within UI specifications, 155
�

why needed, 137–139
without changing specifications, 21–22

automation code, 136–137
automation concepts, technical, 185–186
automation layer

flexible, 144
�
moving dependencies to, 130
�
solving technical difficulties in, 123
�
specifying user interface tests at higher

level of abstraction, 153–154

B
backlog items, 74
�
Balsamiq Mockups, 109
�
Bandi, Jonas, 103–130
�
Bartz, Cindy, 217
�
“Batman”, 48
�
BDD (behavior-driven development). 29

See system-behavior-specification-centric
model

Beazley (insurance company)
illustrating requirements using examples,

95–96
improved alignment with Specification by

Example, 15
�
preparation for collaborative discussion, 90
�
process created by focus on tool, 47
�
restructuring scripts into specifications,

121
�
structure of living documentation system,

193–194
�
Bekk Consulting
�

building trust in executable specifications,

143–144
�

collaboration on language, 190
�
effect of data integrity constraints on

explicit specifications, 130
�
higher product quality with Specification

by Example, 9
�

pulling prototypes from database on legacy
data-driven systems, 160
�

review of tests by developers, 84
�
use of tags, 195
�

benefits of living documentation, 34–35
�
benefits of Specification by Example, 3–16
�
better work alignment, 14–16
�
higher product quality, 8–12
�
implementing changes more efficiently, 6–8
�
less rework, 12–14
�
Berger, Scott, 13–14, 51, 147, 157
�
big workshops, 247
�
black-box tests, 36, 96
�
blank cells, in FitNesse, 118
�
BNP Paribas, Sierra team
�

collaboration on writing tests, 83
�
evolving specification language, 187–190
�
higher product quality with Specification

by Example, 9
�
overview, 52–53
�
preparation for collaborative discussion, 89
�
specifications described as interactions

with UI elements, 155
�
books as resource, 250
�
boomerangs, 60–61
�
bottlenecks at testing phase, 39
�
Botts, Elbert Dysart, 162
�
Botts’ Dots, 162
�
breakpoints, QUPER model, 110–111
�
Bridging the Communication Gap (Adzic),

12–17, 73, 151, 179
�
Brissette, André
�

documentation in agile development, 33
�
initial examples, 92
�
living documentation system, 7
�
overspecification of examples, 127
�
PBR workshops, 80
�
planning for productivity drop during

automation process, 141
�
use of customer emails for discussions,

103–104
�
British Sky Broadcasting Company, 12–13,

53–55
�
Brooks, Fred, 67
�

	 	 	 	 	 														

C

Index 257

brownfield projects, 172–173
browser automation toolkits, 208
business acceptance testing, 45
business analysts, Sierra team, 53
business functionality, 121
business goals. See goals
business logic, 172

not checking through user interface,
149–150

not replicating in automation layer,
147–148

business processes, documentation of, 194,
247–248

business rule level, UI automation at,
156–157

business time, 173–174
business users

asking how something would be useful to,
73

and automation tools for executable
specifications, 41

and functional test automation, 40, 46
provision of scope by, 67
and technical terminology, 42–43

California Department of Transportation, 162
Central Patient Administration project, IHC,

8, 102
challenging requirements, 67
changes, 36–62

implementing more efficiently, 6–8
to process, 37–42

implementing specification by example,
38

improving quality with, 38–39
introducing executable specifications,

41–42
starting with functional test automa-

tion, 39–40
using test-driven development, 42–43

to team culture, 43–49
avoiding technical terminology, 43
keeping one person on legacy scripts,

48

management support for, 44–45
not focusing on tool, 47
specification by example as way to do

acceptance testing, 45–46
test automation is not end goal, 46–47
tracking who is running automated

checks, 49
to traceability, 55–59

getting sign-off on exported living
documentation, 56–57

getting sign-off on lightweight use
cases, 57–58

getting sign-off on scope, 57
introducing use case realizations, 59
keeping executable specifications in

version control system, 56
Channing, Walton, 9
checklists for discussions, 111
CI (continuous integration), 162–165
classes of equivalence, 100
Cleland-Huang, Jane, 70
cloud computing services, 178
Cockburn, Alistair, 48
code

automation of, 136–137
avoiding specifications tightly coupled

with, 121–122
executable specifications as trustworthy

as, 23
production, 146–148

code smell, 62
Cohn, Mike, 230
collaboration

improving, Sabre Airline Solutions
example, 226–228

integrating into flows, 49–55
Global Talent Management team at

Ultimate Software, 51–52
Sierra team at BNP Paribas, 52–53
SNS group, 53–55

methods, 247
preparation required for, 246–247
on scope, without high-level control,

72–75
asking for alternative solution, 73–74

	 	 	258 Specification by Example

asking how something would be useful,
73
�

delivering features end-to-end, 75
�
not looking at only lowest level, 74
�

specifying collaboratively, 19–20
�
on tests, ePlan Services, 231
�
trust built by, 245–246
�

collaboration on specifications, 77–94
�
introductory meetings for, 87
�
involving stakeholders, 87–89
�
models for
�

all-team workshops, 79–81
choosing, 93–94
having developers review tests

frequently, 84–85
informal conversations, 85–86
pair-writing, 83–84
“Three Amigos” meetings, 81–83
not overpreparing, 92–93
preparing detailed examples, 89–90
preparing initial examples, 91–92
reasons for, 77–79
reviewing stories early, 90–91

comics, resources, 253
�
communication, improving, 95–97, 205
�
completeness of examples, 100–102
�
concepts
�

hidden, 106–107
�
higher-level, 185
�
implied, 106–107
�

concise examples, 21
�
Concordion tool, 23
�
constraints, temporal, 173–174
�
context-driven testing, 23
�
continuous validation system, 215
�
conversations, informal, 85–86
�
Cooper, Ian
�

automation analogy, 138
�
improved alignment with Specification by

Example, 15
�
living documentation maintenance

problems, 197
�
preparation for collaborative discussion, 90
�
process created by focus on tool, 47
�
reliance on defaults, 131
�

restructuring scripts into specifications,

121
�

structure of living documentation system,

193–194
�

Three Amigos meetings, 82
�
costs
�

cost-benefit breakpoints and barriers,

110–111
�

maintenance, of executable specifications,

137–139
�

Cowans, Phil
�
asynchronous processing, 170
�
benefits of SBE, 237
�
early development of high-level structure,

