

SIP

Understanding the Session Initiation Protocol

Second Edition

For a listing of recent titles in the Artech House Telecommunications Library,
turn to the back of this book.

SIP

Understanding the Session Initiation Protocol

Second Edition

Alan B. Johnston

Artech House
Boston • London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data

A catalog record of this title is available from the Library of Congress

British Library Cataloguing in Publication Data
Johnston, Alan B.

SIP : Understanding the Session Initiation Protocol. —2nd ed. — (Artech House
telecommunications library)

1. Computer network protocols
I. Title
004.6’2
ISBN 1-58053-655-7

Cover design by Lisa Johnston

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without permission
in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

International Standard Book Number: 1-58053-655-7

10 9 8 7 6 5 4 3 2 1

To Lisa

.

Contents

Foreword to the First Edition xvii

Preface to the Second Edition xix

Preface to the First Edition xxi

1 SIP and the Internet 1

1.1 Signaling Protocols 1

1.2 The Internet Engineering Task Force 2

1.3 A Brief History of SIP 3

1.4 Internet Multimedia Protocol Stack 4

1.4.1 Physical Layer 4

1.4.2 Internet Layer 4

1.4.3 Transport Layer 5

1.4.4 Application Layer 8

1.5 Utility Applications 9

1.6 DNS and IP Addresses 10

1.7 URLs and URIs 12

1.8 Multicast 12

1.9 ABNF Representation 13

References 14

vii

2 Introduction to SIP 17

2.1 A Simple Session Establishment Example 17

2.2 SIP Call with Proxy Server 25

2.3 SIP Registration Example 31

2.4 SIP Presence and Instant Message Example 33

2.5 Message Transport 38

2.5.1 UDP Transport 38

2.5.2 TCP Transport 40

2.5.3 TLS Transport 40

2.5.4 SCTP Transport 41

References 42

3 SIP Clients and Servers 43

3.1 SIP User Agents 43

3.2 Presence Agents 44

3.3 Back-to-Back User Agents 45

3.4 SIP Gateways 45

3.5 SIP Servers 47

3.5.1 Proxy Servers 47

3.5.2 Redirect Servers 52

3.5.3 Registration Servers 55

3.6 Acknowledgment of Messages 55

3.7 Reliability 56

3.8 Authentication 57

3.9 S/MIME Encryption 59

3.10 Multicast Support 60

3.11 Firewalls and NAT Interaction 61

3.12 Protocols and Extensions for NAT Traversal 62

3.12.1 STUN Protocol 63

3.12.2 TURN Protocol 65

3.12.3 Other SIP/SDP NAT-Related Extensions 66

References 68

viii SIP: Understanding the Session Initiation Protocol

4 SIP Request Messages 71

4.1 Methods 71

4.1.1 INVITE 72

4.1.2 REGISTER 74

4.1.3 BYE 76

4.1.4 ACK 77

4.1.5 CANCEL 79

4.1.6 OPTIONS 81

4.1.7 REFER 82

4.1.8 SUBSCRIBE 86

4.1.9 NOTIFY 89

4.1.10 MESSAGE 90

4.1.11 INFO 93

4.1.12 PRACK 94

4.1.13 UPDATE 96

4.2 URI and URL Schemes Used by SIP 98

4.2.1 SIP and SIPS URIs 98

4.2.2 Telephone URLs 100

4.2.3 Presence and Instant Messaging URLs 101

4.3 Tags 102

4.4 Message Bodies 102

References 104

5 SIP Response Messages 107

5.1 Informational 108

5.1.1 100 Trying 109

5.1.2 180 Ringing 109

5.1.3 181 Call Is Being Forwarded 109

5.1.4 182 Call Queued 109

5.1.5 183 Session Progress 110

5.2 Success 112

5.2.1 200 OK 112

5.2.2 202 Accepted 112

5.3 Redirection 112

5.3.1 300 Multiple Choices 113

Contents ix

5.3.2 301 Moved Permanently 113

5.3.3 302 Moved Temporarily 113

5.3.4 305 Use Proxy 113

5.3.5 380 Alternative Service 113

5.4 Client Error 113

5.4.1 400 Bad Request 114

5.4.2 401 Unauthorized 114

5.4.3 402 Payment Required 114

5.4.4 403 Forbidden 115

5.4.5 404 Not Found 115

5.4.6 405 Method Not Allowed 115

5.4.7 406 Not Acceptable 115

5.4.8 407 Proxy Authentication Required 115

5.4.9 408 Request Timeout 116

5.4.10 409 Conflict 116

5.4.11 410 Gone 116

5.4.12 411 Length Required 116

5.4.13 413 Request Entity Too Large 117

5.4.14 414 Request-URI Too Long 117

5.4.15 415 Unsupported Media Type 117

5.4.16 416 Unsupported URI Scheme 117

5.4.17 420 Bad Extension 117

5.4.18 421 Extension Required 117

5.4.19 422 Session Timer Interval Too Small 118

5.4.20 423 Interval Too Brief 118

5.4.21 428 Use Authentication Token 118

5.4.22 429 Provide Referror Identity 118

5.4.23 480 Temporarily Unavailable 119

5.4.24 481 Dialog/Transaction Does Not Exist 119

5.4.25 482 Loop Detected 119

5.4.26 483 Too Many Hops 119

5.4.27 484 Address Incomplete 120

5.4.28 485 Ambiguous 120

5.4.29 486 Busy Here 121

5.4.30 487 Request Terminated 122

5.4.31 488 Not Acceptable Here 122

x SIP: Understanding the Session Initiation Protocol

5.4.32 489 Bad Event 122

5.4.33 491 Request Pending 122

5.4.34 493 Request Undecipherable 122

5.5 Server Error 123

5.5.1 500 Server Internal Error 123

5.5.2 501 Not Implemented 124

5.5.3 502 Bad Gateway 124

5.5.4 503 Service Unavailable 124

5.5.5 504 Gateway Timeout 124

5.5.6 505 Version Not Supported 124

5.5.7 513 Message Too Large 125

5.6 Global Error 125

5.6.1 600 Busy Everywhere 125

5.6.2 603 Decline 125

5.6.3 604 Does Not Exist Anywhere 125

5.6.4 606 Not Acceptable 125

References 126

6 SIP Header Fields 127

6.1 Request and Response Header Fields 128

6.1.1 Alert-Info 128

6.1.2 Allow-Events 129

6.1.3 Call-ID 129

6.1.4 Contact 130

6.1.5 CSeq 132

6.1.6 Date 132

6.1.7 Encryption 133

6.1.8 From 133

6.1.9 Organization 134

6.1.10 Record-Route 134

6.1.11 Retry-After 135

6.1.12 Subject 135

6.1.13 Supported 136

6.1.14 Timestamp 136

6.1.15 To 137

6.1.16 User-Agent 137

Contents xi

6.1.17 Via 138

6.2 Request Header Fields 140

6.2.1 Accept 140

6.2.2 Accept-Contact 140

6.2.3 Accept-Encoding 141

6.2.4 Accept-Language 141

6.2.5 Authorization 142

6.2.6 Call-Info 142

6.2.7 Event 143

6.2.8 Hide 143

6.2.9 In-Reply-To 143

6.2.10 Join 143

6.2.11 Priority 144

6.2.12 Privacy 145

6.2.13 Proxy-Authorization 145

6.2.14 Proxy-Require 145

6.2.15 P-OSP-Auth-Token 145

6.2.16 P-Asserted-Identity 147

6.2.17 P-Preferred-Identity 147

6.2.18 Max-Forwards 147

6.2.19 Reason 147

6.2.20 Refer-To 148

6.2.21 Referred-By 148

6.2.22 Reply-To 149

6.2.23 Replaces 150

6.2.24 Reject-Contact 150

6.2.25 Request-Disposition 151

6.2.26 Require 151

6.2.27 Response-Key 152

6.2.28 Route 152

6.2.29 RAck 152

6.2.30 Session-Expires 153

6.2.31 Subscription-State 153

6.3 Response Header Fields 153

6.3.1 Authenticaton-Info 153

6.3.2 Error-Info 154

xii SIP: Understanding the Session Initiation Protocol

6.3.3 Min-Expires 154

6.3.4 Min-SE 154

6.3.5 Proxy-Authenticate 155

6.3.6 Server 155

6.3.7 Unsupported 155

6.3.8 Warning 156

6.3.9 WWW-Authenticate 156

6.3.10 RSeq 156

6.4 Message Body Header Fields 158

6.4.1 Allow 158

6.4.2 Content-Encoding 158

6.4.3 Content-Disposition 158

6.4.4 Content-Language 158

6.4.5 Content-Length 159

6.4.6 Content-Type 159

6.4.7 Expires 160

6.4.8 MIME-Version 160

References 160

7 Related Protocols 163

7.1 SDP—Session Description Protocol 163

7.1.1 Protocol Version 165

7.1.2 Origin 165

7.1.3 Session Name and Information 166

7.1.4 URI 166

7.1.5 E-Mail Address and Phone Number 166

7.1.6 Connection Data 166

7.1.7 Bandwidth 167

7.1.8 Time, Repeat Times, and Time Zones 167

7.1.9 Encryption Keys 167

7.1.10 Media Announcements 168

7.1.11 Attributes 168

7.1.12 Use of SDP in SIP 169

7.2 RTP—Real-Time Transport Protocol 171

7.3 RTP Audio Video Profiles 174

7.4 PSTN Protocols 176

Contents xiii

7.4.1 Circuit Associated Signaling 176

7.4.2 ISUP Signaling 176

7.4.3 ISDN Signaling 176

7.5 SIP for Telephones 177

7.6 Universal Plug and Play Protocol 178

References

8 Comparison to H.323 181

8.1 Introduction to H.323 181

8.2 Example of H.323 184

8.3 Versions 187

8.4 Comparison 187

8.4.1 Fundamental Differences 188

8.4.2 Strengths of Each Protocol 190

8.5 Conclusion 191

References 191

9 Wireless and 3GPP 193

9.1 IP Mobility 193

9.2 SIP Mobility 194

9.3 3GPP Architecture and SIP 201

9.4 3GPP Header Fields 203

9.4.1 Service-Route 203

9.4.2 Path 203

9.4.3 Other P-Headers 203

9.5 Future of SIP and Wireless 204

References 204

10 Call Flow Examples 207

10.1 SIP Call with Authentication, Proxies, and
Record-Route 207

10.2 SIP Call with Stateless and Stateful Proxies with
Called Party Busy 214

10.3 SIP to PSTN Call Through Gateway 218

10.4 PSTN to SIP Call Through Gateway 222

xiv SIP: Understanding the Session Initiation Protocol

10.5 Parallel Search 225

10.6 H.323 to SIP Call 230

10.7 3GPP Wireless Call Flow 235

10.8 Call Setup Example with Two Proxies 254

10.9 SIP Presence and Instant Message Example 256

References 259

11 Future Directions 261

11.1 SIP, SIPPING, and SIMPLE Working Group
Design Teams 261

11.1.1 SIP and Hearing Impairment Design Team 262

11.1.2 Conferencing Design Team 262

11.1.3 Application Interaction Design Team 263

11.1.4 Emergency Calling Design Team 263

11.2 Other SIP Work Areas 263

11.2.1 Emergency Preparedness 263

11.2.2 Globally Routable Contact URIs 263

11.2.3 Service Examples 263

11.3 SIP Instant Message and Presence Work 264

References 264

Appendix A: Changes in the SIP Specification from
RFC 2543 to RFC 3261 267

About the Author 271

Index 273

Contents xv

.

Foreword to the First Edition

The Internet now challenges the close to $1 trillion world telecom industry. A
renaissance in communications is taking place on the Internet. At its source are
new communication protocols that would be impractical on the centralized con-
trol systems of circuit-switched networks used in telecommunications.

The Internet and the World Wide Web can be technically defined only by
their protocols. Similarly, IP telephony and the wider family of IP communica-
tions are defined by several key protocols, most notably by the Session Initiation
Protocol, or SIP.

The previously closed door of telecommunications is now wide open to
web developers because of SIP and its relation to the web HTTP 1.1 protocol
and the e-mail SMTP protocol. IP communications include voice/video, pres-
ence, instant messaging, mobility, conferencing, and even games. We believe
many other communication areas are yet to be invented. The integration of all
types of communications on the Internet may represent the next “killer applica-
tion" and generate yet another wave of Internet growth.

As explained in this book, SIP is a close relative of the HTTP 1.1 and
SMTP protocols. This represents a revolution in communications because it
abandons the telecom signaling and control models developed for telephony
over many years in favor of Internet and web-based protocols. Users and service
providers obtain not only seamless integration of telephony and conferencing
with many other World Wide Web and messaging applications, but also benefit
from new forms of communications, such as presence and instant messaging.

Mobility can also be managed across various networks and devices using
SIP. Location management is now under user control, so that incoming “calls”
can be routed to any network and device that the called party may prefer. Users

xvii

may even move across the globe to another service provider and maintain not
only their URL “number”, but also their personal tailored services and prefer-
ences. The end user gains control over all possible preferences, depending on
various parameters such as who the other party is, what network he is on and
what devices he is using, as well as time of day, subject, and other variables.

The new dimension in communications called “presence” enables users
for the first time to indulge in “polite calling” by first sensing presence and pref-
erences of the other party, before making a call. In its turn, presence can trigger
location- and time-dependent user preferences. Users may want to be contacted
in different ways, depending on their location and type of network access.

E-commerce will also benefit from IP communications. Extremely com-
plex telecom applications, as found in call centers, have become even more com-
plex when integrated with e-mail and web applications for e-commerce. Such
applications, however, are quite straightforward to implement using SIP, due to
its common structure with the web and e-mail. For example, both call routing
and e-mail routing to agents—based on various criteria such as queue length,
skill set, time of day, customer ID, the web page the customer is looking at, and
customer history—can be reduced to simple XML scripts when using SIP and
another IETF standard, the Call Processing Language (CPL). These examples
are in no way exhaustive, but are mentioned here as a way of introduction.

This book starts with a short summary of the Internet, the World Wide
Web, and its core protocols and addressing. Though familiar to many readers,
these chapters provide useful focus on issues for the topics ahead. The introduc-
tion to SIP is made easy and understandable by examples that illustrate the pro-
tocol architecture and message details. Finally, in the core of the book, a
methodical and complete explanation of SIP is provided. We refer the reader to
the Table of Contents for a better overview and navigation through the topics.

Alan Johnston has made significant contributions toward the use of SIP
for communications over the Internet. I had the privilege of watching Alan in
meetings with some of the largest telecom vendors as he went methodically line
by line over hundreds of call flows, which were then submitted as an Internet
Draft to the Internet Engineering Task Force (IETF) and implemented in com-
mercial systems. Alan combines in this book his expertise and methodical
approach with page turning narrative and a discreet sense of humor.

I could not help reading the book manuscript page by page, since every-
thing from Internet basics, protocols, and SIP itself is explained so well, in an
attractive and concise manner.

Henry Sinnreich
Distinguished Member of Engineering

WorldCom
Richardson, Texas

July 2000

xviii SIP: Understanding the Session Initiation Protocol

Preface to the Second Edition

Much has changed in the 2.5 years since the first edition of SIP: Understanding
the Session Initiation Protocol was published. In 2001, SIP was a relatively
unknown quantity, an upstart in the voice over IP (VoIP) and multimedia com-
munications industry. Today, SIP is seen as the future of call signaling and
telephony. It has been widely deployed by service providers and enterprises and
is used casually every day by users of the dominant PC operating system. The
full range of possibilities enabled by SIP is just now being glimpsed, and many
more possibilities are yet to come.

One reason for this rapid acceptance is that SIP is an incredibly powerful
call control protocol. It allows intelligent end points to implement the entire
suite of telephony, Private Branch Exchange (PBX), Class, and Centrex services
without a service provider, and without a controller or switch, for example.

The biggest driver for SIP on the Internet, however, has less to do with
SIP’s signaling and call control capabilities. Instead, it is due to the extensions of
SIP that turn it into a powerful “rendezvous” protocol that leverages mobility
and presence to allow users to communicate using different devices, modes, and
services anywhere they are connected to the Internet. SIP applications provide
support for presence—the ability to find out the status or location of a user
without attempting to set up a session.

Another major change in the past few years is the adoption of wireless SIP
to enable multimedia IP communications. As described in the chapter on wire-
less, SIP is now being used both in its standard form over 802.11 wireless net-
works and in planned commercial Third Generation Partnership Project
(3GPP) rollouts in the coming years. SIP is ideally suited for this key
application.

xix

Since 2001 SIP has also grown in terms of the specification itself. Initially,
SIP was described by a single RFC with a few related RFCs and a couple of RFC
extensions. In Chapter 6 alone, more than 20 SIP-related RFCs are referenced.
This book attempts to put all those documents together and provide a single ref-
erence for the protocol and all its extensions. Even SIP headers and responses
that were standardized in the past but are now removed (deprecated) are listed in
this text, providing useful context and background. Many others are discussed
that are in the final stages of standardization prior to publication as RFCs, pro-
viding an up-to-date insider’s view of the future of the protocol.

In closing, I again thank my colleagues in the Internet Engineering Task
Force (IETF) and at MCI for all their contributions to the development of this
protocol—it has been a privilege to be a part of a group of people that have
created the SIP industry. Finally, I’d like to tip my hat to two of the key inven-
tors of SIP who continue to develop and propel its implementation: Henning
Schulzrinne and Jonathan Rosenberg.

xx SIP: Understanding the Session Initiation Protocol

Preface to the First Edition

When I began looking into the Session Initiation Protocol (SIP) in October
1998, I had prepared a list of a half dozen protocols relating to Voice over IP
and Next Generation Networking. It was only a few days into my study that my
list narrowed to just one: SIP. My background was in telecommunications, so I
was familiar with the complex suite of protocols used for signaling in the Public
Switched Telephone Network. It was readily apparent to me that SIP would be
revolutionary in the telecommunications industry. Only a few weeks later I
remember describing SIP to a colleague as the “SS7 of future telephony”—quite
a bold statement for a protocol that almost no one had heard of, and that was
not even yet a proposed standard!

Nearly 2 years later, I have continued to work almost exclusively with SIP
since that day in my position with WorldCom, giving seminars and teaching the
protocol to others. This book grew out of those seminars and my work on vari-
ous Internet-Drafts.

This revolutionary protocol was also the discovery of a radical standards
body—the Internet Engineering Task Force (IETF). Later, I attended my first
IETF meeting, which was for me a career changing event. To interact with this
dedicated band of engineers and developers, who have quietly taken the Internet
from obscurity into one of the most important technological developments of
the late 20th century, for the first time was truly exciting.

Just a few short years later, SIP has taken the telecommunications industry
by storm. The industry press contains announcement after announcement of
SIP product and service support from established vendor startups, and from estab-
lished carriers. As each new group and company joins the dialog, the protocol has
been able to adapt and grow without becoming unwieldy or overly complex. In

xxi

the future, I believe that SIP, along with a TCP/IP stack, will find its way into
practically every intelligent electronic device that has a need to communicate
with the outside world.

With my telecommunications background, it is not surprising that I rely
on telephone examples and analogies throughout this book to explain and illus-
trate SIP. This is also consistent with the probability that telecommunications is
the first widely deployed use of the protocol. SIP stacks will soon be in multime-
dia PCs, laptops, palmtops, and in dedicated SIP telephones. The protocol will
be used by telephone switches, gateways, wireless devices, and mobile phones.
One of the key features of SIP, however, is its flexibility; as a result, the protocol
is likely to be used in a whole host of applications that have little or nothing to
do with telephony. Quite possibly one of these applications, such as instant mes-
saging, may become the next “killer application” of the Internet. However, the
operation and concepts of the protocol are unchanged regardless of the applica-
tion, and the telephone analogies and examples are, I feel, easy to follow and
comprehend.

The book begins with a discussion of the Internet, the IETF, and the
Internet Multimedia Protocol Stack, of which SIP is a part. From there, the pro-
tocol is introduced by examples. Next, the elements of a SIP network are dis-
cussed, and the details of the protocol in terms of message types, headers, and
response codes are covered. In order to make up a complete telephony system,
related protocols, including Session Description Protocol (SDP) and Real-Time
Transport Protocol (RTP), are covered. SIP is then compared to another signal-
ing protocol, H.323, with the key advantages of SIP highlighted. Finally, the
future direction of the evolution of the protocol is examined.

Two of the recurring themes of this book are the simplicity and stateless
nature of the protocol. Simplicity is a hallmark of SIP due to its text-encoded,
highly readable messages, and its simple transactional model with few exceptions
and special conditions. Statelessness relates to the ability of SIP servers to store
minimal (or no) information about the state or existence of a media session in a
network. The ability of a SIP network to use stateless servers that do not need to
record transactions, keep logs, fill and empty buffers, etc., is, I believe, a seminal
step in the evolution of communications systems. I hope that these two themes
become apparent as you read this book and learn about this exciting new
protocol.

The text is filled with examples and sample SIP messages. I had to invent a
whole set of IP addresses, domain names, and URLs. Please note that they are all
fictional—do not try to send anything to them.

I would first like to thank the group of current and former engineers at
WorldCom who shared their knowledge of this protocol and gave me the
opportunity to author my first Internet-Draft document. I particularly thank
Henry Sinnreich, Steve Donovan, Dean Willis, and Matt Cannon. I also thank

xxii SIP: Understanding the Session Initiation Protocol

Robert Sparks, who I first met at the first seminar on SIP that I ever presented.
Throughout the whole 3-hour session I kept wondering about the guy with the
pony tail who seemed to know more than me about this brand new protocol!
Robert and I have spent countless hours discussing fine points of the protocol.
In addition, I would like to thank him for his expert review of this manuscript
prior to publication—it is a better book due to his thoroughness and attention
to detail. I also thank everyone on the IETF SIP list who has assisted me with
the protocol and added to my understanding of it.

A special thanks to my wife Lisa for the terrific cover artwork and the cool
figures throughout the book.

Finally, I thank my editor Jon Workman, the series editor and reviewer,
and the whole team at Artech for helping me in this, my first adventure in
publishing.

Preface to the First Edition xxiii

.

1
SIP and the Internet

The Session Initiation Protocol (SIP) is a new signaling, presence and instant
messaging protocol developed to set up, modify, and tear down multimedia ses-
sions, request and deliver presence and instant messages over the Internet [1].
This chapter covers some background for the understanding of the protocol. SIP
was developed by the IETF as part of the Internet Multimedia Conferencing
Architecture, and was designed to dovetail with other Internet protocols such as
Transmission Control Protocol (TCP), Transmission Layer Security (TLS),
User Datagram Protocol (UDP), Internet Protocol (IP), Domain Name System
(DNS), and others. This organization and these related protocols will be briefly
introduced. Related background topics such as Internet uniform resource indi-
cators (URIs) and uniform resource locators (URLs), IP multicast routing, and
Augmented Backus-Naur Format (ABNF) representations of protocol messages
will also be covered.

1.1 Signaling Protocols

This book is about the Session Initiation Protocol. As the name implies, the pro-
tocol allows two end points to establish media sessions with each other. The
main signaling functions of the protocol are as follows:

• Location of an end point;

• Contacting an end point to determine willingness to establish a session;

• Exchange of media information to allow session to be established;

• Modification of existing media sessions;

1

• Tear-down of existing media sessions.

SIP has also been extended to request and deliver presence information
(on-line/off-line status and location information such as that contained in a
“buddy” list) as well as instant message sessions. These functions include:

• Publishing and uploading of presence information;

• Requesting delivery of presence information;

• Presence and other event notification;

• Transporting of instant messages.

While some of the examples discuss SIP from a telephony perspective,
there will be many nontelephony uses for SIP. SIP will likely be used to establish
a whole set of session types that bear almost no resemblance to a telephone call.

1.2 The Internet Engineering Task Force

SIP was developed by the IETF. To quote “The Tao of the IETF” [2]: “The
Internet Engineering Task Force is a loosely self-organized group of people who
make technical and other contributions to the engineering and evolution of the
Internet and its technologies.” The two document types used within the IETF
are Internet-Drafts (I-Ds) and Request for Comments (RFCs). I-Ds are the
working documents of the group; anyone can author one on any topic and sub-
mit it to the IETF. There is no formal membership in the IETF; anyone can
participate. Every I-D contains the following paragraph on the first page:
“Internet-Drafts are documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is inappro-
priate to use Internet-Drafts as reference material or to cite them other than as
work in progress.”

Internet standards are archived by the IETF as the Request for Comments
series of numbered documents. As changes are made in a protocol, or new ver-
sions come out, a new RFC document with a new number is issued, which
“obsoletes” the old RFC. Some I-Ds are cited in this book; I have tried, how-
ever, to restrict this to mature documents that are likely to become RFCs by the
time this book is published. A standard begins its life as an I-D and then pro-
gresses to an RFC once there is consensus and there are working implementa-
tions of the protocol. Anyone with Internet access can download any I-D or
RFC at no charge using the World Wide Web, ftp, or e-mail. Information on
how to do so can be found on the IETF Web site: http://www.ietf.org.

The IETF is organized into working groups, which are chartered to work
in a particular area and develop a protocol to solve that particular area. Each

2 SIP: Understanding the Session Initiation Protocol

working group has its own archive and mailing list, which is where most of the
work gets done. The IETF also meets three times per year.

1.3 A Brief History of SIP

SIP was originally developed by the IETF Multi-Party Multimedia Session Con-
trol Working Group, known as MMUSIC. Version 1.0 was submitted as an
Internet-Draft in 1997. Significant changes were made to the protocol and
resulted in a second version, version 2.0, which was submitted as an Internet-
Draft in 1998. The protocol achieved Proposed Standard status in March 1999
and was published as RFC 2543 [3] in April 1999. In September 1999, the SIP
working group was established by the IETF to meet the growing interest in the
protocol. An Internet-Draft containing bug fixes and clarifications to SIP was
submitted beginning in July 2000, referred to as RFC 2543 “bis”. This docu-
ment was eventually published as RFC 3261 [4], which obsoletes (or replaces)
the original RFC 2543 specification. In addition, several SIP extension RFC
documents have been published.

The popularity of SIP in the IETF has lead to the formation of other SIP-
related working groups. The Session Initiation Protocol investigation
(SIPPING) working group was formed to investigate applications of SIP,
develop requirements for SIP extensions, and publish best current practice
(BCP) documents about the use of SIP. This working group also publishes SIP
event package RFCs. The SIP for Instant Messaging and Presence Leveraging
Extensions (SIMPLE) working group was formed to standardize related proto-
cols for presence and instant messaging applications. Other working groups that
make use of SIP include PSTN and Internet Internetworking (PINT) working
group and Service in the PSTN/IN requesting Internet Services (SPIRITS)
working group.

To advance from Proposed Standard to Draft Standard, a protocol must
have multiple independent interworking implementations and limited opera-
tional experience. Since the early days of RFC 2543, SIP interoperability test
events, called SIPit (formerly called “bakeoffs”), have been held a few times per
year. For the latest information about SIPit, visit the SIP Forum Web site:
http://www.sipforum.org. (Note that the SIP Forum is a marketing/promotion
organization for SIP and does not have any standardization function.) The final
level, Standard, is achieved after operational success has been demonstrated [5].
With the documented interoperability from SIPit, SIP will move to Draft Stan-
dard status in the future.

SIP incorporates elements of two widely used Internet protocols: Hyper
Text Transport Protocol (HTTP) used for Web browsing and Simple Mail
Transport Protocol (SMTP) used for e-mail. From HTTP, SIP borrowed a

SIP and the Internet 3

client-server design and the use of URLs and URIs. From SMTP, SIP borrowed
a text-encoding scheme and header style. For example, SIP reuses SMTP head-
ers such as To, From, Date, and Subject. The interaction of SIP with
other Internet protocols such as IP, TCP, UDP, and DNS will be described in
the next section.

1.4 Internet Multimedia Protocol Stack

Figure 1.1 shows the four-layer Internet Multimedia Protocol stack. The layers
shown and protocols identified will be discussed.

1.4.1 Physical Layer

The lowest layer is the physical and link layer, which could be an Ethernet local
area network (LAN), a telephone line (V.90 or 56k modem) running Point-to-
Point Protocol (PPP), or a digital subscriber line (DSL) running asynchronous
transport mode (ATM), or even a wireless 802.11 network. This layer performs
such functions as symbol exchange, frame synchronization, and physical inter-
face specification.

1.4.2 Internet Layer

The next layer in Figure 1.1 is the Internet layer. Internet Protocol (IP) [6] is
used at this layer to route a packet across the network using the destination IP
address. IP is a connectionless, best-effort packet delivery protocol. IP packets
can be lost, delayed, or received out of sequence. Each packet is routed on its
own, using the IP header appended to the physical packet. Most IP address
examples in this book use the older version of IP, version 4 (IPv4). IPv4

4 SIP: Understanding the Session Initiation Protocol

Signaling Media Utility

SDP

H.323 SIP RTP DNS DHCP

UDP

IP

AALx

ATM

PPP

Ethernet 802.11V.90

TCP

Media coding

Application layer

Physical/Link
layer

Internet layer

Transport layer

Figure 1.1 The Internet Multimedia Protocol stack.

addresses are four octets long, usually written in so-called “dotted decimal”
notation (for example, 207.134.3.5). Between each of the dots is a decimal
number between 0 and 255. At the IP layer, packets are not acknowledged. A
checksum is calculated to detect corruption in the IP header, which could cause
a packet to become misrouted. Corruption or errors in the IP payload, however,
are not detected; a higher layer must perform this function if necessary. IP uses a
single-octet protocol number in the packet header to identify the transport layer
protocol that should receive the packet.

IP version 6 (IPv6) [7] was developed by the IETF as a replacement for
IPv4. It has been slowly gaining support and is supported now by a number of
operating systems. The biggest initial networks of IPv6 will likely be the wireless
telephony carriers who need the most important advantage of IPv6 over
IPv4—that is, a much enlarged addressing space. IPv6 increases the addressing
space from 32 bits in IPv4 to 128 bits, providing for over 4 billion IPv6 addresses.
There are many other improvements in IPv6 over IPv4, including security. An
IPv6 address is typically written as a sequence of eight hexadecimal numbers
separated by colons. For example, 0:0:0:0:aaaa:bbbb:cccc:dddd is an
IPv6 address written in this format. It is also common to drop sequences of
zeros with a single double colon. The same address can then be written as
::aaaa:bbbb:cccc:dddd.

