

MORE JOEL ON
SOFTWARE

Further Thoughts on
Diverse and Occasionally

Related Matters That
Will Prove of Interest

to Software Developers,
Designers, and Managers,

and to Those Who,
Whether by Good Fortune

or Ill Luck, Work with Them
in Some Capacity

Joel Spolsky

More Joel on Software: Further Thoughts on Diverse and Occasionally Related
Matters That Will Prove of Interest to Software Developers, Designers, and
Managers, and to Those Who, Whether by Good Fortune or Ill Luck, Work
with Them in Some Capacity

Copyright © 2008 by Joel Spolsky

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (paperback): 978-1-4302-0987-4

ISBN-13 (electronic): 978-1-4302-0988-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Jeffrey Pepper
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Associate Publisher | Project Manager: Grace Wong
Senior Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Manager: Kelly Winquist
Compositor: Dina Quan
Proofreader: April Eddy
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders-ny@springer-sbm.com, or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or
visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

For Jared,

CONTENTS

Joel, Apress, Blogs, and Blooks ix

About the Author. xiii

part one Managing People 1

one My First BillG Review. 3

two Finding Great Developers 9

three A Field Guide to Developers 21

four Three Management Methods (Introduction) . . . 35

five The Command and Control Management
Method . 37

six The Econ 101 Management Method 41

seven The Identity Management Method 47

part two Advice to Potential Programmers 51

eight The Perils of JavaSchools. 53

nine Talk at Yale . 59

ten Advice for Computer Science College
Students . 73

part three The Impact of Design 83

eleven Font Smoothing, Anti-Aliasing, and Subpixel
Rendering . 85

twelve A Game of Inches 89

thirteen The Big Picture . 93

fourteen Choices = Headaches. 99

fifteen It’s Not Just Usability 103

sixteen Building Communities with Software 111

part four Managing Large Projects. 123

seventeen Martian Headsets 125

eighteen Why Are the Microsoft Office File Formats So
Complicated? (And Some Workarounds) 143

nineteen Where There’s Muck, There’s Brass 151

part five Programming Advice 155

twenty Evidence-Based Scheduling. 157

twenty-one Strategy Letter VI 171

twenty-two Can Your Programming Language Do This? . . . 177

twenty-three Making Wrong Code Look Wrong. 183

part six Starting a Software Business 201

twenty-four Foreword to Eric Sink on the
Business of Software 203

twenty-five Foreword to Micro-ISV: From Vision
to Reality . 207

twenty-six Hitting the High Notes 211

part seven Running a Software Business 221

twenty-seven Bionic Office . 223

twenty-eight Up the Tata Without a Tutu 227

twenty-nine Simplicity . 231

Contentsvi

thirty Rub a Dub Dub 235

thirty-one Top Twelve Tips for Running a Beta Test 241

thirty-two Seven Steps to Remarkable Customer Service . . 245

part eight Releasing Software. 255

thirty-three Picking a Ship Date 257

thirty-four Camels and Rubber Duckies 263

part nine Revising Software 281

thirty-five Five Whys. 283

thirty-six Set Your Priorities 289

Index . 297

viiContents

JOEL, APRESS, BLOGS, AND
BLOOKS

“A long time ago in a galaxy far, far away . . .” Well, actually it was late
in 2000, during Apress’s first full year of operation. We were a tiny little
computer book publisher then, with little name recognition, and we
planned to publish only a handful of books that year—roughly as many
books for that whole year as Apress now publishes in a single month.

I was learning the hard way about how to be a publisher and proba-
bly spending way too much time looking at web sites and programming
than I should have in response to that. Anyway, one day I came across
this web site called Joel on Software, which was run by a guy with strong
opinions and an unusual, clever writing style, along with a willingness to
take on the conventional wisdom. In particular, he was writing this
ongoing series about how bad most user interfaces were—mostly because
programmers by and large knew, as Joel and I would say, using the same
Yiddish-derived NYC vernacular that we both share, “bupkis” about
what users really want. And I, like many, was hooked both by the series
and the occasional random essay that Joel wrote.

And then I had this epiphany: I’m a publisher, I like reading his stuff,
why not turn it into a book? I wrote Joel, introduced myself, and though
he was initially skeptical, I somehow convinced him that if he would
turn the user interface essays into a book, people would buy tons of
them and he and I would make lots and lots of money. (Of course, this
was long before FogBugz became the success it is and Joel started to
command serious dollars as a coveted speaker—but then we were both
younger and, yes, a whole lot poorer in those days.)

Anyway, Joel added some new content to make the book more
appealing and, I thought, more marketable, and suddenly, Apress had to
figure out how to publish its first full-color book. The result, User
Interface Design for Programmers, officially appeared on June 21, 2001,

and is now acknowledged as the first “blook” ever. Somewhat shock-
ingly to the computer book industry and me, it became a runaway best
seller by the standard of the times. By the way, it is still in print, still sell-
ing very well, and still worth reading. (Although, speaking as your
publisher and not as your friend, Joel, how ’bout that revision?)

Anyway, some would (now) argue that User Interface Design for
Programmers isn’t a pure blook because the addition of “too much”
new material that was not on Joel’s web site makes it a hybrid—as I sup-
pose befits its pioneering status.

But a few years later, Joel on Software was the most popular blog for
programmers in the world because Joel of course had kept on writing
these amazingly interesting essays—perhaps the most famous being the
classic “How Microsoft Lost the API War,” which I know literally
turned parts of Microsoft’s development upside down.

And then I had yet another epiphany: let’s collect the best of these
essays and publish them with no substantial new content other than an
occasional foreword where Joel thought it appropriate. And even
though 98 percent of the material in the book that became Joel on
Software was available on the Web, and people thought Apress was nuts
for publishing it in late 2004, the book has gone through ten printings
and remains a best-selling book today.

Because, it still seems, when it comes to digesting the chocolate
truffle that is the typical Joel essay, print is still more pleasurable for
many than a browser.

But Joel hasn’t stopped thinking hard about what it takes to program
well or hire good programmers, nor has he stopped challenging the con-
ventional wisdom with his insights. So I convinced him the time was
right for a sequel that collected the “best of Joel” published since the
first Joel came out in late 2004.

And so you have in your hands the second collection of Joel’s
insights, occasional random thoughts, and yes, occasional rants—all
encased in the sparkling prose that Joel is known for. And even though
nothing has been done to his writing save for some minor copy editing,
you do have the latest “best of Joel” in a very high-contrast form com-
pared to your screen or even your Kindle, known now as a “blook.”
(And Joel, I obviously hope you will enjoy them as much as you did the
ones in the first collection.)

Joel, Apress, Blogs, and Blooksx

This book, like the first, has a somewhat unusual cover and subtitle.
This is because Joel and I are both bibliophiles (OK, Joel is a bibliophile;
I’m a bibliomaniac) and we are both very fond of the kind of thing the
classic book printers of the 17th and 18th centuries did to liven up their
books—and their titles. In the case of the first Joel on Software covers,
we paid homage to Burton’s Anatomy of Melancholy; here we pay hom-
age to Hobbes’s The Leviathan and the famous frontispiece where the
giant is made up of lots of individuals, because both Joel and I felt this
was not a bad metaphor for how programming is done: individuals
building something gigantic—but individuals are the key.

Finally, on a more personal note: In spite of his now substantial fame,
Joel remains a down-to-earth kind of guy, or again in our common ver-
nacular, a true mensch and someone I am proud to have as a close friend.

Gary Cornell
Cofounder, Apress

xiJoel, Apress, Blogs, and Blooks

ABOUT THE AUTHOR

Joel Spolsky is a globally recognized expert on the software development
process. His web site, Joel on Software (www.joelonsoftware.com), is
popular with software developers around the world and has been trans-
lated into over 30 languages. As the founder of Fog Creek Software in
New York City, he created FogBugz, a popular project management
system for software teams. Joel has worked at Microsoft, where, as a
member of the Excel team, he designed VBA, and at Juno Online
Services, developing an Internet client used by millions. He has written
three previous books: User Interface Design for Programmers (Apress,
2001), Joel on Software (Apress, 2004), and Smart and Gets Things
Done (Apress, 2007), and is the editor of The Best Software Writing I
(Apress, 2005). Joel holds a BS from Yale in computer science. He served
in the Israeli Defense Forces as a paratrooper, and was one of the founders
of Kibbutz Hanaton.

part one

Managing People

one

MY FIRST BILLG REVIEW

Friday, June 16, 2006

In the olden days, Excel had a very awkward programming language
without a name. “Excel Macros,” we called it. It was a severely dysfunc-
tional programming language without variables (you had to store values
in cells on a worksheet), without locals, without subroutine calls: in short,
it was almost completely unmaintainable. It had advanced features like
“Goto,” but the labels were actually physically invisible.

The only thing that made it appear reasonable was that it looked great
compared to Lotus macros, which were nothing more than a sequence of
keystrokes entered as a long string into a worksheet cell.

On June 17, 1991, I started working for Microsoft on the Excel team.
My title was Program Manager. I was supposed to come up with a solu-
tion to this problem. The implication was that the solution would have
something to do with the Basic programming language.

Basic? Yech!
I spent some time negotiating with various development groups.

Visual Basic 1.0 had just come out, and it was pretty friggin’ cool. There
was a misguided effort underway with the code name MacroMan, and
another effort to make Object-Oriented Basic code-named Silver. The
Silver team was told that they had one client for their product: Excel. The
marketing manager for Silver, Bob Wyman, yes, that Bob Wyman, had
only one person he had to sell his technology to: me.

MacroMan was, as I said, misguided, and it took some persuading,
but it was eventually shut down. The Excel team convinced the Basic
team that what we really needed was some kind of Visual Basic for Excel.
I managed to get four pet features added to Basic. I got them to add
Variants, a union data type that could hold any other type, because

otherwise you couldn’t store the contents of a spreadsheet cell in a vari-
able without a switch statement. I got them to add late binding, which
became known as IDispatch, a.k.a. COM Automation, because the orig-
inal design for Silver required a deep understanding of type systems that
the kinds of people who program macros don’t care about. And I got
two pet syntactic features into the language: For Each, stolen from csh,
and With, stolen from Pascal.

Then I sat down to write the Excel Basic spec, a huge document that
grew to hundreds of pages. I think it was 500 pages by the time it was
done. (“Waterfall,” you snicker. Yeah, yeah, shut up.)

In those days, we used to have these things called BillG reviews.
Basically, every major important feature got reviewed by Bill Gates. I
was told to send a copy of my spec to his office in preparation for the
review. It was basically one ream of laser-printed paper.

I rushed to get the spec printed and sent it over to his office.
Later that day, I had some time, so I started working on figuring out

if Basic had enough date and time functions to do all the things you
could do in Excel.

In most modern programming environments, dates are stored as real
numbers. The integer part of the number is the number of days since
some agreed-upon date in the past, called the epoch. In Excel, today’s
date, June 16, 2006, is stored as 38884, counting days where January 1,
1900, is 1.

I started working through the various date and time functions in
Basic and the date and time functions in Excel, trying things out, when I
noticed something strange in the Visual Basic documentation: Basic uses
December 31, 1899, as the epoch instead of January 1, 1900, but for
some reason, today’s date was the same in Excel as it was in Basic.

Huh?
I went to find an Excel developer who was old enough to remember

why. Ed Fries seemed to know the answer.
“Oh,” he told me. “Check out February 28, 1900.”
“It’s 59,” I said.
“Now try March 1.”
“It’s 61!”
“What happened to 60?” Ed asked.
“February 29, 1900, was a leap year! It’s divisible by 4!”

More from Joel on Software4

“Good guess, but no cigar,” Ed said, and left me wondering for a
while.

Oops. I did some research. Years that are divisible by 100 are not
leap years, unless they’re also divisible by 400.

1900 wasn’t a leap year.
“It’s a bug in Excel!” I exclaimed.
“Well, not really,” said Ed. “We had to do it that way because we

need to be able to import Lotus 123 worksheets.”
“So, it’s a bug in Lotus 123?”
“Yeah, but probably an intentional one. Lotus had to fit in 640K.

That’s not a lot of memory. If you ignore 1900, you can figure out if a
given year is a leap year just by looking to see if the rightmost two bits
are zero. That’s really fast and easy. The Lotus guys probably figured it
didn’t matter to be wrong for those two months way in the past. It looks
like the Basic guys wanted to be anal about those two months, so they
moved the epoch one day back.”

“Aargh!” I said, and went off to study why there was a check box in
the options dialog called “1904 Date System.”

The next day was the big BillG review.
June 30, 1992.
In those days, Microsoft was a lot less bureaucratic. Instead of the

eleven or twelve layers of management the company has today, I
reported to Mike Conte, who reported to Chris Graham, who reported
to Pete Higgins, who reported to Mike Maples, who reported to Bill.
About six layers from top to bottom. We made fun of companies like
General Motors with their eight layers of management or whatever
it was.

In my BillG review meeting, the whole reporting hierarchy was there,
along with their cousins, sisters, and aunts, and a person who came
along from my team whose whole job during the meeting was to keep an
accurate count of how many times Bill said the F word. The lower the
f*** count, the better.

Bill came in.
I thought about how strange it was that he had two legs, two arms,

one head, etc., almost exactly like a regular human being.
He had my spec in his hand.
He had my spec in his hand!

5My First BillG Review

He sat down and exchanged witty banter with an executive I did not
know that made no sense to me. A few people laughed.

Bill turned to me.
I noticed that there were comments in the margins of my spec. He

had read the first page!
He had read the first page of my spec and written little notes in the

margin!
Considering that we only got him the spec about 24 hours earlier, he

must have read it the night before.
He was asking questions. I was answering them. They were pretty

easy, but I can’t for the life of me remember what they were, because I
couldn’t stop noticing that he was flipping through the spec . . .

He was flipping through the spec! [Calm down, what are you a little
girl?]

. . . and THERE WERE NOTES IN ALL THE MARGINS. ON
EVERY PAGE OF THE SPEC. HE HAD READ THE WHOLE GOD-
DAMNED THING AND WRITTEN NOTES IN THE MARGINS.

He Read The Whole Thing! [OMG SQUEEE!]
The questions got harder and more detailed.
They seemed a little bit random. By now I was used to thinking of

Bill as my buddy. He’s a nice guy! He read my spec! He probably just
wants to ask me a few questions about the comments in the margins! I’ll
open a bug in the bug tracker for each of his comments and make sure it
gets addressed, pronto!

Finally, the killer question.
“I don’t know, you guys,” Bill said, “Is anyone really looking into all

the details of how to do this? Like, all those date and time functions.
Excel has so many date and time functions. Is Basic going to have the
same functions? Will they all work the same way?”

“Yes,” I said, “except for January and February, 1900.”
Silence.
The f*** counter and my boss exchanged astonished glances. How

did I know that? January and February WHAT?
“OK. Well, good work,” said Bill. He took his marked-up copy of

the spec.
. . . wait! I wanted that . . .
and left.

More from Joel on Software6

“Four,” announced the f*** counter, and everyone said, “Wow,
that’s the lowest I can remember. Bill is getting mellow in his old age.”
He was, you know, 36.

Later I had it explained to me. “Bill doesn’t really want to review
your spec, he just wants to make sure you’ve got it under control. His
standard M.O. is to ask harder and harder questions until you admit
that you don’t know, and then he can yell at you for being unprepared.
Nobody was really sure what happens if you answer the hardest ques-
tion he can come up with because it’s never happened before.”

“Can you imagine if Jim Manzi had been in that meeting?” someone
asked. “‘What’s a date function?’ Manzi would have asked.”

Jim Manzi was the MBA-type running Lotus into the ground.
It was a good point. Bill Gates was amazingly technical. He under-

stood Variants, and COM objects, and IDispatch, and why Automation
is different from vtables, and why this might lead to dual interfaces. He
worried about date functions. He didn’t meddle in software if he trusted
the people who were working on it, but you couldn’t bullshit him for a
minute because he was a programmer. A real, actual, programmer.

Watching nonprogrammers trying to run software companies is like
watching someone who doesn’t know how to surf trying to surf.

“It’s OK! I have great advisors standing on the shore telling me what
to do!” they say, and then fall off the board, again and again. The stan-
dard cry of the MBA who believes that management is a generic
function. Is Steve Ballmer going to be another John Sculley, who nearly
drove Apple into extinction because the board of directors thought that
selling Pepsi was good preparation for running a computer company?
The cult of the MBA likes to believe that you can run organizations that
do things that you don’t understand.

Over the years, Microsoft got big, Bill got overextended, and some
shady ethical decisions made it necessary to devote way too much man-
agement attention to fighting the US government. Steve took over the
CEO role on the theory that this would allow Bill to spend more time
doing what he does best, running the software development organiza-
tion, but that didn’t seem to fix endemic problems caused by those
eleven layers of management, a culture of perpetual, permanent meet-
ings, a stubborn insistence on creating every possible product no matter
what (how many billions of dollars has Microsoft lost, in R&D, legal
fees, and damage to reputation, because they decided that not only do

7My First BillG Review

they have to make a web browser, but they have to give it away free?),
and a couple of decades of sloppy, rapid hiring has ensured that the
brainpower of the median Microsoft employee has gone way down
(Douglas Coupland, in Microserfs: “They hired 3,100 people in 1992
alone, and you know not all of them were gems.”)

Oh well. The party has moved elsewhere. Excel Basic became
Microsoft Visual Basic for Applications for Microsoft Excel, with so
many ™s and ®s I don’t know where to put them all. I left the company
in 1994, assuming Bill had completely forgotten me, until I noticed a
short interview with Bill Gates in the Wall Street Journal, in which he
mentioned, almost in passing, something along the lines of how hard it
was to recruit, say, a good program manager for Excel. They don’t just
grow on trees, or something.

Could he have been talking about me? Naw, it was probably some-
one else.

Still.

More from Joel on Software8

two

FINDING GREAT DEVELOPERS

Wednesday, September 6, 2006

Where are all those great developers?

The first time you try to fill an open position, if you’re like most peo-
ple, you place some ads, maybe browse around the large online

boards, and get a ton of resumes.
As you go through them, you think, “Hmm, this might work,” or,

“No way!” or, “I wonder if this person could be convinced to move to
Buffalo.” What doesn’t happen, and I guarantee this, what never hap-
pens, is that you say, “Wow, this person is brilliant! We must have them!”
In fact, you can go through thousands of resumes, assuming you know
how to read resumes, which is not easy, but you can go through thou-
sands of job applications and quite frankly never see a great software
developer. Not a one.

Here is why this happens.
The great software developers, indeed, the best people in every field,

are quite simply never on the market.
The average great software developer will apply for, total, maybe, four

jobs in their entire career.
The great college graduates get pulled into an internship by a profes-

sor with a connection to the industry, then they get early offers from that
company and never bother applying for any other jobs. If they leave that
company, it’s often to go to a startup with a friend, or to follow a great
boss to another company, or because they decided they really want to

work on, say, Eclipse, because Eclipse is cool, so they look for an Eclipse
job at BEA or IBM, and then of course they get it because they’re
brilliant.

If you’re lucky, if you’re really lucky, they show up on the open job
market once, when, say, their spouse decides to accept a medical intern-
ship in Anchorage and they actually send their resume out to what they
think are the few places they’d like to work at in Anchorage.

But for the most part, great developers (and this is almost a tautol-
ogy) are, uh, great, (OK, it is a tautology), and, usually, prospective
employers recognize their greatness quickly, which means, basically,
they get to work wherever they want, so they honestly don’t send out a
lot of resumes or apply for a lot of jobs.

Does this sound like the kind of person you want to hire? It should.
The corollary of that rule—the rule that the great people are never on

the market—is that the bad people—the seriously unqualified—are
on the market quite a lot. They get fired all the time, because they can’t
do their job. Their companies fail—sometimes because any company
that would hire them would probably also hire a lot of unqualified pro-
grammers, so it all adds up to failure—but sometimes because they
actually are so unqualified that they ruined the company. Yep, it
happens.

These morbidly unqualified people rarely get jobs, thankfully, but
they do keep applying, and when they apply, they go to Monster.com
and check off 300 or 1,000 jobs at once trying to win the lottery.

Numerically, great people are pretty rare, and they’re never on the
job market, while incompetent people, even though they are just as rare,
apply to thousands of jobs throughout their career. So now, Sparky, back
to that big pile of resumes you got off of Craigslist. Is it any surprise that
most of them are people you don’t want to hire?

Astute readers, I expect, will point out that I’m leaving out the largest
group yet: the solid, competent people. They’re on the market more than
the great people, but less than the incompetent, and all in all they will
show up in small numbers in your 1,000 resume pile, but for the most
part, almost every hiring manager in Palo Alto right now with 1,000
resumes on their desk has the same exact set of 970 resumes from the
same minority of 970 incompetent people that are applying for every job
in Palo Alto, and probably will be for life, and only 30 resumes even
worth considering, of which maybe, rarely, one is a great programmer.

More from Joel on Software10

OK, maybe not even one. And figuring out how to find those needles in
a haystack, we shall see, is possible but not easy.

Can I get them anyway?

Yes!
Well, Maybe!

Or perhaps, It Depends!
Instead of thinking of recruiting as a “gather resumes, filter resumes”

procedure, you’re going to have to think of it as a “track down the win-
ners and make them talk to you” procedure.

I have three basic methods for how to go about this:

1. Go to the mountain.

2. Internships.

3. Build your own community.*

(“Build your own community” comes with a little asterisk that means
“hard,” like the famous math problem that George Dantzig solved
because he came into class too late to hear that it was supposed to be
unsolvable.)

You can probably come up with your own ideas, too. I’m just going
to talk about three that worked for me.

To the mountain, Jeeves!

Think about where the people you want to hire are hanging out.
What conferences do they go to? Where do they live? What organi-

zations do they belong to? What websites do they read? Instead of
casting a wide net with a job search on Monster.com, use the Joel on
Software job board and limit your search to the smart people who
read my site. Go to the really interesting tech conferences. Great Mac

11Finding Great Developers

developers will be at Apple’s WWDC. Great Windows programmers will
be at Microsoft’s PDC. There are a bunch of open source conferences,
too.

Look for the hot new technology of the day. Last year it was Python;
this year it’s Ruby. Go to their conferences where you’ll find early
adopters who are curious about new things and always interested in
improving.

Slink around in the hallways, talk to everyone you meet, go to the
technical sessions and invite the speakers out for a beer, and when you
find someone smart, BANG!—you launch into full-fledged flirt and flat-
tery mode. “Ooooh, that’s so interesting!” you say. “Wow, I can’t believe
you’re so smart. And handsome, too. Where did you say you work?
Really? There? Hmmmmmmm. Don’t you think you could do better? I
think my company might be hiring . . . ”

The corollary of this rule is to avoid advertising on general-purpose,
large job boards. One summer, I inadvertently advertised our summer
internships using MonsterTRAK, which offered the option to pay a lit-
tle extra to make the internship visible to students at every school in the
USA. This resulted in literally hundreds of resumes, not one of which
made it past the first round. We ended up spending a ton of money to get
a ton of resumes that stood almost no chance at finding the kind of peo-
ple we wanted to hire. After a few days of this, the very fact that
MonsterTRAK was the source of a resume made me think that candi-
date was probably not for us. Similarly, when Craigslist first started up
and was really just visited by early adopters in the Internet industry, we
found great people by advertising on Craigslist, but today, virtually
everyone who is moderately computer literate uses it, resulting in too
many resumes with too low of a needle-to-haystack ratio.

Internships

One good way to snag the great people who are never on the job
market is to get them before they even realize there is a job market:

when they’re in college.

More from Joel on Software12

Some hiring managers hate the idea of hiring interns. They see
interns as unformed and insufficiently skilled. To some extent, that’s
true. Interns are not as experienced as experienced employees (no,
really?!). You’re going to have to invest in them a little bit more, and it’s
going to take some time before they’re up to speed. The good news
about our field is that the really great programmers often started pro-
gramming when they were 10 years old. And while everyone else their
age was running around playing soccer (this is a game many kids who
can’t program computers play that involves kicking a spherical object
called a ball with their feet—I know, it sounds weird), they were in their
dad’s home office trying to get the Linux kernel to compile. Instead of
chasing girls in the playground, they were getting into flamewars on
Usenet about the utter depravity of programming languages that don’t
implement Haskell-style type inference. Instead of starting a band in
their garage, they were implementing a cool hack so that when their
neighbor stole bandwidth over their open-access Wi-Fi point, all the
images on the Web appeared upside-down. BWA HA HA HA HA!

So, unlike, say, the fields of law or medicine, over here in software
development, by the time these kids are in their second or third year in
college they are pretty darn good programmers.

Pretty much everyone applies for one job: their first one, and most
kids think that it’s OK to wait until their last year to worry about this.
And in fact, most kids are not that inventive and will really only bother
applying for jobs where there is actually some kind of on-campus
recruiting event. Kids at good colleges have enough choices of good jobs
from the on-campus employers that they rarely bother reaching out to
employers that don’t bother to come to campus.

You can either participate in this madness, by recruiting on campus,
which is a good thing, don’t get me wrong, or you can subvert it by try-
ing to get great kids a year or two before they graduate.

I’ve had a lot of success doing it that way at Fog Creek. The process
starts every September, when I start using all my resources to track down
the best computer science students in the country. I send letters to a cou-
ple of hundred Computer Science departments. I track down lists of CS
majors who are, at that point, two years away from graduating (usually
you have to know someone in the department, a professor or student, to
find these lists). Then I write a personal letter to every single CS major
that I can find. Not e-mail, a real piece of paper on Fog Creek letterhead,

13Finding Great Developers

which I sign myself in actual ink. Apparently, this is rare enough that it
gets a lot of attention. I tell them we have internships and personally
invite them to apply. I send e-mail to CS professors and CS alumni, who
usually have some kind of CS-majors mailing list that they forward it
on to.

Eventually, we get a lot of applications for these internships, and we
can have our pick of the crop. In the last couple of years, I’ve gotten 200
applications for every internship. We’ll generally winnow that pile
of applications down to about 10 (per opening) and then call all those
people for a phone interview. Of the people getting past the phone inter-
view, we’ll probably fly two or three out to New York for an in-person
interview.

By the time of the in-person interview, there’s such a high probability
that we’re going to want to hire this person that it’s time to launch into
full-press recruitment. They’re met at the airport here by a uniformed
limo driver who grabs their luggage and whisks them away to their
hotel, probably the coolest hotel they’ve ever seen in their life, right in
the middle of the fashion district with models walking in and out at all
hours and complicated bathroom fixtures that are probably a part of the
permanent collection of the Museum of Modern Art (but good luck try-
ing to figure out how to brush your teeth). Waiting in the hotel room, we
leave a hospitality package with a T-shirt, a suggested walking tour of
New York written by Fog Creek staffers, and a DVD documentary of the
2005 summer interns. There’s a DVD player in the room, so a lot of
them watch how much fun was had by previous interns.

After a day of interviews, we invite the students to stay in New York
at our expense for a couple of days if they want to check out the city,
before the limo picks them up at their hotel and takes them back to the
airport for their flight home.

Even though only about one in three applicants who make it to the
in-person interview stage passes all our interviews, it’s really important
that the ones who do pass have a positive experience. Even the ones who
don’t make it go back to campus thinking we’re a classy employer and
tell all their friends how much fun they had staying in a luxury hotel in
the Big Apple, which makes their friends apply for an internship the next
summer, if only for the chance at the trip.

During the summer of the internship itself, the students generally
start out thinking, “OK, it’s a nice summer job and some good experience

More from Joel on Software14

and maybe, just maybe, it’ll lead to a full-time job.” We’re a little bit
ahead of them. We’re going to use the summer to decide if we want them
as a full-time employee, and they’re going to use the summer to decide if
they want to work for us.

So we give them real work. Hard work. Our interns always work on
production code. Sometimes they’re working on the coolest new stuff in
the company, which can make the permanent employees a little jealous,
but that’s life. One summer we had a team of four interns build a whole
new product from the ground up. That internship paid for itself in a
matter of months. Even when they’re not building a new product, they’re
working on real, shipping code, with some major area of functionality
that they are totally, personally responsible for (with experienced men-
tors to help out, of course).

And then we make sure they have a great time. We host parties and
open houses. We get them free housing in a rather nice local dorm where
they can make friends from other companies and schools. We have some
kind of extracurricular activity or field trip every week: Broadway
musicals (this year they went crazy about Avenue Q), movie openings,
museum tours, a boat ride around Manhattan, a Yankees game. And
believe it or not, one of this year’s favorite things was a trip to Top of the
Rock. I mean, it’s just a tall building where you go out on the roof in the
middle of Manhattan. You wouldn’t think it would be such an awe-
inspiring experience. But it was. A few Fog Creek employees go along on
each activity, too.

At the end of the summer, there are always a few interns who con-
vinced us that they are the truly great kinds of programmers that we just
have to hire. Not all of them, mind you—some are merely great pro-
grammers that we are willing to pass on, and others would be great
somewhere else, but not at Fog Creek. For example, we’re a fairly
autonomous company without a lot of middle management, where
people are expected to be completely self-driven. Historically, a couple
of times a summer intern would be great in a situation where they had
someone to guide them, but at Fog Creek they wouldn’t get enough
direction and would flounder.

Anyway, for the ones we really want to hire, there’s no use in wait-
ing. We make an early offer for a full-time job, conditional on their
graduating. And it’s a great offer. We want them to be able to go back to
school, compare notes with their friends, and realize that they’re getting
a higher starting salary than anyone else.

15Finding Great Developers

Does this mean we’re overpaying? Not at all. You see, the average
first-year salary has to take into account a certain amount of risk that
the person won’t work out. But we’ve already auditioned these kids, and
there’s no risk that they won’t be great. We know what they can do. So
when we hire them, we have more information about them than any
other employer who has only interviewed them. That means we can pay
them more money. We have better information, so we’re willing to
pay more than employers without that information.

If we’ve done our job right, and we usually have, by this point the
intern completely gives up and accepts our offer. Sometimes it takes a
little more persuading. Sometimes they want to leave their options open,
but the outstanding offer from Fog Creek ensures that the first time they
have to wake up at 8:00 a.m. and put on a suit for an interview with
Oracle, when the alarm goes off, there’s a good chance that they’ll say
“Why the heck am I getting up at 8:00 a.m. and putting on a suit for an
interview with Oracle when I already have an excellent job waiting for
me at Fog Creek?” And, my hope is, they won’t even bother going to
that interview.

By the way, before I move on, I need to clarify something about
internships in computer science and software development. In this day
and age, in this country, it is totally expected that these are paid intern-
ships, and the salaries are usually pretty competitive. Although unpaid
internships are common in other fields from publishing to music, we pay
$750 a week, plus free housing, plus free lunch, plus free subway passes,
not to mention relocation expenses and all the benefits. The dollar
amount is a little bit lower than average, but it includes the free housing,
so it works out being a little bit better than average. I thought I’d men-
tion that because every time I’ve talked about internships on my website
somebody inevitably gets confused and thinks I’m taking advantage of
slave labor or something. You there—young whippersnapper! Get me a
frosty cold orange juice, hand-squeezed, and make it snappy!

An internship program creates a pipeline for great employees, but it’s
a pretty long pipeline, and a lot of people get lost along the way. We
basically calculate we’re going to have to hire two interns for every full-
time employee that we get out of it, and if you hire interns with one year
left in school, there’s still a two-year pipeline between when you start
hiring and when they show up for their first day of full-time work. That
means we hire just about as many interns as we can physically fit in our

More from Joel on Software16

offices each summer. The first three summers, we tried to limit our
internship program to students with one year left in school, but this
summer we finally realized that we were missing out on some great
younger students, so we opened the program to students in any year in
college. Believe it or not, I’m even trying to figure out how to get high
school kids in here, maybe setting up computers after school for college
money, just to start to build a connection with the next generation of
great programmers, even if it becomes a six-year pipeline. I have a long
horizon.

Build the community (*hard)

The idea here is to create a large community of like-minded smart
developers who cluster around your company, somehow, so you

have an automatic audience to reach out to every time you have an
opening.

This is, to tell the truth, how we found so many of our great
Fog Creek people: through my personal web site, Joel on Software
(joelonsoftware.com). Major articles on that site can be read by as
many as a million people, most of them software developers in some
capacity. With a large, self-selecting audience, whenever I mention that
I’m looking for someone on the home page, I’ll usually get a pretty big
pile of very good resumes.

This is that category with the asterisk that means “hard,” since I feel
like I’m giving you advice that says, “To win a beauty pageant, (a) get
beautiful, and (b) enter the pageant.” That’s because I’m really not sure
why or how my site became so popular or why the people who read it
are the best software developers.

I really wish I could help you more here. Derek Powazek wrote a
good book on the subject (Design for Community: The Art of
Connecting Real People in Virtual Places, New Riders, 2001). A lot of
companies tried various blogging strategies, and unfortunately a lot
of them failed to build up any kind of audience, so all I can say is that
what worked for us may or may not work for you, and I’m not sure
what you can do about it. I did just open a job board on the site

17Finding Great Developers

(jobs.joelonsoftware.com) where, for $350, you can list a job that Joel
on Software readers will see.

Employee referrals: may be slippery
when wet

The standard bit of advice on finding great software developers is to
ask your existing developers. The theory is, gosh, they’re smart

developers, they must know other smart developers.
And they might, but they also have very dear friends who are not

very good developers, and there are about a million land mines in this
field, so the truth is I generally consider the idea of employee referrals to
be one of the weakest sources of new hires.

One big risk, of course, is noncompete agreements. If you didn’t
think these mattered, think about the case of Crossgain, which had to
fire a quarter of its employees, all ex-Microsoft, when Microsoft threat-
ened them with individual lawsuits. No programmer in their right mind
should ever sign a noncompete agreement, but most of them do because
they can never imagine that it would be enforced, or because they are
not in the habit of reading contracts, or because they already accepted
the employment offer and moved their families across the country, and
the first day of work is the first time they’ve seen this agreement, and it’s
a little bit too late to try to negotiate it. So they sign, but this is one of
the slimiest practices of employers, and they are often enforceable and
enforced.

The point being noncompete agreements may mean that if you rely
too heavily on referrals and end up hiring a block of people from the
same ex-employer, which is where your employees know the other star
programmers from in the first place, you’re taking a pretty major risk.

Another problem is that if you have any kind of selective hiring
process at all, when you ask your employees to find referrals, they’re not
going to even consider telling you about their real friends. Nobody
wants to persuade their friends to apply for a job at their company only
to get rejected. It sort of puts a damper on the friendship.

More from Joel on Software18

Since they won’t tell you about their friends, and you may not be able
to hire the people they used to work with, what’s left is not very many
potential referrals.

But the real problem with employee referrals is what happens when
recruiting managers with a rudimentary understanding of economics
decide to offer cash bonuses for these referrals. This is quite common.
The rationale goes like this: it can cost $30,000 to $50,000 to hire some-
one good through a headhunter or outside recruiter. If we can pay our
employees, say, a $5,000 bonus for every hire they bring in, or maybe an
expensive sports car for every ten referrals, or whatever, think how
much money that will save. And $5,000 sounds like a fortune to a
salaried employee, because it is. So this sounds like a win-win all-around
kind of situation.

The trouble is that suddenly you can see the little gears turning, and
employees start dragging in everyone they can think of for interviews,
and they have a real strong incentive to get these people hired, so they
coach them for the interview, and Quiet Conversations are held in
conference rooms with the interviewers, and suddenly your entire work-
force is trying to get you to hire someone’s useless college roommate.

And it doesn’t work. ArsDigita got a lot of publicity for buying a
Ferrari and putting it in the parking lot and announcing that anyone
who got ten referrals could have it. Nobody ever got close, the quality of
new hires went down, and the company fell apart, but probably not
because of the Ferrari, which, it turns out, was rented, and not much
more than a publicity stunt.

When a Fog Creek employee suggests someone that might be perfect
to work for us, we’ll be willing to skip the initial phone screen, but that’s
it. We still want them going through all the same interviews, and we
maintain the same high standards.

A field guide to developers

What do developers look for in a job? What makes one job more
appealing to them than another? How can you become the

employer of choice? Read on!

19Finding Great Developers

three

A FIELD GUIDE TO
DEVELOPERS

Thursday, September 7, 2006

Unfortunately, you can advertise in all the right places, have a fantastic
internship program, and interview all you want, but if the great program-
mers don’t want to work for you, they ain’t gonna come work for you. So
this section will serve as a kind of field guide to developers: what they’re
looking for, what they like and dislike in a workplace, and what it’s going
to take to be a top choice for top developers.

Private offices

Last year I went to a computer science conference at Yale. One of the
speakers, a Silicon Valley veteran who had founded or led quite an

honor roll of venture-capital funded startups, held up the book
Peopleware by Tom DeMarco and Timothy Lister (Dorset House, 1999).

“You have to read this book,” he said. “This is the bible of how to run
a software company. This is the most important book out there for how
to run software companies.”

I had to agree with him: Peopleware is a great book. One of the most
important, and most controversial, topics in that book is that you have to
give programmers lots of quiet space, probably private offices, if you
want them to be productive. The authors go on and on about that subject.

After the speech, I went up to the speaker. “I agree with you about
Peopleware,” I said. “Tell me: did you have private offices for your
developers at all your startups?”

“Of course not,” he said. “The VCs would never go for that.”
Hmm.
“But that might be the number one most important thing in that

book,” I said.
“Yeah, but you gotta pick your battles. To VCs, private offices look

like you’re wasting their money.”
There’s a strong culture in Silicon Valley that requires you to jam a

lot of programmers into a big open space, despite a preponderance of
evidence that giving them private offices is far more productive, some-
thing which I’ve covered repeatedly on my site. I’m not really getting
through to people, I don’t think, because programmers kind of like being
social, even if it means they are unproductive, so it’s an uphill battle.

I’ve even heard programmers say things like, “Yeah, we all work in
cubicles, but everyone works in a cubicle—up to and including the
CEO!”

“The CEO? Does the CEO really work in a cubicle?”
“Well, he has a cubicle, but actually, now that you mention it,

there’s this one conference room that he goes to for all his important
meetings . . . ”

Mmmm hmmm. A fairly common Silicon Valley phenomenon is the
CEO who makes a big show of working from a cubicle just like the hoi
polloi, although somehow there’s this one conference room that he tends
to make his own (“Only when there’s something private to be dis-
cussed,” he’ll claim, but half the time when you walk by that conference
room there’s your CEO, all by himself, talking on the phone to his golf
buddy, with his Cole Haans up on the conference table).

Anyway, I don’t want to revisit the discussion of why private offices
make software developers more productive, or why just putting on
headphones to drown out the ambient noise has been shown to reduce
the quality of work that programmers produce, and why it doesn’t really
cost that much more in the scheme of things to have private offices for
developers. I’ve talked about that already. Today I’m talking about
recruiting, and private offices in recruiting.

No matter what you think about productivity, and no matter what
you think about egalitarian workspaces, two things are incontrovertible:

More from Joel on Software22

1. Private offices have higher status.

2. Cubicles and other shared space can be socially awkward.

Given these two facts, the bottom line is that programmers are more
likely to take the job that offers them a private office. Especially if there’s
a door that shuts, and a window, and a nice view.

Now, it’s an unfortunate fact that some of these things that make
recruiting easier are not really within your power. Even CEOs and
founders can be prevented from establishing private offices if they’re
dependent on VCs. Most companies only move or rearrange their office
space every five to ten years. Smaller startups may not be able to afford
private offices. So my experience has been that a number of excuses all
pile up until it’s virtually impossible to get private offices for developers
in any but the most enlightened of companies, and even in those compa-
nies, the decision of where to move and where people should work is
often taken once every ten years by a committee consisting of the office
manager’s secretary and a junior associate from a big architecture firm,
who is apt to believe architecture-school fairy tales about how open
spaces mean open companies, or whatever, with close to zero input from
the developers or the development team.

This is something of a scandal, and I’ll keep fighting the good fight,
but in the meantime, private offices are not impossible; we’ve managed
to do it for all of our full-time programmers, most of the time, even in
New York City, where the rents are some of the highest in the world, and
there’s no question that it makes people much happier about working at
Fog Creek, so if you all want to keep resisting, so be it, I’ll just let this
remain a competitive advantage.

The physical workspace

There’s more to the physical workspace than private offices. When a
candidate comes to your company for the day of interviews, they’re

going to look around at where people are working, and try to imagine
themselves working there. If the office space is pleasant, if it’s bright, if
it’s in a nice neighborhood, if everything is new and clean, they’ll have

23A Field Guide to Developers

happy thoughts. If the office space is crowded, if the carpets are ratty
and the walls haven’t been painted and there are posters up with pictures
of rowing teams and the word TEAMWORK in large print, they’re
going to have Dilbert thoughts.

A lot of tech people are remarkably unaware of the general condition
of their office. In fact, even people who are otherwise attuned to the ben-
efits of a nice office may be blinded to the particular weaknesses of their
own office, since they’re so used to them.

Put yourself in your candidate’s heads, and think honestly:

• What will they think of our location? How does Buffalo sound,
compared to, say, Austin? Do people really want to move to
Detroit? If you’re in Buffalo or Detroit, can you at least try to
do most of your interviewing in September?

• When they get to the office, what is the experience like? What
do they see? Do they see a clean and exciting place? Is there a
nice atrium lobby with live palm trees and a fountain, or does it
feel like a government dental clinic in a slum, with dying corn
plants and old copies of Newsweek?

• What does the workspace look like? Is everything new and
shiny? Or do you still have that gigantic, yellowing TEAM
BANANA sign up, the one that was printed on fanfold paper
on a dot matrix printer back when there used to be a thing
called fanfold paper and a thing called dot matrix printers?

• What do the desks look like? Do programmers have multiple
large flat screens or a single CRT? Are the chairs Aerons or
Staples Specials?

Let me, for a moment, talk about the famous Aeron chair, made by
Herman Miller. They cost about $900. This is about $800 more than a
cheap office chair from Office Depot or Staples.

They are much more comfortable than cheap chairs. If you get the
right size and adjust it properly, most people can sit in them all day long
without feeling uncomfortable. The back and seat are made out of a
kind of mesh that lets air flow so you don’t get sweaty. The ergonomics,
especially of the newer models with lumbar support, are excellent.

More from Joel on Software24

They last longer than cheap chairs. We’ve been in business for six
years, and every Aeron is literally in mint condition: I challenge anyone
to see the difference between the chairs we bought in 2000 and the
chairs we bought three months ago. They easily last for ten years. The
cheap chairs literally start falling apart after a matter of months. You’ll
need at least four $100 chairs to last as long as an Aeron.

So the bottom line is that an Aeron only really costs $500 more over
ten years, or $50 a year. One dollar per week per programmer.

A nice roll of toilet paper runs about a buck. Your programmers are
probably using about one roll a week, each.

So upgrading them to an Aeron chair literally costs the same amount
as you’re spending on their toilet paper, and I assure you that if you tried
to bring up toilet paper in the budget committee, you would be sternly
told not to mess around, there were important things to discuss.

The Aeron chair has, sadly, been tarnished with a reputation of being
extravagant, especially for startups. It somehow came to stand for the
symbol of all the VC money that was wasted in the dot-com boom,
which is a shame, because it’s not very expensive when you consider
how long it lasts; indeed, when you think of the eight hours a day you
spend sitting in it, even the top of the line model, with the lumbar sup-
port and the friggin’ tailfins, is so dang cheap you practically make
money by buying them.

Toys

Similar logic applies for other developer toys. There is simply no rea-
son not to get your developers top-of-the-line computers, at least two

large (21") LCD screens (or one 30" screen), and give them free rein on
Amazon.com to order any technical book they want. These are obvious
productivity gains, but more importantly to our discussion here, they’re
crucial recruiting tools, especially in a world where most companies
treat programmers as interchangeable cogs, typists, really—why do they
need such a big monitor and what’s wrong with 15" CRTs? When I was
a kid, . . .

25A Field Guide to Developers

The social life of developers

Software developers are not really all that different from regular peo-
ple. Sure, I know, it’s popular these days to think of developers as

stereotypical Asperger’s geeks, totally untuned to interpersonal things,
but that’s just not true, and even Asperger’s geeks care about the social
aspect of a workspace, which includes these issues:

How are programmers treated inside the
organization?
Are they hotshots or typists? Is company management made up of engi-
neers or former programmers? When developers go to a conference, do
they fly first class? (I don’t care if that seems like a waste of money. Stars
go first class. Get used to it.) When they fly in for an interview, does a
limo pick them up at the airport, or are they expected to find their own
way to the office? All else being equal, developers are going to prefer an
organization that treats them like stars. If your CEO is a grouchy ex-
sales person who doesn’t understand why these prima donna developers
keep demanding things like wrist pads and big monitors and comfort-
able chairs, who do they think they are?, your company probably needs
an attitude adjustment. You’re not going to get great developers if you
don’t respect them.

Who are their colleagues?
One thing programmers pay close attention to in the day of interviewing
is the people they meet. Are they nice? More importantly: are they
smart? I did a summer internship once at Bellcore, a spinoff of Bell Labs,
and everybody I met kept telling me the same thing, again and again:
“The great thing about working for Bellcore is the people.”

That said, if you have any grouchy developers who you just can’t get
rid of, at least take them off the interview schedule, and if you have
cheerful, social, cruise-director types, make sure they’re on it. Keep
reminding yourself that when your candidate goes home and has to

More from Joel on Software26

make a decision about where to work, if everyone they met was glum,
they are not going to have such a positive memory of your company.

By the way, the original hiring rule for Fog Creek, stolen from
Microsoft, was “Smart, and Gets Things Done.” Even before we started
the company, we realized that we should add a third rule: “Not a jerk.”
In retrospect, at Microsoft, not being a jerk is not a requirement to get
the job; although I’m sure they would pay lip service to how important
it is for people to be nice to one another, the bottom line is that they
would never disqualify someone for a job just because they were a jerk,
in fact, being a jerk sometimes seems like a prerequisite for getting into
upper management. This doesn’t really seem to hurt from a business per-
spective, although it does hurt from a recruiting perspective, and who
wants to work at a company where jerks are tolerated?

Independence and autonomy
When I quit my job at Juno, back in 1999, before starting Fog Creek
Software, HR gave me a standard exit interview, and somehow, I fell
into the trap of telling the HR person everything that was wrong about
the management of the company, something which I knew perfectly well
could have no possible benefit to me and could only, actually, hurt, but
I did it anyway, and the main thing I complained about was Juno’s style
of hit-and-run management. Most of the time, you see, managers would
leave people alone to quietly get their work done, but occasionally, they
would get themselves involved in some microscopic detail of something
that they would insist be done exactly their way, no excuses, and then
they’d move on to micromanage some other task, not staying around
long enough to see the farcical results. For example, I remember a par-
ticularly annoying period of two or three days where everyone from my
manager to the CEO got involved in telling me exactly how dates must
be entered on the Juno signup questionnaire. They weren’t trained as UI
designers and didn’t spend enough time talking to me about the issues to
understand why I happened to be right in that particular case, but it did-
n’t matter: management just would not back down on that issue and
wouldn’t even take the time to listen to my arguments.

Basically, if you’re going to hire smart people, you’re going to have to
let them apply their skills to their work. Managers can advise, which
they’re welcome to do, but they must be extremely careful to avoid

27A Field Guide to Developers

having their “advice” interpreted as a command, since on any given
technical issue it’s likely that management knows less than the workers
in the trenches, especially, as I said, if you’re hiring good people.

Developers want to be hired for their skills, and treated as experts,
and allowed to make decisions within their own realm of expertise.

No politics
Actually, politics happen everywhere that more than two people congre-
gate. It’s just natural. By “no politics” I really mean “no dysfunctional
politics.” Programmers have very well-honed senses of justice. Code
either works, or it doesn’t. There’s no sense in arguing whether a bug
exists, since you can test the code and find out. The world of program-
ming is very just and very strictly ordered, and a heck of a lot of people
go into programming in the first place because they prefer to spend their
time in a just, orderly place, a strict meritocracy where you can win any
debate simply by being right.

And this is the kind of environment you have to create to attract
programmers. When a programmer complains about “politics,” they
mean—very precisely—any situation in which personal considerations
outweigh technical considerations. Nothing is more infuriating than
when a developer is told to use a certain programming language, not the
best one for the task at hand, because the boss likes it. Nothing is more
maddening than when people are promoted because of their ability to
network rather than being promoted strictly on merit. Nothing is more
aggravating to a developer than being forced to do something that is
technically inferior because someone higher than them in the organiza-
tion, or someone better connected, insists on it.

Nothing is more satisfying than winning an argument on its techni-
cal merits even when you should have lost it on political merits. When I
started working at Microsoft, there was a major, misguided project
underway called MacroMan to create a graphical macro programming
language. The programming language would have been very frustrating
for real programmers, because the graphical nature didn’t really give you
a way to implement loops or conditionals, but would not have really
helped nonprogrammers, who, I think, are just not used to thinking in
algorithms and wouldn’t have understood MacroMan in the first place.

More from Joel on Software28

When I complained about MacroMan, my boss told me, “Nothing’s
gonna derail that train. Give up.” But I kept arguing, and arguing, and
arguing—I was fresh out of college, about as unconnected as anyone
could be at Microsoft—and eventually people listened to the meat of my
arguments and the MacroMan project was shut down. It didn’t matter
who I was, it mattered that I was right. That’s the kind of nonpolitical
organization that delights programmers.

All in all, focusing on the social dynamics of your organization is cru-
cial to making a healthy, pleasant place to work that will retain
programmers and attract programmers.

What am I working on?

To some extent, one of the best ways you can attract developers is to
let them work on something interesting. This may be the hardest

thing to change: doggone it, if you’re in the business of making software
for the gravel and sand industry, that’s the business you’re in, and you
can’t pretend to be some cool web startup just to attract developers.

Another thing developers like is working on something simple
enough or popular enough that they can explain it to Aunt Irma at
Thanksgiving. Aunt Irma, of course, being a nuclear physicist, doesn’t
really know that much about Ruby programming in the gravel and sand
industry.

Finally, many developers are going to look at the social values of the
company they’re working for. Jobs at social networking companies and
blog companies help bring people together and don’t really pollute, it
seems, so they’re popular, while jobs in the munitions industry or in eth-
ically challenged accounting-fraud-ridden companies are a lot less
popular.

Unfortunately, I’m not really sure if I can think of any way for the
average hiring manager to do anything about this. You can try to change
your product lineup to make something “cool,” but that’s just not going
to go very far. There are a few things, though, that I’ve seen companies
do in this area:

29A Field Guide to Developers

Let the top recruits pick their own project
For many years, Oracle Corporation had a program called MAP: the
Multiple Alternatives Program. This was offered to the college graduates
whom they considered the top candidates from each class. The idea was
that they could come to Oracle, spend a week or two looking around,
visiting all the groups with openings, and then choose any opening they
wanted to work in.

I think this was a good idea, although probably someone from
Oracle knows better whether this worked out.

Use cool new technologies unnecessarily
The big investment banks in New York are considered fairly tough
places for programmers. The working conditions are dreadful, with long
hours, noisy environments, and tyrannical bosses; programmers are very
distinct third-class citizens, while the testosterone-crazed apes who actu-
ally sell and trade financial instruments are corporate royalty, with
$30,000,000 bonuses and all the cheeseburgers they can eat (often
delivered by a programmer who happened to be nearby). That’s the
stereotype, anyway, so to keep the best developers, investment banks
have two strategies: paying a ton of money and allowing programmers
basically free rein to keep rewriting everything over and over again in
whatever hot new programming language they feel like learning. Wanna
rewrite that whole trading app in Lisp? Whatever. Just get me a god-
damned cheeseburger.

Some programmers couldn’t care less about what programming lan-
guage they’re using, but most would just love to have the opportunity to
work with exciting new technologies. Today that may be Python or
Ruby on Rails; three years ago it was C# and before that Java.

Now, I’m not telling you not to use the best tool for the job, and I’m
not telling you to rewrite in the hot language-du-jour every two years,
but if you can find ways for developers to get experience with newer lan-
guages, frameworks, and technologies, they’ll be happier. Even if you
don’t dare rewrite your core application, is there any reason your inter-
nal tools, or less-critical new applications, can’t be written in an exciting
new language as a learning project?

More from Joel on Software30

Can I identify with the company?