191
�
importance of automation code, 145
�
long-term benefits of Specification by

Example, 137
�
testing trivial bits of user interface, 124
�
using Amazon’s EC2 cloud to run

acceptance tests, 178
�
Crispin, Lisa
�

on acceptance testing, 233
�
failure to collaborate on acceptance tests,

78
�
involving stakeholders, 88
�
overspecification of examples, 126–128
�
smaller workshops, 81
�
unit testing, 230
�
using test-driven development, 42
�
value of tests as documentation, 31–32
�

cross-cutting functionality, 107–108
�
Cucumber automation tool, 9, 57, 129, 203,

208, 238
�
Cunningham, Ward, 36, 120, 247
�
customer acceptance testing, 45
�
customer loyalty program example, 25–26
�

executable specification in, 27
�
goals in, 25
�
living documentation in, 27
�
scope in, 25
�
specification with examples in, 25–26
�

customers
getting examples directly from, 103–105

session logs, 208
�

	 	 	 	 	 														

Index 259

D
Dairy Herd Recording System project,

143–144
data
�

experimenting with, 101
�
not making up, 102–103
�

data sources, external reference, 167–168
databases

in-memory, avoid using for testing,
174–175
�

pulling prototypes from, 160–161
�
setting up context in for UI tests, 157
�
transaction control, 169–170
�

data-driven systems
avoiding using in-memory databases for

testing, 174–175
checking for reference data in, 170
�

Davis, Justin, 217–218, 221
�
DbFit, 186
�
DDE (Defect Detection Efficiency), 52
�
dedicated environments
�

continuous validation, 166
�
testing, 204
�

defaults in specifications, 131
�
delivery team members, trust between

stakeholders and, 245–246
�
Denne, Mark, 70
�
dependencies in specifications, 130
�
details in examples
�

level of, 20
�
preparing, 89–90
�

developers
�
and automation tools for executable

specifications, 41–42
�
Songkick, 241
�

development environment, 204
�
Diamond Invention, The (Epstein), 114
�
differentiation point, QUPER model, 110
�
disabling less-risky tests, 178–179
�
documentation, paper, 21
�
documentation system, 183–197. See also
�

living documentation
documenting business processes, 247–248
keeping consistent, 186–191

documenting building blocks, 190–191

specification language, 187–190
listening to, 196–197
making easily understood, 183–186

avoiding using technical automation
concepts, 185–186
�

higher-level concepts, 185
�
specifications, 184–185
�

organizing, 191–196
�
along business processes, 194
�
along UI navigation routes, 193–194
�
by functional areas, 192
�
referring to executable specifications

with tags, 195–196
by stories, 191–192

documentation-centric model. See living
documentation
�

Domain Driven Design (Evans), 132
�
done columns, on Scrum board, 14
�

E
EC2 cloud, Amazon, 178
�
edge cases, 101, 105–106
�
effect mapping, 76
�
effort estimation, 70
�
Einstein, Albert, 67
�
elapsed time, waiting for events instead of,

170–171
�
end-to-end integration tests, 175
�
end-to-end use case, 194
�
end-to-end validations, 172–173
�
energy directory, rewriting, 206
�
environment issues, in tests, 163
�
ePlan Services, 230–236
�

introductory meetings, 87
�
involving stakeholders, 88
�
lessons from, 236
�
living documentation, 233–234
�
processes used by
�

changing of, 230–233
current, 234–235
�

use of living documentation by, 7–8
�
using test-driven development, 42
�

value of tests as documentation, 31
�
Epstein, Edward Jay, 114
�
Ervine, Stuart, 73
�

	 	 	260 Specification by Example

estimations, eliminating, 208
�
Evans, David, 142, 212
�
Evans, Eric, 132
�
events, waiting for, 170–171
�
examples, 95–113
�

completeness of, 100–102
�
conciseness of, 21
�
easy to understand, 105–107
�
example of, 97–98
�
illustrating nonfunctional requirements

with, 107–113
�
building reference example, 112–113
�
QUPER model for, 110–111
�
using checklist for discussions, 111
�
using precise performance

requirements, 108–109
using prototypes for UI, 109
�

illustrating using, 20
�
implementing specification by
�

process changes for, 38
�
tracking progress of, 59–62
�

level of details in, 20
�
precise and testable, 119
�
precision of, 99–100
�
realistic, 102–105
�

executable specifications
�
automation of, 45
�
creating living documentation from,

32–33
�
in customer loyalty example, 27
�
frequently changing, 60
�
keeping in version control system, 56
�
modifying reference data, 169–170
�
not using as end-to-end validations,

172–173
overview, 21–22
process changes, 41–42
referring to with tags instead of URLs,

195–196
�
and TDD, 42
�
as trustworthy as code, 23
�

expected outputs of system, 70–71
�
expiring data, 173
�
exploratory tests, 22
�

Exploring Requirements (Weinberg and

Gause), 36, 96
�

external consultants, mini-project reviews by,

140
�

external systems
�
selectively isolating, 168
�
simpler test doubles for, 167–168
�

extraneous information in examples, 21
�
Extreme Programming, Sierra team, 52–53
�

F
F-16 Fighting Falcon, 65–66
failing tests, 163
�

disabling, 181–182
�
managing, 179–182
�

automatically checking which are
turned off, 181–182

creating known regression failures pack,
180
�

feature injection, 76
�
feature teams, 75
�
features, delivering end-to-end, 75
�
feedback
�

exercises, 97
�
fast, 173–179
�

avoiding using in-memory databases for

testing, 174–175
�

breaking long test packs into smaller

modules, 174
�

creating current iteration pack, 177
�
introducing business time, 173–174
�
keeping overnight packs stable, 176
�
parallelizing test runs, 177–179
�
separating quick and slow tests,