IP addresses used over the public Internet are assigned in blocks by the
Internet Assigned Number Association (IANA). As a result of this centralized
assignment, IP addresses are globally unique. This enables a packet to be routed
across the public Internet using only the destination IP address. Various proto-
cols are used to route packets over an IP network, but they are outside of the
scope of this book. Subnetting and other aspects of the structure of IP addresses
are also not covered here. There are other excellent sources [8] that cover the
entire suite of TCP/IP protocols in more detail.

1.4.3 Transport Layer

The next layer shown in Figure 1.1 is the transport layer. It uses a two-octet port
number from the application layer to deliver the datagram or segment to the
correct application layer protocol at the destination IP address. Some port num-
bers are dedicated to particular protocols—these ports are called “well-known”
port numbers. For example, HTTP uses the well-known port number of 80,
while SIP uses the well-known port number of 5060 or 5061. Other port
numbers can be used for any protocol, and they are assigned dynamically from a
pool of available numbers. These so-called “ephemeral” port numbers are usu-
ally in the range 49152 to 65535. There are three commonly used transport
layer protocols, Transmission Control Protocol, Transmission Layer Security,
and User Datagram Protocol, which are described in the following sections.

SIP and the Internet 5

1.4.3.1 TCP

TCP [9] provides reliable, connection-oriented transport over IP. TCP uses
sequence numbers and positive acknowledgments to ensure that each block of
data, called a segment, has been received. Lost segments are retransmitted until
they are successfully received. Figure 1.2 shows the message exchange to estab-
lish and tear down a TCP connection. A TCP server “listens” on a well-known
port for a TCP request. The TCP client sends a SYN (synchronization) message
to open the connection. The SYN message contains the initial sequence number
the client will use during the connection. The server responds with a SYN mes-
sage containing its own initial sequence number, and an acknowledgment
number, indicating that it received the SYN from the client. The client com-
pletes the three-way handshake with an ACK or a DATA packet with the AK
flag set to the server acknowledging the server’s sequence number. Now that the
connection is open, either client or server can send data in DATA packets called
segments.

Each time a sender transmits a segment, it starts a timer. If a segment is
lost in transmission, this timer will expire. Deducing a lost segment, the sender
will resend the segment until it receives the acknowledgment. The FIN message
closes the TCP connection. The sequence of four messages shown in Figure 1.2
closes the connection. The ephemeral port numbers used in the connection are
then free to be used in establishing other connections. TCP also has built-in
mechanisms for flow control. During the SYN processing, a window size

6 SIP: Understanding the Session Initiation Protocol

SYN

SYN/AK

ACK

DATA

FIN

...

ACK

ACK

FIN

TCP Client TCP Server

Figure 1.2 Opening and closing a TCP connection.

representing the initial maximum number of unacknowledged segments is sent,
which starts at 1 and increases exponentially up to a maximum limit. When net-
work congestion and packet loss occur, the window resets back to 1 and gradu-
ally ramps back up again to the maximum limit. A TCP segment header
contains 24 octets. Errored segments are detected by a checksum covering both
the TCP header and payload.

1.4.3.2 UDP

UDP [10] provides unreliable transport across the Internet. It is a best-effort
delivery service, since there is no acknowledgment of sent datagrams. Most of
the complexity of TCP is not present, including sequence numbers, acknowl-
edgments, and window sizes. UDP does detect errored datagrams with a check-
sum. It is up to higher layer protocols, however, to detect this datagram loss and
initiate a retransmission if desired.

1.4.3.3 TLS

TLS [11] is based on the Secure Sockets Layer (SSL) protocol first used in Web
browsers, and it uses TCP for transport. TLS is commonly used today on the
Internet for secure Web sites using the secure HTTP (https) URI scheme.

The TLS protocol has two layers: the TLS Transport protocol and the
TLS Handshake protocol. The TLS Transport protocol is used to provide a reli-
able and private transport mechanism. Data sent using the TLS Transport pro-
tocol is encrypted so that a third party cannot intercept the data. A third party
also cannot modify the transported data without one of the parties discovering
this. The TLS Handshake protocol is used to establish the connection, negotiate
the encryption keys used by the TLS Transport protocol, and provide
authentication.

The key negotiation scheme selects an encryption algorithm and generates
a one-time key based on a secret passed between the two sides. During the hand-
shake, the parties exchange certificates, which can be used for authentication.

The cryptographic computations for a TLS connection are not trivial, and
the multiple round trips needed to open a connection as shown in Figure 1.3
can add to message latency. Also, certificate verification can introduce process-
ing delays. However, TLS transport has clear security advantages over UDP or
TCP. Many operating systems already support TLS due to its wide use in secure
Web browsers and servers.

1.4.3.4 SCTP

The Stream Control Transport Protocol (SCTP) [12] is similar to TCP in that
it provides reliable stream-based transport. However, it has some advantages
over TCP transport for a message-based protocol. First, it has built-in message
segmentation, so that individual messages are separated at the transport layer.

SIP and the Internet 7

Another advantage is that SCTP avoids the so-called “head of line blocking”
problem of TCP. This is a common TCP problem in which a dropped segment
with a large window causes the entire window’s worth of messages to wait in a
buffer (i.e., be blocked) until the dropped segment is retransmitted.

SCTP also supports multihoming, so if one of a pair of load balancing
servers fails, the other can immediately begin receiving the messages without
even requiring a DNS or other database lookup.

SCTP is a true layer 2 transport protocol that requires operating system
level support to be used, which will initially delay its use in the Internet. Also,
note that the advantages of SCTP over TCP only occur during packet loss. In a
zero loss network, the performance of the two is identical.

1.4.4 Application Layer

The top layer shown in Figure 1.1 is the application layer. This includes signal-
ing protocols such as SIP and media transport protocols such as Real-time
Transport Protocol (RTP), which is introduced in Section 7.2. Figure 1.1
includes H.323, introduced in Chapter 8, which is an alternative signaling pro-
tocol to SIP developed by the International Telecommunication Union (ITU).
Session Description Protocol (SDP), described in Section 7.1, is shown above
SIP in the protocol stack because it is carried in a SIP message body. HTTP,

8 SIP: Understanding the Session Initiation Protocol

ClientHello

ServerHello

Finished

Finished

Application data

Client Server

Figure 1.3 Opening of TLS connections.

SMTP, FTP, and Telnet are all examples of application layer protocols. Because
SIP can use any transport protocol, it is shown interacting with both TCP, TLS,
and UDP in Figure 1.1. The use of TCP, TLS, SCTP, and UDP transport for
SIP will be discussed in the next chapter.

1.5 Utility Applications

Two utility applications are also shown in Figure 1.1 as users of UDP. The most
common use of the DNS (well-known port number 53) is to resolve a symbolic
name (such as domain.com, which is easy to remember) into an IP address
(which is required by IP to route the packet). Also shown is the Dynamic Host
Configuration Protocol (DHCP). DHCP allows an IP device to download con-
figuration information upon initialization. Common fields include a dynami-
cally assigned IP address, DNS addresses, subnet masks, maximum transmission
unit (MTU), or maximum packet size, and server addresses for mail and Web
browsing. Figure 1.4 shows the layer interaction for processing a request. At the
top, a URL from the user layer is input to the application layer. URLs, described

SIP and the Internet 9

Application

Transport

Internet

Physical

Utility

URL from user

Request message, URL,
and port number

Datagram or segment
and protocol number

Domain
name

IP address

Packet and MAC address
(if on a LAN)

Figure 1.4 Request processing in the Internet Protocol stack.

later in this chapter, are names used to represent resources, hosts, or files on the
Internet. The application passes the generated request (for example, a HTTP
GET request, which requests a Web page download), the URL, and the port
number to the transport layer. The transport layer uses a utility to resolve the
domain name extracted from the URL into an IP address. The IP address, data-
gram (or segment, depending on the transport layer protocol used), and proto-
col number identifying the transport protocol are then passed to the Internet
layer. The Internet layer then passes the packet to the physical layer along with a
media access control (MAC) address for routing, in the case of a LAN. A
response is processed by reversing the above steps. A response received at the
physical layer flows back up the layers, with the header information being
stripped off and the response data passed upwards towards the user. The main
difference is that no utility is used in response processing.

1.6 DNS and IP Addresses

Domain Name Service [13] is used in the Internet to map a symbolic name (such
as www.amazon.com) to an IP address (such as 100.101.102.103).
DNS is also used to obtain information needed to route e-mail messages and, in
the future, SIP messages. The use of names instead of numerical addresses is one
of the Internet’s greatest strengths because it gives the Internet a human, friendly
feel. Domain names are organized in a hierarchy. Each level of the name is sepa-
rated by a dot, with the highest level domain on the right side. (Note that the dots
in a domain name have no correspondence to the dots in an IP address written in
dotted decimal notation.) General top-level domains are shown in Table 1.1 (see
http://www.icann.org/tlds for the latest list). There is also a set of country
domains such as: us (United States), uk (United Kingdom), ca (Canada), and
au (Australia). Each of these top-level domains has just one authority that assigns
that domain to a user or group.

Once a domain name has been assigned, the authority places a link in their
DNS server to the DNS server of the user or group who has been assigned the
domain. For example, when company.com is allocated to a company, the
authoritative DNS server for the top-level com domain entry for company con-
tains the IP address of the company’s DNS server(s). A name can then be further
qualified by entries in the company’s DNS server to point to individual servers in
their network. For example, the company’s DNS server may contain entries for
www.company.com, ftp.company.com, and smtp.company.com.
A number of types of DNS record types are defined. The DNS records used to
resolve a host name into an IP address are called address records, or A records.
Other types of records include CNAME (or canonical name or alias records), MX
(or mail exchange records), SRV (or Service records, used by SIP and other

10 SIP: Understanding the Session Initiation Protocol

protocols), and TXT (or free-form text records). Another type of DNS record is a
PTR, or pointer record, used for reverse lookups. Reverse lookups are used to map
an IP address back to a domain name. These records can be used, for example, in
generating server logs that show not only the IP addresses of clients served, but
also their domain name. Web browsing provides an example of the use of the
DNS system. Another type of DNS record is known as a Naming Authority
Pointer (NAPTR) record that can be used by a protocol known as ENUM [14] to
map global telephone numbers into Internet URLs.

When a user types in a Web address, such as www.artech-
house.com, the name must be resolved to an IP address before the browser
can send the request for the index Web page from the Artech House Web server.
The Web browser first launches a DNS query to the IP address for its DNS
server, which has been manually configured or set up using DHCP. If the DNS
server happens to have the name’s A record stored locally (cached) from a recent
query, it will return the IP address. If not, the DNS root server will then be que-
ried to locate the authoritative DNS server for Artech House, which must con-
tain the A records for the artech-house.com domain. The HTTP GET

SIP and the Internet 11

Table 1.1
Internet Top-Level Domains

Domain Description

com Company

net Network

int Internet

org Not-for-profit organization

edu University or college

gov U.S. government

mil U.S. military

arpa ARPAnet

info Information

biz Business

museum Museum

name Name

pro Professional

aero Air transport industry

coop Cooperatives

request is then sent to that IP address, and the Web browsing session begins.
There is only one authoritative DNS server for a domain, and it is operated by
the owner of the domain name. Due to a very efficient caching scheme built into
DNS, a DNS request often does not have to route all the way to this server.
DNS is also used by an SMTP server to deliver an e-mail message. An SMTP
server with an e-mail message to deliver initiates a DNS request for the MX
record of the domain name in the destination e-mail address. The response to
the request allows the SMTP server to contact the destination SMTP server and
transfer the message. A similar process has been proposed for locating a SIP
server using SRV, or service, DNS records.

1.7 URLs and URIs

Uniform resource locators [15] are names used to represent addresses or
locations in the Internet. URLs are designed to encompass a wide range
of protocols and resource types in the Internet. The basic form of a
URL is scheme:specifier—for example, http://www.artech-
house.com/search/search.html. The token http identifies the
scheme or protocol to be used, in this case HTTP. The specifier follows the “:”
and contains a domain name (www.artechhouse.com), which can be
resolved into an IP address and a file name (/search/search.html).
URLs can also contain additional parameters or qualifiers relating to trans-
port. For example, telnet://host.company.com:24 indicates that
the Telnet Protocol should be used to access host.company.com using
port 24. New schemes for URLs for new protocols are easily constructed, and
dozens have been defined, such as mailto, tel, and https. The sip
and sips schemes will be introduced in Section 2.2 and are described in
detail in Section 4.2.

Most protocols reference URLs, but with SIP we mainly reference URIs.
This is due to the mobility aspects of SIP, which means that a particular address
(URI) is not tied to a single physical device but instead is a logical entity that
may move around and change its location in the Internet. However, the terms
URL and URI are often used almost interchangeably in other contexts.

1.8 Multicast

In normal Internet packet routing, or unicast routing, a packet is routed to a sin-
gle destination. In multicast routing, a single packet is routed to a set of destina-
tions. Single LAN segments running a protocol such as Ethernet offer the
capability for packet broadcast, where a packet is sent to every node on the net-
work. Scaling this to a larger network with routers is a recipe for disaster, as

12 SIP: Understanding the Session Initiation Protocol

broadcast traffic can quickly cause congestion. An alternative approach for this
type of packet distribution is to use a packet reflector that receives packets and
forwards copies to all destinations that are members of a broadcast group. This
also can cause congestion in the form of a “packet storm” [16]. For a number of
years, the Internet Multicast Backbone Network (MBONE), an overlay of the
public Internet, has used multicast routing for high-bandwidth broadcast ses-
sions. Participants who wish to join a multicast session send a request to join the
session to their local MBONE router. That router will then begin to broadcast
the multicast session on that LAN segment. Additional requests to join the ses-
sion from others in the same LAN segment will result in no additional multicast
packets being sent, since the packets are already being broadcast. If the router is
not aware of any multicast participants on its segment, it will not forward any of
the packets. Routing of multicast packets between routers uses special multicast
routing protocols to ensure that packet traffic on the backbone is kept to a mini-
mum. Multicast Internet addresses are reserved in the range 224.0.0.0 to
239.255.255.255. Multicast transport is always UDP, since the hand-
shake and acknowledgments of TCP are not possible. Certain addresses have
been defined for certain protocols and applications. The scope or extent of a
multicast session can be limited using the time-to-live (TTL) field in the IP
header. This field is decremented by each router that forwards the packet, which
limits the number of hops the packet takes. SIP support for multicast will be dis-
cussed in Section 3.10. Multicast is slowly becoming a part of the public Inter-
net as service providers begin supporting it.

1.9 ABNF Representation

The meta-language Augmented Backus-Naur Format [17] is used throughout
RFC 3261 [1] to describe the syntax of SIP, as well as other Internet protocols.
An example construct used to describe a SIP message is as follows:

SIP-message = Request / Response

This is read: A SIP message is either a request or a response. SIP-
message on the left side of the “equals” sign represents what is being defined.
The right side of the “equals” sign contains the definition. The “/” is used to
mean logical OR (note: older versions of ABNF used “|” in place of “/” in gram-
mars). Next, Request and Response are defined in a similar manner using
ABNF:

Request = Request-Line *(message-header) CRLF [message-body]

Request-Line will be defined in another ABNF statement. Elements
enclosed in () are treated as a single element. The “*” means the element may be

SIP and the Internet 13

repeated, separated by at least one space. The minimum and maximum num-
bers can be represented as x*y, which means a minimum of x and maximum of
y. Since the default values are 0 and infinity, a solitary “*” (as in this example)
indicates any number is allowed, including none. CRLF is defined as a carriage
return line feed, or the ASCII characters that are written in Internet hexadecimal
notation as 0x10 and 0x13. Other common ABNF representations include SP
for space (ASCII 0x32). A message body is optional in a Request, and is enclosed
in square brackets [] to indicate this. Comments in the ABNF begin with a
semicolon “;” and continue to the end of the line. Lines continue the same
ABNF definition when they are indented. Tokens are defined in ABNF as any
set of characters besides control characters and separators. Display names and
other components of a SIP header that are not used by the protocol are consid-
ered tokens; they are simply parsed and ignored. For example:

transport = “UDP” / “TCP” / “TLS” / “SCTP”

This ABNF defines four possible tokens, which may be used in a transport
parameter. In this text, few references to ABNF will be made. Instead, SIP mes-
sages and elements will be introduced by description and example rather than by
using ABNF. The ABNF for SIP is in Section 25 of RFC 3261.

References

[1] Leiner, B., et al., “A Brief History of the Internet,” The Internet Society,
http://www.isoc.org/internet/history/brief.html.

[2] Malkin, G., and the IETF Secretariat, “The Tao of the IETF—A Guide for New
Attendees of the Internet Engineering Task Force,” http://www.ietf.org.tao.html.

[3] Handley, M., et al., “SIP: Session Initiation Protocol,” RFC 2543, 1999.

[4] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[5] Bradner, S., “The Internet Standards Process: Revision 3,” RFC 2026, 1996.

[6] “Internet Protocol,” RFC 791, 1981.

[7] Deering, S., and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC
1883, 1995.

[8] Wilder, F., A Guide to the TCP/IP Protocol Suite, Norwood, MA: Artech House, 1998.

[9] “Transmision Control Protocol,” RFC 793, 1981.

[10] Postal, J., “User Datagram Protocol,” RFC 768, 1980.

[11] Dierks, T., et al., “The TLS Protocol Version 1.0,” RFC 2246, 1999.

[12] Stewart, R., et al., “Stream Control Transmission Protocol,” RFC 2960, 1999.

[13] Manning, B., “DNS NSPA RRs,” RFC 1348, 1992.

[14] Falstrom, P., “E.164 Number and DNS,” RFC 2916, 2000.

14 SIP: Understanding the Session Initiation Protocol

[15] Berners-Lee, T., L. Masintes, and M. McCahill, “Uniform Resource Locators,” RFC
1738, 1994.

[16] Hersent, O., D. Gurle, and J. Petit, IP Telephony Packet-Based Multimedia Communica-
tions Systems, Reading, MA: Addison-Wesley, 2000, Chapter 8.

[17] Crocker, D., “Standard for the Format of ARPA Internet Text Messages,” RFC 822,
1982.

SIP and the Internet 15

.

2
Introduction to SIP

Often the best way to learn a protocol is to look at examples of its use. While the
terminology, structures, and format of a new protocol can be confusing at first
read, an example message flow can give a quick grasp of some of the key con-
cepts of a protocol. The example message exchanges in this chapter will intro-
duce SIP as defined by RFC 3261 [1].

The first example shows the basic message exchange between two SIP
devices to establish and tear down a session. The second example shows the mes-
sage exchange when a SIP proxy server is used. The third example shows SIP
registration. The fourth example shows a SIP presence and instant message
example. The chapter concludes with a discussion of SIP message transmission
using UDP, TCP, TLS, and SCTP.

The examples will be introduced using call flow diagrams between a called
and calling party, along with the details of each message. Each arrow in the fig-
ures represents a SIP message, with the arrowhead indicating the direction of
transmission. The thick lines in the figures indicate the media stream. In these
examples, the media will be assumed to be RTP [2] packets containing audio,
but it could be another protocol. Details of RTP are covered in Section 7.2.

2.1 A Simple Session Establishment Example

Figure 2.1 shows the SIP message exchange between two SIP-enabled devices.
The two devices could be SIP phones, hand-helds, palmtops, or cell phones. It is
assumed that both devices are connected to an IP network such as the Internet
and know each other’s IP address.

17

The calling party, Tesla, begins the message exchange by sending a SIP
INVITE message to the called party, Marconi. The INVITE contains the
details of the type of session or call that is requested. It could be a simple voice
(audio) session, a multimedia session such as a video conference, or it could be a
gaming session.

The INVITE message contains the following fields:

INVITE sip:marconi@radio.org SIP/2.0
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bKfw19b
Max-Forwards: 70
To: G. Marconi <sip:Marconi@radio.org>
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: 123456789@lab.high-voltage.org
CSeq: 1 INVITE
Subject: About That Power Outage...
Contact: <sip:n.tesla@lab.high-voltage.org>
Content-Type: application/sdp
Content-Length: 158

v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=Phone Call
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

18 SIP: Understanding the Session Initiation Protocol

INVITE

180 Ringing

200 OK

ACK

200 OK

BYE

Media session

Tesla Marconi

Figure 2.1 A simple SIP session establishment example.

Since SIP is a text-encoded protocol, this is actually what the SIP message
would look like “on the wire” as a UDP datagram being transported over, for
example, Ethernet.

The fields listed in the INVITE message are called header fields. They
have the form Header: Value CRLF. The first line of the request message,
called the start line, lists the method, which is INVITE, the Request-URI, then
the SIP version number (2.0), all separated by spaces. Each line of a SIP message
is terminated by a CRLF. The Request-URI is a special form of SIP URI and
indicates the resource to which the request is being sent, also known as the
request target. SIP URIs are discussed in more detail in later sections.

The first header field following the start line shown is a Via header field.
Each SIP device that originates or forwards a SIP message stamps its own
address in a Via header field, usually written as a host name that can be
resolved into an IP address using a DNS query. The Via header field contains
the SIP version number (2.0), a “/”, then UDP for UDP transport, a space, then
the hostname or address, a colon, then a port number, in this example the
“well-known” SIP port number 5060. Transport of SIP using TCP, UDP,
TLS, and SCTP and the use of port numbers are covered later in this chapter.
The branch parameter is a transaction identifier. Responses relating to this
request can be correlated because they will contain this same transaction
identifier.

The next header field shown is the Max-Forwards header field, which
is initialized to some large integer and decremented by each SIP server, which
receives and forwards the request, providing simple loop detection.

The next header fields are the To and From header fields, which show the
originator and destination of the SIP request. When a name label is used, as in
this example, the SIP URI is enclosed in brackets and used for routing the
request. The name label could be displayed during alerting, for example, but is
not used by the protocol.

The Call-ID header field is an identifier used to keep track of a particu-
lar SIP session. The originator of the request creates a locally unique string, then
usually adds an “@” and its host name to make it globally unique. In addition
to the Call-ID, each party in the session also contributes a random identifier,
unique for each call. These identifiers, called tags, are included in the To and
From header fields as the session is established. The initial INVITE shown
contains a From tag but no To tag.

The user agent that generates the initial INVITE to establish the session
generates the unique Call-ID and From tag. In the response to the
INVITE, the user agent answering the request will generate the To tag. The
combination of the local tag (contained in the From header field), remote tag
(contained in the To header field), and the Call-ID uniquely identifies the
established session, known as a “dialog.” This dialog identifier is used by both

Introduction to SIP 19

parties to identify this call because they could have multiple calls set up between
them. Subsequent requests within the established session will use this dialog
identifier, as will be shown in the following examples.

The next header field shown is the CSeq, or command sequence. It con-
tains a number, followed by the method name, INVITE in this case. This
number is incremented for each new request sent. In this example, the command
sequence number is initialized to 1, but it could start at another integer value.

The Via header fields plus the Max-Forwards, To, From,
Call-ID, and CSeq header fields represent the minimum required header
field set in any SIP request message. Other header fields can be included as
optional additional information, or information needed for a specific request
type. A Contact header field is also required in this INVITE message, which
contains the SIP URI of Tesla’s communication device, known as a user agent
(UA); this URI can be used to route messages directly to Tesla. The optional
Subject header field is present in this example. It is not used by the protocol,
but could be displayed during alerting to aid the called party in deciding
whether to accept the call. The same sort of useful prioritization and screening
commonly performed using the Subject and From header fields in an e-mail
message is also possible with a SIP INVITE request. Additional header fields are
present in this INVITE message, which contain the media information neces-
sary to set up the call.

The Content-Type and Content-Length header fields indicate
that the message body is SDP [3] and contains 158 octets of data. The basis for
the octet count of 158 is shown in Table 2.1, where the CR LF at the end of
each line is shown as a ©® and the octet count for each line is shown on the
right-hand side. A blank line separates the message body from the header field
list, which ends with the Content-Length header field. In this case, there
are seven lines of SDP data describing the media attributes that the caller Tesla
desires for the call. This media information is needed because SIP makes no
assumptions about the type of media session to be established—the caller must
specify exactly what type of session (audio, video, gaming) that he wishes to
establish. The SDP field names are listed in Table 2.2, and will be discussed
detail in Section 7.1, but a quick review of the lines shows the basic information
necessary to establish a session.

Table 2.2 includes the:

• Connection IP address (100.101.102.103);

• Media format (audio);

• Port number (49170);

• Media transport protocol (RTP);

• Media encoding (PCM µ Law);

20 SIP: Understanding the Session Initiation Protocol

• Sampling rate (8,000 Hz).

INVITE is an example of a SIP request message. There are five other
methods or types of SIP requests currently defined in the SIP specification
RFC 3261 and others in extension RFCs. The next message in Figure 2.1 is a
180 Ringing message sent in response to the INVITE. This message indi-
cates that the called party Marconi has received the INVITE and that alerting
is taking place. The alerting could be ringing a phone, flashing a message on
a screen, or any other method of attracting the attention of the called party,
Marconi.

Introduction to SIP 21

Table 2.1
Content-Length Calculation Example

LINE TOTAL

v=0©® 05

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org©® 59

s=Phone Call©® 14

c=IN IP4 100.101.102.103©® 26

t=0 0©® 07

m=audio 49170 RTP/AVP 0©® 25

a=rtpmap:0 PCMU/8000©® 22

158

Table 2.2
SDP Data from Example

SDP Parameter Parameter Name

v=0 Version number
o=Tesla 2890844526 2890844526
IN IP4 lab.high-voltage.org

Origin containing name

s=Phone Call Subject
c=IN IP4 100.101.102.103 Connection
t=0 0 Time
m=audio 49170 RTP/AVP 0 Media
a=rtpmap:0 PCMU/8000 Attributes

The 180 Ringing is an example of a SIP response message. Responses
are numerical and are classified by the first digit of the number. A 180 response
is an “informational class” response, identified by the first digit being a 1. Infor-
mational responses are used to convey noncritical information about the prog-
ress of the call. Many SIP response codes were based on HTTP version 1.1
response codes with some extensions and additions. Anyone who has ever
browsed the World Wide Web has likely received a “404 Not Found”
response from a Web server when a requested page was not found. 404 Not
Found is also a valid SIP “client error class” response in a request to an
unknown user. The other classes of SIP responses are covered in Chapter 5.

The response code number in SIP alone determines the way the response is
interpreted by the server or the user. The reason phrase, Ringing in this case,
is suggested in the standard, but any text can be used to convey more informa-
tion. For instance, 180 Hold your horses, I’m trying to wake
him up! is a perfectly valid SIP response and has the same meaning as a 180
Ringing response.

The 180 Ringing response has the following structure:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bKfw19b
;received=100.101.102.103
To: G. Marconi <sip:marconi@radio.org>;tag=a53e42
From: Nikola Tesla <sip:n.tesla@high-voltage.org>>;tag=76341
Call-ID: 123456789@lab.high-voltage.org
CSeq: 1 INVITE
Contact: <sip:marconi@tower.radio.org>
Content-Length: 0

The message was created by copying many of the header fields from the
INVITE message, including the Via, To, From, Call-ID, and CSeq,
then adding a response start line containing the SIP version number, the
response code, and the reason phrase. This approach simplifies the message
processing for responses.

The Via header field contains the original branch parameter but also
has an additional received parameter. This parameter contains the literal IP
address that the request was received from (100.101.102.103), which
typically is the same address that the URI in the Via resolves using DNS
(lab.high-voltage.org).

Note that the To and From header fields are not reversed in the response
message as one might expect them to be. Even though this message is sent to
Marconi from Tesla, the header fields read the opposite. This is because the To
and From header fields in SIP are defined to indicate the direction of the
request, not the direction of the message. Since Tesla initiated this request, all
responses will read To: Marconi From: Tesla.

22 SIP: Understanding the Session Initiation Protocol

The To header field now contains a tag that was generated by Marconi. All
future requests and responses in this session or dialog will contain both the tag
generated by Tesla and the tag generated by Marconi.

The response also contains a Contact header field, which contains an
address at which Marconi can be contacted directly once the session is
established.

When the called party Marconi decides to accept the call (i.e., the phone is
answered), a 200 OK response is sent. This response also indicates that the type
of media session proposed by the caller is acceptable. The 200 OK is an exam-
ple of a “success class” response. The 200 OK message body contains Marconi’s
media information:

SIP/2.0 200 OK
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bKfw19b
;received=100.101.102.103
To: G. Marconi <sip:marconi@radio.org>;tag=a53e42
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: 123456789@lab.high-voltage.org
CSeq: 1 INVITE
Contact: <sip:marconi@tower.radio.org>
Content-Type: application/sdp
Content-Length: 155

v=0
o=Marconi 2890844528 2890844528 IN IP4 tower.radio.org
s=Phone Call
c=IN IP4 200.201.202.203
t=0 0
m=audio 60000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

This response is constructed the same way as the 180 Ringing
response and contains the same To tag and Contact URI. The media capa-
bilities, however, must be communicated in a SDP message body added to the
response. From the same SDP fields as Table 2.2, the SDP contains:

• End-point IP address (200.201.202.203);

• Media format (audio);

• Port number (60000);

• Media transport protocol (RTP);

• Media encoding (PCM µ-Law);

• Sampling rate (8,000 Hz).

The final step is to confirm the media session with an “acknowledgment”
request. The confirmation means that Tesla has received successfully Marconi’s

Introduction to SIP 23

response. This exchange of media information allows the media session to be
established using another protocol, RTP in this example.

ACK sip:marconi@tower.radio.org SIP/2.0
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bK321g
Max-Forwards: 70
To: G. Marconi <sip:marconi@radio.org>;tag=a53e42
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: 123456789@lab.high-voltage.org
CSeq: 1 ACK
Content-Length: 0

The command sequence, CSeq, has the same number as the INVITE,
but the method is set to ACK. At this point, the media session begins using the
media information carried in the SIP messages. The media session takes place
using another protocol, typically RTP. The branch parameter in the Via
header field contains a new transaction identifier than the INVITE, since an
ACK sent to acknowledge a 200 OK is considered a separate transaction.