Most programmers aren’t looking for just a gig to pay the rent.
They don’t want a “day job”: they want to feel like their work has

meaning. They want to identify with their company. Young program-
mers, especially, are attracted to ideological companies. A lot of
companies have some connection to open source or the free software
movement (these are not the same thing), and that can be attractive to
idealistic developers. Other companies line up with social causes, or pro-
duce a product which, in some way, can be perceived or framed as
benefitting society.

As a recruiter, your job is to identify the idealistic aspects of your
company and make sure candidates are aware of them.

Some companies even strive to create their own ideological move-
ments. Chicago-area startup 37signals has strongly aligned themselves
with the idea of simplicity: simple, easy to use apps like Backpack and
the simple, easy-to-use programming framework Ruby on Rails.

For 37signals, simplicity is an “-ism,” practically an international
political movement. Simplicity is not just simplicity, oh no, it’s summer-
time, it’s beautiful music and peace and justice and happiness and pretty
girls with flowers in their hair. David Heinemeier Hansson, the creator
of Rails, says that their story is “one of beauty, happiness, and motiva-
tion. Taking pride and pleasure in your work and in your tools. That
story simply isn’t a fad, it’s a trend. A story that allows for words like
passion and enthusiasm to be part of the sanctioned vocabulary of devel-
opers without the need to make excuses for yourself. Or feel
embarrassed about really liking what you do” (www.loudthinking.com/
arc/2006_08.html). Elevating a web programming framework to a
thing of “beauty, happiness, and motivation” may seem like hubris, but
it’s very appealing and sure differentiates their company. In propagating
the narrative of Ruby on Rails as Happiness, they’re practically guaran-
teeing that at least some developers out there will be looking for Ruby
on Rails jobs.

31A Field Guide to Developers

But 37signals is still new at this identity management campaign
thing. They don’t hold a candle to Apple Computer, which, with a single
Superbowl ad in 1984, managed to cement their position to this day as
the countercultural force of freedom against dictatorship, of liberty
against oppression, of colors against black and white, of pretty women
in bright red shorts against brainwashed men in suits. The implications
of this, I’m afraid, are ironically Orwellian: giant corporations manipu-
lating their public image in a way that doesn’t even make sense (like, uh,
they’re a computer company—what the hell does that have to do with
being against dictatorships?) and successfully creating a culture of iden-
tity that has computer shoppers around the world feeling like they’re not
just buying a computer, they’re buying into a movement. When you buy
an iPod, of course, you’re supporting Gandhi against British
Colonialism. Every MacBook bought takes a stand against dictatorship
and hunger!

Anyway. Deep breath . . . The real point of this section is to think of
what your company stands for, how it’s perceived, and how it could be
perceived. Managing your corporate brand is just as important for
recruiting as it is for marketing.

One thing that programmers don’t
care about

They don’t care about money, actually, unless you’re screwing up on
the other things. If you start to hear complaints about salaries where

you never heard them before, that’s usually a sign that people aren’t
really loving their job. If potential new hires just won’t back down on
their demands for outlandish salaries, you’re probably dealing with a
case of people who are thinking, “Well, if it’s going to have to suck to go
to work, at least I should be getting paid well.”

That doesn’t mean you can underpay people, because they do care
about justice, and they will get infuriated if they find out that different
people are getting different salaries for the same work, or that everyone
in your shop is making 20% less than an otherwise identical shop down
the road, and suddenly money will be a big issue. You do have to pay

More from Joel on Software32

competitively, but all said, of all the things that programmers look at in
deciding where to work, as long as the salaries are basically fair, pay will
be surprisingly low on their list of considerations, and offering high
salaries is a surprisingly ineffective tool in overcoming problems like the
fact that programmers get 15" monitors and salespeople yell at them all
the time and the job involves making nuclear weapons out of baby seals.

33A Field Guide to Developers

four

THREE MANAGEMENT
METHODS (INTRODUCTION)

Monday, August 7, 2006

If you want to lead a team, a company, an army, or a country, the primary
problem you face is getting everyone moving in the same direction, which
is really just a polite way of saying “getting people to do what you want.”

Think of it this way. As soon as your team consists of more than one
person, you’re going to have different people with different agendas. They
want different things than you want. If you’re a startup founder, you
might want to make a lot of money quickly so you can retire early and
spend the next couple of decades going to conferences for women blog-
gers. So you might spend most of your time driving around Sand Hill
Road talking to VCs who might buy the company and flip it to Yahoo!.
But Janice the Programmer, one of your employees, doesn’t care about
selling out to Yahoo!, because she’s not going to make any money that
way. What she cares about is writing code in the latest coolest new pro-
gramming language, because it’s fun to learn a new thing. Meanwhile,
your CFO is entirely driven by the need to get out of the same cubicle he
has been sharing with the system administrator, Trekkie Monster, and so
he’s working up a new budget proposal that shows just how much money
you would save by moving to larger office space that’s two minutes from
his house, what a coincidence!

The problem of getting people to move in your direction (or, at least,
the same direction) is not unique to startups, of course. It’s the same fun-
damental problem that a political leader faces when they get elected after
promising to eliminate waste, corruption, and fraud in government. The
mayor wants to make sure that it’s easy to get city approval of a new

building project. The city building inspectors want to keep getting the
bribes they have grown accustomed to.

And it’s the same problem that a military leader faces. They might
want a team of soldiers to charge at the enemy, even when every indi-
vidual soldier would really just rather cower behind a rock and let the
others do the charging.

Here are three common approaches you might take:

• The Command and Control Management Method

• The Econ 101 Management Method

• The Identity Management Method

You will certainly find other methods of management in the wild
(there’s the exotic Devil Wears Prada Method, the Jihad Method, the
Charismatic Cult Method, and the Lurch From One Method To Another
Method), but over the next three chapters, I’m going to examine these
three popular methods and explore their pros and cons.

Next in this series: The Command and Control Management Method

More from Joel on Software36

five

THE COMMAND AND CONTROL
MANAGEMENT METHOD

Tuesday, August 8, 2006

Soldiers should fear their officers more than all the dangers to
which they are exposed. . . . Good will can never induce the com-
mon soldier to stand up to such dangers; he will only do so through
fear.

Frederick the Great

The Command and Control form of management is based on military
management. Primarily, the idea is that people do what you tell them to
do, and if they don’t, you yell at them until they do, and if they still don’t,
you throw them in the brig for a while, and if that doesn’t teach them, you
put them in charge of peeling onions on a submarine, sharing two cubit
feet of personal space with a lad from a farm who really never quite
learned about brushing his teeth.

There are a million great techniques you can use. Rent the movies
Biloxi Blues and An Officer and a Gentleman for some ideas.

Some managers use this technique because they actually learned it in
the military. Others grew up in authoritarian households or countries and
think it’s a natural way to gain compliance. Others just don’t know any
better. Hey, it works for the military, it should work for an Internet
startup!

There are, it turns out, three drawbacks with this method in a high-
tech team.

First of all, people don’t really like it very much, least of all smarty-
pants software developers, who are, actually, pretty smart and are used to

thinking they know more than everyone else, for perfectly good reasons,
because it happens to be true, and so it really, really bothers them when
they’re commanded to do something “because.” But that’s not really a
good enough reason to discard this method . . . we’re trying to be
rational here. High-tech teams have many goals, but making everyone
happy is rarely goal number one.

A more practical drawback with Command and Control is that man-
agement literally does not have enough time to micromanage at this
level, because there simply aren’t enough managers. In the military, it’s
possible to give an order simultaneously to a large team of people
because it’s common that everyone is doing the same thing. “Clean your
guns!” you can say to a squad of 28, and then go take a brief nap and
have a cool iced tea on the officer’s club veranda. In software develop-
ment teams, everybody is working on something else, so attempts to
micromanage turn into hit-and-run micromanagement. That’s where
you micromanage one developer in a spurt of activity and then suddenly
disappear from that developer’s life for a couple of weeks while you run
around micromanaging other developers. The problem with hit-and-run
micromanagement is that you don’t stick around long enough to see why
your decisions are not working or to correct course. Effectively, all you
accomplish is to knock your poor programmers off the train track every
once in a while, so they spend the next week finding all their train cars
and putting them back on the tracks and lining everything up again, a
little bit battered from the experience.

The third drawback is that in a high-tech company the individual
contributors always have more information than the “leaders,” so they
are really in the best position to make decisions. When the boss wanders
into an office where two developers have been arguing for two hours
about the best way to compress an image, the person with the least
information is the boss, so that’s the last person you’d want making a
technical decision. I remember when Mike Maples was my great-grand-
boss, in charge of Microsoft Applications, he was adamant about
refusing to take sides on technical issues. Eventually, people learned that
they shouldn’t come to him to adjudicate. This forced people to debate
the issue on the merits, and issues were always resolved in favor of the
person who was better at arguing, er, I mean, issues were always
resolved in the best possible way.

More from Joel on Software38

If Command and Control is such a bad way to run a team, why does
the military use it?

This was explained to me in NCO school. I was in the Israeli para-
troopers in 1986. Probably the worst paratrooper they ever had, now
that I think back.

There are several standing orders for soldiers. Standing order num-
ber one: if you are in a mine field, freeze. Makes sense, right? It was
drilled into you repeatedly during basic training. Every once in a while
the instructor would shout out “Mine!” and everybody had to freeze
just so you would get in the habit.

Standing order number two: when attacked, run toward your attack-
ers while shooting. The shooting makes them take cover so they can’t
fire at you. Running toward them causes you to get closer to them,
which makes it easier to aim at them, which makes it easier to kill them.
This standing order makes a lot of sense, too.

OK, now for the Interview Question: what do you do if you’re in a
minefield, and people start shooting at you?

This is not such a hypothetical situation; it’s a really annoying way to
get caught in an ambush.

The correct answer, it turns out, is that you ignore the minefield and
run toward the attackers while shooting.

The rationale behind this is that if you freeze, they’ll pick you off one
at a time until you’re all dead, but if you charge, only some of you will
die by running over mines, so for the greater good, that’s what you have
to do.

The trouble is that no rational soldier would charge under such cir-
cumstances. Each individual soldier has an enormous incentive to cheat:
freeze in place and let the other, more macho, soldiers do the charging.
It’s sort of like a Prisoners’ Dilemma.

In life or death situations, the military needs to make sure that they
can shout orders and soldiers will obey them even if the orders are suici-
dal. That means soldiers need to be programmed to be obedient in a way
that is not really all that important for, say, a software company.

In other words, the military uses Command and Control because it’s
the only way to get 18-year-olds to charge through a minefield, not
because they think it’s the best management method for every situation.

39The Command and Control Management Method

In particular, in software development teams where good developers
can work anywhere they want, playing soldier is going to get pretty
tedious, and you’re not really going to keep anyone on your team.

Next in this series: The Econ 101 Management Method

More from Joel on Software40

six

THE ECON 101 MANAGEMENT
METHOD

Wednesday, August 9, 2006

Joke: A poor Jew lived in the shtetl in nineteenth-century Russia. A
Cossack comes up to him on horseback.

“What are you feeding that chicken?” asks the Cossack.
“Just some bread crumbs,” replies the Jew.
“How dare you feed a fine Russian chicken such lowly food!” says the

Cossack, and hits the Jew with a stick.
The next day, the Cossack comes back. “Now what are you feeding

that chicken?” ask the Jew.
“Well, I give him three courses. There’s freshly cut grass, fine sturgeon

caviar, and a small bowl of heavy cream sprinkled with imported French
chocolate truffles for dessert.”

“Idiot!” says the Cossack, beating the Jew with a stick. “How dare
you waste good food on a lowly chicken!”

On the third day, the Cossack again asks, “What are you feeding that
chicken?”

“Nothing!” pleads the Jew. “I give him a kopeck and he buys what-
ever he wants.”

(Pause for laughter)
(No?)
(Ba dum dum)
(Still no laughter)
(Oh well)
I use the term “Econ 101” a little bit tongue-in-cheek. For my non-

American readers: most US college departments have a course numbered

“101,” which is the basic introductory course for any field. Econ 101
management is the style used by people who know just enough eco-
nomic theory to be dangerous.

The Econ 101 manager assumes that everyone is motivated by
money, and that the best way to get people to do what you want them to
do is to give them financial rewards and punishments to create incen-
tives.

For example, AOL might pay their call-center people for every cus-
tomer they persuade not to cancel their subscription.

A software company might give bonuses to programmers who create
the fewest bugs.

It works about as well as giving your chickens money to buy their
own food.

One big problem is that it replaces intrinsic motivation with extrin-
sic motivation.

Intrinsic motivation is your own natural desire to do things well.
People usually start out with a lot of intrinsic motivation. They want to
do a good job. They want to help people understand that it’s in their best
interest to keep paying AOL $24 a month. They want to write less buggy
code.

Extrinsic motivation is a motivation that comes from outside, like
when you’re paid to achieve something specific.

Intrinsic motivation is much stronger than extrinsic motivation.
People work much harder at things that they actually want to do. That’s
not very controversial.

But when you offer people money to do things that they wanted to
do anyway, they suffer from something called the Overjustification
Effect. “I must be writing bug-free code because I like the money I get
for it,” they think, and the extrinsic motivation displaces the intrinsic
motivation. Since extrinsic motivation is a much weaker effect, the net
result is that you’ve actually reduced their desire to do a good job. When
you stop paying the bonus, or when they decide they don’t care that
much about the money, they no longer think that they care about bug-
free code.

Another big problem with Econ 101 management is the tendency for
people to find local maxima. They’ll find some way to optimize for the
specific thing you’re paying them, without actually achieving the thing
you really want.

More from Joel on Software42

So, for example, your customer retention specialist, in his desire to
earn the bonus associated with maintaining a customer, will drive the
customer so crazy that the New York Times will run a big front page
story about how nasty your customer “service” is. Although his behav-
ior maximizes the thing you’re paying him for (customer retention), it
doesn’t maximize the thing you really care about (profit). And then you
try to reward him for the company profit, say, by giving him 13 shares
of stock, and you realize that it’s not really something he controls, so it’s
a waste of time.

When you use Econ 101 management, you’re encouraging develop-
ers to game the system.

Suppose you decide to pay a bonus to the developer with the fewest
bugs. Now every time a tester tries to report a bug, it becomes a big
argument, and usually the developer convinces the tester that it’s not
really a bug. Or the tester agrees to report the bug “informally” to the
developer before writing it up in the bug tracking system. And now
nobody uses the bug tracking system. The bug count goes way down,
but the number of bugs stays the same.

Developers are clever this way. Whatever you try to measure, they’ll
find a way to maximize, and you’ll never quite get what you want.

Robert D. Austin, in his book Measuring and Managing Performance
in Organizations, says there are two phases when you introduce new
performance metrics. At first, you actually get what you want, because
nobody has figured out how to cheat. In the second phase, you actually
get something worse, as everyone figures out the trick to maximizing the
thing that you’re measuring, even at the cost of ruining the company.

Worse, Econ 101 managers think that they can somehow avoid this
situation just by tweaking the metrics. Dr. Austin’s conclusion is that
you just can’t. It never works. No matter how much you try to adjust the
metrics to reflect what you think you want, it always backfires.

The biggest problem with Econ 101 management, though, is that it’s
not management at all: it’s really more of an abdication of management.
A deliberate refusal to figure out how things can be made better. It’s a
sign that management simply doesn’t know how to teach people to do
better work, so they force everybody in the system to come up with their
own way of doing it.

43The Econ 101 Management Method

Instead of training developers on techniques of writing reliable code,
you just absolve yourself of responsibility by paying them if they do.
Now every developer has to figure it out on their own.

For more mundane tasks, working the counter at Starbucks or
answering phone calls at AOL, it’s pretty unlikely that the average
worker will figure out a better way of doing things on their own. You
can go into any coffee shop in the country and order a short soy caramel
latte extra-hot, and you’ll find that you have to keep repeating your
order again and again: once to the coffee maker, again to the coffee
maker when they forget what you said, and finally to the cashier so they
can figure out what to charge you. That’s the result of nobody telling the
workers a better way. Nobody figures it out, except Starbucks, where
the standard training involves a complete system of naming, writing
things on cups, and calling out orders, which ensures that customers
only have to specify their drink orders once. The system, invented by
Starbucks HQ, works great, but workers at the other chains never, ever
come up with it on their own.

Your customer service people spend most of the day talking to cus-
tomers. They don’t have the time, the inclination, or the training to
figure out better ways to do things. Nobody in the customer retention
crew is going to be able to keep statistics and measure which customer
retention techniques work best while pissing off the fewest bloggers.
They just don’t care enough, they’re not smart enough, they don’t have
enough information, and they are too busy with their real job.

As a manager, it’s your job to figure out a system. That’s Why You
Get The Big Bucks.

If you read a little bit too much Ayn Rand as a kid, or if you took one
semester of economics, before they explained that utility is not measured
in dollars, you may think that setting up simplified bonus schemes and
Pay For Performance is a pretty neat way to manage. But it doesn’t
work. Start doing your job managing and stop feeding your chickens
kopecks.

“Joel!” you yell. “In the previous chapter, you told us that the devel-
opers should make all the decisions. Today you’re telling us that the
managers should make all the decisions. What’s up with that?”

Mmm, not exactly. In the previous chapter, I told you that your
developers, the leaves in the tree, have the most information; microman-
agement, or Command and Control barking out orders, is likely to cause

More from Joel on Software44

nonoptimal results. Here, I’m telling you that when you’re creating a
system, you can’t abdicate your responsibility to train your people by
bribing them. Management, in general, needs to set up the system so that
people can get things done, it needs to avoid displacing intrinsic motiva-
tion with extrinsic motivation, and it won’t get very far using fear and
barking out specific orders.

Now that I’ve shot down Command and Control management and
Econ 101 management, there’s one more method managers can use to
get people moving in the right direction. I call it the Identity
Management Method, and I’ll talk about it more in the next chapter.

Next in this series: The Identity Management Method

45The Econ 101 Management Method

seven

THE IDENTITY MANAGEMENT
METHOD

Thursday, August 10, 2006

When you’re trying to get a team all working in the same direction, we’ve
seen that Command and Control management and Econ 101 manage-
ment both fail pretty badly in high-tech, knowledge-oriented teams.

That leaves a technique that I’m going to have to call the Identity
Management Method. The goal here is to manage by making people iden-
tify with the goals you’re trying to achieve. That’s a lot trickier than the
other methods, and it requires some serious interpersonal skills to pull
off. But if you do it right, it works better than any other method.

The problem with Econ 101 management is that it subverts intrinsic
motivation. The Identity Management Method is a way to create intrinsic
motivation.

To follow the Identity Management Method, you have to summon all
the social skills you have to make your employees identify with the goals
of the organization so that they are highly motivated, and then you need
to give them the information they need to steer in the right direction.

How do you make people identify with the organization?
It helps if the organizational goals are virtuous, or perceived as virtu-

ous, in some way. Apple creates almost fanatic identification, almost
entirely through a narrative that started with a single Superbowl ad in
1984: we are against totalitarianism. Doesn’t seem like a particularly bold
position to take, but it worked. Here at Fog Creek, we stand bravely in
opposition to killing kittens. Yaaaay!

A method I’m pretty comfortable with is eating together. I’ve always
made a point of eating lunch with my coworkers, and at Fog Creek we

serve catered lunches for the whole team every day and eat together at
one big table. It’s hard to overstate what a big impact this has on mak-
ing the company feel like a family, in the good way, I think. In six years,
nobody has ever quit.

I’m probably going to freak out some of our summer interns by
admitting this, but one the goals of our internship program is to make
people identify as New Yorkers so they’re more comfortable with the
idea of moving here after college and working for us full time. We do
this through a pretty exhausting list of extracurricular summer activities:
two Broadway shows, a trip to the Top of the Rock, a boat ride around
Manhattan, a Yankees game, an open house so they can meet more New
Yorkers, and a trip to a museum. Michael and I host parties in our apart-
ments, not only as a way of welcoming the interns, but also as a way for
interns to visualize living in an apartment in New York, not just the
dorm we stuck them in.

In general, Identity management requires you to create a cohesive,
jelled team that feels like a family, so that people have a sense of loyalty
and commitment to their coworkers.

The second part, though, is to give people the information they need
to steer the organization in the right direction.

Earlier today, Brett came into my office to discuss ship dates for
FogBugz 6.0. He was sort of leaning toward April 2007; I was sort of
leaning toward December 2006. Of course, if we shipped in April, we
would have time to do a lot more polishing and improve many areas of
the product; if we shipped in December, we’d probably have to cut a
bunch of nice new features.

What I explained to Brett, though, is that we want to hire six new
people in the spring, and the chances that we’ll be able to afford them
without FogBugz 6.0 are much smaller. So the way I concluded the meet-
ing with Brett was to make him understand the exact financial
motivations I have for shipping earlier, and now that he knows that, I’m
confident he’ll make the right decision . . . not necessarily my decision.
Maybe we’ll have a big upswing in sales without FogBugz 6.0, and now
that Brett understands the basic financial parameters, he’ll realize that
maybe that means we can hold 6.0 for a few more features. The point
being that by sharing information, I can get Brett to do the right thing
for Fog Creek even if circumstances change. If I tried to push him
around by offering him a cash reward for every day before April that he

More from Joel on Software48

ships, his incentive would be to dump the existing buggy development
build on the public tonight. If I tried to push him around using Command
and Control management by ordering him to ship bug-free code on time,
dammit, he might do it, but he’d hate his job and leave.

Conclusion

There are as many different styles of management as there are man-
agers. I’ve identified three major styles: two easy, dysfunctional

styles and one hard, functional style, but the truth is that many develop-
ment shops manage in more of an ad hoc “whatever works” way that
may change from day to day or person to person.

49The Identity Management Method

part two

Advice to Potential
Programmers

eight

THE PERILS OF JAVASCHOOLS

Thursday, December 29, 2005

Lazy kids.
Whatever happened to hard work?
A sure sign of my descent into senility is bitchin’ and moanin’ about

“kids these days,” and how they won’t or can’t do anything hard any
more.

When I was a kid, I learned to program on punched cards. If you made
a mistake, you didn’t have any of these modern features like a Backspace
key to correct it. You threw away the card and started over.

When I started interviewing programmers in 1991, I would generally
let them use any language they wanted to solve the coding problems I
gave them. 99% of the time, they chose C.

Nowadays, they tend to choose Java.
Now, don’t get me wrong: there’s nothing wrong with Java as an

implementation language.
Wait a minute, I want to modify that statement. I’m not claiming, in

this particular discussion, that there’s anything wrong with Java as an
implementation language. There are lots of things wrong with it, but
those will have to wait for another time.

Instead, what I’d like to claim is that Java is not, generally, a hard
enough programming language that it can be used to discriminate
between great programmers and mediocre programmers. It may be a fine
language to work in, but that’s not today’s topic. I would even go so far
as to say that the fact that Java is not hard enough is a feature, not a bug,
but it does have this one problem.

If I may be so brash, it has been my humble experience that there are
two things traditionally taught in universities as a part of a computer

science curriculum that many people just never really fully comprehend:
pointers and recursion.

You used to start out in college with a course in data structures, with
linked lists and hash tables and whatnot, with extensive use of pointers.
Those courses were often used as weed-out courses: they were so hard
that anyone who couldn’t handle the mental challenge of a CS degree
would give up, which was a good thing, because if you thought pointers
were hard, wait until you try to prove things about fixed point theory.

All the kids who did great in high school writing pong games in
BASIC for their Apple II would get to college, take CompSci 101, a data
structures course, and when they hit the pointers business, their brains
would just totally explode, and the next thing you knew, they were
majoring in political science because law school seemed like a better
idea. I’ve seen all kinds of figures for dropout rates in CS, and they’re
usually between 40% and 70%. The universities tend to see this as a
waste; I think it’s just a necessary culling of the people who aren’t going
to be happy or successful in programming careers.

The other hard course for many young CS students was the course
where you learned functional programming, including recursive pro-
gramming. MIT set the bar very high for these courses, creating a
required course (6.001) and a textbook (Abelson and Sussman’s
Structure and Interpretation of Computer Programs [The MIT Press,
1996]), which were used at dozens or even hundreds of top CS schools
as the de facto introduction to computer science. (You can, and should,
watch an older version of the lectures online.)

The difficulty of these courses is astonishing. In the first lecture,
you’ve learned pretty much all of Scheme, and you’re already being
introduced to a fixed-point function that takes another function as its
input. When I struggled through such a course, CSE 121 at Penn, I
watched as many, if not most, of the students just didn’t make it. The
material was too hard. I wrote a long sob e-mail to the professor saying
It Just Wasn’t Fair. Somebody at Penn must have listened to me (or one
of the other complainers), because that course is now taught in Java.

I wish they hadn’t listened.
Therein lies the debate. Years of whinging by lazy CS undergrads like

me, combined with complaints from industry about how few CS majors
are graduating from American universities, have taken a toll, and in the
last decade a large number of otherwise perfectly good schools have

More from Joel on Software54

gone 100% Java. It’s hip, the recruiters who use “grep” to evaluate
resumes seem to like it, and, best of all, there’s nothing hard enough
about Java to really weed out the programmers without the part of the
brain that does pointers or recursion, so the dropout rates are lower, and
the computer science departments have more students and bigger bud-
gets, and all is well.

The lucky kids of JavaSchools are never going to get weird segfaults
trying to implement pointer-based hash tables. They’re never going to go
stark, raving mad trying to pack things into bits. They’ll never have to
get their head around how, in a purely functional program, the value of
a variable never changes, and yet, it changes all the time! A paradox!

They don’t need that part of the brain to get a 4.0 in their major.
Am I just one of those old-fashioned curmudgeons, like the Four

Yorkshiremen, bragging about how tough I was to survive all that hard
stuff?

Heck, in 1900, Latin and Greek were required subjects in college, not
because they served any purpose, but because they were sort of consid-
ered an obvious requirement for educated people. In some sense, my
argument is no different from the argument made by the pro-Latin peo-
ple (all four of them). “[Latin] trains your mind. Trains your memory.
Unraveling a Latin sentence is an excellent exercise in thought, a real
intellectual puzzle, and a good introduction to logical thinking,” writes
Scott Barker (www.promotelatin.org/whylatin.htm). But I can’t find a
single university that requires Latin any more. Are pointers and recur-
sion the Latin and Greek of computer science?

Now, I freely admit that programming with pointers is not needed in
90% of the code written today, and in fact, it’s downright dangerous in
production code. OK. That’s fine. And functional programming is just
not used much in practice. Agreed.

But it’s still important for some of the most exciting programming
jobs. Without pointers, for example, you’d never be able to work on the
Linux kernel. You can’t understand a line of code in Linux, or, indeed,
any operating system, without really understanding pointers.

Without understanding functional programming, you can’t invent
MapReduce, the algorithm that makes Google so massively scalable.
The terms “Map” and “Reduce” come from Lisp and functional
programming. MapReduce is, in retrospect, obvious to anyone who
remembers from their 6.001-equivalent programming class that purely

55The Perils of JavaSchools

functional programs have no side effects and are thus trivially paralleliz-
able. The very fact that Google invented MapReduce, and Microsoft
didn’t, says something about why Microsoft is still playing catch-up try-
ing to get basic search features to work, while Google has moved on to
the next problem: building Skynet^H^H^H^H^H^H, the world’s
largest massively parallel supercomputer. I don’t think Microsoft com-
pletely understands just how far behind they are on that wave.

But beyond the prima facie importance of pointers and recursion,
their real value is that building big systems requires the kind of mental
flexibility you get from learning about them and the mental aptitude you
need to avoid being weeded out of the courses in which they are taught.
Pointers and recursion require a certain ability to reason, to think in
abstractions, and, most importantly, to view a problem at several levels
of abstraction simultaneously. And thus, the ability to understand point-
ers and recursion is directly correlated with the ability to be a great
programmer.

Nothing about an all-Java CS degree really weeds out the students
who lack the mental agility to deal with these concepts. As an employer,
I’ve seen that the 100% JavaSchools have started churning out quite a
few CS graduates who are simply not smart enough to work as pro-
grammers on anything more sophisticated than Yet Another Java
Accounting Application, although they did manage to squeak through
the newly dumbed-down coursework. These students would never sur-
vive 6.001 at MIT or CS 323 at Yale, and frankly, that is one reason
why, as an employer, a CS degree from MIT or Yale carries more weight
than a CS degree from Duke, which recently went All Java, or Penn,
which replaced Scheme and ML with Java in trying to teach the class
that nearly killed me and my friends, CSE 121. Not that I don’t want to
hire smart kids from Duke and Penn—I do—it’s just a lot harder for me
to figure out who they are. I used to be able to tell the smart kids because
they could rip through a recursive algorithm in seconds, or implement
linked-list manipulation functions using pointers as fast as they could
write on the whiteboard. But with a JavaSchool grad, I can’t tell whether
they’re struggling with these problems because they are undereducated
or because they don’t actually have that special part of the brain that
they’re going to need to do great programming work. Paul Graham calls
them “Blub programmers” (www.paulgraham.com/avg.html).

More from Joel on Software56

It’s bad enough that JavaSchools fail to weed out the kids who are
never going to be great programmers, which the schools could justifiably
say is not their problem. Industry or, at least, the recruiters-who-use-
grep are surely clamoring for Java to be taught.

But JavaSchools also fail to train the brains of kids to be adept, agile,
and flexible enough to do good software design (and I don’t mean
object-oriented “design,” where you spend countless hours rewriting
your code to rejiggle your object hierarchy, or you fret about faux
“problems” like “has-a” vs. “is-a”). You need training to think of things
at multiple levels of abstraction simultaneously, and that kind of think-
ing is exactly what you need to design great software architecture.

You may be wondering if teaching object-oriented programming
(OOP) is a good weed-out substitute for pointers and recursion. The
quick answer: no. Without debating OOP on the merits, it is just not
hard enough to weed out mediocre programmers. OOP in school consists
mostly of memorizing a bunch of vocabulary terms like “encapsulation”
and “inheritance” and taking multiple-choice quizzicles on the differ-
ence between polymorphism and overloading. Not much harder than
memorizing famous dates and names in a history class, OOP poses inad-
equate mental challenges to scare away first-year students. When you
struggle with an OOP problem, your program still works, it’s just sort of
hard to maintain. Allegedly. But when you struggle with pointers, your
program produces the line Segmentation Fault, and you have no idea
what’s going on, until you stop and take a deep breath and really try to
force your mind to work at two different levels of abstraction simulta-
neously.

The recruiters-who-use-grep, by the way, are ridiculed here, and for
good reason. I have never met anyone who can do Scheme, Haskell, and
C pointers who can’t pick up Java in two days and create better Java
code than people with five years of experience in Java, but try explain-
ing that to the average HR drone.

But what about the CS mission of CS departments? They’re not voca-
tional schools! It shouldn’t be their job to train people to work in
industry. That’s for community colleges and government retraining pro-
grams for displaced workers, they will tell you. They’re supposed to be
giving students the fundamental tools to live their lives, not preparing
them for their first weeks on the job. Right?

57The Perils of JavaSchools

Still. CS is proofs (recursion), algorithms (recursion), languages
(lambda calculus), operating systems (pointers), compilers (lambda cal-
culus)—and so the bottom line is that a JavaSchool that won’t teach C
and won’t teach Scheme is not really teaching computer science either.
As useless as the concept of function currying may be to the real world,
it’s obviously a prereq for CS grad school. I can’t understand why the
professors on the curriculum committees at CS schools have allowed
their programs to be dumbed down to the point where not only can’t
they produce working programmers, they can’t even produce CS grad
students who might get PhDs and compete for their jobs. Oh wait.
Never mind. Maybe I do understand.

Actually, if you go back and research the discussion that took place
in academia during the Great Java Shift, you’ll notice that the biggest
concern was whether Java was simple enough to use as a teaching
language.

My God, I thought, they’re trying to dumb down the curriculum
even further! Why not spoonfeed everything to the students? Let’s have
the TAs take their tests for them, too, and then nobody will switch to
American studies. How is anyone supposed to learn anything if the cur-
riculum has been carefully designed to make everything easier than it
already is? There seems to be a task force underway to figure out a sim-
ple subset of Java that can be taught to students, producing simplified
documentation that carefully hides all that EJB/J2EE crap from their
tender minds, so they don’t have to worry their little heads with any
classes where they don’t need to do the ever-easier CS problem sets.

The most sympathetic interpretation of why CS departments are so
enthusiastic to dumb down their classes is that it leaves them more time
to teach actual CS concepts, if they don’t need to spend two whole lec-
tures unconfusing students about the difference between, say, a Java int
and an Integer. Well, if that’s the case, 6.001 has the perfect answer for
you: Scheme, a teaching language so simple that the entire language can
be taught to bright students in about ten minutes; then you can spend
the rest of the semester on fixed points.

Feh.
I’m going back to ones and zeros.
(You had ones? Lucky bastard! All we got were zeros.)

More from Joel on Software58

nine

TALK AT YALE

Monday, December 3, 2007

This is part one of the text of a talk delivered to the Yale Computer
Science department on November 28, 2007.

I graduated with a BS in computer science in 1991. Sixteen years ago.
What I’m going to try to do today is relate my undergraduate years in the
CS department to my career, which consists of developing software, writ-
ing about software, and starting a software company. And, of course,
that’s a little bit absurd; there’s a famous part at the beginning of MIT’s
Introduction to Computer Science where Hal Abelson gets up and
explains that computer science isn’t about computers and it isn’t a science,
so it’s a little bit presumptuous of me to imply that CS is supposed to be
training for a career in software development, any more than, say, media
studies or cultural anthropology would be.

I’ll press ahead anyway. One of the most useful classes I took was a
course that I dropped after the first lecture. Another one was a class given
by Roger Schank that was so disdained by the CS faculty that it was not
allowed to count toward a degree in computer science. But I’ll get to that
in a minute.

The third was this little gut called CS 322, which you know of as
CS 323. Back in my day, CS 322 took so much work that it was a 1 1/2
credit class. And Yale’s rule is that extra half credit could only be com-
bined with other half credits from the same department. Apparently, there
were two other 1 1/2 credit courses, but they could only be taken together.
So through that clever trickery, the half credit was therefore completely
useless, but it did justify those weekly problem sets that took forty
hours to complete. After years of students’ complaining, the course was

adjusted to be a 1 credit class, it was renumbered CS 323, and still had
weekly forty-hour problem sets. Other than that, it’s pretty much the
same thing. I loved it, because I love programming. The best thing about
CS 323 is it teaches a lot of people that they just ain’t never gonna be
programmers. This is a good thing. People who don’t have the benefit of
Stan Eisenstat teaching them that they can’t be programmers have mis-
erable careers cutting and pasting a lot of Java. By the way, if you took
CS 323 and got an A, we have great summer internships at Fog Creek.
See me afterward.

As far as I can tell, the core curriculum hasn’t changed at all. 201,
223, 240, 323, 365, 421, 422, 424, 429 appear to be almost the same
courses we took sixteen years ago. The number of CS majors is actually
up since I went to Yale, although a temporary peak during the dot-com
days makes it look like it’s down. And there are a lot more interesting
electives now than there were in my time. So: progress.

For a moment there, I actually thought I’d get a PhD. Both my par-
ents are professors. So many of their friends were academics that I grew
up assuming that all adults eventually got PhDs. In any case, I was think-
ing pretty seriously of going on to graduate school in computer science.
Until I tried to take a class in dynamic logic right here in this very depart-
ment. It was taught by Lenore Zuck, who is now at UIC.

I didn’t last very long, nor did I understand much of anything that
was going on. From what I gather, dynamic logic is just like formal logic:
Socrates is a man, all men are mortal, therefore Socrates is mortal. The
difference is that in dynamic logic, truth values can change over time.
Socrates was a man, now he’s a cat, etc. In theory, this should be an
interesting way to prove things about computer programs, in which
state, i.e., truth values, change over time.

In the first lecture, Dr. Zuck presented a few axioms and some trans-
formation rules and set about trying to prove a very simple thing. She
had a computer program, f := not f, where f is a Boolean that simply
flipped a bit; the goal was to prove that if you ran this program an even
number of times, f would finish with the same value as it started out
with.

The proof went on and on. It was in this very room, if I remember
correctly, it looks like the carpet hasn’t been changed since then, and all
of these blackboards were completely covered in the steps of the proof.
Dr. Zuck used proof by induction, proof by reductio ad absurdum,

More from Joel on Software60

proof by exhaustion—the class was late in the day and we were already
running forty minutes over—and, in desperation, proof by graduate stu-
dent, whereby, she says, “I can’t really remember how to prove this
step,” and a graduate student in the front row says, “Yes, yes, professor,
that’s right.”

And when all was said and done, she got to the end of the proof and
somehow was getting exactly the opposite result of the one that made
sense, until that same graduate student pointed out where, 63 steps
earlier, some bit had been accidentally flipped due to a little bit of dirt on
the board, and all was well.

For our homework, she told us to prove the converse: that if you run
the program f := not f n times, and the bit is in the same state as it
started, that n must be even.

I worked on that problem for hours and hours. I had her original
proof in front of me, going in one direction, which, upon closer exami-
nation, turned out to have all kinds of missing steps that were “trivial,”
but not to me. I read every word about dynamic logic that I could find
in Becton Center, and I struggled with the problem late into the night. I
was getting absolutely nowhere and increasingly despairing of theoreti-
cal computer science. It occurred to me that when you have a proof that
goes on for pages and pages, it’s far more likely to contain errors than
your own intuition about the trivial statements that it’s trying to prove;
and I decided that this dynamic logic stuff was really not a fruitful way
of proving things about actual, interesting computer programs, because
you’re more likely to make a mistake in the proof than you are to make
a mistake in your own intuition about what the program f := not f is
going to do. So I dropped the course, thank God for shopping period,
but not only that, I decided on the spot that graduate school in computer
science was just not for me, which made this the single most useful
course I ever took.

Now this brings me to one of the important themes that I’ve learned
in my career. Time and time again, you’ll see programmers redefining
problems so that they can be solved algorithmically. By redefining the
problem, it often happens that they’re left with something that can be
solved, but which is actually a trivial problem. They don’t solve the real
problem, because that’s intractable. I’ll give you an example.

You will frequently hear the claim that software engineering is facing
a quality crisis of some sort. I don’t happen to agree with that claim—

61Talk at Yale

the computer software most people use most of the time is of ridicu-
lously high quality compared to everything else in their lives—but that’s
beside the point. This claim about the “quality crisis” leads to a lot of
proposals and research about making higher quality software. And at
this point, the world divides into the geeks and the suits.

The geeks want to solve the problem automatically, using software.
They propose things like unit tests, test-driven development, automated
testing, dynamic logic, and other ways to “prove” that a program is bug
free.

The suits aren’t really aware of the problem. They couldn’t care less
if the software is buggy, as long as people are buying it.

Currently, in the battle between the geeks and the suits, the suits are
winning, because they control the budget, and honestly, I don’t know if
that’s such a bad thing. The suits recognize that there are diminishing
returns to fixing bugs. Once the software hits a certain level of quality
that allows it to solve someone’s problem, that person will pay for it and
derive benefit out of it.

The suits also have a broader definition of “quality.” Their definition
is about as mercenary as you can imagine: the quality of software is
defined by how much it increases their bonus this year. Accidentally, this
definition of quality incorporates a lot more than just making the soft-
ware bug free. For example, it places a lot of value on adding more
features to solve more problems for more people, which the geeks tend
to deride by calling it “bloatware.” It places value on aesthetics: a cool-
looking program sells more copies than an ugly program. It places value
on how happy a program makes its users feel. Fundamentally, it lets the
users define their own concept of quality and decide on their own if a
given program meets their needs.

Now, the geeks are interested in the narrowly technical aspects of
quality. They focus on things they can see in the code, rather than wait-
ing for the users to judge. They’re programmers, so they try to automate
everything in their life, and of course they try to automate the QA
process. This is how you get unit testing, which is not a bad thing, don’t
get me wrong, and it’s how you get all these attempts to mechanically
“prove” that a program is “correct.” The trouble is that anything that
can’t be automated has to be thrown out of the definition of quality.
Even though we know that users prefer software that looks cooler,

More from Joel on Software62

there’s no automated way to measure how cool looking a program is, so
that gets left out of the automated QA process.

In fact, what you’ll see is that the hard-core geeks tend to give up on
all kinds of useful measures of quality, and basically they get left with the
only one they can prove mechanically, which is, does the program
behave according to specification. And so we get a very narrow, geeky
definition of quality: how closely the program corresponds to the spec.
Does it produce the defined outputs given the defined inputs?

The problem here is very fundamental. In order to mechanically
prove that a program corresponds to some spec, the spec itself needs to
be extremely detailed. In fact, the spec has to define everything about the
program; otherwise, nothing can be proven automatically and mechani-
cally. Now, if the spec does define everything about how the program is
going to behave, then, lo and behold, it contains all the information nec-
essary to generate the program! And now certain geeks go off to a very
dark place where they start thinking about automatically compiling
specs into programs, and they start to think that they’ve just invented a
way to program computers without programming.

Now, this is the software engineering equivalent of a perpetual
motion machine. It’s one of those things that crackpots keep trying to
do, no matter how much you tell them it could never work. If the spec
defines precisely what a program will do, with enough detail that it can
be used to generate the program itself, this just begs the question: how
do you write the spec? Such a complete spec is just as hard to write as
the underlying computer program, because just as many details have to
be answered by the spec writer as the programmer. To use terminology
from information theory: the spec needs just as many bits of Shannon
entropy as the computer program itself would have. Each bit of entropy
is a decision taken by the spec writer or the programmer.

So, the bottom line is that if there really were a mechanical way to
prove things about the correctness of a program, all you’d be able to
prove is whether that program is identical to some other program that
must contain the same amount of entropy as the first program; other-
wise, some of the behaviors are going to be undefined, and thus
unproven. So now the spec writing is just as hard as writing a program,
and all you’ve done is moved one problem from over here to over there,
and accomplished nothing whatsoever.

63Talk at Yale

This seems like a kind of brutal example, but nonetheless, this search
for the holy grail of program quality is leading a lot of people to a lot of
dead ends. The Windows Vista team at Microsoft is a case in point.
Apparently—and this is all based on blog rumors and innuendo—
Microsoft has had a long-term policy of eliminating all software testers
who don’t know how to write code, replacing them with what they call
SDETs, Software Development Engineers in Test, programmers who
write automated testing scripts.

The old testers at Microsoft checked lots of things: they checked
whether fonts were consistent and legible, they checked that the location
of controls on dialog boxes was reasonable and neatly aligned, they
checked whether the screen flickered when you did things, they looked
at how the UI flowed, they considered how easy the software was to use
and how consistent the wording was, they worried about performance,
they checked the spelling and grammar of all the error messages, and
they spent a lot of time making sure that the user interface was consis-
tent from one part of the product to another, because a consistent user
interface is easier to use than an inconsistent one.

None of those things could be checked by automated scripts. And so
one result of the new emphasis on automated testing was that the Vista
release of Windows was extremely inconsistent and unpolished. Lots of
obvious problems got through in the final product . . . none of which
was a “bug” by the definition of the automated scripts, but every one of
which contributed to the general feeling that Vista was a downgrade
from XP. The geeky definition of quality won out over the suit’s defini-
tion; I’m sure the automated scripts for Windows Vista are running at
100% success right now at Microsoft, but it doesn’t help when just
about every tech reviewer is advising people to stick with XP for as long
as humanly possible. It turns out that nobody wrote the automated test
to check whether Vista provided users with a compelling reason to
upgrade from XP.

I don’t hate Microsoft, really I don’t. In fact, my first job out of
school was actually at Microsoft. In those days, it was not really a
respectable place to work. Sort of like taking a job in the circus. People
looked at you funny. Really? Microsoft? On campus, in particular, it was
perceived as corporate, boring, buttoned-down, making inferior soft-
ware so that accountants can do, oh I don’t know, spreadsheets or
whatever it is that accountants do. Perfectly miserable. And it all ran on

More from Joel on Software64

a pathetic single-tasking operating system, called MS-DOS, full of arbi-
trary stupid limitations like 8-character file names and no e-mail and no
telnet and no Usenet. Well, MS-DOS is long gone, but the cultural gap
between the Unixheads and the Windows users has never been wider.
This is a culture war. The disagreements are very byzantine but very fun-
damental. To Yale, Microsoft was this place that made toy business
operating systems using three-decades-old computer science. To Micro-
soft, “computer sciency” was a bad term used to make fun of new hires
with their bizarre hypotheses about how Haskell is the next major
programming language.

Just to give you one tiny example of the Unix-Windows cultural war.
Unix has this cultural value of separating user interface from functional-
ity. A righteous Unix program starts out with a command-line interface,
and if you’re lucky, someone else will come along and write a pretty
front end for it, with shading and transparency and 3D effects, and this
pretty front end just launches the command-line interface in the back-
ground, which then fails in mysterious ways, which are then not
reflected properly in the pretty front end, which is now hung waiting for
some input that it’s never going to get.

But the good news is that you can use the command-line interface
from a script.

Whereas the Windows culture would be to write a GUI app in the
first place, and all the core functionality would be tangled up hopelessly
with the user interface code, so you could have this gigantic application
like Photoshop that’s absolutely brilliant for editing photos, but if you’re
a programmer, and you want to use Photoshop to resize a folder of
1,000 pictures so that each one fits in a 200-pixel box, you just can’t
write that code, because it’s all very tightly bound to a particular user
interface.

Anyway, the two cultures roughly correspond to highbrow vs. low-
brow, and in fact, it’s reflected accurately in the curriculum of computer
science departments throughout the country. At Ivy League institutions,
everything is Unix, functional programming, and theoretical stuff about
state machines. As you move down the chain to less and less selective
schools, Java starts to appear. Move even lower, and you literally start to
see classes in topics like Microsoft Visual Studio 2005 101, three credits.
By the time you get to the two-year institutions, you see the same kind
of SQL-Server-in-21-days “certification” courses you see advertised on

65Talk at Yale

the weekends on cable TV. Isn’t it time to start your career in (different
voice) Java Enterprise Beans!

Tuesday, December 4, 2007

This is part two of the text of a talk delivered to the Yale
Computer Science department on November 28, 2007.

After a few years in Redmond, Washington, during which I completely
failed to adapt to my environment, I beat a hasty retreat to New York
City. I stayed on with Microsoft in New York for a few months, where I
was a complete and utter failure as a consultant at Microsoft
Consulting, and then I spent a few years in the mid-90s, when the
Internet was first starting to happen, at Viacom. That’s this big corpo-
rate conglomerate which owned MTV, VH1, Nickelodeon, Blockbuster,
Paramount Studios, Comedy Central, CBS, and a bunch of other enter-
tainment companies. New York was the first place I got to see what most
computer programmers do for a living. It’s this scary thing called “in-
house software.” It’s terrifying. You never want to do in-house software.
You’re a programmer for a big corporation that makes, oh, I don’t
know, aluminum cans, and there’s nothing quite available off the shelf
that does the exact kind of aluminum can processing that they need, so
they have these in-house programmers, or they hire companies like
Accenture and IBM to send them overpriced programmers, to write this
software. And there are two reasons this is so frightening: one, because
it’s not a very fulfilling career if you’re a programmer, for a list of rea-
sons that I’ll enumerate in a moment, and two, it’s frightening because
this is what probably 80% of programming jobs are like, and if you’re
not very, very careful when you graduate, you might find yourself work-
ing on in-house software, by accident, and let me tell you, it can drain
the life out of you.

OK, so, why does it suck to be an in-house programmer?
Number one: you never get to do things the right way. You always

have to do things the expedient way. It costs so much money to hire
these programmers—typically a company like Accenture or IBM would
charge $300 an hour for the services of some recent Yale political science
grad who took a six-week course in .NET programming, and who is
earning $47,000 a year and hoping that it’ll provide enough experience

More from Joel on Software66

to get into business school—anyway, it costs so much to hire these pro-
grammers who are not going to be allowed to build things with Ruby on
Rails no matter how cool Ruby is and no matter how spiffy the Ajax is
going to be. You’re going into Visual Studio, you’re going to click the
wizard, you’re going to drag the little Grid control onto the page, you’re
going to hook it up to the database, and presto, you’re done. It’s good
enough. Get out of there and onto the next thing. That’s the second rea-
son these jobs suck: as soon as your program gets good enough, you
have to stop working on it. Once the core functionality is there, the main
problem is solved, there is absolutely no return on investment, no busi-
ness reason to make the software any better. So all of these in-house
programs look like a dog’s breakfast: because it’s just not worth a penny
to make them look nice. Forget any pride in workmanship or crafts-
manship you learned in CS 323. You’re going to churn out embarrassing
junk, and then, you’re going to rush off to patch up last year’s embar-
rassing junk, which is starting to break down because it wasn’t done
right in the first place, twenty-seven years of that and you get a gold
watch. Oh, and they don’t give gold watches any more. Twenty-seven
years and you get carpal tunnel syndrome. Now, at a product company,
for example, if you’re a software developer working on a software prod-
uct or even an online product like Google or Facebook, the better you
make the product, the better it sells. The key point about in-house devel-
opment is that once it’s “good enough,” you stop. When you’re working
on products, you can keep refining and polishing and refactoring and
improving, and if you work for Facebook, you can spend a whole month
optimizing the Ajax name-choosing gizmo so that it’s really fast and
really cool, and all that effort is worthwhile because it makes your prod-
uct better than the competition. So, the number two reason product
work is better than in-house work is that you get to make beautiful
things.

Number three: when you’re a programmer at a software company,
the work you’re doing is directly related to the way the company makes
money. That means, for one thing, that management cares about you. It
means you get the best benefits and the nicest offices and the best
chances for promotion. A programmer is never going to rise to become
CEO of Viacom, but you might well rise to become CEO of a tech
company.

67Talk at Yale

Anyway. After Microsoft, I took a job at Viacom, because I wanted
to learn something about the Internet, and Microsoft was willfully
ignoring it in those days. But at Viacom, I was just an in-house pro-
grammer, several layers removed from anybody who did anything that
made Viacom money in any way.

And I could tell that no matter how critical it was for Viacom to get
this Internet thing right, when it came time to assign people to desks, the
in-house programmers were stuck with three people per cubicle in a
dark part of the office with no line of sight to a window, and the “pro-
ducers,” I don’t know what they did exactly, but they were sort of the
equivalent of Turtle on Entourage, the producers had their own big
windowed offices overlooking the Hudson River. Once at a Viacom
Christmas party, I was introduced to the executive in charge of interac-
tive strategy or something. A very lofty position. He said something
vague and inept about how interactivity was very important. It was the
future. It convinced me that he had no flipping idea whatsoever what it
was that was happening and what the Internet meant or what I did as a
programmer, and he was a little bit scared of it all, but who cares,
because he’s making two million dollars a year and I’m just a typist or
“HTML operator” or whatever it is that I did, how hard can it be, his
teenage daughter can do that.

So I moved across the street to Juno Online Services. This was an
early Internet provider that gave people free dial-up accounts that could
only be used for e-mail. It wasn’t like Hotmail or Gmail, which didn’t
exist yet, because you didn’t need Internet access to begin with, so it was
really free.

Juno was, allegedly, supported by advertising. It turned out that
advertising to the kinds of people who won’t pay $20 a month for AOL
is not exactly the most lucrative business in the world, so in reality, Juno
was supported by rich investors. But at least Juno was a product com-
pany where programmers were held in high regard, and I felt good about
their mission to provide e-mail to everyone. And indeed, I worked there
happily for about three years as a C++ programmer. Eventually, though,
I started to discover that the management philosophy at Juno was old
fashioned. The assumption there was that managers exist to tell people
what to do. This is quite upside-down from the way management
worked in typical West Coast high-tech companies. What I was used to
from the West Coast was an attitude that management is just an

More from Joel on Software68

annoying, mundane chore someone has to do so that the smart people
can get their work done. Think of an academic department at a univer-
sity, where being the chairperson of the department is actually something
of a burden that nobody really wants to do; they’d much rather be doing
research. That’s the Silicon Valley style of management. Managers exist
to get furniture out of the way so the real talent can do brilliant work.

Juno was founded by very young, very inexperienced people—the
president of the company was 24 years old, and it was his first job, not
just his first management job—and somewhere in a book or a movie or
a TV show, he had gotten the idea that managers exist to DECIDE.