175–176
�
slow, 171
�
speed of, 21–22
�

Ferrero, Marta Gonzalez, 78, 95–96
Fit for Developing Software (Mugridge and

Cunningham), 120
�
FIT tool, 224
�
FitNesse
�

blank cells in, 118
�
ePlan Services, 231
�

	 	 	 	 	 														Index 261

executable specification automated with,
23
�

Iowa Student Loan, 217–218
�
JP Morgan Chase, 10
�
plugin to handle version control system

integration, 221
�
tests, 193–194
�
transition to, 48
�
Weyerhaeuser transition to, 42
�

flow-based development, 46
�
flow-based projects, 36
�
flows, integrating collaboration into, 49–55
�

Global Talent Management team at
Ultimate Software, 51–52

Sierra team at BNP Paribas, 52–53
SNS group, 53–55

free delivery, in customer loyalty program
example, 26
�

functional acceptance tests, 163–164, 175
�
functional areas, organizing documentation

system by, 192
�
functional regression, 29, 221
�
functional test automation, 37
�

as end goal of process change, 46–47
starting with, 39–40

G
Gärtner, Markus, 39, 48, 197
�
Gause, Donald, 36, 96
�
Geras, Adam, 37, 71
�
Given-When-Then format, 51
�
global configuration file, setting defaults in,

131
�
Global Talent Management team, Ultimate

Software, 13–14, 51–52, 55, 147–157,

169
�

goals
�
in customer loyalty example, 25
�
deriving scope from, 19, 65–67, 72–76
�

user stories for, 71–72
what outputs are expected, 70–71
where value comes from, 69–70
who needs to be satisfied, 68–69
why needed, 68–69

Google, 60
�
greenfield projects, 171
�

Gregory, Janet, 81
�
Growing Object Oriented Software, Guided by

Tests (Freeman and Pryce), 171
�

H
Haldane, David, 162
�
Hassa, Christian
�

alternative solutions, 73–74
�
binding to UI, 150
�
collaboration on language, 189–190
�
cross-cutting requirements as checklist for

discussions, 111
�
project scope, 67
�
record-and-replay tools, 155–156
�
replacing legacy systems, 30
�

headers, specification, 125
�
Hellesøy, Aslak, 9, 122–153
�
hidden concepts, in examples, 106–107
�
hierarchies
�

grouping specifications into, 191–192
organized by functional areas, 192
�

higher-level concepts, 185
�
high-level structure, 191
�
high-risk parts of system, automating, 41
�
Hillaker, Harry, 65
�
“How to implement UI testing without

shooting yourself in the foot” article

(Adzic), 157
�

“How to Sell BDD to the business”

presentation (North), 50
�

HTTP automation, 150–151
�
HTTPUnit, 217
�
human-readable specifications, 136–137
�

I
�
IHC Group, Central Patient Administration

project, 8, 102
�
ILean, 68
�
illustrating with examples. See examples
�
implementing specification by example
�

process changes for, 38
�
tracking progress of, 59–62

checking for boomerangs, 60–61
organizational misalignment indicator,

61
�
performing shotgun surgery, 62
�

	 	 	262 Specification by Example

tests that change frequently, 60
�
implied concepts, 106–107
�
incremental approach to reducing

unreliability, 164–165
�
informal conversations, 85–86
�
injection, feature, 76
�
in-memory databases, avoiding using for

testing, 174–175
integration tests, 149
�

end-to-end, 175
�
technical, 172
�

interpretation of natural language, 20
�
introductory meetings, 87
�
Iowa Student Loan Liquidity Corporation
�

aligning specification language with

personas, 188–189
�

automatically checking turned-off tests,

181
�

avoiding replication of business logic in

test automation layer, 148
�

documentation of specification building

blocks, 190
�

improving performance of database for

testing, 175
�

lessons from, 223
�
living documentation as competitive

advantage, 222–223
�
overview, 217
�
prepopulating reference data, 159
�
processes used by
�

changing of, 217–218
optimizing of, 218–222
�

use of living documentation by, 6–7
�
use of testing at, 32
�

iteration, 36, 46
�
iteration packs, 177
�

J
Jackman, Andrew
�

evolving specification language, 187
�
pair writing, 83
�
success of SBE, 9
�
success of Sierra team at BNP Paribas, 52
�
test results as knowledge base for support,

32
�
up-front preparation and review, 89
�

Jackson, Martin, 10
�
Janssens, Peter, 68–69
�
jargon, 20
�
Jbehave, 42
�
JIRA, 221
�
Jones, Capers, 29
�
JP Morgan Chase, 10
�
just-in-case code, 61–62
�
just-in-time, 4,18, 62
�

K
Kanban flow process, 38, 51–52, 241
�
key process patterns. See process patterns
�
key representative examples, in specifications,

126–127
�
Kidwell, Suzanne, 217
�
Knight, Adam
�

creating interactive prototype for clients,

109
�

creating known regression failures pack,

180
�

development of archiving system for

structured data, 104–105
�

implementation of SBE, 44, 211
�
running separate quick and slow tests, 176
�
tests as documentation, 31
�

Knowledgent Group, 57–58, 102
�
known regression failures pack, 180
�
Kuntawala, Hemal, 201–202, 204
�

L
language, natural. See natural language
languages, specification

based on personas, 188–189
collaborating on defining, 189–190
evolving, 187–188

Larman, Craig, 56, 80, 88
�
Lean Software Development (Poppendieck

and Poppendieck), 61
�
LeanDog group, 13
�
legacy projects, reducing unreliability,

164–165
�
legacy scripts, keeping one person on, 48
�
legacy systems
�

examples for, 102–103
�
multistage validation, 168–169
�

	 	 	 	 	 														Index 263

production code in automation, 148
�
retrofitting automated testing into, 165
�

lightweight use cases, sign-offs on, 57–58
�
Link, Johannes, 123–185
�
living documentation, 29–37
�

advantages of, 24
�
automating validation of specifications

and, 139
�
benefits of, 34–35
�
as competitive advantage, 222–223
�
creating from executable specifications,