This message exchange shows that SIP is an end-to-end signaling protocol.
A SIP network, or SIP server is not required for the protocol to be used. Two
end points running a SIP protocol stack and knowing each other’s IP addresses
can use SIP to set up a media session between them. Although less obvious, this
example also shows the client-server nature of the SIP protocol. When Tesla
originates the INVITE request, he is acting as a SIP client. When Marconi
responds to the request, he is acting as a SIP server. After the media session is
established, Marconi originates the BYE request and acts as the SIP client, while
Tesla acts as the SIP server when he responds. This is why a SIP-enabled device
must contain both SIP server and SIP client software—during a typical session,
both are needed. This is quite different from other client-server Internet proto-
cols such as HTTP or FTP. The Web browser is always an HTTP client, and
the Web server is always an HTTP server, and similarly for FTP. In SIP, an end
point will switch back and forth during a session between being a client and a
server.

In Figure 2.1, a BYE request is sent by Marconi to terminate the media
session:

BYE sip:n.tesla@lab.high-voltage.org SIP/2.0
Via: SIP/2.0/UDP tower.radio.org:5060;branch=z9hG4bK392kf
Max-Forwards: 70
To: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
From: G. Marconi <sip:marconi@radio.org>;tag=a53e42
Call-ID: 123456789@lab.high-voltage.org
CSeq: 1 BYE
Content-Length: 0

24 SIP: Understanding the Session Initiation Protocol

The Via header field in this example is populated with Marconi’s host
address and contains a new transaction identifier since the BYE is considered a
separate transaction from the INVITE or ACK transactions shown previously.
The To and From header fields reflect that this request is originated by Marconi,
as they are reversed from the messages in the previous transaction. Tesla, how-
ever, is able to identify the dialog using the presence of the same local and remote
tags and Call-ID as the INVITE, and tear down the correct media session.

Notice that all the branch IDs shown in the example so far begin with
the string z9hG4bK. This is a special string that indicates that the branch ID
has been calculated using strict rules defined in RFC 3261 and is as a result
usable as a transaction identifier.1

The confirmation response to the BYE is a 200 OK:

SIP/2.0 200 OK
Via: SIP/2.0/UDP tower.radio.org:5060;branch=z9hG4bK392kf
;received=200.201.202.203
To: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
From: G. Marconi <sip:marconi@radio.org>;tag=a53e42
Call-ID: 123456789@lab.high-voltage.org
CSeq: 1 BYE
Content-Length: 0

The response echoes the CSeq of the original request: 1 BYE.

2.2 SIP Call with Proxy Server

In the SIP message exchange of Figure 2.1, Tesla knew the IP address of Mar-
coni and was able to send the INVITE directly to that address. This will not be
the case in general—an IP address cannot be used like a telephone number. One
reason is that IP addresses are often dynamically assigned due to the shortage of
IPv4 addresses. For example, when a PC dials in to an Internet service provider
(ISP) modem bank, an IP address is assigned using DHCP to the PC from a
pool of available addresses allocated to the ISP. For the duration of the session,
the IP address does not change, but it is different for each dial-in session. Even
for an “always on” Internet connection such as a DSL line, a different IP address
can be assigned after each reboot of the PC. Also, an IP address does not
uniquely identify a user, but identifies a node on a particular physical IP net-
work. You have one IP address at your office, another at home, and still another
when you log on remotely when you travel. Ideally, there would be one address

Introduction to SIP 25

1. This string is needed because branch IDs generated by user agents prior to RFC 3261 may
have constructed branch IDs which are not suitable as transaction identifiers. In this case, a
client must construct its own transaction identifier using the To tag, From tag, Call-ID,
and CSeq.

that would identify you wherever you are. In fact, there is an Internet protocol
that does exactly that, with e-mail. SMTP uses a host or system independent
name (an e-mail address) that does not correspond to a particular IP address. It
allows e-mail messages to reach you regardless of what your IP address is and
where you are logged on to the Internet.

In addition, a request routed using only IP addresses will reach only one
end point—only one device. Since communication is typically user-to-user
instead of device-to-device, a more useful addressing scheme would allow a par-
ticular user to call another particular user, which would result in the request
reaching the target user regardless of which device they are currently using, or if
they have multiple devices.

SIP uses e-mail-like names for addresses. The addressing scheme is part of
a family of Internet addresses known as URIs. SIP URIs can also handle tele-
phone numbers, transport parameters, and a number of other items. A full
description, including examples, can be found in Section 4.2. For now, the key
point is that a SIP URI is a name that is resolved to an IP address by using SIP
proxy server and DNS lookups at the time of the call, as will be seen in the next
example. Figure 2.2 shows an example of a more typical SIP call with a type of
SIP server called a “proxy server.” In this example, the caller Schroedinger calls
Heisenberg through a SIP proxy server. A SIP proxy operates in a similar way to
a proxy in HTTP and other Internet protocols. A SIP proxy does not set up or
terminate sessions, but sits in the middle of a SIP message exchange, receiving
messages and forwarding them. This example shows one proxy, but there can be
multiple proxies in a signaling path.

SIP has two broad categories of URIs: ones that correspond to a user, and
ones that correspond to a single device or end point. The user URI is known as
an address of record (AOR) and a request sent to an address of record will require
database lookups and service and feature operations and can result the request
being sent to one or more end devices. A device URI is known as a contact, and
typically does not require database lookups. An address of record URI is usually
used in To and From header fields, as this is the general way to reach a person
and is suitable for storing in address books and in returning missed calls. A device
URI is usually used in a Contact header field and is associated with a particular
user for a shorter period of time. The method of relating (or binding) a contact
URI with an address of record URI will be discussed in Section 2.3.

Because Schroedinger does not know exactly where Heisenberg is cur-
rently logged on and which device they are currently using, a SIP proxy server is
used to route the INVITE. First, a DNS lookup of Heisenberg’s SIP URI
domain name (munich.de) is performed, which returns the IP address of the
proxy server proxy.munich.de, which handles that domain. The INVITE
is then sent to that IP address:

26 SIP: Understanding the Session Initiation Protocol

INVITE sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
t=0 0
c=IN IP4 100.101.102.103
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The proxy looks up the SIP URI in the Request-URI (sip:wer-
ner.heisenberg@munich.de) in its database and locates Heisenberg.
This completes the two-step process:

1. DNS lookup by user agent to locate the IP address of the proxy; data-
base lookup is performed by the proxy to locate the IP address;

Introduction to SIP 27

INVITE

180 Ringing

200 OK

ACK

200 OK

BYE

Media session

INVITE

180 Ringing

200 OK

Schroedinger Proxy server Heisenberg

Figure 2.2 SIP call example with proxy server.

2. The INVITE is then forwarded to Heisenberg’s IP address with the
addition of a second Via header field stamped with the address of
the proxy:

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 69
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
c=IN IP4 100.101.102.103
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

From the presence of two Via header fields, Heisenberg knows that the
INVITE has been routed through a proxy server. Having received the
INVITE, a 180 Ringing response is sent by Heisenberg to the proxy:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

Again, this response contains the Via header fields, and the To,
From, Call-ID, and CSeq header fields from the INVITE request. The
response is then sent to the address in the first Via header field,
proxy.munich.de to the port number listed in the Via header field:
5060, in this case. Notice that the To header field now has a tag added to it to
identify this particular dialog. Only the first Via header field contains a
received parameter, since the second Via header already contains the literal
IP address in the URI. The Contact header field contains the device URI of
Heisenberg.

The proxy receives the response, checks that the first Via header field has
its own address (proxy.munich.de), uses the transaction identifier in the

28 SIP: Understanding the Session Initiation Protocol

Via header, then removes that Via header field, then forwards the response to
the address in the next Via header field: IP address 100.101.102.103,
port 5060. The resulting response sent by the proxy to Schroedinger is:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

The use of Via header fields in routing and forwarding SIP messages
reduces complexity in message forwarding. The request required a database
lookup by the proxy to be routed. The response requires no lookup because the
routing is imbedded in the message in the Via header fields. Also, this ensures
that responses route back through the same set of proxies as the request. The call
is accepted by Heisenberg, who sends a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
s=Phone Call
c=IN IP4 200.201.202.203
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The proxy forwards the 200 OK message to Schroedinger after removing
the first Via header field:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Type: application/sdp

Introduction to SIP 29

Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
c=IN IP4 200.201.202.203
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The presence of the Contact header field with the SIP URI address of
Heisenberg in the 200 OK allows Schroedinger to send the ACK directly to
Heisenberg, bypassing the proxy. (Note that the Request-URI is set to Heisen-
berg’s Contact URI and not the URI in to To header field.) This request, and
all future requests continue to use the tag in the To header field:

ACK sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKka42
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 ACK
Content-Length: 0

This shows that the proxy server is not really “in the call.” It facilitates the
two end points locating and contacting each other, but it can drop out of the
signaling path as soon as it no longer adds any value to the exchange. A proxy
server can force further messaging to route through it by inserting a Record-
Route header field, which is described in Section 6.2.12. In addition, it is pos-
sible to have a proxy server that does not retain any knowledge of the fact that
there is a session established between Schroedinger and Heisenberg (referred to
as call state information). This is discussed in Section 3.3.1. Note that the media
is always end-to-end and not through the proxy.

In SIP the path of the signaling messages is totally independent of the path
of the media. In telephony, this is described as the separation of control channel
and bearer channel.

The media session is ended when Heisenberg sends a BYE message:

BYE sip:schroed5244@pc33.aol.com SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
Max-Forwards: 70
To: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
Call-ID: 10@100.101.102.103
CSeq: 2000 BYE
Content-Length: 0

30 SIP: Understanding the Session Initiation Protocol

Note that Heisenberg’s CSeq was initialized to 2000. Each SIP device
maintains its own independent CSeq number space. This is explained in some
detail in Section 6.1.5. The Request-URI is set to Schroedinger’s Contact
URI. Schroedinger confirms with a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
To: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
Call-ID: 10@100.101.102.103
CSeq: 2000 BYE
Content-Length: 0

Not discussed in the previous example is the question of how the database
accessed by the proxy contained Heisenberg’s current IP address. There are
many ways this could be done using SIP or other protocols. The mechanism for
accomplishing this using SIP is called registration and is discussed in the next
section.

2.3 SIP Registration Example

In this example, shown in Figure 2.3, Heisenberg sends a SIP REGISTER
request to a type of SIP server known as a registrar server. The SIP registrar
server receives the message uses the information in the request to update the
database used by proxies to route SIP requests. Contained in the REGISTER
message To header is the SIP URI address of Heisenberg. This is Heisenberg’s
“well-known” address, perhaps printed on his business card or published on a
Web page or in a directory. Also contained in the REGISTER is a Contact
URI, which represents the current device (and its IP address) that the user

Introduction to SIP 31

REGISTER
Contact: sip:werner.heisenberg@200.201.202.203

200 OK

Heisenberg Registrar server

Figure 2.3 SIP registration example.

Heisenberg is currently using. The registrar binds the SIP URI of Heisenberg
and the IP address of the device in a database that can be used, for example, by
the proxy server in Figure 2.2 to locate Heisenberg. When a proxy server with
access to the database receives an INVITE request addressed to Heisenberg’s
URI (i.e., an incoming call), the request will be proxied to the Contact URI
of the currently registered device.

This registration has no real counterpart in the telephone network, but it is
very similar to the registration a wireless phone performs when it is turned on. A
cell phone sends its identity to the base station (BS), which then forwards the
location and phone number of the cell phone to a home location register (HLR).
When the mobile switching center (MSC) receives an incoming call, it consults
the HLR to get the current location of the cell phone. Further aspects of SIP
mobility are discussed in Chapter 9.

The REGISTER message sent by Heisenberg to the SIP registrar server
has the form:

REGISTER sip:registrar.munich.de SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKus19
Max-Forwards: 70
To: Werner Heisenberg <sip:werner.heisenberg@munich.de>
From: Werner Heisenberg <sip:werner.heisenberg@munich.de>
;tag=3431
Call-ID: 23@200.201.202.203
CSeq: 1 REGISTER
Contact: sip:werner.heisenberg@200.201.202.203
Content-Length: 0

The Request-URI in the start line of the message contains the address of
the registrar server. In a REGISTER request, the To header field contains the
URI that is being registered, in this case sip:werner.heisen-
berg@munich.de. This results in the To and From header fields usually
being the same, although an example of third-party registration is given in
Section 4.1.2. The SIP URI in the Contact address is stored by the registrar.

The registrar server acknowledges the successful registration by sending a
200 OK response to Heisenberg. The response echoes the Contact informa-
tion that has just been stored in the database and includes a To tag:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKus19
To: Werner Heisenberg <sip:werner.heisenberg@munich.de>;tag=8771
From: Werner Heisenberg <sip:werner.heisenberg@munich.de>
;tag=3431
Call-ID: 23@200.201.202.203
CSeq: 1 REGISTER
Contact: <sip:werner.heisenberg@munich.de>;expires=3600
Content-Length: 0

32 SIP: Understanding the Session Initiation Protocol

The Contact URI is returned along with an expires parameter, which
indicates how long the registration is valid, which in this case is 1 hour (3,600 sec-
onds). If Heisenberg wants the registration to be valid beyond that interval, he
must send another REGISTER request within the expiration interval.

Registration is typically automatically performed on initialization of a SIP
device and at regular intervals determined by the expiration interval chosen by
the registrar server. Registration is an additive process—more than one device
can be registered against a SIP URI. If more than one device is registered, a
proxy may forward the request to either or both devices, either in a sequential or
parallel search. Additional register operations can be used to clear registrations
or retrieve a list of currently registered devices.

2.4 SIP Presence and Instant Message Example

This example shows how SIP is used in a presence and instant messaging appli-
cation. Presence information can be thought of as the state of a user or device at
a particular instant. It can be as simple as whether a particular user is signed in or
not, whether they are active at their station, or idle or away. For a mobile device,
presence information can include the actual location in terms of coordinates, or
in general terms such as “in the office,” “on travel,” or “in the lab.” Presence
information can even include information about the status or mood of the user,
whether they are working, relaxing, or socializing. For all these examples, a pres-
ence protocol is mainly concerned about establishing subscriptions or long-term
relationships between devices about transferring status information, and the
delivery of that information. The actual information transferred, and how that
information is presented to the user is application dependent. In terms of the
SIP protocol, SUBSCRIBE is used to request status or presence updates from
the presence server (or “presentity”), and NOTIFY is used to deliver that infor-
mation to the requestor or presence “watcher.” SIP presence uses the SIP Events
extensions [4] and instant message extensions [5].

In this example, Chebychev wishes to communicate with Poisson. The
message flow is shown in Figure 2.4. To find out the status of Poisson, Cheby-
chev subscribes to Poisson’s presence information by sending a SUBSCRIBE
message to Poisson. The request looks like:

SUBSCRIBE sip:poisson@probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK348471123
Max-Forwards: 70
To: M. Poisson <sip:poisson@probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: presence

Introduction to SIP 33

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:pafnuty@lecturehall21.academy.ru;transport=tcp>
Event: presence
Content-Length: 0

In this example, TCP is used as the transport for the SIP messages as indi-
cated in the Via header field and in the transport=tcp parameter in the
Contact URI. This request also contains Allow and Allow-Events
header fields, which are used to advertise capabilities. In this example, Cheby-
chev is indicating support for receiving seven methods listed in the Allow
header field, and also presence subscriptions in the Allow-Event header
field. As this SUBSCRIBE is creating a dialog (in an analogous way that an

34 SIP: Understanding the Session Initiation Protocol

Chebychev Poisson

SUBSCRIBE

200 OK

NOTIFY

200 OK

NOTIFY

200 OK

MESSAGE

200 OK

MESSAGE

200 OK

.

.

.

Figure 2.4 SIP presence and instant message example.

INVITE created a dialog in the earlier examples), the From contains a tag but
the To header field does not yet contain a tag.

Poisson accepts the subscription request by sending a 202 Accepted
response back to Chebychev:

SIP/2.0 202 Accepted
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK348471123;received=19.34.3.1
To: M. Poisson <sip:poisson@probability.org>;tag=25140
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Event: presence
Expires: 3600
Content-Length: 0

In this example, there are no proxy servers between Chebychev’s watcher
and Poisson’s presence server, although there could be any number. The
Expires header field indicates that the subscription expires in 1 hour. The
actual subscription is begun by Poisson sending the first NOTIFY back to
Chebychev:

NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4321
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: dialog
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=3600
Event: presence
Content-Type: application/cpim-pidf+xml
Content-Length: 244

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"
entity="sip:poisson@probability.org">
<tuple id="452426775">
<status>
<basic>closed</basic>
</status>
</tuple>
</presence>

Introduction to SIP 35

Note that this NOTIFY is sent within the dialog established with the
SUBSCRIBE—it uses the same dialog identifier (Call-ID, local and remote
tags)—and the request is sent to the Contact URI provided by Chebychev
in the subscription request. The Subscription-State header field indi-
cates that the subscription has been authorized and activate and that it will
expire in 1 hour unless refreshed by Chebychev (using another SUBSCRIBE
request).

The Common Presence and Instant Message Presence Information Data
Format (CPIM PIDF) [6] XML message body contains the status information
that Poisson is currently off-line (closed).

Chebychev sends a 200 OK response to the NOTIFY to confirm that it
has been received:

SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4321;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Content-Length: 0

Later, when Poisson does sign in, this information is provided in a second
NOTIFY containing the change in status:

NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK334241
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: presence
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=1800
Event: presence
Content-Type: application/cpim-pidf+xml
Content-Length: 325

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"
entity="sip:poisson@probability.org">
<tuple id="452426775">
<status>
<basic>open</basic>
</status>
<contact>sip:s.possion@dist.probability.org;transport=tcp
</contact>

36 SIP: Understanding the Session Initiation Protocol

</tuple>
</presence>

The expiration time indicated in the Subscription-State header
field indicates that 30 minutes have passed since the subscription was estab-
lished. The CPIM PIDF XML message body now indicates that Poisson is
on-line (open) and can be reached via the URI sip:s.pos-
sion@dist.probability.org;transport=tcp.

Chebychev confirms receipt of the NOTIFY with a 200 OK response:

SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK334241;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Content-Length: 0

Now that Chebychev knows that Poisson is on-line, he sends an instant
message to him using the Contact URI from the NOTIFY:

MESSAGE sip:s.possion@dist.probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK3gtr2
Max-Forwards: 70
To: M. Poisson <sip:s.possion@dist.probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 9

Hi There!

Notice that this MESSAGE is sent outside the dialog. Instant messages
sent using the MESSAGE method in SIP are like page messages—they are not
part of any dialog. As a result, each message contains a new Call-ID and
From tag. The 200 OK response is used to acknowledge receipt of the instant
message:

SIP/2.0 200 OK
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK3gtr2;received=19.34.3.1
To: M. Poisson <sip:s.possion@dist.probability.org>;tag=2321
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Content-Length: 0

Introduction to SIP 37

Poison answers with a reply, which is also sent outside of any dialog, with a
new Call-ID and From tag (an instant message response is never sent in a
200 OK reply to a MESSAGE request):

MESSAGE sip:chebychev@academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4526245
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>
From: M. Poisson <sip:s.possion@dist.probability.org>;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 30

Well, hello there to you, too!

which receives a 200 OK reply:

SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4526245;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=mc3bg5q77wms
From: M. Poisson <sip:s.possion@dist.probability.org>;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Content-Length: 0

Other presence packages define other sets of information that can be
requested by watchers from presence servers.

2.5 Message Transport

As discussed in Chapter 1, SIP is a layer four, or application layer, protocol in
the Internet Multimedia Protocol stack shown in Figure 1.1. RFC 3261 defines
the use of TCP, UDP, or TLS transport. An extension document describes how
SCTP can be used. How a SIP message is transported using these four protocols
will be described in the following sections. The compression of SIP for transport
over low bandwidth connections, such as wireless, is discussed in Chapter 9.

2.5.1 UDP Transport

When using UDP, each SIP request or response message is carried in a single
UDP datagram or packet. For a particularly large message body, there is a com-
pact form of SIP that saves space in representing some header fields with a single

38 SIP: Understanding the Session Initiation Protocol

character. This is discussed in Chapter 6. Figure 2.5 shows a SIP BYE request
exchange during an established SIP session using UDP.

The source port is chosen from a pool of available port numbers (above
49172), or sometimes the default SIP port of 5060 is used. The lack of hand-
shaking or acknowledgment in UDP transport means that a datagram could be
lost and a SIP message along with it. The checksum, however, enables UDP to
discard errored datagrams, allowing SIP to assume that a received message is
complete and error-free. The reliability mechanisms built into SIP to handle
message retransmissions are described in Section 3.5. The reply is also sent to
port 5060, or the port number listed in the top Via header field.

UDP provides the simplest transport for user agents and servers and allows
them to operate without transport layer state. However, UDP offers no conges-
tion control. A series of lost packets on a heavily loaded IP link can cause retrans-
missions, which in turn produce more lost packets and can push the link into
congestion collapse. Also, UDP may only be used for SIP when the message (and
its response) is known to be less than the Message Transport Unit (MTU) size of
the IP network. For simple SIP messages, this is not a problem. However, for large
messages containing multiple message bodies and large header fields, this can be a
problem. In this case, TCP must be used, since SIP does not support fragmenta-
tion at the SIP layer.

Introduction to SIP 39

BYE

200 OK

200.201.202.203

UDP Datagram
Source IP: 100.101.102.103
Source port: 42172
Destination IP: 200.201.202.203
Destination port: 5060

UDP Datagram
Source IP: 200.201.202.203
Source port: 60134
Destination IP: 100.101.102.103
Destination port: 5060

100.101.102.103

Figure 2.5 Transmission of SIP messages using UDP.

2.5.2 TCP Transport

TCP provides a reliable transport layer, but at a cost of complexity and transmis-
sion delay over the network. The use of TCP for transport in a SIP message
exchange is shown in Figure 2.6. This example shows an INVITE sent by a user
agent at 100.101.102.103 to a type of SIP server called a redirect server at
200.201.202.203. A SIP redirect server does not forward INVITE
requests like a proxy, but looks up the destination address and instead returns
that address in a redirection class (3xx) response. The 302 Moved Tempo-
rarily response is acknowledged by the user agent with an ACK message. Not
shown in this figure is the next step, where the INVITE would be re-sent to the
address returned by the redirect server. As in the UDP example, the well-known
SIP port number of 5060 is chosen for the destination port, and the source port
is chosen from an available pool of port numbers. Before the message can be sent,
however, the TCP connection must be opened between the two end points. This
transport layer datagram exchange is shown in Figure 2.6 as a single arrow, but it
is actually a three-way handshake between the end points as shown in Figure 1.2.
Once the connection is established, the messages are sent in the stream.

The Content-Length header field is critical when TCP is used to
transport SIP, since it is used to find the end of one message and the start of the
next. When TCP or another stream-based transport is used, Content-
Length is a required header field in all requests and responses.

To send the 302 Moved Temporarily response, the server typi-
cally opens a new TCP connection in the reverse direction, using 5060 (or
the port listed in the top Via header field) as the destination port.2 The
acknowledgment ACK is sent in the TCP stream used for the INVITE. Because
this concludes the SIP session, the connection is then closed. If a TCP connec-
tion closes during a dialog, a new one can be opened to send a request within the
dialog, such as a BYE request to terminate the media session.

As previously mentioned, TCP provides reliable transport and also conges-
tion control. It can also transport SIP messages of arbitrary size. The disadvan-
tages of TCP include the setup delay in establishing the connection and the
need for servers to maintain this connection state at the transport layer.

2.5.3 TLS Transport

New to RFC 3261 is support of TLS version 1.0 [8] in the SIP specification. SIP
can use TLS over TCP as for encrypted transport with the additional capabilities

40 SIP: Understanding the Session Initiation Protocol

2. There is work underway to enable TCP connection reuse [7]. This would allow responses to
be sent over the same connection as the request, and also allow multiple transactions and dia-
logs to share a TCP connection, for example, between two proxy servers.

of authentication. In Section 4.2.1 the secure SIP URI scheme (sips) will be
discussed, which uses TLS transport. The default SIP port number for TLS
transport is port 5061.

If TLS is used between two proxies, each proxy may have a certificate
allowing mutual authentication. However, if a client does not have a certificate,
TLS can be used in conjunction with another authentication mechanism, such
as SIP digest, to allow mutual authentication.

The SIP use of TLS takes advantage of both the encryption and authenti-
cation services. However, the encryption and authentication is only useful on a
single hop. If a SIP request takes multiple hops (i.e., includes one or more proxy
servers), TLS is not useful for end-to-end authentication. S/MIME encryption,
described in Section 3.7 solves this problem.

SIP Proxies must support TLS and will likely use TLS for long-lived
connections.

2.5.4 SCTP Transport

An extension to SIP defines the use of SCTP [9] with SIP to provide reliable
stream-based transport with some advantages over TCP transport for a

Introduction to SIP 41

Open TCP Connection

200.201.202.203

Source IP: 100.101.102.103
Source port: 41270
Destination IP: 200.201.202.203
Destination port: 5060

INVITE

sent in TCP stream

302 Moved

sent in TCP stream

ACK

sent in TCP stream

Close TCP Connection

100.101.102.103

Figure 2.6 Transmission of SIP messages using TCP.

message-based protocol such as SIP. First, it has built-in message segmentation,
so that individual SIP messages are separated at the transport layer. With TCP,
the SIP protocol must use the Content-Length calculation to delineate
messages. If a TCP connection is being shared by a number of SIP transactions
and dialogs, the “head of line blocking” problem discussed in Section 1.4.3.4
can cause the buffer to contain valid SIP messages that could be processed by the
server while the retransmission takes place. Due to its message level delineation,
SCTP is able to continue to forward messages to the application layer while
simultaneously requesting a retransmission of a dropped message. Note that this
is only a problem when multiple applications are multiplexed over a single TCP
connection. An example of this is a TCP link between two signaling proxy serv-
ers. For a user agent to proxy TCP connection, this is usually not a problem
unless the two have many simultaneous dialogs established.

SCTP also supports multihoming, so if one of a pair of load balancing SIP
proxies fails, the other can immediately begin receiving the messages without
even requiring a DNS or other database lookup.

The SIP usage of SCTP is described in [10], which defines the syntax for
the transport=sctp URI parameter.

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” RFC
3550, 2003.

[3] Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, 1998.

[4] Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265,
2002.

[5] Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,”
RFC 3428, 2002.

[6] Sugano, H., et al., “Common Presence and Instant Messaging (CPIM) Presence Informa-
tion Data Format,” IETF Internet-Draft, Work in Progress, 2002.

[7] Mahy, R., “Requirements for Connection Reuse in the Session Initiation Protocol (SIP),”
IETF Internet-Draft, Work in Progress, 2003

[8] Dierks, T., et al., “The TLS Protocol Version 1.0,” RFC 2246, 1999.

[9] Stewart, R., et al., “Stream Control Transmission Protocol,” RFC 2960, 1999.

[10] Rosenberg, J., H. Schulzrinne, and G. Camarillo, “The Stream Control Transmission Pro-
tocol as a Transport for the Session Initiation Protocol,” IETF Internet-Draft, Work in
Progress, 2002.

42 SIP: Understanding the Session Initiation Protocol

3
SIP Clients and Servers

The client-server nature of SIP has been introduced in the example message
flows of Chapter 2. In this chapter, the types of clients and servers in a SIP net-
work will be introduced and defined.

3.1 SIP User Agents

A SIP-enabled end-device is called a SIP user agent [1]. One purpose of SIP
is to enable sessions to be established between user agents. As the name implies,
a user agent takes direction or input from a user and acts as an agent on their
behalf to set up and tear down media sessions with other user agents. In most
cases, the user will be a human, but the user could be another protocol, as in the
case of a gateway (described in the next section). A user agent must be capable of
establishing a media session with another user agent.

A UA must maintain state on calls that it initiates or participates in.
A minimum call state set includes the local and remote tags, Call-ID, local
and remote CSeq header fields, along with the route set and any state informa-
tion necessary for the media. This information is used to store the dialog
information and for reliability. The remote CSeq storage is necessary to distin-
guish between a re-INVITE and a retransmission. A re-INVITE is used to
change the session parameters of an existing or pending call. It uses the
same Call-ID, but the CSeq is incremented because it is a new request. A
retransmitted INVITE will contain the same Call-ID and CSeq as a previ-
ous INVITE. Even after a call has been terminated, call state must be main-
tained by a user agent for at least 32 seconds in case of lost messages in the call
tear-down.

43

User agents silently discard an ACK for an unknown dialog. Requests to an
unknown URI receive a 404 Not Found Response. A user agent receiv-
ing a request for an unknown dialog responds with a 481 Dialog/Trans-
action Does Not Exist. Responses from an unknown dialog are also
silently discarded. These silent discards are necessary for security. Otherwise, a
malicious user agent could gain information about other SIP user agents by
spamming fake requests or responses.

Although not required to understand every response code defined, a mini-
mal implementation must to be able to interpret any unknown response based
on the class (first digit of the number) of the response. That is, if an undefined
498 Wrong Phase of the Moon response is received, it must be treated
as a 400 Client Error.

A user agent responds to an unsupported request with a 501 Not
Implemented response. A SIP UA must support UDP transport and also
TCP if it sends messages greater than 1,000 octets in size.

A SIP user agent contains both a client application and a server applica-
tion. The two parts are a user agent client (UAC) and user agent server (UAS).
The UAC initiates requests while the UAS generates responses. During a ses-
sion, a user agent will usually operate as both a UAC and a UAS.

A SIP user agent must also support SDP for media description. Other
types of media description protocols can be used in bodies, but SDP support is
mandatory. Details of SDP are in Section 7.1.

A UA must understand any extensions listed in a Require header field
in a request. Unknown header fields may be ignored by a UA.

A UA should advertise its capabilities and features in any request it sends.
This allows other UAs to learn of them without having to make an explicit capa-
bilities query. For example, the methods that a UA supports should be listed in
an Allow header field. SIP extensions should be listed in a Supported
header field. Message body types that are supported should be listed in an
Accept header field.

3.2 Presence Agents

A presence agent (PA) [2] is a SIP device that is capable of receiving subscription
requests and generating state notifications as defined by the SIP Events specifi-
cation [3]. An example of a presence agent is in the example of Section 2.4. A
presence agent supports the presence Event package [2], responds to
SUBSCRIBE requests, and sends NOTIFY requests.