If there’s one thing I know, it’s that managers have the least informa-
tion about every technical issue, and they are the last people who should
be deciding anything. When I was at Microsoft, Mike Maples, the head
of the applications division, used to have people come to him to resolve
some technical debate they were having. And he would juggle some
bowling pins, tell a joke, and tell them to get the hell out of his office and
solve their own damned problems instead of coming to him, the least
qualified person to make a technical decision on its merits. That was, I
thought, the only way to manage smart, highly qualified people. But the
Juno managers, like George Bush, were the deciders, and there were too
many decisions to be made, so they practiced something I started calling
hit-and-run micromanagement: they dive in from nowhere, microman-
age some tiny little issue, like how dates should be entered in a dialog
box, overriding the opinions of all the highly qualified technical people
on the team who had been working on that problem for weeks, and then
they disappear, so that’s the hit-and-run part, because there’s some other
little brush fire elsewhere that needs micromanagement.

So, I quit, without a real plan.

Wednesday, December 5, 2007

This is part three of the text of a talk delivered to the Yale
Computer Science department on November 28, 2007.

I despaired of finding a company to work for where programmers
were treated like talent and not like typists, and decided I would have to
start my own. In those days, I was seeing lots of really dumb people with
really dumb business plans making Internet companies, and I thought,

69Talk at Yale

hey, if I can be, say, 10% less dumb than them, that should be easy,
maybe I can make a company too, and in my company, we’d do things
right for a change. We’d treat programmers with respect, we’d make
high-quality products, we wouldn’t take any shit from VCs or 24-year-
olds playing president, we’d care about our customers and solve their
problems when they called, instead of blaming everything on Microsoft,
and we’d let our customers decide whether or not to pay us. At Fog
Creek, we’ll give anyone their money back with no questions asked
under any circumstances whatsoever. Keeps us honest.

So, it was the summer of 2000, and I had taken some time off from
work while I hatched the plans for Fog Creek Software and went to the
beach a lot. During that period, I started writing up some of the things I
had learned over the course of my career on a web site called Joel on
Software. In those early days before blogs were invented, a programmer
named Dave Winer had set up a system called EditThisPage.com where
anyone could post things to the Web in a sort-of blog like format. Joel
on Software grew quickly and gave me a pulpit where I could write
about software development and actually get some people to pay atten-
tion to what I was saying. The site consists of fairly unoriginal thoughts
combined with jokes. It was successful because I used a slightly larger
font than the average web site, making it easy to read. It’s always hard
to figure out how many people read the site, especially when you don’t
bother counting them, but typical articles on that site get read by
somewhere between 100,000 and a million people, depending on how
popular the topic is.

What I do on Joel on Software—writing articles about somewhat
technical topics—is something I learned here in the CS department, too.
Here’s the story behind that. In 1989, Yale was pretty good at AI, and
one of the big name professors, Roger Schank, came and gave a little
talk at Hillel about some of his AI theories about scripts and schemas
and slots and all that kind of stuff. Now essentially, I suspect from read-
ing his work that it was the same speech he’d been giving for twenty
years, and he had spent twenty years of his career writing little programs
using these theories, presumably to test them, and they didn’t work, but
somehow the theories never got discarded. He did seem like a brilliant
man, and I wanted to take a course with him, but he was well known for
hating undergraduates, so the only option was to take this course called
Algorithmic Thinking—CS 115—basically, a watered-down gut group

More from Joel on Software70

IV class designed for poets. It was technically in the CS department, but
the faculty was so completely unimpressed that you were not allowed
to count it toward a CS major. Although it was the largest class by
enrollment in the CS department, I cringed every time I heard my his-
tory-major friends referring to the class as “computer science.” A typical
assignment was to write an essay on whether machines can think or not.
You can see why we weren’t allowed to count it toward a CS degree. In
fact, I would not be entirely surprised if you revoke my degree today,
retroactively, upon learning that I took this class.

The best thing about the Algorithmic Thinking course was that you
had to write a lot. There were thirteen papers—one every week. You
didn’t get grades. Well, you did. Well, OK, there’s a story there. One of
the reasons Schank hated undergrads so much was that they were
obsessed with grades. He wanted to talk about whether computers could
think, and all undergrads wanted to talk about was why their paper got
a B instead of an A. At the beginning of the term, he made a big speech
about how grades are evil and decided that the only grade you could get
on a paper was a little check mark to signify that some grad student read
it. Over time, he wanted to recognize the really good papers, so he added
check-plus, and then there were some really lame papers, so he started
giving out check-minuses, and I think I got a check-plus-plus once. But
grades: never.

And despite the fact that CS 115 didn’t count toward the major, all
this experience writing about slightly technical topics turned out to be
the most useful thing I got out of the CS department. Being able to write
clearly on technical topics is the difference between being a grunt indi-
vidual contributor programmer and being a leader. My first job at
Microsoft was as a program manager on the Excel team, writing the
technical specification for this huge programming system called Visual
Basic for Applications. This document was something like 500 pages
long, and every morning literally hundreds of people came into work
and read my spec to figure out what to do next. That included
programmers, testers, marketing people, documentation writers, and
localizers around the world. I noticed that the really good program man-
agers at Microsoft were the ones who could write really well. Microsoft
flipped its corporate strategy 180 degrees based on a single compelling
e-mail that Steve Sinofsky wrote called “Cornell is Wired” (www.cornell.
edu/about/wired/). The people who get to decide the terms of the

71Talk at Yale

debate are the ones who can write. The C programming language took
over because The C Programming Language by Brian Kernighan and
Dennis Ritchie (Prentice Hall, 1988) was such a great book.

So anyway, those were the highlights of CS: CS 115, in which I
learned to write, one lecture in dynamic logic, in which I learned not to
go to graduate school, and CS 322, in which I learned the rites and ritu-
als of the Unix church and had a good time writing a lot of code. The
main thing you don’t learn with a CS degree is how to develop software,
although you will probably build up certain muscles in your brain that
may help you later if you decide that developing software is what you
want to do. The other thing you can do, if you want to learn how to
develop software, is send your resume to jobs@fogcreek.com and apply
for a summer internship, and we’ll teach you a thing or two about the
subject.

Thank you very much for your time.

More from Joel on Software72

ten

ADVICE FOR COMPUTER
SCIENCE COLLEGE STUDENTS

Sunday, January 2, 2005

Despite the fact that it was only a year or two ago that I was blubbering
about how rich Windows GUI clients were the wave of the future, college
students nonetheless do occasionally e-mail me asking for career advice,
and since it’s recruiting season, I thought I’d write up my standard advice,
which they can read, laugh at, and ignore.

Most college students, fortunately, are brash enough never to bother
asking their elders for advice, which, in the field of computer science, is a
good thing, because their elders are apt to say goofy, antediluvian things
like “The demand for keypunch operators will exceed 100,000,000 by
the year 2010,” and “Lisp careers are really very hot right now.”

I, too, have no idea what I’m talking about when I give advice to col-
lege students. I’m so hopelessly out of date that I can’t really figure out
AIM and still use (horrors!) this quaint old thing called e-mail, which was
popular in the days when music came on flat round plates called CDs.

So you’d be better off ignoring what I’m saying here and instead build-
ing some kind of online software thing that lets other students find people
to go out on dates with.

Nevertheless.
If you enjoy programming computers, count your blessings: you are in

a very fortunate minority of people who can make a great living doing
work they enjoy. Most people aren’t so lucky. The very idea that you can
“love your job” is a modern concept. Work is supposed to be something
unpleasant you do to get money to do the things you actually like doing,
when you’re 65 and can finally retire, if you can afford it, and if you’re

not too old and infirm to do those things, and if those things don’t
require reliable knees, good eyes, and the ability to walk twenty feet
without being out of breath, etc.

What was I talking about? Oh yeah. Advice.
Without further ado, then, here are Joel’s Seven Pieces Of Free

Advice For Computer Science College Students (worth what you paid
for them):

1. Learn how to write before graduating.

2. Learn C before graduating.

3. Learn microeconomics before graduating.

4. Don’t blow off non-CS classes just because they’re boring.

5. Take programming-intensive courses.

6. Stop worrying about all the jobs going to India.

7. No matter what you do, get a good summer internship.

Now for the explanations, unless you’re gullible enough to do all
that stuff just because I tell you to, in which case add this: 8. Seek pro-
fessional help for that self-esteem thing.

Learn how to write before graduating

Would Linux have succeeded if Linus Torvalds hadn’t evangelized
it? As brilliant a hacker as he is, it was Linus’s ability to convey

his ideas in written English via e-mail and mailing lists that made Linux
attract a worldwide brigade of volunteers.

Have you heard of the latest fad, Extreme Programming? Well, with-
out getting into what I think about XP, the reason you’ve heard of it is
because it is being promoted by people who are very gifted writers and
speakers.

Even on the small scale, when you look at any programming organi-
zation, the programmers with the most power and influence are the ones
who can write and speak in English clearly, convincingly, and comfort-
ably. Also, it helps to be tall, but you can’t do anything about that.

More from Joel on Software74

The difference between a tolerable programmer and a great pro-
grammer is not how many programming languages they know, and it’s
not whether they prefer Python or Java. It’s whether they can communi-
cate their ideas. By persuading other people, they get leverage. By
writing clear comments and technical specs, they let other programmers
understand their code, which means other programmers can use and
work with their code instead of rewriting it. Absent this, their code is
worthless. By writing clear technical documentation for end users, they
allow people to figure out what their code is supposed to do, which is
the only way those users can see the value in their code. There’s a lot of
wonderful, useful code buried on SourceForge somewhere that nobody
uses because it was created by programmers who don’t write very well
(or don’t write at all), and so nobody knows what they’ve done, and
their brilliant code languishes.

I won’t hire a programmer unless they can write, and write well, in
English. If you can write, wherever you get hired, you’ll soon find that
you’re getting asked to write the specifications, and that means you’re
already leveraging your influence and getting noticed by management.

Most colleges designate certain classes as “writing intensive,” mean-
ing you have to write an awful lot to pass them. Look for those classes
and take them! Seek out classes in any field that have weekly or daily
written assignments.

Start a journal or weblog. The more you write, the easier it will be,
and the easier it is to write, the more you’ll write, in a virtuous circle.

Learn C before graduating

Part two: C. Notice I didn’t say C++. Although C is becoming increas-
ingly rare, it is still the lingua franca of working programmers. It is

the language they use to communicate with one another, and, more
importantly, it is much closer to the machine than “modern” languages
that you’ll be taught in college like ML, Java, Python, or whatever
trendy junk they teach these days. You need to spend at least a semester
getting close to the machine, or you’ll never be able to create efficient
code in higher level languages. You’ll never be able to work on compilers

75Advice for Computer Science College Students

and operating systems, which are some of the best programming jobs
around. You’ll never be trusted to create architectures for large-scale
projects. I don’t care how much you know about continuations and clo-
sures and exception handling: if you can’t explain why while (*s++ =

*t++); copies a string, or if that isn’t the most natural thing in the world
to you, well, you’re programming based on superstition, as far as I’m
concerned: a medical doctor who doesn’t know basic anatomy, passing
out prescriptions based on what the pharma sales babe said would
work.

Learn microeconomics before
graduating

Super-quick review if you haven’t taken any economics courses: econ
is one of those fields that starts off with a bang, with many useful the-

ories and facts that make sense, can be proven in the field, etc., and then
it’s all downhill from there. The useful bang at the beginning is micro-
economics, which is the foundation for literally every theory in business
that matters. After that things start to deteriorate: you get into macro-
economics (feel free to skip this if you want) with its interesting theories
about things like the relationship of interest rates to unemployment
which, er, seem to be disproven more often than they are proven, and
after that it just gets worse and worse, and a lot of econ majors switch
out to physics, which gets them better Wall Street jobs, anyway. But
make sure you study microeconomics, because you have to know about
supply and demand, you have to know about competitive advantage,
and you have to understand NPVs and discounting and marginal utility
before you’ll have any idea why business works the way it does.

Why should CS majors learn econ? Because a programmer who
understands the fundamentals of business is going to be a more valuable
programmer, to a business, than a programmer who doesn’t. That’s all
there is to it. I can’t tell you how many times I’ve been frustrated by pro-
grammers with crazy ideas that make sense in code but don’t make sense
in capitalism. If you understand this stuff, you’re a more valuable

More from Joel on Software76

programmer, and you’ll get rewarded for it, for reasons that you’ll also
learn in microeconomics.

Don’t blow off non-CS classes just
because they’re boring

Blowing off your non-CS courses is a great way to get a lower GPA.
Never underestimate how big a deal your GPA is. Lots and lots of

recruiters and hiring managers, myself included, go straight to the GPA
when they scan a resume, and we’re not going to apologize for it. Why?
Because the GPA, more than any other one number, reflects the sum of
what dozens of professors over a long period of time in many different
situations think about your work. SAT scores? Ha! That’s one test over
a few hours. The GPA reflects hundreds of papers and midterms and
classroom participations over four years. Yeah, it’s got its problems.
There has been grade inflation over the years. Nothing about your GPA
says whether you got that GPA taking easy classes in home economics at
Podunk Community College or studying graduate-level quantum
mechanics at Caltech. Eventually, after I screen out all the 2.5 GPAs
from Podunk Community, I’m going to ask for transcripts and recom-
mendations. And then I’m going to look for consistently high grades, not
just high grades in computer science.

Why should I, as an employer looking for software developers, care
about what grade you got in European History? After all, history is
boring. Oh, so, you’re saying I should hire you because you don’t work
very hard when the work is boring? Well, there’s boring stuff in pro-
gramming, too. Every job has its boring moments. And I don’t want to
hire people who only want to do the fun stuff.

I took this course in college called Cultural Anthropology because I
figured, what the heck, I need to learn something about anthropology,
and this looked like an interesting survey course.

Interesting? Not even close! I had to read these incredibly monoto-
nous books about Indians in the Brazilian rain forest and Trobriand
Islanders, who, with all due respect, are not very interesting to me. At
some point, the class was so incredibly wearisome that I longed for

77Advice for Computer Science College Students

something more exciting, like watching grass grow. I had completely
lost interest in the subject matter. Completely, and thoroughly. My eyes
teared, I was so tired of the endless discussions of piling up yams. I don’t
know why the Trobriand Islanders spend so much time piling up yams,
I can’t remember any more, it’s incredibly boring, but It Was Going To
Be On The Midterm, so I plowed through it. I eventually decided that
cultural anthropology was going to be my Boredom Gauntlet: my per-
sonal obstacle course of tedium. If I could get an A in a class where the
tests required me to learn all about potlatch blankets, I could handle
anything, no matter how boring. The next time I accidentally get stuck
in Lincoln Center sitting through all eighteen hours of Wagner’s “Ring
Cycle,” I could thank my studies of the Kwakiutl for making it seem
pleasant by comparison.

I got an A. And if I could do it, you can do it.

Take programming-intensive courses

Iremember the exact moment I vowed never to go to graduate school.
It was in a course on dynamic logic, taught by the dynamic Lenore

Zuck at Yale, one of the brightest of an array of very bright CS faculty.
Now, my murky recollections are not going to do proper credit to

this field, but let me muddle through anyway. The idea of formal logic is
that you prove things are true because other things are true. For exam-
ple, thanks to formal logic, “Everyone who gets good grades will get
hired” plus “Johnny got good grades” allows you to discover the new
true fact “Johnny will get hired.” It’s all very quaint, and it only takes
ten seconds for a deconstructionist to totally tear apart everything useful
in formal logic so you’re left with something fun, but useless.

Now, dynamic logic is the same thing, with the addition of time. For
example, “After you turn the light on, you can see your shoes” plus
“The light went on in the past” implies “You can see your shoes.”

Dynamic logic is appealing to brilliant theoreticians like Professor
Zuck because it holds up the hope that you might be able to formally
prove things about computer programs, which could be very useful, if,
for example, you could formally prove that the Mars Rover’s flash card

More from Joel on Software78

wouldn’t overflow and cause itself to be rebooted again and again all
day long when it’s supposed to be driving around the red planet looking
for Marvin the Martian.

So in the first day of that class, Dr. Zuck filled up two entire white-
boards and quite a lot of the wall next to the whiteboards proving that
if you have a light switch, and the light was off, and you flip the switch,
the light will then be on.

The proof was insanely complicated, and very error-prone. It was
harder to prove that the proof was correct than to convince yourself of
the fact that switching a light switch turns on the light. Indeed, the mul-
tiple whiteboards of proof included many skipped steps, skipped
because they were too tedious to go into formally. Many steps were
reached using the long-cherished method of proof by induction, others
by proof by reductio ad absurdum, and still others using proof by grad-
uate student.

For our homework, we had to prove the converse: if the light was off,
and it’s on now, prove that you flipped it.

I tried, I really did.
I spent hours in the library trying.
After a couple of hours, I found a mistake in Dr. Zuck’s original

proof, which I was trying to emulate. Probably I copied it down wrong,
but it made me realize something: if it takes three hours of filling up
blackboards to prove something trivial, allowing hundreds of opportu-
nities for mistakes to slip in, this mechanism would never be able to
prove things that are interesting.

Not that that matters to dynamic logicians: they’re not in it for use-
ful, they’re in it for tenure.

I dropped the class and vowed never to go to graduate school in com-
puter science.

The moral of the story is that computer science is not the same as
software development. If you’re really, really lucky, your school might
have a decent software development curriculum, although they might
not, because elite schools think that teaching practical skills is better left
to the technical-vocational institutes and the prison rehabilitation
programs. You can learn mere programming anywhere. We are Yale
University, and we Mold Future World Leaders. You think your
$160,000 tuition entitles you to learn about while loops? What do you
think this is, some fly-by-night Java seminar at the Airport Marriott?
Pshaw.

79Advice for Computer Science College Students

The trouble is, we don’t really have professional schools in software
development, so if you want to be a programmer, you probably majored
in computer science. Which is a fine subject to major in, but it’s a differ-
ent subject from software development.

If you’re lucky, though, you can find lots of programming-intensive
courses in the CS department, just like you can find lots of courses in the
History department where you’ll write enough to learn how to write.
And those are the best classes to take. If you love programming, don’t
feel bad if you don’t understand the point of those courses in lambda cal-
culus or linear algebra where you never touch a computer. Look for the
400-level courses with “Practicum” in the name. This is an attempt
to hide a useful (shudder) course from the Liberal Artsy Fartsy
Administration by dolling it up with a Latin name.

Stop worrying about all the jobs
going to India

Well, OK, first of all, if you’re already in India, you never really had
to worry about this, so don’t even start worrying about all the

jobs going to India. They’re wonderful jobs, enjoy them in good health.
But I keep hearing that enrollment in CS departments is dropping

perilously, and one reason I hear for it is “Students are afraid to go into
a field where all the jobs are going to India.” That’s so wrong for so
many reasons. First, trying to choose a career based on a current busi-
ness fad is foolish. Second, programming is incredibly good training for
all kinds of fabulously interesting jobs, such as business process engi-
neering, even if every single programming job does go to India and
China. Third, and trust me on this, there’s still an incredible shortage of
the really good programmers, here and in India. Yes, there are a bunch
of out-of-work IT people making a lot of noise about how long they’ve
been out of work, but you know what? At the risk of pissing them off,
really good programmers do have jobs. Fourth, you got any better ideas?
What are you going to do, major in history? Then you’ll have no choice
but to go to law school. And there’s one thing I do know: 99% of work-
ing lawyers hate their jobs, hate every waking minute of it, and they’re

More from Joel on Software80

working ninety-hour weeks, too. Like I said: if you love to program
computers, count your blessings: you are in a very fortunate minority of
people who can make a great living doing work they love.

Anyway, I don’t think students really think about this. The drop in
CS enrollment is merely a resumption of historically normal levels after
a big bubble in enrollment caused by dot-com mania. That bubble con-
sisted of people who didn’t really like programming but thought the sexy
high-paid jobs and the chances to IPO at age 24 were to be found in the
CS department. Those people, thankfully, are long gone.

No matter what you do, get a good
summer internship

Smart recruiters know that the people who love programming wrote a
database for their dentist in eighth grade, and taught at computer

camp for three summers before college, and built the content manage-
ment system for the campus newspaper, and had summer internships at
software companies. That’s what they’re looking for on your resume.

If you enjoy programming, the biggest mistake you can make is to
take any kind of job—summer, part time, or otherwise—that is not a
programming job. I know, every other 19-year-old wants to work in the
mall folding shirts, but you have a skill that is incredibly valuable even
when you’re 19, and it’s foolish to waste it folding shirts. By the time
you graduate, you really should have a resume that lists a whole bunch
of programming jobs. The A&F graduates are going to be working at
Enterprise Rent-a-Car “helping people with their rental needs.” (Except
for Tom Welling. He plays Superman on TV.)

To make your life really easy, and to underscore just how completely
self-serving this whole essay is, my company, Fog Creek Software, has
summer internships in software development that look great on
resumes. “You will most likely learn more about software coding, devel-
opment, and business with Fog Creek Software than any other
internship out there,” says Ben, one of the interns from last summer, and
not entirely because I sent a goon out to his dorm room to get him to say
that. The application deadline is February 1. Get on it.

81Advice for Computer Science College Students

If you follow my advice, you, too, may end up selling stock in
Microsoft way too soon, turning down jobs at Google because you want
your own office with a door, and other stupid life decisions, but they
won’t be my fault. I told you not to listen to me.

More from Joel on Software82

part three

The Impact of Design

eleven

FONT SMOOTHING,
ANTI-ALIASING, AND

SUBPIXEL RENDERING

Tuesday, June 12, 2007

Apple and Microsoft have always disagreed in how to display fonts on
computer displays. Today, both companies are using subpixel rendering
to coax sharper-looking fonts out of typical low-resolution screens.
Where they differ is in philosophy.

• Apple generally believes that the goal of the algorithm should be
to preserve the design of the typeface as much as possible, even at
the cost of a little bit of blurriness.

• Microsoft generally believes that the shape of each letter should
be hammered into pixel boundaries to prevent blur and improve
readability, even at the cost of not being true to the typeface.

Now that Safari for Windows is available, which goes to great trouble
to use Apple’s rendering algorithms, you can actually compare the philoso-
phies side by side on the very same monitor and see what I mean, as in the
following illustration. I think you’ll notice the difference. Apple’s fonts
are indeed fuzzy, with blurry edges; but at small font sizes, there seems to
be much more variation between different font families, because their ren-
dering is truer to what the font would look like if it were printed at high
resolution. (For the on screen view, visit http://www.joelonsoftware.
com/items/2007/06/12.html.)

The difference originates from Apple’s legacy in desktop publishing
and graphic design. The nice thing about the Apple algorithm is that you
can lay out a page of text for print, and onscreen, you get a nice approx-
imation of the finished product. This is especially significant when you
consider how dark a block of text looks. Microsoft’s mechanism of ham-
mering fonts into pixels means that they don’t really mind using thinner
lines to eliminate blurry edges, even though this makes the entire para-
graph lighter than it would be in print.

The advantage of Microsoft’s method is that it works better for
onscreen reading. Microsoft pragmatically decided that the design of the
typeface is not so holy, and that sharp onscreen text that’s comfortable
to read is more important than the typeface designer’s idea of how light
or dark an entire block of text should feel. Indeed, Microsoft actually
designed font faces for onscreen reading, like Georgia and Verdana,
around the pixel boundaries; these are beautiful onscreen but don’t have
much character in print.

Typically, Apple chose the stylish route, putting art above practical-
ity, because Steve Jobs has taste, while Microsoft chose the comfortable
route, the measurably pragmatic way of doing things that completely

More from Joel on Software86

lacks in panache. To put it another way, if Apple were Target, Microsoft
would be Wal-Mart.

Now, on to the question of what people prefer. Jeff Atwood’s post
(www.codinghorror.com/blog/archives/000884.html) comparing the
two font technologies side by side generated rather predictable heat:
Apple users liked Apple’s system, while Windows users liked Microsoft’s
system. This is not just standard fanboyism; it reflects the fact that when
you ask people to choose a style or design that they prefer, unless they
are trained, they will generally choose the one that looks most familiar.
In most matters of taste, when you do preference surveys, you’ll find
that most people don’t really know what to choose and will opt for the
one that seems most familiar. This goes for anything from silverware
(people pick out the patterns that match the silverware they had grow-
ing up) to typefaces to graphic design: unless people are trained to know
what to look for, they’re going to pick the one that is most familiar.

Which is why Apple engineers probably feel like they’re doing a huge
service to the Windows community, bringing their “superior” font ren-
dering technology to the heathens, and it explains why Windows users
are generally going to think that Safari’s font rendering is blurry and
strange, and they don’t know why, they just don’t like it. Actually,
they’re thinking, “Whoa! That’s different. I don’t like different. Why
don’t I like these fonts? Oh, when I look closer, they look blurry. That
must be why.”

87Font Smoothing, Anti-Aliasing, and Subpixel Rendering

twelve

A GAME OF INCHES

Thursday, June 7, 2007

“Did someone leave the radio on in the bathroom?” I asked Jared. There
was a faint sound of classical music.

“No. It’s coming from outside. It started while you were away and
happens every night.”

We live in an apartment building in New York. There are neighbors on
all sides. We’re used to hearing TV shows from below, and the little kid in
the apartment directly above us has a favorite game: throwing a bunch of
marbles on the floor and then throwing himself around the room vio-
lently. I’m not sure how you keep score. As I write this, he’s running
rapidly from room to room crashing into things. I can’t wait until he’s old
enough for paintball.

Anyway. This classical-music-late-at-night thing had never happened
before.

Worse, it was some kind of Sturm-und-Drang romantic crap that was
making me angry right when I wanted to fall asleep.

Eventually, the music stopped, and I was able to drift off to sleep. But
the next night, when the music resumed at midnight, I was really worn
out, and it was more self-important Wagner rubbish, with pompous
crescendos that consistently woke me up every time I finally drifted off to
sleep, and I had no choice but to go sit in the living room and look at pic-
tures of lolcats until it stopped, which it finally did, around 1 a.m.

The next night I had had enough. When the music started at about
midnight, I got dressed and started exploring the apartment building. I
crept around the halls, listening at every door, trying to figure out where
the music was coming from. I poked my head out windows and found an
unlocked door leading to an airshaft where the music was amazingly

loud. I climbed up and down the stairs, and listened closely from the
window on each and every landing, until I was pretty convinced that the
problem was from dear old Mrs. C’s apartment, #2B, directly below us.

I didn’t think Mrs. C, who is probably in her 60s, was even awake
that late, let alone listening to music loudly, but I briefly entertained the
possibility that the local classical music station was doing the “Ring
Cycle” or something, and she was staying up late to hear it.

Not bloody likely.
One thing I had noticed was that the music seemed to go on at mid-

night every night and off at 1:00 a.m. Somehow, that made me think it
was a clock radio, which probably had the alarm factory set to 12:00.

I couldn’t bring myself to wake up an old lady downstairs on the
mere suspicion that music was coming from her apartment. Frustrated,
I went back to my apartment and caught up on xkcd. I was depressed
and angry, because I hadn’t solved the problem. I festered and scowled
all the next day.

The next evening, I knocked on Mrs. C’s door. The super had told me
she was going away for the entire summer the next day, so if the prob-
lem was coming from her apartment, I better find out pronto.

“Sorry to bother you,” I said. “I’ve noticed that every night around
midnight there’s loud classical music coming from the airshaft behind
our apartments, and it’s keeping me awake.”

“Oh no, it’s not me!” she insisted, as I suspected she would. Of
course not: she probably goes to sleep at a completely normal hour and
certainly never plays loud music that bothers the neighbors!

I thought she was a little hard of hearing and probably never noticed
the thing blaring away from her spare room in the middle of the night.
Or maybe she was a good sleeper.

It took a few minutes, but I finally convinced her to check if there
was any kind of clock radio in the room below my window.

Turns out there was. Right in an open window beneath my own bed-
room window. When I saw that it was tuned to 96.3, WQXR, I knew I
had found the culprit.

“Oh, that thing? I have no idea how to use that thing. I never use it,”
she said. “I’ll disconnect it completely.”

“Not necessary,” I said, and turned off the alarm, set the volume to
zero, and, in my late-onset OCD, set the clock to the exact time.

More from Joel on Software90

Mrs. C was terribly apologetic, but it really wasn’t her fault. It took
me—me!—quite a while to figure out how to operate the damn clock
radio, and let me tell you, sonny boy, I know a thing or two about clock
radios. The UI was terrible. Your average little old lady didn’t stand a
chance.

Is it the clock radio’s fault? Sort of. It was too hard to use. It had an
alarm that continued to go off daily even if nobody touched it the day
before, which is not the greatest idea. And there’s no reason to reset the
alarm time to midnight after a power outage. 7:00 a.m. would be a com-
pletely civilized default.

Somehow, over the last few weeks, I’ve become hypercritical. I’m
always looking for flaws in things, and when I find them, I become
single-minded about fixing them. It’s a particular frame of mind, actu-
ally, that software developers get into when they’re in the final
debugging phase of a new product.

Over the last few weeks, I’ve been writing all the documentation for
the next big version of FogBugz. As I write things, I try them out, either
to make sure they work the way I think they should or to get screen-
shots. And every hour or so, bells go off. “Wait a minute! What just
happened? That’s not supposed to work like that!”

And since it’s software, I can always fix it. HA HA! Just kidding! I
can’t make head or tail out of the code any more. I enter a bug, and
someone with a clue fixes it.

Dave Winer says, “To create a usable piece of software, you have to
fight for every fix, every feature, every little accommodation that will get
one more person up the curve. There are no shortcuts. Luck is involved,
but you don’t win by being lucky, it happens because you fought for
every inch” (www.scripting.com/2002/01/12.html).

Commercial software—the kind you sell to other people—is a game
of inches.

Every day you make a tiny bit of progress. You make one thing just
a smidgen better. You make the alarm clock default to 7:00 a.m. instead
of 12:00 midnight. A tiny improvement that will barely benefit anyone.
One inch.

There are thousands and tens of thousands of these tiny things.
It takes a mindset of constant criticism to find them. You have to

reshape your mind until you’re finding fault with everything. Your sig-
nificant others go nuts. Your family wants to kill you. When you’re

91A Game of Inches

walking to work and you see a driver do something stupid, it takes all
your willpower to resist going up to the driver and explaining to him
why he nearly killed that poor child in the wheelchair.

And as you fix more and more of these little details, as you polish
and shape and shine and craft the little corners of your product, some-
thing magical happens. The inches add up to feet, the feet add up to
yards, and the yards add up to miles. And you ship a truly great prod-
uct. The kind of product that feels great, that works intuitively, that
blows people away. The kind of product where that one-in-a-million
user doing that one-in-a-million unusual thing finds that not only does it
work, but it’s beautiful: even the janitor’s closets of your software have
marble floors and solid-core oak doors and polished mahogany wain-
scoting.

And that’s when you know it’s great software.
Congratulations to the FogBugz 6.0 team, outlandishly good players

of the game of inches, who shipped their first beta today, on track for
final release at the end of the summer. This is the best product they’ve
ever produced. It will blow you away.

More from Joel on Software92

thirteen

THE BIG PICTURE

Sunday, January 21, 2007

A review of Dreaming in Code, by Scott Rosenberg (Three Rivers Press,
2007)

Eyes work using a page-fault mechanism. They’re so good at it that you
don’t even notice.

You can only see at a high resolution in a fairly small area, and even
that has a big fat blind spot right exactly in the middle, but you still walk
around thinking you have an ultra-high-resolution panoramic view of
everything. Why? Because your eyes move really fast, and, under ordinary
circumstances, they are happy to jump instantly to wherever you need

them to jump to. And your mind supplies this really complete abstrac-
tion, providing you with the illusion of complete vision when all you
really have is a very small area of high-res vision, a large area of
extremely low-res vision, and the ability to page-fault-in anything you
want to see—so quickly that you walk around all day thinking you have
the whole picture projected internally in a little theater in your brain.

This is really, really useful, and lots of other things work this way,
too. Your ears are good at tuning in important parts of conversations.
Your fingers reach around and touch anything they need to, whether it’s
a fine merino wool sweater or the inside of your nose, giving you a full
picture of what everything feels like. When you dream, your mind asks
all kinds of questions that it’s used to asking the senses (What’s that?
Look over there!), but your senses are temporarily turned off (you are,
after all, asleep), so they get back sort of random answers, which you
combine into a funny story in your brain called a dream. And then when
you try to recount the dream to your boyfriend in the morning, even
though it seemed totally, completely realistic, you suddenly realize that
you don’t know what happened, actually, so you have to make shit up.
If you had stayed asleep for another minute or two, your brain would
have asked your senses what kind of mammal was swimming with you
in the rose bush, and gotten back some retarded, random answer (a
platypus!), but you woke up, so until you tried to tell the story, you
didn’t even realize that you needed to know what was in the rose bushes
with you to make the story coherent to your partner. Which it never is.
So please don’t tell me about your dreams.

One of the unfortunate side effects is that your mind gets into a bad
habit of overestimating how clearly it understands things. It always
thinks it has The Big Picture even when it doesn’t.

This is a particularly dangerous trap when it comes to software
development. You get some big picture idea in your head for what you
want to do, and it all seems so crystal clear that it doesn’t even seem like
you need to design anything. You can just dive in and start implement-
ing your vision.

Say, for example, that your vision is to rebuild an old DOS personal
information manager, which was really really great but totally unappre-
ciated. It seems easy. Everything about how the whole thing works seems
so obvious, you don’t even try to design the thing . . . you just hire a
bunch of programmers and start banging out code.

More from Joel on Software94

Now you’ve made two mistakes.
Number one, you fell for that old overconfidence trick of your mind.

“Oh, yeah, we totally know how to do this! It’s all totally clear to us. No
need to spec it out. Just write the code.”

Number two, you hired programmers before you designed the thing.
Because the only thing harder than trying to design software is trying to
design software as a team.

I can’t tell you how many times I’ve been in a meeting with even one
or two other programmers, trying to figure out how something should
work, and we’re just not getting anywhere. So I go off in my office and
take out a piece of paper and figure it out. The very act of interacting
with a second person was keeping me from concentrating enough to
design the dang feature.

What kills me is the teams who get into the bad habit of holding
meetings every time they need to figure out how something is going to
work. Did you ever try to write poetry in a committee meeting? It’s like
a bunch of fat construction guys trying to write an opera while sitting on
the couch watching Baywatch. The more fat construction guys you add
to the couch, the less likely you are to get opera out of it.

At least turn off the TV!
Now, it would be shockingly presumptuous of me to try to guess

what happened on the Chandler team, and why it’s taken them millions
of dollars and several years to get to where they are now, which is, they
have a pretty buggy and incomplete calendar application that’s not very
impressive compared to the fifty-eight me-too Web 2.0 calendars that
came out last year, each of which was developed by two college kids in
their spare time, one of whom really mostly just drew mascots.

Chandler doesn’t even have a mascot!
Like I say, I can’t presume to know what went wrong. Maybe noth-

ing. Maybe they feel like they’re right on track. Scott Rosenberg’s
excellent new book, which was supposed to be a Soul of a New Machine
for the hottest open source startup of the decade, ends up, in frustration,
with Scott cutting the story short because Chandler 1.0 was just not
going to happen any time soon (and presumably Rosenberg couldn’t run
the risk that we wouldn’t be using books at all by the time it shipped,
opting instead to absorb knowledge by taking a pill).

Still, it’s a great look at one particular type of software project: the
kind that ends up spinning and spinning its wheels without really going

95The Big Picture

anywhere because the vision was too grand and the details were a little
short. Near as I can tell, Chandler’s original vision was pretty much just
to be “revolutionary.” Well, I don’t know about you, but I can’t code
“revolutionary.” I need more details to write code. Whenever the spec
describes the product in terms of adjectives (“It will be extremely cool”)
rather than specifics (“It will have brushed-aluminum title bars and all
the icons will be reflected a little bit, as if placed on a grand piano”), you
know you’re in trouble.

The only concrete design ideas, as far as I could tell from Rosenberg’s
book, were “peer-to-peer,” “no silos,” and “natural language date inter-
pretation.” This may be a limitation of the book, but the initial design
sure seemed to be extremely vague.

“Peer-to-peer” was the raison d’être of Chandler . . . why should you
have to buy Microsoft Exchange Server to coordinate schedules? It
turned out that peer-to-peer synchronization was too hard, or some-
thing, and this feature was cut. Now there’s a server called Cosmo.

“No silos” was supposed to mean that instead of having your e-mail
in one silo, and your calendar in another silo, and your reminder notes
in a third, there would just be a single unified silo holding everything.

As soon as you start asking questions about “no silos,” you realize
it’s not going to work. Do you put your e-mail on the calendar? Where?
On the day when it arrived? So now I have 200 Viagra ads on Friday
obscuring the one really important shareholder meeting?

Eventually, “no silos” got designed into this idea of stamps, so, for
example, you could “stamp” any document or note or calendar item
with an e-mail stamp, and suddenly that item could be mailed to anyone.
Guess what? That feature has been in Microsoft Office for the last
decade or so. They finally took it out in Office 2007 because nobody
cared. There are too many easy ways to e-mail people things.

Indeed, I think the idea of “no silos” is most appealing to architec-
ture astronauts, the people who look at subclasses and see abstract base
classes, and who love to move functionality from the subclass into the
base class for no good reason other than architectural aesthetics. This is
usually a terrible user interface design technique. The way you make
users understand your program model is with metaphors. When you
make things look, feel, and, most importantly, behave like things in the
real world, users are more likely to figure out how to use the program,
and the app will be easier to use. When you try to combine two very

More from Joel on Software96

dramatically different real-world items (e-mail and appointments) into
the same kind of thing in the user interface, usability suffers because
there’s no longer a real-world metaphor that applies.

The other cool thing that Mitchell Kapor kept telling everyone who
would listen is that Agenda would let you type things like “Next
Tuesday,” and magically you’d get an appointment for next Tuesday.
This is slicker than heck, but every half-decent calendar program for the
last decade has done this. Not revolutionary.

The Chandler team also overestimated how much help they would
get from volunteers. Open source doesn’t quite work like that. It’s really
good at implementing copycat features, because there’s a spec to work
from: the implementation you’re copying. It’s really good at Itch
Scratching features. I need a command-line argument for EBCDIC, so
I’ll add it and send in the code. But when you have an app that doesn’t
do anything yet, nobody finds it itchy. They’re not using it. So you don’t
get volunteers. Almost everyone on the Chandler dev team got paid.

Again, I must forcefully apologize to the Chandler team if Rosenberg
missed the point somehow, or if he gave a completely incorrect impres-
sion of what was really holding up progress, and my bias—to blame
these kinds of debacles on a failure to design—is showing.

All that said, one good thing did come out of the project: a fascinat-
ing book in the style of Soul of a New Machine and Showstopper about
a software development project that failed to converge. Highly recom-
mended.

97The Big Picture

fourteen

CHOICES = HEADACHES

Tuesday, November 21, 2006

I’m sure there’s a whole team of UI designers, programmers, and testers
who worked very hard on the Off button in Windows Vista, but seriously,
is this the best you could come up with?

Every time you want to leave your computer, you have to choose
between nine, count them, nine options: two icons and seven menu items.
The two icons, I think, are shortcuts to menu items. I’m guessing the lock
icon does the same thing as the Lock menu item, but I’m not sure which
menu item the on/off icon corresponds to.

On many laptops, there are also four FN+key combinations to power
off, hibernate, sleep, etc. That brings us up to thirteen choices, and, oh,
yeah, there’s an on/off button, fourteen, and you can close the lid, fifteen.
A total of fifteen different ways to shut down a laptop that you’re
expected to choose from.

The more choices you give people, the harder it is for them to choose,
and the unhappier they’ll feel. See, for example, Barry Schwartz’s book,

The Paradox of Choice: Why More Is Less (Harper Perennial, 2005).
Let me quote from the Publishers Weekly review: “Schwartz, drawing
extensively on his own work in the social sciences, shows that a be-
wildering array of choices floods our exhausted brains, ultimately
restricting instead of freeing us. We normally assume in America that
more options (‘easy fit’ or ‘relaxed fit’?) will make us happier, but
Schwartz shows the opposite is true, arguing that having all these
choices actually goes so far as to erode our psychological well-being.”

The fact that you have to choose between nine different ways of turn-
ing off your computer every time just on the Start menu, not to mention
the choice of hitting the physical on/off button or closing the laptop lid,
produces just a little bit of unhappiness every time.

Can anything be done? It must be possible. iPods don’t even have an
on/off switch. Here are some ideas.

If you’ve spoken to a nongeek recently, you may have noticed that
they have no idea what the difference is between Sleep and Hibernate.
They could be trivially merged. One option down.

Switch User and Lock can be combined by letting a second user log
on when the system is locked. That would probably save a lot of forced
logouts anyway. Another option down.

Once you’ve merged Switch User and Lock, do you really need Log
Off? The only thing Log Off gets you is that it exits all running pro-
grams. But so does powering off, so if you’re really concerned about
exiting all running programs, just power off and on again. One more
option gone.

Restart can be eliminated. 95% of the time you need this because of
an installation that prompted you to restart anyway. For the other cases,
you can just turn the power off and then turn it on again. Another
option goes away. Less choice, less pain.

Of course, you should eliminate the distinction between the icons
and the menu. That eliminates two more choices. We are down to

Sleep/Hibernate

Switch User/Lock

Shut Down

What if we combined Sleep, Hibernate, Switch User, and Lock
modes? When you go into this mode, the computer flips to the Switch

More from Joel on Software100

User screen. If nobody logs on for about 30 seconds, it sleeps. A few
minutes later, it hibernates. In all cases, it’s locked. So now we’ve got
two options left:

1. I am going away from my computer now.

2. I am going away from my computer now, but I’d like the power
to be really off.

Why do you want the power off? If you’re concerned about power
usage, let the power management software worry about that. It’s
smarter than you are. If you’re going to open the box and don’t want to
get shocked, well, just powering off the system doesn’t really completely
make it safe to open the box; you have to unplug it anyway. So, if
Windows used RAM that was effectively nonvolatile, by swapping
memory out to flash drives during idle time, effectively you would be
able to remove power whenever you’re in “away” mode without losing
anything. Those new hybrid hard drives can make this super fast.

So now we’ve got exactly one log off button left. Call it “b’bye”.
When you click b’bye, the screen is locked, and any RAM that hasn’t
already been copied out to flash is written. You can log back on, or any-
one else can log on and get their own session, or you can unplug the
whole computer.

Inevitably, you are going to think of a long list of intelligent, defensi-
ble reasons why each of these options is absolutely, positively essential.
Don’t bother. I know. Each additional choice makes complete sense until
you find yourself explaining to your uncle that he has to choose between
fifteen different ways to turn off a laptop.

This highlights a style of software design shared by Microsoft and
the open source movement, in both cases driven by a desire for
consensus and for Making Everybody Happy, but it’s based on the mis-
conceived notion that lots of choices make people happy, which we
really need to rethink.

101Choices = Headaches

fifteen

IT’S NOT JUST USABILITY

Monday, September 6, 2004

For years and years, self-fashioned pundits, like, uh, me, have been nat-
tering endlessly about usability and how important it is to make software
usable. Jakob Nielsen has a mathematical formula he’ll reveal to you in
exchange for $122 that you can use to calculate the value of usability. (If
the expected value of usability is greater than $122, I guess you make a
profit.)

I have a book you can buy for a lot less—User Interface Design for
Programmers (Apress, 2001)—that tells you some of the principles of
designing usable software, but there’s no math involved, and you’ll be out
the price of the book.

In that book, on page 31, I showed an example from what was, at the
time, the most popular software application on earth, Napster. The main
Napster window used buttons to flip between the five screens. Due to a
principle in usability called affordance, instead of buttons, it really should
have had tabs, which was the point I was trying to make.

And yet, Napster was the most popular software application on
earth.

In an early version of the manuscript, I actually wrote something like
“This just goes to show you that usability ain’t all that important,”
which was an odd thing to be writing in a book about usability. I was
sort of relieved when the typesetter announced that I had to shorten that
paragraph. So I deleted the sentence.

But there’s a scary element of truth to it—scary to UI professionals,
at least: an application that does something really great that people
really want to do can be pathetically unusable, and it will still be a hit.
And an application can be the easiest thing in the world to use, but if it
doesn’t do anything anybody wants, it will flop. UI consultants are con-
stantly on the defensive, working up improbable ROI formulas about
the return on investment clients will get from their $75,000 usability
project, precisely because usability is perceived as “optional,” and the
scary thing is, in a lot of cases, it is. In a lot of cases. The CNN web site
has nothing to be gained from a usability consultant. I’ll go out on a
limb and say that there is not a single content-based web site online that
would gain even one dollar in revenue by improving usability, because

More from Joel on Software104

content-based web sites (by which I mean web sites that are not also
applications) are already so damn usable.

Anyway.
My goal today is not to whine about how usability is not important

. . . usability is important at the margins, and there are lots of examples
where bad usability kills people in small planes, creates famine and
pestilence, etc.

My goal today is to talk about the next level of software design
issues, after you’ve got the UI right: designing the social interface.

I need to explain that, I guess.
Software in the 1980s, when usability was “invented,” was all about

computer-human interaction. A lot of software still is. But the Internet
brings us a new kind of software: software that’s about human-human
interaction.

Discussion groups. Social networking. Online classifieds. Oh, and,
uh, e-mail. It’s all software that mediates between people, not between
the human and the computer.

When you’re writing software that mediates between people, after
you get the usability right, you have to get the social interface right. And
the social interface is more important. The best UI in the world won’t
save software with an awkward social interface.

The best way to illustrate social interfaces is with a few examples of
failures and successes.

Some examples

First, a failing social interface. Every week I get an e-mail from some-
body I’ve never heard of asking me to become a part of their social

network. I usually don’t know the person, so I feel a little bit miffed and
delete the message. Someone told me why this happens: one of those
social networking software companies has a tool that goes through your
e-mail address book and sends e-mail to everyone asking them to join in.
Now, combine this with the feature that some e-mail software saves the
sender’s address of every incoming message and the feature that when
you go to sign up for the Joel on Software e-mail bulletin you get a

105It’s Not Just Usability

confirmation message asking if you really want to join, and voilà: all
kinds of people whom I don’t know are running software that is inad-
vertently asking me to confirm that I’m their friend. Thank you for
subscribing to my newsletter, but no, I’m not going to introduce you to
Bill Gates. I currently have a policy of not joining any of these social net-
works, because they strike me as going strongly against the grain of how
human networks really work.

Now, let’s look at a successful social interface. Many humans are less
inhibited when they’re typing than when they are speaking face to face.
Teenagers are less shy. With cellphone text messages, they’re more likely
to ask each other out on dates. That genre of software was so successful
socially that it’s radically improving millions of people’s love lives (or at
least their social calendars). Even though text messaging has a ghastly
user interface, it became extremely popular with the kids. The joke of it
is that there’s a much better user interface built into every cellphone for
human-to-human communication: this clever thing called phone calls.
You dial a number, after which everything you say can be heard by the
other person and vice versa. It’s that simple. But it’s not as popular in
some circles as this awkward system where you break your thumbs typ-
ing huge strings of numbers just to say “Damn you’re hot,” because that
string of numbers gets you a date, and you would never have the guts to
say “Damn you’re hot” using your larynx.

Another social software success is eBay. When I first heard about
eBay, I said, “Nonsense! That will never work. Nobody’s going to send
money to some random person they encountered on the Internet in
hopes that person will, out of the goodness of their hearts, actually ship
them some merchandise.” A lot of people thought this. We were all
wrong. Wrong, wrong, wrong. eBay made a big bet on the cultural
anthropology of human beings and won. The great thing about eBay is
that it was a huge success precisely because it seemed like a terrible idea
at the time, and so nobody else tried it, until eBay locked in the network
effects and first-mover advantage.

In addition to absolute success and failures in social software, there
are also social software side effects. The way social software behaves
determines a huge amount about the type of community that develops.
Usenet clients have this big-R command, which is used to reply to a mes-
sage while quoting the original message with those elegant >’s in the left

More from Joel on Software106

column. And the early newsreaders were not threaded, so if you wanted
to respond to someone’s point coherently, you had to quote them using
the big-R feature. This led to a particularly Usenet style of responding to
an argument: the line-by-line nitpick. It’s fun for the nitpicker but never
worth reading. (By the way, the political bloggers, newcomers to the
Internet, have reinvented this technique, thinking they were discovering
something fun and new, and called it fisking, for reasons I won’t go into.
Don’t worry, it’s not dirty.) Even though human beings had been
debating for centuries, a tiny feature of a software product produced a
whole new style of debating.

Small changes in software can make big differences in the way that
software supports, or fails to support, its social goals. Danah Boyd has
a great critique of social software networks, “Autistic Social Software”
(www.danah.org/papers/Supernova2004.html), blasting the current
generation of this software for forcing people to behave autistically:

Consider, for a moment, the recent surge of interest in articulated
social networks such as Friendster, Tribe, LinkedIn, Orkut, and
the like. These technologies attempt to formalize how people
should construct and manage their relationships. They assume
that you can rate your friends. In some cases, they procedurally
direct how people can engage with new people by giving you an
absolute process through which you can contact others.

While this approach certainly has its merits because it is compu-
tationally possible, I’m terrified when people think that this
models social life. It’s so simplistic that people are forced to
engage as though they have autism, as though they must interact
procedurally. This approach certainly aids people who need that
kind of systematization, but it is not a model that universally
makes sense. Furthermore, what are the implications of having
technology prescribe mechanistic engagement? Do we really want
a social life that encourages autistic interactions?

When software implements social interfaces while disregarding cul-
tural anthropology, it’s creepy and awkward and doesn’t really work.

107It’s Not Just Usability

Designing social software

Let me give you an example of social interface design.
Suppose your user does something they shouldn’t have done.
Good usability design says that you should tell them what they did

wrong and tell them how to correct it. Usability consultants are market-
ing this under the brand name “Defensive Design.”

When you’re working on social software, this is too naive.
Maybe the thing that they did wrong was to post an advertisement

for Viagra on a discussion group.
Now you tell them, “Sorry, Viagra is not a suitable topic. Your post

has been rejected.”
Guess what they’ll do? They’ll post an advertisement for Viagra

(either that, or they’ll launch into a long boring rant about censorship
and the First Amendment).

With social interface engineering, you have to look at sociology and
anthropology. In societies, there are freeloaders, scammers, and other
miscreants. In social software, there will be people who try to abuse the
software for their own profit at the expense of the rest of the society.
Unchecked, this leads to something economists call the tragedy of the
commons.

Whereas the goal of user interface design is to help the user succeed,
the goal of social interface design is to help the society succeed, even if it
means one user has to fail.

So a good social interface designer might say, “Let’s not display an
error message. Let’s just pretend that the post about Viagra was
accepted. Show it to the original poster, so he feels smug and moves on
to the next inappropriate discussion group. But don’t show it to anyone
else.”

Indeed, one of the best ways to deflect attacks is to make it look like
they’re succeeding. It’s the software equivalent of playing dead.

No, it doesn’t work 100% of the time. It works 95% of the time, and
it reduces the problems you’ll have twentyfold. Like everything else in
sociology, it’s a fuzzy heuristic. It kind of works a lot of the time, so it’s
worth doing, even if it’s not foolproof. The Russian mafia with their
phishing schemes will eventually work around it. The idiot Floridians in

More from Joel on Software108

trailer parks trying to get rich quick will move on. 90% of the spam I get
today is still so hopelessly naive about spam filters that it would even get
caught by the pathetic junk filter built into Microsoft Outlook, and
you’ve got to have really lame spam to get caught by that scrawny smat-
tering of simplistic search phrases.

Marketing social interfaces

Afew months ago, I realized that a common theme in the software
we’ve built at Fog Creek is an almost obsessive attention to getting

the social interfaces right. For example, FogBugz has lots of features,
and even more nonfeatures, designed to make bug tracking actually hap-
pen. Time and time again, customers tell me that their old bug tracking
software was never getting used because it did not align with the way
people wanted to work together, but when they rolled out FogBugz, peo-
ple actually starting using it, and became addicted to it, and it changed
the way they worked together. I know that FogBugz works because we
have a very high upgrade rate when there’s a new version, which tells me
FogBugz is not just shelfware, and because even customers who buy
huge blocks of licenses keep coming back for more user licenses as the
product spreads around their organization and really gets used. This is
something I’m really proud of. Software used in teams usually fails to
take hold, because it requires everyone on the team to change the way
they work simultaneously, something which anthropologists will tell you
is vanishingly unlikely. For that reason, FogBugz has lots of design deci-
sions that make it useful even for a single person on a team and lots of
design features that encourage it to spread to other members of the team
gradually until everyone is using it.