32–33
�
in customer loyalty example, 27
�
defined, 6
�
ePlan Services example, 233–234
�
examples of, 6–8
�
long-term value from, 248–249
�
shotgun surgery, 62
�
sign-offs on, 56–57
�
tests as, 31–32
�
why needed, 30–31
�

Lloyd, Stephen, 15, 140, 201
�
LMAX, 39, 85, 92, 177–178
�
logic. See business logic
�
Lotre, Børge, 143–144, 160, 195
�
loyalty program example. See customer loyalty

program example

M
maintenance

automated test, 30–31
costs of

documentation, 32
�
of executable specifications, 137–139
�
reducing, 205
�

management support, for changes to team
culture, 44–45
�

manual testing, 40
�
mapping, 76
�
McLennan, Clare, 15–16, 44, 91, 145–146,

164–165
�
Mestdach, Pascal, 102, 196
�
metrics. See also progress tracking
�
Milone, Marco, 159
�
mistrust, model based on, 246
�

models for collaborating on specifications
all-team workshops, 79–81
choosing, 93–94
having developers review tests frequently,

84–85
�
informal conversations, 85–86
�
pair-writing, 83–84
�
“Three Amigos” meetings, 81–83
�

modules, breaking long test packs into, 174
�
Morgan, Damon, 178, 201, 205–206
�
Mugridge, Rick, 120, 247
�
multisite groups, 168–169
�
multistage validation, 168–169
�
Mythical Man-Month, 67
�

N
Nagy, Gaspar, 99, 151, 158–159, 187
�
natural language, 20
�
Neale, Jon, 79, 201, 203
�
nonfunctional requirements
�

defined, 108
�
illustrating with examples, 107–113
�

building reference example, 112–113
�
QUPER model for, 110–111
�
using checklist for discussions, 111
�
using precise performance

requirements, 108–109
using prototypes for UI, 109
�

North, Dan, 50, 108
�
Norwegian Dairy Herd Recording System,

130, 160, 190, 195
�

O
online resources, 251
�
organizational misalignment indicator, 61
�
organizing documentation system, 191–196
�

along business processes, 194
�
along UI navigation routes, 193–194
�
by functional areas, 192
�
referring to executable specifications with

tags instead of URLs, 195–196
by stories, 191–192

overnight builds, continuous validation
system, 215
�

overnight packs, keeping stable, 176
�
overspecifying examples, 126–127
�

	 	 	264 Specification by Example

P
packs

creating current iteration, 177
known regression failures, 180
overnight, keeping stable, 176
test, breaking long into smaller modules,

174
pair-writing, 83–84
paper documentation, disadvantages of, 21
parallelizing test runs, 177–179
Park, Rob

creating test doubles for external systems,
167–168

evolving specification language, 187–188
getting sign-off on scope, 57
implementation of SBE at LeanDog, 13
integration with IVR system, 149
introducing tool for executable

specifications, 42
on prioritization, 69–70
Three Amigos meetings, 82

Parker, Jodie
avoiding just-in-case code, 61–62
creation of release candidate board, 39
failure to collaborate on specifications, 78
informal conversations, 85
overpreparation, 92
running acceptance tests in parallel,

177–178
Patel, Rakesh, 12–13, 54, 184–185
patterns. See process patterns
Patton, Jeff, 76
PBR (Product Backlog Refinement)

workshops, 80
performance requirements, 108–109
personas, specification language based on,

188–189
plain-text files, executable specifications in, 56
planning meetings, SNS, 54
Poppendieck, Mary, 61
Poppendieck, Tom, 61
postconditions, in specifications, 129
Practices for Scaling Lean and Agile (Vodde

and Larman), 56

precise examples, 99–100, 105–107
avoiding abstract classes of equivalence in,

100
not having yes/no answers in, 99

preconditions, in specifications, 129–130
pre-deployment test execution, 205
preplanning coordination meeting, 53
pre-planning phase, 246–247
prepopulated reference data, 158–159
presentations, resources, 252
prioritization, 69–70
process changes, 37–42

implementing specification by example, 38
improving quality with, 38–39
introducing executable specifications,

41–42
starting with functional test automation,

39–40
using test-driven development, 42–43

process patterns, 18–19
automating validation without changing

specifications, 21–22
deriving scope from goals, 19
evolving a documentation system, 24
illustrating using examples, 20
practical example of, 24–27
refining specifications, 20–21
specifying collaboratively, 19–20
validation, frequency of, 24

processes
documentation of, 194, 247–248
used by ePlan Services

changing of, 230–233
�
current, 234–235
�

used by Iowa Student Loan
�
changing of, 217–218
�
optimizing of, 218–222
�

used by RainStor
�
changing of, 211–213
�
current, 213–215
�

used by Sabre Airline Solutions, 224–226
used by Songkick
�

changing of, 238–240
�
current, 240–242
�

	 	 	 	 	 														Index 265

used by uSwitch.com
�
changing of, 202–204
�
current, 207–208
�
optimizing of, 204–207
�

processing, asynchronous, 171
�
product analyst, Global Talent Management

team, 51
�
product quality, 8–12
�
production code, 146–148
�
productivity, effect of automation on,

140–141
programmers
�

automated checks, 49
�
and functional test automation, 40
�

progress tracking, 59–62
�
checking for boomerangs, 60–61
�
organizational misalignment indicator, 61
�
performing shotgun surgery, 62
�
tests that change frequently, 60
�

prototypes for UI, 109
�
Pyxis Technologies, 7, 92, 141
�

Q
QA team, uSwitch, 202
�
QTP, 42, 202
�
quality, 8–12, 209
�
QUPER model, 110–111
�

R
Rainsberger, J.B., 217
�
RainStor
�

creating interactive prototype for clients,

109
�

development of archiving system for

structured data, 104–105
�

expressing performance requirements in

detail, 108
�

implementation of SBE, 44
�
lessons from, 215
�
processes used by
�

changing of, 211–213
�
current, 213–215
�

running separate quick and slow tests at,

176
�

tests as documentation, 31
�

Rational Unified Process, 59
�
real data, in examples, 102–103
�
realistic examples, 102–105
�

avoiding making up data, 102–103
getting examples directly from customers,

103–105
record-and-replay user interface automation,

155–156
reference data
�

checking for, 170
�
executable specifications modifying,

169–170
reference example, for nonfunctional

requirements, 112–113
�
refining specifications, 20–21
�
Regnell, Björn, 110
�
regression failures pack, 180
�
regression testing, 29–30
�
regular builds, continuous validation system,

215
�
release candidate board, 39
�
Relish, 34
�
requirements, 36–37
�

challenging, 67
�
illustrating with examples, 95–97
�

resources, 250–254
�
books, 250
�
comics, 253
�
online resources, 251
�
presentations, 252
�
tools, 251
�
training courses, 254
�
videos, 252
�

reverse engineering, 30–31
reviewing

stories, 90–91
tests, 84–85

rework, reduction of, 12–14
�
rewriting tests, 204
�
risky parts of system, automating, 41
�

S
Sabre Airline Solutions, 224–229
�

improving collaboration, 226–228
�
lessons from, 229
�

http:uSwitch.com

	 	 	266 Specification by Example

processes used by, changing of, 224–226
�
results from process changes, 228
�
understanding business users output

expectations, 71
�
Sabre Holdings, 8–9
�
“Sacrifice One Person” strategy, 48
�
saturation point, QUPER model, 110
�
scope
�

collaborating on without high-level
control, 72–75
asking for alternative solution, 73–74
asking how something would be useful,

73
�
delivering features end-to-end, 75
�
not looking at only lowest level, 74
�

in customer loyalty example, 25
�
deriving from goals, 19, 65–76

further information, 75–76
user stories for, 71–72
what outputs are expected, 70–71
where value comes from, 69–70
who needs to be satisfied, 68–69
why needed, 68–69

sign-offs on, 57
�
scripts

different from specifications, 119–121
flow-like descriptions indicating, 120–121

Scrum, 14, 38, 53–55, 202, 211, 230
�
Selenium 2.0 HtmlUnit driver, 151
�
Selenium tests, 202
�
self-explanatory specifications, 124–125
�
semiformal tests, preparing collaboratively, 83
�
Shore, James, 48, 138
�
shotgun surgery, 62
�
Sierra project, at BNP Paribas, 9, 32, 52–53,

155, 187–190
sign-offs. See also traceability
�

on exported living documentation, 56–57
�
on lightweight use cases, 57–58
�
on scope, 57
�

Sivapathasuntharam, Kumaran, 55
�
SKIT (Story Knowledge and Information

Transfer) session, 51
�
slow test feedback, 163
�
SNS (Sky Network Services) group, 12–13,

53–55, 87, 184–185
�
Software by Numbers, 70
�
software requirements, 37
�
Songkick, 237–243
�

asynchronous processing, 170
�
importance of automation code, 145
�
lessons from, 242–243
�
processes used by
�

changing of, 238–240
current, 240–242
�

testing trivial bits of user interface, 124
�
use of living documentation by, 7
�
use of testing at, 32
�
using Amazon’s EC2 cloud to run

acceptance tests, 178
�
Sopra Group, 12
�

Specification by Example. See also benefits

of Specification by Example
�

defined, 5
�
key process patterns, 5, 18–24, 27, 28
�
versus waterfall analysis, 50
�
as way to do acceptance testing, 45–46
�
website for, 23
�

specification language
based on personas, 188–189
collaborating on defining, 189–190
evolving, 187–188

specification workshops
�
outputs of, 245
�
replacing, 206
�

specifications, 114–135
�
avoiding creating long, 184
�
avoiding specifications tightly coupled

with code, 121–122
avoiding using many to describe single

feature, 184–185
�
and business functionality, 121
�
defaults in
�

not relying on, 131
�
not specifying, 131
�

difference from scripts, 119–121
�
examples of
�

bad, 117–118
�
good, 116
�
refining bad specification, 132–135
�

	 	 	 	 	 														Index 267

executable
modifying reference data, 169–170

not using as end-to-end validations,
172–173

referring to with tags instead of URLs,
195–196
�

executable, overview of, 21–22
�
focused, 128
�
grouping into hierarchies, 191–192
�
not dwelling on user interface details, 124
�
not overspecifying examples, 126–127
�
not setting up all dependencies in, 130
�
not working around technical difficulties

in, 122–123
�
precise and testable examples needed, 119
�
refining, 20–21
�
self-explanatory, 124–125
�
specifying collaboratively, 19–20
�
starting with basic examples, 128
�
use of term test for, 23
�
using, 128–130
�
using descriptive title and short

paragraphs, 125
�
using Ubiquitous Language in, 132
�
writing in pairs, 190
�

sprints, 53
�
SQL code, 174–175
�
staging environment, 204
�
stakeholders
�

involving, 87–89
non-developer, 185–186
trust between delivery team members and,

245–246
�
starting points, for process change, 37
�
Steer, Matthew, 12–58
�
stories
�

Global Talent Management team, 51
�
organizing documentation system by,

191–192
�
reviewing early, 90–91
�
Sierra team, 53
�
SNS, 53–55
�
user stories
�

components of, 68–69

defining scope with, 67, 71–72
�
mapping, 76
�
splitting, 74
�

story champions, SNS, 55
�
Striebeck, Mark, 60
�
Suarez, Maykel, 55, 91, 147
�
Supermassive Games, 112
�
SWAT UI automation tool, 147
�
system archeology, 30
�

T
tags, referring to executable specifications

with, 195–196
�
Talia system, 7, 103–104
�
Taylor, Stuart, 11, 82, 186–187
�
TDD (test-driven development), 37, 42–43
�
team culture, changes to, 43–49
�

avoiding technical terminology, 43
�
keeping one person on legacy scripts, 48
�
management support for, 44–45
�
not focusing on tool, 47
�
specification by example as way to do

acceptance testing, 45–46
test automation is not end goal, 46–47
tracking who is running automated checks,

49
�
technical activity level, UI automation at,

156–157
�
technical automation concepts, 185–186
�
technical difficulties, 122–123
�
technical edge cases, 101
�
technical integration tests, 172
�
technical terminology, avoiding, 43
�
technical tests, 122, 171
�
technical tool, automating validation of

specifications using, 139
�
TechTalk, 67, 99–103
�
temporal constraints, 173–174
�
test automation
�

not end goal, 46–47
preventing functional regression through,

29–30
using as documentation, 30–31

test data, 157–161
not using prepopulated data, 157–158

	 	 	268 Specification by Example

pulling prototypes from databases,
160–161

using prepopulated reference data,
158–159

test scripts, not automating, 142–143
tests. See also specifications

acceptance, ePlan Services, 232
�
automated
�

Iowa Student Loan, 218
�
RainStor, 215
�
systems with bad support for, 164–165
�

avoiding using in-memory databases for,
174–175

avoiding using technical automation
concepts in, 185–186
�

black-box, 96
�
breaking long packs into smaller modules,

174
�
context-driven, 23
�
disabling failing, 181–182
�
doubles for external systems, 167–168
�
executing in transactions, 169–170
�
failing, managing, 179–182
�
functional acceptance, problems for

frequent validation, 163–164
identifying unstable using CI test history,

165
�
integration, 149
�
end-to-end, 175
�
technical, 172
�
as living documentation, 31–32
�
manual, 40
�
multiple environments, 177–179
�
only running slow overnight, 176
�
parallelizing runs, 177–179
�
reviewing frequently, 84–85
�
rewriting, 204
�
separating quick and slow, 175–176
�
in specifications, 127
�
specifications tightly coupled with code,

avoiding, 121–122
�
technical integration, 172
�
that change frequently, 60
�
types of, 23
�
unit, Songkick, 238–239
�

use of term specifications for, 23
�
of user acceptance, 45–46

“Three Amigos” meetings, 81–83
time

business, 173–174
elapsed, waiting for events instead of,

170–171
time-to-market, and Specification by

Example, 46
�
To, Tony, 201
�
tools, resources, 251
�
tools for automating validation, 139–140
�
traceability, 55–59, 195–196
�

end-to-end use case, 194
�
getting sign-off
�

on exported living documentation,

56–57
�

on lightweight use cases, 57–58
�
on scope, 57
�

keeping executable specifications in version

control system, 56
�

use case realizations, 59
�
Trader Group Media, 11
�
TraderMedia, 82
�
training courses, 254
�
transactions, executing tests in, 169–170
�
trust, between stakeholders and delivery team,

245–246
�
Twill, 151
�

U
Ubiquitous Language, 132
�
UIs (user interfaces)
�

navigation routes, 193–194
�
not using details of in specifications, 124
�
prototypes for, 109
�

Ultimate Software, Global Talent Manage-
ment team, 13–14, 55, 91, 147–157, 169
�
integrating collaboration into flows, 51–52
�

unit tests
�
ePlan Services, 230
�
Songkick, 238–239
�
unreliability, reducing, 164–173
�

checking for reference data, 170
�
dedicated continuous validation

environment, 166
�

	 	 	 	 	 														Index 269

executing tests in transactions, 169–170
fully automated deployment, 166–167
identifying unstable tests using CI test

history, 165
making asynchronous processing optional,

171
making small changes iteratively, 164–165
multistage validation, 168–169
not using executable specifications as

end-to-end validations, 172–173
selectively isolating external systems, 168
simpler test doubles for external systems,

167–168
waiting for events instead of elapsed time,

170–171
updating automatic tests, 31–32
URLs (Uniform Resource Locators), 195–196
usability

illustrating with examples, 108
�
reference examples for, 112
�
tests of, 22
�

use cases, 57–58
user acceptance testing, 45–46
user interface

automation of, 156–157
tests of, 143–144, 152–157

avoiding recorded, 155–157
at higher level of abstraction, 153–154
setting up context in database, 157
within UI specifications, 155

user stories
components of, 68–69
defining scope with, 67, 71–72
mapping, 76
splitting, 74

user workflow level, UI automation at,
156–157

users. See business users; user acceptance
testing; user interface; user stories

uSwitch, 201–210
collaboration with business users on

business stories, 71
�
disabling less-risky tests, 178–179
�
focus on improving quality at, 38
�

improved alignment with Specification by
Example, 15
�

informal conversations, 85
�
introducing Cucumber, 139–140
�
lessons from, 209
�
preparing only initial examples, 92
�
processes used by
�

changing of, 202–204
�
current, 207–208
�
optimizing of, 204–207
�

results from process change, 208–209
specification workshops, 79

utility point, QUPER model, 110

V
V Model, 36
validation, 162–182. See also automating

validation
frequency of, 23
getting faster feedback, 173–179

avoiding using in-memory databases for
testing, 174–175

breaking long test packs into smaller
modules, 174

creating current iteration pack, 177
introducing business time, 173–174
keeping overnight packs stable, 176
parallelizing test runs, 177–179
separating quick and slow tests,

175–176
managing failing tests, 179–182

automatically checking which are
turned off, 181–182

creating known regression failures pack,
180

multistage, 168–169
processes, describing in automation layer,

146–147
reducing unreliability, 164–173
�

checking for reference data, 170
�
dedicated continuous validation

environment, 166
executing tests in transactions, 169–170
fully automated deployment, 166–167