A presence agent can collect presence information from a number of
devices. Presence information can come from a SIP device registering, a SIP
device publishing presence information [4], or from many other non-SIP
sources.

44 SIP: Understanding the Session Initiation Protocol

A presence server is a server that sometimes acts as a presence agent and
supplies presence information and other times acts as a proxy, forwarding
SUBSCRIBE requests to another presence agent.

A presence agent first authenticates a subscription request. If the authenti-
cation passes, it establishes a dialog and sends the notifications over that dialog.
The subscription can be refreshed by receiving new SUBSCRIBE requests.

3.3 Back-to-Back User Agents

A back-to-back user agent (B2BUA) is a type of SIP device that receives a SIP
request, then reformulates the request and sends it out as a new request. Responses
to the request are also reformulated and sent back in the opposite direction. For
example, a B2BUA device can be used to implement an anonymizer service in
which two SIP UAs can communicate without either party learning the other par-
ty’s URI, IP address, or any other information. To achieve this, an anonymizer
B2BUA would reformulate a request with an entirely new From, Via, Con-
tact, Call-ID, and SDP media information, also removing any other SIP
header fields that might contain information about the calling party. The response
returned would also change the Contact and SDP media information from the
called party. The modified SDP would point to the B2BUA itself, which would
forward RTP media packets from the called party to the calling party and vice-
versa. In this way, neither end point learns any identifying information about the
other party during the session establishment. (Of course, the calling party needs to
know the called party’s URI in order for the call to take place.)

Sometimes B2BUAs are employed to implement other SIP services. How-
ever, they break the end-to-end nature of an Internet protocol such as SIP. Also, a
B2BUA is a call-stateful single point of failure in a network, which means their use
will reduce the reliability of SIP sessions over the Internet. The relayed media suf-
fers from increased latency and increased probability of packet loss, which can
reduce the quality of the media session. Geographic distribution of B2BUAs can
reduce these effects, but the problem of selecting the best B2BUA for a particular
session is a very difficult one since the source and destination IP address of the
media are not known until the session is actually established (with a 200 OK).

The most common form of B2BUA present in SIP networks is application
layer gateways (ALG). Some firewalls have ALG functionality built in, which
allows a firewall to permit SIP and media traffic while still maintaining a high
level of security. The use of ALGs is described in Section 3.11.

3.4 SIP Gateways

A SIP gateway is an application that interfaces a SIP network to a network utiliz-
ing another signaling protocol. In terms of the SIP protocol, a gateway is just a

SIP Clients and Servers 45

special type of user agent, where the user agent acts on behalf of another proto-
col rather than a human. A gateway terminates the signaling path and can also
terminate the media path, although this is not always the case. For example, a
SIP to H.323 gateway terminates the SIP signaling path and converts the signal-
ing to H.323, but the SIP user agent and H.323 terminal can exchange RTP
media information directly with each other without going through the gateway.
An example of this is described in Section 10.6.

A SIP to Public Switched Telephone Network (PSTN) gateway terminates
both the signaling and media paths. SIP can be translated into, or interwork
with, common PSTN protocols such as Integrated Services Digital Network
(ISDN), ISDN User Part (ISUP), and other Circuit Associated Signaling (CAS)
protocols, which are briefly described in Section 7.4. A PSTN gateway also con-
verts the RTP media stream in the IP network into a standard telephony trunk
or line. The conversion of signaling and media paths allows calling to and from
the PSTN using SIP. Examples of these gateways are described in Sections 10.3
and 10.4. Figure 3.1 shows a SIP network connected via gateways with the
PSTN and a H.323 network. There is work underway to standardize the
SIP/H.323 interworking function [5].

In the figure, the SIP network, PSTN network, and H.323 networks are
shown as clouds, which obscure the underlying details. Shown connecting to the
SIP cloud are SIP IP telephones, SIP-enabled PCs, and corporate SIP gateways
with attached telephones. The clouds are connected by gateways. Shown

46 SIP: Understanding the Session Initiation Protocol

SIP network

PSTN

H.323
network

Black
phones

Corporate SIP
gateway

SIP
enabled
PC SIP phone

SIP/H.323
gateway

SIP/PSTN
gateway

Black
phones

Black phone Corporate
PBX

ISDN
phone

H.323
terminal

H.323 enabled
PC

Figure 3.1 SIP network with gateways.

attached to the H.323 network are H.323 terminals and H.323-enabled PCs.
The PSTN cloud connects to ordinary analog black telephones (so-called
because of the original color of their shell), digital ISDN telephones, and corpo-
rate private branch exchanges (PBXs). PBXs connect to the PSTN using shared
trunks and provide line interfaces for either analog or digital telephones.

Gateways are sometimes decomposed into a media gateway (MG) and a
media gateway controller (MGC). An MGC is sometimes called a call agent
because it manages call control protocols (signaling), while the MG manages the
media connection. This decomposition is transparent to SIP, and the protocols
used to decompose a gateway are not described in this book.

Another difference between a user agent and a gateway is the number of
users supported. While a user agent typically supports a single user (although
perhaps with multiple lines), a gateway can support hundreds or thousands
of users. A PSTN gateway could support a large corporate customer, or an entire
geographic area. As a result, a gateway does not REGISTER every user it sup-
ports in the same way that a user agent might. Instead, a non-SIP protocol
can be used to inform proxies about gateways and assist in routing. One proto-
col that has been proposed for this is the Telephony Routing over IP (TRIP)
protocol [6], which allows an interdomain routing table of gateways to be devel-
oped. Another protocol called Telephony Gateway Registration Protocol
(TGREP) [7] has also been developed to allow a gateway to register with a proxy
server within a domain.

3.5 SIP Servers

SIP servers are applications that accept SIP requests and respond to them. A SIP
server should not be confused with a user agent server or the client-server nature
of the protocol, which describe operation in terms of clients (originators of
requests) and servers (originators of responses to requests). A SIP server is a dif-
ferent type of entity. The types of SIP servers discussed in this section are logical
entities. Actual SIP server implementations may contain a number of server
types, or may operate as a different type of server under different conditions.
Because servers provide services and features to user agents, they must support
both TCP, TLS, and UDP for transport. Figure 3.2 shows the interaction of
user agents, servers, and a location service. Note that the protocol used between
a server and the location service or database is not in general SIP and is not dis-
cussed in this book.

3.5.1 Proxy Servers

A SIP proxy server receives a SIP request from a user agent or another proxy and
acts on behalf of the user agent in forwarding or responding to the request. A

SIP Clients and Servers 47

proxy is not a B2BUA since it is only allowed to modify requests and responses
according to strict rules set out in RFC 3261. These rules preserve the end-to-
end transparency of the SIP signaling while still allowing a proxy server to per-
form valuable services and functions for user agents.

A proxy server typically has access to a database or a location service to aid
it in processing the request (determining the next hop). The interface between
the proxy and the location service is not defined by the SIP protocol. A proxy
can use any number of types of databases to aid in processing a request. Data-
bases could contain SIP registrations, presence information, or any other type of
information about where a user is located. The example of Figure 2.2 intro-
duced a proxy server as a facilitator of SIP message exchange providing user loca-
tion services to the caller.

A proxy does not need to understand a SIP request in order to forward
it—any unknown request type is assumed to use the non-INVITE transaction
model. A proxy should not change the order of header fields or in general mod-
ify or delete header fields.

A proxy server is different from a user agent or gateway in three key ways:

1. A proxy server does not issue requests; it only responds to requests
from a user agent. (A CANCEL request is an exception to this rule.)

2. A proxy server has no media capabilities.

3. A proxy server does not parse message bodies; it relies exclusively on
header fields.

48 SIP: Understanding the Session Initiation Protocol

User agent

Redirect or
registration server

Proxy server

User agent

Location
service
or
database

SIP

SIP SIP

RTP media

Figure 3.2 SIP user agent, server, and location service interaction.

Figure 3.3 shows a common network topology known as the SIP Trapezoid.
In this topology, a pair of user agents in different domains establishes a session
using a pair of proxy servers, one in each domain. The trapezoid refers to the
shape formed by the signaling and media messages. In this configuration, each
user agent is configured with a default outbound proxy server, to which it sends all
requests. This proxy server typically will authenticate the user agent and may pull
up a profile of the user and apply outbound routing services. In an interdomain
exchange, DNS SRV queries will be used to locate a proxy server in the other
domain. This proxy, sometimes called an inbound proxy may apply inbound
routing services on behalf of the called party. This proxy also has access to the cur-
rent registration information for the user, and can route the request to the called
party. In general, future SIP requests will be sent directly between the two user
agents, unless one or both proxies inserts a Record-Route header field.

A proxy server can be either stateless or stateful. A stateless proxy server
processes each SIP request or response based solely on the message contents.
Once the message has been parsed, processed, and forwarded or responded to,
no information about the message is stored—no dialog information is stored. A
stateless proxy never retransmits a message, and does not use any SIP timers.
Note that the stateless loop detection using Via header fields described in RFC
2543 has been deprecated (removed) in RFC 3261 in favor of the use of a man-
datory Max-Forwards header field in all requests.

SIP Clients and Servers 49

Outbound
proxy
server

Called user
agent

Inbound
proxy
server

Calling user
agent

SIP

SIP

SIP

Media (RTP)

DNS server

DNS

Location
server

SIP

Figure 3.3 SIP Trapezoid.

A stateful proxy server keeps track of requests and responses received in the
past and uses that information in processing future requests and responses. For
example, a stateful proxy server starts a timer when a request is forwarded. If no
response to the request is received within the timer period, the proxy will
retransmit the request, relieving the user agent of this task. Also, a stateful proxy
can require user agent authentication, as described in Section 3.8.

The most common type of SIP proxy is a transaction stateful proxy. A
transaction stateful proxy keeps state about a transaction but only for the dura-
tion that the request is pending. For example, a transaction stateful proxy would
keep state when it receives an INVITE request until it received a 200 OK or a
final failure response (e.g., 404 Not Found). After that, it would destroy the
state information. This allows a proxy to perform useful search services but
minimize the amount of state storage required.

One such example of a search service is a proxy server that receives an
INVITE request, then forwards it to a number of locations at the same time.
This “forking” proxy server keeps track of each of the outstanding requests and
the response to each, as shown in Figure 3.4. This is useful if the location service
or database lookup returns multiple possible locations for the called party that
need to be tried.

In the example of Figure 3.4, the INVITE contains:

INVITE sip:support@chaos.info SIP/2.0
Via: SIP/2.0/UDP 45.2.32.1:5060 ;branch=z9hG4bK67865
Max-Forwards: 70
To: <sip:support@chaos.info>
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Subject: Bifurcation Question
Contact: <sip:sarkovskii@45.2.32.1>
Content-Type: application/sdp
Content-Length: ...

(SDP not shown)

The INVITE is received by the chaos.info proxy server, which forks
to two user agents. Each user agent begins alerting, sending two provisional
responses back to Sarkovskii. They are:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865
To: <sip:support@chaos.info>;tag=343214112
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Contact: <sip:agent42@67.42.2.1>
Content-Length: 0

50 SIP: Understanding the Session Initiation Protocol

and:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865
To: <sip:support@chaos.info>;tag=a5ff34d9ee201
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Contact: <sip:agent7@67.42.2.32>
Content-Length: 0

The two responses are identical except for having different To tags and
Contact URIs. Finally, one of the two UAs answers and sends a 200 OK
response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865

SIP Clients and Servers 51

Sarkovskii Forking
proxy

INVITE

100 Trying
INVITE

INVITE

180 Ringing
180 Ringing

180 Ringing

200 OK

200 OK

Agent 42 Agent 7

CANCEL

200 OK

ACK
ACK

487 Request Terminated

ACK

180 Ringing

Media Session

Figure 3.4 Forking proxy operation.

To: <sip:support@chaos.info>;tag=343214112
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Contact: <sip:agent42@67.42.2.1>
Content-Type: application/sdp
Content-Length: ...

(SDP not shown)

The forking proxy server sends a CANCEL to the second UA to stop
that phone alerting. If both UAs had answered, the forking proxy would have
forwarded both 200 OK responses back to the caller who then would have
had to choose which one, probably accepting one and sending a BYE to the
other one.

A stateful proxy usually sends a 100 Trying response when it receives
an INVITE. A stateless proxy never sends a 100 Trying response. A 100
Trying response received by a proxy is never forwarded—it is a single hop
only response. A proxy handling a TCP request must be stateful, since a user
agent will assume reliable transport and rely on the proxy for retransmissions on
any UDP hops in the signaling path.1

The only limit to the number of proxies that can forward a message is con-
trolled by the Max-Forwards header field, which is decremented by each
proxy that touches the request. If the Max-Forwards count goes to zero, the
proxy discards the message and sends a 483 Too Many Hops response back
to the originator.

A SIP session timer [8] has been proposed to limit the time period over
which a stateful proxy must maintain state information. In the initial INVITE
request, a Session-Expires header field indicates a timer interval after
which stateful proxies may discard state information about the session. User
agents must tear down the call after the expiration of the timer. The caller can
send re-INVITEs to refresh the timer, enabling a “keep alive” mechanism for
SIP. This solves the problem of how long to store state information in cases
where a BYE request is lost or misdirected, or in other security cases described in
later sections. The details of this implementation are described in Section 6.2.29.

3.5.2 Redirect Servers

A redirect server was introduced in Figure 2.6 as a type of SIP server that
responds to, but does not forward requests. Like a proxy sever, a redirect server

52 SIP: Understanding the Session Initiation Protocol

1. TCP usually provides end-to-end reliability for applications. In SIP, however, TCP only pro-
vides single-hop reliability. End-to-end reliability is only achieved by a chain of TCP hops or
TCP hops interleaved with UDP hops and stateful proxies.

uses a database or location service to look up a user. The location information,
however, is sent back to the caller in a redirection class response (3xx), which,
after the ACK, concludes the transaction. Figure 3.5 shows a call flow that is very
similar to the example of Figure 2.2, except the server uses redirection instead of
proxying to assist Schroedinger locate Heisenberg.

The INVITE from Figure 3.5 contains:

INVITE sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060 ;branch=z9hG4bK54532
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=4313413
Call-ID: 9@100.101.102.103
CSeq: 1 INVITE
Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
t=0 0
c=IN IP4 100.101.102.103
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The redirection response to the INVITE is sent by the redirect server:

SIP Clients and Servers 53

INVITE
302 Moved temporarily

200 OK
INVITE

ACK

ACK

200 OK

BYE

Media session

Schroedinger Heisenberg
Redirect server

Figure 3.5 Example with redirect server.

SIP/2.0 302 Moved Temporarily
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK54532
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=052500
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=4313413
Call-ID: 9@100.101.102.103
CSeq: 1 INVITE
Contact: sip:werner.heisenberg@200.201.202.203
Content-Length: 0

Schroedinger acknowledges the response:

ACK sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK54532
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=052500
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=4313413
Call-ID: 9@100.101.102.103
CSeq: 1 ACK
Content-Length: 0

Notice that the ACK request reuses the same branch ID as the INVITE
and the 302 response. This is because an ACK to a non-2xx final response is
considered to be part of the same transaction as the INVITE. Only an ACK sent
in response to a 200 OK is considered a separate transaction with a unique
branch ID. Also, an ACK to a non-2xx final response is a hop-by-hop
response, not an end-to-end response as discussed in Section 3.6.

This exchange completes this call attempt, so a new INVITE is generated
with a new Call-ID and sent directly to the location obtained from the Con-
tact header field in the 302 response from the redirect server:

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK92313
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=13473
Call-ID: 54-67-45-23-13
CSeq: 1 INVITE
Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
t=0 0
c=IN IP4 100.101.102.103
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The call then proceeds in the same way as Figure 2.2, with the messages
being identical. Note that in Figure 3.5, a 180 Ringing response is not sent;

54 SIP: Understanding the Session Initiation Protocol

instead, the 200 OK response is sent right away. Since 1xx informational
responses are optional, this is a perfectly valid response by the UAS if Heisen-
berg responded to the alerting immediately and accepted the call. In the PSTN,
this scenario is called fast answer.

3.5.3 Registration Servers

A SIP registration server was introduced in the example of Figure 2.3. A registra-
tion server, also known as a registrar, accepts SIP REGISTER requests; all other
requests receive a 501 Not Implemented response. The contact informa-
tion from the request is then made available to other SIP servers within the same
administrative domain, such as proxies and redirect servers. In a registration
request, the To header field contains the name of the resource being registered,
and the Contact header fields contain the alternative addresses or aliases. The
registration server creates a temporary binding between the Address of Record
(AOR) URI in the To and the device URI in the Contact Courier.

Registration servers usually require the registering user agent to be authen-
ticated, using means described in Section 3.8, so that incoming calls cannot be
hijacked by an unauthorized user. This could be accomplished by an unauthor-
ized user registering someone else’s SIP URI to point to their own phone.
Incoming calls to that URI would then ring the wrong phone. Depending on
the header fields present, a REGISTER request can be used by a user agent to
retrieve a list of current registrations, clear all registrations, or add a registration
URI to the list. These types of requests are described in Section 4.1.2.

For full registration security, TLS must be used as HTTP Digest does not
provide the needed integrity protection.

3.6 Acknowledgment of Messages

Most SIP requests are end-to-end messages between user agents. That is, proxies
between the two user agents simply forward the messages they receive and rely
on the user agents to generate acknowledgments or responses.

There are some exceptions to this general rule. The CANCEL method (used
to terminate pending calls or searches and discussed in detail in Section 4.1.5) is a
hop-by-hop request. A proxy receiving a CANCEL immediately sends a 200 OK
response back to the sender and generates a new CANCEL, which is then for-
warded to the next hop. (The order of sending the 200 OK and forwarding the
CANCEL is not important.) This is shown in Figure 4.4.

Other exceptions to this rule include 3xx, 4xx, 5xx, and 6xx
responses to an INVITE request. While an ACK to a 2xx response is generated
by the end point, a 3xx, 4xx, 5xx, or 6xx response is acknowledged on a

SIP Clients and Servers 55

hop-by-hop basis. A proxy server receiving one of these responses immediately
generates an ACK back to the sender and forwards the response to the next hop.
This type of hop-by-hop acknowledgment is shown in Figure 4.2.

ACK messages are only sent to acknowledge responses to INVITE
requests. For responses to all other request types, there is no acknowledgment. A
lost response is detected by the UAS when the request is retransmitted.

3.7 Reliability

SIP has reliability mechanisms defined, which allow the use of unreliable trans-
port layer protocols such as UDP. When SIP uses TCP or TLS, these mecha-
nisms are not used, since it is assumed that TCP will retransmit the message if it
is lost and inform the client if the server is unreachable.

For SIP transport using UDP, there is always the possibility of messages
being lost or even received out of sequence, because UDP guarantees only that
the datagram is error-free. A UAS validates and parses a SIP request to make sure
that the UAC has not errored by creating a request missing required header
fields or other syntax violations. Reliability mechanisms in SIP include:

• Retransmission timers;

• Increasing command sequence CSeq numbers;

• Positive acknowledgments.

SIP timer T1 is started by a UAC or a stateful proxy server when a new
request is generated or sent. If no response to the request (as identified by a
response containing the identical local tag, remote tag, Call-ID, and CSeq)
is received when T1 expires, the request is re-sent. If a provisional (informa-
tional class 1xx) response is received, the UAC or stateful proxy server ignores
T1 and starts a new longer timer T2. No retransmissions are sent until T2
expires.

After a request is retransmitted, the timer period is doubled until T2 is
reached. After that, the remaining retransmissions occur at T2 intervals. This
capped exponential backoff process is continued until a maximum of 10 retrans-
missions at increasing intervals are sent. A stateful proxy server that receives a
retransmission of a request discards the retransmission and continues its retrans-
mission schedule based on its own timers. Typically, it will resend the last provi-
sional response.

For an INVITE request, the retransmission scheme is slightly different.
After a provisional (1xx) response is received, the INVITE is never retransmit-
ted. However, a proxy may discard transaction state after 3 minutes.

56 SIP: Understanding the Session Initiation Protocol

A stateful proxy must store a forwarded request or generated response mes-
sage for 32 seconds. An example message flow involving two user agents, a state-
ful proxy, two lost messages (shown by “X” in Figure 3.6), and three
retransmissions is shown in Figure 3.6. In this example, the OPTIONS sent by
the stateful proxy server to the UAS is lost. As a result, it is retransmitted when
the proxy’s T1 timer expires and no response is received. The 200 OK for-
warded by the proxy is also lost. When timer T1 in the UAC expires without a
final response (non 1xx response), the OPTIONS is retransmitted. When the
proxy receives the retransmitted OPTIONS, it deduces that the 200 OK was
lost and resends it. The proxy recognizes the 200 OK as a retransmission and
does not forward it.

Suggested default values for T1 and T2 are 500 ms and 4 seconds, respec-
tively. Timer T1 is supposed to be an estimate of the round-trip time (RTT) in
the network. Longer values are allowed but not shorter ones, because this will
generate more message retransmissions. See Table 4 in RFC 3261 [1] for a sum-
mary of SIP timers.

Note that gaps in CSeq number do not always indicate a lost message. In
the authentication examples in the next section, not every request (and hence
CSeq) generated by the UAC will reach the UAS if authentication challenges
occur by proxies in the path.

3.8 Authentication

Authentication in SIP takes two general forms. One is the authentication of
a user agent by a proxy, redirect, or registration server. The other is the

SIP Clients and Servers 57

OPTIONS
100 Trying

UAC Stateful proxy UAS

X
OPTIONS

OPTIONS

200 OK
200 OK

X
OPTIONS

200 OK

T1

T2

Packet
Loss!

Figure 3.6 SIP reliability example.

authentication of a user agent by another user agent. Mutual authentication
between proxies or a proxy and a user agent is also possible using certificates.

A proxy or redirect server might require authentication to allow a user
agent to access a service or feature. For example, a proxy server may require
authentication before forwarding an INVITE to a gateway or invoking a serv-
ice. A registration server may require authentication to prevent incoming call
hijacking as described previously. User agents can authenticate each other to
verify who they are communicating with, since From header fields are easily
forged.2

SIP supports both a simple lightweight authentication scheme and a
very robust scheme. The simple scheme is based on HTTP Digest [9] and uses a
simple challenge/response mechanism and a shared secret between the two serv-
ers. The other schemes involve cryptographic means to exchange and verify
certificates.

Using HTTP Digest authentication, a proxy requiring authentication
replies to an unauthenticated INVITE with a 407 Proxy Authoriza-
tion Required response containing a Proxy-Authenticate
header field with the form of the challenge. After sending an ACK for the
407, the user agent can then resend the INVITE with a Proxy-
Authorization header field containing the credentials. This request is
usually sent using the same Call-ID but an incremented CSeq count. User
agent, redirect, or registrar servers typically use 401 Unauthorized
response to challenge authentication containing a WWW-Authenticate
header field, and expect the a new INVITE to contain an Authorization
header field containing the user agent’s credentials. A user agent’s credentials
are usually an encrypted username and password, as in the example of
Section 10.1. The Authentication-Info header field also allows a user
agent to authenticate a proxy server using HTTP Digest. However, HTTP
Digest does not provide integrity protection—for this, TLS or S/MIME must
be used.

A call flow involving both proxy and user agent authentication is shown in
Figure 3.7.

If TLS is used as transport, as discussed in Section 2.5.3, the two servers
can exchange and verify certificates for authentication.

58 SIP: Understanding the Session Initiation Protocol

2. The ability to forge From header fields is present in SMTP, where it is virtually a feature. A
preference setting in an e-mail program sets your name and e-mail address, which need not
correspond to the address or domain that is used to send the message. This allows a user to
send multiple e-mail addresses from the same e-mail account by simply changing the From
address before sending a message. Only a detailed examination of a full set of SMTP header
fields will show that the e-mail was sent from another address.

3.9 S/MIME Encryption

While authentication is used as a means of access control and identity confirma-
tion, encryption is used for privacy. SIP messages intercepted during session
setup reveal considerable information, including:

• Both parties’ SIP URIs and IP addresses;

• The fact that the two parties have established a call;

• The IP addresses and port numbers associated with the media, allowing
eavesdropping.

Presence information can reveal even more private information, such as:

• The user’s geographic location;

• The user’s current activity level;

SIP Clients and Servers 59

INVITE

INVITE

INVITEINVITE

INVITE

407 Proxy-authorization required

UAC Stateful proxy UAS

100 Trying

ACK

401 Unauthorized

ACK
401 Unauthorized

ACK

100 Trying
200 OK

200 OK

ACK ACK

Media session

Proxy-authenticate: 1

Authorization: 1

WWW-Authenticate: 2

Authorization: 1, 2

WWW-Authenticate: 2

Authorization: 2

Authorization: 2Authorization: 1, 2

Figure 3.7 Digest authentication call flow.

• The “mood” or other personal information;

As such, strong encryption and privacy mechanisms have been built into
SIP that work in both single-domain networks and across the public Internet.
The use of intermediary devices such as proxies and B2BUAs also make SIP
security very important.

SIP supports the encryption of both message bodies and message header
fields. The encryption of message bodies makes it more difficult for an eaves-
dropper to listen in, if the message body contains SDP information, for exam-
ple. Also, an uninvited third party, knowing all the SDP information could
guess the RTP SSRC number and send unwanted media to either party, so-
called media spamming. Message bodies in presence and instant message mes-
sages also contain private information that is only needed by the user agents, not
intermediary devices in the network.

Encryption can be done hop-by-hop or end-to-end. TLS can be used for
the hop-by-hop but only S/MIME [10] allows end-to-end encryption. S/MIME
allows UAs to discover if a third part (a proxy or B2BUA) is modifying SIP mes-
sages or bodies between them. Note that allowed proxy header field modifica-
tion (such as deletion of Via header fields in response routing) is allowed and
not considered a security violation.

3.10 Multicast Support

SIP support for UDP multicast has been mentioned in previous sections. There
are two main uses for multicast in SIP.

SIP registration can be done using multicast, by sending the REGISTER
message to the well-known “All SIP Servers” URI sip:sip.mcast.net at
IP address 224.0.1.75.

The second use for multicast is to send a multicast session invitation. This
effectively allows a conference call to be established with a single request. An
INVITE with a partially defined Request-URI can be sent using multicast. For
example, a multicast INVITE could be sent to sip:*@mci.com, which
would invite all MCI employees with SIP phones receiving the request to
respond. Responses to a multicast request are also sent by multicast. To limit
congestion, only a limited set of responses is allowed by the standard.

A proxy can forward a unicast INVITE request to a multicast address.
The use of multicast is recorded in a SIP message using the maddr parameter in
the Via header field, as discussed in Section 6.1.14.

However, due to the limited implementations of multicast, these features
are rarely used.

60 SIP: Understanding the Session Initiation Protocol

3.11 Firewalls and NAT Interaction

Most corporate LANs or intranets connect to the public Internet through a fire-
wall. A firewall is filtering software usually in a router or hub that is used to pro-
tect the LAN behind it from various kinds of attacks and unauthorized access.
Firewalls are also increasingly being used in home network routers and wireless
hubs and in PCs themselves. Sometimes they are used to prevent users behind
the firewall accessing certain resources in the Internet. In the simplest deploy-
ment, a firewall can be thought of as a one-way gate: It allows outgoing packets
from the intranet to the Internet, but blocks incoming packets from the Internet
unless they are responses to queries. Only certain types of requests from the
Internet will be allowed to pass through the firewall, such as HTTP requests to
the corporate Web server, SMTP e-mail messages, or DNS queries to the
authoritative DNS for the corporate domain. The firewall does this by keeping
track of TCP connections opened and filtering ports.

Firewalls pose a particularly difficult challenge to SIP sessions. Because SIP
can use TCP and a well-known port, configuring a firewall to pass SIP is not too
difficult. This does not help the media path, however, which uses RTP over
UDP on various ports and will be blocked by most firewalls. A firewall or a
proxy that controls the firewall needs to understand SIP, be able to parse an
INVITE request and 200 OK response, extract the IP addresses and port num-
bers from the SDP, and open up “pin holes” in the firewall to allow this traffic
to pass. The hole can then be closed when a BYE is sent or a session timer
expires. An alternative is an ALG—a B2BUA that is trusted by the firewall. The
firewall then allows SIP and RTP traffic, which terminates on the ALG and
blocks all other traffic. The authentication and security policies of allowing or
denying SIP sessions are then controlled by the SIP ALG instead of in the fire-
wall itself.

Network address translators (NATs) also cause serious problems for SIP. A
NAT can be used to conserve IPv4 addresses, or can be used to hide the IP
address and LAN structure behind the NAT. It is used on a router or firewall
that provides the only connection of a LAN to the Internet, a so-called stub net-
work. A NAT allows nonunique IP addresses to be used internally within the
LAN. When a packet is sent from the LAN to the Internet, the NAT changes
the nonglobally unique address (usually addresses in the range 10.x.x.x,
172.16.x.x – 172.29.x.x and 192.168.x.x) in the packet header
to a globally unique address from a pool of available addresses. Addresses can
also be statically assigned. This means that every node on the network does not
have to have a globally unique IP address. Responses from the Internet are trans-
lated back to the nonunique address. A NAT, however, is not completely trans-
parent to higher layers. For a signaling protocol such as SIP, a NAT can cause
particular problems.

SIP Clients and Servers 61

Because responses in SIP are routed using Via header fields, a device
behind a NAT will stamp its nonroutable private IP address in its Via header
field of messages that it originates. When the request is forwarded outside the
intranet by the NAT, the UDP and IP packet headers will be rewritten with a
temporarily assigned global Internet address. The NAT will keep track of the
binding between the local address and the global address so that incoming pack-
ets can have the UDP and IP headers rewritten and routed correctly. However,
IP addresses in a SIP message, such as Via and Contact header fields, or IP
addresses in SDP message bodies will not be rewritten and will not be routable.

To partially solve the message routing problem, SIP has a mechanism for
detecting if a NAT is present in a SIP message path. Each proxy or user agent
that receives a request checks the received IP address with the address in the
Via header field. If the addresses are different, there is a NAT between them.
The unroutable Via header field is fixed with a received tag containing the
actual global IP address. Outside the NAT, the response is routed using the
received IP address. Inside the NAT, the Via address is used. This does solve
the message response routing problem (except when the port number is also
wrong), but not the media problems.