The discussion group software used on my site, which will soon be
for sale as a feature of FogBugz, is even more obsessed with getting the
social interface aspects exactly right. There are dozens of features and
nonfeatures and design decisions that collectively lead to a very high
level of interesting conversation with the best signal-to-noise ratio of any
discussion group I’ve ever participated in. I write a lot about this in the
next chapter.

109It’s Not Just Usability

Since then, I’ve become even more devoted to the idea of the value of
good social interface design: we bring in experts like Clay Shirky (a pio-
neer in the field), we do bold experiments on the poor citizens of the Joel
on Software discussion group (many of which are so subtle as to be vir-
tually unnoticeable, for example, the fact that we don’t show you the
post you’re replying to while you type your reply in hopes of cutting
down quoting, which makes it easier to read a thread), and we’re invest-
ing heavily in advanced algorithms to reduce discussion group spam.

A new field

Social interface design is still a field in its infancy. I’m not aware of any
books on the subject; there are only a few people working in the

research side of the field, and there’s no organized science of social inter-
face design. In the early days of usability design, software companies
recruited ergonomics experts and human factors experts to help design
usable products. Ergonomics experts knew a lot about the right height
for a desk, but they didn’t know how to design GUIs for file systems, so
a new field arose. Eventually, the new discipline of user interface design
came into its own and figured out concepts like consistency, affordabil-
ity, feedback, etc., which became the cornerstone of the science of UI
design.

Over the next decade, I expect that software companies will hire
people trained as anthropologists and ethnographers to work on social
interface design. Instead of building usability labs, they’ll go out into the
field and write ethnographies. And hopefully, we’ll figure out the new
principles of social interface design. It’s going to be fascinating . . . as fun
as user interface design was in the 1980s . . . so stay tuned.

More from Joel on Software110

sixteen

BUILDING COMMUNITIES WITH
SOFTWARE

Monday, March 3, 2003

In his book, The Great Good Place (Da Capo Press, 1999), social scien-
tist Ray Oldenburg talks about how humans need a third place, besides
work and home, to meet with friends, have a beer, discuss the events of
the day, and enjoy some human interaction. Coffee shops, bars, hair
salons, beer gardens, pool halls, clubs, and other hangouts are as vital as
factories, schools, and apartments. But capitalist society has been eroding
those third places, and society is left impoverished. In Bowling Alone
(Simon & Schuster, 2001), Robert Putnam brings forth, in riveting and
well-documented detail, reams of evidence that American society has all
but lost its third places. Over the last 25 years, Americans “belong to
fewer organizations that meet, know our neighbors less, meet with friends
less frequently, and even socialize with our families less often.” For too
many people, life consists of going to work, and then going home and
watching TV. Work-TV-Sleep-Work-TV-Sleep. It seems to me that the
phenomenon is far more acute among software developers, especially in
places like Silicon Valley and the suburbs of Seattle. People graduate from
college, move across country to a new place where they don’t know any-
one, and end up working twelve-hour days basically out of loneliness.

So it’s no surprise that so many programmers, desperate for a little
human contact, flock to online communities—chat rooms, discussion
forums, open source projects, and Ultima Online. In creating community
software, we are, to some extent, trying to create a third place. And like
any other architecture project, the design decisions we make are crucial.
Make a bar too loud, and people won’t be able to have conversations.

That makes for a very different kind of place from a coffee shop. Make
a coffee shop without very many chairs, as Starbucks does, and people
will carry their coffee back to their lonely rooms, instead of staying
around and socializing like they do in the fantasy TV coffeehouse of
Friends, a program we watch because an ersatz third place is less painful
than none at all.

In software, as in architecture, design decisions are just as important
to the type of community that develops or fails to develop. When you
make something easy, people do it more often. When you make some-
thing hard, people do it less often. In this way, you can gently encourage
people to behave in certain ways that determine the character and qual-
ity of the community. Will it feel friendly? Is there thick conversation, a
European salon full of intellectuals with interesting ideas? Or is the place
deserted, with a few dirty advertising leaflets lying around on the floor
that nobody has bothered to pick up?

Look at a few online communities, and you’ll instantly notice the dif-
ferent social atmosphere. Look more closely, and you’ll see this variation
is most often a byproduct of software design decisions.

On Usenet, threads last for months and months and go off onto so
many tangents that you never know where they’ve been. Whenever a
newbie stumbles by and asks a germane question, the old timers shout
him down and tell him to read the FAQ. Quoting, with the > symbol, is
a disease that makes it impossible to read any single thread without
boring yourself to death by rereading the whole history of a chain of
argument that you just read in the original, seconds ago, again and again
and again. Shlemiel the Painter reading.

On IRC, you can’t own your nickname, and you can’t own a
channel—once the last person leaves a room, anyone can take it over.
That’s the way the software works. The social result was that it was
often impossible to find your friends when you came back the next day,
because someone else might have locked you out of your chatroom, and
your friends might have been forced to choose different nicknames. The
only way to prevent gay bashers in Perth, Australia, from taking over
gay chat channels when the boys went to sleep was to create a software
robot to hang around 24 hours a day and guard the channel. Many IRC
participants put more effort into complicated bot wars, attempts to take
over channels, and general tomfoolery than actually having a conversa-
tion, often ruining things for the rest of us.

More from Joel on Software112

On most investment discussion boards, it’s practically impossible to
follow a thread from beginning to end, because every post is its own
page, which makes for a lot of banner ad inventory, but the latency in
reading a conversation will eventually drive you nuts. The huge amount
of flashing commercial crap on all four sides of the conversation makes
you feel like you were trying to make friends in Times Square, but the
neon lights keep demanding all the attention.

On Slashdot, every thread has hundreds of replies, many of which
are identical, so the conversation there feels insipid and stupid. In a
moment, I’ll reveal why Slashdot has so many identical replies, and the
Joel on Software forum doesn’t.

And on FuckedCompany.com, the discussion board is completely,
utterly worthless; the vast majority of posts consist of irrelevant profan-
ity and general abusiveness, and it feels like a fraternity rudeness contest,
without any fraternity.

So, we have discovered the primary axiom of online communities:

Small software implementation details result in big differences in
the way the community develops, behaves, and feels.

IRC users organize themselves around bot warfare because the soft-
ware doesn’t let you reserve a channel. Usenet threads are massively
redundant because the original Usenet reader, “rn,” designed for 300-
baud modems, never shows you old posts, only new ones, so if you want
to nitpick about something someone said, you had to quote them or
your nitpick wouldn’t make sense.

With that in mind, I’d like to answer the most common questions
about the Joel on Software forum, why it was designed the way it was
designed, how that makes it work, and how it could be improved.

Q. Why is the software so dang simplistic?

A. In the early days of the Joel on Software forum, achieving a criti-
cal mass to get the conversation off the ground was important to
prevent the empty restaurant phenomenon (nobody goes into an
empty restaurant, they’ll always go into the full one next door even
if it’s totally rubbish.) Thus a design goal was to eliminate impedi-
ments to posting. That’s why there’s no registration and there are
literally no features, so there’s nothing to learn.

113Building Communities with Software

The business goal of the software that runs the forum was to pro-
vide tech support for Fog Creek’s products. That’s what paid for
the development. To achieve that goal, nothing was more important
than making the software super simple so that anyone could be
comfortable using it. Everything about how the forum works is
incredibly obvious. I don’t know of anyone who hasn’t been able
to figure out how to use it immediately.

Q. Could you make a feature where I check a box that says “E-mail
me if somebody replies to my post?”

A. This one feature, so easy to implement and thus so tempting to
programmers, is the best way to kill dead any young forum.
Implement this feature, and you may never get to critical mass.
Philip Greenspun’s LUSENET has this feature, and you can watch
it sapping the life out of young discussion groups.

Why?

What happens is that people go to the group to ask a question. If
you offer the “Notify me” check box, these people will post their
question, check the box, and never come back. They’ll just read the
replies in their mailbox. The end.

If you eliminate the check box, people are left with no choice but to
check back every once in a while. And while they’re checking back,
they might read another post that looks interesting. And they might
have something to contribute to that post. And in the critical early
days when you’re trying to get the discussion group to take off,
you’ve increased the “stickiness” and you’ve got more people
hanging around, which helps achieve critical mass a lot quicker.

Q. OK, but can’t you at least have branching? If someone gets off
on a tangent, that should be its own branch, which you can follow
or go back to the main branch.

A. Branching is very logical to a programmer’s mind, but it doesn’t
correspond to the way conversations take place in the real world.
Branched discussions are disjointed to follow and distracting. You
know what I find distracting? When I’m trying to do something on
my bank’s web site, and the site is so slow I can’t remember what
I’m doing from one click to the next. That reminds me of a joke.
Three old ladies talking. Lady 1: “I’m so forgetful, the other day I
was on the steps to my apartment with a bag, and I couldn’t

More from Joel on Software114

remember if I was taking out the trash or going upstairs with the
groceries.” Lady 2: “I’m so forgetful, I was in my car in the drive-
way, and I couldn’t remember if I was coming home or going to
shul.” Lady 3: “Thank God, I still have my memory, clear as a bell,
knock on wood (knock, knock, knock). Come in, door’s open!”
Branching makes discussions get off track, and reading a thread
that is branched is discombobulating and unnatural. Better to force
people to start a new topic if they want to get off topic. Which
reminds me . . .

Q. Your list of topics is sorted wrong. It should put the topic with
the most recent reply first, rather than listing them based on the
time of the original post.

A. It could do that; that’s what many web-based forums do. But
when you do that, certain topics tend to float near the top forever,
because people will be willing to argue about H1B visas, or what’s
wrong with computer science in college, until the end of the universe.
Every day, a hundred new people arrive in the forum for the first
time, and they start at the top of the list, and they dive into that
topic with gusto.

The way I do it has two advantages. One, topics rapidly go away,
so conversation remains relatively interesting. Eventually, people
have to just stop arguing about a given point.

Two, the order of topics on the home page is stable, so it’s easier to
find a topic again that you were interested in because it stays in the
same place relative to its neighbors.

Q. Why don’t you have some kind of system so I can see what posts
I’ve already read?

A. We have the best system that can be implemented in a distrib-
uted, scalable fashion: we let everyone’s browser keep track of it.
Web browsers will change the color of the links you’ve already
visited from blue to purple. So all we have to do is subtly change
the URL for each topic to include the number of replies available;
that way when there are additional replies, the post will appear in
the “unread” color again.

Anything more elaborate than this would be harder to build and
would needlessly complicate the UI.

115Building Communities with Software

Q. The damn “Reply” link is all the way at the bottom. This is a
usability annoyance because you have to scroll all the way to the
bottom.

A. This is intentional. I would prefer that you read all the posts
before you reply; otherwise, you may post something that is repeti-
tive or that sounds disjointed coming after the previous last post.
Of course, I can’t physically grab your eyeballs and move them
from left to right, forcing you to read the entire thread before let-
ting you post, but if I put a “Reply” link anywhere but the bottom
of the page, that would positively encourage people to spew their
little gems before they’ve read what’s already there. This is why
Slashdot topics have 500 replies but only 17 interesting replies, and
it’s why nobody likes to read Slashdot discussions: they sound like a
classroom full of children all shouting out the same answer at the
same time. (“Ha ha . . . Bill Gates! That’s an oxymoron!”)

Q. The damn “Start a New Topic” link is all the way at the
bottom . . .

A. Uh huh, same thing.

Q. Why don’t you show people their posts to confirm them before
you post them? Then people wouldn’t make mistakes and typos.

A. Empirically, that is not true. Not only is it not true, it’s the oppo-
site of true.

Part one: when you have a confirmation step, most people just click
past it. Very few people reread their post carefully. If they wanted to
reread their post carefully, they could have done it while they were
editing it, but they are bored by their post already, it’s yesterday’s
newspaper, they are ready to move on.

Part two: the lack of the confirmation step actually makes people
more cautious. It’s like those studies they did that showed that it’s
safer, on twisty mountain roads, to remove the crash barrier,
because it makes people scared and so they drive more carefully,
and any way, that little flimsy aluminum crash barrier ain’t gonna
stop a two-ton SUV moving at 50 mph from flying off the cliff.
You’re better off, statistically, just scaring the bejesus out of drivers
so they creep along at 2 miles per hour around the hairpins.

More from Joel on Software116

Q. Why don’t you show me the post I’m replying to, while I com-
pose my reply?

A. Because that will tempt you to quote a part of it in your own
reply. Anything I can do to reduce the amount of quoting will
increase the fluidity of the conversation, making topics interesting
to read. Whenever someone quotes something from above, the
person who reads the topic has to read the same thing twice in a
row, which is pointless and automatically guaranteed to be boring.

Sometimes people still try to quote things, usually because they are
replying to something from three posts ago, or because they’re
mindlessly nitpicking and they need to rebut twelve separate points.
These are not bad people, they’re just programmers, and program-
ming requires you to dot every i and cross every t, so you get into a
frame of mind where you can’t leave any argument unanswered any
more than you would ignore an error from your compiler. But I’ll
be damned if I make it EASY on you. I’m almost tempted to try to
find a way to show posts as images so you can’t cut and paste them.
If you really need to reply to something from three posts ago,
kindly take a moment to compose a decent English sentence
(“When Fred said blah, he must not have considered . . . ”); don’t
litter the place with your <<<>>>s.

Q. Why do posts disappear sometimes?

A. The forum is moderated. That means that a few people have the
magick powah to delete a post. If the post they delete is the first one
in a thread, the thread itself appears deleted because there’s no way
to get to it.

Q. But that’s censorship!

A. No, it’s picking up the garbage in the park. If we didn’t do it,
the signal-to-noise ratio would change dramatically for the worse.
People post spam and get-rich schemes, people post antisemitic
comments about me, people post nonsense that doesn’t make any
sense. Some idealistic youngsters may imagine a totally uncensored
world as one in which the free exchange of intelligent ideas raises
everyone’s IQ, an idealized Oxford Debate Society or Speakers’
Corner. I am pragmatic and understand that a totally uncensored
world just looks like your inbox: 80% spam, advertising, and
fraud, rapidly driving away the few interesting people.

117Building Communities with Software

If you are looking for a place to express yourself in which there will
be no moderation, my advice to you would be to (a) create a new
forum and (b) make it popular. (Apologies to Larry Wall.)

Q. How do you decide what to delete?

A. First of all, I remove radically off-topic posts or posts that, in my
opinion, are only of interest to a very small number of people. If
something is not about the same general topics as Joel on Software
is about, it may be interesting as all heck to certain people, but it’s
not likely to interest the majority of people who came to my site to
hear about software development.

My policy in the past has been that “off topic” includes any
discussion of the forum itself, its design or usability. There’s a
slightly different reason for this, almost another axiom. Every
forum, mailing list, discussion group, and BBS will, all else being
equal, lapse into conversations about the forum itself every week or
two. Literally once a week, somebody strolls in and announces his
list of improvements to the forum software, which he demands be
made right away. And then somebody says, “Look buddy, you’re
not paying for it, Joel’s doing us a favor, get lost.” And somebody
else says “Joel’s not doing this out of the goodness of his heart, it’s
marketing for Fog Creek.” And it’s just SOOOO BORING because
it happens EVERY WEEK. It’s like talking about the weather when
you have nothing else to talk about. It may be exciting to the new
person who just appeared on the board, but it is only barely about
software development, so, as Strong Bad says, “DELETED.”
Unfortunately, what I have learned is that trying to get people to
stop talking about the forum is like trying to stop a river. But
please, if you’re reading this article and you want to discuss it on
the forum, please, please, do me a huge favor, and resist the urge.

We will delete posts that are personal, ad hominem attacks on non-
public personalities. I better define that. Ad hominem means it is an
attack on the individual, rather than on his ideas. If you say, “That
is a stupid idea because . . . ” it’s OK. If you say, “You are stupid,”
then it’s an ad hominem attack. If it’s vicious or uncivil or libelous, I
delete it. There’s one exception: because the Joel on Software forum
is the best place to criticize Joel, vicious or uncivil posts about Joel
are allowed to stand, but only if they contain some tiny sliver of a
useful argument or idea.

More from Joel on Software118

I automatically delete posts that comment on the spelling or gram-
mar of a previous poster. We’ll be talking about interviews and
someone will say, “It’s a wonder you can get a job with spelling like
that.” It’s just super boring to talk about other people’s spelling.
SUPER, SUPER boring.

Q. Why don’t you just post the rules instead of leaving it as a
mystery?

A. The other day I was taking the train from Newark International
Airport back to Manhattan. Besides being in general disrepair, the
only thing to read was a large sign that explained very sternly and
in great detail that if you misbehaved, you would be put off the
train at the next stop, and the police would be summoned. And I
thought, 99.99999% of the people who read that sign ain’t gonna
be misbehavin’, and the misbehavers couldn’t care less what the
sign says. So the net result of the sign is to make honest citizens feel
like they’re being accused of something, and it doesn’t deter the
sociopaths at all, and it just reminds the good citizens of New
Jersey endlessly that they’re in Newark, Crime Capital, where
sociopaths get on the train and do Unpleasant Things and Make
A Scene and Have To Be Put Off and the Police Summoned.

Almost everyone on the Joel on Software forum, somehow, was
born with the part of the brain that tells them that it’s not civilized
to post vicious personal attacks, or to post questions about learning
French on a software forum, or to conduct an argument by criticiz-
ing someone’s spelling. And the other .01% don’t care about the
rules. So posting rules is just a way to insult the majority of the law-
abiding citizens, and it doesn’t deter the morons who think their
own poo smells delicious and nothing they post could possibly be
against the rules.

When you address troublemakers in public, everyone else thinks
you’re paranoid or feels angry at being scolded when they did
nothing wrong. It’s like being in grade school again, and one idiot-
child has broken a window, and now everyone has to sit there
listening to the teacher giving the whole class a stern lecture on
why you mustn’t break windows. So any public discussion of why
a particular post got deleted, for example, is taboo.

119Building Communities with Software

Q. Instead of deleting posts, why don’t you have a moderation
scheme, where people vote on how much they like a post, and
people can choose how high the vote has to be before they read it?

A. This is, of course, how Slashdot works, and I’ll bet you 50% of
the people who read Slashdot regularly have never figured it out.

There are three things I don’t like about this. One: it’s more UI
complication, a feature that people need to learn how to use. Two:
it creates such complicated politics that it make the Byzantine
Empire look like third-grade school government. And three: when
you read Slashdot with the filters turned up high enough that you
see only the interesting posts, the narrative is completely lost. You
just get a bunch of random disjointed statements with no context.

Q. Why don’t you have a registration scheme to eliminate rude
posters?

A. As I explained earlier, the goal of the forum is to make it easy
to post. (Remember, the software was written for tech support.)
Registration schemes eliminate at least 90% of the people who
might have posted, and in a tech support scenario, those 90% are
going to call my toll-free number.

Besides, I don’t think registration would help. If somebody is being
abusive, it doesn’t help to ban them, they can trivially reregister.
The idea of improving the community by requiring registration is
an old one, and it’s appropriate, I think, for the Echo/Well type of
conferences where you’re creating a network of people as much as
you’re discussing a topic, and you charge people cash money to
belong.

But requiring registration does NOT improve the quality of the
conversation or the average quality of the participants. If you look
closely at the signal-to-noise ratio on the Joel on Software forum,
you might start to notice that the noisiest people (i.e., the people
who post the most words while contributing the fewest ideas) are
often the long-time, hardcore members who visit the forum every
ten minutes. These are the people who feel the need to chime in
with an “I agree with that” and replies to Every Single Topic even
when they haven’t got an original thought to contribute. And they
would certainly register.

More from Joel on Software120

Q. Any plans for the future?

A. Working on the software for the discussion forum is not a prior-
ity for me or my company: it’s good enough, it works, it has created
an interesting place to talk about hard computer management prob-
lems and get ideas from some of the smartest people in the world.
And I’ve got too many better things to work on. Somebody else can
create the next big leap in usability for discussion forums.

I just created a New York City forum, to see if geographically based
forums encourage people to get to know each other in person as
well as online. In my experience, regionally based communities
cause the community to take a giant leap from a simple web site to
a real society, a true third place.

Creating community, in any case, is a noble goal, because it’s sorely
missing for so many of us. Let’s keep plugging away at it.

121Building Communities with Software

part four

MANAGING LARGE PROJECTS

seventeen

MARTIAN HEADSETS

Monday, March 17, 2008

You’re about to see the mother of all flame wars on Internet groups where
web developers hang out. It’ll make the Battle of Stalingrad look like that
time your sister-in-law stormed out of afternoon tea at your grand-
mother’s and wrapped the Mustang around a tree.

This upcoming battle will be presided over by Dean Hachamovitch,
the Microsoft veteran currently running the team that’s going to bring you
the next version of Internet Explorer, 8.0. The IE 8 team is in the process
of making a decision that lies perfectly, exactly, precisely on the fault line
smack in the middle of two different ways of looking at the world. It’s the
difference between conservatives and liberals, it’s the difference between
“idealists” and “realists,” it’s a huge global jihad dividing members of the
same family, engineers against computer scientists, and Lexuses vs. olive
trees.

And there’s no solution. But it will be really, really entertaining to
watch, because 99% of the participants in the flame wars are not going to
understand what they’re talking about. It’s not just entertainment: it’s
required reading for every developer who needs to design interoperable
systems.

The flame war will revolve around the issue of something called web
standards. I’ll let Dean introduce the problem (blogs.msdn.com/ie/
archive/2008/03/03/microsoft-s-interoperability-principles-and-
ie8.aspx):

All browsers have a “Standards” mode, call it “Standards mode,”
and use it to offer a browser’s best implementation of web stan-
dards. Each version of each browser has its own Standards mode,
because each version of each browser improves on its web stan-
dards support. There’s Safari 3’s Standards mode, Firefox 2’s
Standards mode, IE 6’s Standards mode, and IE 7’s Standards
mode, and they’re all different. We want to make IE 8’s Standards
mode much, much better than IE 7’s Standards mode.

And the whole problem hinges on the little tiny decision of what IE 8
should do when it encounters a page that claims to support “standards,”
but has probably only been tested against IE 7.

What the hell is a standard?
Don’t they have standards in all kinds of engineering endeavors?

(Yes.)
Don’t they usually work? (Mmmm . . .)
Why are “web standards” so frigging messed up? (It’s not just

Microsoft’s fault. It’s your fault too. And Jon Postel’s [1943–1998]. I’ll
explain that later.)

There is no solution. Each solution is terribly wrong. Eric Bangeman
at Ars Technica writes, “The IE team has to walk a fine line between
tight support for W3C standards and making sure sites coded for earlier
versions of IE still display correctly” (arstechnica.com/news.ars/
post/20071219-ie8-goes-on-an-acid2-trip-beta-due-in-first-half-
of-2008.html). This is incorrect. It’s not a fine line. It’s a line of negative
width. There is no place to walk. They are damned if they do and
damned if they don’t.

That’s why I can’t take sides on this issue, and I’m not going to. But
every working software developer should understand, at least, how stan-
dards work, how standards should work, how we got into this mess, so
I want to try to explain a little bit about the problem here, and you’ll see
that it’s the same reason Microsoft Vista is selling so poorly, and it’s the
same issue I wrote about when I referred to the Raymond Chen camp
(pragmatists) at Microsoft vs. the MSDN camp (idealists), the MSDN
camp having won, and now nobody can figure out where their favorite
menu commands went in Microsoft Office 2007, and nobody wants
Vista, and it’s all the same debate: whether you are an idealist (“red”) or
a pragmatist (“blue”).

More from Joel on Software126

Let me start at the beginning. Let’s start by thinking about how to get
things to work together.

What kinds of things? Anything, really. A pencil and a pencil sharp-
ener. A telephone and a telephone system. An HTML page and a web
browser. A Windows GUI application and the Windows operating
system. Facebook and a Facebook application. Stereo headphones and
stereos.

At the point of contact between those two items, there are all kinds
of things that have to be agreed on, or they won’t work together.

I’ll work through a simple example.
Imagine that you went to Mars, where you discovered that the beings

who live there don’t have portable music players. They’re still using
boom boxes.

You realize this is a huge business opportunity and start selling
portable MP3 players (except on Mars they’re called Qxyzrhjjjjukltks)
and compatible headphones. To connect the MP3 player to the head-
phones, you invent a neat kind of metal jack that looks like this:

Because you control the player and the headphone, you can ensure
that your player works with your headphones. This is a ONE-TO-ONE
market. One player, one headphone.

Maybe you write up a spec, hoping that third parties will make dif-
ferent color headphones, since Marslings are very particular about the
color of things that they stick in their earlings.

One to One

127Martian Headsets

And you forgot, when you wrote the spec, to document that the volt-
age should be around 1.4 volts. You just forgot. So the first aspiring
manufacturer of 100% compatible headphones comes along, his
speaker is only expecting 0.014 volts, and when he tests his prototype, it
either blows out the headphones or the eardrums of the listener,
whichever comes first. And he makes some adjustments and eventually
gets a headphone that works fine and is just a couple of angstroms more
fierce than your headphones.

More and more manufacturers show up with compatible head-
phones, and soon we’re in a ONE-TO-MANY market.

More from Joel on Software128

So far, all is well. We have a de facto standard for headphone jacks
here. The written spec is not complete and not adequate, but anybody
who wants to make a compatible headphone just has to plug it into your
personal stereo device and test it, and if it works, all is well, they can sell
it, and it will work.

Until you decide to make a new version, the Qxyzrhjjjjukltk 2.0.
The Qxyzrhjjjjukltk 2.0 is going to include a telephone (turns out

Marslings didn’t figure out cellphones on their own, either), and the
headphone is going to have to have a built-in microphone, which
requires one more conductor, so you rework the connector into some-
thing totally incompatible and kind of ugly, with all kinds of room for
expansion:

And the Qxyzrhjjjjukltk 2.0 is a complete and utter failure in the
market. Yes, it has a nice telephone thing, but nobody cared about that.
They cared about their large collections of headphones. It turns out that
when I said Marslings are very particular about the color of things that
they stick in their ears, I meant it. Most trendy Marslings at this point
have a whole closet full of nice headphones. They all look the same to
you (red), but Marslings are very, very finicky about shades of red in a
way that you never imagined. The newest high-end apartments on Mars
are being marketed with a headphone closet. I kid you not.

So the new jack is not such a success, and you quickly figure out a
new scheme:

129Martian Headsets

Notice that you’ve now split the main shaft to provide another
conductor for the microphone signal, but the trouble is, your
Qxyzrhjjjjukltk 2.1 doesn’t really know whether the headset that’s
plugged in has a mic or not, and it needs to know this so it can decide
whether to enable phone calls. And so you invent a little protocol . . . the
new device puts a signal on the mic pin and looks for it on the ground,
and if it’s there, it must be a three-conductor plug, and therefore they
don’t have a mic, so you’ll go into backward-compatibility mode where
you only play music. It’s simple, but it’s a protocol negotiation.

It’s not a ONE-TO-MANY market any more. All the stereo devices
are made by the same firm, one after the other, so I’m going to call this
a SEQUENCE-TO-MANY market:

Here are some SEQUENCE-TO-MANY markets you already know
about:

1.0

2.0

3.0

More from Joel on Software130

1. Facebook: about 20,000 Facebook apps

2. Windows: about 1,000,000 Windows apps

3. Microsoft Word: about 1,000,000,000 Word documents

There are hundreds of other examples. The key thing to remember is
that when a new version of the left-hand device comes out, it has to
maintain auto-backward-compatibility with all the old right-hand acces-
sories meant to work with the old device, because those old accessories
could not possibly have been designed with the new product in mind.
The Martian headphones are already made. You can’t go back and
change them all. It’s much easier and more sensible to change the newly
invented device so that it acts like an old device when confronted with
an old headphone.

And because you want to make progress, adding new features and
functionality, you also need a new protocol for new devices to use, and
the sensible thing to do is to have both devices negotiate a little bit at the
beginning to decide whether they both understand the latest protocol.

SEQUENCE-TO-MANY is the world Microsoft grew up in.
But there’s one more twist, the MANY-TO-MANY market.
A few years pass; you’re still selling Qxyzrhjjjjukltks like crazy; but

now there are lots of Qxyzrhjjjjukltk clones on the market, like the open
source FireQx, and lots of headphones, and you all keep inventing new
features that require changes to the headphone jack, and it’s driving the
headphone makers crazy because they have to test their new designs out
against every Qxyzrhjjjjukltk clone, which is costly and time consuming,
and frankly most of them don’t have time and just get it to work on the
most popular version of Qxyzrhjjjjukltk, 5.0, and if that works, they’re
happy; but of course when you plug the headphones into FireQx 3.0, lo
and behold, they explode in your hands because of a slight misunder-
standing about some obscure thing in the spec that nobody really
understands called hasLayout, and everybody understands that when
it’s raining the hasLayout property is true and the voltage is supposed to
increase to support the windshield-wiper feature, but there seems to be
some debate over whether hail and snow are rain for the purpose of
hasLayout, because the spec just doesn’t say. FireQx 3.0 treats snow as
rain, because you need windshield wipers in the snow, Qxyzrhjjjjukltk
5.0 does not, because the programmer who worked on that feature lives

131Martian Headsets

in a warm part of Mars without snow and doesn’t have a driver’s license
anyway. Yes, they have driver’s licenses on Mars.

And eventually some tedious bore writes a lengthy article on her blog
explaining a trick you can use to make Qxyzrhjjjjukltk 5.0 behave just
like FireQx 3.0 through taking advantage of a bug in Qxyzrhjjjjukltk
5.0 in which you trick Qxyzrhjjjjukltk into deciding that it’s raining
when it’s snowing by melting a little bit of the snow, and it’s ridiculous,
but everyone does it, because they have to solve the hasLayout incom-
patibility. Then the Qxyzrhjjjjukltk team fixes that bug in 6.0, and
you’re screwed again, and you have to go find some new bug to exploit
to make your windshield-wiper-equipped headphone work with either
device.

NOW. This is the MANY-TO-MANY market. Many players on the
left-hand side who don’t cooperate, and SCRILLIONS of players on the
right-hand side. And they’re all making mistakes because To Err Is
Human.

1.0

2.0

3.0

More from Joel on Software132

And of course, this is the situation we find ourselves in with HTML.
Dozens of common browsers, literally billions of web pages.

And over the years what happens in a MANY-TO-MANY market is
that there is a hue and cry for “standards” so that “all the players”
(meaning the small players) have an equal chance at being able to dis-
play all eight billion web pages correctly, and, even more importantly, so
that the designers of those eight billion pages only have to test against
one browser, and use “web standards,” and then they will know that
their page will also work in other browsers, without having to test every
page against every browser.

133Martian Headsets

See, the idea is, instead of many-to-many testing, you have many-to-
standard and standard-to-many testing, and you need radically fewer
tests. Not to mention that your web pages don’t need any browser-
specific code to work around bugs in individual browsers, because in
this platonic world there are no bugs.

That’s the ideal.
In practice, with the Web, there’s a bit of a problem: no way to test a

web page against the standard, because there’s no reference implemen-
tation that guarantees that if it works, all the browsers work. This just
doesn’t exist.

So you have to “test” in your own head, purely as a thought experi-
ment, against a bunch of standards documents, which you probably
never read and couldn’t completely understand even if you did.

Those documents are super confusing. The specs are full of state-
ments like “If a sibling block box (that does not float and is not
absolutely positioned) follows the run-in box, the run-in box becomes
the first inline box of the block box. A run-in cannot run in to a block
that already starts with a run-in or that itself is a run-in.” Whenever I
read things like that, I wonder how anyone correctly conforms to the
spec.

More from Joel on Software134

There is no practical way to check whether the web page you just
coded conforms to the spec. There are validators, but they won’t tell you
what the page is supposed to look like, and having a “valid” page where
all the text is overlapping, nothing lines up, and you can’t see anything
is not very useful. What people do is check their pages against one
browser, maybe two, until it looks right. And if they’ve made a mistake
that just happens to look OK in IE and Firefox, they’re not even going
to know about it.

And their pages may break when a future web browser comes out.
If you’ve ever visited the ultra-orthodox Jewish communities of

Jerusalem, all of whom agree in complete and utter adherence to every
iota of Jewish law, you will discover that despite general agreement on
what constitutes kosher food, you will not find a rabbi from one ultra-
orthodox community who is willing to eat at the home of a rabbi from
a different ultra-orthodox community. And the web designers are dis-
covering what the Jews of Mea Shearim have known for decades: just
because you all agree to follow one book doesn’t ensure compatibility,
because the laws are so complex and complicated and convoluted that
it’s almost impossible to understand them all well enough to avoid traps
and landmines, and you’re safer just asking for the fruit plate.

Standards are a great goal, of course, but before you become a stan-
dards fanatic, you have to understand that due to the failings of human
beings, standards are sometimes misinterpreted, sometimes confusing
and even ambiguous.

The precise problem here is that you’re pretending that there’s one
standard, but since nobody has a way to test against the standard, it’s
not a real standard: it’s a platonic ideal and a set of misinterpretations,
and therefore the standard is not serving the desired goal of reducing the
test matrix in a MANY-TO-MANY market.

DOCTYPE is a myth.
A mortal web designer who attaches a DOCTYPE tag to their web

page saying, “This is standard HTML,” is committing an act of hubris.
There is no way they know that. All they are really saying is that the
page was meant to be standard HTML. All they really know is that they
tested it with IE, Firefox, maybe Opera and Safari, and it seems to work.
Or, they copied the DOCTYPE tag out of a book and don’t know what
it means.

135Martian Headsets

In the real world, where people are imperfect, you can’t have a
standard with just a spec—you must have a super-strict reference
implementation, and everybody has to test against the reference imple-
mentation. Otherwise, you get seventeen different “standards,” and you
might as well not have one at all.

And this is where Jon Postel caused a problem, back in 1981, when
he coined the robustness principle: “Be conservative in what you do, be
liberal in what you accept from others” (tools.ietf.org/html/rfc793).
What he was trying to say was that the best way to make the protocols
work robustly would be if everyone was very, very careful to conform to
the specification, but they should be also be extremely forgiving when
talking to partners that don’t conform exactly to the specification, as
long as you can kind of figure out what they meant.

So, technically, the way to make a paragraph with small text is
<p><small>, but a lot of people wrote <small><p>, which is technically
incorrect for reasons most web developers don’t understand, and the
web browsers forgave them and made the text small anyway, because
that’s obviously what they wanted to happen.

Now there are all these web pages out there with errors, because all
the early web browser developers made super-liberal, friendly, accom-
modating browsers that loved you for who you were and didn’t care if
you made a mistake. And so there were lots of mistakes. And Postel’s
robustness principle didn’t really work. The problem wasn’t noticed for
many years. In 2001, Marshall Rose finally wrote the following
(tools.ietf.org/html/rfc3117):

Counter-intuitively, Postel’s robustness principle (“be conserva-
tive in what you send, liberal in what you accept”) often leads to
deployment problems. Why? When a new implementation is ini-
tially fielded, it is likely that it will encounter only a subset of
existing implementations. If those implementations follow the
robustness principle, then errors in the new implementation will
likely go undetected. The new implementation then sees some,
but not widespread, deployment. This process repeats for several
new implementations. Eventually, the not-quite-correct imple-
mentations run into other implementations that are less liberal
than the initial set of implementations. The reader should be able
to figure out what happens next.

More from Joel on Software136

Jon Postel should be honored for his enormous contributions to the
invention of the Internet, and there is really no reason to fault him for
the infamous robustness principle. 1981 is prehistoric. If you had told
Postel that there would be 90 million untrained people, not engineers,
creating web sites, and they would be doing all kinds of awful things,
and some kind of misguided charity would have caused the early
browser makers to accept these errors and display the page anyway, he
would have understood that this is the wrong principle, and that, actu-
ally, the web standards idealists are right, and the way the web “should
have” been built would be to have very, very strict standards, and every
web browser should be positively obnoxious about pointing them all out
to you, and web developers who couldn’t figure out how to be “conser-
vative in what they emit” should not be allowed to author pages that
appear anywhere until they get their act together.

But, of course, if that had happened, maybe the web would never
have taken off like it did, and maybe instead, we’d all be using a gigan-
tic Lotus Notes network operated by AT&T. Shudder.

Shoulda woulda coulda. Who cares. We are where we are. We can’t
change the past, only the future. Heck, we can barely even change the
future.

And if you’re a pragmatist on the Internet Explorer 8.0 team, you
might have these words from Raymond Chen seared into your cortex.
He was writing about how Windows XP had to emulate buggy behavior
from old versions of Windows (blogs.msdn.com/oldnewthing/archive/
2003/12/23/45481.aspx):

Look at the scenario from the customer’s standpoint. You bought
programs X, Y, and Z. You then upgraded to Windows XP. Your
computer now crashes randomly, and program Z doesn’t work at
all. You’re going to tell your friends, “Don’t upgrade to Windows
XP. It crashes randomly, and it’s not compatible with program
Z.” Are you going to debug your system to determine that pro-
gram X is causing the crashes, and that program Z doesn’t work
because it is using undocumented window messages? Of course
not. You’re going to return the Windows XP box for a refund.
(You bought programs X, Y, and Z some months ago. The 30-day
return policy no longer applies to them. The only thing you can
return is Windows XP.)

137Martian Headsets

And you’re thinking, hmm, let’s update this for today:

Look at the scenario from the customer’s standpoint. You bought
programs X, Y, and Z. You then upgraded to Windows XPVista.
Your computer now crashes randomly, and program Z doesn’t
work at all. You’re going to tell your friends, “Don’t upgrade to
Windows XPVista. It crashes randomly, and it’s not compatible
with program Z.” Are you going to debug your system to deter-
mine that program X is causing the crashes, and that program Z
doesn’t work because it is using undocumentedinsecure window
messages? Of course not. You’re going to return the Windows
XPVista box for a refund. (You bought programs X, Y, and Z
some months ago. The 30-day return policy no longer applies to
them. The only thing you can return is Windows XPVista.)

The victory of the idealists over the pragmatists at Microsoft, which
I reported in 2004, directly explains why Vista is getting terrible reviews
and selling poorly.

And how does it apply to the IE team?
Look at the scenario from the customer’s standpoint. You visit 100

web sites a day. You then upgraded to IE 8. On half of them, the page is
messed up, and Google Maps doesn’t work at all.

More from Joel on Software138

You’re going to tell your friends, “Don’t upgrade to IE 8. It messes up
every page, and Google Maps doesn’t work at all.” Are you going to
View Source to determine that web site X is using nonstandard HTML,
and Google Maps doesn’t work because it is using nonstandard
JavaScript objects from old versions of IE that were never accepted by
the standards committee? Of course not. You’re going to uninstall IE 8.
(Those web sites are out of your control. Some of them were developed
by people who are now dead. The only thing you can do is go back to
IE 7).

And so if you’re a developer on the IE 8 team, your first inclination
is going to be to do exactly what has always worked in these kinds of
SEQUENCE-TO-MANY markets. You’re going to do a little protocol
negotiation and continue to emulate the old behavior for every site that
doesn’t explicitly tell you that they expect the new behavior, so that all
existing web pages continue to work, and you’re only going to have the
nice new behavior for sites that put a little flag on the page saying, “Yo!
I grok IE 8! Give me all the new IE 8 Goodness please!”

And indeed that was the first decision announced by the IE team on
January 21. The web browser would accommodate existing pages
silently so that nobody had to change their web site by acting like the
old, buggy IE 7 that web developers hated.

A pragmatic engineer would have to come to the conclusion that the
IE team’s first decision was right. But the young idealist “standards”
people went nuclear.

IE needed to provide a web standards experience without requiring a
special “Yo! I’m tested with IE 8!” tag, they said. They were sick of spe-
cial tags. Every frigging web page has to have thirty-seven ugly hacks in
it to make it work with five or six popular browsers. Enough ugly hacks.
Eight billion existing web pages be damned.

And the IE team flip-flopped. Their second decision, and I have to
think it’s not final, their second decision was to do the idealistic thing,
and treat all sites that claim to be “standards compliant” as if they have
been designed for and tested with IE 8.

Almost every web site I visited with IE 8 is broken in some way. Web
sites that use a lot of JavaScript are generally completely dead. A lot of
pages simply have visual problems: things in the wrong place, pop-up
menus that pop under, mysterious scrollbars in the middle. Some sites
have more subtle problems: they look OK, but as you go further, you
find that critical form won’t submit or leads to a blank page.

139Martian Headsets

These are not web pages with errors. They are usually web sites that
were carefully constructed to conform to web standards. But IE 6 and
IE 7 didn’t really conform to the specs, so these sites have little hacks in
them that say, “On Internet Explorer . . . move this thing 17 pixels to the
right to compensate for IE’s bug.”

And IE 8 is IE, but it no longer has the IE 7 bug where it moved that
thing 17 pixels left of where it was supposed to be according to web
standards. So now code that was written that was completely reasonable
no longer works.

IE 8 can’t display most web pages correctly until you give up and
press the “ACT LIKE IE 7” button. The idealists don’t care: they want
those pages changed.

Some of those pages can’t be changed. They might be burned onto
CD-ROMs. Some of them were created by people who are now dead.
Most of them were created by people who have no frigging idea what’s
going on and why their web page, which they paid a designer to create
four years ago, is now not working properly.

The idealists rejoiced. Hundreds of them descended on the IE blog to
actually say nice things about Microsoft for the first times in their lives.

I looked at my watch.
Tick, tick, tick.
Within a matter of seconds, you started to see people on the forums

showing up like this one (forums.microsoft.com/MSDN/ShowPost.
aspx?PostID=2972194&SiteID=1):

I have downloaded IE 8 and with it some bugs. Some of my web
sites like “HP” are very difficult to read as the whole page is very
very small . . . The speed of my Internet has also been reduced on
some occasions. When I use Google Maps, there are overlays
everywhere, enough so it makes it awkward to use!

Mmhmm. All you smug idealists are laughing at this newbie/idjit.
The consumer is not an idiot. She’s your wife. So stop laughing. 98% of
the world will install IE 8 and say, “It has bugs and I can’t see my sites.”
They don’t give a flicking flick about your stupid religious enthusiasm
for making web browsers that conform to some mythical, platonic
“standard” that is not actually implemented anywhere. They don’t want
to hear your stories about messy hacks. They want web browsers that
work with actual web sites.

More from Joel on Software140

So you see, we have a terrific example here of a gigantic rift between
two camps.

The web standards camp seems kind of Trotskyist. You’d think
they’re the left wing, but if you happened to make a web site that claims
to conform to web standards but doesn’t, the idealists turn into Joe
Arpaio, America’s Toughest Sheriff: “YOU MADE A MISTAKE AND
YOUR WEB SITE SHOULD BREAK. I don’t care if 80% of your web
sites stop working. I’ll put you all in jail, where you will wear pink paja-
mas and eat 15-cent sandwiches and work on a chain gang. And I don’t
care if the whole county is in jail. The law is the law.”

On the other hand, we have the pragmatic, touchy feely, warm and
fuzzy engineering types: “Can’t we just default to IE 7 mode? One line
of code . . . Zip! Solved!”

Secretly? Here’s what I think is going to happen. The IE 8 team is
going to tell everyone that IE 8 will use web standards by default, and
run a nice long beta during which they beg people to test their pages
with IE 8 and get them to work. And when they get closer to shipping,
and only 32% of the web pages in the world render properly, they’ll say,
“Look guys, we’re really sorry, we really wanted IE 8 standards mode to
be the default, but we can’t ship a browser that doesn’t work,” and
they’ll revert to the pragmatic decision. Or maybe they won’t, because
the pragmatists at Microsoft have been out of power for a long time. In
which case, IE is going to lose a lot of market share, which would
please the idealists to no end, and probably won’t decrease Dean
Hachamovitch’s big year-end bonus by one cent.

You see? No right answer.
As usual, the idealists are 100% right in principle and, as usual, the

pragmatists are right in practice. The flames will continue for years. This
debate precisely splits the world in two. If you have a way to buy stock
in Internet flame wars, now would be a good time to do that.

141Martian Headsets

eighteen

WHY ARE THE MICROSOFT
OFFICE FILE FORMATS SO

COMPLICATED? (AND SOME
WORKAROUNDS)

Tuesday, February 19, 2008

Last week, Microsoft published the binary file formats for Office. These
formats appear to be almost completely insane. The Excel 97-2003 file
format is a 349-page PDF file. But wait, that’s not all there is to it! This
document includes the following interesting comment:

Each Excel workbook is stored in a compound file.

You see, Excel 97-2003 files are OLE compound documents, which
are, essentially, file systems inside a single file. These are sufficiently com-
plicated that you have to read another nine-page spec to figure that out.
And these “specs” look more like C data structures than what we tradi-
tionally think of as a spec. It’s a whole hierarchical file system.

If you started reading these documents with the hope of spending a
weekend writing some spiffy code that imports Word documents into
your blog system or creates Excel-formatted spreadsheets with your per-
sonal finance data, the complexity and length of the spec probably cured
you of that desire pretty darn quickly. A normal programmer would con-
clude that Office’s binary file formats

• Are deliberately obfuscated

• Are the product of a demented Borg mind

• Were created by insanely bad programmers

• And are impossible to read or create correctly

You’d be wrong on all four counts. With a little bit of digging, I’ll
show you how those file formats got so unbelievably complicated, why
it doesn’t reflect bad programming on Microsoft’s part, and what you
can do to work around it.

The first thing to understand is that the binary file formats were
designed with very different design goals than, say, HTML.

They were designed to be fast on very old computers. For the early
versions of Excel for Windows, 1MB of RAM was a reasonable amount
of memory, and an 80386 at 20 MHz had to be able to run Excel com-
fortably. There are a lot of optimizations in the file formats that are
intended to make opening and saving files much faster:

• These are binary formats, so loading a record is usually a matter
of just copying (blitting) a range of bytes from disk to memory,
where you end up with a C data structure you can use. There’s
no lexing or parsing involved in loading a file. Lexing and
parsing are orders of magnitude slower than blitting.

• The file format is contorted, where necessary, to make common
operations fast. For example, Excel 95 and 97 have something
called Simple Save, which they use sometimes as a faster
variation on the OLE compound document format, which just
wasn’t fast enough for mainstream use. Word had something
called Fast Save. To save a long document quickly, fourteen out
of fifteen times, only the changes are appended to the end of the
file, instead of rewriting the whole document from scratch. On
the hard drives of the day, this meant saving a long document
took one second instead of thirty. (It also meant that deleted
data in a document was still in the file. This turned out to be
not what people wanted.)

They were designed to use libraries. If you wanted to write a from-
scratch binary importer, you’d have to support things like the Windows
Metafile Format (for drawing things) and OLE Compound Storage. If
you’re running on Windows, there’s library support for these that makes
it trivial . . . using these features was a shortcut for the Microsoft team.

More from Joel on Software144

But if you’re writing everything on your own from scratch, you have to
do all that work yourself.

Office has extensive support for compound documents; for example,
you can embed a spreadsheet in a Word document. A perfect Word file
format parser would also have to be able to do something intelligent
with the embedded spreadsheet.

They were not designed with interoperability in mind. The assump-
tion, and a fairly reasonable one at the time, was that the Word file
format only had to be read and written by Word. That means that when-
ever a programmer on the Word team had to make a decision about how
to change the file format, the only thing they cared about was (a) what
was fast and (b) what took the fewest lines of code in the Word code
base. The idea of things like SGML and HTML—interchangeable,
standardized file formats—didn’t really take hold until the Internet
made it practical to interchange documents in the first place; this was a
decade later than the Office binary formats were first invented. There
was always an assumption that you could use importers and exporters
to exchange documents. In fact, Word does have a format designed for
easy interchange, called RTF, which has been there almost since the
beginning. It’s still 100% supported.

They have to reflect all the complexity of the applications. Every
check box, every formatting option, and every feature in Microsoft
Office has to be represented in file formats somewhere. That check box
in Word’s paragraph menu called “Keep With Next” that causes a para-
graph to be moved to the next page if necessary so that it’s on the same
page as the paragraph after it? That has to be in the file format. And that
means if you want to implement a perfect Word clone than can correctly
read Word documents, you have to implement that feature. If you’re
creating a competitive word processor that has to load Word documents,
it may only take you a minute to write the code to load that bit from the
file format, but it might take you weeks to change your page layout algo-
rithm to accommodate it. If you don’t, customers will open their Word
files in your clone, and all the pages will be messed up.

They have to reflect the history of the applications. A lot of the com-
plexities in these file formats reflect features that are old, complicated,
unloved, and rarely used. They’re still in the file format for backward
compatibility and because it doesn’t cost anything for Microsoft to leave
the code around. But if you really want to do a thorough and complete

145Why Are the Microsoft Office File Formats So Complicated? (And Some Workarounds)

job of parsing and writing these file formats, you have to redo all that
work that some intern did at Microsoft fifteen years ago. The bottom
line is that there are thousands of developer years of work that went into
the current versions of Word and Excel, and if you really want to clone
those applications completely, you’re going to have to do thousands of
years of work. A file format is just a concise summary of all the features
an application supports.

Just for kicks, let’s look at one tiny example in depth. An Excel work-
sheet is a bunch of BIFF records of different types. I want to look at the
very first BIFF record in the spec. It’s a record called 1904.

The Excel file format specification is remarkably obscure about this.
It just says that the 1904 record indicates “if the 1904 date system is
used.” Ah. A classic piece of useless specification. If you were a devel-
oper working with the Excel file format, and you found this in the file
format specification, you might be justified in concluding that Microsoft
is hiding something. This piece of information does not give you enough
information. You also need some outside knowledge, which I’ll fill you
in on now. There are two kinds of Excel worksheets: those where the
epoch for dates is 1/1/1900 (with a leap-year bug deliberately created for
Lotus 1-2-3 compatibility that is too boring to describe here), and those
where the epoch for dates is 1/1/1904. Excel supports both because the
first version of Excel, for the Mac, just used that operating system’s
epoch because that was easy, but Excel for Windows had to be able to
import Lotus 1-2-3 files, which used 1/1/1900 for the epoch. It’s enough
to bring you to tears. At no point in history did a programmer ever not
do the right thing, but there you have it.

Both 1900 and 1904 file types are commonly found in the wild, usu-
ally depending on whether the file originated on Windows or Mac.
Converting from one to another silently can cause data integrity errors,
so Excel won’t change the file type for you. To parse Excel files, you
have to handle both. That’s not just a matter of loading this bit from the
file. It means you have to rewrite all of your date display and parsing
code to handle both epochs. That would take several days to implement,
I think.

Indeed, as you work on your Excel clone, you’ll discover all kinds of
subtle details about date handling. When does Excel convert numbers to
dates? How does the formatting work? Why is 1/31 interpreted as
January 31 of this year, while 1/50 is interpreted as January 1, 1950? All

More from Joel on Software146

of these subtle bits of behavior cannot be fully documented without
writing a document that has the same amount of information as the
Excel source code.

And this is only the first of hundreds of BIFF records you have to
handle, and one of the simplest. Most of them are complicated enough
to reduce a grown programmer to tears.

The only possible conclusion is this. It’s very helpful of Microsoft to
release the file formats for Microsoft and Office, but it’s not really going
to make it any easier to import or save to the Office file formats. These
are insanely complex and rich applications, and you can’t just imple-
ment the most popular 20% and expect 80% of the people to be happy.
The binary file specification is, at most, going to save you a few minutes
reverse engineering a remarkably complex system.

OK, I promised some workarounds. The good news is that for
almost all common applications, trying to read or write the Office
binary file formats is the wrong decision. There are two major alterna-
tives you should seriously consider: letting Office do the work or using
file formats that are easier to write.

Let Office do the heavy work for you. Word and Excel have
extremely complete object models, available via COM Automation,
which allow you to programmatically do anything. In many situations,
you are better off reusing the code inside Office rather than trying to
reimplement it. Here are a few examples:

1. You have a web-based application that needs to output existing
Word files in PDF format. Here’s how I would implement that:
a few lines of Word VBA code loads a file and saves it as a PDF
using the built-in PDF exporter in Word 2007. You can call this
code directly, even from ASP or ASP.NET code running under
IIS. It’ll work. The first time you launch Word, it’ll take a few
seconds. The second time, Word will be kept in memory by the
COM subsystem for a few minutes in case you need it again. It’s
fast enough for a reasonable web-based application.

2. Same as the preceding, but your web hosting environment is
Linux. Buy one Windows 2003 server, install a fully licensed
copy of Word on it, and build a little web service that does the
work. Half a day of work with C# and ASP.NET.

147Why Are the Microsoft Office File Formats So Complicated? (And Some Workarounds)

3. Same as the preceding, but you need to scale. Throw a load bal-
ancer in front of any number of boxes that you built in step 2.
No code required.