	 	 	270 Specification by Example

identifying unstable tests using CI test

history, 165
�

making asynchronous processing

optional, 171
�

making small changes iteratively,

164–165
�

multistage validation, 168–169
�
not using executable specifications as

end-to-end validations, 172–173
�
selectively isolating external systems,

168
�
simpler test doubles for external sys-

tems, 167–168
�
waiting for events instead of elapsed

time, 170–171
�
Veragen, Pierre
�

benefits of automation, 138
�
getting programmers involved in process,

49
�
higher product quality with SBE, 10–11
�
implementing process change without

technical terminology, 44
�
use of FitNesse, 42
�
user interface automation, 152
�
using recorded UI tests, 155
�

verbose examples, 20
�
video games, reference examples for, 112
�
videos, as resource, 252
�
Vik, Mikael, 84, 160
�
VIP program example, 25–26
�
Vodde, Bas, 56, 80, 88, 101
�
Vogel, Mike, 57–58, 102, 186, 194
�

W
Walton, Channing, 157–161
�
Walton, Lance, 9, 11, 153–154
�
Warden, Shane, 48
�

waterfall analysis, 50
�
waterfall approval process for sign-off, 57
�
web controller automation, 150
�
WebRat, 151
�
weekend builds, continuous validation

system, 215
�
Weinberg, Gerald, 36, 96
�
Weyerhaeuser, 10–11, 42, 44
�
Wheaton, Harvey, 112
�
Williams, Wes
�

changing process, 224
�
creating teams that deliver complete

features, 75
�
on duplication in test specifications, 225
�
early experiences with unit-testing tools,

145
�
higher product quality with SBE, 8–9
�
on improving collaboration, 226
�
improving testing, 226
�
rework caused by delay in building UI, 71
�

Word documents, for sign-off, 57
�
work alignment, 14–16
�
workshops
�

all-team, 79–81
�
big, 247
�
outputs of, 245
�
replacing, 206
�

WyCASH+ project, 36
�

Y
yes/no answers, 99
�

	Contents
	Preface
	Acknowledgments
	About the author
	About the cover illustration
	PART 1 Getting Started
	Chapter 1 Key benefits
	Implementing changes more efficiently
	Higher product quality
	Less rework
	Better work alignment
	Remember

	Chapter 2 Key process patterns
	Deriving scope from goals
	Specifying collaboratively
	Illustrating using examples
	Refining the specification
	Automating validation without changing specifications
	Validating frequently
	Evolving a documentation system
	A practical example
	Business goal
	An example of a good business goal

	Scope
	User stories for a basic loyalty system

	Key Examples
	Key examples: Free delivery

	Specification with examples
	Free delivery
	Examples

	Executable specification
	Living documentation

	Remember

	Chapter 3 Living documentation
	Why we need authoritative documentation
	Tests can be good documentation
	Creating documentation from executable specifications
	Benefits of the documentation-centric model
	Remember

	Chapter 4 Initiating the changes
	How to begin changing the process
	Implement Specification by Example as part of a wider process change
	When: On greenfield projects

	Focus on improving quality
	Start with functional test automation
	When: Appying to an existing project

	Introduce a tool for executable specifications
	When: Testers own test automation

	Use test-driven development as a stepping stone
	When: Developers have a good understanding of TDD

	How to begin changing the team culture
	Avoid “agile” terminology
	When: Working in an environment that’s resistant to change

	Ensure you have management support
	Sell Specification by Example as a better way to do acceptance testing
	Don’t make test automation the end goal
	Don’t focus on a tool
	Keep one person on legacy scripts during migration
	When: Introducing functional automation to legacy systems

	Track who is running—and not running—automated checks
	When: Developers are reluctant to participate

	How teams integrated collaboration into flows and iterations
	Global talent management team at ultimate software
	Sierra team at BNP paribas
	Sky Network services

	Dealing with sign-off and traceability
	Keep executable specifications in a version control system
	Get sign-off on exported living documentation
	When: Signing off iteration by iteration

	Get sign-off on scope, not specifications
	When: Signing off longer milestones

	Get sign-off on “slimmed down use cases”
	When: Regulatory sign-off requires details

	Introduce use case realizations
	When: All details are required for sign-off

	Warning signs
	Watch out for tests that change frequently
	Watch out for boomerangs
	Watch out for organizational misalignment
	Watch out for just-in-case code
	Watch out for shotgun surgery

	Remember

	PART 2 Key process patterns
	Chapter 5 Deriving scope from goals
	Building the right scope
	Understand the “why” and “who”
	Understand where the value is coming from
	Understand what outputs the business users expect
	Have developers provide the “I want” part of user stories
	When: Business users trust the development team

	Collaborating on scope without high-level control
	Ask how something would be useful
	Ask for an alternative solution
	Don’t look only at the lowest level.
	Make sure teams deliver complete features
	When: Large multisite projects

	Further information
	Remember

	Chapter 6 Specifying collaboratively
	Why do we need to collaborate on specifications?
	The most popular collaborative models
	Try big, all-team workshops
	When: Starting out with specification by example

	Try smaller workshops (“Three Amigos”)
	When: Domain requires frequent clarification

	Pair-writing
	When: Mature products

	Have developers frequently review tests before an iteration
	When: Analysts writing tests

	Try informal conversations
	When: Business stakeholders are readily available

	Preparing for collaboration
	Hold introductory meetings
	When: Project has many stakeholders

	Involve stakeholders
	Undertake detailed preparation and review up front
	When: Remote Stakeholders

	Have team members review stories early
	When: Analysts/domain experts are a bottleneck

	Prepare only initial examples
	When: Stakeholders are readily available 91

	Don’t hinder discussion by overpreparing

	Choosing a collaboration model
	Remember

	Chapter 7 Illustrating using examples
	Illustrating using examples: an example
	Examples should be precise
	Don’t have yes/no answers in your examples
	When: The underlying concept isn’t separately defined

	Avoid using abstract classes of equivalence
	When: You can specify a concrete example.