Another problem with NATs is the time span of the NAT address bind-
ing. For a TCP connection, this is not an issue—the binding is maintained as
long as the connection is open. For a UDP SIP session, the time period is deter-
mined by the application. If a binding were removed before a BYE was sent ter-
minating the session, the connection would effectively be closed and future
signaling impossible. A keep-alive mechanism may be needed to refresh this
binding.

A SIP ALG coresident with the NAT solves many of these problems. The
ALG would rewrite the media IP addresses in the SIP messages and would not
allow the NAT to remove the address binding until a BYE was sent or a session
timer had expired. However, NATs are often deployed deep inside a service pro-
vider’s network that is not associated with providing SIP service, and hence has
no incentive to upgrading the NATs to allow this service to work.

Even without ALGs or upgrades in NATs, it is possible to use SIP to estab-
lish a media session through many types of NATs. The protocols described in
the next section allow a SIP client to discover the presence and type of NATs
between it and the public Internet, learn its public IP address, and possibly fix
the incorrect addresses in the SIP and SDP messages.

3.12 Protocols and Extensions for NAT Traversal

A detailed analysis of various scenarios and solutions to NAT traversal has been
done [11]. Some of the results are summarized in this section along with two

62 SIP: Understanding the Session Initiation Protocol

non-SIP protocols: Simple Traversal of UDP through NATs (STUN) and Tra-
versal Using Relay NAT (TURN), which aid in NAT traversal. Finally, some
extensions to SIP and SDP to enable NAT traversal are discussed.

3.12.1 STUN Protocol

The STUN protocol [12] allows a client to discover the presence and type of
NATs between the client and the public Internet. In addition, a client can dis-
cover the mapping between the private IP address and port number and the
public IP address and port number. Typically, a service provider will operate a
STUN server in the public Internet, with STUN clients being embedded in
end-devices, which are possibly behind a NAT.

A STUN server can be located using DNS SRV records using the service
provider’s domain as the lookup. STUN typically uses the well-known port
number 3478. STUN is a binary encoded protocol with a 20-octet header field
and possibly additional attributes.

Since a STUN client uses the protocol to learn public IP addresses, some
security is necessary or an imposter STUN server could provide incorrect pub-
lic IP addresses and block or intercept communication destined for the client.
As a result, the first step with STUN is for the client to contact the server and
negotiate a shared secret (usually a username and password) over a secure link,
which will be used in future STUN requests. The initial STUN connection is
opened using TLS over TCP. The client verifies the certificate of the server to
make sure that it is connected to the proper server. The client then sends a
Shared Secret Request packet to the server and receives the shared secret to be
used.

The client is then ready to use STUN to determine the presence and type
of NATs between the client and the server. Using the shared secret, the client
sends one or more Binding Request packets using UDP to the server. These
packets must be sent from the same IP address that the client will use for the
other protocol, since this is the address translation information that the client is
trying to discover. The server returns Binding Response packets, which tell the
client the public IP address and port number from which it received the Binding
Request. Since the client knows the private IP address and port number it used
to send the Binding Request, it learns the mapping between the private and
public address space being performed by the NAT. Of course, if the Binding
Response packets indicate the same address and port number as the request, this
tells the client that no NATs are present.

Figure 3.8 shows a SIP client behind a NAT obtaining its public IP
address using STUN and setting up a session as a result.

The type of NAT can be determined by sending multiple Binding Request
packets with different attributes. As a result the scenario type can be determined

SIP Clients and Servers 63

to be one of those listed in Table 3.1. STUN can also be used to refresh the
NAT address binding to keep it valid during the application layer session.

For all the cases described in Table 3.1 except the symmetric NAT, STUN
provides the client with the public IP addresses needed to establish a media ses-
sion using SIP. The IP addresses obtained using STUN are used in the Via,
Contact URI and in the SDP media information in the INVITE, for exam-
ple, and result in a successful media session with a client in the public Internet.

However, to traverse a symmetric NAT, or for certain topologies such as
communication between two user agents behind NATs, a signaling and media
relay protocol such as TURN is required, which is described in the next section.

64 SIP: Understanding the Session Initiation Protocol

UAC
NAT

STUN SharedSecretRequest/TLS

180 Ringing

STUN
server UAS

200 OK

ACK

Media session

INVITE

STUN SharedSecretResponse/TLS

STUN BindingRequest/UDP

STUN BindingResponse/UDP

Figure 3.8 SIP and STUN for NAT traversal call flow.

3.12.2 TURN Protocol

The TURN protocol [13] allows a client to obtain a transport IP address and
port that it can receive packets sent from a single IP address in the public Inter-
net. For some NAT topologies such as a client behind a symmetric NAT, using
a relay located in the public Internet is the only approach that allows communi-
cation to take place.

Similar to STUN, a TURN client can use DNS SRV records for the
domain of the service provider. TURN uses an identical syntax to STUN and
reuses the Shared Secret Request and Shared Secret Response packets to estab-
lish the shared secret. The client can also use Binding Request and Binding
Response packets to detect and categorize the NAT in the path. A client uses an
Allocate Request to request a relay IP address and port number be returned in an
Allocate Response packet.

Requests for transport addresses to be used for UDP must be sent using
UDP while requests for transport addresses for TCP transport must be sent
using TCP.

TURN, due to its triangular routing, will result in increased packet latency
and increased probability of packet loss. TURN should only be used when it is
the only approach available (i.e., the IP addresses obtained using STUN will not
work). Note that TURN can be used instead of a B2BUA to provide an ano-
nymizer service.

Figure 3.9 shows a SIP client behind a NAT using STUN and TURN to
obtain a transport IP address and setting up a session as a result. Note that the
resulting SIP and RTP messages are routed through the TURN server.

In some cases, the use of STUN and TURN may result in the use of a relay
when, in fact, the two clients can communicate successfully without one. This
case is where both clients are behind the same NAT.

SIP Clients and Servers 65

Table 3.1
Type of Address Translation

Type Translation

Internet No translation; client has a public IP address

Full cone NAT Constant mapping between private IP address
and public IP address

Restricted cone NAT Constant mapping, but an outgoing packet is
needed to open incoming path

Symmetric NAT Different public IP address mapping is used
based on destination IP address

3.12.3 Other SIP/SDP NAT-Related Extensions

Other SIP and SDP extensions have been developed to solve some of the prob-
lems associated with NATs. They are described in the following sections and can
be used in conjunction with protocols such as STUN and TURN to enable
NAT traversal. Each extension solves a piece but not the complete NAT tra-
versal problem. Instead, they represent an optimization or improvement used
along with STUN and TURN.

As mentioned previously, using TCP transport for SIP makes NAT tra-
versal easier. In particular, it is easier to keep the private/public address binding
for a TCP connection than it is with UDP. This is a particular problem for

66 SIP: Understanding the Session Initiation Protocol

UAC
NAT

INVITE

STUN SharedSecretRequest/TLS

180 Ringing

200 OK

STUN/TURN
server UAS

200 OK

ACK
ACK

180 Ringing

Media session

INVITE

STUN SharedSecretResponse/TLS

TURN BindingRequest/UDP

TURN BindingResponse/UDP

Figure 3.9 SIP and TURN for NAT traversal call flow.

registrations. If UDP is used for registration behind a NAT, either STUN pack-
ets or repeated registrations are needed (as often as every minute). It is better to
register using TCP, but only if the TCP connection can be kept open and
incoming requests are routed over that open connection. A SIP extension has
been proposed to solve this problem [14].

An example Via header field in a REGISTER request contains a parame-
ter rport, which indicates that the UAC supports this extension:

Via: SIP/2.0/UDP client.behind.nat.org;rport;branch=z9hG4bK92313s

The next hop server that supports the extension would record both the
received IP address and port number in the Via header field; for example:

Via: SIP/2.0/UDP client.behind.nat.org;rport=23131
;received=192.0.1.2;branch=z9hG4bK92313s

This TCP connection would then be kept open and responses to this user
would be sent back to the client at address 192.0.1.2 port 23131. An
incoming INVITE or other request would be routed over this open TCP
connection.

The ability to specify in SDP a “symmetric” RTP session [15] has been
proposed as a solution for some NAT traversal problems. Since a client behind a
NAT can usually successfully send RTP packets to another client in the public
Internet, in a symmetric mode, RTP sent in the other direction could be sent to
the address and port that RTP was received from. For example, consider an SDP
offer in an INVITE sent by the UAC which supports this connection-oriented
media extension:

v=0
o=client 28908445312 28908445312 IN IP4 10.1.2.23
s=-
t=0 0
c=IN IP4 10.1.2.23
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=direction:active IN IP4

If the UAS supports this extension, it will wait for RTP packets to be
received from the client behind the NAT before sending. The answer SDP will
be:

v=0
o=client 28908445214 28908445214 IN IP4 client.public.org
s=-
t=0 0
c=IN IP4 client.public.org
m=audio 54332 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP Clients and Servers 67

a=direction:passive IN IP4

The direction attribute in the answer tells the UAC that the UAS
supports the symmetric RTP extension. The UAS will then send its RTP pack-
ets to the IP address and port number received from the UAC which overrides
the unreachable 10.1.2.23 address and 49172 port number in the SDP.

Finally, it is assumed that RTP Control Protocol (RTCP) packets (see
Section 7.2) are received on one port higher than the RTP port number. If
STUN or TURN is used to obtain port numbers, this consecutive numbering
may not be possible if the NAT is mapping port numbers as well. Also, RTCP
may need to be sent to an entirely different IP address. A solution to this is an
explicit RTCP port number and possibly IP address in SDP extension [16]. This
allows RTCP to still be received in these cases. For example, a UAC behind a
NAT could include the attribute:

a=rtcp:53020 IN IP4 126.16.64.4

A UAS supporting the extension would send RTCP packets to this IP
address and port number instead of using the RTP IP address (connection line)
and port number plus one. If just the port number needs to be changed, the
address information can be omitted:

a=rtcp:53022

Note that without this SDP extension, the SIP and RTP sessions will still
work, but no RTCP would be exchanged.

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” IETF
Internet-Draft, Work in Progress, January 2003.

[3] Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265,
2002.

[4] Campbell, B., et al., “SIMPLE Presence Publication Mechanism,” IETF Internet-Draft,
Work in Progress, February 2003.

[5] Schulzrinne, H., and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking
Requirements,” IETF Internet-Draft, Work in Progress, February 2003.

[6] Rosenberg, J., H. Salama, and M. Squire, “Telephony Routing over IP (TRIP),” RFC
3219, 2002.

[7] Bangalore, M., et al., “A Telephony Gateway REgistration Protocol (TGREP),” IETF
Internet-Draft, February 2003.

68 SIP: Understanding the Session Initiation Protocol

[8] Donovan, S., and J. Rosenberg, “The SIP Session Timer,” IETF Internet-Draft, Work in
Progress.

[9] Franks, J., et al., “HTTP Authentication: Basic and Digest Access Authentication,” RFC
2617, 1999.

[10] Ramsdell, B., “S/MIME Version 3 Message Specification,” RFC 2633, 1999.

[11] Rosenberg, J., R. Mahy, and S. Sen, “NAT and Firewall Scenarios and Solutions for SIP,”
IETF Internet-Draft, Work in Progress, March 2003.

[12] Rosenberg, J., et al., “STUN—Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs),” RFC 3489, 2003.

[13] Rosenberg, J., et al., “Traversal Using Relay NAT (TURN),” IETF Internet-Draft, Work
in Progress, March 2003.

[14] Yon, D., “Connection-Oriented Media Transport in SDP,” IETF Internet-Draft, Work
in Progress, May 2002.

[15] Rosenberg, J., J. Weinberger, and H. Schulzrinne, “An Extension to the Session Initiation
Protocol (SIP) for Symmetric Response Routing,” RFC 3581, 2003.

[16] Huitema, C., “RTCP Attribute in SDP,” IETF Internet-Draft, Work in Progress,
September 2002.

SIP Clients and Servers 69

.

4
SIP Request Messages

This chapter covers the types of SIP requests called methods. Six are described in
the SIP specification document RFC 3261 [1]. Seven more methods are
described in separate RFC documents. After discussing the methods, this chap-
ter concludes with a discussion of SIP URLs and URIs, tags, and message
bodies.

4.1 Methods

SIP requests or methods are considered “verbs” in the protocol, since they
request a specific action to be taken by another user agent or server. The
INVITE, REGISTER, BYE, ACK, CANCEL, and OPTIONS methods
are the original six methods in SIP. The REFER, SUBSCRIBE, NOTIFY,
MESSAGE, UPDATE, INFO, and PRACK methods are described in separate
RFCs.

Note that a proxy does not need to understand a request method in order
to forward the request. A proxy treats an unknown method as if it were an
OPTIONS; that is, it forwards the request to the destination if it can. This
allows new features and methods useful for user agents to be introduced without
requiring support from proxies that may be in the middle. A user agent receiving
a method it does not support replies with a 501 Not Implemented
response. Method names are case sensitive and conventionally use all uppercase
for visual clarity to distinguish them from header fields, which use both upper
and lower case.

71

4.1.1 INVITE

The INVITE method is used to establish media sessions between user agents. In
telephony, it is similar to a Setup message in ISDN or an initial address mes-
sage (IAM) in ISUP. (PSTN protocols are briefly introduced in Section 7.4.)
Responses to INVITEs are always acknowledged with the ACK method
described in Section 4.1.4. Examples of the use of the INVITE method are
described in Chapter 2.

An INVITE usually has a message body containing the media informa-
tion of the caller. The message body can also contain other session information
such as quality of service (QoS) or security information. If an INVITE does not
contain media information, the ACK contains the media information of the
UAC. An example of this call flow is shown in Figure 4.1. If the media informa-
tion contained in the ACK is not acceptable, then the called party must send a
BYE to cancel the session—a CANCEL cannot be sent because the session is
already established. A media session is considered established when the
INVITE, 200 OK, and ACK messages have been exchanged between the
UAC and the UAS. A successful INVITE request establishes a dialog between
the two user agents, which continues until a BYE is sent by either party to end
the session, as described in Section 4.1.3.

A UAC that originates an INVITE to establish a dialog creates a globally
unique Call-ID that is used for the duration of the call. A CSeq count is ini-
tialized (which need not be set to 1, but must be an integer) and incremented for
each new request for the same Call-ID. The To and From headers are popu-
lated with the remote and local addresses. A From tag is included in the

72 SIP: Understanding the Session Initiation Protocol

INVITE

100 trying

180 ringing

200 OK
sdp UAS

ACK
sdp UAC

Media session

UAC UAS

Figure 4.1 INVITE with no SDP message body.

INVITE, and the UAS includes a To tag in any responses, as described in
Section 4.3. A To tag in a 200 OK response to an INVITE is used in the To
header field of the ACK and all future requests within the dialog. The combina-
tion of the To tag, From tag, and Call-ID is the unique identifier for the
dialog.

An INVITE sent for an existing dialog references the same Call-ID as
the original INVITE and contains the same To and From tags. Sometimes
called a re-INVITE, the request is used to change the session characteristics or
refresh the state of the dialog. The CSeq command sequence number is incre-
mented so that a UAS can distinguish the re-INVITE from a retransmission of
the original INVITE.

If a re-INVITE is refused or fails in any way, the session continues as if
the INVITE had never been sent. A re-INVITE must not be sent by a UAC
until a final response to the initial INVITE has been received—instead, an
UPDATE request can be sent, as described in Section 4.1.13. There is an addi-
tional case where two user agents simultaneously send re-INVITEs to each
other. This is handled in the same way with a Retry-After header. This
condition is called glare in telephony, and occurs when both ends of a trunk
group seize the same trunk at the same time.

An Expires header in an INVITE indicates to the UAS how long the
call request is valid. For example, the UAS could leave an unanswered INVITE
request displayed on a screen for the duration of specified in the Expires
header. Once a session is established, the Expires header has no mean-
ing—the expiration of the time does not terminate the media session. Instead, a
Session-Expires header (Section 6.2.26) can be used to place a time limit
on an established session.

An example INVITE request with a SDP message body is shown below:

INVITE sip:411@salzburg.at;user=phone SIP/2.0
Via: SIP/2.0/UDP salzburg.edu.at:5060;branch=z9hG4bK1d32hr4
Max-Forwards:70
To: <sip:411@salzburg.at;user=phone>
From: Christian Doppler <sip:c.doppler@salzburg.edu.at>
;tag=817234

Call-ID: 12-45-A5-46-F5@salzburg.edu.at
CSeq: 1 INVITE
Subject: Train Timetables
Contact: sip:c.doppler@salzburg.edu.at
Content-Type: application/sdp
Content-Length: 151

v=0
o=doppler 2890842326 2890844532 IN IP4 salzburg.edu.at
s=Phone Call
c=IN IP4 50.61.72.83
t=0 0

SIP Request Messages 73

m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

In addition to the required headers, this request contains the optional
Subject header. Note that this Request-URI contains a phone number.
Phone number support in SIP URIs is described in Section 4.2.

The mandatory and header field in an INVITE request are shown in
Table 4.1.

4.1.2 REGISTER

The REGISTER method is used by a user agent to notify a SIP network of its
current Contact URI (IP address) and the URI that should have requests
routed to this Contact. As mentioned in Section 2.3, SIP registration bears
some similarity to cell phone registration on initialization. Registration is not
required to enable a user agent to use a proxy server for outgoing calls. It is nec-
essary, however, for a user agent to register to receive incoming calls from prox-
ies that serve that domain unless some non-SIP mechanism is used by the
location service to populate the SIP URIs and Contacts of end-points. A
REGISTER request may contain a message body, although its use is not defined
in the standard. Depending on the use of the Contact and Expires headers
in the REGISTER request, the registrar server will take different action. Exam-
ples of this are shown in Table 4.2. If no expires parameter or Expires
header is present, a SIP URI will expire in 1 hour. The presence of an
Expires header sets the expiration of Contacts with no expires
parameter. If an expires parameter is present, it sets the expiration time for
that Contact only. Non-SIP URIs have no default expiration time.

The CSeq is incremented for a REGISTER request. The use of the
Request-URI, To, From, and Call-ID headers in a REGISTER request is
slightly different than for other requests. The Request-URI contains only the

74 SIP: Understanding the Session Initiation Protocol

Table 4.1
Mandatory Headers in an INVITE Request

Call-ID

CSeq

From

To

Via

Contact

Max-Forwards

domain of the registrar server with no user portion. The REGISTER request
may be forwarded or proxied until it reaches the authoritative registrar server
for the specified domain. The To header contains the SIP URI of the AOR of
the user agent that is being registered. The From contains the SIP URI of the
sender of the request, usually the same as the To header. It is recommended that
the same Call-ID be used for all registrations by a user agent.

A user agent sending a REGISTER request may receive a 3xx redirection
or 4xx failure response containing a Contact header of the location to which
registrations should be sent.

A third-party registration occurs when the party sending the registration
request is not the party that is being registered. In this case, the From header
will contain the URI of the party submitting the registration on behalf of the
party identified in the To header. Chapter 3 contains an example of a first-party

SIP Request Messages 75

Table 4.2
Types of Registrar Actions and Contact Headers

Request Headers Registrar Action

Contact: *
Expires: 0

Cancel all registrations

Contact: sip:galvani@bologna.edu.it;
expires=30

Add Contact to current registra-
tions; registration expires in 30
minutes

Contact: sip:galvani@bologna.edu.it
Expires: 30

Add Contact to current registra-
tions; registration expires in 30
minutes

Contact: sip:galvani@bolognauni.edu;
expires=45

Add all Contacts to registrations
in preference order listed; first
one expires in 45 minutes, sec-
ond in 30 minutes

Contact: sip:l.galvani@bologna.it
Expires: 30

Contact: sip:galvani@bologna.edu.it;
action=proxy ;q=0.9

Add Contacts to current registra-
tions using specified preference
SIP requests

Contact:mailto:galvani@bologna.edu.it;
q=0.1

should be proxied; SIP URI
expires in 60 minutes (default)
mailto URL does not expire

No Contact header present Return all current registrations in
response

registration. An example third-party registration request for the user Euclid is
shown below:

REGISTER sip:registrar.athens.gr SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK313
Max-Forwards:70
To: sip:euclid@athens.gr
From: <sip:secretary@academy.athens.gr>;tag=543131
Call-ID: 2000-July-07-23:59:59.1234@201.202.203.204
CSeq: 1 REGISTER
Contact: sip:euclid@parthenon.athens.gr
Contact: mailto:euclid@geometry.org
Content-Length: 0

The mandatory headers in a REGISTER request are shown in Table 4.3.

4.1.3 BYE

The BYE method is used to terminate an established media session. In teleph-
ony, it is similar to a release message. A session is considered established if an
INVITE has received a success class response (2xx) or an ACK has been sent. A
BYE is sent only by user agents participating in the session, never by proxies or
other third parties. It is an end-to-end method, so responses are only generated
by the other user agent. A user agent responds with a 481 Dialog/Trans-
action Does Not Exist to a BYE for an unknown dialog.

It is not recommended that a BYE be used to cancel pending INVITEs
because it will not be forked like an INVITE and may not reach the same set of
user agents as the INVITE. An example BYE request looks like the following:

BYE sip:info@hypotenuse.org SIP/2.0
Via: SIP/2.0/UDP port443.hotmail.com:5060;branch=z9hG4bK312bc
Max-Forwards:70
To: <sip:info@hypotenuse.org>;tag=63104
From: <sip:pythag42@hotmail.com>;tag=9341123
Call-ID: 34283291273@port443.hotmail.com

76 SIP: Understanding the Session Initiation Protocol

Table 4.3
Mandatory Headers in a REGISTER Request

Call-ID

CSeq

From

To

Via

Max-Forwards

CSeq: 47 BYE
Content-Length: 0

The mandatory headers in a BYE request are shown in Table 4.4.

4.1.4 ACK

The ACK method is used to acknowledge final responses to INVITE requests.
Final responses to all other requests are never acknowledged. Final responses
are defined as 2xx, 3xx, 4xx, 5xx, or 6xx class responses. The CSeq
number is never incremented for an ACK, but the CSeq method is
changed to ACK. This is so that a UAS can match the CSeq number of the ACK
with the number of the corresponding INVITE.

An ACK may contain an application/sdp message body. This is
permitted if the initial INVITE did not contain a SDP message body. If the
INVITE contained a message body, the ACK may not contain a message body.
The ACK may not be used to modify a media description that has already been
sent in the initial INVITE; a re-INVITE must be used for this purpose. SDP in
an ACK is used in some interworking scenarios with other protocols where the
media characteristics may not be known when the initial INVITE is generated
and sent. An example of this is described in Section 10.6.

For 2xx responses, the ACK is end-to-end, but for all other final responses
it is done on a hop-by-hop basis when stateful proxies are involved. The end-to-
end nature of ACKs to 2xx responses allows a message body to be transported.
An ACK generated in a hop-by-hop acknowledgment will contain just a single
Via header with the address of the proxy server generating the ACK. The differ-
ence between hop-by-hop acknowledgments to a response end-to-end acknowl-
edgments is shown in the message fragments of Figure 4.2.

A hop-by-hop ACK reuses the same branch ID as the INVITE since it is
considered part of the same transaction. An end-to-end ACK uses a different
branch ID as it is considered a new transaction.

SIP Request Messages 77

Table 4.4
Mandatory Headers in a BYE Request

Call-ID

CSeq

From

To

Via

Max-Forwards

A stateful proxy receiving an ACK message must determine whether or not
the ACK should be forwarded downstream to another proxy or user agent or
not. That is, is the ACK a hop-by-hop ACK or an end-to-end ACK? This is done
by comparing the branch ID for a match pending transaction branch IDs. If
there is not an exact match, the ACK is proxied toward the UAS. Otherwise, the
ACK is for this hop and is not forwarded by the proxy. The call flows of
Chapter 10 show examples of both types of ACK handling. An example ACK
containing SDP contains:

ACK sip:laplace@mathematica.org SIP/2.0
Via: SIP/2.0/TCP 128.5.2.1:5060;branch=z9hG4bK1834
Max-Forwards:70
To: Marquis de Laplace <sip:laplace@mathematica.org>;tag=90210
From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>;tag=887865
Call-ID: 152-45-N-32-23-W@128.5.2.1
CSeq: 3 ACK
Content-Type: application/sdp
Content-Length: 143

v=0
o=bowditch 2590844326 2590944532 IN IP4 salem.ma.us
s=Bearing
c=IN IP4 salem.ma.us
t=0 0
m=audio 32852 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The mandatory and optional headers in an ACK message are shown in
Table 4.5.

78 SIP: Understanding the Session Initiation Protocol

UACStateful proxyUAS

.

.

.

200 OK (end to end) 200 OK (end to end)

ACK (end to end)ACK (end to end)

410 Gone (hop by hop)
410 Gone (hop by hop)

ACK (hop by hop)
ACK (hop by hop)

Figure 4.2 End-to-end versus hop-by-hop acknowledgments.

4.1.5 CANCEL

The CANCEL method is used to terminate pending searches or call attempts. It
can be generated by either user agents or proxy servers provided that a 1xx
response containing a tag has been received, but no final response has been
received. A user agent uses the method to cancel a pending call attempt it had
earlier initiated. A forking proxy can use the method to cancel pending parallel
branches after a successful response has been proxied back to the UAC.
CANCEL is a hop-by-hop request and receives a response generated by the next
stateful element. The difference between a hop-by-hop request and an end-to-
end request is shown in Figure 4.3. The CSeq is not incremented for this
method so that proxies and user agents can match the CSeq of the CANCEL
with the CSeq of the pending INVITE to which it corresponds.

SIP Request Messages 79

Table 4.5
Mandatory Headers in an ACK Request

Call-ID

CSeq

From

To

Via

Max-Forwards

UAC Stateful proxy UAS

.

.

.

Request (end to end) Request (end to end)

Response (end to end)
Response (end to end)

Request (hop by hop)
Request (hop by hop)

Response (hop by hop)
Response (hop by hop)

Figure 4.3 End-to-end versus hop-by-hop requests.

The branch ID for a CANCEL matches the INVITE that it is cancel-
ing. A CANCEL only has meaning for an INVITE since only an INVITE may
take several seconds (or minutes) to complete. All other SIP requests complete
immediately (that is, a UAS must immediately generate a final response).
Consequently, the final result will always be generated before the CANCEL is
received.

A proxy receiving a CANCEL forwards the CANCEL to the same set of
locations with pending requests that the initial INVITE was sent to. A proxy
does not wait for responses to the forwarded CANCEL requests, but responds
immediately. A user agent confirms the cancellation with a 200 OK response to
the CANCEL and replies to the INVITE with a 487 Request Termi-
nated response.

If a final response has already been received, a user agent will need to send
a BYE to terminate the session. This is also the case in the race condition where
a CANCEL and a final response cross in the network, as shown in Figure 4.4. In
this example, the CANCEL and 200 OK response messages cross between the
proxy and the UAS. The proxy still replies to the CANCEL with a 200 OK, but
then also forwards the 200 OK response to the INVITE. The 200 OK
response to the CANCEL sent by the proxy only means that the CANCEL
request was received and has been forwarded—the UAC must still be prepared

80 SIP: Understanding the Session Initiation Protocol

UAC Stateful proxy UAS
INVITE
CSeq: 1 INVITE

200 OK
CSeq: 1 INVITE

100 Trying
CSeq: 1 INVITE

I
CSeq: 1 I
NVITE

NVITE

CANCEL
CSeq: 1 CANCEL

C
CSeq: 1 C

ANCEL
ANCEL

200 OK
CSeq: 1 CANCEL

200 OK
CSeq: 1 CANCEL

200 OK
CSeq: 1 INVITE

100 Trying
CSeq: 1 INVITE

ACK
CSeq: 1 ACK

200 OK
CSeq: 2 BYE

BYE
CSeq: 2 BYE

Figure 4.4 Race condition in call cancellation.

to receive further final responses. No 487 response is sent in this scenario. The
session is canceled by the UAC sending an ACK then a BYE in response to the
200 OK.

Since it is a hop-by-hop request, a CANCEL may not contain a message
body. An example CANCEL request contains:

CANCEL sip:i.newton@cambridge.edu.gb SIP/2.0
Via: SIP/2.0/UDP 10.downing.gb:5060
;branch=z9hG4bK3134134
Max-Forwards:70
To: Isaac Newton <sip:i.newton@cambridge.edu.gb>
From: Rene Descartes <sip:visitor@10.downing.gb>;tag=034323
Call-ID: 42@10.downing.gb
CSeq: 32156 CANCEL
Content-Length: 0

The mandatory header fields in a CANCEL request are shown in Table 4.6.

4.1.6 OPTIONS

The OPTIONS method is used to query a user agent or server about its capabili-
ties and discover its current availability. The response to the request lists the
capabilities of the user agent or server. A proxy never generates an OPTIONS
request. A user agent or server responds to the request as it would to an
INVITE (i.e., if it is not accepting calls, it would respond with a 4xx or 6xx
response). A success class (2xx) response can contain Allow, Accept,
Accept-Encoding, Accept-Language, and Supported headers
indicating its capabilities.

An OPTIONS request may not contain a message body. A proxy deter-
mines if an OPTIONS request is for itself by examining the Request-URI. If the
Request-URI contains the address of the proxy, the request is for the proxy.
Otherwise, the OPTIONS is for another proxy or user agent and the request is
forwarded. An example OPTIONS request and response contains:

SIP Request Messages 81

Table 4.6
Mandatory Headers in a CANCEL Request

Call-ID

CSeq

From

To

Via

Max-Forwards

OPTIONS sip:user@carrier.com SIP/2.0
Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk
;branch=z9hG4bK1834
Max-Forwards:70
To: <sip:user@proxy.carrier.com>
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=34
Call-ID: 9352812@cavendish.kings.cambridge.edu.uk
CSeq: 1 OPTIONS
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk;tag=512A6
;branch=z9hG4bK0834 ;received=192.0.0.2
To: <sip:user@proxy.carrier.com>;tag=432
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=34
Call-ID: 9352812@cavendish.kings.cambridge.edu.uk
CSeq: 1 OPTIONS
Allow: INVITE, OPTIONS, ACK, BYE, CANCEL, REFER
Accept-Language: en, de, fr
Content-Length: ...
Content-Type: application/sdp

v=0
etc...