This kind of approach would work for all kinds of common Office
types of applications you might perform on your server. For example:

• Opening an Excel workbook, storing some data in input cells,
recalculating, and pulling some results out of output cells

• Using Excel to generate charts in GIF format

• Pulling just about any kind of information out of any kind of
Excel worksheet without spending a minute thinking about file
formats

• Converting Excel file formats to CSV tabular data (another
approach is to use Excel ODBC drivers to suck data out using
SQL queries)

• Editing Word documents

• Filling out Word forms

• Converting files between any of the many file formats supported
by Office (there are importers for dozens of word processor and
spreadsheet formats)

In all of these cases, there are ways to tell the Office objects that
they’re not running interactively, so they shouldn’t bother updating the
screen, and they shouldn’t prompt for user input. By the way, if you go
this route, there are a few gotchas, and it’s not officially supported by
Microsoft, so read their knowledge base article before you get started.

Use a simpler format for writing files. If you merely have to produce
Office documents programmatically, there’s almost always a better for-
mat than the Office binary formats that you can use which Word and
Excel will open happily, without missing a beat.

• If you simply have to produce tabular data for use in Excel,
consider CSV.

• If you really need worksheet calculation features that CSV
doesn’t support, the WK1 format (Lotus 1-2-3) is a heck of a
lot simpler than Excel, and Excel will open it fine.

More from Joel on Software148

• If you really, really have to generate native Excel files, find an
extremely old version of Excel (Excel 3.0 is a good choice)
before all the compound document stuff, and save a minimum
file containing only the exact features you want to use. Use this
file to see the exact minimum BIFF records that you have to
output and just focus on that part of the spec.

• For Word documents, consider writing HTML. Word will open
those fine, too.

• If you really want to generate fancy formatted Word documents,
your best bet is to create an RTF document. Everything that
Word can do can be expressed in RTF, but it’s a text format, not
binary, so you can change things in the RTF document, and it’ll
still work. You can create a nicely formatted document with
placeholders in Word, save as RTF, and then using simple text
substitution, replace the placeholders on the fly. Now you have
an RTF document that every version of Word will open happily.

Anyway, unless you’re literally trying to create a competitor to Office
that can read and write all Office files perfectly, in which case, you’ve
got thousands of years of work cut out for you, chances are that reading
or writing the Office binary formats is the most labor-intensive way to
solve whatever problem it is that you’re trying to solve.

149Why Are the Microsoft Office File Formats So Complicated? (And Some Workarounds)

nineteen

WHERE THERE’S MUCK,
THERE’S BRASS

Thursday, December 6, 2007

When I was a kid working in the bread factory, my nemesis was dough. It
was sticky and hard to remove and got everywhere. I got home with
specks of dough in my hair. Every shift included a couple of hours of
scraping dough off of machinery. I carried dough-scrapers in my back
pocket. Sometimes a huge lump of dough would go flying someplace
where it shouldn’t and gum up everything. I had dough nightmares.

I worked in the production side of the factory. The other side did pack-
ing and shipping. Their nemesis was crumbs. Crumbs got everywhere.
The shipping crew went home with crumbs in their hair. Every shift
included a couple of hours of brushing crumbs out of machinery. They
carried little brushes in their back pockets. I’m sure they had crumb night-
mares, too.

Pretty much any job that you can get paid for includes dealing with
one gnarly problem. If you don’t have dough or crumbs to deal with,
maybe you work in a razor blade factory and go home with little cuts all
over your fingers. Maybe you work for VMware and have nightmares
about emulating bugs in sophisticated video cards that games rely on.
Maybe you work on Windows, and your nightmare is that the simplest
change can cause millions of old programs and hardware devices to stop
working. That’s the gnarly part of your job.

One of our gnarly problems is getting FogBugz to run on our cus-
tomers’ own servers. Jason Fried over at 37signals has a good summary of
why this is no fun (www.37signals.com/svn/posts/724-ask-37signals-
installable-software): “. . . You have to deal with endless operating

environment variations that are out of your control. When something
goes wrong, it’s a lot harder to figure out why if you aren’t in control of
the OS or the third-party software or hardware that may be interfering
with the install, upgrade, or general performance of your product. This
is even more complicated with remote server installs when there may be
different versions of Ruby, Rails, MYSQL, etc. at play.” Jason concludes
that if they had to sell installable software, they “definitely wouldn’t be
as happy.” Yep. Work that makes you unhappy is what I mean by “a
gnarly problem.”

The trouble is, the market pays for solutions to gnarly problems, not
solutions to easy problems. As the Yorkshire lads say, “Where there’s
muck, there’s brass.”

We offer both kinds of FogBugz—hosted and installable—and our
customers opt 4 to 1 to install it at their own site. For us, the installable
option gives us five times the sales. It costs us an extra salary or two (in
tech support costs). It also means we have to use Wasabi, which has
some serious disadvantages compared to off-the-shelf programming lan-
guages, but which we found to be the most cost-effective and efficient
way, given our code base, to ship software that is installable on
Windows, Linux, and Mac. Boy, I would love nothing more than to
scrap installable FogBugz and run everything on our servers . . . we’ve
got racks and racks of nice, well-managed Dell servers with plenty of
capacity, and our tech support costs for the hosted version are zero. Life
would be much easier. But we’d be making so much less money, we’d be
out of business.

The one thing that so many of today’s cute startups have in common
is that all they have is a simple little Ruby-on-Rails Ajax site that has no
barriers to entry and doesn’t solve any gnarly problems. So many of
these companies feel insubstantial and fluffy because, out of necessity
(the whole company is three kids and an iguana), they haven’t solved
anything difficult yet. Until they do, they won’t be solving problems for
people. People pay for solutions to their problems.

Making an elegantly designed and easy-to-use application is just as
gnarly, even though, like good ballet, it seems easy when done well.
Jason and 37signals put effort into good design and get paid for that.
Good design seems like the easiest thing to copy but, watching
Microsoft trying to copy the iPod, turns out to be not so easy. Great
design is a gnarly problem and can actually provide surprisingly sustain-
able competitive advantage.

More from Joel on Software152

Indeed, Jason probably made a good choice by picking the gnarly
problem where he has a lot of talent (design) to solve, because it doesn’t
seem like a chore to him. I’ve been a Windows programmer for ages, so
making a Windows Setup program for FogBugz, from scratch in C++,
doing all kinds of gnarly COM stuff, doesn’t seem like a chore to me.

The only way to keep growing—as a person and as a company—is to
keep expanding the boundaries of what you’re good at. At some point,
the 37signals team might decide that hiring one person to write the
Setup script and do installation support would pay for itself, and gener-
ate substantially more profit than it costs. So unless they deliberately
want to keep the company small, which is a perfectly legitimate desire,
they might eventually lose their reluctance to do things that seem gnarly.

Or maybe they won’t. There’s nothing wrong with choosing the fun
part of your business to work on. I’ve certainly been guilty of that. And
there’s nothing wrong with deciding that you only want to solve a spe-
cific set of problems for a small, select group of people. Salesforce.com
has managed to become big enough by sticking to hosted software. And
there are plenty of smaller software shops providing a fantastic lifestyle
for their crew with no desire to get any bigger.

But the great thing is that as you solve each additional gnarly prob-
lem, your business and market grow substantially. Good marketing,
good design, good sales, good support, and solving lots of problems for
customers all amplify each other. You start out with good design, then
you add some good features and triple your customer base by solving
lots of problems, and then you do some marketing and triple your cus-
tomer base again because now lots of people learn about your solution
to their pain, and then you hire salespeople and triple your customer
base yet again because now the people who know about your solution
are reminded to actually buy it, and then you add more features to solve
more problems for even more people, and eventually you actually have
a chance to reach enough people with your software to make the world
a better place.

P.S. I’m not claiming here that 37signals would sell five times as
many copies if they offered Installable Basecamp. First of all, one of the
reasons we may sell so many more installable versions of FogBugz is that
it appears, to some customers, to be cheaper. (It’s not cheaper in the long
run because you have to pay for the server and administer it yourself,
but that’s subjective.) Also, our support costs for the installable version

153Where There’s Muck, There’s Brass

are only as low as they are because 80% of our customers opt to run on
Windows Server. Because Windows systems are so similar, it’s much eas-
ier for us to support the lowest common denominator. The vast majority
of our tech support costs are caused by the diversity in Unix platforms
out there—I’d guess that the 20% of our Unix sales result in 80% of our
support incidents. If an installable version of Basecamp required Unix,
the support cost would be disproportionately expensive compared to a
hypothetical installable Windows version. Finally, another reason our
experience might not translate to 37signals is that we’ve been selling
installable software for seven years now; the hosted version has only
been out for about six months. So we have a big installed base used to
running FogBugz on their own servers. If you only look at new FogBugz
customers, the ratio of installable to hosted goes down to 3 to 1.

More from Joel on Software154

part five

Programming Advice

twenty

EVIDENCE-BASED SCHEDULING

Friday, October 26, 2007

Software developers don’t really like to make schedules. Usually, they try
to get away without one. “It’ll be done when it’s done!” they say, expect-
ing that such a brave, funny zinger will reduce their boss to a fit of giggles,
and in the ensuing joviality, the schedule will be forgotten.

Most of the schedules you do see are halfhearted attempts. They’re
stored on a file share somewhere and completely forgotten. When these
teams ship, two years late, that weird guy with the file cabinet in his office
brings the old printout to the post mortem, and everyone has a good
laugh. “Hey look! We allowed two weeks for rewriting from scratch in
Ruby!”

Hilarious! If you’re still in business.
You want to be spending your time on things that get the most bang

for the buck. And you can’t figure out how much buck your bang is going
to cost without knowing how long it’s going to take. When you have to
decide between the “animated paperclip” feature and the “more financial
functions” feature, you really need to know how much time each will
take.

Why won’t developers make schedules? Two reasons. One: it’s a pain
in the butt. Two: nobody believes the schedule is realistic. Why go to all
the trouble of working on a schedule if it’s not going to be right?

Over the last year or so at Fog Creek, we’ve been developing a system
that’s so easy even our grouchiest developers are willing to go along with
it. And as far as we can tell, it produces extremely reliable schedules. It’s
called Evidence-Based Scheduling, or EBS. You gather evidence, mostly
from historical time sheet data, that you feed back into your schedules.
What you get is not just one ship date: you get a confidence distribution

curve, showing the probability that you will ship on any given date. It
looks like this:

The steeper the curve, the more confident you are that the ship date
is real.

Here’s how you do it.

1. Break ’er down

When I see a schedule measured in days, or even weeks, I know it’s
not going to work. You have to break your schedule into very

small tasks that can be measured in hours. Nothing longer than sixteen
hours.

This forces you to actually figure out what you are going to do. Write
subroutine foo. Create this dialog box. Parse the Fizzbott file. Individual
development tasks are easy to estimate, because you’ve written subrou-
tines, created dialog boxes, and parsed files before.

If you are sloppy and pick big three-week tasks (e.g., “Implement
Ajax photo editor”), then you haven’t thought about what you are going
to do. In detail. Step by step. And when you haven’t thought about what
you’re going to do, you can’t know how long it will take.

More from Joel on Software158

Setting a sixteen-hour maximum forces you to design the damn fea-
ture. If you have a hand-wavy three-week feature called “Ajax photo
editor” without a detailed design, I’m sorry to be the one to break it to
you, but you are officially doomed. You never thought about the steps
it’s going to take, and you’re sure to be forgetting a lot of them.

2. Track elapsed time

It’s hard to get individual estimates exactly right. How do you account
for interruptions, unpredictable bugs, status meetings, and the semi-

annual Windows Tithe Day when you have to reinstall everything from
scratch on your main development box? Heck, even without all that
stuff, how can you tell exactly how long it’s going to take to implement
a given subroutine?

You can’t, really.
So, keep time sheets. Keep track of how long you spend working on

each task. Then you can go back and see how long things took relative
to the estimate. For each developer, you’ll be collecting data like this:

159Evidence-Based Scheduling

Each point on the chart is one completed task, with the estimated
and actual times for that task. When you divide estimated by actual
time, you get velocity: how fast the task was done relative to estimate.
Over time, for each developer, you’ll collect a history of velocities.

• The mythical perfect estimator, who exists only in your
imagination, always gets every estimate exactly right. So their
velocity history is {1, 1, 1, 1, 1, . . .}.

• A typical bad estimator has velocities all over the map, for
example, {0.1, 0.5, 1.7, 0.2, 1.2, 0.9, 13.0}.

• Most estimators get the scale wrong but the relative estimates
right. Everything takes longer than expected, because the
estimate didn’t account for bug fixing, committee meetings,
coffee breaks, and that crazy boss who interrupts all the time.
This common estimator has very consistent velocities, but
they’re below 1.0, for example, {0.6, 0.5, 0.6, 0.6, 0.5, 0.6,
0.7, 0.6}.

As estimators gain more experience, their estimating skills improve.
So throw away any velocities older than, say, six months.

If you have a new estimator on your team who doesn’t have a track
record, assume the worst: give them a fake history with a wide range of
velocities, until they’ve finished a half-dozen real tasks.

3. Simulate the future

Rather than just adding up estimates to get a single ship date, which
sounds right but gives you a profoundly wrong result, you’re going

to use the Monte Carlo method to simulate many possible futures. In a
Monte Carlo simulation, you can create 100 possible scenarios for the
future. Each of these possible futures has 1% probability, so you can
make a chart of the probability that you will ship by any given date.

While calculating each possible future for a given developer, you’re
going to divide each task’s estimate by a randomly-selected velocity from
that developer’s historical velocities, which we’ve been gathering in
step 2. Here’s one sample future:

More from Joel on Software160

Estimate: 4 8 2 8 16

Random Velocity: 0.6 0.5 0.6 0.6 0.5 Total:

E/V: 6.7 16 3.3 13.3 32 71.3

Do that 100 times; each total has 1% probability, and now you can
figure out the probability that you will ship on any given date.

Now watch what happens:

• In the case of the mythical perfect estimator, all velocities are 1.
Dividing by a velocity that is always 1 has no effect. Thus, all
rounds of the simulation give the same ship date, and that ship
date has 100% probability. Just like in the fairy tales!

• The bad estimator’s velocities are all over the map. 0.1 and 13.0
are just as likely. Each round of the simulation is going to
produce a very different result, because when you divide by
random velocities, you get very different numbers each time.
The probability distribution curve you get will be very shallow,
showing an equal chance of shipping tomorrow or in the far
future. That’s still useful information to get, by the way: it tells
you that you shouldn’t have confidence in the predicted ship
dates.

• The common estimator has a lot of velocities that are pretty
close to each other, for example, {0.6, 0.5, 0.6, 0.6, 0.5, 0.6,
0.7, 0.6}. When you divide by these velocities, you increase the
amount of time something takes, so in one iteration, an eight-
hour task might take thirteen hours; in another it might take
fifteen hours. That compensates for the estimator’s perpetual
optimism. And it compensates precisely, based exactly on this
developer’s actual, proven, historical optimism. And since all the
historical velocities are pretty close, hovering around 0.6, when
you run each round of the simulation, you’ll get pretty similar
numbers, so you’ll wind up with a narrow range of possible ship
dates.

In each round of the Monte Carlo simulation, of course, you have
to convert the hourly data to calendar data, which means you have to
take into account each developer’s work schedule, vacations, holidays,
etc. And then you have to see, for each round, which developer is finish-
ing last, because that’s when the whole team will be done. These

161Evidence-Based Scheduling

calculations are painstaking, but luckily, painstaking is what computers
are good at.

Obsessive-compulsive disorder not
required

What do you do about the boss who interrupts you all the time with
long-winded stories about his fishing trips? Or the sales meetings

you’re forced to go to even though you have no reason to be there?
Coffee breaks? Spending half a day helping the new guy get his dev envi-
ronment set up?

When Brett and I were developing this technique at Fog Creek, we
worried a lot about things that take real time but can’t be predicted in
advance. Sometimes, this all adds up to more time than writing code.
Should you have estimates for this stuff too, and track it on a time sheet?

Well, yeah, you can, if you want. And Evidence-Based Scheduling
will work.

But you don’t have to.
It turns out that EBS works so well that all you have to do is keep the

clock running on whatever task you were doing when the interruption

More from Joel on Software162

occurred. As disconcerting as this may sound, EBS produces the best
results when you do this.

Let me walk you through a quick example. To make this example as
simple as possible, I’m going to imagine a very predictable programmer,
John, whose whole job is writing those one-line getter and setter func-
tions that inferior programming languages require. All day long this is
all he does:

private int width;
public int getWidth () { return width; }
public void setWidth (int _width} { width = _width; }

I know, I know . . . it’s a deliberately dumb example, but you know
you’ve met someone like this.

Anyway. Each getter or setter takes him two hours. So his task esti-
mates look like this:

{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . }

Now, this poor guy has a boss who interrupts him every once in a
while with a two-hour conversation about marlin fishing. Now, of
course, John could have a task on his schedule called “Painful conversa-
tions about marlin” and put that on his time sheet, but this might not be
politically prudent. Instead, John just keeps the clock running. So his
actual times look like this:

{2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, . . . }

And his velocities are

{1, 1, 1, 1, 0.5, 1, 1, 1, 1, 0.5, 1, . . . }

Now think about what happens. In the Monte Carlo simulation, the
probability that each estimate will be divided by 0.5 is exactly the same
as the probability that John’s boss would interrupt him during any given
feature. So EBS produces a correct schedule!

In fact, EBS is far more likely to have accurate evidence about these
interruptions than even the most time sheet–obsessive developer. Which
is exactly why it works so well. Here’s how I explain this to people.
When developers get interrupted, they can either

163Evidence-Based Scheduling

1. Make a big stink about putting the interruption on their time
sheet and in their estimates, so management can see just how
much time is being wasted on fishing conversation.

2. Make a big stink about refusing to put it on their time sheet,
just letting the feature they were working on slip, because they
refuse to pad their estimates, which were perfectly correct, with
stupid conversation about fishing expeditions to which they
weren’t even invited.

and in either case, EBS gives the same, exactly correct results, no matter
which type of passive-aggressive developer you have.

4. Manage your projects actively

Once you’ve got this set up, you can actively manage projects to ship
on time. For example, if you sort features out into different priori-

ties, it’s easy to see how much it would help the schedule if you could cut
the lower priority features.

You can also look at the distribution of possible ship dates for each
developer:

More from Joel on Software164

Some developers (like Milton in this picture) may be causing prob-
lems because their ship dates are so uncertain: they need to work on
learning to estimate better. Other developers (like Jane) have very precise
ship dates that are just too late: they need to have some of their work
taken off their plate. Other developers (me! yay!) are not on the critical
path at all, and can be left in peace.

Scope creep

Assuming you had everything planned down to the last detail when
you started work, EBS works great. To be honest, though, you may

do some features that you hadn’t planned. You get new ideas, your sales-
people sell features you don’t have, and somebody on the board of
directors comes up with a cool new idea to make your golf cart GPS
application monitor EKGs while golfers are buzzing around the golf
course. All this leads to delays that could not have been predicted when
you did the original schedule.

165Evidence-Based Scheduling

Ideally, you have a bunch of buffer for this. In fact, go ahead and
build buffer into your original schedule for

1. New feature ideas

2. Responding to the competition

3. Integration (getting everyone’s code to work together when it’s
merged)

4. Debugging time

5. Usability testing (and incorporating the results of those tests
into the product)

6. Beta tests

So now, when new features come up, you can slice off a piece of the
appropriate buffer and use it for the new feature.

What happens if you’re still adding features and you’ve run out of
buffer? Well, now the ship dates you get out of EBS start slipping. You
should take a snapshot of the ship date confidence distribution every
night, so that you can track this over time:

The x-axis is when the calculation was done; the y-axis is the ship
date. There are three curves here: the top one is the 95% probability
date, the middle is 50%, and the bottom is 5%. So, the closer the curves
are to one another, the narrower the range of possible ship dates.

More from Joel on Software166

If you see the ship date getting later and later (rising curves), you’re
in trouble. If it’s getting later by more than one day per day, you’re
adding work faster than you’re completing work, and you’ll never be
done. You can also look and see whether the ship date confidence distri-
bution is getting tighter (the curves are converging), which it should be
if you’re really converging on a date.

While we’re at it

Here are a few more things I’ve learned over the years about
schedules.

1. Only the programmer doing the work can create the estimate.
Any system where management writes a schedule and hands it
off to programmers is doomed to fail. Only the programmer
who is going to implement a feature can figure out what steps
they will need to take to implement that feature.

2. Fix bugs as you find them, and charge the time back to the
original task. You can’t schedule a single bug fix in advance,
because you don’t know what bugs you’re going to have. When
bugs are found in new code, charge the time to the original task
that you implemented incorrectly. This will help EBS predict the
time it takes to get fully debugged code, not just working code.

3. Don’t let managers badger developers into shorter estimates.
Many rookie software managers think that they can “motivate”
their programmers to work faster by giving them nice, “tight”
(unrealistically short) schedules. I think this kind of motivation
is brain-dead. When I’m behind schedule, I feel doomed and
depressed and unmotivated. When I’m working ahead of sched-
ule, I’m cheerful and productive. The schedule is not the place
to play psychological games.

Why do managers try this?

167Evidence-Based Scheduling

When the project begins, the technical managers go off, meet
with the business people, and come up with a list of features
they think would take about three months, but which would
really take twelve. When you think of writing code without
thinking about all the steps you have to take, it always seems
like it will take n time, when in reality it will probably take
more like 4n time. When you do a real schedule, you add up all
the tasks and realize that the project is going to take much
longer than originally thought. The business people are
unhappy.

Inept managers try to address this by figuring out how to get
people to work faster. This is not very realistic. You might be
able to hire more people, but they need to get up to speed and
will probably be working at 50% efficiency for several months
(and dragging down the efficiency of the people who have to
mentor them).

You might be able to get 10% more raw code out of people
temporarily at the cost of having them burn out 100% in a
year. Not a big gain, and it’s a bit like eating your seed corn. Of
course, when you overwork people, debugging time doubles
and a late project becomes later. Splendid karma.

But you can never get 4n from n, ever, and if you think you can,
please e-mail me the stock symbol for your company so I can
short it.

4. A schedule is a box of wood blocks. If you have a bunch of
wood blocks, and you can’t fit them into a box, you have two
choices: get a bigger box or remove some blocks. If you wanted
to ship in six months but you have twelve months on the sched-
ule, you are going to have to either delay shipping or find some
features to delete. You just can’t shrink the blocks, and if you
pretend you can, then you are merely depriving yourself of a
useful opportunity to actually see into the future by lying to
yourself about what you see there.

Now that I mention it, one of the great benefits of realistic schedules
is that you are forced to delete features. Why is this good?

Suppose you have two features in mind. One is really useful and will
make your product really great. The other is really easy and the

More from Joel on Software168

programmers can’t wait to code it up (“Look! <blink>!”), but it serves
no useful purpose.

If you don’t make a schedule, the programmers will do the easy/fun
feature first. Then they’ll run out of time, and you will have no choice
but to slip the schedule to do the useful/important feature.

If you do make a schedule, even before you start working, you’ll real-
ize that you have to cut something, so you’ll cut the easy/fun feature and
just do the useful/important feature. By forcing yourself to choose some
features to cut, you wind up making a more powerful, better product
with a better mix of good features that ships sooner.

Way back when I was working on Excel 5, our initial feature list was
huge and would have gone way over schedule. “Oh my!” we thought.
“Those are all super important features! How can we live without a
macro editing wizard?”

As it turns out, we had no choice, and we cut what we thought was
“to the bone” to make the schedule. Everybody felt unhappy about the
cuts. To make people feel better, we told ourselves that we weren’t cut-
ting the features, we were simply deferring them to Excel 6.

As Excel 5 was nearing completion, I started working on the Excel 6
spec with a colleague, Eric Michelman. We sat down to go through the
list of Excel 6 features that had been punted from the Excel 5 schedule.
Guess what? It was the shoddiest list of features you could imagine. Not
one of those features was worth doing. I don’t think a single one of them
ever was. The process of culling features to fit a schedule was the best
thing we could have done. If we hadn’t done this, Excel 5 would have
taken twice as long and included 50% useless crap features that would
have had to be supported, for backward compatibility, until the end of
time.

Summary

Using Evidence-Based Scheduling is pretty easy: it will take you a day
or two at the beginning of every iteration to produce detailed esti-

mates, and it’ll take a few seconds every day to record when you start
working on a new task on a time sheet. The benefits, though, are huge:
realistic schedules.

169Evidence-Based Scheduling

Realistic schedules are the key to creating good software. It forces
you to do the best features first and allows you to make the right deci-
sions about what to build. Which makes your product better and your
boss happier, delights your customers, and—best of all—lets you go
home at 5 o’clock.

P.S.

Evidence-Based Scheduling is built into FogBugz 6.0.

More from Joel on Software170

twenty-one

STRATEGY LETTER VI

Tuesday, September 18, 2007

IBM just released an open source office suite called IBM Lotus
Symphony. Sounds like Yet Another StarOffice distribution. But I suspect
they’re probably trying to wipe out the memory of the original Lotus
Symphony, which had been hyped as the Second Coming and which fell
totally flat. It was the software equivalent of Gigli.

In the late 1980s, Lotus was trying very hard to figure out what to do
next with their flagship spreadsheet and graphics product, Lotus 1-2-3.
There were two obvious ideas: first, they could add more features—word
processing, say. This product was called Symphony. Another idea that
seemed obvious was to make a 3-D spreadsheet. That became 1-2-3
version 3.0.

Both ideas ran head-first into a serious problem: the old DOS 640K
memory limitation. IBM was starting to ship a few computers with 80286
chips, which could address more memory, but Lotus didn’t think there
was a big enough market for software that needed a $10,000 computer to
run. So they squeezed and squeezed. They spent 18 months cramming
1-2-3 for DOS into 640K, and eventually, after a lot of wasted time, had
to give up the 3D feature to get it to fit. In the case of Symphony, they just
chopped features left and right.

Neither strategy was right. By the time 1-2-3 3.0 was shipping, every-
body had 80386s with 2MB or 4MB of RAM. And Symphony had an
inadequate spreadsheet, an inadequate word processor, and some other
inadequate bits.

“That’s nice, old man,” you say. “Who gives a fart about some old
character mode software?”

Humor me for a minute, because history is repeating itself, in three
different ways, and the smart strategy is to bet on the same results.

Limited-memory, limited-CPU
environments

From the beginning of time until about, say, 1989, programmers were
extremely concerned with efficiency. There just wasn’t that much

memory and there just weren’t that many CPU cycles.
In the late 1990s, a few companies, including Microsoft and Apple,

noticed (just a little bit sooner than anyone else) that Moore’s Law
meant that they shouldn’t think too hard about performance and mem-
ory usage . . . just build cool stuff, and wait for the hardware to catch
up. Microsoft first shipped Excel for Windows when 80386s were too
expensive to buy, but they were patient. Within a couple of years, the
80386SX came out, and anybody who could afford a $1,500 clone
could run Excel.

As a programmer, thanks to plummeting memory prices and CPU
speeds doubling every year, you had a choice. You could spend six
months rewriting your inner loops in Assembler, or take six months off
to play drums in a rock-and-roll band, and in either case, your program
would run faster. Assembler programmers don’t have groupies.

So, we don’t care about performance or optimization much anymore.
Except in one place: JavaScript running on browsers in Ajax applica-

tions. And since that’s the direction almost all software development is
moving, that’s a big deal.

A lot of today’s Ajax applications have a meg or more of client-side
code. This time, it’s not the RAM or CPU cycles that are scarce: it’s the
download bandwidth and the compile time. Either way, you really have
to squeeze to get complex Ajax apps to perform well.

History, though, is repeating itself. Bandwidth is getting cheaper.
People are figuring out how to precompile JavaScript.

The developers who put a lot of effort into optimizing things and
making them tight and fast will wake up to discover that effort was,
more or less, wasted, or, at the very least, you could say that it

More from Joel on Software172

“conferred no long-term competitive advantage,” if you’re the kind of
person who talks like an economist.

The developers who ignored performance and blasted ahead adding
cool features to their applications will, in the long run, have better appli-
cations.

A portable programming language

The C programming language was invented with the explicit goal of
making it easy to port applications from one instruction set to

another. And it did a fine job, but wasn’t really 100% portable, so we
got Java, which was even more portable than C. Mmmhmm.

Right now the big hole in the portability story is—tada!—client-side
JavaScript, and especially the DOM in web browsers. Writing applica-
tions that work in all different browsers is a friggin’ nightmare. There is
simply no alternative but to test exhaustively on Firefox, IE 6, IE 7,
Safari, and Opera, and guess what? I don’t have time to test on Opera.
Sucks to be Opera. Startup web browsers don’t stand a chance.

What’s going to happen? Well, you can try begging Microsoft and
Firefox to be more compatible. Good luck with that. You can follow the
p-code/Java model and build a little sandbox on top of the underlying
system. But sandboxes are penalty boxes; they’re slow and they suck,
which is why Java applets are dead, dead, dead. To build a sandbox, you
pretty much doom yourself to running at 1/10 the speed of the under-
lying platform, and you doom yourself to never supporting any of the
cool features that show up on one of the platforms but not the others.
(I’m still waiting for someone to show me a Java applet for phones that
can access any of the phone’s features, like the camera, the contacts list,
the SMS messages, or the GPS receiver.)

Sandboxes didn’t work then and they’re not working now.
What’s going to happen? The winners are going to do what worked

at Bell Labs in 1978: build a programming language, like C, that’s
portable and efficient. It should compile down to “native” code (native
code being JavaScript and DOMs) with different back ends for different
target platforms, where the compiler writers obsess about performance

173Strategy Letter VI

so you don’t have to. It’ll have all the same performance as native
JavaScript with full access to the DOM in a consistent fashion, and it’ll
compile down to IE native and Firefox native portably and automati-
cally. And, yes, it’ll go into your CSS and muck around with it in some
frightening but provably correct way so you never have to think about
CSS incompatibilities ever again. Ever. Oh joyous day that will be.

High interactivity and UI standards

The IBM 360 mainframe computer system used a user interface called
CICS, which you can still see at the airport if you lean over the

check-in counter. There’s an 80-character by 24-character green screen,
character mode only, of course. The mainframe sends down a form to
the “client” (the client being a 3270 smart terminal). The terminal is
smart; it knows how to present the form to you and let you input data
into the form without talking to the mainframe at all. This was one rea-
son mainframes were so much more powerful than Unix: the CPU didn’t
have to handle your line editing; it was offloaded to a smart terminal. (If
you couldn’t afford smart terminals for everyone, you bought a System/1
minicomputer to sit between the dumb terminals and the mainframe and
handle the form editing for you.)

Anyhoo, after you filled out your form, you pressed SEND, and all
your answers were sent back to the server to process. Then it sent you
another form. And on and on.

Awful. How do you make a word processor in that kind of environ-
ment? (You really can’t. There never was a decent word processor for
mainframes.)

That was the first stage. It corresponds precisely to the HTML phase
of the Internet. HTML is CICS with fonts.

In the second stage, everybody bought PCs for their desks, and sud-
denly, programmers could poke text anywhere on the screen willy-nilly,
anywhere they wanted, any time they wanted, and you could actually
read every keystroke from the users as they typed, so you could make a
nice fast application that didn’t have to wait for you to hit SEND before
the CPU could get involved. So, for example, you could make a word

More from Joel on Software174

processor that automatically wrapped, moving a word down to the next
line when the current line filled up. Right away. Oh my god. You can do
that?

The trouble with the second stage was that there were no clear UI
standards . . . the programmers almost had too much flexibility, so
everybody did things in different ways, which made it hard, if you knew
how to use program X, to also use program Y. WordPerfect and Lotus
1-2-3 had completely different menu systems, keyboard interfaces, and
command structures. And copying data between them was out of the
question.

And that’s exactly where we are with Ajax development today. Sure,
yeah, the usability is much better than the first generation DOS apps,
because we’ve learned some things since then. But Ajax apps can be
inconsistent and have a lot of trouble working together—you can’t really
cut and paste objects from one Ajax app to another, for example, so I’m
not sure how you get a picture from Gmail to Flickr. Come on guys, cut
and paste was invented 25 years ago.

The third phase with PCs was Macintosh and Windows. A standard,
consistent user interface with features like multiple windows and the
Clipboard designed so that applications could work together. The
increased usability and power we got out of the new GUIs made per-
sonal computing explode.

So if history repeats itself, we can expect some standardization of
Ajax user interfaces to happen in the same way we got Microsoft
Windows. Somebody is going to write a compelling SDK that you can
use to make powerful Ajax applications with common user interface ele-
ments that work together. And whichever SDK wins the most developer
mindshare will have the same kind of competitive stronghold as
Microsoft had with their Windows API.

If you’re a web app developer and you don’t want to support the
SDK everybody else is supporting, you’ll increasingly find that people
won’t use your web app, because it doesn’t, you know, support cut and
paste and address book synchronization and whatever weird new
interop features we’ll want in 2010.

Imagine, for example, that you’re Google with Gmail, and you’re
feeling rather smug. But then somebody you’ve never heard of, some
bratty Y Combinator startup, maybe, is gaining ridiculous traction sell-
ing NewSDK, which combines a great portable programming language

175Strategy Letter VI

that compiles to JavaScript, and even better, a huge Ajaxy library that
includes all kinds of clever interop features. Not just cut and paste: cool
mashup features like synchronization and single-point identity manage-
ment (so you don’t have to tell Facebook and Twitter what you’re doing,
you can just enter it in one place). And you laugh at them, for their
NewSDK is a honking 232 megabytes . . . 232 megabytes! . . . of
JavaScript, and it takes 76 seconds to load a page. And your app, Gmail,
doesn’t lose any customers.

But then, while you’re sitting on your googlechair in the googleplex
sipping googleccinos and feeling smuggy smug smug smug, new versions
of the browsers come out that support cached, compiled JavaScript. And
suddenly NewSDK is really fast. And Paul Graham gives them another
6,000 boxes of instant noodles to eat, so they stay in business another
three years perfecting things.

And your programmers are like, jeez Louise, Gmail is huge, we can’t
port Gmail to this stupid NewSDK. We’d have to change every line of
code. Heck, it’d be a complete rewrite; the whole programming model is
upside-down and recursive, and the portable programming language has
more parentheses than even Google can buy. The last line of almost
every function consists of a string of 3,296 right parentheses. You have
to buy a special editor to count them.

And the NewSDK people ship a pretty decent word processor and a
pretty decent e-mail app and a killer Facebook/Twitter event publisher
that synchronizes with everything, so people start using it.

And while you’re not paying attention, everybody starts writing
NewSDK apps, and they’re really good, and suddenly businesses ONLY
want NewSDK apps, and all those old-school Plain Ajax apps look
pathetic and won’t cut and paste and mash and sync and play drums
nicely with one another. And Gmail becomes a legacy, the WordPerfect
of e-mail. And you’ll tell your children how excited you were to get 2GB
to store e-mail, and they’ll laugh at you. Their nail polish has more than
2GB.

Crazy story? Substitute “Google Gmail” with “Lotus 1-2-3.” The
NewSDK will be the second coming of Microsoft Windows; this is
exactly how Lotus lost control of the spreadsheet market. And it’s going
to happen again on the Web because all the same dynamics and forces
are in place. The only thing we don’t know yet are the particulars, but
it’ll happen.

More from Joel on Software176

twenty-two

CAN YOUR PROGRAMMING
LANGUAGE DO THIS?

Tuesday, August 1, 2006

One day, you’re browsing through your code, and you notice two big
blocks that look almost exactly the same. In fact, they’re exactly the same,
except that one block refers to “Spaghetti” and one block refers to
“Chocolate Mousse.”

// A trivial example:

alert("I'd like some Spaghetti!");
alert("I'd like some Chocolate Mousse!");

These examples happen to be in JavaScript, but even if you don’t
know JavaScript, you should be able to follow along.

The repeated code looks wrong, of course, so you create a function:

function SwedishChef(food)
{

alert("I'd like some " + food + "!");
}

SwedishChef("Spaghetti");
SwedishChef("Chocolate Mousse");

OK, it’s a trivial example, but you can imagine a more substantial
example. This is better code for many reasons, all of which you’ve heard
a million times. Maintainability, Readability, Abstraction = Good!

Now you notice two other blocks of code that look almost the same,
except that one of them keeps calling this function called BoomBoom and
the other one keeps calling this function called PutInPot. Other than
that, the code is pretty much the same.

alert("get the lobster");
PutInPot("lobster");
PutInPot("water");

alert("get the chicken");
BoomBoom("chicken");
BoomBoom("coconut");

Now you need a way to pass an argument to the function that itself
is a function. This is an important capability, because it increases the
chances that you’ll be able to find common code that can be stashed
away in a function.

function Cook(i1, i2, f)
{

alert("get the " + i1);
f(i1);
f(i2);

}

Cook("lobster", "water", PutInPot);
Cook("chicken", "coconut", BoomBoom);

Look! We’re passing in a function as an argument.
Can your language do this?
Wait . . . suppose you haven’t already defined the functions PutInPot

or BoomBoom. Wouldn’t it be nice if you could just write them inline
instead of declaring them elsewhere?

Cook("lobster",
"water",
function(x) { alert("pot " + x); });

Cook("chicken",
"coconut",
function(x) { alert("boom " + x); });

More from Joel on Software178

Jeez, that is handy. Notice that I’m creating a function there on the
fly, not even bothering to name it, just picking it up by its ears and toss-
ing it into a function.

As soon as you start thinking in terms of anonymous functions as
arguments, you might notice code all over the place that, say, does some-
thing to every element of an array.

var a = [1,2,3];

for (i=0; i<a.length; i++)
{

a[i] = a[i] * 2;
}

for (i=0; i<a.length; i++)
{

alert(a[i]);
}

Doing something to every element of an array is pretty common, and
you can write a function that does it for you:

function map(fn, a)
{

for (i = 0; i < a.length; i++)
{

a[i] = fn(a[i]);
}

}

Now you can rewrite the preceding code as

map(function(x){return x*2;}, a);
map(alert, a);

Another common thing with arrays is to combine all the values of the
array in some way.

function sum(a)
{

var s = 0;

179Can Your Programming Language Do This?

for (i = 0; i < a.length; i++)
s += a[i];

return s;
}

function join(a)
{

var s = "";
for (i = 0; i < a.length; i++)

s += a[i];
return s;

}

alert(sum([1,2,3]));
alert(join(["a","b","c"]));

sum and join look so similar, you might want to abstract out their
essence into a generic function that combines elements of an array into
a single value:

function reduce(fn, a, init)
{

var s = init;
for (i = 0; i < a.length; i++)

s = fn(s, a[i]);
return s;

}

function sum(a)
{

return reduce(function(a, b){ return a + b; },
a, 0);

}

function join(a)
{

return reduce(function(a, b){ return a + b; },
a, "");

}

More from Joel on Software180

Many older languages simply had no way to do this kind of stuff.
Other languages let you do it, but it’s hard (for example, C has function
pointers, but you have to declare and define the function somewhere
else). Object-oriented programming languages aren’t completely con-
vinced that you should be allowed to do anything with functions.

Java required you to create a whole object with a single method
called a functor if you wanted to treat a function like a first class object.
Combine that with the fact that many OO languages want you to create
a whole file for each class, and it gets really clunky fast. If your pro-
gramming language requires you to use functors, you’re not getting all
the benefits of a modern programming environment. See if you can get
some of your money back.

How much benefit do you really get out of writing itty-bitty functions
that do nothing more than iterate through an array doing something to
each element?

Well, let’s go back to that map function. When you need to do some-
thing to every element in an array in turn, the truth is, it probably
doesn’t matter what order you do them in. You can run through the
array forward or backward and get the same result, right? In fact, if you
have two CPUs handy, maybe you could write some code to have each
CPU do half of the elements, and suddenly map is twice as fast.

Or maybe, just hypothetically, you have hundreds of thousands of
servers in several data centers around the world, and you have a really
big array, containing, let’s say, again, just hypothetically, the entire con-
tents of the Internet. Now you can run map on thousands of computers,
each of which will attack a tiny part of the problem.

So now, for example, writing some really fast code to search the
entire contents of the Internet is as simple as calling the map function
with a basic string searcher as an argument.

The really interesting thing I want you to notice here is that as soon
as you think of map and reduce as functions that everybody can use, and
they use them, you only have to get one supergenius to write the hard
code to run map and reduce on a global massively parallel array of com-
puters, and all the old code that used to work fine when you just ran a
loop still works, only it’s a zillion times faster, which means it can be
used to tackle huge problems in an instant.

181Can Your Programming Language Do This?

Lemme repeat that. By abstracting away the very concept of looping,
you can implement looping any way you want, including implementing
it in a way that scales nicely with extra hardware.

And now you understand something I wrote a while ago where I
complained about CS students who are never taught anything but Java:

Without understanding functional programming, you can’t
invent MapReduce, the algorithm that makes Google so mas-
sively scalable. The terms “Map” and “Reduce” come from Lisp
and functional programming. MapReduce is, in retrospect, obvi-
ous to anyone who remembers from their 6.001-equivalent
programming class that purely functional programs have no side
effects and are thus trivially parallelizable. The very fact that
Google invented MapReduce, and Microsoft didn’t, says some-
thing about why Microsoft is still playing catch-up trying to get
basic search features to work, while Google has moved on to the
next problem: building Skynet^H^H^H^H^H^H, the world’s
largest massively parallel supercomputer. I don’t think Microsoft
completely understands just how far behind they are on that wave.

OK. I hope you’re convinced, by now, that programming languages
with first-class functions let you find more opportunities for abstraction,
which means your code is smaller, tighter, more reusable, and more scal-
able. Lots of Google applications use MapReduce, and they all benefit
whenever someone optimizes it or fixes bugs.

And now I’m going to get a little bit mushy, and argue that the most
productive programming environments are the ones that let you work at
different levels of abstraction. Crappy old FORTRAN really didn’t even
let you write functions. C had function pointers, but they were ugleeeeee
and not anonymous and had to be implemented somewhere other than
where you were using them. Java made you use functors, which is even
uglier. As Steve Yegge points out, Java is the Kingdom of Nouns
(steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-
nouns.html).

Correction The last time I used FORTRAN was 27 years ago. Apparently,
it’s got functions. I must have been thinking about GW-BASIC.

More from Joel on Software182

twenty-three

MAKING WRONG CODE LOOK
WRONG

Wednesday, May 11, 2005

Way back in September 1983, I started my first real job, working at
Oranim, a big bread factory in Israel that made something like 100,000
loaves of bread every night in six giant ovens the size of aircraft carriers.

The first time I walked into the bakery I couldn’t believe what a mess
it was. The sides of the ovens were yellowing, machines were rusting,
there was grease everywhere.

“Is it always this messy?” I asked.
“What? What are you talking about?” the manager said. “We just fin-

ished cleaning. This is the cleanest it’s been in weeks.”
Oh boy.
It took me a couple of months of cleaning the bakery every morning

before I realized what they meant. In the bakery, clean meant no dough on
the machines. Clean meant no fermenting dough in the trash. Clean
meant no dough on the floors.

Clean did not mean the paint on the ovens was nice and white.
Painting the ovens was something you did every decade, not every day.
Clean did not mean no grease. In fact, there were a lot of machines that
needed to be greased or oiled regularly, and a thin layer of clean oil was
usually a sign of a machine that had just been cleaned.

The whole concept of clean in the bakery was something you had to
learn. To an outsider, it was impossible to walk in and judge whether the
place was clean or not. An outsider would never think of looking at the
inside surfaces of the dough rounder (a machine that rolls square blocks
of dough into balls) to see if they had been scraped clean. An outsider

would obsess over the fact that the old oven had discolored panels,
because those panels were huge. But a baker couldn’t care less whether
the paint on the outside of their oven was starting to turn a little yellow.
The bread still tasted just as good.

After two months in the bakery, you learned how to “see” clean.
Code is the same way.
When you start out as a beginning programmer or you try to read

code in a new language, it all looks equally inscrutable. Until you under-
stand the programming language itself, you can’t even see obvious
syntactic errors.

During the first phase of learning, you start to recognize the things
that we usually refer to as “coding style.” So you start to notice code
that doesn’t conform to indentation standards and Oddly Capitalized
variables.

It’s at this point you typically say, “Blistering Barnacles, we’ve got to
get some consistent coding conventions around here!” and you spend
the next day writing up coding conventions for your team and the next
six days arguing about the One True Brace Style and the next three
weeks rewriting old code to conform to the One True Brace Style until a
manager catches you and screams at you for wasting time on something
that can never make money, and you decide that it’s not really a bad
thing to only reformat code when you revisit it, so you have about half
of a True Brace Style, and pretty soon you forget all about that, and then
you can start obsessing about something else irrelevant to making
money like replacing one kind of string class with another kind of string
class.

As you get more proficient at writing code in a particular environ-
ment, you start to learn to see other things. Things that may be perfectly
legal and perfectly OK according to the coding convention, but which
make you worry.

For example, in C

char* dest, src;

is legal code; it may conform to your coding convention, and it may even
be what was intended, but when you’ve had enough experience writing
C code, you’ll notice that this declares dest as a char pointer while
declaring src as merely a char, and even if this might be what you
wanted, it probably isn’t. That code smells a little bit dirty.

More from Joel on Software184

Even more subtle:

if (i != 0)
foo(i);

In this case, the code is 100% correct; it conforms to most coding
conventions, and there’s nothing wrong with it, but the fact that the sin-
gle-statement body of the if statement is not enclosed in braces may be
bugging you, because you might be thinking in the back of your head,
gosh, somebody might insert another line of code there:

if (i != 0)
bar(i);
foo(i);

and forget to add the braces, and thus accidentally make foo(i) uncon-
ditional! So when you see blocks of code that aren’t in braces, you might
sense just a tiny, wee, soupçon of uncleanliness, which makes you uneasy.

OK, so far I’ve mentioned three levels of achievement as a programmer:

1. You don’t know clean from unclean.

2. You have a superficial idea of cleanliness, mostly at the level of
conformance to coding conventions.

3. You start to smell subtle hints of uncleanliness beneath the sur-
face, and they bug you enough to reach out and fix the code.

There’s an even higher level, though, which is what I really want to
talk about:

4. You deliberately architect your code in such a way that your
nose for uncleanliness makes your code more likely to be
correct.

This is the real art: making robust code by literally inventing con-
ventions that make errors stand out on the screen.

So now I’ll walk you through a little example, and then I’ll show you
a general rule you can use for inventing these code-robustness conven-
tions, and in the end it will lead to a defense of a certain type of
Hungarian notation, probably not the type that makes people carsick,
though, and a criticism of exceptions in certain circumstances, though

185Making Wrong Code Look Wrong

probably not the kind of circumstances you find yourself in most of the
time.

But if you’re so convinced that Hungarian notation is a Bad Thing
and that exceptions are the best invention since the chocolate milkshake
and you don’t even want to hear any other opinions, well, head on over
to Rory’s and read the excellent comix instead (www.neopoleon.com/
home/blogs/neo/archive/2005/04/29/15699.aspx); you probably won’t
be missing much here anyway. In fact, in a minute I’m going to have
actual code samples that are likely to put you to sleep even before they
get a chance to make you angry. Yep. I think the plan will be to lull you
almost completely to sleep and then to sneak the Hungarian notation =
good, Exceptions = bad thing on you when you’re sleepy and not really
putting up much of a fight.

An example

Right. On with the example. Let’s pretend that you’re building some
kind of a web-based application, since those seem to be all the rage

with the kids these days.
Now, there’s a security vulnerability called the Cross-Site Scripting

Vulnerability, a.k.a. XSS. I won’t go into the details here: all you have to
know is that when you build a web application, you have to be careful
never to repeat back any strings that the user types into forms.

So, for example, if you have a web page that says, “What is your
name?” with an edit box and then submitting that page takes you to
another page that says, “Hello, Elmer!” (assuming the user’s name is
Elmer), well, that’s a security vulnerability, because the user could type
in all kinds of weird HTML and JavaScript instead of “Elmer,” and their
weird JavaScript could do narsty things, and now those narsty things
appear to come from you, so, for example, they can read cookies that
you put there and forward them on to Dr. Evil’s evil site.

Let’s put it in pseudo code. Imagine that

s = Request("name")

More from Joel on Software186

reads input (a POST argument) from the HTML form. If you ever write
this code:

Write "Hello, " & Request("name")

your site is already vulnerable to XSS attacks. That’s all it takes.
Instead, you have to encode it before you copy it back into the

HTML. Encoding it means replacing " with ", replacing > with
>, and so forth. So

Write "Hello, " & Encode(Request("name"))

is perfectly safe.
All strings that originate from the user are unsafe. Any unsafe string

must not be output without encoding it.
Let’s try to come up with a coding convention that will ensure that if

you ever make this mistake, the code will just look wrong. If wrong
code, at least, looks wrong, then it has a fighting chance of getting
caught by someone working on that code or reviewing that code.

Possible solution #1
One solution is to encode all strings right away, the minute they come in
from the user:

s = Encode(Request("name"))

So our convention says this: if you ever see Request that is not sur-
rounded by Encode, the code must be wrong.

You start to train your eyes to look for naked Requests, because they
violate the convention.

That works, in the sense that if you follow this convention you’ll
never have an XSS bug, but that’s not necessarily the best architecture.
For example, maybe you want to store these user strings in a database
somewhere, and it doesn’t make sense to have them stored HTML
encoded in the database, because they might have to go somewhere that
is not an HTML page, like to a credit card processing application that
will get confused if they are HTML encoded. Most web applications are
developed under the principle that all strings internally are not encoded
until the very last moment before they are sent to an HTML page, and
that’s probably the right architecture.

187Making Wrong Code Look Wrong

We really need to be able to keep things around in unsafe format for
a while.

OK. I’ll try again.

Possible solution #2
What if we made a coding convention that said that when you write out
any string you have to encode it?

s = Request("name")

// much later:
Write Encode(s)

Now whenever you see a naked Write without the Encode, you know
something is amiss.

Well, that doesn’t quite work . . . sometimes you have little bits of
HTML around in your code and you can’t encode them:

If mode = "linebreak" Then prefix = "
"
// much later:
Write prefix

This looks wrong according to our convention, which requires us to
encode strings on the way out:

Write Encode(prefix)

But now the "
", which is supposed to start a new line, gets
encoded to
 and appears to the user as a literal < b r >.
That’s not right either.

So, sometimes you can’t encode a string when you read it in, and
sometimes you can’t encode it when you write it out, so neither of these
proposals works. And without a convention, we’re still running the risk
that you do this:

s = Request("name")
...pages later...
name = s
...pages later...

More from Joel on Software188

recordset("name") = name // store name in db in a column
"name"
...days later...
theName = recordset("name")
...pages or even months later...
Write theName

Did we remember to encode the string? There’s no single place where
you can look to see the bug. There’s no place to sniff. If you have a lot
of code like this, it takes a ton of detective work to trace the origin of
every string that is ever written out to make sure it has been encoded.

The real solution
So let me suggest a coding convention that works. We’ll have just one
rule:

All strings that come from the user must be stored in variables (or
database columns) with a name starting with the prefix “us” (for Unsafe
String). All strings that have been HTML encoded or that came from a
known-safe location must be stored in variables with a name starting
with the prefix “s” (for Safe string).

Let me rewrite that same code, changing nothing but the variable
names to match our new convention.

us = Request("name")
...pages later...
usName = us
...pages later...
recordset("usName") = usName
...days later...
sName = Encode(recordset("usName"))
...pages or even months later...
Write sName

The thing I want you to notice about the new convention is that now,
if you make a mistake with an unsafe string, you can always see it on
some single line of code, as long as the coding convention is adhered to:

s = Request("name")

189Making Wrong Code Look Wrong

is a priori wrong, because you see the result of Request being assigned to
a variable whose name begins with s, which is against the rules. The
result of Request is always unsafe, so it must always be assigned to a
variable whose name begins with “us”.

us = Request("name")

is always OK.

usName = us

is always OK.

sName = us

is certainly wrong.

sName = Encode(us)

is certainly correct.

Write usName

is certainly wrong.

Write sName

is OK, as is

Write Encode(usName)

Every line of code can be inspected by itself, and if every line of code
is correct, the entire body of code is correct.