	Examples should be complete.
	Experiment with data.
	Ask for an alternative way to check the functionality
	When: Complex/legacy infrastructures

	Examples should be realistic
	Avoid making up your own data
	When: Data-driven projects

	Get basic examples directly from customers
	When: Working with enterprise customers

	Examples should be easy to understand
	Avoid the temptation to explore every combinatorial possibility
	Look for implied concepts

	Illustrating nonfunctional requirements
	Get precise performance requirements
	When: Performance is a key feature

	Use low-fi prototypes for UI.
	Try the QUPER model
	When: Sliding scale requirements

	Use a checklist for discussions
	When: Cross-cutting concerns

	Build a reference example
	When: Requirements are impossible to quantify

	Remember

	Chapter 8 Refining the specification
	An example of a good specification
	Free delivery
	Examples.

	An example of a bad specification.
	What to focus on when refining specifications
	Examples should be precise and testable
	Scripts are not specifications
	Don’t create flow-like descriptions

	Specifications should be about business functionality, not software design
	Avoid writing specifications that are tightly coupled with code
	Resist the temptation to work around technical difficulties in specifications
	When: Working on a legacy system

	Don’t get trapped in user interface details
	When: Web projects

	Specifications should be self-explanatory
	Use a descriptive title and explain the goal using a short paragraph
	Show and keep quiet
	When: Someone is working on specifications alone
	In order to: Check whether a specification is self-explanatory

	Don’t overspecify examples
	Start with basic examples; then expand through exploring
	When: Describing rules with many parameter combinations

	Use “Given-When-Then” language in specifications
	In order to: Make the test easier to understand

	Don’t explicitly set up all the dependencies in the specification
	When: Dealing with complex dependencies/referential integrity

	Apply defaults in the automation layer
	Don’t always rely on defaults
	When: Working with objects with many attributes

	Specifications should be in domain language
	Refining in practice
	Remember

	Chapter 9 Automating validation without changing specifications
	Is automation required at all?
	Starting with automation
	To learn about tools, try a simple project first
	When: Working on a legacy system

	Plan for automation upfront
	Don’t postpone or delegate automation
	Avoid automating existing manual test scripts
	Gain trust with user interface tests
	When: Team members are skeptical about executable specifications

	Managing the automation layer
	Don’t treat automation code as second-grade code
	Describe validation processes in the automation layer
	Don’t replicate business logic in the test automation layer
	Automate along system boundaries
	When: Complex integrations

	Don’t check business logic through the user interface
	Automate below the skin of the application
	When: Checking session and workflow constraints

	Automating user interfaces
	Specify user interface functionality at a higher level of abstraction
	Check only UI functionality with UI specifications
	When: User interface contains complex logic

	Avoid recorded UI tests
	Set up context in a database

	Test data management
	Avoid using prepopulated data
	When: Specifying logic that’s not data driven

	Try using prepopulated reference data
	When: Data-driven systems

	Pull prototypes from the database
	When: Legacy data-driven systems

	Remember

	Chapter 10 Validating frequently
	Reducing unreliability
	Find the most annoying thing, fix it, and repeat
	When: Working on a system with bad automated test support

	Identify unstable tests using CI test history
	When: Retrofitting automated testing into a legacy system

	Set up a dedicated continuous validation environment
	Employ fully automated deployment
	Create simpler test doubles for external systems
	When: Working with external reference data sources

	Selectively isolate external systems
	When: External systems participate in work

	Try multistage validation
	When: Large/multisite groups

	Execute tests in transactions
	When: Executable specifications modify reference data.

	Run quick checks for reference data
	When: Data-driven systems

	Wait for events, not for elapsed time
	Make asynchronous processing optional
	When: Greenfield projects

	Don’t use executable specifications as end-to-end validations
	When: Brownfield projects.

	Getting feedback faster
	Introduce business time
	When: Working with temporal constraints

	Break long test packs into smaller modules
	Avoid using in-memory databases for testing
	When: Data-driven systems

	Separate quick and slow tests
	When: A small number of tests take most of the time to execute

	Keep overnight packs stable
	When: Slow tests run only overnight

	Create a current iteration pack
	Parallelize test runs
	When: You can get more than one test Environment

	Try disabling less risky tests
	When: Test feedback is very slow

	Managing failing tests
	Create a known regression failures pack
	Automatically check which tests are turned off
	When: Failing tests are disabled, not moved to a separate pack

	Remember

	Chapter 11 Evolving a documentation system
	Living documentation should be easy to understand
	Don’t create long specifications
	Don’t use many small specifications to describe a single feature
	Look for higher-level concepts
	Avoid using technical automation concepts in tests
	When: Stakeholders aren’t technical

	Living documentation should be consistent
	Evolve a language
	Base the specification language on personas
	When: Web projects

	Collaborate on defining the language
	When: Choosing not to run specification workshops

	Document your building blocks

	Living documentation should be organized for easy access
	Organize current work by stories
	Reorganize stories by functional areas
	Organize along UI navigation routes
	When: Documenting user interfaces

	Organize along business processes
	When: End-to-end use case traceability required

	Use tags instead of URLs when referring to executable specifications
	When: You need traceability of specifications

	Listen to your living documentation
	Remember

	PART 3 Case studies
	Chapter 12 uSwitch
	Starting to change the process
	Optimizing the process
	The current process
	The result
	Key lessons

	Chapter 13 RainStor
	Changing the process
	The current process
	Key lessons

	Chapter 14 Iowa Student Loan
	Changing the process
	Optimizing the process
	Living documentation as competitive advantage
	Key lessons

	Chapter 15 Sabre Airline Solutions
	Changing the process
	Improving collaboration
	The result
	Key lessons

	Chapter 16 ePlan Services
	Changing the process
	Living documentation
	Current process
	Key lessons

	Chapter 17 Songkick
	Changing the process
	Current process
	Key lessons

	Chapter 18 Concluding thoughts
	Collaboration on requirements builds trust between stakeholdersand delivery team members
	Collaboration requires preparation
	There are many different ways to collaborate
	Looking at the end goal as business process documentation is a useful model
	Long-term value comes from living documentation

	Appendix A Resources
	Index