The mandatory headers in an OPTIONS request is the same as Table 4.3.

4.1.7 REFER

The REFER method [2] is used by a user agent to request another user agent to
access a URI or URL resource. The resource is identified by a URI or URL in
the required Refer-To header field (see Section 6.2.16). Note that the URI
or URL can be any type of URI: sip, sips, http, pres and so forth.
When the URI is a sip or sips URI, the REFER is probably being used to
implement a call transfer service. REFER can also used to implement peer-to-
peer call control.

A REFER request can be sent either inside or outside an existing dialog. A
typical call flow is shown in Figure 4.5. In this example, a UAC sends a REFER
to a UAS. The UAS, after performing whatever authentication and authoriza-
tion, decides to accept the REFER and responds with a 202 Accepted
response. Note that this response is sent immediately without waiting for the
triggered request to complete. This is important because REFER uses the
non-INVITE method state machine, which requires an immediate final
response, unlike an INVITE which may take several seconds (or even minutes)
to complete. Since the Refer-To URI in this example is a sip URI, the
UAC sends an INVITE setting the Request-URI to the Refer-To URI. This

82 SIP: Understanding the Session Initiation Protocol

INVITE is successful since it receives a 200 OK response. This successful out-
come is communicated back to the UAC using a NOTIFY method (described in
Section 4.1.9). The message body of the NOTIFY contains a partial copy of the
final response to the triggered request. In this case, it contains the start-line
SIP/2.0 200 OK. This part of a SIP message is described in the
Content-Type header field as a message/sipfrag [3].

An example of a REFER message is shown below:

REFER sip:m.rejewski@biuroszyfrow.pl SIP/2.0
Via SIP/2.0/UDP lab34.bletchleypark.co.uk:5060
;branch=z9hG4bK932039
Max-Forwards: 69
To: <sip:m.rejewski@biuroszyfrow.pl>;tag=ACEBDC
From: Alan Turing <sip:turing@bletchleypark.co.uk>;tag=213424
Call-ID: 3419fak3kFD23s1A9dkl
CSeq: 5412 REFER
Refer-To: <sip:info@scherbius-ritter.com>
Content-Length: 0

Another example is the use of REFER to “push” a Web page. In the exam-
ple of Figure 4.6, the UAC sends a REFER to the UAS with a Refer-To set
to an HTTP URL or a Web page. This causes the UAS to send a 202
Accepted then send a HTTP GET request to the Web server identified by the

SIP Request Messages 83

Turing Rejewski

REFER

202 Accepted

NOTIFY

200 OK

NOTIFY

200 OK

INVITE

200 OK

ACK

Scherbius-Ritter

180 Ringing

Figure 4.5 REFER example call flow.

URL. After the Web page has loaded, the UAS sends a NOTIFY containing a
body and HTTP/1.0 200 OK.

A REFER and the SIP request triggered by the REFER may contain the
Referred-By header field (see Section 6.2.17), which contains information
about who requested the request.

Figure 4.7 shows an advanced use of REFER to implement a common
PSTN or PBX feature known as attended transfer [4]. In this feature, the trans-
feror is assumed to be in a dialog (in a session) with the transferee. The trans-
feror places the transferee on hold, then sends an INVITE to another party,
called the transfer target. After the session is established between the transferor
and the transfer target, the transferor then puts the target on hold. Now the
transferor has two on hold sessions. The transferor then sends a REFER to the
transferee which causes the transferee to generate a new INVITE (called a “trig-
gered” INVITE) to the target. The successful INVITE “replaces” the existing
session between the transferor and the transfer target. When the transferee
receives notification that the transfer was successful, the session between the
transferor and the transferee is terminated with a BYE. This application uses
“escaped” header fields in the Refer-To URI. That is, certain SIP header
fields are specified and prepopulated in the URI, which are then copied into the

84 SIP: Understanding the Session Initiation Protocol

Chebychev Poisson

HTTP GET

200 OK

REFER

202 Accepted

NOTIFY

200 OK

NOTIFY

200 OK

Figure 4.6 REFER example used to push Web page.

triggered INVITE. In this case, the transferor generates the Replaces (see
Section 6.2.23) header field necessary in the triggered INVITE to make the
transfer succeed. The transferee copies the escaped Replaces header and
places it in the INVITE.

The acceptance of a REFER with a 202 Accepted response creates an
implicit subscription (a subscription without sending a SUBSCRIBE request;
see Section 4.1.8). After sending the 202 Accepted, the target must send an
immediate NOTIFY with the status 100 Trying and Subscription-
State: active;expires=60, which indicates that the subscription will
expire in 60 seconds (the expiration value is chosen by the notifier). The
Subscription-State header contains the expiration time of the

SIP Request Messages 85

Transferor Transferee

INVITE

Transfer target

REFER

202 Accepted

Media session

200 OK

ACK

Media session

INVITE (Replaces)

200 OK

ACK

NOTIFY

200 OK

200 OK

NOTIFY

BYE

200 OK

BYE

200 OK

Media session

Figure 4.7 Use of REFER and Replaces to perform attended transfer feature.

subscription. If that time period expires before the triggered request has com-
pleted, both sides terminate the subscription, with the notifier sending a final
notification as discussed in the next section.

The subscription is terminated when the transfer target (the party that
accepted the REFER) sends a final notification (a NOTIFY with
Subscription-State: terminated;reason=noresource).
Usually, this is after the transfer target has received a final response to the trig-
gered request. However, a transfer target that does not wish to establish a sub-
scription and provide a final result of the REFER may send an immediate
NOTIFY indicating that the subscription has been terminated. Each REFER
sent creates a separate subscription. If more than one REFER is sent within a
dialog, the resulting notifications (and subscriptions) are identified by an id
parameter in the Event header field. The id parameter is optional in refer
triggered NOTIFYs except when multiple REFERs have been accepted, in
which case it is mandatory.

The optional Referred-By header field can be included in a REFER
request. Table 4.7 lists the mandatory header fields in a REFER request.

4.1.8 SUBSCRIBE

The SUBSCRIBE method [5] is used by a user agent to establish a subscrip-
tion for the purpose of receiving notifications (via the NOTIFY method)
about a particular event. A successful subscription establishes a dialog between
the UAC and the UAS. The subscription request contains an Expires (see
Section 6.4.7) header field, which indicates the desired duration of the existence
of the subscription. After this time period passes, the subscription is automati-
cally terminated. The subscription can be refreshed by sending another
SUBSCRIBE within the dialog before the expiration time. A server accepting a
subscription returns a 200 OK response also containing an Expires header

86 SIP: Understanding the Session Initiation Protocol

Table 4.7
Mandatory Header Fields for a REFER

To

From

Call-ID

CSeq

Contact

Max-Forwards

Via

Refer-To

field. The expiration timer can be the same as the request, or the server may
shorten the interval, but it may not lengthen the interval. There is no
“UNSUBSCRIBE” method used in SIP—instead a SUBSCRIBE with
Expires:0 requests the termination of a subscription and hence the dialog. A
terminated subscription (either due to timeout out or a termination request) will
result in a final NOTIFY indicating that the subscription has been terminated
(see Section 4.1.9 on NOTIFY).

A 202 Accepted response to a SUBSCRIBE does not indicate
whether the subscription has been authorized—it merely means it has been
understood by the server.

The basic call flow is shown in Figure 4.8. The client sends a SUBSCRIBE,
which is successful, and receives NOTIFYs as the requested events occur at the
server. Before the expiration of the subscription time, the client re-SUBSCRIBEs
to extend the subscription and hence receives more notifications.

Note that a client must be prepared to receive a NOTIFY before receiving
a 200 OK response to the SUBSCRIBE. Also, due to forking, a client must be
prepared to receive NOTIFYs from multiple servers (the NOTIFYs will have

SIP Request Messages 87

Watcher Proxy

200 OK

Presence agent

SUBSCRIBE

NOTIFY

SUBSCRIBE

202 Accepted202 Accepted

SUBSCRIBE

200 OK

.

.

.

Figure 4.8 Example SUBSCRIBE and NOTIFY call flow.

different To tags and hence will establish separate dialogs), although only one
200 OK response to the SUBSCRIBE may be received.

An example SUBSCRIBE request is shown below:

SUBSCRIBE sip:ptolemy@rosettastone.org SIP/2.0
Via SIP/2.0/UDP proxy.elasticity.co.uk:5060
;branch=z9hG4bK348471123
Via SIP/2.0/UDP parlour.elasticity.co.uk:5060
;branch=z9hG4bKABDA ;received=192.0.3.4
Max-Forwards: 69
To: <sip:Ptolemy@rosettastone.org>
From: Thomas Young <sip:tyoung@elasticity.co.uk>;tag=1814
Call-ID: 452k59252058dkfj34924lk34
CSeq: 3412 SUBSCRIBE
Allow-Events: dialog
Contact: <sip:tyoung@parlour.elasticity.co.uk>
Event: dialog
Content-Length: 0

The type of event subscription is indicated by the required Event header
field (see Section 6.4.7) in the SUBSCRIBE request. Each application of the
SIP Events framework [5] defines a package with a unique event tag. Each pack-
age defines the following things:

• Default subscription expiration interval;
• Expected SUBSCRIBE message bodies;
• What events cause a NOTIFY to be sent, and what message body is

expected in the NOTIFY;
• Whether the NOTIFY contains complete state or increments (deltas);
• Maximum notification rate.

A protocol called PSTN and Internet Interworking (PINT) [6] defined
methods SUBSCRIBE, NOTIFY, and UNSUBSCRIBE, which have a similar
semantic to SIP. A server can distinguish a PINT SUBSCRIBE request from a
SIP SUBSCRIBE by the absence of an Event header field in the PINT
request.

A server should indicate which event packages it supports by listing them
in an Allow-Events header field.

If a SUBSCRIBE refresh is sent within a dialog but receives a 481 Dia-
log Does Not Exist response, this means that the server has already ter-
minated the subscription. The client should consider the dialog and
subscription terminated and send a SUBSCRIBE to establish a new dialog and
subscription.

An event template package is a special type of package that can be
applied to any other package including statistical, access policy, and subscrip-
tion lists. The application of a template package to a package is shown by

88 SIP: Understanding the Session Initiation Protocol

separating the package and template package names with a “.” as in pres-
ence.winfo, which is the application of the watcher info template package
to the presence package. Table 4.8 lists the current set of SIP event and template
packages.

Table 4.9 lists the manatory header fields in a SUBSCRIBE request. Pack-
ages are standardized in the SIPPING or SIMPLE WG based on the require-
ments in [5].

4.1.9 NOTIFY

The NOTIFY method [5] is used by a user agent to convey information about
the occurrence of a particular event. A NOTIFY is always sent within a dialog

SIP Request Messages 89

Table 4.8
Event Packages and Template Packages

conference Conference information including participant lists,
policy information, and so forth [7]

dialog Dialog state and identification information [8]

message-summary Messages notification, used for message waiting
indicator (mwi) with voicemail [9]

presence Presence information [10]

refer Refer state implicit subscription created by REFER [2]

reg User registration state [11]

winfo Watcher information template package [12]

Table 4.9
Mandatory Header Fields for a SUBSCRIBE

To
From

Call-ID

CSeq

Max-Forwards

Via

Contact

Event

Allow-Events

when a subscription exists between the subscriber and the notifier. However, it
is possible for a subscription to be established using non-SIP means (no
SUBSCRIBE is sent) and may also be implicit in another SIP request type (for
example, a REFER establishes an implicit subscription). Since it is sent within a
dialog, the NOTIFY will contain a To tag, From tag, and existing Call-ID.
A basic call flow showing NOTIFY is shown in Figure 4.8.

A NOTIFY request normally receives a 200 OK response to indicate that
it has been received. If a 481 Dialog/Transaction Does Not
Exist response is received, the subscription is automatically terminated and
no more NOTIFYs are sent.

NOTIFY requests contain an Event header field indicating the package
and a Subscription-State header field indicating the current state of the
subscription. The Event header field (see Section 6.2.6) will contain the pack-
age name used in the subscription. Currently defined packages are listed in
Table 4.8 The Subscription-State header field (see Section 6.2.27) will
either be active, pending, or terminated.

A NOTIFY is always sent at the start of a subscription and at the termina-
tion of a subscription. If a NOTIFY contains incremental (delta) state informa-
tion, the message body will contain a state version number that will be
incremented by 1 for each NOTIFY sent. This way, the receiver of the NOTIFY
can tell if information is missing our received out of sequence.

An example NOTIFY request is shown here:

NOTIFY sip:tyoung@parlour.elasticity.co.uk SIP/2.0
Via SIP/2.0/UDP cartouche.rosettastone.org:5060
;branch=z9hG4bK3841323
Max-Forwards: 70
To: Thomas Young <sip:tyoung@elasticity.co.uk>;tag=1814
From: <sip:ptolemy@rosettastone.org>;tag=5363956k
Call-ID: 452k59252058dkfj34924lk34
CSeq: 3 NOTIFY
Contact: <sip:Ptolemy@cartouche.rosettastone.org>
Event: dialog
Subscription-State: active
Allow-Events: dialog
Content-Type: application/xml+dialog
Content-Length: ...

(XML Message body not shown...)

Table 4.10 lists the mandatory header fields in a NOTIFY request.

4.1.10 MESSAGE

The MESSAGE method [13] is used to transport instant messages (IM) using
SIP. IM usually consists of short message exchanged in near-real time by

90 SIP: Understanding the Session Initiation Protocol

participants engaged in a “conversation.” MESSAGEs may be sent within a dia-
log or outside a dialog, but they do not establish a dialog by themselves. The
actual message content is carried in the message body as a MIME attachment.
All UAs that support the MESSAGE method must support plain/text
format, they may support other formats such as message/cpim [14] or
text/html, or many others.

A MESSAGE request normally receives a 200 OK response to indicate
that the message has been delivered to the final destination. An Instant Message
response should not be sent in the message body of a 200 OK, but rather a
separate MESSAGE request sent to the original sender. A 202 Accepted
response indicates that the request has reached a store-and-forward device and
will likely eventually be delivered to the final destination. In neither case does
the 2xx response confirm that the message content has been rendered to the
user.

A MESSAGE request may use the im (Instant Message) URI scheme [14]
in a Request-URI, although a client should try to resolve to a sip or sips.

An example MESSAGE call flow is shown in Figure 4.9.
Note that the MESSAGE method is not the only application of instant

messaging with SIP. It is also possible to use SIP to establish an instant message
session in a completely analogous way that SIP is commonly used to establish a
media session. An INVITE could be used to establish the session with a SDP
body that describes the instant message protocol to be used directly between the
two users. IM sessions have been proposed using SIP MESSAGE, Common
Presence and Instant Messaging (CPIM) [14], and even Jabber [15]. An exam-
ple call flow is shown in Figure 4.10.

SIP Request Messages 91

Table 4.10
Mandatory Header Fields for a NOTIFY

To

From

Call-ID

CSeq

Max-Forwards

Via

Contact

Event

Subscription-State

Allow-Events

An example MESSAGE request is shown below:

MESSAGE sip:editor@rcs.org SIP/2.0
Via SIP/2.0/UDP lab.mendeleev.org:5060;branch=z9hG4bK3
Max-Forwards: 70

92 SIP: Understanding the Session Initiation Protocol

IM Client 1 Proxy

MESSAGE MESSAGE

200 OK

MESSAGE

200 OK

Proxy IM Client 2

200 OK

MESSAGE

200 OK

Figure 4.9 SIP instant message example.

IM Client 1 Proxy IM Client 2

INVITE
INVITE

200 OK
200 OK

ACK
ACK

Instant message session

Figure 4.10 Using SIP to establish an instant messaging session.

To: <editor@rcs.org>
From: “D. I. Mendeleev” <dmitry@mendeleev.org>;tag=1865
Call-ID: 93847197172049343
CSeq: 5634 MESSAGE
Subject: First Row
Contact: <sip:dmitry@lab.mendeleev.org>
Content-Type: text/plain
Content-Length: 5

H, He

Table 4.11 lists the mandatory header fields in a MESSAGE request.

4.1.11 INFO

The INFO [16] method is used by a user agent to send call signaling informa-
tion to another user agent with which it has an established media session. This is
different from a re-INVITE since it does not change the media characteristics
of the call. The request is end-to-end, and is never initiated by proxies. A proxy
will always forward an INFO request—it is up to the UAS to check to see if the
dialog is valid. INFO requests for unknown dialogs receive a 481 Transac-
tion/Dialog Does Not Exist response.

An INFO method typically contains a message body. The contents may
be signaling information, a midcall event, or some sort of stimulus. INFO has
been proposed to carry certain PSTN midcall signaling information such as
ISUP USR messages.

The INFO method always increments the CSeq. An example INFO
method is:

INFO sip:poynting@mason.edu.uk SIP/2.0
Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk
;branch=z9hG4bK24555
Max-Forwards: 70

SIP Request Messages 93

Table 4.11
Mandatory Header Fields for a MESSAGE

To

From

Call-ID

CSeq

Max-Forwards

Via

To: John Poynting <sip:nting@mason.edu.uk> ;tag=3432
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=432485820183
Call-ID: 18437@cavendish.kings.cambridge.edu.uk
CSeq: 6 INFO
Content-Type: message/isup
Content-Length: 16

51a6324134527

The mandatory headers in an INFO request are shown in Table 4.12.

4.1.12 PRACK

The PRACK [17] method is used to acknowledge receipt of reliably transported
provisional responses (1xx). The reliability of 2xx, 3xx, 4xx, 5xx, and
6xx responses to INVITEs is achieved using the ACK method. However, in
cases where a provisional response, such as 180 Ringing, is critical in deter-
mining the call state, it may be necessary for the receipt of a provisional response
to be confirmed. The PRACK method applies to all provisional responses except
the 100 Trying response, which is never reliably transported.

A PRACK is generated by a UAC when a provisional response has been
received containing a RSeq reliable sequence number (see Section 6.3.10) and a
Supported: 100rel header. The PRACK echoes the number in the RSeq
and the CSeq of the response in a RAck header. The message flow is as shown
in Figure 4.5. In this example, the UAC sends the 180 Ringing response
reliably by including the RSeq header. When no PRACK is received from the
UAC after the expiration of a timer, the response is retransmitted. The receipt of
the PRACK confirms the delivery of the response and stops all further transmis-
sions. The 200 OK response to the PRACK stops retransmissions of the
PRACK request. The call completes when the UAC sends the ACK in response
to the 200 OK.

94 SIP: Understanding the Session Initiation Protocol

Table 4.12
Mandatory Headers in an INFO Request

Mandatory Headers

Call-ID

CSeq

From

To

Via

Max-Forwards

Reliable responses are retransmitted using the same exponential backoff
mechanism used for final responses to an INVITE. The combination of
Call-ID, CSeq number, and RAck number allows the UAC to match the
PRACK to the provisional response it is acknowledging. As shown in Figure 4.5,
the PRACK receives a 200 OK response, which can be distinguished from the
200 OK to the INVITE by the method contained in the CSeq header. The
detailed use of the method (see Figure 4.11) is described in Sections 6.2.29 and
6.3.10 (where the RAck and RSeq headers are described).

The PRACK method always increments the CSeq. A PRACK may contain
a message body. An example exchange contains:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk
;branch=z9hG4bK452352
;received=1.2.3.4
To: Descartes <sip:rene.descartes@metaphysics.org>;tag=12323
From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981

SIP Request Messages 95

UAC UASINVITE
Supported: 100rel
CSeq: 1 INVITE

100 Trying
CSeq: 1 INVITE

180 Ringing
CSeq: 1 INVITE
RSeq: 314

X
180 Ringing
CSeq: 1 INVITE
RSeq: 314

PRACK
CSeq: 2 PRACK
RAck: 314 1 INVITE

200 OK
CSeq: 2 PRACK

200 OK
CSeq: 1 INVITE

ACK
CSeq: 1 ACK

Media session

T1

Figure 4.11 Use of reliable provisional responses.

Call-ID: 5@lucasian.trinity.cambridge.edu.uk
RSeq: 314
CSeq: 1 INVITE
Content-Length: 0

PRACK sip:rene.descartes@metaphysics.org SIP/2.0
Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk
;branch=z9hG4bKdtyw
Max-Forwards: 70
To: Descartes <sip:rene.descartes@metaphysics.org>;tag=12323
From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981
Call-ID: 5@lucasian.trinity.cambridge.edu.uk
CSeq: 2 PRACK
RAck: 314 1 INVITE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk
;branch=z9hG4bKdtyw ;received=1.2.3.4
To: Descartes <sip:rene.descartes@metaphysics.org>;tag=12323
From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981
Call-ID: 5@lucasian.trinity.cambridge.edu.uk
CSeq: 2 PRACK
Content-Length: 0

The mandatory header fields in a PRACK request are shown in Table 4.13.

4.1.13 UPDATE

The UPDATE method [18] is used to modify the state of a session without
changing the state of the dialog. A session is established in SIP using an INVITE
request (see Section 4.1.1) in an offer/answer manner (see Section 7.1.12). Typi-
cally, a session offer is made in the INVITE and an answer made in a response to

96 SIP: Understanding the Session Initiation Protocol

Table 4.13
Mandatory Header Fields in a PRACK Request

Mandatory Header Fields

Call-ID

CSeq

From

To

Via

Max-Forwards

RAck

the INVITE. In an established session, a re-INVITE is used to update session
parameters. However, neither party in a pending session (INVITE sent but no
final response received) may re-INVITE—instead, the UPDATEmethod is used.

Possible uses of UPDATE include muting or placing on hold pending
media streams, performing QoS or other end-to-end attribute negotiation prior
to session establishment

The following is an example UPDATE message (Figure 4.12):

UPDATE sips:beale@bufords.bedford.va.us SIP/2.0
Via SIP/2.0/TLS client.crypto.org:5060;branch=z9hG4bK342
Max-Forwards: 70
To: T. Beale <sips:beale@bufords.bedford.va.us>;tag=71
From: Blaise Vigenere <sips:bvigenere@crypto.org>;tag=19438
Call-ID: 170189761183162948
CSeq: 94 UPDATE
Contact: <sips:client.crypto.org>
Content-Type: application/sdp
Content-Length: ...

(SDP Message body not shown...)

Table 4.14 lists the mandatory header fields in an UPDATE request.

SIP Request Messages 97

UAC Proxy UAS

INVITE
INVITE

200 OK (INVITE)
200 OK (INVITE)

ACK ACK

Media session

183 (INVITE)
183 (INVITE)

PRACK PRACK

200 OK (PRACK)
200 OK (PRACK)

UPDATE
UPDATE

200 OK (UPDATE)
200 OK (UPDATE)

Figure 4.12 Example of UPDATE method.

4.2 URI and URL Schemes Used by SIP

SIP supports a number of URI and URL schemes including sip, sips,
tel, pres, and im for SIP, secure SIP, telephone, presence, and instant
message URIs as described in the following sections. In addition, other URI
schemes can be present in SIP header fields as listed in Table 4.15.

4.2.1 SIP and SIPS URIs

The addressing scheme of SIP URLs and URIs has been previously mentioned.
SIP URIs are used in a number of places including the To, From, and
Contact headers, as well as the Request-URI, which indicates the destination.
SIP URIs are similar to the mailto URL [20] and can be used in hyperlinks

98 SIP: Understanding the Session Initiation Protocol

Table 4.14
Mandatory Header Fields for an UPDATE

To

From

Call-ID

Cseq

Max-Forwards

Via

Contact

Table 4.15
Common URI Schemes Used in SIP Messages

Scheme Meaning Use

sip SIP URI Most common in To, From, Contact, Request-URIs, and so forth [1]

sips Secure SIP URI Same as SIP, provides end-to-end encryption using TLS [1]

tel Telephone URI Represents a telephone number (E.164), usually in To or From [19]

pres Presence URI Used to represent the URI of a presence agent [14]

im Instant Message URI Instant Message client [14]

mailto E-mail URL Can be included in Contact in registration or redirection
response [20]

http Web URL Can be used in some headers such as Alert-Info, Error-Info, and so
forth [21]

on Web pages, for example. SIP URIs can include telephone numbers. The
information in a SIP URI indicates the way in which the resource (user) should
be contacted using SIP.

An example SIP URI contains the scheme sip a “:”, then a user-
name@host or IPv4 address followed by an optional “:”, then the port
number, or a list of “;” separated by URI parameters:

sip:joseph.fourier@transform.org:5060;transport=udp;user=ip
;method=INVITE;ttl=1;maddr=240.101.102.103?Subject=FFT

Some SIP URIs, such as a REGISTER Request-URI do not have a user-
name, but begin with the host or IPv4 address. In this example, the port number
is shown as 5060, the well-known port number for SIP. For a SIP URI, if the
port number is not present, 5060 is assumed. For a SIPS URI, port number
5061 is assumed. The transport parameter indicates UDP is to be used,
which is the default. TCP, TLS, and SCTP are alternative transport parameters.

The user parameter is used by parsers to determine if a telephone
number is present in the username portion of the URI. The assumed default is
that it is not, indicated by the value ip. If a telephone number is present, it is
indicated by the value phone. This parameter must not be used to guess at the
characteristics or capabilities of the user agent. For example, the presence of a
user=phone parameter must not be interpreted that the user agent is a SIP
telephone (which may have limited display/processing capabilities). In a teleph-
ony environment, IP telephones and IP/PSTN gateways may in fact use the
reverse assumption, interpreting any digits in a username as digits regardless if
user=phone is present.

The method parameter is used to indicate the method to be used. The
default is INVITE. This parameter has no meaning in To or From header
fields or in a Request-URI but can be used in Contact headers for registra-
tion, for example, or in a Refer-To header field.

The ttl parameter is the time-to-live, which must only be used if the
maddr parameter contains a multicast address and the transport parameter con-
tains udp. The default value is 1. This value scopes the multicast session broad-
cast, as described in Section 1.8.

The maddr usually contains the multicast address to which the request
should be directed, overriding the address in the host portion of the URI. It can
also contain, however, a unicast address of an alternative server for requests.

The method, maddr, ttl, and header parameters must not be
included in To or From headers, but may be included in Contact headers or
in Request-URIs. In addition to these parameters, a SIP URI may contain other
user-defined parameters.

Following the “?” parameter, names can be specified to be included in the
request. This is similar to the operation of the mailto URL, which allows

SIP Request Messages 99

Subject and Priority to be set for the request. Additional headers can be
specified, separated by a “&”. The header name body indicates that the con-
tents of a message body for an INVITE request is being specified in the URI.

If the parameter user=phone is present, then the username portion of
the URI can be interpreted as a telephone number. This allows additional
parameters in the username portion of the URI. This allows the parameters and
structure of a tel URL [19] to be present in the user part of the SIP URI as
described in the next section.

The sips URI scheme has the same structure as the sip URI but begins
with the sips scheme name. Note that a sips URI is not equivalent to a sip
URI with transport=tls, since the sip URI does not have the same secu-
rity requirements as the sips URI. The requirement is that TLS transport is used
end-to-end for the SIP path. The only exception is hop between the final proxy
and the UAS, which may use another security mechanism besides TLS (IPSec,
for example).

Not shown in the example is the loose route parameter lr, which can be
present in sip or sips Record-Route and Route URIs to indicate that
the proxy server identified by the URI supports loose routing.

4.2.2 Telephone URLs

The telephone URI scheme, tel, [19] can be used to represent a resource iden-
tified by a telephone number. Telephone numbers can be of two general forms,
local or global. A local number is only valid in a particular geographic area and
has only local significance. If the number is used outside of this area, it will
either fail or return the wrong resource. A global telephone number, also called
an E.164 number, is one that is, in principle, valid anywhere. It contains enough
information about the country, region, and locality so that the PSTN network is
capable of routing calls to the correct resource. An example of a local phone
number is:

tel:411;phone-context=+1314

which indicates a call to directory assistance valid only within country code 1
and area code 314 as identified in the required phone-context parameter. An
example of a global phone number is:

tel:+13145551212

Global phone numbers always begin with the “+” identifier followed by
the country code, 1 in this case, followed by the remaining telephone digits.

A tel URL can also contain some characters and information about dial-
ing strings and patterns. For example:

100 SIP: Understanding the Session Initiation Protocol

tel:#70555-1212;isub=1000

In this example, the dialed digit string, interpreted by a PSTN gateway,
would be the DTMF digit # then 70 (to cancel call waiting, for example), then
the digits 555–1212. Additional parameters include an ISDN subaddress of
1000. This example shows both types of optional visual separators allowed,
either “-“ or “.” as the separator.

Tel URLs can also be embedded in Web pages and could be included in
HTML as, for example:

Click here to get information
about Dallas.

The syntax and parameters of the tel URL may be used in the user por-
tion of a sip URI. For example, the first tel example could be represented as
a sip URI as follows:

sip:411%3Bphone-context%3D+1314@gateway.example.com

The SIP URI adds a domain portion which represents the domain or gate-
way that will route the request. Note that some of the characters in the tel
URI must be escaped if they are included in the user part of a sip URI, in this
example the “;” and “=” are escaped.

4.2.3 Presence and Instant Messaging URLs

The pres URL scheme is defined [14] as a URL scheme that represents a “pre-
sentity” or presence agent. The im URL scheme is defined [14] as a URL
scheme that represents an “instant inbox” or an instant message client. Both
URL schemes do not represent a new protocol but are resolved using DNS SRV
resource records, which return another URI that indicates the actual presence or
instant messaging protocol. For example, if the presence agent reference by the
presence URL:

pres:user@example.com

supports SIP presence, the DNS SRV query would return a SIP URI, for
example:

sip:user@example.com

which would then allow a presence agent to send a SUBSCRIBE to this SIP
URI to obtain the presence agent of this user.

The same procedure would be used for resolving an im URL into a SIP
URI for sending a MESSAGE request.

SIP Request Messages 101

4.3 Tags

A tag is a cryptographically random number with at least 32 bits of random-
ness, which is added to To and From headers to uniquely identify a dialog. The
examples of Chapters 2 and 10 show the use of the tag header parameter. The
To header in the initial INVITE will not contain a tag. A caller must
include a tag in the From header, although a RFC 2543 user agent generally
will not do so as it was optional in that specification. Excluding 100 Trying,
all responses will have a tag added to the To header. The sending or reception of
a response containing a From tag creates an early dialog. A tag returned in a
200 OK response is then incorporated as a dialog identifier and used in all
future requests for this Call-ID. A tag is never copied across calls. Any
response generated by a proxy will have a tag added by the proxy. An ACK gen-
erated by either a user agent or a proxy will always copy the From tag of the
response in the ACK request.