Eventually, with this coding convention, your eyes learn to see the
Write usXXX and know that it’s wrong, and you instantly know how to
fix it, too. I know, it’s a little bit hard to see the wrong code at first, but
do this for three weeks, and your eyes will adapt, just like the bakery
workers who learned to look at a giant bread factory and instantly say,
“Jay-zuss, nobody cleaned insahd rounduh fo-ah! What the hayl kine a
opparashun y’awls runnin’ heey-uh?”

In fact, we can extend the rule a bit, and rename (or wrap) the
Request and Encode functions to be UsRequest and SEncode . . . in other

More from Joel on Software190

words, functions that return an unsafe string or a safe string will start
with Us and S, just like variables. Now look at the code:

us = UsRequest("name")
usName = us
recordset("usName") = usName
sName = SEncode(recordset("usName"))
Write sName

See what I did? Now you can look to see that both sides of the equal
sign start with the same prefix to see mistakes.

us = UsRequest("name") // OK, both sides start with US
s = UsRequest("name") // bug
usName = us // OK
sName = us // certainly wrong.
sName = SEncode(us) // certainly correct.

Heck, I can take it one step further, by naming Write to WriteS and
renaming SEncode to SFromUs:

us = UsRequest("name")
usName = us
recordset("usName") = usName
sName = SFromUs(recordset("usName"))
WriteS sName

This makes mistakes even more visible. Your eyes will learn to “see”
smelly code, and this will help you find obscure security bugs just
through the normal process of writing code and reading code.

Making wrong code look wrong is nice, but it’s not necessarily the
best possible solution to every security problem. It doesn’t catch every
possible bug or mistake, because you might not look at every line of
code. But it’s sure a heck of a lot better than nothing, and I’d much
rather have a coding convention where wrong code at least looked
wrong. You instantly gain the incremental benefit that every time a pro-
grammer’s eyes pass over a line of code, that particular bug is checked
for and prevented.

191Making Wrong Code Look Wrong

A general rule

This business of making wrong code look wrong depends on getting
the right things close together in one place on the screen. When I’m

looking at a string, in order to get the code right, I need to know, every-
where I see that string, whether it’s safe or unsafe. I don’t want that
information to be in another file or on another page that I would have
to scroll to. I have to be able to see it right there, and that means a vari-
able naming convention.

There are a lot of other examples where you can improve code
by moving things next to each other. Most coding conventions include
rules like

• Keep functions short.

• Declare your variables as close as possible to the place where
you will use them.

• Don’t use macros to create your own personal programming
language.

• Don’t use goto.

• Don’t put closing braces more than one screen away from the
matching opening brace.

What all these rules have in common is that they are trying to get the
relevant information about what a line of code really does physically as
close together as possible. This improves the chances that your eyeballs
will be able to figure out everything that’s going on.

In general, I have to admit that I’m a little bit scared of language fea-
tures that hide things. When you see the code

i = j * 5;

in C, you know at least that j is being multiplied by five and the results
stored in i.

But if you see that same snippet of code in C++, you don’t know any-
thing. Nothing. The only way to know what’s really happening in C++

More from Joel on Software192

is to find out what types i and j are, something that might be declared
somewhere altogether else. That’s because j might be of a type that has
operator* overloaded, and it does something terribly witty when you
try to multiply it. And i might be of a type that has operator= over-
loaded, and the types might not be compatible, so an automatic type
coercion function might end up being called. And the only way to find
out is not only to check the type of the variables, but also to find the
code that implements that type, and God help you if there’s inheritance
somewhere, because now you have to traipse all the way up the class
hierarchy all by yourself trying to find where that code really is, and if
there’s polymorphism somewhere, you’re really in trouble because it’s
not enough to know what type i and j are declared, you have to know
what type they are right now, which might involve inspecting an arbi-
trary amount of code, and you can never really be sure if you’ve looked
everywhere thanks to the halting problem (phew!).

When you see i=j*5 in C++, you are really on your own, bubby, and
that, in my mind, reduces the ability to detect possible problems just by
looking at code.

None of this was supposed to matter, of course. When you do clever-
schoolboy things like override operator*, this is meant to help you
provide a nice waterproof abstraction. Golly, j is a Unicode string type,
and multiplying a Unicode string by an integer is obviously a good
abstraction for converting Traditional Chinese to Standard Chinese,
right?

The trouble is, of course, that waterproof abstractions aren’t. I’ve
already talked about this extensively in “The Law of Leaky Abstractions”
in Joel on Software (Apress, 2004), so I won’t repeat myself here.

Scott Meyers has made a whole career out of showing you all the
ways they fail and bite you, in C++ at least. (By the way, the third edi-
tion of Scott’s book Effective C++ [Addison-Wesley Professional, 2005]
just came out; it’s completely rewritten, so get your copy today!)

OK.
I’m losing track. I better summarize The Story Until Now:
Look for coding conventions that make wrong code look wrong.

Getting the right information collocated all together in the same place
on screen in your code lets you see certain types of problems and fix
them right away.

193Making Wrong Code Look Wrong

I’m Hungary

So now we get back to the infamous Hungarian notation.

More from Joel on Software194

Hungarian notation was invented by Microsoft programmer Charles
Simonyi. One of the major projects Simonyi worked on at Microsoft
was Word; in fact, he led the project to create the world’s first WYSI-
WYG word processor, something called Bravo at Xerox PARC.

In WYSIWYG word processing, you have scrollable windows, so
every coordinate has to be interpreted as either relative to the window or
relative to the page, and that makes a big difference, and keeping them
straight is pretty important.

Which, I surmise, is one of the many good reasons Simonyi started
using something that came to be called Hungarian notation. It looked
like Hungarian, and Simonyi was from Hungary, thus the name. In
Simonyi’s version of Hungarian notation, every variable was prefixed
with a lowercase tag that indicated the kind of thing that the variable
contained.

I’m using the word “kind” on purpose, there, because Simonyi
mistakenly used the word “type” in his paper, and generations of pro-
grammers misunderstood what he meant.

If you read Simonyi’s paper closely, what he was getting at was the
same kind of naming convention as I used in my earlier example where
we decided that us meant “unsafe string” and s meant “safe string.”
They’re both of type string. The compiler won’t help you if you assign
one to the other, and IntelliSense won’t tell you bupkis. But they are
semantically different; they need to be interpreted differently and treated
differently, and some kind of conversion function will need to be called
if you assign one to the other, or you will have a runtime bug. If you’re
lucky.

Simonyi’s original concept for Hungarian notation was called, inside
Microsoft, Apps Hungarian, because it was used in the Applications
Division, to wit, Word and Excel. In Excel’s source code, you see a lot of
rw and col, and when you see those, you know that they refer to rows
and columns. Yep, they’re both integers, but it never makes sense to
assign between them. In Word, I’m told, you see a lot of xl and xw,
where xl means “horizontal coordinates relative to the layout” and xw

means “horizontal coordinates relative to the window.” Both ints. Not
interchangeable. In both apps, you see a lot of cb meaning “count of
bytes.” Yep, it’s an int again, but you know so much more about it just
by looking at the variable name. It’s a count of bytes: a buffer size. And
if you see xl = cb, well, blow the Bad Code Whistle, that is obviously
wrong code, because even though xl and cb are both integers, it’s com-
pletely crazy to set a horizontal offset in pixels to a count of bytes.

In Apps Hungarian, prefixes are used for functions, as well as vari-
ables. So, to tell you the truth, I’ve never seen the Word source code, but
I’ll bet you dollars to donuts there’s a function called YlFromYw that con-
verts from vertical window coordinates to vertical layout coordinates.
Apps Hungarian requires the notation TypeFromType instead of the more
traditional TypeToType so that every function name could begin with the
type of thing that it was returning, just like I did earlier in the example
when I renamed Encode SFromUs. In fact, in proper Apps Hungarian, the
Encode function would have to be named SFromUs. Apps Hungarian
wouldn’t really give you a choice in how to name this function. That’s a
good thing, because it’s one less thing you need to remember, and you
don’t have to wonder what kind of encoding is being referred to by the
word Encode: you have something much more precise.

Apps Hungarian was extremely valuable, especially in the days of
C programming where the compiler didn’t provide a very useful type
system.

But then something kind of wrong happened.
The dark side took over Hungarian notation.
Nobody seems to know why or how, but it appears that the docu-

mentation writers on the Windows team inadvertently invented what
came to be known as Systems Hungarian.

Somebody, somewhere, read Simonyi’s paper, where he used the
word “type,” and thought he meant type, like class, like in a type sys-
tem, like the type checking that the compiler does. He did not. He
explained very carefully exactly what he meant by the word “type,” but
it didn’t help. The damage was done.

Apps Hungarian had very useful, meaningful prefixes like “ix” to
mean an index into an array, “c” to mean a count, “d” to mean the dif-
ference between two numbers (for example “dx” meant “width”), and
so forth.

195Making Wrong Code Look Wrong

Systems Hungarian had far less useful prefixes like “l” for long and
“ul” for “unsigned long” and “dw” for double word, which is, actually,
uh, an unsigned long. In Systems Hungarian, the only thing that the pre-
fix told you was the actual data type of the variable.

This was a subtle but complete misunderstanding of Simonyi’s inten-
tion and practice, and it just goes to show you that if you write
convoluted, dense academic prose, nobody will understand it, and your
ideas will be misinterpreted, and then the misinterpreted ideas will be
ridiculed even when they weren’t your ideas. So in Systems Hungarian,
you got a lot of dwFoo meaning “double word foo,” and doggone it, the
fact that a variable is a double word tells you darn near nothing useful
at all. So it’s no wonder people rebelled against Systems Hungarian.

Systems Hungarian was promulgated far and wide; it is the standard
throughout the Windows programming documentation; it was spread
extensively by books like Charles Petzold’s Programming Windows
(Microsoft Press, 1998), the bible for learning Windows programming,
and it rapidly became the dominant form of Hungarian, even inside
Microsoft, where very few programmers outside the Word and Excel
teams understood just what a mistake they had made.

And then came The Great Rebellion. Eventually, programmers who
never understood Hungarian in the first place noticed that the misun-
derstood subset they were using was Pretty Dang Annoying and
Well-Nigh Useless, and they revolted against it. Now, there are still some
nice qualities in Systems Hungarian that help you see bugs. At the very
least, if you use Systems Hungarian, you’ll know the type of a variable
at the spot where you’re using it. But it’s not nearly as valuable as Apps
Hungarian.

The Great Rebellion hit its peak with the first release of .NET.
Microsoft finally started telling people, “Hungarian Notation Is Not
Recommended.” There was much rejoicing. I don’t even think they
bothered saying why. They just went through the naming guidelines sec-
tion of the document and wrote, “Do Not Use Hungarian Notation” in
every entry. Hungarian notation was so doggone unpopular by this
point that nobody really complained, and everybody in the world out-
side of Excel and Word were relieved at no longer having to use an
awkward naming convention that, they thought, was unnecessary in the
days of strong type checking and IntelliSense.

More from Joel on Software196

But there’s still a tremendous amount of value to Apps Hungarian in
that it increases collocation in code, which makes the code easier to
read, write, debug, and maintain, and, most importantly, it makes
wrong code look wrong.

Before we go, there’s one more thing I promised to do, which is to
bash exceptions one more time. The last time I did that, I got in a lot of
trouble. In an off-the-cuff remark on the Joel on Software homepage, I
wrote that I don’t like exceptions because they are, effectively, an invisi-
ble goto, which, I reasoned, is even worse than a goto you can see. Of
course, millions of people jumped down my throat. The only person in
the world who leapt to my defense was, of course, Raymond Chen, who
is, by the way, the best programmer in the world, so that has to say
something, right?

Here’s the thing with exceptions, in the context of this article. Your
eyes learn to see wrong things, as long as there is something to see, and
this prevents bugs. In order to make code really, really robust, when you
code-review it, you need to have coding conventions that allow colloca-
tion. In other words, the more information about what code is doing is
located right in front of your eyes, the better a job you’ll do at finding
the mistakes. When you have code that says

dosomething();
cleanup();

your eyes tell you, what’s wrong with that? We always clean up! But the
possibility that dosomething might throw an exception means that
cleanup might not get called. And that’s easily fixable, using finally or
whatnot, but that’s not my point: my point is that the only way to know
that cleanup is definitely called is to investigate the entire call tree of
dosomething to see whether there’s anything in there, anywhere, that
can throw an exception, and that’s OK, and there are things like checked
exceptions to make it less painful, but the real point is that exceptions
eliminate collocation. You have to look somewhere else to answer a
question of whether code is doing the right thing, so you’re not able to
take advantage of your eye’s built-in ability to learn to see wrong code,
because there’s nothing to see.

Now, when I’m writing a dinky script to gather up a bunch of data
and print it once a day, heck yeah, exceptions are great. I like nothing

197Making Wrong Code Look Wrong

more than to ignore all possible wrong things that can happen and just
wrap up the whole damn program in a big ol’ try/catch that e-mails me
if anything ever goes wrong. Exceptions are fine for quick-and-dirty
code, for scripts, and for code that is neither mission critical nor life sus-
taining. But if you’re writing software for an operating system, or a
nuclear power plant, or the software to control a high-speed circular
saw used in open heart surgery, exceptions are extremely dangerous.

I know people will assume that I’m a lame programmer for failing to
understand exceptions properly and failing to understand all the ways
they can improve my life if only I was willing to let exceptions into my
heart, but, too bad. The way to write really reliable code is to try to use
simple tools that take into account typical human frailty, not complex
tools with hidden side effects and leaky abstractions that assume an
infallible programmer.

More reading

If you’re still all gung-ho about exceptions, read Raymond Chen’s
essay “Cleaner, More Elegant, and Harder to Recognize” (blogs.

msdn.com/oldnewthing/archive/2005/01/14/352949.aspx): “It is extra-
ordinarily difficult to see the difference between bad exception-based
code and not-bad exception-based code . . . exceptions are too hard and
I’m not smart enough to handle them.”

Raymond’s rant about Death by Macros, “A Rant Against Flow
Control Macros” (blogs.msdn.com/oldnewthing/archive/2005/01/
06/347666.aspx), is about another case where failing to get information
all in the same place makes code unmaintainable. “When you see code
that uses [macros], you have to go dig through header files to figure out
what they do.”

For background on the history of Hungarian notation, start with
Simonyi’s original paper, “Hungarian Notation” (msdn.microsoft.com/
en-us/library/aa260976(VS.60).aspx). Doug Klunder introduced this
to the Excel team in a somewhat clearer paper, “Hungarian Naming
Conventions” (www.byteshift.de/msg/hungarian-notation-doug-
klunder). For more stories about Hungarian and how it got ruined by

More from Joel on Software198

documentation writers, read Larry Osterman’s post (blogs.msdn.com/
larryosterman/archive/2004/06/22/162629.aspxf), especially Scott
Ludwig’s comment (blogs.msdn.com/larryosterman/archive/2004/
06/22/162629.aspx#163721), or Rick Schaut’s post (blogs.msdn.com/
rick_schaut/archive/2004/02/14/73108.aspx).

199Making Wrong Code Look Wrong

part six

Starting a Software
Business

twenty-four

FOREWORD TO ERIC SINK ON
THE BUSINESS OF SOFTWARE

Friday, April 7, 2006

Eric Sink has been hanging around Joel on Software since the early days.
He was one of the creators of the Spyglass web browser, he created the
AbiWord open source word processor, and now he’s a developer at
SourceGear, which produces source code control software.

But most of us around here know him from his contributions as host
of The Business of Software, a discussion group that has become the hub
for the software startup crowd. He coined the term “micro-ISV,” he’s
been writing about the business of software on his blog for several years,
and he wrote an influential series of articles for MSDN. He just pub-
lished a full-fledged, dead-trees paper book called Eric Sink on the
Business of Software (Apress, 2006), and he asked me to write the fore-
word, which appears here.
Did I ever tell you the story of my first business?

Let me see if I can remember the whole thing. I was fourteen, I think.
They were running some kind of a TESOL summer institute at the
University of New Mexico, and I was hired to sit behind a desk and
make copies of articles from journals if anybody wanted them.

There was a big urn full of coffee next to the desk, and if you wanted
coffee, you helped yourself and left a quarter in a little cup. I didn’t drink
coffee, myself, but I did like donuts and thought some nice donuts would
go well with the coffee.

There were no donut stores within walking distance of my little
world, so, being too young to drive, I was pretty much cut off from
donuts in Albuquerque. Somehow, I persuaded a graduate student to
buy a couple of dozen every day and bring them in. I put up a hand-
written sign that said “Donuts: 25¢ (Cheap!)” and watched the money
flow in.

Every day, people walked by, saw the little sign, dropped some
money in the cup, and took a donut. We started to get regulars. The
daily donut consumption was going up and up. People who didn’t even
need to be in the institute lounge veered off of their daily routes to get
one of our donuts.

I was, of course, entitled to free samples, but that barely made a dent
in the profits. Donuts cost, maybe, a dollar a dozen. Some people would
even pay a dollar for a donut just because they couldn’t be bothered to
fish around in the money cup for change. I couldn’t believe it!

By the end of the summer, I was selling two big trays a day . . . maybe
a hundred donuts. Quite a lot of money had piled up . . . I don’t remem-
ber the exact amount, but it was hundreds of dollars. This is 1979, you
know. In those days, that was enough money to buy, like, every donut in
the world, although by then I was sick of donuts and starting to prefer
really, really spicy cheese enchiladas.

More from Joel on Software204

So, what did I do with the money? Nothing. The chairman of the
Linguistics department took it all. He decided that the money should be
used to hold a really big party for all the institute staff. I wasn’t allowed
to come to the party because I was too young.

The moral of the story?
Um, there is no moral.
But there is something incredibly exciting about watching a new

business grow. It’s the joy of watching the organic growth that every
healthy business goes through. By “organic,” I mean, literally, “of or
designating carbon compounds.” No, wait, that’s not what I mean. I
mean plant-like, gradual growth. Last week you made $24. This week
you made $26. By this time next year, you might be making $100.

People love growing businesses for the same reason they love gar-
dening. It’s really fun to plant a little seed in the ground, water it every
day, remove the weeds, and watch a tiny sprout grow into a big bushy
plant full of gorgeous hardy mums (if you’re lucky) or stinging nettles (if
you got confused about what was a weed, but don’t lose hope, you can
make tea out of the nettles, just be careful not to touch ’em).

As you look at the revenues from your business, you’ll say, “Gosh,
it’s only 3:00, and we’ve already had nine customers! This is going to be
the best day ever!” And the next year nine customers will seem like a
joke, and a couple of years later, you’ll realize that that intranet report
listing all the sales from the last week is unmanageably large.

One day, you’ll turn off the feature that e-mails you every time some-
one buys your software. That’s a huge milestone.

Eventually, you’ll notice that one of the summer interns you hired is
bringing in donuts on Friday morning and selling them for a buck. And
I can only hope that you won’t take his profits and use it for a party he’s
not invited to.

205Foreword to ERIC SINK ON THE BUSINESS OF SOFTWARE

twenty-five

FOREWORD TO MICRO-ISV:
FROM VISION TO REALITY

Wednesday, January 11, 2006

This is my foreword to Bob Walsh's new book, Micro-ISV: From Vision
to Reality (Apress, 2006).
How the heck did I become the poster child for the micro-ISV movement?

Of all people. Sheesh.
When I started Fog Creek Software, there was gonna be nothing

“micro” about it. The plan was to build a big, multinational software
company with offices in 120 countries and a skyscraper headquarters in

Manhattan, complete with a heliport on the roof for quick access to the
Hamptons. It might take a few decades—after all, we were going to be
bootstrapped and we always planned to grow slowly and carefully—but
our ambitions were anything but small.

Heck, I don’t even like the term micro-ISV. The “ISV” part stands for
independent software vendor. It’s a made-up word, made up by
Microsoft, to mean “software company that is not Microsoft,” or, more
specifically, “software company that for some reason we have not yet
bought or eliminated, probably because they are in some charming, twee
line of business, like wedding table arrangements, the quaintness of
which we are just way too cool to stoop down to, but you little people
feel free to enjoy yourselves. Just remember to use .NET!”

It’s like that other term, legacy, that Microsoft uses to refer to all
non-Microsoft software. So when they refer to Google, say, as a “legacy
search engine,” they are trying to imply that Google is merely “an old,
crappy search engine that you’re still using by historical accident, until
you bow to the inevitable and switch to MSN.” Whatever.

I prefer “software company,” and there’s nothing wrong with being
a startup. Startup software company, that’s how we describe ourselves,
and we don’t see any need to define ourselves in relation to Microsoft.

I suppose you’re reading this book because you want to start a small
software company, and it’s a good book to read for that purpose, so let
me use my pulpit here to provide you with my personal checklist of three
things you should have before you start your micro . . . ahem, startup
software company. There are some other things you should do; Bob
covers them pretty well in the rest of the book, but before you get
started, here’s my contribution.

Number One. Don’t start a business if you can’t explain what pain it
solves, for whom, and why your product will eliminate this pain, and
how the customer will pay to solve this pain. The other day I went to a
presentation of six high-tech startups, and not one of them had a clear
idea for what pain they were proposing to solve. I saw a startup that was
building a way to set a time to meet your friends for coffee, a startup
that wanted you to install a plug-in in your browser to track your every
movement online in exchange for being able to delete things from that
history, and a startup that wanted you to be able to leave text messages
for your friend that were tied to a particular location (so if they ever
walked past the same bar, they could get a message you had left for them

More from Joel on Software208

there). What they all had in common was that none of them solved a
problem, and all of them were as doomed as a long-tailed cat in a room
full of rocking chairs.

Number Two. Don’t start a business by yourself. I know, there are
lots of successful one-person startups, but there are even more failed
one-person startups. If you can’t even convince one friend that your idea
has merit, um, maybe it doesn’t? Besides, it’s lonely and depressing, and
you won’t have anyone to bounce ideas off of. And when the going gets
tough, which it will, as a one-person operation, you’ll just fold up shop.
With two people, you’ll feel an obligation to your partner to push on
through. P.S. Cats do not count.

Number Three. Don’t expect much at first. People never know how
much money they’re going to make in the first month when their prod-
uct goes on sale. I remember five years ago, when we started selling
FogBugz, we had no idea if the first month of sales would be $0 or
$50,000. Both figures seemed just as likely to me. I have talked to
enough entrepreneurs and have enough data now to give you a definitive
answer for your startup.

That’s right, I have a crystal ball, and I can now tell you the one fact
that you need to know more than anything else: exactly how much
money you’re going to make during the first month after your product
goes live.

Ready?
OK.
In the first month, you are going to make,
about,
$364, if you do everything right. If you charge too little, you’re going

to make $40. If you charge too much, you’re going to make $0. If you
expect to make any more than that, you’re going to be really disap-
pointed, and you’re going to give up and get a job working for The Man
and referring to us people in startup-land as “legacy micro-ISVs.”

That $364 sounds depressing, but it’s not, because you’ll soon dis-
cover the one fatal flaw that’s keeping 50% of your potential customers
from whipping out their wallets, and then ta-da! you’ll be making $728
a month. And then you’ll work really hard, and you’ll get some public-
ity, and you’ll figure out how to use AdWords effectively, and there will
be a story about your company in the local wedding planner newsletter,
and ta-da! you’ll be making $1,456 a month. And you’ll ship version

209Foreword to MICRO-ISV: FROM VISION TO REALITY

2.0, with spam filtering and a Common Lisp interpreter built in, and
your customers will chat amongst themselves, and ta-da! you’ll be mak-
ing $2,912 a month. And you’ll tweak the pricing, add support
contracts, ship version 3.0, and get mentioned by Jon Stewart on The
Daily Show, and ta-da! $5,824 a month.

Now we’re cooking with fire. Project out a few years, and if you plug
away at it, there’s no reason you can’t double your revenues every 12–18
months, so no matter how small you start [detailed math formula omit-
ted—Ed.], you’ll soon be building your own skyscraper in Manhattan
with a heliport so you can get to that twenty-acre Southampton spread
in thirty minutes flat.

And that, I think, is the real joy of starting a company: creating
something, all by yourself, and nurturing it and working on it and
investing in it and watching it grow, and watching the investments pay
off. It’s a hell of a journey, and I wouldn’t miss it for the world.

More from Joel on Software210

twenty-six

HITTING THE HIGH NOTES

Monday, July 25, 2005

In March, 2000, I launched my site, Joel on Software, with the shaky
claim that most people are wrong in thinking you need an idea to make a
successful software company (www.joelonsoftware.com/articles/
fog0000000074.html):

The common belief is that when you’re building a software com-
pany, the goal is to find a neat idea that solves some problem which
hasn’t been solved before, implement it, and make a fortune. We’ll
call this the build-a-better-mousetrap belief. But the real goal for
software companies should be converting capital into software that
works.

For the last five years, I’ve been testing that theory in the real world.
The formula for the company I started with Michael Pryor in September
2000 can be summarized in four steps:

It’s a pretty convenient formula, especially since our real goal in start-
ing Fog Creek was to create a software company where we would want to
work. I made the claim, in those days, that good working conditions (or,
awkwardly, “building the company where the best software developers in
the world would want to work”) would lead to profits as naturally as

chocolate leads to chubbiness or cartoon sex in video games leads to
gangland-style shooting sprees.

For today, though, I want to answer just one question, because if this
part isn’t true, the whole theory falls apart. That question is, does it even
make sense to talk about having the “best programmers”? Is there so
much variation between programmers that this even matters?

Maybe it’s obvious to us, but to many, the assertion still needs to be
proven.

Several years ago a larger company was considering buying out Fog
Creek, and I knew it would never work as soon as I heard the CEO of
that company say that he didn’t really agree with my theory of hiring the
best programmers. He used a biblical metaphor: you only need one King
David, and an army of soldiers who merely had to be able to carry out
orders. His company’s stock price promptly dropped from $20 to $5, so
it’s a good thing we didn’t take the offer, but it’s hard to pin that on the
King David fetish.

And in fact, the conventional wisdom in the world of copycat busi-
ness journalists and large companies who rely on overpaid management
consultants to think for them, chew their food, etc., seems to be that the
most important thing is reducing the cost of programmers.

In some other industries, cheap is more important than good. Wal-
Mart grew to be the biggest corporation on earth by selling cheap
products, not good products. If Wal-Mart tried to sell high-quality
goods, their costs would go up, and their whole cheap advantage would
be lost. For example, if they tried to sell a tube sock that can withstand
the unusual rigors of, say, being washed in a washing machine, they’d
have to use all kinds of expensive components, like, say, cotton, and the
cost for every single sock would go up.

So, why isn’t there room in the software industry for a low-cost
provider, someone who uses the cheapest programmers available?
(Remind me to ask Quark how that whole fire-everybody-and-hire-low-
cost-replacements plan is working.)

Here’s why: duplication of software is free. That means the cost of
programmers is spread out over all the copies of the software you sell.
With software, you can improve quality without adding to the incre-
mental cost of each unit sold.

Essentially, design adds value faster than it adds cost.

More from Joel on Software212

Or, roughly speaking, if you try to skimp on programmers, you’ll
make crappy software, and you won’t even save that much money.

The same thing applies to the entertainment industry. It’s worth hir-
ing Brad Pitt for your latest blockbuster movie, even though he demands
a high salary, because that salary can be divided by all the millions of
people who see the movie solely because Brad is so damn hot.

Or, to put it another way, it’s worth hiring Angelina Jolie for your lat-
est blockbuster movie, even though she demands a high salary, because
that salary can be divided by all the millions of people who see the movie
solely because Angelina is so damn hot.

But I still haven’t proven anything. What does it mean to be “the best
programmer,” and are there really such major variations between the
quality of software produced by different programmers?

Let’s start with plain old productivity. It’s rather hard to measure
programmer productivity; almost any metric you can come up with
(lines of debugged code, function points, number of command-line argu-
ments) is trivial to game, and it’s very hard to get concrete data on large
projects because it’s very rare for two programmers to be told to do the
same thing.

The data I rely upon comes from Professor Stanley Eisenstat at Yale.
Each year he teaches a programming-intensive course, CS 323, where a
large proportion of the work consists of about five programming assign-
ments, each of which takes about two weeks. The assignments are very
serious for a college class: implement a Unix command-line shell, imple-
ment a ZLW file compressor, etc.

There was so much griping among the students about how much
work was required for this class that Professor Eisenstat started asking
the students to report back on how much time they spent on each assign-
ment. He has collected this data carefully for several years.

I spent some time crunching his numbers; it’s the only data set I know
of that measures dozens of students working on identical assignments
using the same technology at the same time. It’s pretty darn controlled,
as experiments go.

The first thing I did with this data was to calculate the average, min-
imum, maximum, and standard deviation of hours spent on each of
twelve assignments. The results:

213Hitting the High Notes

Project Avg Hrs Min Hrs Max Hrs StDev Hrs

CMDLINE99 14.84 4.67 29.25 5.82

COMPRESS00 33.83 11.58 77.00 14.51

COMPRESS01 25.78 10.00 48.00 9.96

COMPRESS99 27.47 6.67 69.50 13.62

LEXHIST01 17.39 5.50 39.25 7.39

MAKE01 22.03 8.25 51.50 8.91

MAKE99 22.12 6.77 52.75 10.72

SHELL00 22.98 10.00 38.68 7.17

SHELL01 17.95 6.00 45.00 7.66

SHELL99 20.38 4.50 41.77 7.03

TAR00 12.39 4.00 69.00 10.57

TEX00 21.22 6.00 75.00 12.11

ALL PROJECTS 21.44 4.00 77.00 11.16

The most obvious thing you notice here is the huge variations. The
fastest students were finishing three or four times faster than the average
students and as much as ten times faster than the slowest students. The
standard deviation is outrageous. So then I thought, hmm, maybe some
of these students are doing a terrible job. I didn’t want to include stu-
dents who spent four hours on the assignment without producing a
working program. So I narrowed the data down and only included the
data from students who were in the top quartile of grades . . . the top
25% in terms of the quality of the code. I should mention that grades in
Professor Eisenstat’s class are completely objective: they’re calculated
formulaically based on how many automated tests the code passes and
nothing else. No points are deducted for bad style or lateness.

Anyway, here are the results for the top quartile:

Project Avg Hrs Min Hrs Max Hrs StdDev Hrs

CMDLINE99 13.89 8.68 29.25 6.55

COMPRESS00 37.40 23.25 77.00 16.14

COMPRESS01 23.76 15.00 48.00 11.14

More from Joel on Software214

Project Avg Hrs Min Hrs Max Hrs StdDev Hrs

COMPRESS99 20.95 6.67 39.17 9.70

LEXHIST01 14.32 7.75 22.00 4.39

MAKE01 22.02 14.50 36.00 6.87

MAKE99 22.54 8.00 50.75 14.80

SHELL00 23.13 18.00 30.50 4.27

SHELL01 16.20 6.00 34.00 8.67

SHELL99 20.98 13.15 32.00 5.77

TAR00 11.96 6.35 18.00 4.09

TEX00 16.58 6.92 30.50 7.32

ALL PROJECTS 20.49 6.00 77.00 10.93

Not much difference! The standard deviation is almost exactly the
same for the top quartile. In fact, when you look closely at the data, it’s
pretty clear there’s no discernable correlation between the time and
score. Here’s a typical scatter plot of one of the assignments . . . I chose
the assignment COMPRESS01, an implementation of Ziv-Lempel-
Welch compression assigned to students in 2001, because the standard
deviation there is close to the overall standard deviation.

60

50

40

30

20

10

0
0 10 20 30

Score

Ho
ur

s

40 50 60

215Hitting the High Notes

There’s just nothing to see here, and that’s the point. The quality of
the work and the amount of time spent are simply uncorrelated.

I asked Professor Eisenstat about this, and he pointed out one more
thing: because assignments are due at a fixed time (usually midnight)
and the penalties for being late are significant, a lot of students stop
before the project is done. In other words, the maximum time spent on
these assignments is as low as it is partially because there just aren’t
enough hours between the time the assignment is handed out and the
time it is due. If students had unlimited time to work on the projects
(which would correspond a little better to the working world), the
spread could only be higher.

This data is not completely scientific. There’s probably some cheat-
ing. Some students may overreport the time spent on assignments in
hopes of gaining some sympathy and getting easier assignments the next
time. (Good luck! The assignments in CS 323 are the same today as they
were when I took the class in the 1980s.) Other students may underre-
port because they lost track of time. Still, I don’t think it’s a stretch to
believe this data shows 5:1 or 10:1 productivity differences between pro-
grammers.

But wait, there’s more!

If the only difference between programmers were productivity, you
might think that you could substitute five mediocre programmers for

one really good programmer. That obviously doesn’t work. Brooks’
Law, “Adding manpower to a late software project makes it later,” is
why (Fredrick Brooks, The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, 1975). A single good programmer work-
ing on a single task has no coordination or communication overhead.
Five programmers working on the same task must coordinate and com-
municate. That takes a lot of time. There are added benefits to using the
smallest team possible; the man-month really is mythical.

More from Joel on Software216

But wait, there’s even more!

The real trouble with using a lot of mediocre programmers instead of
a couple of good ones is that no matter how long they work, they

never produce something as good as what the great programmers can
produce.

Five Antonio Salieris won’t produce Mozart’s Requiem. Ever. Not if
they work for 100 years.

Five Jim Davises—creator of that unfunny cartoon cat, where 20%
of the jokes are about how Monday sucks and the rest are about how
much the cat likes lasagna (and those are the punchlines!) . . . five Jim
Davises could spend the rest of their lives writing comedy and never, ever
produce the “Soup Nazi” episode of Seinfeld.

The Creative Zen team could spend years refining their ugly iPod
knockoffs and never produce as beautiful, satisfying, and elegant a
player as the Apple iPod. And they’re not going to make a dent in
Apple’s market share because the magical design talent is just not there.
They don’t have it.

The mediocre talent just never hits the high notes that the top talent
hits all the time. The number of divas who can hit the F6 in Mozart’s
“Queen of the Night” is vanishingly small, and you just can’t perform
“Queen of the Night” without that famous F6.

Is software really about artistic high notes? “Maybe some stuff is,”
you say, “but I work on accounts receivable user interfaces for the med-
ical waste industry.” Fair enough. My focus is on product companies,
where success or failure depends on the quality of the product. If you’re
only using software internally to support your operations, you probably
only need software to be good enough.

And we’ve seen plenty of examples of great software, the really high
notes, in the past few years: stuff that mediocre software developers just
could not have developed.

Back in 2003, Nullsoft shipped a new version of Winamp, with the
following notice on their web site:

217Hitting the High Notes

• Snazzy new look!

• Groovy new features!

• Most things actually work!

It’s the last part—the “Most things actually work!”—that makes
everyone laugh. And then they’re happy, and so they get excited about
Winamp, and they use it, and tell their friends, and they think Winamp
is awesome, all because they actually wrote on their web site, “Most
things actually work!” How cool is that?

If you threw a bunch of extra programmers onto the Windows
Media Player team, would they ever hit that high note? Never in a thou-
sand years. Because the more people you added to that team, the more
likely they would be to have one real grump who thought it was unpro-
fessional and immature to write “Most things actually work!” on your
web site.

Not to mention the comment, “Winamp 3: Almost as new as
Winamp 2!”

That kind of stuff is what made us love Winamp.
By the time AOL Time Warner Corporate Weenieheads got their

hands on that thing, the funny stuff from the web site was gone. You can
just see them, fuming and festering and snivelling like Salieri in the
movie Amadeus, trying to beat down all signs of creativity that might
scare one old lady in Minnesota, at the cost of wiping out anything that
might have made people like the product.

Or look at the iPod. You can’t change the battery. So when the bat-
tery dies, too bad. Get a new iPod. Actually, Apple will replace it if you
send it back to the factory, but that costs $65.95. Wowza.

Why can’t you change the battery?
My theory is that it’s because Apple didn’t want to mar the otherwise

perfectly smooth, seamless surface of their beautiful, sexy iPod with one
of those ghastly battery covers you see on other cheapo consumer crap,
with the little latches that are always breaking and the seams that fill up
with pocket lint and all that general yuckiness. The iPod is the most
seamless piece of consumer electronics I have ever seen. It’s beautiful. It
feels beautiful, like a smooth river stone. One battery latch can blow the
whole river stone effect.

Apple made a decision based on style; in fact, iPod is full of decisions
that are based on style. And style is not something that 100 programmers

More from Joel on Software218

at Microsoft or 200 industrial designers at the inaptly named Creative
are going to be able to achieve, because they don’t have Jonathan Ive,
and there aren’t a heck of a lot of Jonathan Ives floating around.

I’m sorry, I can’t stop talking about the iPod. That beautiful thumb-
wheel with its little clicky sounds . . . Apple spent extra money putting a
speaker in the iPod itself so that the thumbwheel clicky sounds would
come from the thumbwheel. They could have saved pennies—pennies!—
by playing the clicky sounds through the headphones. But the
thumbwheel makes you feel like you’re in control. People like to feel in
control. It makes people happy to feel in control. The fact that the
thumbwheel responds smoothly, fluently, and audibly to your com-
mands makes you happy. Not like the other 6,000 pocket-sized
consumer electronics bits of junk, which take so long booting up that
when you hit the on/off switch you have to wait a minute to find out if
anything happened. Are you in control? Who knows? When was the last
time you had a cell phone that went on the instant you pressed the on
button?

Style.

Happiness.

Emotional appeal.

These are what make the huge hits, in software products, in movies,
and in consumer electronics. And if you don’t get this stuff right, you
may solve the problem, but your product doesn’t become the number
one hit that makes everybody in the company rich so you can all drive
stylish, happy, appealing cars like the Ferrari Spider F1 and still have
enough money left over to build an ashram in your backyard.

It’s not just a matter of “ten times more productive.” It’s that the
“average productive” developer never hits the high notes that make
great software.

Sadly, this doesn’t really apply in nonproduct software development.
Internal, in-house software is rarely important enough to justify hiring
rock stars. Nobody hires Dolly Parton to sing at weddings. That’s why
the most satisfying careers, if you’re a software developer, are at actual
software companies, not doing IT for some bank.

The software marketplace, these days, is something of a winner-take-
all system. Nobody else is making money on MP3 players other than

219Hitting the High Notes

Apple. Nobody else makes money on spreadsheets and word processors
other than Microsoft, and, yes, I know, they did anticompetitive things
to get into that position, but that doesn’t change the fact that it’s a win-
ner-take-all system.

You can’t afford to be number two or to have a “good enough”
product. It has to be remarkably good, by which I mean, so good that
people remark about it. The lagniappe that you get from the really,
really, really talented software developers is your only hope for remark-
ableness. It’s all in the plan:

More from Joel on Software220

part seven

Running a Software
Business

twenty-seven

BIONIC OFFICE

Wednesday, September 24, 2003

Well.
That took rather longer than expected.
We have, finally, moved into the new Fog Creek office at 535 8th

Avenue, officially ten months after I started pounding the pavement look-
ing for a replacement for my grandmother’s old brownstone where we
spent our first few years, working from bedrooms and the garden.

Most software managers know what good office space would be like,
and they know they don’t have it and can’t have it. Office space seems to
be the one thing that nobody can get right and nobody can do anything
about. There’s a ten-year lease, and whenever the company moves, the
last person anybody asks about how to design the space is the manager of
the software team, who finds out what his new veal-fattening pens, uh,
cubicle farm is going to be like for the first time on the Monday after the
move-in.

Well, it’s my own damn company and I can do something about it, so
I did.

Maybe I’m just an architecture queen. I probably pay more attention
to my physical surroundings than the average software developer. I might
take it too seriously. But there are three reasons I take it so seriously:

• There’s a lot of evidence that the right kind of office space can
improve programmer productivity, especially private offices.

• Having drop-dead gorgeous, private, windowed offices makes it a
lot easier to recruit the kinds of superstars that produce ten times
as much as the merely brilliant software developers. If I have to
compete at New York salaries against Bangalore salaries, I’m

going to need those superstars, so when people come in for an
interview, I need to see jaws on the floor. It’s about drama.

• Hey, this is my job; this is where I spend my days; it’s my time
away from my friends and family. It better be nice.

Working with architect Roy Leone, a lot of space (425 rsf per
employee), and an enlightened CEO, I set out to create the ultimate soft-
ware development environment.

Architects use the term “brief” for what we software developers call
“system requirements.” Here was the brief I gave Roy:

1. Private offices with doors that close were absolutely required
and not open to negotiation.

2. Programmers need lots of power outlets. They should be able
to plug new gizmos in at desk height without crawling on the
floor.

3. We need to be able to rewire any data lines (phone, LAN, cable
TV, alarms, etc.) easily without opening any walls, ever.

4. It should be possible to do pair programming.

5. When you’re working with a monitor all day, you need to rest
your eyes by looking at something far away, so monitors should
not be up against walls.

6. The office should be a hangout: a pleasant place to spend time.
If you’re meeting your friends for dinner after work, you should
want to meet at the office. As Philip Greenspun bluntly puts it
(ccm.redhat.com/asj/managing-software-engineers/): “Your
business success will depend on the extent to which program-
mers essentially live at your office. For this to be a common
choice, your office had better be nicer than the average pro-
grammer’s home. There are two ways to achieve this result.
One is to hire programmers who live in extremely shabby
apartments. The other is to create a nice office.”

Roy did a great job. This is what you pay an architect for. I predict
he will become something of a world expert on designing offices for soft-
ware teams. Here’s how he translated my brief into three-dimensional
space:

More from Joel on Software224

Private offices. Not only did we get spacious, windowed private
offices, but even the common area workstations (for nondevelopers) are
hidden in clever angular alcoves, so everyone gets their own private
space without line of sight to anyone else.

The walls between the offices and the workstations are made of high-
tech, translucent acrylic that glows softly and provides natural light to
the interior without reducing privacy.

Power. Every desk has twenty, that’s right, twenty outlets. Four of
them are colored orange and have uninterruptible power coming off of
a UPS in the server closet, so you don’t need a UPS in every office.

The outlets are right below desk level in a special trough that runs the
entire length of the desk, about six inches deep and six inches wide. The
trough is a place to hide all your cables neatly and has a handy cover
that blends in with the desk.

Wiring. There is a Snake Tray system running near the ceiling from
the server room and throughout the office, running through every room.
It is completely accessible, so if you want to run any kind of (low-
voltage) cable from point A to point B, you can do this neatly. We only
moved in Friday, and we’ve already redone the intraoffice LAN wiring,
in a project that took about half an hour, so the Snake Tray has already
proven itself. Every office has its own eight-port network switch, so you
can plug in your laptop and your desktop and your Macintosh and that
old computer you keep around to read Joel on Software when your main
computer is rebooting to install today’s Windows Update, and still have
three ports left over. (Attention math geniuses: no need to e-mail. One
port is the uplink.) I sneer at silly building managers who still think that
one LAN port per office is about right. For lawyers, maybe.

Pair programming. When you make typical L-shaped desks, many
developers set themselves up in the corner. When they need to collabo-
rate temporarily, or pair program, or even just show something to
someone on their screen, the second person has to either lean all the way
across the desk or look over the first person’s shoulder. To avoid this, we
designed all the desks to be long and straight so that wherever a software
developer sits, there’s always room for another person to pull up a chair
and sit next to them.

Resting eyes. Although the desks are up against the walls, there is an
interior window in that wall, which cleverly looks across the corner of
the next developer’s office and through his window. Due to the rather

225Bionic Office

brilliant layout, this doesn’t reduce privacy, because even though you
have a window onto the next office, it is angled so that from most posi-
tions you really only look across a small corner of that room and out its
exterior window. The net result is that every office has windows on three
sides, two of which look outside, creating the architectural pattern Light
on Two Sides of Every Room. This is quite an accomplishment: you try
coming up with a scheme to give everyone a corner office in a conven-
tional building. Another reason hiring a great architect was well worth
the money.

Hang out. We furnished the office with a kitchenette and a lounge
area with sofas and a huge HDTV plasma screen with DVD player.
We’re planning a pool table and game console. Private offices means you
can listen to music at reasonable volumes without headphones and
nobody will care.

Bottom line it for me

The monthly rent for our offices, when fully occupied, will run about
$700 per employee. The build-out was done on budget and paid for

almost entirely by the landlord. I suspect that $700 per person is on the
high side for software developers throughout the world, but if it means
we can hire from the 99.9 percentile instead of the 99 percentile, it’ll be
worth it.

More from Joel on Software226

twenty-eight

UP THE TATA WITHOUT
A TUTU

Saturday, December 2, 2000

Until yesterday, the FogBugz license said that you couldn’t reverse engi-
neer the program, attempt to look at the source code, or modify it in any
way. Various honest people have asked how much we charge for a source
license so that they could customize a few things.

Hmmm. Why does the license say you can’t change the source code? I
couldn’t think of a single reason. In fact, I thought of a lot of counter-
reasons, and immediately changed the license agreement. So now you’re
going to have to sit through one of those old-fuddy-duddy stories from
my past.

Way back in 1995, I was working at Viacom, where a small group of
us hardy pioneers were building web sites for various Viacom properties.

In those days, there were no application servers. Sybase was so clueless
that if you wanted to use their database on the Internet, they told you that
you needed to buy a $150 client license for every user that connects to
your web site. Netscape’s web server was up to version 1.0.

A brave company called Illustra started telling people that their data-
base management system was perfect for the Web. You see, Illustra was
designed to make it easy to add new data types by writing some C code
and linking it in with their DBMS. (Any programmer who’s used a DBMS
will tell you that this is already sounding a bit too dangerous. C code?
Linked in? Oy.) This was originally intended for exciting data types like
latitude/longitude, time series, and so on. But then the Web happened.
Illustra wrote something they called a Web Blade and linked it in. The
Web Blade was a sort of half-baked system that allegedly made it possible

to extract data from the database and create dynamic web pages on the
fly, which was the biggest problem everybody had in 1995.

A colleague of mine at Viacom was put in charge of building an
e-commerce site so that Blockbuster could sell, I kid you not, CDs on
the Web. (Because that’s what people think of when they think of
Blockbuster, right?) Anyway, he thought that Illustra would be perfect
for the job. Now, Illustra cost something like $125,000, and shaking
that much money loose from the Viacom Tree is like herding cats, so it
took a while. My colleague taped a paper cup to his cube labeled
“Illustra Fund” and collected a few dollars that way. The CTO negoti-
ated hard and long hours with Illustra, and eventually a deal was struck.
We installed Illustra and got to work.

Unfortunately, disaster struck. Illustra’s Web Blade was barely half-
baked and completely not up to the task. It crashed every few minutes.
When it did run, it proved to have the only programming language I’ve
ever seen that wasn’t Turing-equivalent, if you can imagine that. The
license manager kept deciding to shut you off, and your site would die.
Building a site with it was terrible, my colleague’s annus horribilis. So
when they came to me and said, “Joel, you’re making a site for MTV,” I
said, “Uh oh.”

“Please can I not use Illustra?” I begged.
“Well, OK, but what are you going to use instead?” There really

weren’t any other app servers in those days. There was no PHP, no
AOLserver with TCL stuff, Perl had to fork, we didn’t have penicillin,
life was terrible.

And my reputation was on the line. And I decided that the scariest
thing about Illustra was that when it crashed, you couldn’t do anything
about it. At least, if you had the source code, I thought, if Illustra
crashes, well, it falls into your lap in the debugger, and you can try to fix
the bug. You may have to stay up all night for a week debugging some-
one else’s code, but at least you have a chance. Whereas, without the
source code, you are up the proverbial tata without a tutu.

And that’s where I learned a key lesson in software architecture: for
your most important, mission-critical stuff, you have to use a tool that is
one level lower in abstraction than ideal. For example, if you’re writing
a cool 3D shoot-em-up game (like Quake, around the same time period)
and your key number one differentiator is to have the coolest 3D graph-
ics, you do not use whatever 3D library you can find. You write your

More from Joel on Software228

own, because it’s fundamental to what you do. The people who use 3D
libraries like DirectX are using them because they are trying to differen-
tiate their games on something other than 3D performance. (Maybe the
story line.)

That’s when I decided not to trust anyone else’s poxy application
server and decided to just write my own, in C++, using Netscape Server’s
low-level API. Because I knew that at least if anything went wrong, it
was in my code, and I could eventually fix it.

And this is one of the greatest virtues of open source/free software,
even if you could afford Illustra’s $125,000 piece of tata: at least if any-
thing goes wrong, you are going to be able to fix it, somehow, and you
won’t get fired, and the nice-if-hyperactive people at MTV won’t be all
pissed off at you.

When I sit down to architect a system, I have to decide which tools
to use. And a good architect only uses tools that can either be trusted or
be fixed. “Trusted” doesn’t mean that they were made by some big com-
pany that you’re supposed to trust like IBM, it means that you know in
your heart that it’s going to work right. I think today most Windows
programmers trust Visual C++, for example. They may not trust MFC,
but MFC comes with source, and so even though it can’t be trusted, it
can be fixed when you discover how truly atrocious the async socket
library is. So it’s OK to bet your career on MFC, too.

You can bet your career on the Oracle DBMS, because it just works
and everybody knows it. And you can bet your career on Berkeley DB,
because if it screws up, you go into the source code and fix it. But you
probably don’t want to bet your career on a non–open source, not-well-
known tool. You can use that for experiments, but it’s not a bet-your-
career kind of tool.

So I got to thinking about how to make FogBugz a safe bet for smart
engineers. Almost by accident, it ships in source code form—because
that’s how ASP pages work these days. Which doesn’t bother me. There
are no magical, trade-secret algorithms in bug tracking software. This
stuff is not rocket science. (In fact, there are very few magical, trade-
secret algorithms in any software. The fact that it’s fairly easy to
disassemble an executable and figure out how it works just doesn’t mat-
ter as much as intellectual property lawyers think it should.) It doesn’t
matter to me that people look at the code or modify the code for their
own use.

229Up the Tata Without a Tutu

There’s another risk when you modify source code that you bought
from a vendor: when the vendor upgrades the code, you are going to
have a heck of a time migrating your changes to their new version.
There’s something I can do to ameliorate that, too: if you find a bug in
FogBugz and fix it, and send me the fix, I’ll incorporate it into the next
version. This is intended to make people feel a little bit more comfort-
able that (a) FogBugz works, and (b) if it doesn’t work, in some
mission-critical way, they can fix it rather than get fired, and (c) if they
do have to fix it, and their fix makes sense, it will get back into the
source tree so that the next version will incorporate their fixes, and life
will be less brutish.

By now I can hear the open source and free software advocates prac-
tically screaming, “You silly goose! Just make it open source and be
done with it! Open source doesn’t have any of these problems!” And
that’s nice. But my wee company with three programmers costs $40,000
a month to operate. So we just charge for our software, and we don’t
apologize, because it’s worth the money. We don’t claim to be open
source, but we can make sure that FogBugz is a safe decision to make,
by adopting two or three nice features from the open source world.

More from Joel on Software230

twenty-nine

SIMPLICITY

Saturday, December 9, 2006

Donald Norman concludes that simplicity is overrated (www.jnd.org/
dn.mss/simplicity_is_highly.html): “But when it came time for the
journalists to review the simple products they had gathered together, they
complained that they lacked what they considered to be ‘critical’ features.
So, what do people mean when they ask for simplicity? One-button oper-
ation, of course, but with all of their favorite features.”

A long time ago, I wrote the following (Joel on Software, Apress, 2004):

A lot of software developers are seduced by the old “80/20” rule.
It seems to make a lot of sense: 80% of the people use 20% of the
features. So you convince yourself that you only need to implement
20% of the features, and you can still sell 80% as many copies.

Unfortunately, it’s never the same 20%. Everybody uses a different
set of features. In the last 10 years, I have probably heard of dozens
of companies who, determined not to learn from each other, tried
to release “lite” word processors that only implement 20% of the
features. This story is as old as the PC. Most of the time, what hap-
pens is that they give their program to a journalist to review, and
the journalist reviews it by writing their review using the new word
processor, and then the journalist tries to find the “word count”
feature, which they need because most journalists have precise
word count requirements, and it’s not there, because it’s in the
“80% that nobody uses,” and the journalist ends up writing a

story that attempts to claim simultaneously that lite programs are
good, bloat is bad, and I can’t use this damn thing ’cause it won’t
count my words.

Making simple, 20% products is an excellent bootstrapping strategy
because you can create them with limited resources and build an audi-
ence. It’s a judo strategy, using your weakness as a strength, like the way
The Blair Witch Project, filmed by kids with no money at all, used the
only camera they could afford, a handheld video camera, but they
invented a plot in which that was actually a virtue. So you sell “simple”
as if it were this wonderful thing, when, coincidentally, it’s the only thing
you have the resources to produce. Happy coincidence, that’s all, but it
really is wonderful!

What works for bootstrapping, I believe, will not work as a good
long-term strategy, because there’s very little to prevent the next two-
person startup from cloning your simple app, and because eventually
you can’t fight human nature: “The people want the features,” says
Norman. Just because handheld video was perfect for The Blair Witch
Project doesn’t mean every Hollywood blockbuster will use it.

Devotees of simplicity will bring up 37signals and the Apple iPod as
anecdotal proof that Simple Sells. I would argue that in both of these
cases, success is a result of a combination of things: building an audi-
ence, evangelism, clean and spare design, emotional appeal, aesthetics,
fast response time, direct and instant user feedback, program models
that correspond to the user model, resulting in high usability, and put-
ting the user in control, all of which are features of one sort, in the sense
that they are benefits that customers like and pay for, but none of which
can really be described as “simplicity.” For example, the iPod has the
feature of being beautiful, which the Creative Zen Ultra Nomad
Jukebox doesn’t have, so I’ll take an iPod, please. In the case of the iPod,
the way beauty is provided happens to be through a clean and simple
design, but it doesn’t have to be. The Hummer is aesthetically appealing
precisely because it’s ugly and complicated.

I think it is a misattribution to say, for example, that the iPod is suc-
cessful because it lacks features. If you start to believe that, you’ll
believe, among other things, that you should take out features to
increase your product’s success. With six years of experience running
my own software company, I can tell you that nothing we have ever

More from Joel on Software232

done at Fog Creek has increased our revenue more than releasing a new
version with more features. Nothing. The flow to our bottom line from
new versions with new features is absolutely undeniable. It’s like gravity.
When we tried Google ads, when we implemented various affiliate
schemes, or when an article about FogBugz appears in the press, we
could barely see the effect on the bottom line. When a new version
comes out with new features, we see a sudden, undeniable, substantial,
and permanent increase in revenue.

If you’re using the term “simplicity” to refer to a product in which
the user model corresponds closely to the program model so the product
is easy to use, fine, more power to ya. If you’re using the term “simplic-
ity” to refer to a product with a spare, clean visual appearance, so the
term is nothing more than an aesthetic description much in the same
way you might describe Ralph Lauren clothes as “Southampton WASP,”
fine, more power to ya. Minimalist aesthetics are quite hip these days.
But if you think simplicity means “not very many features” or “does one
thing and does it well,” then I applaud your integrity, but you can’t go
that far with a product that deliberately leaves features out. Even the
iPod has a gratuitous Solitaire game. Even Ta-da List supports RSS.

Anyway, I gotta go . . . it’s time to go upgrade my cellphone to one
that includes high-speed Internet access, e-mail, a podcast catcher, and
an MP3 player.

233Simplicity

thirty

RUB A DUB DUB

Wednesday, January 23, 2002

One reason people are tempted to rewrite their entire code base from
scratch is that the original code base wasn’t designed for what it’s doing.
It was designed as a prototype, an experiment, a learning exercise, a way
to go from zero to IPO in nine months, or a one-off demo. And now it has
grown into a big mess that’s fragile and impossible to add code to, and
everybody’s whiny, and the old programmers quit in despair, and the new
ones that are brought in can’t make head or tail of the code, so they some-
how convince management to give up and start over while Microsoft
takes over their business. Today let me tell you a story about what they
could have done instead.

FogBugz started out six years ago as an experiment to teach myself
ASP programming. Pretty soon it became an in-house bug tracking sys-
tem. It got embellished almost daily with features that people needed until
it was good enough that it no longer justified any more work.

Various friends asked me if they could use FogBugz at their compa-
nies. The trouble was, it had too many hard-coded things that made it a
pain to run anywhere other than on the original computer where it was
deployed. I had used a bunch of SQL Server stored procedures, which
meant that you needed SQL Server to run FogBugz, which was expensive
and overkill for some of the two-person teams that wanted to run it. And
so on. So I would tell my friends, “Gosh, for $5,000 in consulting fees, I’ll
spend a couple of days and clean up the code so you can run it on your
server using Access instead of SQL Server.” Generally, my friends thought
this was too expensive.

After this happened a few times I had a revelation—if I could sell the
same program to, say, three people, I could charge $2,000 and come out

ahead. Or thirty people for $200. Software is neat like that. So in late
2000, Michael sat down, ported the code so that it worked on Access or
SQL Server, pulled all the site-specific stuff out into a header file, and we
started selling the thing. I didn’t really expect much to come of it.

In those days, I thought, golly, there are zillions of bug tracking pack-
ages out there. Every programmer has written a dinky bug tracking
package. Why would anyone buy ours? I knew one thing: programmers
who start businesses often have the bad habit of thinking everybody else
is a programmer just like them and wants the same stuff as them, and so
they have an unhealthy tendency to start businesses that sell program-
ming tools. That’s why you see so many scrawny companies hawking
source-code-generating geegaws, error-catching and e-mailing geegaws,
debugging geegaws, syntax-coloring editing tchotchkes, FTPing baubles,
and, ahem, bug tracking packages. All kinds of stuff that only a pro-
grammer could love. I had no intention of falling into that trap!

Of course, nothing ever works out exactly as planned. FogBugz was
popular. Really popular. It accounts for a significant chunk of Fog
Creek’s revenue, and sales are growing steadily. The People won’t stop
buying it.

So we did version 2.0. This was an attempt to add some of the most
obviously needed features. While David worked on version 2.0, we hon-
estly didn’t think it was worth that much effort, so he tended to do
things in what you might call an “expedient” fashion rather than, say, an
“elegant” fashion. Certain, ahem, design issues in the original code were
allowed to fester. There were two complete sets of nearly identical code
for drawing the main bug-editing page. SQL statements were scattered
throughout the HTML hither and yon, to and fro, pho and ton. Our
HTML was creaky and designed for those ancient browsers that were so
buggy they could crash loading about:blank.

Yeah, it worked brilliantly, we’ve been at zero known bugs for a
while now. But inside, the code was, to use the technical term, a “big
mess.” Adding new features was a hemorrhoid. To add one field to the
central bug table would probably require fifty modifications, and you’d
still be finding places you forgot to modify long after you bought your
first family carplane for those weekend trips to your beach house on
Mars.

More from Joel on Software236

A lesser company, perhaps one run by an executive from the express-
package-delivery business, might have decided to scrap the code and
start over.

Did I mention that I don’t believe in starting from scratch? I guess I
talk about that a lot.

Anyway, instead of starting from scratch, I decided it was worth
three weeks of my life to completely scrub the code. Rub a dub dub. In
the spirit of refactoring, I set out a few rules for this exercise:

1. No New Features, not even small ones, would be added.

2. At any time, with any check in, the code would still work
perfectly.

3. All I would do is logical transformations—the kinds of things
that are almost mechanical and that you can convince yourself
immediately will not change the behavior of the code.

I went through each source file, one at a time, top to bottom, looking
at code, thinking about how it could be better structured, and making
simple changes. Here are some of the kinds of things I did during these
three weeks:

• Changed all HTML to XHTML. For example,
 became

, all attributes were quoted, all nested tags were matched
up, and all pages were validated.

• Removed all formatting (tags, etc.) and put everything in
a CSS style sheet.

• Removed all SQL statements from the presentation code and
indeed all program logic (what the marketing types like to call
business rules). This stuff went into classes that were not really
designed—I simply added methods lazily as I discovered a need
for them. (Somewhere, someone with a big stack of 4✕6 cards is
sharpening their pencil to poke my eyes out. What do you mean
you didn’t design your classes?)

• Found repeated blocks of code and created classes, functions, or
methods to eliminate the repetition. Broke up large functions
into multiple smaller ones.

237Rub a Dub Dub

• Removed all remaining English language text from the main
code and isolated that in a single file for easy internationali-
zation.

• Restructured the ASP site so there is a single entry point instead
of lots of different files. This makes it very easy to do things that
used to be hard; for example, now we can display input error
messages in the very form where the invalid input occurred,
something that should be easy if you lay things out right, but I
hadn’t laid things out right when I was learning ASP program-
ming way back when.

Over three weeks, the code got better and better internally. To the
end user, not too much changed. Some fonts are a little nicer thanks to
CSS. I could have stopped at any point, because at any given time I had
100% working code (and I uploaded every check-in to our live internal
FogBugz server to make sure). And in fact I never really had to think
very hard, and I never had to design a thing, because all I was doing was
simple, logical transformations. Occasionally, I would encounter a weird
nugget in the code. These nuggets were usually bug fixes that had been
implemented over the years. Luckily, I could keep the bug fix intact. In
many of these cases, I realized that had I started from scratch, I would
have made the same bug all over again, and may not have noticed it for
months or years.

I’m basically done now. It took, as planned, three weeks. Almost
every line of code is different now. Yep, I looked at every line of code,
and changed most of them. The structure is completely different. All the
bug tracking functionality is completely separate from the HTML UI
functionality.

Here are all the good things about my code-scrubbing activity:

• It took vastly less time than a complete rewrite. Let’s assume
(based on how long it took us to get this far with FogBugz) that
a complete rewrite would have taken a year. Well, that means
I saved forty-nine weeks of work. Those forty-nine weeks
represent knowledge in the design of the code that I preserved
intact. I never had to think, “Oh, I need a new line here.” I just
had to change
 to
 mindlessly and move on. I didn’t
have to figure out how to get multipart working for file uploads.
It works. Just tidy it up a bit.

More from Joel on Software238

• I didn’t introduce any new bugs. A couple of tiny ones, of
course, probably got through. But I was never doing the types
of things that cause bugs.

• I could have stopped and shipped at any time if necessary.

• The schedule was entirely predictable. After a week of this, you
can calculate exactly how many lines of code you clean in an
hour, and get a darn good estimate for the rest of the project.
Try that, Mozilla river-drawing people.

• The code is now much more amenable to new features. We’ll
probably earn back the three weeks with the first new major
feature we implement.

Much of the literature on refactoring is attributable to Martin
Fowler, although of course the principles of code cleanups have been
well known to programmers for years. An interesting new area is refac-
toring tools, which is just a fancy word for programs that do some of
this stuff automatically. We’re a long way from having all the good tools
we need—in most programming environments, you can’t even do a sim-
ple transformation like changing the name of a variable (and having all
the references to it change automatically). But it’s getting better, and if
you want to start one of those scrawny companies hawking program-
ming tool geegaws or make a useful contribution to open source, the
field is wide open.

239Rub a Dub Dub

thirty-one

TOP TWELVE TIPS FOR RUNNING
A BETA TEST

Tuesday, March 2, 2004

Here are a few tips for running a beta test of a software product intended
for large audiences—what I call “shrink-wrap.” These apply for commer-
cial or open source projects; I don’t care whether you get paid in cash,
eyeballs, or peer recognition, but I’m focused on products for lots of
users, not internal IT projects.

1. Open betas don’t work. You either get too many testers (think
Netscape), in which case you can’t get good data from the
testers, or you get too few reports from the existing testers.

2. The best way to get a beta tester to send you feedback is to
appeal to their psychological need to be consistent. You need to
get them to say that they will send you feedback, or, even better,
apply to be in the beta testing program. Once they have taken
some positive action such as filling out an application and check-
ing the box that says “I agree to send feedback and bug reports
promptly,” many more people will do so in order to be consistent.

3. Don’t think you can get through a full beta cycle in less than
eight to ten weeks. I’ve tried; lord help me, it just can’t be done.

4. Don’t expect to release new builds to beta testers more than once
every two weeks. I’ve tried; lord help me, it just can’t be done.

5. Don’t plan a beta with fewer than four releases. I haven’t tried
that because it was so obviously not going to work!

6. If you add a feature, even a small one, during the beta process,
the clock goes back to the beginning of the eight weeks, and
you need another three or four releases. One of the biggest mis-
takes I ever made was adding some whitespace-preserving code
to CityDesk 2.0 toward the end of the beta cycle, which had
some, shall we say, unexpected side effects that a longer beta
would have fleshed out.

7. Even if you have an application process, only about one-in-five
people will send you feedback anyway.

8. We have a policy of giving a free copy of the software to any-
one who sends any feedback, positive, negative, whatever. But
people who don’t send us anything don’t get a free copy at the
end of the beta.

9. The minimum number of serious testers you need (i.e., people
who send you three page summaries of their experience) is
probably about 100. If you’re a one-person shop, that’s all the
feedback you can handle. If you have a team of testers or beta
managers, try to get 100 serious testers for every employee who
is available to handle feedback.

10. Even if you have an application process, only one out of five
testers is really going to try the product and send you feedback.
So, for example, if you have a QA department with three
testers, you should approve 1,500 beta applications to get 300
serious testers. Fewer than this, and you won’t hear everything.
More than this, and you’ll be deluged with repeated feedback.

11. Most beta testers will try out the program when they first get it
and then lose interest. They are not going to be interested in
retesting it every time you drop them another build unless they
really start using the program every day, which is unlikely for
most people. Therefore, stagger the releases. Split your beta
population into four groups, and with each new release, add
another group that gets the software, so there are new beta
testers for each milestone.

More from Joel on Software242

12. Don’t confuse a technical beta with a marketing beta. I’ve been
talking about technical betas here, in which the goal is to find
bugs and get last-minute feedback. Marketing betas are pre-
release versions of the software given to the press, to big
customers, and to the guy who is going to write the Dummies
book that has to appear on the same day as the product. With
marketing betas, you don’t expect to get feedback (although the
people who write the books are likely to give you copious feed-
back no matter what you do, and if you ignore it, it will be cut
and pasted into their book).

243Top Twelve Tips for Running a Beta Test

thirty-two

SEVEN STEPS TO REMARKABLE
CUSTOMER SERVICE

Monday, February 19, 2007

As a bootstrapped software company, Fog Creek couldn’t afford to hire
customer service people for the first couple of years, so Michael and I did
it ourselves. The time we spent helping customers took away from
improving our software, but we learned a lot, and now we have a much
better customer service operation.

Here are seven things we learned about providing remarkable cus-
tomer service. I’m using the word remarkable literally—the goal is to
provide customer service so good that people remark.

1. Fix everything two ways

Almost every tech support problem has two solutions. The superficial
and immediate solution is just to solve the customer’s problem. But

when you think a little harder, you can usually find a deeper solution: a
way to prevent this particular problem from ever happening again.

Sometimes that means adding more intelligence to the software or the
Setup program; by now, our Setup program is loaded with special case
checks. Sometimes you just need to improve the wording of an error mes-
sage. Sometimes the best you can come up with is a knowledge base
article.

We treat each tech support call like the NTSB treats airliner crashes.
Every time a plane crashes, the NTSB sends out investigators, figures out
what happened, and then figures out a new policy to prevent that par-
ticular problem from ever happening again. It’s worked so well for
aviation safety that the very, very rare airliner crashes we still get in the
US are always very unusual, one-off situations.

This has two implications.
One: it’s crucial that tech support staff have access to the develop-

ment team. This means that you can’t outsource tech support: they have
to be right there at the same street address as the developers, with a way
to get things fixed. Many software companies still think that it’s
“economical” to run tech support in Bangalore or the Philippines, or to
outsource it to another company altogether. Yes, the cost of a single inci-
dent might be $10 instead of $50, but you’re going to have to pay $10
again and again.

When we handle a tech support incident with a well-qualified person
here in New York, chances are that’s the last time we’re ever going to see
that particular incident. So with one $50 incident, we’ve eliminated an
entire class of problems.

Somehow, the phone companies and the cable companies and the
ISPs just don’t understand this equation. They outsource their tech sup-
port to the cheapest possible provider and end up paying $10 again and
again and again fixing the same problem again and again and again
instead of fixing it once and for all in the source code. The cheap call
centers have no mechanism for getting problems fixed; indeed, they have
no incentive to get problems fixed because their income depends on
repeat business, and there’s nothing they like better than being able to
give the same answer to the same question again and again.

The second implication of fixing everything two ways is that eventu-
ally, all the common and simple problems are solved, and what you’re
left with is very weird uncommon problems. That’s fine, because there
are far fewer of them, and you’re saving a fortune not doing any rote
tech support, but the downside is that there’s no rote tech support left:
only serious debugging and problem solving. You can’t just teach new
support people ten common solutions: you have to teach them to debug.

For us, the “fix everything two ways” religion has really paid off. We
were able to increase our sales tenfold while only doubling the cost of
providing tech support.

More from Joel on Software246

2. Suggest blowing out the dust

Microsoft’s Raymond Chen tells the story of a customer who
complains that the keyboard isn’t working (blogs.msdn.com/

oldnewthing/archive/2004/03/03/83244.aspx). Of course, it’s unplugged.
If you try asking them if it’s plugged in, “they will get all insulted and say
indignantly, ‘Of course it is! Do I look like an idiot?’ without actually
checking.”

“Instead,” Chen suggests, “say ‘OK, sometimes the connection gets a
little dusty and the connection gets weak. Could you unplug the connec-
tor, blow into it to get the dust out, then plug it back in?’

“They will then crawl under the desk, find that they forgot to plug it
in (or plugged it into the wrong port), blow out the dust, plug it in, and
reply, ‘Um, yeah, that fixed it, thanks.’”

Many requests for a customer to check something can be phrased
this way. Instead of telling them to check a setting, tell them to change
the setting and then change it back “just to make sure that the software
writes out its settings.”

3. Make customers into fans

Every time we need to buy logo gear here at Fog Creek, I get it from
Lands’ End.

Why?
Let me tell you a story. We needed some shirts for a trade show. I

called up Lands’ End and ordered two dozen, using the same logo design
we had used for some knapsacks we bought earlier.

When the shirts arrived, to our dismay, we couldn’t read the logo.
It turns out that the knapsacks were brighter than the polo shirts.

The thread color that looked good on the knapsacks was too dark to
read on the shirts.

I called up Lands’ End. As usual, a human answered the phone even
before it started ringing. I’m pretty sure that they have a system where

247Seven Steps to Remarkable Customer Service

the next agent in the queue is told to stand by, so customers don’t even
have to wait one ringy-dingy before they’re talking to a human.

I explained that I screwed up.
They said, “Don’t worry. You can return those for a full credit, and

we’ll redo the shirts with a different color thread.”
I said, “The trade show is in two days.”
They said they would FedEx me a new box of shirts, and I’d have it

tomorrow. I could return the old shirts at my convenience.
They paid shipping both ways. I wasn’t out a cent. Even though they

had no possible use for a bunch of Fog Creek logo shirts with an illegi-
ble logo, they ate the cost.

And now I tell this story to everyone who needs swag. In fact, I tell
this story every time we’re talking about telephone menu systems. Or
customer service. By providing remarkable customer service, they’ve
gotten me to remark about it.

When customers have a problem and you fix it, they’re actually
going to be even more satisfied than if they never had a problem in the
first place.

It has to do with expectations. Most people’s experience with tech
support and customer service comes from airlines, telephone companies,
cable companies, and ISPs, all of whom provide generally awful cus-
tomer service. It’s so bad you don’t even bother calling any more, do
you? So when someone calls Fog Creek, and immediately gets through
to a human, with no voice mail or phone menus, and that person turns
out to be nice and friendly and actually solves their problem, they’re apt
to think even more highly of us than someone who never had the oppor-
tunity to interact with us and just assumes that we’re average.

Now, I wouldn’t go so far as to actually make something go wrong,
just so we have a chance to demonstrate our superior customer service.
Many customers just won’t call; they’ll fume quietly.

But when someone does call, look at it as a great opportunity to cre-
ate a fanatically devoted customer, one who will prattle on and on about
what a great job you did.

More from Joel on Software248

4. Take the blame

One morning I needed an extra set of keys to my apartment, so on
the way to work, I went to the locksmith around the corner.

Thirteen years living in an apartment in New York City has taught
me never to trust a locksmith; half of the time their copies don’t work.
So I went home to test the new keys, and, lo and behold, one didn’t
work.

I took it back to the locksmith.
He made it again.
I went back home and tested the new copy.
It still didn’t work.
Now I was fuming. Squiggly lines were coming up out of my head. I

was a half hour late to work and had to go to the locksmith for a third
time. I was tempted just to give up on him. But I decided to give this
loser one more chance.

I stomped into the store, ready to unleash my fury.
“It still doesn’t work?” he asked. “Let me see.”
He looked at it.
I was sputtering, trying to figure out how best to express my rage at

being forced to spend the morning going back and forth.
“Ah. It’s my fault,” he said.
And suddenly, I wasn’t mad at all.
Mysteriously, the words “It’s my fault” completely defused me. That

was all it took.
He made the key a third time. I wasn’t mad any more. The key

worked.
And, here I was, on this planet for forty years, and I couldn’t believe

how much the three words “It’s my fault” had completely changed my
emotions in a matter of seconds.

Most locksmiths in New York are not the kinds of guys to admit that
they’re wrong. Saying “It’s my fault” was completely out of character.
But he did it anyway.

249Seven Steps to Remarkable Customer Service

5. Memorize awkward phrases

Ifigured, OK, since the morning is shot anyway, I might as well go to
the diner for some breakfast.
It’s one of those classic New York diners, like the one on Seinfeld.

There’s a thirty-page menu and a kitchen the size of a phone booth. It
doesn’t make sense. They must have Star Trek technology to get all those
ingredients into such a small space. Maybe they rearrange atoms on the
spot.

I was sitting by the cash register.
An older woman came up to pay her check. As she was paying, she

said to the owner, “You know, I’ve been coming here for years and years,
and that waiter was really rather rude to me.”

The owner was furious.
“What do you mean? No he wasn’t! He’s a good waiter! I never had

a complaint!”
The customer couldn’t believe it. Here she was, a loyal customer, and

she wanted to help out the owner by letting him know that one of his
waiters needed a little bit of help in the manners department, but the
owner was arguing with her!

“Well, that’s fine, but I’ve been coming here for years, and everybody
is always very nice to me, but that guy was rude to me,” she explained,
patiently.

“I don’t care if you’ve been coming here forever. My waiters are not
rude.” The owner proceeded to yell at her. “I never had no problems.
Why are you making problems?”

“Look, if you’re going to treat me this way, I won’t come back.”
“I don’t care!” said the owner. One of the great things about owning

a diner in New York is that there are so many people in the city that you
can offend every single customer who ever comes into your diner and
you’ll still have a lot of customers. “Don’t come back! I don’t want you
as a customer!”

Good for you, I thought. Here’s a sixty-something-year-old man,
owner of a diner, and you won some big moral victory against a little old
lady. Are you proud of yourself? How macho do you have to be? Does

More from Joel on Software250

the moral victory make you feel better? Did you really have to lose a
repeat customer?

Would it have made you feel totally emasculated to say, “I’m so
sorry. I’ll have a word with him”?

It’s easy to get caught up in the emotional heat of the moment when
someone is complaining.

The solution is to memorize some key phrases and practice saying
them, so that when you need to say them, you can forget your testos-
terone and make a customer happy.

“I’m sorry, it’s my fault.”
“I’m sorry, I can’t accept your money. The meal’s on me.”
“That’s terrible, please tell me what happened so I can make sure it

never happens again.”
It’s completely natural to have trouble saying “It’s my fault.” That’s

human. But those three words are going to make your angry customers
much happier. So you’re going to have to say them. And you’re going to
have to sound like you mean it.

So start practicing.
Say “It’s my fault” a hundred times one morning in the shower, until

it starts to sound like syllabic nonsense. Then you’ll be able to say it on
demand.

One more point. You may think that admitting fault is a strict no-no
that can get you sued. This is nonsense. The way to avoid getting sued is
not to have people who are mad at you. The best way to do this is to
admit fault and fix the damn problem.

6. Practice puppetry

The angry diner owner clearly took things very personally, in a way
that the locksmith didn’t. When an irate customer is complaining or

venting, it’s easy to get defensive.
You can never win these arguments, and if you take them personally,

it’s going to be a million times worse. This is when you start to hear busi-
ness owners saying, “I don’t want an asshole like you for a customer!”
They get excited about their Pyrrhic victory. Wow, isn’t it great? When
you’re a small business owner, you get to fire your customers. Charming.

251Seven Steps to Remarkable Customer Service

The bottom line is that this is not good for business, and it’s not even
good for your emotional well-being. When you win a victory with a cus-
tomer by firing them, you still end up feeling riled up and angry, they’ll
get their money back from the credit card company anyway, and they’ll
tell a dozen friends. As Patrick McKenzie writes, “You will never win an
argument with your customer” (kalzumeus.com/2007/02/16/how-to-
deal-with-abusive-customers/).

There is only one way to survive angry customers emotionally: you
have to realize that they’re not angry at you; they’re angry at your busi-
ness, and you just happen to be a convenient representative of that
business.

And since they’re treating you like a puppet, an iconic stand-in for
the real business, you need to treat yourself as a puppet, too.

Pretend you’re a puppeteer. The customer is yelling at the puppet.
They’re not yelling at you. They’re angry with the puppet.

Your job is to figure out, “Gosh, what can I make the puppet say that
will make this person a happy customer?”

You’re just a puppeteer. You’re not a party to the argument. When
the customer says, “What the hell is wrong with you people,” they’re
just playing a role (in this case, they’re quoting Tom Smykowski in the
movie Office Space). You, too, get to play a role. “I’m sorry. It’s my
fault.” Figure out what to make the puppet do that will make them
happy and stop taking it so dang personally.

7. Greed will get you nowhere

Recently, I was talking with the people who have been doing most of
the customer service for Fog Creek over the last year, and I asked

what methods they found most effective for dealing with angry cus-
tomers.

“Frankly,” they said, “we have pretty nice customers. We haven’t
really had any angry customers.”

Well, OK, we do have nice customers, but it seems rather unusual
that in a year of answering the phones, nobody was angry. I thought the
nature of working at a call center was dealing with angry people all day
long.

More from Joel on Software252

“Nope. Our customers are nice.”
Here’s what I think. I think that our customers are nice because

they’re not worried. They’re not worried because we have a ridiculously
liberal return policy: “We don’t want your money if you’re not amaz-
ingly happy.”

Customers know that they have nothing to fear. They have the power
in the relationship. So they don’t get abusive.

The no-questions-asked 90-day money-back guarantee was one of
the best decisions we ever made at Fog Creek. Try this: use Fog Creek
Copilot for a full twenty-four hours, call up three months later, and say,
“Hey guys, I need $5 for a cup of coffee. Give me back my money from
that Copilot day pass,” and we’ll give it back to you. Try calling on the
91st or 92nd or 203rd day. You’ll still get it back. We really don’t want
your money if you’re not satisfied. I’m pretty sure we’re running the only
job listing service around that will refund your money just because your
ad didn’t work. This is unheard of, but it means we get a lot more ad list-
ings, because there’s nothing to lose.

Over the last six years or so, letting people return software has cost
us 2%.

2%.
And you know what? Most customers pay with credit cards, and if

we didn’t refund their money, a bunch of them would have called their
bank. This is called a chargeback. They get their money back, we pay a
chargeback fee, and if this happens too often, our processing fees go up.

Know what our chargeback rate is at Fog Creek?
0%.
I’m not kidding.
If we were tougher about offering refunds, the only thing we would

possibly have done is piss a few customers off, customers who would
have ranted and whined on their blogs. We wouldn’t even have kept
more of their money.

I know of software companies who are very explicit on their web site
that you are not entitled to a refund under any circumstances, but the
truth is, if you call them up, they will eventually return your money
because they know that if they don’t, your credit card company will.
This is the worst of both worlds. You end up refunding the money any-
way, and you don’t get to give potential customers the warm and fuzzy
feeling of knowing Nothing Can Possibly Go Wrong, so they hesitate
before buying. Or they don’t buy at all.

253Seven Steps to Remarkable Customer Service

8. (Bonus!) Give customer service
people a career path

The last important lesson we learned here at Fog Creek is that you
need very highly qualified people talking to customers. A salesper-

son at Fog Creek needs to have significant experience with the software
development process and needs to be able to explain why FogBugz
works the way it does, and why it makes software development teams
function better. A tech support person at Fog Creek can’t get by on
canned answers to common questions, because we’ve eliminated the
common questions by fixing the software, so tech support here has to
actually troubleshoot, which often means debugging.

Many qualified people get bored with front-line customer service,
and I’m OK with that. To compensate for this, I don’t hire people into
those positions without an explicit career path. Here at Fog Creek, cus-
tomer support is just the first year of a three-year management training
program that includes a master’s degree in technology management at
Columbia University. This allows us to get ambitious, smart geeks on a
terrific career path talking to customers and solving their problems. We
end up paying quite a bit more than average for these positions (espe-
cially when you consider $25,000 a year in tuition), but we get far more
value out of them, too.

More from Joel on Software254

part eight

Releasing Software

thirty-three

PICKING A SHIP DATE

Tuesday, April 9, 2002

One of the best reasons to make a detailed schedule is because it gives you
an excuse to cut features. If there’s no way to make the ship date and
implement Bob’s Sing-Along MP3 Chat feature, it’s easy to cut that fea-
ture without making Bob feel bad.

So my basic rules for software release cycles are

1. Set a ship date, which might as well be arbitrary.

2. Make a list of features and sort them out by priority.

3. Cut low-priority features every time you slip so as to make
the date.

If you do this well, you’ll soon discover that you don’t regret the fea-
tures that you cut. They’re usually kind of dumb. If they are so important,
you can do them next time. It’s like editing. If you ever want to write a
brilliant 750-word essay, start by writing a 1,500-word essay and then
edit.

One way to screw this up, by the way, is forgetting to do features in
order of priority. If you aren’t careful, your programmers are going to do
features in order of fun, and you won’t be able to ship or cut features
because all the programmers were busy writing Karaoke Recalc before
they even got the menus to work, and now here it is, six months after the
day you wanted to ship, and you have one hell of an easter egg but no
functionality.

So the obvious question is, how do you pick a ship date?
It’s conceivable that you have outside constraints. The stock market is

switching from fractions to decimals on such-and-such a date, and if you

haven’t got the new software ready, your firm will be forced out of busi-
ness, and you personally will be taken out behind the loading docks and
shot in the head. Or maybe a new version of the Linux kernel is coming
out soon with yet another all-new system to implement packet filtering;
all your customers are getting it; and your existing application won’t run
on it. OK, for those people, your ship date is easy to figure out. You can
stop reading this article now. Go cook a nice dinner for your loved ones.

Bye, now!
But how should the rest of us pick a ship date?
There are three approaches you could take:

1. Frequent small releases. This is the Extreme Programming
approach, and it is most appropriate for small-team projects
with a small number of customers, such as in-house IT
development.

2. Every 12 to 18 months. This is typical of shrink-wrapped soft-
ware products, desktop applications, etc., where you have
larger teams and thousands or millions of customers.

3. Every 3 to 5 years. This is typical of huge software systems and
platforms that are worlds unto themselves. Operating systems,
.NET, Oracle, and for some reason Mozilla fall into this cate-
gory. They often have thousands of developers (VS .NET had
fifty people on the installer team) and enormously complex
interactions to other shipping software that can’t be allowed
to break.

Here are some of the things you need to think about when deciding
how often to release software.

Short releases get customer feedback fast. Sometimes the best way to
work with a customer is to show them code, let them try it out, and
immediately incorporate their feedback into a build that you give them
the very next day. You won’t waste a year developing a complicated sys-
tem with lots of features that nobody uses, because you’ll be so busy
doing things that customers are requesting right now. If you have a small
number of customers, prefer frequent small releases. The size of each
release should be the minimum chunk that does something useful.

Several years ago I was assigned to develop a web content manage-
ment system for MTV. The requirements called for a database-backed

More from Joel on Software258

system with templates, and a complete workflow system that allowed
unpaid MTV stringers at colleges across the country to input informa-
tion about clubs, record stores, radio stations, and concerts. “How are
you building the site now?” I asked.

“Oh, we just do it all manually with BBEdit,” they told me. “Sure,
there are thousands of pages, but BBEdit has a really good global-find-
and-replace function . . . ”

I figured the whole system would take six months to deliver. “But let
me suggest something else. Let’s get the templating stuff working first. I
can get you that in three months, and it will save tons of manual work
right away. Once that’s working, we’ll start in on the workflow compo-
nent; in the meantime, you can continue to do workflow with e-mail.”

They agreed. It sounded like a great idea. Guess what? Once I deliv-
ered the templating feature, they realized that they didn’t really need
workflow that much. And the templating turned out to be useful for lots
of other web sites that didn’t need workflow, either. So we never built
workflow, saving three months that I used to enhance the templating
feature, which turned out to be more useful.

Some types of customers don’t appreciate being “guinea pigs” in this
fashion. Generally, people who buy off-the-shelf software don’t want to
be part of a Grand Development Experiment; they want something that
anticipates their needs. As a customer, the only thing better than getting
feature requests done quickly is getting them instantaneously because
they’re already in the product, because it was designed thoughtfully and
extensively usability and beta tested before being inflicted on the world.
If you have (or want) a large number of paying customers, prefer less fre-
quent releases.

If you ship an anemic commercial program just to get something out
the door so you can “start listening to customers,” what you’ll hear
those customers saying is, “It doesn’t do very much,” which you might
think is OK. Hey, it’s 1.0. But then if you release 2.0 four months later,
everybody’s going to think, “That feeble program? What, am I supposed
to keep evaluating it every four months just to see if it’s gotten better
yet?!” And in fact, five years down the line, people will still remember
their first impression of 1.0, and it will be almost impossible to get them
to reevaluate. Think about what happened to poor Marimba. They
launched their company with infinite VC in the days of hyper-Java hype,
having lured the key developers from the Java team at Sun. They had a

259Picking a Ship Date

CEO, Kim Polese, who was brilliant at public relations; when she was
marketing Java, she had Danny Hillis making speeches about how Java
was the next step in human evolution; George Gilder wrote these breath-
less articles about how Java was going to completely upturn the very
nature of human civilization. Compared to Java, we were to believe,
monotheism, for example, was just a wee blip. Polese is that good. So
when Marimba Castanet launched, it probably had more unearned hype
than any product in history, but the developers had only been working
on it for a total of . . . four months. We all downloaded it and discovered
that—ta-da!—it was a list box that downloaded software. (What do you
expect from four months of development?) Big whoop. The disappoint-
ment was so thick you could cut it with butter. And here it is, six years
later, ask anybody what Castanet is, and they’ll tell you it’s a list box
that downloads software. Hardly anyone bothered to reevaluate it, and
Marimba has had six years to write code; I’m sure it’s just the coolest
thing now but, honestly, who has time to find out? Let me tell you a little
secret: our strategy for CityDesk is to avoid massive PR until 2.0 is out.
That’s the version that we want everybody on earth to get their first
impressions from. In the meantime, we’ll do quiet guerilla marketing,
and anybody who finds it will discover that it’s a completely spiffy pro-
gram that solves a lot of problems, but Arnold Toynbee won’t have to
rewrite anything.

With most commercial software, you’ll discover that the process of
designing, prototyping, integrating, fixing bugs, running full alpha and
beta cycles, creating documentation, and so forth takes six to nine
months. In fact, if you try to do a full release every year, you only have
time for about three months’ worth of new code development. Software
that is upgraded annually usually doesn’t feel like it has enough new fea-
tures to justify the upgrade. (Corel Photo-Paint and Intuit QuickBooks
are particularly egregious examples of this; they have a new “major”
version every year that is rarely worth buying.) As a result, many people
have learned by now to skip every other release. You don’t want your
customers getting in that habit. If you stretch out your schedule to fif-
teen or eighteen months between releases, you get six months of new
features instead of three months’ worth, which makes your upgrade a lot
more compelling.

OK, if fifteen months is so good, wouldn’t twenty-four months be
better? Maybe. Some companies can get away with it, if they are major

More from Joel on Software260

leaders in their category. Photoshop seems to get away with it. But as
soon as an application starts to feel old, people stop buying it because
they are expecting that new version Any Day Now. This can cause seri-
ous cash flow problems for a software business. And of course, you may
have competitors nipping at your heels.

For large platform software—operating systems, compilers, web
browsers, DBMSs—the hardest part of the development process is main-
taining compatibility with thousands or millions of existing applications
or hardware. When a new version of Windows comes out, you very
rarely hear about backward-compatibility problems. The only way they
can achieve this is with insane amounts of testing that make the con-
struction of the Panama Canal seem like a weekend do-it-yourself
project. Given the typical three-year cycle between major Windows
releases, almost all of that time is spent in the boring integration and
testing phase, not writing new features. Releasing new versions any
more often than that is just not realistic. And it would drive people
crazy. Third-party software and hardware developers would simply
revolt if they had to test against lots of little incremental releases of an
operating system. For systems with millions of customers and millions of
integration points, prefer rare releases. You can do it like Apache: one
release at the beginning of the Internet Bubble and one release at the end.
Perfect.

If you have a lot of validation and unit tests, and if you write your
software carefully, you may get to the point where any daily build is
almost high enough quality to ship. This is certainly something to strive
for. Even if you’re planning the next release for three years from now, the
competitive landscape may suddenly change, and there may be a good
reason to do a quick interim release to react to a competitor. When your
wife is about to give birth, it’s not really a good idea to take apart your
car’s engine. Instead, build a new one on the side and don’t hook it up
until it’s perfect.

But don’t overestimate what you can accomplish by keeping high-
quality daily builds. Even if you are permanently at zero bugs, if your
software has to run In The Wild, you’re never going to find all the
compatibility bugs and Windows 95 bugs and It-Doesn’t-Work-With-
Large-Fonts-Turned-On bugs until you do a few betas, and there is no
realistic way to do a beta cycle in less than eight weeks.

261Picking a Ship Date

One final thought. If your software is delivered as a service over the
Web, like eBay or PayPal, theoretically there’s nothing to stop you from
frequent small releases, but this might not be the best thing to do.
Remember the cardinal rule of usability: an application is usable if it
behaves the way that the user expected it to behave. If you keep chang-
ing things around every week, it won’t be so predictable, so it won’t be
so usable. (And don’t think you can get around this by having one of
those annoying screens with a paragraph of text saying “Warning! The
UI has changed!” Nobody reads those.) From a usability perspective, a
better approach would probably be less frequent releases that include
a bunch of changes all at once, where you make an effort to change the
visuals of the whole site so that it all looks weird and users intuit that
things have changed a lot and they have to be careful.

More from Joel on Software262

thirty-four

CAMELS AND RUBBER DUCKIES

Wednesday, December 15, 2004

You’ve just released your latest photo-organizing software. Through
some mechanism that will be left as an exercise to the reader, you’ve man-
aged to actually let people know about it. Maybe you have a popular blog
or something. Maybe Walt Mossberg wrote a rave review in the Wall
Street Journal.

One of the biggest questions you’re going to be asking now is, “How
much should I charge for my software?” When you ask the experts, they
don’t seem to know. Pricing is a deep, dark mystery, they tell you. The
biggest mistake software companies make is charging too little, so they
don’t get enough income, and they have to go out of business. An even
bigger mistake, yes, even bigger than the biggest mistake, is charging too
much, so they don’t get enough customers, and they have to go out of
business. Going out of business is not good because everybody loses their
job, and you have to go work at Wal-Mart as a greeter, earning minimum
wage and being forced to wear a polyester uniform all day long.

So if you like cotton uniforms, you better get this right.
The answer is really complicated. I’m going to start with a little eco-

nomic theory, and then I’m going to tear the theory to bits, and when I’m
finished, you’ll know a lot more about pricing, and you still won’t know
how much to charge for your software, but that’s just the nature of pric-
ing. If you can’t be bothered to read this, just charge $0.05 for your
software, unless it does bug tracking, in which case charge $30,000,000
for it.

Now. Where was I.

Some economic theory

Imagine, for the moment, that your software costs $199. Why $199?
Well, because I have to start somewhere. We’ll try other numbers real

soon now. For now, imagine that you charge $199 and that gets you 250
customers.

Let me plot that:

This little chart I made means that if you charge $199, 250 people
will buy your software. (As you see, economists are very odd people, and
they like to put the quantity sold on the x-axis with the price on the y-
axis. If 250 people bought your software, it must mean that you charged
$199!)

What would happen if you raised the price to $249?
Some of the people who might have been willing to pay $199 are

going to think $249 is too much, so they’ll drop out.
Obviously, people who wouldn’t even buy it for $199 are certainly

not going to buy it at the higher price.
If 250 people bought at $199, we must assume that fewer than 250

people would buy it at $249. Let’s guess, oh, 200:

More from Joel on Software264

What if we charged less? Say, $149? Well, everyone who would buy
it for $199 will certainly buy it for $149, and there will probably be even
more people who think $149 is affordable, so let’s say we could sell 325
copies at $149:

And so on and so forth:

265Camels and Rubber Duckies

In fact, rather than graphing a few discrete points here, let’s draw the
complete curve that includes all these points, and while I’m at it, I’ll fix
the x-axis so it’s to scale:

Now you can tell me any price between $50 and $400, and I’ll tell
you how many people will buy your software at that price. What we
have here is a classic demand curve, and the demand curve is always
downward sloping, because the more you charge, the fewer the people
willing to buy your software.

These numbers are not, of course, real. The only thing I’m asking you
to believe, so far, is that the demand curve is downward sloping.

(If it’s still bothering you that I put the quantity on the x-axis and the
price on the y-axis, when clearly the quantity is a function of the price,
not the other way around, please take it up with Augustin Cournot. He
probably has a blog by now.)

So how much should you charge?
“Uh, $50, because then I sell the most units!”
No no no. You’re not trying to maximize units, you’re trying to max-

imize profits.
Let’s calculate profits.
Assume each unit of software that you sell costs you an incremental

$35.
Maybe it cost you $250,000 to develop the software in the first

place, but that’s a sunk cost. We don’t care about that anymore, because
the $250,000 is the same whether you sell 1,000 units or 0. Sunk. Kiss it
goodbye. Set any price you want, the $250,000 is gone and therefore not
relevant any more.

More from Joel on Software266

At this point, all you can worry about is the incremental cost of sell-
ing each additional unit. That might include shipping and handling, that
might include tech support, bank service charges, CD duplication, and
shrink-wrapping, whatever; I’m going to be really hand-wavy here and
use $35 as my incremental cost.

Now we can whip out our handy-dandy copy of VisiCalc:

Here’s how to read that spreadsheet. Each row is a scenario. Row 3:
if we were to charge $399, then we would sell 12 copies, making $364
profit per copy, for a total profit of $4,368.

NOW WE’RE GETTING SOMEWHERE!
This is really cool. I think we’re on the verge of solving the problem

of how much to charge for software! I’M SO EXCITED!
The reason I’m so excited is it looks like if you plot price against

profit, you get a nice curve with a big hump in the middle! And we all
know what humps mean! Humps mean local maxima! Or camels. But
here they mean local maxima!

267Camels and Rubber Duckies

In this chart, the actual data is shown as little diamonds, and I’ve
asked Excel to draw a nice polynomial trendline on top. So now all I
have to do is drop a line straight down from the peak of the hump to
find out the price I should charge to make a maximal amount of profit:

“O frabjous day! Callooh! Callay!” I chortle. We have found the
optimum price, $220, and that’s how much you should charge for your
software. Thanks for your time.

Ahem.
Thank you for your time! Nothing more to see here! Move along

now!
You’re not leaving.
I see.
Some of the more observant members of my audience have detected

that I might have something more to say other than “$220.”
Well, maybe. There’s just a tiny little loose end I left untied, which I

might as well tie up now if you’re all still up for it. OK? OK!
You see, by setting the price at $220, we managed to sell, let’s say,

233 copies of the software, at a total profit of $43,105, which is all good
and fine, but something is distracting me: all those people who were all
ready to pay more, like those twelve fine souls who would have paid a
full $399, and yet, we’re only charging them $220 just like everyone
else!

More from Joel on Software268

The difference between $399 and $220, i.e., $179, is called consumer
surplus. It’s the extra value that those rich consumers got from their pur-
chase that they would have been perfectly happy to do without.

It’s sort of like if you were all set to buy that new merino wool
sweater, and you thought it was going to cost $70, which is well worth
it, and when you got to Banana Republic, it was on sale for only $50!
Now you have an extra $20 in found money that you would have been
perfectly happy to give to the Banana Republicans!

Yipes!
That bothers good capitalists. Gosh darn it, if you’re willing to do

without it, well, give it to me! I can put it to good use, buying an SUV or
a condo or a Mooney or a yacht or one of those other things capitalists
buy!

In economist jargon, capitalists want to capture the consumer
surplus.

Let’s do this. Instead of charging $220, let’s ask each of our cus-
tomers if they are rich or if they are poor. If they say they’re rich, we’ll
charge them $349. If they say they’re poor, we’ll charge them $220.

Now how much do we make? Back to Excel:

Notice the quantities: we’re still selling the same 233 copies, but the
richest forty-two customers, who were all willing to spend $349 or
more, are being asked to spend $349. And our profits just went up!
From $43K to about $48K! NICE!

Capture me some more of that consumer surplus stuff!
But wait, that’s not all. After selling all these 233 copies, I felt kind of

bad about the people who were only willing to spend $99. After all, if I
could sell a few more copies to those guys at $99, I’d still be making
some money, since my marginal cost is only $35.

What if we called up all the customers who said, “No thanks” at
$220 and offered them the software at $99?

269Camels and Rubber Duckies

At $99, we have 450 potential customers, but don’t forget that 233
of them already paid full price, leaving us with 217 extra customers who
just wouldn’t go along with the program and pay the full price:

Babymosesinabasket, I think we just made $62K in profit! All in all,
an extra twenty thousand buckeroos, cash spendable money, which goes
a loooong way toward a down payment on that fishing boat you’ve had
your eye on. All from the power of segmentation: separating your cus-
tomers into different groups according to how much they are willing to
pay, and extracting the maximal consumer surplus from each customer.
Holy Segments, Batman, how much money could we make if we ask
every customer to tell us their maximum willingness to pay and then
charge them that?

Surreal! Almost $80K! That’s almost double the profits we made
having just one price! Capturing the consumer surplus is clearly quite
profitable. Even the 350 annoying people who only want to give me $49
each are making some contribution to the profits. All these customers
are happy because we’re asking them to pay the amount they were will-
ing to pay already, so it’s not like we’re ripping anyone off. Kind of.

Here are some examples of segmentation you’re probably familiar
with:

More from Joel on Software270

• Senior citizen discounts, since older people tend to be living on a
“fixed income” and are willing to pay less than working-age
adults.

• Cheap afternoon movie matinees (useful only to people without
jobs).

• Bizarre airfares, where everyone seems to be paying a different
price. The secret about airfares is that people who are flying on
business get their company to reimburse them, so they couldn’t
care less how much the ticket costs, while leisure travelers are
spending their own money, and they won’t go if it costs too
much.

Of course, the airlines can’t just ask you if you’re travelling on
business, because pretty quickly everyone would catch on and lie
to get the cheaper fares. But business travelers almost always
travel on weekdays, and they hate spending a weekend away
from home. So the airlines instituted policies that if you’re
staying over a Saturday night, you’re probably not travelling on
business, and they give you much cheaper fares if you stay over
a Saturday night.

There are more subtle ways to segment. You know those grocery
coupons you see in the paper? The ones that get you 25 cents off a box
of Tide detergent if you clip them out and remember to bring them to the
store? Well, the trouble with grocery coupons is that there’s so much
manual labor involved in clipping them, and sorting them out, and
remembering which ones to use, and choosing brands based on which
coupons you have, and so on, and the net effect is that if you clip
coupons, you’re probably working for about $7 an hour.

Now, if you’re retired and living off of social security, $7 an hour
sounds pretty good, so you do it, but if you’re a stock analyst at Merrill
Lynch getting paid $12,000,000 a year to say nice things about piece-of-
junk Internet companies, working for $7 an hour is a joke, and you’re
not going to clip coupons. Heck, in one hour you could issue “buy” rec-
ommendations on ten piece-of-junk Internet companies! So coupons are
a way for consumer products companies to charge two different prices
and effectively segment their market into two. Mail-in rebates are pretty
much the same as coupons, with some other twists like the fact that they
reveal your address, so you can be direct-marketed to in the future.

271Camels and Rubber Duckies

There are other ways to segment. You can market your products
under different brand names (Old Navy vs. Gap vs. Banana Republic)
and hope that the rich people conveniently remember to buy their
clothes at the Banana while the po’ people go to Old Navy. In case there
was any risk of people forgetting and going to the wrong store, the
Banana Republic stores are conveniently situated in neighborhoods full
of $2,000,000 condos, while the Old Navy store is near the train station
where you haul your poor tired ass back to New Jersey after a day of
hard manual labor.

In the world of software, you can just make a version of your prod-
uct called “Professional” and another version called “Home” with some
inconsequential differences, and hope that the corporate purchasers
(again, the people who are not spending their own money) will be too
embarrassed at the thought of using Windows XP Home Edition at
work and they’ll buy the Professional edition. Home Edition at work?
Somehow that feels like coming to work in your pajamas! Ick!

Quick trick: if you’re going to try to pull the segmenting idea, you’re
probably going to be better off offering a discount to certain users rather
than trying to charge some users a premium. Nobody likes feeling ripped
off: people would rather buy a $199 product for $99 than a $59 prod-
uct for $79. Theoretically, people should be rational. $79 is less than
$99. Realistically, they hate feeling like someone is ripping them off.
They’d much rather feel like they’re getting a bargain than feel like
they’re getting gouged.

ANYWAY.
That was the easy part.
The hard part is that everything I just told you is sort of wrong.
Working my way backward, this business about segmenting? It pisses

people off. People want to feel they’re paying a fair price. They don’t
want to think they’re paying extra just because they’re not clever enough
to find the magic coupon code. The airline industry got really, really
good at segmenting and ended up charging literally a different price to
every single person on the plane. As a result, most people felt they
weren’t getting the best deal, and they didn’t like the airlines. When a
new alternative arose in the form of low-cost carriers (Southwest,
JetBlue, etc.), customers had no loyalty whatsoever to the legacy airlines
that had been trying to pick their pockets for all those years.

More from Joel on Software272

And God help you if an A-list blogger finds out that your premium
printer is identical to the cheap printer, with the speed inhibitor turned off.

So, while segmenting can be a useful tool to “capture consumer sur-
plus,” it can have significant negative implications for the long-term
image of your product. Many a small software vendor has seen their rev-
enues go up and the amount of customer bickering about price go way
down when they eliminated coupons, discounts, deals, multiple versions,
and tiers. Somehow, it seems like customers would rather pay $100
when everyone else is paying $100 than pay $79 if they know there’s
someone out there who got it for $78. Heck, GM made a whole car
company, Saturn, based on the principle that the offered price is fair and
you don’t have to bargain.

Even assuming you’re willing to deal with a long-term erosion of cus-
tomer goodwill caused by blatant price discrimination, segmentation is
just not that easy to pull off. First of all, as soon as your customers find
out you’re doing it, they’ll lie about who they are:

• Frequent business travelers rearranged their tickets to include
dual Saturday-night stays. For example, a consultant living in
Pittsburgh and working in Seattle Monday through Thursday
would buy a two-week trip from Pittsburgh to Seattle and then a
weekend trip home in the middle. Both trips included Saturday
night stays, it was the same flights they would have taken
anyway, just much cheaper.

• Got an academic discount? Everyone who is even vaguely
related to someone vaguely associated with academia will start
using it.

• If your customers talk among themselves, they’re going to find
out about the price you’re offering the other people, and you’ll
find yourself forced to match the lowest prices for everyone.
Especially the big corporate purchasers who theoretically should
have the “maximum willingness to pay” since they represent rich
customers. Corporations have full-time purchasing departments
staffed with people whose entire job is whittling down prices.
These people go to conferences where they learn how to get the
best price. They practice saying “No. Cheaper.” all day long in
front of mirrors. Your sales guy doesn’t stand a snowflake’s
chance in hell.

273Camels and Rubber Duckies

There are two forms of segmentation that slightly-too-clever soft-
ware companies engage in that are not such great ideas:

Bad idea #1: Site licenses
The opposite of segmentation, really. I have certain competitors that do
this: they charge small customers per-user but then there’s an “unlim-
ited” license at a fixed price. This is nutty, because you’re giving the
biggest price break precisely to the largest customers, the ones who
would be willing to pay you the most money. Do you really want IBM
to buy your software for their 400,000 employees and pay you $2,000?
Hmm?

As soon as you have an “unlimited” price, you are instantly giving a
gigantic gift of consumer surplus to the least price-sensitive customers
who should have been the cash cows of your business.