If a UAC receives responses containing different tags, this means that
the responses are from different UASs, and hence the INVITE has been forked.
It is up to the UAC as to how to deal with this situation. For example, the UAC
could establish separate sessions with each of the responding UAS. The dialogs
would contain the same From, Call-ID, and CSeq, but would have dif-
ferent tags in the To header. The UAC also could BYE certain legs and establish
only one session.

Note that tags are not part of the To or From URI but are part of the
header and always placed outside any “<>”.

4.4 Message Bodies

Message bodies in SIP may contain various types of information. They may con-
tain SDP information, which can be used to convey media information or QoS
or even security information.

The optional Content-Disposition header is used to indicate the
intended use of the message body. If not present, the function is assumed to be
session, which means that the body describes a media session. Besides session,
the other defined function is render, which means that the message body should
be presented to the user or otherwise used or displayed. This could be used to
pass a small JPEG image file or URI.

The format of the message body is indicated by the Content-Type
header described in Section 6.4.5. If a message contains a message body, the
message must include a Content-Type header. All user agents must support
a Content-Type of application/sdp. The encoding scheme of the
message body is indicated in the Content-Encoding header. If not

102 SIP: Understanding the Session Initiation Protocol

specified, the encoding is assumed to be text/plain. The specification of a
Content-Encoding scheme allows the message body to be compressed.

The Content-Length header contains the number of octets in the
message body. If there is no message body, the Content-Length header
should still be included but has a value of 0. Because multiple SIP messages can
be sent in a TCP stream, the Content-Length count is a reliable way to
detect when one message ends and another begins. If a Content-Length is
not present, the UAC must assume that the message body continues until the
end of the UDP datagram, or until the TCP connection is closed, depending on
the transport protocol.

Message bodies can have multiple parts if they are encoded using Multi-
part Internet Mail Extensions (MIME) [22]. Message bodies in SIP, however,
should be small enough so that they do not exceed the UDP MTU of the net-
work. Proxies may reject requests with large message bodies with a 413
Request Entity Too Large response, since processing large messages
can load a server.

As mentioned in the previous section, SIP carries message bodies the same
way that e-mails carry attachments. It is possible to carry multiple message bod-
ies within a single SIP message. This is done using a multipart MIME body. The
Content-Type is listed as multipart/mime, and a separator is defined,
which is used by the parser to separate the message. Any SIP request or response
that can contain a message body may carry a multipart MIME body. An exam-
ple is in SIP-T (see Section 7.5) in which an INVITE carries both a SDP mes-
sage body (application/sdp) and an encapsulated ISUP message
(application/isup). An example multipart MIME is:

INVITE sip:refertarget@carol.example.com SIP/2.0
Via: SIP/2.0/UDP referree.example;branch=z9hG4bKffe209934aac
To: sip:refertarget@carol.example.com
From: <sip:referree@referree.example>;tag=2909034023
Call-ID: fe9023940-a3465@referree.example
CSeq: 889823409 INVITE
Max-Forwards: 70
Contact: <sip:referree@bob.example.com>
Referred-By: sip:referror@alice.example.com
;cid=%3C20398823.2UWQFN309shb3@alice.example.com%3E
Content-Type: multipart/mixed; boundary=-*-boundary-*-
Content-Length: ...

—-*-boundary-*-

Content-Type: application/sdp
Content-Length: ...

v=0
o=referree 2890844526 2890844526 IN IP4 referree.example
s=Session SDP

SIP Request Messages 103

c=IN IP4 referree.example
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

—-*-boundary-*-

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=sha1; boundary=dragons39
Content-ID: <20398823.2UWQFN309shb3@alice.example.com>
Content-Length: (appropriate value)

-another-boundary-
Content-Type: message/sipfrag
Content-Disposition: auth-id; handling=optional

From: sip:referror@alice.example.com
Date: Thu, 21 Feb 2002 13:02:03 GMT
Call-ID: 2203900ef0299349d9209f023a
Refer-To: sip:refertarget@carol.example.com
Referred-By: sip:referror@alice.example.com
;cid=%3C20398823.2UWQFN309shb3@alice.example.com%3E

-another-boundary-
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s;han-
dling=required

(S/MIME data goes here)

—unique44—
—-*-boundary-*—-

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, 2003.

[3] Sparks, R., “Internet Media Type message/sipfrag,” RFC 3420, 2003.

[4] Sparks, R., and A. Johnston, “SIP Call Control – Transfer,” IETF Internet-Draft, Work
in Progress, March 2003.

[5] Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265,
2002.

[6] Petrack, S., and L. Conroy, “The PINT Service Protocol: Extensions to SIP and SDP for
IP Access to Telephone Call Services,” RFC 2848, 2000.

[7] Rosenberg, J., and H. Schulzrinne, “A Session Initiation Protocol (SIP) Event Package for
Conference State,” IETF Internet-Draft, Work in Progress, June 2002.

104 SIP: Understanding the Session Initiation Protocol

[8] Rosenberg, J., and H. Schulzrinne, “An INVITE Initiated Dialog Event Package for the
Session Initiation Protocol (SIP),” IETF Internet-Draft, Work in Progress, March 2003.

[9] Mahy, R., “A Message Summary and Message Waiting Indication Event Package for the
Session Initiation Protocol (SIP),” IETF Internet-Draft, Work in progress, March 2003.

[10] Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” IETF
Internet-Draft, Work in Progress, January 2003.

[11] Rosenberg, J., “A Session Initiation Protocol (SIP) Event Package for Registrations,” IETF
Internet-Draft, October 2002.

[12] Rosenberg, J., “A Watcher Information Event Template-Package for the Session Initiation
Protocol (SIP),” IETF Internet-Draft, Work in Progress, January 2003.

[13] Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,”
RFC 3428, 2002.

[14] Crocker, D., et al., “Common Presence and Instant Messaging (CPIM),” IETF Internet-
Draft, Work in Progress, August 2002.

[15] Sparks, R., “Establishing jabber Messaging Sessions with the Session Initiation Protocol,”
IETF Internet-Draft, Work in Progress, October 2002.

[16] Donovan, S., “The SIP INFO Method,” RFC 2976, 2000.

[17] Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses in Session Initia-
tion Protocol (SIP),” RFC 3262, 2002.

[18] Rosenberg, J., “The Session Initiation Protocol (SIP) UPDATE Method,” RFC 3311,
2002.

[19] Schulzrinne, H., and A. Vaha-Sipila, “The tel URI for Telephone Calls,” IETF Internet-
Draft, February 2003.

[20] Hoffman, P., L. Masinter, and J. Zawinski, “The mailto URL Scheme,” RFC 2368, 1998.

[21] Fielding, R., et al., “Hypertext Transfer Protocol — HTTP/1.1,” RFC 2616, 1999.

[22] Freed, N., and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies,” RFC 2045, 1996.

SIP Request Messages 105

.

5
SIP Response Messages

This chapter covers the types of SIP response messages. A SIP response is a mes-
sage generated by a UAS or a SIP server to reply to a request generated by a
UAC. A response may contain additional header fields containing information
needed by the UAC. Or, it may be a simple acknowledgment to prevent retrans-
missions of the request by the UAC. Many responses direct the UAC to take
specific additional steps. The responses are discussed in terms of structure and
classes. Then, each request type is discussed and examined in detail.

There are six classes of SIP responses. The first five classes were borrowed
from HTTP; the sixth was created for SIP. The classes are shown in Table 5.1.

If a particular SIP response code is not understood by a UAC, it must be
interpreted by the class of the response. For example, an unknown 599
Server Unplugged response must be interpreted by a user agent as a 500
Server Failure response.

The reason phrase is for human consumption only—the SIP protocol uses
only the response code in determining behavior. Thus, a 200 Call Failed
is interpreted the same as 200 OK. The reason phrases listed here are the sug-
gested ones from the RFC document. They can be used to convey more infor-
mation, especially in failure class responses—the phrase is likely to be displayed
to the user. Some response codes were borrowed from HTTP, perhaps with a
slightly different reason phrase.1 However, not all HTTP response codes are
valid in SIP, and some even have a different meaning. New response codes

107

1. Not all HTTP response codes are supported in SIP. Only the response codes described in
RFC 3261 and supporting RFCs are supported in SIP.

created for SIP typically start at x80 to try to avoid collisions with HTTP
response codes.

Unless otherwise referenced, the responses described here are defined in
RFC 3261 [1].

5.1 Informational

The informational class of responses 1xx are used to indicate call progress.
Informational responses are end-to-end responses and may contain message
bodies. The exception to this is the 100 Trying response, which is only a
hop-by-hop response and may not contain a message body. Any number of
informational responses can be sent by a UAS prior to a final response (2xx,
3xx, 4xx, 5xx, or 6xx class response) being sent. The first informational
response received by the UAC confirms receipt of the INVITE, and stops
retransmission of the INVITE, as described in Section 3.5. For this reason,
servers returning 100 Trying responses minimizes INVITE retransmissions
in the network. Further informational responses have no effect on INVITE
retransmissions. A stateful proxy receiving a retransmission of an INVITE will
resend the last provisional response sent to date. Informational responses are
optional—a UAS can send a final response without first sending an informa-
tional response. While final responses to an INVITE receive an ACK to confirm

108 SIP: Understanding the Session Initiation Protocol

Table 5.1
SIP Response Classes

Class Description Action

1xx Informational Indicates status of call prior to completion. If first informational or
provisional response.

2xx Success Request has succeeded. If for an INVITE, ACK should be sent; otherwise,
stop retransmissions of request.

3xx Redirection Server has returned possible locations. The client should retry request at
another server.

4xx Client error The request has failed due to an error by the client. The client may retry the
request if reformulated according to response.

5xx Server failure The request has failed due to an error by the server. The request may be
retried at another server.

6xx Global failure The request has failed. The request should not be tried again at this or other
servers.

receipt, provisional responses are not acknowledged, except using the PRACK
method described in Section 4.1.12.

All provisional responses with the exception of 100 Trying must con-
tain a Contact URI and echo all Record-Route headers received in the
request. However, a RFC 2543 implementation will not do this, as it was not
mandated in that document.

5.1.1 100 Trying

This special case response is only a hop-by-hop request. It is never forwarded
and may not contain a message body. A forking proxy must send a 100 Try-
ing response, since the extended search being performed may take a significant
amount of time. This response can be generated by either a proxy server or a
user agent. It only indicates that some kind of action is being taken to process
the call—it does not indicate that the user has been located. A 100 Trying
response typically does not contain a To tag.

5.1.2 180 Ringing

This response is used to indicate that the INVITE has been received by the user
agent and that alerting is taken place. This response is important in interwork-
ing with telephony protocols, and it is typically mapped to messages such as an
ISDN Progress or ISUP Address Complete Message (ACM) [2]. When the user
agent answers immediately, a 200 OK is sent without a 180 Ringing; this
scenario is called the “fast answer” case in telephony.

A message body in this response could be used to carry QoS or security
information, or to convey ring tone or animations from the UAS to the UAC.

A UA normally generates its own ringback tone or remote ringing indica-
tion, unless a Alert-Info header field (see Section 6.1.1) is present.

5.1.3 181 Call Is Being Forwarded

This response is used to indicate that the call has been handed off to another
end-point. This response is sent when this information may be of use to the
caller. Also, because a forwarding operation may take longer for the call to be
answered, this response gives a status for the caller.

5.1.4 182 Call Queued

This response is used to indicate that the INVITE has been received, and will
be processed in a queue. The reason phrase can be used to indicate the estimated
wait time or the number of callers in line, as shown in Figure 5.1. A message
body in this response can be used to carry music on hold or other media.

SIP Response Messages 109

5.1.5 183 Session Progress

The 183 Session Progress response indicates that information about
the progress of the session (call state) may be present in a message body or media
stream. Unlike a 100 Trying response, a 183 is an end-to-end response and
does establish a dialog (must contain a To tag and Contact). Unlike a 180,

181, or 182 response, however, it does not convey any specific information
about the status of the INVITE. A typical use of this response is to allow a UAC
to hear ring tone, busy tone, or a recorded announcement in calls through a
gateway into the PSTN. This is because call progress information is carried in
the media stream in the PSTN. A one-way media connection or trunk is estab-
lished from the calling party’s telephone switch to the called party’s telephone
switch in the PSTN prior to the call being answered. In SIP, the media session is
established after the call is answered—after a 200 OK and ACK have been
exchanged between the UAC and UAS. If a gateway used a 180 Ringing
response instead, no media path would be established between the UAC and the
gateway, and the caller would never hear ring tone, busy tone, or a recorded
announcement (e.g., “The number you have dialed has changed, the new
number is ...”) since these are all heard in the media path prior to the call being
answered. Figure 5.2 shows an example where a SIP caller does not hear a
recorded announcement coming from the PSTN. Figure 5.3 shows the use of
the 183 Session Progress allowing an early media session to be estab-
lished prior to the call being answered. The PSTN interworking scenarios in
Chapter 10 show this in detail.

110 SIP: Understanding the Session Initiation Protocol

INVITE

182 3 Ahead of you

ACK

Media session

Caller Call center

182 2 Ahead of you

182 1 Ahead of you

200 OK

Figure 5.1 Call queuing example with call processing center.

SIP Response Messages 111

Caller Gateway Telephone
switch

INVITE sip:555-1111@gateway.com;user=phone

100 Trying

180 Ringing

No media path
established

IAM CdPn=555-1111

ACM

One way voice path

Telephone switch plays
recorded annoucement:

REL

502 Bad gateway

ACK
RLC

"Why
did
the
call
fail?"

"The number you have
dialed has changed.
The new number is
555-2222.“

Figure 5.2 PSTN interworking without early media.

Caller Gateway Telephone
switch

INVITE sip:555-2222@gateway.com;user=phone
sdp Caller

100 Trying

183 Session Progress
sdp Gateway

Media path

IAM CdPn=555-2222

ACM

One way voice path

Telephone switch
plays ring tone

ANM200 OK
sdp Gateway

ACK

Caller hears
ring tone in RTP

Media path Two way voice path

Figure 5.3 PSTN interworking with early media.

5.2 Success

Success class responses indicate that the request has succeeded or has been
accepted.

5.2.1 200 OK

The 200 OK response has two uses in SIP. When used to accept a session invi-
tation, it will contain a message body containing the media properties of the
UAS (called party). When used in response to other requests, it indicates suc-
cessful completion or receipt of the request. The response stops further retrans-
missions of the request. In response to an OPTIONS, the message body may
contain the capabilities of the server. A message body may also be present in a
response to a REGISTER request. For 200 OK responses to CANCEL,
INFO, MESSAGE, SUBSCRIBE, NOTIFY, and PRACK, a message body
is not permitted.

5.2.2 202 Accepted

The 202 Accepted response [3] indicates that the UAS has received and
understood the request, but that the request may not have been authorized or
processed by the server. It is commonly used in responses to SUBSCRIBE (see
Section 4.1.8) and REFER (see Section 4.1.7), and sometimes MESSAGE (see
Section 4.1.10) methods.

5.3 Redirection

Redirection class responses are generally sent by a SIP server acting as a redi-
rect server in response to an INVITE, as described in Section 3.3.2. A UAS,
however, can also send a redirection class response to implement certain types
of call forwarding features. There is no requirement that a UAC receiving a
redirection response must retry the request to the specified address. The UAC
can be configured to automatically generate a new INVITE upon receipt of
a redirection class response without requiring user intervention. In addition,
proxies may also automatically send an ACK to a redirect and proxy the
INVITE to the new location provided in the Contact URI of the redirec-
tion. To prevent looping, the server must not return any addresses contained
in the request Via header field, and the client must check the address returned
in the Contact header field against all other addresses tried in an earlier
call attempt. Note that this type of transaction looping is different from request
looping.

112 SIP: Understanding the Session Initiation Protocol

5.3.1 300 Multiple Choices

This redirection response contains multiple Contact header fields, which
indicate that the location service has returned multiple possible locations for the
sip or sips URI in the Request-URI. The order of the Contact header
fields is assumed to be significant. That is, they should be tried in the order in
which they were listed in the response.

5.3.2 301 Moved Permanently

This redirection response contains a Contact header field with the new per-
manent URI of the called party. The address can be saved and used in future
INVITE requests.

5.3.3 302 Moved Temporarily

This redirection response contains a URI that is currently valid but that is not
permanent. As a result, the Contact header field should not be cached across
calls unless an Expires header field is present, in which case the location is
valid for the duration of the time specified.

5.3.4 305 Use Proxy

This redirection response contains a URI that points to a proxy server who has
authoritative information about the calling party. The caller should resend the
request to the proxy for forwarding. This response could be sent by a UAS that
is using a proxy for incoming call screening. Because the proxy makes the deci-
sions for the UAS on acceptance of the call, the UAS will only respond to
INVITE requests that come from the screening proxy. Any INVITE request
received directly would automatically receive this response without user
intervention.

5.3.5 380 Alternative Service

This response returns a URI that indicates the type of service that the called
party would like. An example might be a redirect to a voicemail server.

5.4 Client Error

This class of response is used by a server or UAS to indicate that the request can-
not be fulfilled as it was submitted. The specific client error response or the pres-
ence of certain header fields should indicate to the UAC the nature of the error
and how the request can be reformulated. The UAC should not resubmit the

SIP Response Messages 113

request without modifying the request based on the response. The same request,
however, can be tried in other locations. A forking proxy receipt of a 4xx
response does not terminate the search. Typically, client error responses will
require user intervention before a new request can be generated.

5.4.1 400 Bad Request

This response indicates that the request was not understood by the server. An
example might be a request that is missing required header fields such as To,
From, Call-ID, or CSeq. This response is also used if a UAS receives mul-
tiple INVITE requests (not retransmissions) for the same Call-ID.

5.4.2 401 Unauthorized

This response indicates that the request requires the user to perform authentica-
tion. This response is generally sent by a user agent, since the 407 Proxy
Authentication Required (Section 5.4.8) is sent by a proxy that
requires authentication. The exception is a registrar server, which sends a 401
Unauthorized response to a REGISTER message that does not contain the
proper credentials. An example of this response is:

SIP/2.0 401 Unathorized
Via: SIP/2.0/UDP proxy.globe.org:5060;branch=z9hG4bK2311ff5d.1
;received=192.0.2.1
Via: SIP/2.0/UDP 173.23.43.1:5060;branch=z9hG4bK4545
From: <sip:explorer@geographic.org>;tag=341323
To: <sip:printer@maps-r-us.com>;tag=19424103
From: Copernicus <sip:copernicus@globe.org>;tag=34kdilsp3
Call-ID: 123456787@173.23.43.1
CSeq: 1 INVITE
WWW-Authenticate: Digest realm="globe.org",
nonce="8eff88df84f1cec4341ae6e5a359", qop="auth",
opaque="", stale=FALSE, algorithm=MD5
Content-Length: 0

The presence of the required WWW-Authenticate header field is
required to give the calling user agent a chance to respond with the correct cre-
dentials. A typical authentication exchange using SIP digest is shown in Figure
3.7. Note that the follow-up INVITE request should use the same Call-ID
as the original request as the authentication may fail in some cases if the
Call-ID is changed from the initial request to the retried request with the
proper credentials.

5.4.3 402 Payment Required

This response is a placeholder for future definition in the SIP protocol. It could
be used to negotiate call completion charges.

114 SIP: Understanding the Session Initiation Protocol

5.4.4 403 Forbidden

This response is used to deny a request without giving the caller any recourse. It
is sent when the server has understood the request, found the request to be cor-
rectly formulated, but will not service the request. This response is not used
when authorization is required.

5.4.5 404 Not Found

This response indicates that the user identified by the sip or sips URI in the
Request-URI cannot be located by the server, or that the user is not currently
signed on with the user agent.

5.4.6 405 Method Not Allowed

This response indicates that the server or user agent has received and understood
a request but is not willing to fulfill the request. An example might be a
REGISTER request sent to a user agent. An Allow header field (Section 6.4.1)
must be present to inform the UAC what methods are acceptable. This is differ-
ent from the case of an unknown method, in which a 501 Not Imple-
mented response is returned. Note that a proxy will forward request types it
does not understand unless the request is targeted to the proxy server (i.e., the
Request-URI is the URI of the proxy server).

5.4.7 406 Not Acceptable

This response indicates that the request cannot be processed due to a require-
ment in the request message. The Accept header field in the request did not
contain any options supported by the UAS.

5.4.8 407 Proxy Authentication Required

This request sent by a proxy indicates that the UAC must first authenticate itself
with the proxy before the request can be processed. The response should contain
information about the type of credentials required by the proxy in a Proxy-
Authenticate header field. The request can be resubmitted with the proper
credentials in a Proxy-Authorization header field. Unlike in HTTP,
this response may not be used by a proxy to authenticate another proxy.

SIP/2.0 407 Proxy Authorization Required
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK6563
;received=65.64.140.198
From: Shannon <sip:shannon@sampling.org>;tag=59204
To: Schockley <sip:shockley@transistor.com>;tag=142334
Call-ID: adf8gasdd7fld@discrete.sampling.org

SIP Response Messages 115

CSeq: 1 INVITE
Proxy-Authenticate: Digest realm="sampling.org", qop="auth",
nonce="9c8e88df84df1cec4341ae6cbe5a359",
opaque="", stale=FALSE, algorithm=MD5
Content-Length: 0

5.4.9 408 Request Timeout

This response is sent when an Expires header field is present in an INVITE
request, and the specified time period has passed. This response could be sent by
a forking proxy or a user agent. The request can be retried at any time by the
UAC, perhaps with a longer time period in the Expires header field or no
Expires header field at all. Alternatively, a stateful proxy can send this
response after the request transaction times out without receiving a final
response.

5.4.10 409 Conflict

This response code has been removed from RFC 3261 but is defined in RFC
2543. It indicates that the request cannot be processed due to a conflict in the
request. This response is used by registrars to reject a registration with a conflict-
ing action parameter.

5.4.11 410 Gone

This response is similar to the 404 Not Found response but contains the
hint that the requested user will not be available at this location in the future.
This response could be used by a service provider when a user cancels their
service.

5.4.12 411 Length Required

This response code has been removed from RFC 3261 but is defined in RFC
2543. This response can be used by a proxy to reject a request containing a mes-
sage body but no Content-Length header field. A proxy that takes a UDP
request and forwards it as a TCP request could generate this response, since the
use of Content-Length is more critical in TCP requests. However, the
response code is not very useful since a proxy can easily calculate the length of a
message body in a UDP request (it is until the end of the UDP packet) but can-
not with a stream-oriented transport such as TCP. In this case, a missing
Content-Length header field would cause the message body to go on
indefinitely, which would generate a 513 Message Too Large response
instead of a 411 Length Required.

116 SIP: Understanding the Session Initiation Protocol

5.4.13 413 Request Entity Too Large

This response can be used by a proxy to reject a request that has a message body
that is too large. A proxy suffering congestion could temporarily generate this
response to save processing long requests.

5.4.14 414 Request-URI Too Long

This response indicates that the Request-URI in the request was too long and
cannot be processed correctly. There is no maximum length defined for a
Request-URI in the SIP standard document.

5.4.15 415 Unsupported Media Type

This response sent by a user agent indicates that the media type contained in the
INVITE request is not supported. For example, a request for a video conference
to a PSTN gateway that only handles telephone calls will result in this response.
The response should contain header fields to help the UAC reformulate the
request.

5.4.16 416 Unsupported URI Scheme

The 416 Unsupported URI Scheme response is new to RFC 3261 and
is used when a UAC uses a URI scheme in a Request-URI that the UAS does
not understand. For example, if a request URI contains a secure SIP (sips)
scheme that a proxy does not understand, it would return a 416 response. Since
all SIP elements must understand the sip scheme, the request should be retried
using a sip uri in the request-uri.

5.4.17 420 Bad Extension

This response indicates that the extension specified in the Require header
field is not supported by the proxy or user agent. The response should contain a
Supported header field (Section 6.1.12) listing the extensions that are sup-
ported. The UAC could resubmit the same request without the extension in the
Require header field (Section 6.2.22) or submit the request to another proxy
or user agent.

5.4.18 421 Extension Required

The 421 Extension Required response indicates that a server requires
an extension to process the request that was not present in a Supported
header field in the request. The required extension should be listed in a
Required header field in the response. The client should retry the request

SIP Response Messages 117

adding the extension to a Supported header field, or try the request at a dif-
ferent server that may not require the extension.

5.4.19 422 Session Timer Interval Too Small

The 422 Session Timer Interval Too Small response [4] is
used to reject a request containing a Session-Expires header field
(Section 6.2.26) with too short an interval. The ability to reject short durations
is important to prevent excessive re-INVITE or UPDATE traffic. The mini-
mum allowed interval is indicated in the required Min-SE header field
(Section 6.3.4). The requestor may retry the request without the Session-
Expires header field or with a value less than or equal to the specified
minimum.

5.4.20 423 Interval Too Brief

The 423 Interval Too Brief response is returned by a registrar that is
rejecting a registration request because the requested expiration time on one or
more Contacts is too brief. The response must contain a Min-Expires
header field (see Section 6.3.3) listing the minimum expiration interval that the
registrar will accept. A client requesting a too short interval can unnecessarily
load a registrar server with registration refresh requests—this response allows a
registrar to protect against this.

5.4.21 428 Use Authentication Token

The 428 Use Authentication Token response [5] is used by a
UAS that is requiring the use of an Authentication Information Body (AIB) [6].
The AIB is a S/MIME body that is an encrypted message/sip or
message/sipfrag body. At a minimum, an AIB must contain the
From, Date, and Call-ID header fields, and they should contain the
To, Contact, and CSeq header fields as well. (The selection of these
header fields is to prevent cut-and-paste attacks and hijacking.) The SIP request
should contain a Content-Type: message/sipfrag header field
and a Content-Disposition: aib; handling=optional header
field.

For more information on S/MIME signatures, see Section 3.7.

5.4.22 429 Provide Referror Identity

The 429 Provide Referror Identity response [7] is used to request
that a Referred-By header field be re-sent with a valid Referred-By

118 SIP: Understanding the Session Initiation Protocol

security token. The security token is carried as an S/MIME message body. The
recipient of this error message (the UA that received and accepted the REFER)
should relay this request back to the originator of the REFER by including it in
a NOTIFY. The sender of the REFER can then generate the Referred-By
security token and include it in the REFER, which would then be copied into
the triggered request.

5.4.23 480 Temporarily Unavailable

This response indicates that the request has reached the correct destination, but
the called party is not available for some reason. The reason phrase should be
modified for this response to give the caller a better understanding of the situa-
tion. The response should contain a Retry-After header indicating when
the request may be able to be fulfilled. For example, this response could be sent
when a telephone has its ringer turned off, or a “do not disturb” button has been
pressed. This response can also be sent by a redirect server.

5.4.24 481 Dialog/Transaction Does Not Exist

This response indicates that a response referencing an existing call or transaction
has been received for which the server has no records or state information.

5.4.25 482 Loop Detected

This response indicates that the request has been looped and has been routed
back to a proxy that previously forwarded the request. Each server that forwards
a request adds a Via header with its address to the top of the request. A
branch parameter is added to the Via header, which is a hash function of the
Request-URI, and the To, From, Call-ID, and CSeq number. A second
part is added to the branch parameter if the request is being forked. The rea-
son the branch parameter must be checked is to allow a request to be routed
back to a proxy, provided that the Request-URI has changed. This could hap-
pen with a call forwarding feature. In this case, the Via headers would differ by
having different branch parameters.

5.4.26 483 Too Many Hops

This response indicates that the request has been forwarded the maximum
number of times as set by the Max-Forwards header in the request. This is

SIP Response Messages 119

indicated by the receipt of a Max-Forwards: 0 header in a request. In the
following example, the UAC included a Max-Forwards: 4 header in the
REGISTER request. A proxy receiving this request five hops later generates a
483 response:

REGISTER sip:registrar.timbuktu.tu SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK45347.1
Via: SIP/2.0/UDP 198.20.2.4:6128;branch=z9hG4bK917a4d4.1
Via: SIP/2.0/UDP 18.56.3.1:5060;branch=z9hG4bK7154.1
Via: SIP/2.0/TCP 101.102.103.104:5060;branch=z9hG4bKa5ff4d3.1
Via: SIP/2.0/UDP 168.4.3.1:5060;branch=z9hG4bK676746
To: sip:explorer@geographic.org
From: <sip:explorer@geographic.org>;tag=341323
Call-ID: 67483010384@168.4.3.1
CSeq: 1 REGISTER
Max-Forwards: 0
Contact: sip:explorer@national.geographic.org
Content-Length: 0

SIP/2.0 483 Too Many Hops
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK45347.1
Via: SIP/2.0/UDP 198.20.2.4:6128;branch=z9hG4bK917a4d4.1
Via: SIP/2.0/UDP 18.56.3.1:5060;branch=z9hG4bK7154.1
Via: SIP/2.0/TCP 101.102.103.104:5060;branch=z9hG4bKa5ff4d3.1
Via: SIP/2.0/UDP 168.4.3.1:5060;branch=z9hG4bK676746
To: <sip:explorer@geographic.org>;tag=a5642
From: <sip:explorer@geographic.org>;tag=341323
Call-ID: 67483010384@168.4.3.1
CSeq: 1 REGISTER
Content-Length: 0

5.4.27 484 Address Incomplete

This response indicates that the Request-URI address is not complete. This
could be used in an overlap dialing scenario in PSTN interworking where digits
are collected and sent until the complete telephone number is assembled by a
gateway and routed [8]. Note that the follow-up INVITE requests may use the
same Call-ID as the original request. An example of overlap dialing is shown
in Figure 5.4.

5.4.28 485 Ambiguous

This request indicates that the Request-URI was ambiguous and must be
clarified in order to be processed. This occurs if the username matches a number
of registrations. If the possible matching choices are returned in Contact
header fields, then this response is similar to the 300 Multiple Choices
response. They are slightly different, however, since the 3xx response returns
equivalent choices for the same user, but the 4xx response returns alternatives
that can be different users. The 3xx response can be processed without human

120 SIP: Understanding the Session Initiation Protocol

intervention, but this 4xx response requires a choice by the caller, which is why
it is classified as a client error class response. A server configured to return this
response must take user registration privacy into consideration; otherwise a
vague or general Request-URI could be used by a rogue user agent to try to dis-
cover sip or sips URIs of registered users.