Bad idea #2: “How much money do you have?”
pricing
This is the kind used by software startups founded by ex-Oracle sales-
men where the price isn’t on the web site anywhere. No matter how
much you search to find the price, all you get is a form to provide your
name, address, phone number, and fax number, for some reason, not
that they’re ever going to fax you anything.

It’s pretty obvious here that the plan is to have a salesman call you up
and figure out how much you’re worth, and then charge you that much.
Perfect segmentation!

This doesn’t work so good either. First of all, the low-end buyers are
just going to move on. They will assume that if the price isn’t listed, they
can’t afford it. Second, the people who don’t like salesmen harassing
them will just move on.

Worse, as soon as you send a message that your price is negotiable,
you’re going to end up reverse segmenting. Here’s why: the big compa-
nies you sell to, the ones who should be willing to give you the most
money, are incredibly sophisticated about purchasing. They’ll notice
that your salesperson is working on commission, and they’ll know that
the salesperson’s got quarterly quotas, and they’ll know that both the
salesperson and the company are going to be incredibly desperate to

More from Joel on Software274

make a sale at the end of the quarter (the salesperson to get their com-
mission, and the company to avoid getting their knees shot off by their
VCs or Wall Street). So the big customers will always wait until the last
day in the quarter and end up getting a ridiculously good price that
somehow involves weird accounting shenanigans so the company can
book a lot of revenue that they’re never really going to get.

So, don’t do site licenses, and don’t try to make up prices as you go
along.

BUT WAIT!
Do you really want to maximize profits? I glossed over something.

You don’t necessarily care about maximizing profits this month. You
really care about maximizing all your profits, over time, in the future as
well. Technically, you want to maximize the NPV of the stream of all
future profits (without ever having your cash reserves dip below zero).

Diversion: What’s an NPV?

What’s worth more, $100 today or $100 in one year?

Obviously $100 today, because you can invest it, say, in bonds, and at the
end of the year you’ll have, like, $102.25.

So when you’re comparing the value of $100 in one year to $100 today,
you need to discount the $100 based on some interest rate. If the interest
rate is 2.25%, for example, that $100 in the future should be discounted to
$97.80, which is called the net present value (NPV) of $100 one year in the
future.

Go even further into the future, and you need to discount even more. $100
in five years, at today’s interest rates, is worth only $84 today. $84 is the
net present value of $100 in five years.

Which would you rather earn?

Option one: $5,000, $6,000, $7,000 over the next three years

Option two: $4,000, $6,000, $10,000 over the next three years

275Camels and Rubber Duckies

Option two sounds like a better deal, even after discounting the
future earnings. If you take the second option, it’s like investing $1,000
in year one and getting $3,000 back two years later, which is a very
respectable investment!

The reason I bring this up is because software is priced three ways:
free, cheap, and dear:

1. Free. Open source, etc. Not relevant to the current discussion.
Nothing to see here. Move along.

2. Cheap. $10–$1,000, sold to a very large number of people at a
low price without a sales force. Most shrink-wrapped consumer
and small business software falls into this category.

3. Dear. $75,000–$1,000,000, sold to a handful of rich big com-
panies using a team of slick salespeople that do six months of
intense PowerPoint just to get one goddamn sale. The Oracle
model.

All three methods work fine.
Notice the gap? There’s no software priced between $1,000 and

$75,000. I’ll tell you why. The minute you charge more than $1,000,
you need to get serious corporate signoffs. You need a line item in their
budget. You need purchasing managers and CEO approval and compet-
itive bids and paperwork. So you need to send a salesperson out to the
customer to do PowerPoint, with his airfare, golf course memberships,
and $19.95 porn movies at the Ritz Carlton. And with all this, the cost
of making one successful sale is going to average about $50,000. If
you’re sending salespeople out to customers and charging less than
$75,000, you’re losing money.

The joke of it is, big companies protect themselves so well against the
risk of buying something expensive that they actually drive up the cost
of the expensive stuff, from $1,000 to $75,000, which mostly goes
towards the cost of jumping all the hurdles that they set up to ensure
that no purchase can possibly go wrong.

Now, a quick glance around the Fog Creek web site reveals that I’m
firmly in camp #2. Why? Selling software at a low price means that I can
get thousands of customers right away, some small, some large. And all
those customers are going to be out there using my software and recom-
mending it to their friends. When those customers grow, they’ll buy

More from Joel on Software276

more licenses. When people working at those customers’ companies
move to new companies, they’ll recommend my software to those new
companies. Effectively, I am willing to accept a lower price now in
exchange for creating grassroots support. I see the low price of FogBugz
as being an investment in advertising that I expect will pay off many
times over in the long run. So far, it’s working very well: FogBugz sales
have grown more than 100% for three years without marketing, solely
based on word of mouth and existing customers buying additional
licenses.

By comparison, look at BEA. Big company. Big price tag. The price
alone means almost nobody has experience with their product. Nobody
comes out of college and starts a dot-com using BEA technology,
because they couldn’t afford BEA technology in college. A lot of other
good technologies have doomed themselves with high prices: Apple
WebObjects was irrelevant as an application server because it started at
$50,000. Who cared how good it was? Nobody ever used it! Anything
made by Rational. The only way these products get into the hands of
users is with an expensive full-frontal sales pitch. At these prices, the
sales pitch is made to the executive, not the techie. The techies may well
actively resist bad technology with good sales that the executives force
down their throats. We have lots of FogBugz customers who have high-
priced Remedy, Rational, or Mercury products sitting on the shelves
after investments of well over $100,000, because that software isn’t
good enough to actually use. Then they buy a couple of thousand dollars
worth of FogBugz, and that’s the product they really use. The Rational
salesperson is laughing at me, because I have $2,000 in the bank and he
has $100,000. But I have far more customers than he does, and they’re
all using my product, and evangelizing it, and spreading it, while
Rational customers either (a) don’t use it or (b) use it and can’t stand it.
But he’s still laughing at me from his forty-foot yacht while I play with
rubber duckies in the bathtub. Like I said, all three methods work fine.
But cheaper prices is like buying advertising and as such is an investment
in the future.

OK.
Where was I.
Oh yeah, before I started frothing at the mouth, I was picking apart

the logic of deriving a demand curve. When I walked you through that

277Camels and Rubber Duckies

whole discussion of the demand curve, you were probably asking your-
self, “How do I know how much people are willing to pay?”

You’re right.
That’s a problem.
You can’t really find out what the demand curve is.
You can have focus groups and ask people, but they’ll lie to you.

Some people will lie to show off their generosity and wealth. “Heck,
yeah, I’d buy a pair of $400 jeans in a New York Minute!” Other people
will lie because they really want your thing and they think you’ll decide
to charge less money if they tell you a low number. “Blogging software?
Hmm. I’d pay, at most, 38 cents.”

Then you ask another focus group the next day, and this time, the
first man to speak has a crush on a pretty woman in the group, and he
wants to impress her, so he starts talking about how much his car cost
and everyone is thinking Big Numbers. And the day after that, you serve
Starbucks during the break, and while you’re in the john everyone unbe-
knownst to you gets into a side conversation about paying $4 for a cup
of coffee, and they’re in a real frugal mood when you ask them about
their willingness to pay.

Then you finally get the focus group to agree that your software is
worth $25 a month, and then you ask them how much they would pay
for a permanent license and the same people just won’t go a penny over
$100. People seriously can’t count.

Or you ask some aircraft designers how much they would pay and
they sort of think $99 would be a maximum price, even though aircraft
designers regularly use software that costs on the order of $3,000 a
month without being aware of it, because someone else does the pur-
chasing.

So from day to day, you get radically, and I mean radically, different
answers when you ask people how much they’re willing to pay for some-
thing. The truth is, the only way to determine how much someone will
pay for something is to put it up for sale, and see how many people actu-
ally buy it.

Then you can try twiddling the prices to measure price sensitivity and
try to derive the demand curve, but until you have something like
1,000,000 customers and you are absolutely sure that customer A will
not find out you are offering a lower price to customer B, you will not
get statistically meaningful responses.

More from Joel on Software278

There’s a real strong tendency to assume that experiments done on
large populations of people should work out just like experiments done
with chemicals in a high school lab, but everyone who has ever tried to
do experiments on people knows that you get wildly variable results that
just aren’t repeatable, and the only way you can be confident in your
results is to carefully avoid ever doing the same experiment twice.

And, in fact, you can’t even be sure that the demand curve is down-
ward sloping.

The only reason we assumed that the demand curve is downward
sloping is that we assumed things like “If Freddy is willing to buy a pair
of sneakers for $130, he is certainly willing to buy those same sneakers
for $20.” Right? Ha! Not if Freddy is an American teenager! American
teenagers would not be caught dead in $20 sneakers. It’s, like, um, the
death penalty? if you are wearing sneakers? that only cost $20 a pair? in
school?

I’m not joking around here: prices send signals. Movies in my town
cost, I think, $11. Criminy. There used to be a movie theatre that had
movies for $3. Did anyone go there? I DON’T THINK SO. It’s obvi-
ously just a dumping ground for lousy movies. Somebody is now at the
bottom of the East River with $20 cement sneakers because they dared
to tell the consumer which movies the industry thought were lousy.

You see, people tend to believe that you get what you pay for. The
last time I needed a lot of hard drive space, I invested in some nice cheap
hard drives allegedly designed by Mr. Porsche himself that went for
about $1 a gigabyte. Within six months, all four had failed. Last week, I
replaced them with Seagate Cheetah SCSI hard drives that cost about $4
a gigabyte because I’ve been running those since I started Fog Creek four
years ago without a glitch. Chalk it up to “you get what you pay for.”

There are just too many examples where you actually do get what
you pay for, and the uninformed consumer is generally going to infer
that the more expensive product is better. Buying a coffee maker? Want
a really good coffee maker? You have two choices. Find the right issue
of Consumer Reports in the library, or go to Williams-Sonoma and get
the most expensive coffee maker they have there.

When you’re setting a price, you’re sending a signal. If your com-
petitor’s software ranges in price from about $100 to about $500, and
you decide, heck, my product is about in the middle of the road, so I’ll
sell it for $300, well, what message do you think you’re sending to your

279Camels and Rubber Duckies

customers? You’re telling them that you think your software is “eh.” I
have a better idea: charge $1,350. Now your customers will think, “Oh,
man, that stuff has to be the cat’s whiskers since they’re charging mad
coin for it!”

And then they won’t buy it because the limit on the corporate AMEX
is $500.

Misery.
The more you learn about pricing, the less you seem to know.
I’ve been nattering on about this topic for well over 5,000 words and

I don’t really feel like we’re getting anywhere, you and I.
Some days it seems like it would be easier to be a taxi driver, with

prices set by law. Or to be selling sugar. Plain ol’ sugar. Yep. That would
be sweet.

Take my advice, offered several pages back: charge $0.05 for your
software. Unless it does bug tracking, in which case the correct price is
$30,000,000. Thank you for your time, and I apologize for leaving you
even less able to price software than you were when you started reading
this.

More from Joel on Software280

part nine

Revising Software

thirty-five

FIVE WHYS

Tuesday, January 22, 2008

At 3:30 in the morning of January 10, 2008, a shrill chirping woke up our
system administrator, Michael Gorsuch, asleep at home in Brooklyn. It
was a text message from Nagios, our network monitoring software,
warning him that something was wrong.

He swung out of bed, accidentally knocking over (and waking up) the
dog, sleeping soundly in her dog bed, who, angrily, staggered out to the
hallway, peed on the floor, and then returned to bed. Meanwhile Michael
logged on to his computer in the other room and discovered that one of
the three data centers he runs, in downtown Manhattan, was unreachable
from the Internet.

This particular data center is in a secure building in downtown
Manhattan, in a large facility operated by PEER 1. It has backup genera-
tors, several days of diesel fuel, and racks and racks of batteries to keep
the whole thing running for a few minutes while the generators can be
started. It has massive amounts of air conditioning, multiple high-speed
connections to the Internet, and the kind of “right stuff” down-to-earth
engineers who always do things the boring, plodding, methodical way
instead of the flashy, cool, trendy way, so everything is pretty reliable.

Internet providers like PEER 1 like to guarantee the uptime of their
services in terms of a Service Level Agreement, otherwise known as an
SLA. A typical SLA might state something like “99.99% uptime.” When
you do the math, let’s see, there are 525,949 minutes in a year (or 525,600
if you are in the cast of Rent), so that allows them 52.59 minutes of
downtime per year. If they have any more downtime than that, the SLA
usually provides for some kind of penalty, but honestly, it’s often rather
trivial . . . like, you get your money back for the minutes they were down.

I remember once getting something like $10 off the bill from a T1
provider because of a two-day outage that cost us thousands of dollars.
SLAs can be a little bit meaningless that way, and given how low the
penalties are, a lot of network providers just started advertising 100%
uptime.

Within ten minutes, everything seemed to be back to normal, and
Michael went back to sleep.

Until about 5:00 a.m. This time Michael called the PEER 1 Network
Operations Center (NOC) in Vancouver. They ran some tests, started
investigating, couldn’t find anything wrong, and by 5:30 a.m., things
seemed to be back to normal, but by this point, Michael was as nervous
as a porcupine in a balloon factory.

At 6:15 a.m., the New York site lost all connectivity. PEER 1 couldn’t
find anything wrong on their end. Michael got dressed and took the sub-
way into Manhattan. The server seemed to be up. The PEER 1 network
connection was fine. The problem was something with the network
switch. Michael temporarily took the switch out of the loop, connecting
our router directly to PEER 1’s router, and lo and behold, we were back
on the Internet.

By the time most of our American customers got to work in the
morning, everything was fine. Our European customers had already
started e-mailing us to complain. Michael spent some time doing a post-
mortem and discovered that the problem was a simple configuration
problem on the switch. There are several possible speeds that a switch
can use to communicate (10, 100, or 1,000 megabits/second). You can
either set the speed manually or let the switch automatically negotiate
the highest speed that both sides can work with. The switch that failed
had been set to autonegotiate. This usually works, but not always, and
on the morning of January 10, it didn’t.

Michael knew this could be a problem, but when he installed the
switch, he had forgotten to set the speed, so the switch was still in the
factory-default autonegotiate mode, which seemed to work fine. Until it
didn’t.

Michael wasn’t happy. He sent me an e-mail:

More from Joel on Software284

I know that we don’t officially have an SLA for On Demand, but
I would like us to define one for internal purposes (at least). It’s
one way that I can measure if myself and the (eventual) sysadmin
team are meeting the general goals for the business. I was in the
slow process of writing up a plan for this, but want to expedite in
light of this morning’s mayhem.

An SLA is generally defined in terms of “uptime,” so we need to
define what “uptime” is in the context of On Demand. Once that
is made clear, it’ll get translated into policy, which will then be
translated into a set of monitoring/reporting scripts, and will
be reviewed on a regular interval to see if we are “doing what
we say.”

Good idea!
But there are some problems with SLAs. The biggest one is the lack

of statistical meaningfulness when outages are so rare. We’ve had, if I
remember correctly, two unplanned outages, including this one, since
going live with FogBugz On Demand six months ago. Only one was our
fault. Most well-run online services will have two, maybe three outages
a year. With so few data points, the length of the outage starts to become
really significant, and that’s one of those things that’s wildly variable.
Suddenly, you’re talking about how long it takes a human to get to the
equipment and swap out a broken part. To get really high uptime, you
can’t wait for a human to switch out failed parts. You can’t even wait for
a human to figure out what went wrong: you have to have previously
thought of every possible thing that can possibly go wrong, which is
vanishingly improbable. It’s the unexpected unexpecteds, not the
expected unexpecteds, that kill you.

Really high availability becomes extremely costly. The proverbial
“six nines” availability (99.9999% uptime) means no more than thirty
seconds downtime per year. That’s really kind of ridiculous. Even the
people who claim that they have built some big multimillion dollar
superduper ultra-redundant six nines system are gonna wake up one
day, I don’t know when, but they will, and something completely
unusual will have gone wrong in a completely unexpected way, three
EMP bombs, one at each data center, and they’ll smack their heads and
have fourteen days of outage.

285Five Whys

Think of it this way: if your six nines system goes down mysteriously
just once, and it takes you an hour to figure out the cause and fix it, well,
you’ve just blown your downtime budget for the next century. Even the
most notoriously reliable systems, like AT&T’s long distance service,
have had long outages (six hours in 1991) that put them at a rather
embarrassing three nines . . . and AT&T’s long distance service is con-
sidered “carrier grade,” the gold standard for uptime.

Keeping Internet services online suffers from the problem of black
swans. Nassim Taleb, who invented the term, defines it thus (www.edge.
org/3rd_culture/taleb04/taleb_indexx.html): “A black swan is an
outlier, an event that lies beyond the realm of normal expectations.”
Almost all Internet outages are unexpected unexpecteds: extremely low-
probability outlying surprises. They’re the kind of things that happen so
rarely it doesn’t even make sense to use normal statistical methods like
“mean time between failure.” What’s the “mean time between cata-
strophic floods in New Orleans?”

Measuring the number of minutes of downtime per year does not
predict the number of minutes of downtime you’ll have the next year. It
reminds me of commercial aviation today: the NTSB has done such a
great job of eliminating all the common causes of crashes that nowa-
days, each commercial crash they investigate seems to be a crazy,
one-off, black-swan outlier.

Somewhere between the “extremely unreliable” level of service,
where it feels like stupid outages occur again and again and again, and
the “extremely reliable” level of service, where you spend millions and
millions of dollars getting an extra minute of uptime a year, there’s a
sweet spot, where all the expected unexpecteds have been taken care of.
A single hard drive failure, which is expected, doesn’t take you down. A
single DNS server failure, which is expected, doesn’t take you down. But
the unexpected unexpecteds might. That’s really the best we can hope
for.

To reach this sweet spot, we borrowed an idea from Sakichi Toyoda,
the founder of Toyota. He calls it Five Whys. When something goes
wrong, you ask why, again and again, until you ferret out the root cause.
Then you fix the root cause, not the symptoms.

Since this fit well with our idea of fixing everything two ways, we
decided to start using five whys ourselves. Here’s what Michael came up
with:

More from Joel on Software286

Our link to PEER 1 NY went down.

• Why?—Our switch appears to have put the port in a failed state.

• Why?—After some discussion with the PEER 1 NOC, we
speculate that it was quite possibly caused by an Ethernet
speed/duplex mismatch.

• Why?—The switch interface was set to autonegotiate instead of
being manually configured.

• Why?—We were fully aware of problems like this and have been
for many years. But we do not have a written standard and
verification process for production switch configurations.

• Why?—Documentation is often thought of as an aid for
when the sysadmin isn’t around or for other members of the
operations team, whereas it should really be thought of as a
checklist.

“Had we produced a written standard prior to deploying the switch
and subsequently reviewed our work to match the standard, this outage
would not have occurred,” Michael wrote. “Or, it would occur once,
and the standard would get updated as appropriate.”

After some internal discussion, we all agreed that rather than impos-
ing a statistically meaningless measurement and hoping that the mere
measurement of something meaningless would cause it to get better,
what we really needed was a process of continuous improvement.
Instead of setting up an SLA for our customers, we set up a blog where
we would document every outage in real time, provide complete post-
mortems, ask the five whys, get to the root cause, and tell our customers
what we’re doing to prevent that problem in the future. In this case, the
change is that our internal documentation will include detailed check-
lists for all operational procedures in the live environment.

Our customers can look at the blog to see what caused the problems
and what we’re doing to make things better, and, hopefully, they can see
evidence of steadily improving quality.

In the meantime, our customer service folks have the authority to
credit customers’ accounts if they feel like they were affected by an out-
age. We let the customer decide how much they want to be credited, up
to a whole month, because not every customer is even going to notice the
outage, let alone suffer from it. I hope this system will improve our

287Five Whys

reliability to the point where the only outages we suffer are really the
extremely unexpected black swans.

P.S. Yes, we want to hire another system administrator so Michael
doesn’t have to be the only one to wake up in the middle of the night.

More from Joel on Software288

thirty-six

SET YOUR PRIORITIES

Wednesday, October 12, 2005

It was getting time to stop futzing around with FogBugz 4.0 and start
working on 5.0. We just shipped a big service pack, fixing a zillion tiny
little bugs that nobody would ever come across (and introducing a couple
of new tiny little bugs that nobody will ever come across), and it was time
to start adding some gen-yoo-ine new features.

By the time we were ready to start development, we had enough ideas
for improvement to occupy 1,700 programmers for a few decades.
Unfortunately, all we have is three programmers, and we wanted to be
shipping next fall, so there had to be some prioritization.

Before I tell you how we prioritized our list of features, let me tell you
two ways not to do it.

Number one: if you ever find yourself implementing a feature simply
because it has been promised to one customer, RED DANGER LIGHTS
should be going off in your head. If you’re doing things for one customer,
either you’ve got a loose cannon salesperson or you’re slipping danger-
ously down the slope towards consultingware. And there’s nothing wrong
with consultingware; it’s a very comfortable slope to slip down, but it’s
just not as profitable as shrink-wrap software.

Shrink-wrap is the take-it-or-leave it model of software development.
You develop software, wrap it in plastic, and customers either buy it or
don’t. They don’t offer to buy it if you implement just one more feature.
They don’t call you up and negotiate features. You can’t call up Microsoft
and tell them, “Hey, I love that BAHTTEXT function you have in Excel
for spelling out numbers in Thai, but I could really use an equivalent func-
tion for English. I’ll buy Excel if you implement that function.” Because if
you did call up Microsoft, here is what they would say to you:

“Thank you for calling Microsoft. If you are calling with a desig-
nated four-digit advertisement code, press 1. For technical support on all
Microsoft products, press 2. For Microsoft presales product licensing or
program information, press 3. If you know the person at Microsoft you
wish to speak to, press 4. To repeat, press star.”

Notice? None of the choices was, “To negotiate what features need
to be added to our products before you’ll buy them, press 5.”

Custom development is that murky world where a customer tells you
what to build, and you say, “Are you sure?” and they say yes, and you
make an absolutely beautiful spec and say, “Is this what you want?” and
they say yes, and you make them sign the spec in indelible ink, nay,
blood, and they do, and then you build that thing they signed off on,
promptly, precisely, and exactly, and they see it and they are horrified
and shocked, and you spend the rest of the week reading up on whether
your E&O insurance is going to cover the legal fees for the lawsuit
you’ve gotten yourself into or merely the settlement cost. Or, if you’re
really lucky, the customer will smile wanly and put your code in a
drawer and never use it again and never call you back.

Somewhere in the middle is consultingware, where you pretend to be
doing shrink-wrap while really doing custom development. Here’s how
consultingware works:

1. You’re working as a wage slave writing code for a shoe com-
pany, and

2. The company needs shoe-shining software, so

3. You develop shoe-shining software in VB 3.0 using bits and
pieces of JavaScript, Franz Lisp, and a FileMaker database
running on an old Mac connected over the network using
AppleScript, then

4. Everyone thinks it’s the cat’s whiskers, so, always having
dreamed of starting your own software company and maybe
being Bill Gates or perhaps even just Larry Ellison

5. You buy the rights to ShoeShiner 1.0 from your old company
and get VC to start your own company, ShoeShiner LLC,
marketing shoe-shining software, but

More from Joel on Software290

6. None of your beta testers can get it to work because of the
obscure dependencies on AppleScript and the hard-coded IP
addresses in the source code, so it takes a month to install at
each client site, and

7. You have trouble getting clients, because your product is so
expensive because of all the installation costs, including the vin-
tage Macintosh IIci running System 7, which they have to buy
on eBay from computer museums, so your VCs start to get
really nervous,

8. Putting pressure on the sales guy,

9. Who finds out that one of your potential customers doesn’t
need a shoe-shining thing but he could really use trousers-
pressing software, and

10. The sales guy, being a sales guy, sells him $100K worth of
trousers-pressing software,

11. And now you spend six months writing a one-off “trousers-
pressing module” for this client, which

12. No other client will ever need, thus, effectively,

13. For all intents and purposes, you’ve just spent a year raising
VC so that you could work as a wage slave writing code for a
trouser company; GOTO 1.

Sparky, I’m gonna have to strongly recommend clinging as strongly
as possible to the shrink-wrap side of the equation. That’s because
shrink-wrap has no marginal costs for each additional customer, so you
can essentially sell the same thing over and over again and make a lot
more profit. Not only that, but you can lower the price, because you can
spread your development costs out over a lot more customers, and low-
ering the price gets you more customers because more people will
suddenly find your now-cheaper software worthwhile, and life is good
and all is sweet.

Thus, if you ever find yourself implementing a feature simply because
it has been promised to a customer, you’re drifting over to the land of
consultingware and custom development, which is a fine world to oper-
ate in if that’s what you like, but it just doesn’t have the profit potential
of off-the-shelf commercial software.

291Set Your Priorities

Now, I’m not saying you shouldn’t listen to your customers. I for one
think that it’s about time Microsoft actually implemented a version of
the BAHTTEXT function for those of us who haven’t yet joined the
global economy and learned Thai and who still write checks using other
currencies. And in fact, if you want to tell yourself that the best way to
allocate your development resources is effectively to let your biggest cus-
tomers “bid” on features, well, you can do that too, although you’ll
soon find that the kind of features that big, rich customers want are not
the same as the kind of features that the mass market wants, and that
feature you put in to handle Baht currency is not really helping you sell
Excel to health spas in Scottsdale, Arizona, and in fact what you’re
really doing is letting your sales force pimp out your developers with the
sole goal of maximizing their personal commissions.

The path to being Bill Gates, this is not.
Now, let me tell you the second way not to decide what features to

implement. Don’t do things just because they’re inevitable. Inevitability
is not a high enough bar. Let me explain.

Sometime during the first year of Fog Creek’s operations, I was filing
away some papers, and realized that I was all out of blue folders.

Now, I have a system. Blue folders are for clients. Manila folders are
for employees. Red folders are receipts. Everything else is yellow. I
needed a blue folder and had run out.

So I said to myself, “What the heck, I’m going to need a blue folder
eventually anyway, I might as well go to Staples and buy some now.”

Which was, of course, a waste of time.
In fact, when I thought about this later, I realized that for a long time,

I had been doing dumb shit (that’s a technical term) simply because I fig-
ured that eventually it would have to get done, so I might as well do it
now.

I used this excuse to weed the garden, patch holes in the walls, sort
out MSDN disks (by color, language, and number), etc., etc., when I
should have been writing code or selling code, the only two things a
startup really needs to do.

In other words, I found myself pretending that all nonoptional tasks
were equally important, and therefore, since they were inevitable any-
way, they could be done in any order! Ta-da!

But to be honest, I was just procrastinating.

More from Joel on Software292

What should I have done? Well, for starters, I could get over my
fetish for having file folders all be the right color. It just doesn’t make
any difference. You don’t have to color-code your files.

Oh, and those MSDN CD-ROMs? Toss them in a big box. PER-fect.
More importantly, I should have realized that “important” is not a

binary thing, it’s an analog thing. There are all kinds of different shades
of important, and if you try to do everything, you’ll never get anything
done.

So if you want to get things done, you positively have to understand
at any given point in time what is the most important thing to get done
right now and if you’re not doing it, you’re not making progress at the
fastest possible rate.

Slowly, I’m weaning myself off of my tendency to procrastinate. I’m
doing this by letting less important things go undone. There’s some nice
lady from the insurance company who has been pestering me for two
months to get some data she needs to renew our policy, and I didn’t actu-
ally get her the data until she asked about the fiftieth time, along with a
stern warning that our insurance is going to expire in three days. And
this is a good thing, I think. I’ve grown to think that keeping your desk
clean is actually probably a sign that you’re not being effective.

How’s that for a mortifying thought!
So don’t do features based on what the sales force has inadvertently

promised a single customer, and don’t do unimportant-slash-fun features
first because “you’re going to have to do them eventually anyway.”

Anyway, back on the topic of choosing features for FogBugz 5.0.
Here’s how we got our initial prioritization.

First, I took a stack of 5✕8 cards, and wrote a feature on each one.
Then I called the team together. In my experience, this works with up to
about twenty people, and it’s a good idea to get as many different per-
spectives in the room: programmers, designers, people who talk to
customers, sales, management, documentation writers and testers, even
(!) customers.

I asked everyone to bring their own list of feature ideas to the meet-
ing, too. The first part of the meeting was going over each feature very,
very quickly and making sure we had a very, very rough common under-
standing of what the feature was, and that each feature had a card.

293Set Your Priorities

At this stage, the idea was not to debate any feature on its merits, or
to design the feature, or even to discuss the feature: just to have a vague,
rough idea of what it was. Some of the features for FogBugz 5.0 were
things like

• Personalizable home page

• Painless software schedules

• Track billable time

• Fork a bug

• (Forty-six others . . .)

Very vague stuff. Remember, we didn’t need to know at this point
how each feature would be implemented, or what it involved, because
our only goal was getting a rough prioritization that could be used as the
basis to start development. This got us a list of about fifty big features.

In part two, we went through all of the features, and everybody
voted on each feature: just a quick “thumbs up” or “thumbs down.” No
discussion, no nothing: just a real quick thumbs up or thumbs down on
each feature. This revealed that about fourteen of the feature ideas didn’t
have much support. I threw out all the features that only got one or two
votes, leaving us with thirty-six potential features.

Next, we assigned costs for each of these features, on a scale of 1 to
10, where 1 was a quicky feature and 10 was a big monster feature. Here
it’s important to remember that the goal was not to schedule the fea-
tures, just to separate the tiny features from the medium features from
the huge features. I just went through each of the features and asked the
developers to call out “small,” “medium,” or “large.” Even without
knowing how long a feature is going to take, it’s easy to see that “fork-
ing a bug” is a “small” feature while the big, vague “personalizable
home page” feature was large. Based on the consensus estimate of costs
and my own judgment, we put down prices on all the features:

Cost:
Personalizable home page $10
Painless software schedules $4
Track billable time $5
Fork a bug $1

More from Joel on Software294

Once again, it’s really messy, it’s not exact, and it doesn’t matter.
You’re not making a schedule today: you’re just prioritizing. The only
thing that you have to get approximately right is the vague idea that you
could do two medium features or one large feature or ten small features
in about the same amount of time. It doesn’t have to be accurate.

The next step was making a menu of all thirty-six proposed features
and their “costs.” Everybody on the team got a copy of the menu and
was given $50 to play with. They could allocate their money any way
they wanted, but they only had $50 to spend. They could buy half-fea-
tures, if they wanted, or buy double features. Someone who really liked
that “track billable time” feature could spend $10 or $15 on it; someone
who liked it a little might only spend $1 and hope that enough other
people funded it.

Next, we added up how much everyone spent on each feature:

Cost: Spent:
Personalizable home page $10 $12
Painless software schedules $4 $6
Track billable time $5 $5
Fork a bug $1 $3

Finally I divided the amount spent by the cost:

Cost: Spent:
Personalizable home page $10 $12 1.2
Painless software schedules $4 $6 1.5
Track billable time $5 $5 1.0
Fork a bug $1 $3 3.0

And then sorted by this number to find the most popular features:

Cost: Spent:
Fork a bug $1 $3 3.0
Painless software schedules $4 $6 1.5
Personalizable home page $10 $12 1.2
Track billable time $5 $5 1.0

Ta-da! A list of all the features you might want to do, in rough order
of everyone’s best idea of which features are the most important.

295Set Your Priorities

And now you can start to refine. You can clump together features
that naturally belong together, for example, doing software schedules
makes billable time easier, so maybe we should either do both or neither.
And sometimes looking down the prioritized list, it’s just real obvious
that something is messed up. So, you change it! Nothing is carved in
stone. You can even change the prioritization as you go through devel-
opment.

But what surprised me the most is that the final list we produced was
really a very good prioritization for FogBugz 5.0 and really did reflect
our collective consensus about the relative priorities of various features.

Priority list in hand, we set out to more or less work down the list in
order until about March, when we plan to stop adding new features and
start the integration and testing phase. We’ll write specs for each
(nonobvious) feature right before implementing that feature.

(The nattering scorekeepers of the BDUF/Agile beauty contest are
now thoroughly confused. “Was that a vote for BDUF? Or Agile? What
does he want? Can’t he just take sides for once?!”)

The whole planning process took three hours.
If you’re lucky enough to have the ability to release software more

frequently than we do, (see Chapter 34), you still need to work down the
list in order, but you can just stop and do releases more often. The good
thing about frequent releases is that you can reprioritize the list regularly
based on actual customer feedback, but not every product has this
luxury.

Mike Conte taught me this system during the planning of Excel 5,
where it only took a couple of hours even with a couple of dozen people
in a conference room. The cool thing was that roughly 50% of the fea-
tures that we didn’t have time to do were really stupid features, and
Excel was better because it didn’t have them.

It’s not perfect, but it’s better than going to Staples to get blue folders,
I’ll tell ya that.

More from Joel on Software296

INDEX

NUMERICS
3D libraries, 229
37signals, 31, 151, 153–154, 232

A
abdication of management, 43
Abelson, Hal, 59
abstraction, 56–57, 182
ad hominem attacks, 118
advertising, cheaper prices as, 277
Aeron chairs, 24
affordance, 103
agendas of team, 35
air transportation for developers, 26
Ajax applications

and bandwidth, 172–173
standardization among, 175–176

Algorithmic Thinking course, 70–71
algorithms, 229
anonymous functions, as arguments, 179
anti-aliasing, 85–87
Apple Computer, 32, 85–87
Apple iPod, 217–219, 232
Apple WebObjects, 277
Apps Hungarian, 194–195, 197
architects, to design office space,

224–226
arrays

combining all values of, 179
doing something to every element in,

179
ArsDigita, 19
attacks, ad hominem, 118
Austin, Robert D., 43
“Autistic Social Software”, 107
automated testing, 61, 63–65
autonomy, 27–28

B
Ballmer, Steve, 7
bandwidth, and JavaScript, 172–173
Bangeman, Eric, 126
Barker, Scott, 55
BASIC programming, 2
Berkeley DB, 229
beta testing, 241–243
BIFF records, 146–147, 149
BillG reviews, 3–8
binary file formats for Office, 143–149
black swans, 286
bloatware, 62
Blub programmers, 56
bonuses

for employee referrals, 19
as source of motivation, 42–44

Bowling Alone, 111
Boyd, Danah, 107
branching of forum threads, 114–115
Brooks’ Law, 216
browsers

compatibility of, 125–137
writing applications that work in all,

173–174
bugs, whether indicate quality crises,

61, 63
business of software. See software

business
Business of Software (book), 204–205

C
C programming language

limitations of, 181
reason for popularity of, 53, 72, 173

C++ programming language, 75–76
Castanet, 260

censorship, 117
CEO (Chief Executive Officer), office

of, 22
chairs, 24
Chandler team, 95–97
cheap software, 276
Chen, Raymond, 137, 198, 247
Chief Executive Officer (CEO), office

of, 22
choices, problem of too many, 99–101
CICS interface, 174
“Cleaner, More Elegant, and Harder to

Recognize” (essay), 198
code

making errors stand out in
example, 186–191
general rule, 192–193
Hungarian notation, 194–198
overview, 183–186
reading about, 198–199

scrubbing, 235–239
college courses, 54–58

advice for students, 73–82
CS 323/322, 59–60
and dynamic logic, 60–61
non-Computer Science, 77–78
programming-intensive, 78–80

college, hiring people in. See internships
COM Automation, 147
Command and Control form of

management, 37–40
common area workstations, 225
communities

building with software, 111–121
recruitment through, 17
regionally based, 121

compatibility of browsers, 125–137,
139–141

compound documents, 145
computer science, 79. See also college

courses
computers for developers, 25
conferences, 11
confirmation step, forums, 116
consultingware, 290–291
consumer surplus, 269–270, 274.

See also segmentation
Conte, Mike, 5, 296
content-based web sites, 104

correlation, 215
costs

of features, estimating, 294–295
and pricing, 266–267

Coupland, Douglas, 8
coupons, 271, 273
Craigslist, 10, 12
Cross-Site Scripting Vulnerability (XSS),

186–187
cubicles, 22
custom development, 290
customer service

accepting blame, 249
career paths for employees, 254
creating system for, 44
memorizing phrases, 250–251
not taking matters personally,

251–252
outsourcing support, 246
overview, 245
permanent fixes to problems, 245–246
preserving customer’s dignity, 247
refund policies, 252–253
turning customers into fans, 247–248

D
date functions, 4–6
“dear” software, 276
decisions

made by employees, 38
made by managers vs. programmers,

69
problem of too many, 99–101

Defensive Design, 108
deleting product features, 168–169
demand curve, 266, 277–280
DeMarco, Tom, 21
design

communities, 111–121
fonts, 85–87
improving little at a time, 89–92
options, too many, 99–101
problems of using team for, 95
before programming, 93
social interface, 105–110
social software, 108–109
specificity in, 96

Index298

desks in offices, 225
developers. See recruiting developers
development, custom, 290
DirectX, 229
discounts, 271, 273
discussion boards. See forums
DOCTYPE tag, 135
Dreaming in Code review, 93–97
Duke University, 56
dynamic logic, 60, 78–79
dysfunctional politics, 28–29

E
eating together, 47
eBay, 106
EBS. See Evidence-Based Scheduling
Econ 101 management method, 41–45
economics, 76–77
EditThisPage.com, 70
education. See college courses
eight-port network switch, 225
Eisenstat, Stanley, 213–214, 216
e-mail, for forum reply posts, 114
employees. See also managing people;

recruiting developers
and decisions, 38, 69
wages of, 16, 32–33

Encode function, 190, 195
ergonomics, 24
errors in code, making stand out

example, 186–191
general rule, 192–193
Hungarian notation, 194–198
overview, 183–186
reading about, 198–199

estimates, time. See Evidence-Based
Scheduling (EBS)

Evidence-Based Scheduling (EBS)
actively managing projects, 164–165
creating tasks, 158–159
deleting product features, 168–169
estimate creator, 167
interruptions, 162–164
managers creating estimates that are

too short, 167–168
overview, 157–158
scope creep, 165, 167

simulating future, 160–162
tracking elapsed time, 159–160

Excel
file format, 143, 146–147, 149
programming language of, 3–8

exceptions, 197–198
Extreme Programming approach, 258
extrinsic motivation, 42–44

F
family atmosphere, 47–48
Fast Save feature, Word, 144
features

adding during beta process, 242
deleting, 168–169
effect of ship date on, 257–262
estimating costs, 294–295
less vs. more, 231–233
prioritizing, 257, 289–296

feedback, 241–242
file formats, Microsoft, 143–149
fisking, 107
flights for developers, 26
focus groups, 278
Fog Creek Software

internship program, 81
recruitment process, 13–15
starting up, 70–72

FogBugz application, 92, 170. See also
Evidence-Based Scheduling (EBS)

access to source code, 227–230
and outages, 283–288
pricing model, 277
prioritizing features of, 289, 293–296
running on clients’ servers, 152–154
running on various servers, 151
scrubbing code of, 235–239

font display, Apple vs. Windows, 85–87
For Each, 4
FORTRAN, 182
forums

branching of threads, 114–115
confirmation step, 116
discouraging quoting posts, 117
e-mailing reply posts, 114
investment-related, 113
Joel on Software, 113–121

299Index

moderation of, 117–119
not posting rules of, 119–120
not using registration scheme, 120
off-topic posts, 118
order of topics, 115
posts already read, 115
Reply link placement, 116
simplicity of, 113

Fowler, Martin, 239
Fried, Jason, 151, 153
Fries, Ed, 4
FuckedCompany.com, 113
functional programming, 54–55, 182
functionality, separation from user

interface, 65
functions

anonymous, as arguments, 179
creating on fly, 179
doing something to every element in

array, 179
passing in as argument, 178
writing inline, 178

functors, 181
future, simulating in schedules,

160–162

G
Gates, Bill, review by, 3–8
Gilder, George, 260
Gmail, 175–176
Google MapReduce, 182
Gorsuch, Michael, 283
GPA, 77–78
graduate school, 78
Graham, Chris, 5
Graham, Paul, 56
great developers, 9–19
Great Good Place, The (book), 111
Greenspun, Philip, 224

H
Hachamovitch, Dean, 125
Hansson, David Heinemeier, 31
Hibernate option, 100–101
Higgins, Pete, 5
Hillis, Danny, 260

hiring developers. See recruiting
developers

hit-and-run management, 27, 38, 69
Home versions of software, 272
HTML, 186–191
“Hungarian Naming Conventions”

(paper), 198

I
IBM Lotus Symphony, 171
idealistic aspects of companies, 31
identifying with the organization,

47–48
Identity Management method, 47–49
IDispatch (COM Automation), 4
Illustra, 227–228
incentive, money as, 42
incremental costs, 267
independence, 27–28
independent software vendors (ISVs),

207–210
India, outsourcing to, 80–81
inheritance, 193
in-house software, 66–67
Internet Explorer (IE) 8, and web

standards, 125–137, 139–141
internships, 9, 12–17, 81–82
intrinsic motivation, 42–44, 47–49
investment discussion boards, 113
iPod, 217–219, 232
IRC, 112–113
ISVs (independent software vendors),

207–210

J
Java

functors, 181
taught at colleges, 54–55

JavaScript
and bandwidth, 172–173
portability problem, 173

job boards, 11–12, 17
Joel on Software forum, 113–121
Joel on Software web site, 17, 70–72
Juno Online Services, 27, 68–69

Index300

K
Kapor, Mitchell, 97
Klunder, Doug, 198

L
lambda calculus, 58
languages, programming.

See programming languages
late binding, 4
Leone, Roy, 224
library support, 144
licenses, site, 274
light in offices, 225–226
line-by-line nitpick, 107
Linux, 55, 74
Lister, Timothy, 21
lite software versions, 231–233
Lock option, 100
Log Off option, 100–101
Lotus 1-2-3, 5, 171
Lotus Symphony, 171
Ludwig, Scott, 199

M
MacroMan, 3, 28
mainframe computers, 174
managers, and decisions, 69
managing people. See also recruiting

developers
abdication of, 43
and experience in field, 3–8
methods of

Command and Control, 37–40
Econ 101, 41–45
hit-and-run, 27, 38, 69
Identity Management, 47–49

office space for employees, 223–226
chairs, 24
common area workstations, 225
desks, 225
light in, 225–226
pleasant, 23–25
power outlets, 225
private, 21–23
private offices, 225

windows, 225–226
wiring, 225

overview, 35–36
MANY-TO-MANY market, 131–133
Manzi, Jim, 7
MAP (Multiple Alternatives Program),

30
map function, 181
Maples, Mike, 5, 69
MapReduce, 55, 182
Marimba, 259
marketing

betas, 243
segmentation of markets, 270–275
social interfaces, 109–110

Massachusetts Institute of Technology
(MIT), 54, 56

Master of Business Administration
(MBA), 7

McKenzie, Patrick, 252
Measuring and Managing Performance

in Organizations (book), 43
memory limitations, and performance,

172–173
metaphors, 96–97
Meyers, Scott, 193
MFC, 229
microeconomics, 76–77
micro-independent software vendors

(ISVs), 207–210
Micro-ISV: From Vision to Reality

(book), 207–210
micromanagement, 27, 38, 69
Microsoft. See also Excel

file formats, 143–149
font display, 85–87
quality testing at, 64–65
Visual Basic for Applications for

Microsoft Excel, 8
MIT (Massachusetts Institute of

Technology), 54, 56
moderated forums, 117–119
money. See pricing; salaries, employee
monitors for developers, 25
Monster.com, 10–11
MonsterTRAK, 12
Monte Carlo simulation, 160–161, 163
motivation, 42–44, 47–49

301Index

Multiple Alternatives Program (MAP),
30

multiple versions of software, 272–273

N
naked Request functions, 187
naked Write functions, 188
Napster, 103
net present value (NPV), 275
network switch, eight-port, 225
Nielsen, Jakob, 103
“no silos” design, 96
noncompete agreements, 18
Norman, Donald, 231
NPV (net present value), 275

O
object-oriented programming (OOP),

57, 181
office space, 223–226

chairs, 24
common area workstations, 225
desks, 225
light in, 225–226
pleasant, 23–25
power outlets, 225
private, 21–23
private offices, 225
windows, 225–226
wiring, 225

off-topic posts in forums, 118
Oldenburg, Ray, 111
OLE compound documents, 143
ONE-TO-MANY market, 128
online communities. See communities
OOP (object-oriented programming),

57, 181
open source software, adopting features

from, 227–230
options, problem of too many, 99–101
Oracle DBMS, 229
Osterman, Larry, 199
outages, 283–288
outsourcing, 80–81, 246
overconfidence, 93
Overjustification Effect, 42

P
pair programming, 225
Paradox of Choice, The (book), 100
pay. See salaries, employee
PEER 1 (Internet provider), 283–288
Penn State University, 56
Peopleware (book), 21
performance

and memory/bandwidth limitations,
172–173

motivation for, 41–45
and systems, 44–45

Petzold, Charles, 196
Photoshop, 65
pointers, 54–57
Polese, Kim, 260
politics, dysfunctional, 28–29
polymorphism, 193
portable programming languages,

173–174
Postel, Jon, 136–137
Powazek, Derek, 17
power management software, 100–101
power wiring in offices, 225
powering off, 100–101
pricing

demand curve, 266, 277–280
economic theory, 264–268
focus groups, 278
“get what you pay for” belief,

279–280
large gap in, 276–277
market segmentation, 270–275
net present value (NPV), 275
overview, 263

prioritizing
features, 289–296
tasks, 292–293

private offices, 21–23
problems, offering solutions to,

151–154
procrastinating, 292–293
productivity

effect of office space on, 21–23, 223
measuring, 213–216

“professional” versions of software,
272

Index302

programmers, 211–220. See also office
space; productivity; recruiting
developers

programming languages, 181
Basic, 2
C, 53, 72, 184–185
C++, 75–76, 192–193
of Excel, 3–8
FORTRAN, 182
Java, 54–55, 181
JavaScript, 172–173
LISP, 30
portable, 173–174
Python, 30
Ruby on Rails, 30–31
Scheme, 54, 56–58
Visual Basic for Applications, 71
Visual Basic for Excel, 3
Visual C++, 229

Programming Windows (book), 196
project management. See FogBugz

application
projects

enjoyable, 29–30
meaningful, 31–32

Pryor, Michael, 211
puppetry, and customer service,

251–252
Putnam, Robert, 111

Q
“quality crisis” of software engineering,

61, 63–65

R
Rational Software, 277
recruiting developers

avoiding employee referrals, 18–19
by building community, 17
internships, 12–17
overview, 9–12
what to not offer, 28–29
what to offer

good equipment, 25
independence and autonomy,

27–28

interesting work, 29–30
meaningful work, 31–32
new technologies, 30
private offices, 21–23
treatment from colleagues, 26–27
treatment from employers, 26
workspace, 23–25

recursion, 54, 55–56, 58
reduce function, 181
refactoring, 239
referrals from employees, 18–19
refund policies, 252–253
regionally-based communities, 121
registration scheme, for forums, 120
releasing software

choosing date for, 257–262
pricing

demand curve, 266, 277–280
economic theory, 264–268
focus groups, 278
“get what you pay for” belief,

279–280
large gap in, 276–277
market segmentation, 270–275
net present value (NPV), 275
overview, 263

Reply link placement, forums, 116
Request function, 187, 190
Restart option, 100
resumes, 9–10, 12
reverse segmenting, 274
Rich Text Format (RTF), 145, 149
robustness principle, 136–137
Rose, Marshall, 136
Rosenberg, Scott, 93
RTF (Rich Text Format), 145, 149

S
salaries, employee

relative importance of, 32–33
starting wages, 16

Salesforce.com, 153
sandboxes, 173
Schank, Roger, 70
Schaut, Rick, 199

303Index

scheduling. See also Evidence-Based
Scheduling; FogBugz application

effect on features, 257–262
prioritizing

features, 289–296
tasks, 292–293

Scheme language, 54, 56–58
school. See college courses
Schwartz, Barry, 99
scope creep, 165, 167
screens (monitors) for developers, 25
scrubbing code, 235–239
Sculley, John, 7
SDETs (Software Development

Engineers in Test), 64
segmentation, 270–275
SEncode function, 190
SEQUENCE-TO-MANY market,

130–131, 139
Service Level Agreement (SLA),

283–285
ship date, choosing, 257–262
Shirky, Clay, 110
Showstopper (book), 97
shutting down, 100–101
silo, single unified, 96
Silver, 3
Simonyi, Charles, 194, 198
Simple Save feature, Excel, 144
simplicity, 231–233
Sink, Ed, 204–205
Sinofsky, Steve, 71
site licenses, 274
SLA (Service Level Agreement),

283–285
Slashdot, 113
Sleep option, 100–101
smart terminals, 174
Snake Tray system, 225
social interface, 105–110
social networks, 105–106
social values, 29
software business. See also managing

people; office space; recruiting
developers

customer service
accepting blame, 249
career paths for employees, 254

memorizing phrases, 250–251
not taking matters personally,

251–252
overview, 245
permanent fixes to problems,

245–246
preserving customer’s dignity, 247
refund policies, 252–253
turning customers into fans,

247–248
first month’s profit, 209–210
growth of business, excitement of,

204–205
not starting alone, 209
providing solution to a problem,

208–209
talented developers and

programmers, 211–220
software developers. See recruiting

developers
Software Development Engineers in

Test (SDETs), 64
solutions to problems, offering,

151–154
Soul of a New Machine (book), 97
source code, access to, 227–230
specifications, and quality, 6, 63–65
specificity, in design, 96
stamps, 96
standards, web, 125–137, 139–141
Structure and Interpretation of

Computer Programs (book), 54
style, 218
subpixel rendering, 85–87
sunk costs, 266
Switch User option, 100
Symphony, Lotus, 171
systems creation, 44–45
Systems Hungarian, 196

T
Taleb, Nassim, 286
talented software developers, 216–220
tasks

creating, 158–159
prioritizing, 292–293

Index304

teams
agendas of, 35
problems of designing as, 95
small, benefits of, 216–217

tech conferences, 11
tech support. See customer service
technical beta. See beta testing
terminals, smart, 174
testing

automated, 61, 63–65
beta, 241–243

text messaging, 106
time estimates. See Evidence-Based

Scheduling (EBS)
time functions, 4–6
time tracking in schedules, 159–160
Torvalds, Linus, 74
Toyoda, Sakichi, 286
tragedy of the commons, 108
training, vs. bribing, 41–45

U
UIs (user interfaces), 65, 89–92
universities. See college courses
Unix-Windows cultural war, 65
unlimited licenses, 274
usability, 103, 105–110
Usenet, 106–107, 112–113
User Interface Design for Programmers

(book), 103
user interfaces (UIs), 65, 89–92
UsRequest function, 190

V
values, social, 29
Variants, 3
velocity, 160–161
versions of software, 272–273
Viacom, 68, 227
Visual Basic for Applications, 71
Visual Basic for Excel, 3
Visual C++, 229

W
wages. See salaries, employee
Walsh, Bob, 207
Web Blade, 227–228
web browsers. See browsers
web standards, 125–137, 139–141
WebObjects, 277
Winamp, 217–218
Windows, font display, 85–87
windows in offices, 225–226
Windows-Unix cultural war, 65
Windows Vista, 64, 138
Winer, Dave, 70, 91
With, 4
word processing, WYSIWYG, 194
workspace. See office space
workstations, common area, 225
Write function, naked, 188
writing about technical topics, 71,

74–75
Wyman, Bob, 3
WYSIWYG word processing, 194

X
XSS (Cross-Site Scripting Vulnerability),

186–187

Y
Yale Computer Science department

lecture, 59–72
Yegge, Steve, 182

Z
Ziv-Lempel-Welch compression, 215
Zuck, Lenore, 60–61, 78–79

305Index

	cover-large.TIF
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	front-matter_002.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	front-matter_003.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	front-matter_004.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	fulltext_018.pdf
	front-matter_005.pdf
	fulltext_019.pdf
	fulltext_020.pdf
	fulltext_021.pdf
	fulltext_022.pdf
	front-matter_006.pdf
	fulltext_023.pdf
	fulltext_024.pdf
	fulltext_025.pdf
	front-matter_007.pdf
	fulltext_026.pdf
	fulltext_027.pdf
	fulltext_028.pdf
	fulltext_029.pdf
	fulltext_030.pdf
	fulltext_031.pdf
	front-matter_008.pdf
	fulltext_032.pdf
	fulltext_033.pdf
	front-matter_009.pdf
	fulltext_034.pdf
	fulltext_035.pdf
	back-matter.pdf