5.4.29 486 Busy Here

This response is used to indicate that the user agent cannot accept the call at this
location. This is different, however, from the 600 Busy Everywhere
response, which indicates that the request should not be tried elsewhere. In gen-
eral, a 486 Busy Here is sent by a UAS unless it knows definitively that the
user cannot be contacted. This response is equivalent to the busy tone in the
PSTN.

SIP Response Messages 121

Caller Gateway Telephone
switch

INVITE sip:31455512@gateway.com

484 Address incomplete
IAM

ACK

INVITE sip:314555123@gateway.com

SAM
484 Address incomplete

ACK

INVITE sip:3145551234@gateway.com

SAM

ACM
100 Trying

Figure 5.4 Overlap dialing to the PSTN with SIP.

5.4.30 487 Request Terminated

This response can be sent by a user agent that has received a CANCEL request
for a pending INVITE request. A 200 OK is sent to acknowledge the
CANCEL, and a 487 is sent in response to the INVITE.

5.4.31 488 Not Acceptable Here

This response indicates that some aspect of the proposed session is not accept-
able and may contain a Warning header field indicating the exact reason.
This response has a similar meaning to 606 Not Acceptable, but only
applies to one location and may not be true globally as the 606 response
indicates.

5.4.32 489 Bad Event

The 489 Bad Event response [3] is used to reject a subscription request or
notification containing an Event package that is unknown or not supported
by the UAS. The response code is also used to reject a subscription request that
does not specify an Event package, assuming that the server does not support
the PINT protocol (see Section 4.1.8).

5.4.33 491 Request Pending

The 491 Request Pending response is used to resolve accidental simulta-
neous re-INVITEs by both parties in a dialog. Since both INVITEs seek
to change the state of the session, they cannot be processed at the same time.
While a user agent is awaiting a final response to a re-INVITE, any re-INVITE
request received must be replied to with this response code. This is analo-
gous to the “glare” condition in telephony in which both ends seize a trunk at
the same time. The reconsideration algorithm in SIP is for the user agent to gen-
erate a delay (randomly selected within a range determined by if the user agent
send the initial INVITE or not) then retry the re-INVITE, assuming that
another re-INVITE has not been received in the meantime. In this way, one
side or the other will “win” the race condition and have the re-INVITE
processed.

An example is shown in Figure 5.5.

5.4.34 493 Request Undecipherable

The 493 Request Undecipherable response is used when an S/MIME
message body can not be decrypted because the public key is unavailable. If the
UAS does not support S/MIME, no message body will be present in the
response. If the UAS does support S/MIME, the response will contain a message

122 SIP: Understanding the Session Initiation Protocol

body containing a public key suitable for the UAC to use for S/MIME encryp-
tion. See Section 3.7 for more details on S/MIME encryption.

5.5 Server Error

This class of responses is used to indicate that the request cannot be processed
because of an error with the server. The response may contain a Retry-
After header field if the server anticipates being available within a specific
time period. The request can be tried at other locations because there are no
errors indicated in the request.

5.5.1 500 Server Internal Error

This server error class response indicates that the server has experienced some
kind of error that is preventing it from processing the request. The reason phrase

SIP Response Messages 123

UA

INVITE

UA

INVITE

491 Request Pending

491 Request Pending
ACK

ACK

INVITE

200 OK

ACK

.

.

.

Media session

New media session

Figure 5.5 Simultaneous re-INVITE resolution example.

can be used to identify the type of failure. The client can retry the request again
at this server after several seconds.

5.5.2 501 Not Implemented

This response indicates that the server is unable to process the request because it
is not supported. This response can be used to decline a request containing an
unknown method. A proxy, however, will forward a request containing an
unknown request method. Thus, a proxy will forward an unknown
SELF-DESTRUCT request, assuming that the UAS will generate this response
if the method is not known.

5.5.3 502 Bad Gateway

This response is sent by a proxy that is acting as a gateway to another network,
and indicates that some problem in the other network is preventing the request
from being processed.

5.5.4 503 Service Unavailable

This response indicates that the requested service is temporarily unavailable.
The request can be retried after a few seconds, or after the expiration of the
Retry-After header field. Instead of generating this response, a loaded
server may just refuse the connection. This response code is important in that its
receipt triggers a new DNS lookup to locate a backup server to obtain the
desired service. The set of SIP DNS procedures for locating SIP servers is
detailed in [9].

5.5.5 504 Gateway Timeout

This response indicates that the request failed due to a timeout encountered in
the other network to which that the gateway connects. It is a server error class
response because the call is failing due to a failure of the server in accessing
resources outside the SIP network.

5.5.6 505 Version Not Supported

This response indicates that the request has been refused by the server because of
the SIP version number of the request. The detailed semantics of this response
have not yet been defined because there is only one version of SIP (version 2.0)
currently implemented. When additional version numbers are implemented in
the future, the mechanisms for dealing with multiple protocol versions will need
to be detailed.

124 SIP: Understanding the Session Initiation Protocol

5.5.7 513 Message Too Large

The 513 Message Too Large response is used by a UAS to indicate that
the request size was too large for it to process.

5.6 Global Error

This response class indicates that the server knows that the request will fail wher-
ever it is tried. As a result, the request should not be sent to other locations.
Only a server that has definitive knowledge of the user identified by the
Request-URI in every possible instance should send a global error class response.
Otherwise, a client error class response should be sent. A Retry-After
header field can be used to indicate when the request might be successful.

5.6.1 600 Busy Everywhere

This response is the definitive version of the 486 Busy Here client error
response. If there is a possibility that the call to the specified Request-URI could
be answered in other locations, this response should not be sent.

5.6.2 603 Decline

This response has the same effect as the 600 Busy Everywhere but does
not give away any information about the call state of the server. This response
could indicate the called party is busy, or simply does not want to accept the
call.

5.6.3 604 Does Not Exist Anywhere

This response is similar to the 404 Not Found response but indicates that
the user in the Request-URI cannot be found anywhere. This response should
only be sent by a server that has access to all information about the user.

5.6.4 606 Not Acceptable

This response can be used to implement some session negotiation capability in
SIP. This response indicates that some aspect of the desired session is not accept-
able to the UAS, and as a result, the session cannot be established. The response
may contain a Warning header field with a numerical code describing exactly
what was not acceptable. The request can be retried with different media session
information. An example of simple negotiation with SIP is shown in Figure 5.6.
If more complicated negotiation capability is required, another protocol should
be used.

SIP Response Messages 125

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to
Session Initiation Protocol (SIP) Mapping,” RFC 3398, 2002.

[3] Roach, A., “SIP Specific Events,” RFC 3265, 2002.

[4] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),”
IETF Internet-Draft, Work in Progress, November 2002.

[5] Peterson, J., “Enhancements for Authenticated Identity Management in the Session Initia-
tion Protocol (SIP),” IETF Internet-Draft, Work in Progress, February 2003.

[6] Peterson, J., “SIP Authenticated Identity Body (AIB) Format,” IETF Internet-Draft,
Work in Progress, February 2003.

[7] Sparks, R., “The SIP Referred-By Mechanism,” IETF Internet-Draft, Work in Progress,
February 2003.

[8] Anttalainen, T., Introduction to Telecommunications Network Engineering, Norwood, MA:
Artech House, 1999.

[9] Rosenberg, J., and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Serv-
ers,” RFC 3263, 2002.

126 SIP: Understanding the Session Initiation Protocol

UAC UAS

INVITE
sdp UAC1

606 Not acceptable

ACK

INVITE
sdp UAC2

100 Trying

.

.

.

Figure 5.6 Session negotiation with SIP.

6
SIP Header Fields

This chapter describes the header fields present in SIP messages. In RFC 2543,
there were four categories of SIP header fields: general, request, response,
and entity. RFC 3261 removed this distinction since it was not used by the pro-
tocol. However, the header fields discussed in this chapter are categorized as
request and response, request only, response only, and message body header
fields. Except as noted, header fields are defined in the SIP specification RFC
3261 [1].

SIP header fields in most cases follow the same rules as HTTP header
fields [2]. Header fields are defined as Header: field, where Header is
the case-insensitive token (but conventionally lower case with some capitaliza-
tion) used to represent the header field name, and field is the case-insensitive
set of tokens that contain the information. Except when otherwise noted, their
order in a message is not important. Header fields can continue over multiple
lines as long as the line begins with at least one space or horizontal tab character.
Unrecognized header fields are ignored by proxies. Many common SIP header
fields have a compact form, where the header field name is denoted by a single
lower-case character. These header fields are shown in Table 6.1. Header fields
can be either end-to-end or hop-by-hop. Hop-by-hop header fields are the only
ones that a proxy may insert or, with a few exceptions, modify. Because SIP
typically involves end-to-end control, most header fields are end-to-end. The
hop-by-hop header fields that may be inserted by a proxy are shown in
Table 6.2.

127

6.1 Request and Response Header Fields

This set of header fields can be present in both requests and responses.

6.1.1 Alert-Info

The Alert-Info header field can be used to provide a “distinctive ring”
service. If present in an INVITE, the UAS may use the URI to fetch an alert
tone to be used in place of the default alerting tone—that is, it would be ren-
dered to the called party. If present in a 180 Ringing response, the UAC
may use the URI to fetch a ring-back tone to be rendered to the calling party.
In both uses, the URI is fetched and rendered without user intervention, so care-
ful policy rules are necessary to avoid unwanted sounds and noises being
generated.

One use is for a trusted proxy to insert the header field with a local (to the
domain of the user agent) URI. This then allows for very simple policy in the
user agent in deciding whether or not to render.

An example is shown here:

128 SIP: Understanding the Session Initiation Protocol

Table 6.1
Compact Forms of SIP Header Fields

Header Field Compact Form

Accept-Contact a

Allow-Event u

Call-ID i

Contact m

Content-Encoding e

Content-Length l

Content-Type c

Event o

From f

Refer-To r

Referred-By b

Reject-Contact j

Subject s

To t

Via v

Alert-Info: <http://www.provider.com/tones/internal_caller.pcm>

6.1.2 Allow-Events

The Allow-Events header field [3] is used to list the support event packages
that are supported. A UA that supports SIP Events then knows that it may send
a SUBSCRIBE to that event package. The list of currently defined packages is
in Table 4.8. The compact form is u.

Examples are shown here:

Allow-Events: dialog
u: conference

6.1.3 Call-ID

The Call-ID header field is mandatory in all SIP requests and responses. It is
part of the dialog used to uniquely identify a call between two user agents. A

SIP Header Fields 129

Table 6.2
Header Fields that May Be Inserted or Modified by Proxies

Hop-by-Hop Header Fields

Alert-Info

Call-Info

Content-Length

Date

Error-Info

Max-Forwards

Organization

Priority

Proxy-Authenticate

Proxy-Authorization

Proxy-Require

Record-Route

Reason

Require

Route

Via

WWW-Authenticate

Call-ID must be unique across calls, except in the case of a Call-ID in reg-
istration requests. All registrations for a user agent should use the same
Call-ID. A Call-ID is always created by a user agent and is never modified
by a server.

The Call-ID is usually made up of a local-id, which should be a crypto-
graphically random identifier, or a local-id, the @ symbol, and a host name or IP
address. Because a user agent can ensure that its local-id is unique within its
domain, the addition of the globally unique host name makes the Call-ID
globally unique. Some security is provided by the randomness of the Call-ID,
because this prevents a third party from guessing a Call-ID and presenting
false requests. The compact form of the Call-ID header field is i.

Examples of Call-ID are shown here:

Call-ID: 34a5d553192cc35@15.34.3.1
Call-ID: 44fer23ei4291dekfer34231232
i: 35866383092031257@port34.carrier.com

6.1.4 Contact

The Contact header field is used to convey a URI that identifies the resource
requested or the request originator, depending on whether it is present in a
request or response. Once a Contact header field has been received, that URI
can be cached and used for routing future requests within a dialog. For example,
a Contact header field in a 200 OK response to an INVITE can allow the
acknowledgment ACK message and all future requests during this call to bypass
proxies and go directly to the called party. However, the presence of
Record-Route header fields in an earlier request or default proxy routing
configuration in a user agent may override that behavior. When a Contact
URI is used in a Request-URI, all URI parameters are allowed with the excep-
tion of the method parameter, which is ignored.

Contact header fields must be present in INVITE requests and 200
OK responses to invitations. In some cases, the Contact URI may not resolve
directly to the user agent. For example, a UA behind a firewall ALG will need to
use a Contact URI that resolves to the firewall ALG address. Otherwise, the
use of the user agent’s URI will result in the call failing because of the firewall
blocking any direct routed SIP requests. Contact header fields may also be
present in 1xx, 2xx, 3xx, and 485 responses. Only in a REGISTER
request, a special Contact:*, along with an Expires: 0, header field is
used to remove all existing registrations. Examples of Contact header fields in
registrations are shown in Table 4.3. Otherwise, wild carding is not allowed. A
Contact header field may contain a display name that can be in quotes. If a
display name is present, the URI will be enclosed in < >. If any header field
parameters are present, the URI will also be enclosed in < > along with any URI

130 SIP: Understanding the Session Initiation Protocol

parameters, with the header field parameters outside the < >, even if no display
name is present.

There are three additional parameters defined for use in Contact header
fields: q, action, and expires. They are placed at the end of the URI and
separated by semicolons. The q value parameter is used to indicate relative pref-
erence, which is represented by a decimal number in the range 0 to 1. The q
value is not a probability, and there is no requirement that the q values for a
given list of Contacts add up to 1. (The action parameter defined in RFC
2543 has been deprecated and is not used in RFC 3261. It was only used in reg-
istration Contact header fields, and is used to specify proxy or redirect
operation by the server.) The expires parameter indicates how long the URI
is valid and is also only used in registrations. The parameter either contains an
integer number of seconds or a date in SIP form (see Section 6.1.4). Examples
are shown in Table 6.3.

The Contact header field may contain a feature tag [4], which can be
used to indicate the capabilities of the device identified by the Contact URI.
For example, the feature tag isfocus is used to indicate that the URI in the
Contact header field is a Conference URI, and that the dialog is associates
with a focus. A focus is a SIP user agent that hosts a particular instance of a con-
ference, called a “bridge” or MCU in other protocols. The presence of the
isfocus feature tag can be used by a SIP user agent that supports advanced

SIP Header Fields 131

Table 6.3
Examples of Contact Header Fields

Header Field Meaning

Contact: sip:bell@telephone.com A single SIP URI without a display
name.

Contact: Lentz <h.lentz@petersburg.edu> A display name with the URI is
enclosed in < >; the display name is
treated as a token and ignored.

Contact: M. Faraday <faraday@effect.org>,
"Faraday" <mailto:faraday@pop.effect.org>

Two URIs are listed, the second being
a non-SIP URI with a display name en-
closed in quotes.

m: <morse@telegraph.org;transport=tcp>;
expires= "Fri, 13, Oct 1998 12:00:00 GMT"

The compact form of the header field
is used for a single URI. The URI
contains a port number and a URI
parameter contained within the < >.
An expires header field parameter
uses a SIP date enclosed in the
quotes.

conferencing features to invoke certain call control operations [5] or subscribe to
the conference package [6].

Other feature tags are listed in Table 6.4. The compact form is m.

6.1.5 CSeq

The command sequence CSeq header field is a required header field in every
request. The CSeq header field contains a decimal number that increases for
each request. Usually, it increases by 1 for each new request, with the exception
of CANCEL and ACK requests, which use the CSeq number of the INVITE
request to which it refers.

The CSeq count is used by UASs to determine out-of-sequence requests
or to differentiate between a new request (different CSeq) or a retransmission
(same CSeq). The CSeq header field is used by UACs to match a response to
the request it references. For example, a UAC that sends an INVITE request
then a CANCEL request can tell by the method in the CSeq of a 200 OK
response if it is a response to the invitation or cancellation request. Examples are
shown in Table 6.5.

Each user agent maintains its own command sequence number space. For
example, consider the case where user agent 1 establishes a session to user agent
2 and initializes its CSeq count to 1. When user agent 2 initiates a request (such
as a INVITE or INFO, or even BYE) it will initialize its own CSeq space,
totally independent of the CSeq count used by user agent 1. The examples of
Chapter 10 show this behavior of CSeq.

6.1.6 Date

The Date header field is used to convey the date when a request or response is
sent. The format of a SIP date is based on HTTP dates, but allows only the

132 SIP: Understanding the Session Initiation Protocol

Table 6.4
Boolean Feature Tags

Feature tag Meaning

attendant Attendant, human or automata
automata Nonhuman
image Supports images
message Supports messaging
text Supports text
voicemail Is a voicemail server
isfocus Is a focus, a conference server

preferred Internet date standard referenced by RFC 1123 [7]. To keep user
agent date and time logic simple, SIP only supports the use of the GMT time
zone. This allows time entries that are stored in date form rather than second
count to be easily converted into delta seconds without requiring knowledge of
time zone offsets.

A Date example is shown here:

Date: Fri, 13 Oct 1998 23:29:00 GMT

6.1.7 Encryption

The Encryption header field was defined in RFC 2543 but is not included
in RFC 3261. Instead, encryption using S/MIME is defined as discussed in
Section 3.9.

6.1.8 From

The From header field is a required header field that indicates the originator of
the request. It is one of two addresses used to identify the dialog. The From
header field contains a URI, but it may not contain the transport,
maddr, or ttl URI parameters. A From header field may contain a tag,
used to identify a particular call. A From header field may contain a display
name, in which case the URI is enclosed in < >. If there is both a URI parameter
and a tag, then the URI including any parameters must be enclosed in < >.
Examples are shown in Table 6.6.

A From tag was optional in RFC 2543 but is mandatory to include in
RFC 3261.

SIP Header Fields 133

Table 6.5
CSeq Header Field Examples

Header Field Meaning

CSeq: 1 INVITE The command sequence number has been initialized to 1 for this initial
INVITE

CSeq: 432 REFER The command sequence number is set to 432 for this REFER request
CSeq: 6787 INVITE If this was the first request by the user agent for this dialog then either

the CSeq was initialized to 6787, or the previous request generated for
this Call-ID (either an INVITE or other request) would have had a CSeq of
6786 or lower.

6.1.9 Organization

The Organization header field is used to indicate the organization to
which the originator of the message belongs. It can also be inserted by proxies as
a message is passed from one organization to another. Like all SIP header fields,
it can be used by proxies for making routing decisions and by user agents for
making call screening decisions.

An example is below:

Organization: MCI

6.1.10 Record-Route

The Record-Route header field is used to force routing through a proxy for
all subsequent requests in a session between two user agents. Normally, the pres-
ence of a Contact header field allows user agents to send messages directly
bypassing the proxy chain used in the initial request (which probably involved
database lookups to locate the called party). A proxy inserting its address into a
Record-Route header field overrides this and forces future requests to
include a Route header field containing the address of the proxy that forces
this proxy to be included.

A proxy, such as a firewall control proxy, wishing to implement this inserts
the header field containing its own URI, or adds its URI to an already present
Record-Route header field. The URI is constructed so that the URI resolves

134 SIP: Understanding the Session Initiation Protocol

Table 6.6
Examples of From Header Field

Header Field Meaning

From: <sip:armstrong@hetrodyne.com>
;tag=3342436

A single SIP URI with a tag

From: Thomas Edison
<sips:edison@electric.com>;tag=532

A secure SIP URI with a display name

f: “James Bardeen”
<sip:555.1313@telephone.com
;transport=tcp>;tag=3a320f03

Using the compact form of the header
field, a display name in quotes along
with a SIP URI with a parameter inside
the < >.

From: tel:911 A tel URI without a display name or tag,
so no <> is required. Generated by a RFC
2543 UA

back to the proxy server. The UAS copies the Record-Route header field
into the 200 OK response to the request. The header field is forwarded
unchanged by proxies back to the UAC. The UAC then stores the Record-
Route proxy list plus a Contact header field if present in the 200 OK for
use in a Route header field in all subsequent requests. Because Record-
Route is bidirectional, messages in the reverse direction will also traverse the
same set of proxies. Chapter 10 contains an example of the use of the
Record-Route and Route header fields. The lr parameter is new to RFC
3261 and indicates that the proxy server supports “loose routing.” Older RFC
2543 compliant proxy servers create Record-Route URIs that instead of the
lr parameter often contain the maddr parameter with an address or host that
resolves to that proxy server.

Examples are:

Record-Route: <sip:proxy1.carrier.com;lr>,
<sip:firewall33.corporation.com;lr>

Record-Route:<sip:139.23.1.44;lr>

6.1.11 Retry-After

The Retry-After header field is used to indicate when a resource or service
may be available again. In 503 Service Unavailable responses, it indi-
cates when the server will be available. In 404 Not Found, 600 Busy
Everywhere, and 603 Decline responses, it indicates when the called
user agent may be available again.

The header field can also be included by proxy and redirect servers in
responses if a recent registration was removed with a Retry-After header
field indicating when the user may sign on again. The contents of the header
field can be either an integer number of seconds or a SIP date. A duration
parameter can be used to indicate how long the resource will be available after
the time specified. Examples of this header field are shown in Table 6.7.

6.1.12 Subject

The optional Subject header field is used to indicate the subject of the media
session. It can be used by user agents to do simple call screening. The contents of
the header field can also be displayed during alerting to aid the user in deciding
whether to accept the call. The compact form of this header field is s. Some
examples are:

Subject: More good info about SIP
s: Are you awake, yet??

SIP Header Fields 135

6.1.13 Supported

The Supported header field is used to list one or more options implemented
by a user agent or server. It is typically included in responses to OPTIONS
requests. If no options are implemented, the header field is not included. If a
UAC lists an option in a Supported header field, proxies or UASs may use the
option during the call. If the option must be used or supported, the Require
header field is used instead. Table 6.8 shows the current set of defined feature tags.

An example of the header field is:

Supported: rel100

6.1.14 Timestamp

The Timestamp header field is used by a UAC to mark the exact time a
request was generated in some numerical time format. A UAS must echo the

136 SIP: Understanding the Session Initiation Protocol

Table 6.7
Examples of Retry-After Header Field

Header Field Meaning

Retry-After: 3600 Request can be retried again in
1 hour

Retry-After: Sat, 21 May 2000 08:00:00 GMT Request can be retried after the date
listed

Retry-After: 3600 Request can be tried after 1 hour
Retry-After: Mon, 29 Feb 2000 13:30:00 GMT
;duration=1800

Request can be retried after the
specified date for 30 minutes

Table 6.8
Extension Feature Tags

Tag Meaning

events SIP Events [3]
join Join call control primitive [8]
path Path header field [9]
rel100 Reliable provisional response (PRACK) support [10]
replaces Replaces call control primitive [11]
timer Session Timer feature [12]

header field in the response to the request and may add another numerical time
entry indicating the amount of delay. Unlike the Date header field, the time
format is not specified. The most accurate time format should be used, includ-
ing a decimal point. Examples are shown in Table 6.9.

6.1.15 To

The To header field is a required header field in every SIP message used to
indicate the recipient of the request. Any responses generated by a user agent
will contain this header field with the addition of a tag. (Note that an RFC
2543 client will typically only generate a tag if more than one Via header
field is present in the request.) Any response generated by a proxy must have a
tag added to the To header field. A tag added to the header field in a 200 OK
response is used throughout the call and incorporated into the dialog. The To
header field is never used for routing—the Request-URI is used for this purpose.
An optional display name can be present in the header field, in which case the
SIP URI is enclosed in < >. If the URI contains any parameters or username
parameters, the URI must be enclosed in < > even if no display name is present.
The compact form of the header field is t. Examples are shown in Table 6.10.

6.1.16 User-Agent

The User-Agent header field is used to convey information about the user
agent originating the request. Based on the HTTP header field of the same
name [2], it can contain manufacturer information, software version, or com-
ments. The field may contain multiple tokens, with the ordering assumed to be
from most general to most specific. This information can be used for logging or
for generating a specific response for a specific user agent. For security reasons,
this header field may be suppressed. For example, an attacker probing a UA for
vulnerabilities could learn the particular vendor and software load that is suscep-
tible to a particular attack and reuse that attack against other UAs that have the
same software as identified by the User-Agent header field.

Examples include:

SIP Header Fields 137

Table 6.9
Examples of Timestamp Header Field

Header Field Meaning

Timestamp: 235.15 Client has stamped a start time for the request.

Timestamp: 235.15 .95 This header field from the response has the delay time added by the
server.

User-Agent: Acme SIP Phone v2.2
User-Agent: IP Carrier Gateway Av6.4

6.1.17 Via

The required Via header field is used to record the SIP route taken by a request
and is used to route a response back to the originator. A user agent generating a
request records its own address in a Via header field in the request. While the
ordering of most SIP header fields is not significant, the Via header fields order
is significant because it is used to route responses. A proxy forwarding the
request adds a Via header field containing its own address to the top of the list
of Via header fields. A proxy adding a Via header field always includes a
branch tag containing a cryptographic hash of the To, From, Call-ID
header fields and the Request-URI. A proxy or user agent generating a response
to a request copies all the Via header fields from the request in order into the
response, then sends the response to the address specified in the top Via header
field. A proxy receiving a response checks the top Via header field to ensure
that it matches its own address. If it does not, the response has been misrouted
and should be discarded. The top Via header field is then removed, and the
response forwarded to the address specified in the next Via header field. A sim-
plified Via decision tree is shown in Figure 6.1.

Via header fields contain protocol name and version number and trans-
port (SIP/2.0/UDP, SIP/2.0/TCP, etc.) and may contain port num-
bers and parameters such as received, branch, maddr, and ttl. A
received tag is added to a Via header field if a user agent or proxy receives
the request from a different address than that specified in the top Via header
field. This indicates that a NAT or firewall proxy is in the message path. If

138 SIP: Understanding the Session Initiation Protocol

Table 6.10
Examples of To Header Field

Header Field Meaning

To: sip:babage@engine.org;tag=2443a8f7 A single SIP URI with a tag and without a
display name

To: Thomas Edison
<sips:edison@electric.com>

A display name is used, so the sips URI is
enclosed in < >

t: “Jim B.” <brattain@bell.org> A display name in quotes along with a SIP
URI enclosed within < >

To: <+1-314-555-1212@carrier.com Both a URI parameter and tag are
;user=phone>;tag=8f7f7ad6675 used, so URI is enclosed in < >

present, the received tag is used in response routing. (The hidden
parameter, deprecated in RFC 3261, was used to indicate the Via header field
has been encrypted.) A branch parameter is added to Via header fields by
UAs and proxies, which is computed as a hash function of the Request-URI,
and the To, From, Call-ID and CSeq number. A second part is added to
the branch parameter if the request is being forked as shown in Figure 3.4.
The maddr and ttl parameters are used for multicast transport and have a
similar meaning as the equivalent SIP URI parameters. The compact form of
the header field is v. Examples are given in Table 6.11.

SIP Header Fields 139

Response received by server

Does the first
Via header match

server address
?

Discard
Message

Remove first
Via header

YES

YES

YES

YES

NO

NO

NO

NO

Second Via
header

?

Response is for
this server
process.

maddr
parameter

present
?

Forward response
to multicast
address in maddr.

received
parameter

present
?

Forward response
to address
in received.

Forward response
to address in
Via header.

Figure 6.1 Via forwarding decision tree.

6.2 Request Header Fields

This set of header fields can only be present in a request.

6.2.1 Accept

The Accept header field is defined by HTTP [2] and is used to indicate
acceptable message Internet media types [13] in the message body. The header
field describes media types using the format type/sub-type commonly
used in the Internet. If not present, the assumed acceptable message body for-
mat is application/sdp. A list of media types can have preferences set
using q value parameters. The wildcard “*” can be used to specify all sub-
types. Examples are given in Table 6.12.

6.2.2 Accept-Contact

The Accept-Contact [4] header field specifies to which URIs the request
may be proxied. Some additional parameters are also defined for Contact

140 SIP: Understanding the Session Initiation Protocol

Table 6.11
Examples of Via Header Field

Header Field Meaning

Via: SIP/2.0/UDP 100.101.102.103
;branch=z9hG4bK776a

IPv4 address using unicast UDP
transport and assumed port of 5060

Via: SIP/2.0/TCP cube451.office.com:60202
;branch=z9hG4bK776a

Domain name using TCP transport and
port number 60202

Via: SIP/2.0/UDP 120.121.122.123
;branch= z9hG4bK56a234f3.1

Proxy added Via header field with
branch

v: SIP/2.0/UDP proxy.garage.org
;branch= z9hG4bK3423423a3.3

Compact form with domain name
using UDP; third search location of
forking proxy

Via: SIP/2.0/TCP 192.168.1.2
;received=12.4.5.50 ;branch=z9hG4bK334

The address is a multicast address.
IPv4 address is nonglobally unique.
Request has been forwarded through a
NAT, which changed the IP address to
a globally unique one.

Via:SIP/2.0/UDP host.user.com:4321
;maddr=224.1.2.3 ;ttl=15
;branch=z9hG4bK341344

The address is a multicast address
specified in maddr with a specified
TTL

header fields such as media, duplex, and language. This header field is
part of the caller preferences extensions to SIP, which have been defined to give
some control to the caller in the way a proxy server processes a call. The compact
form is a.

Some examples follow:

Accept-Contact: *;language=en
a: *;media=video

6.2.3 Accept-Encoding

The Accept-Encoding header field, defined in HTTP [2], is used to spec-
ify acceptable message body encoding schemes. Encoding can be used to ensure
a SIP message with a large message body fits inside a single UDP datagram. The
use of q value parameters can set preferences. If none of the listed schemes are
acceptable to the UAC, a 406 Not Acceptable response is returned. If
not included, the assumed encoding will be text/plain. Examples include:

Accept-Encoding: text/plain
Accept-Encoding: gzip

6.2.4 Accept-Language

The Accept-Language header field, defined in HTTP [2], is used to spec-
ify preferences of language. The languages specified can be used for reason
phrases in responses, informational header fields such as Subject, or in mes-
sage bodies. The HTTP definition allows the language tag to be made of a pri-
mary tag and an optional subtag. This header field could also be used by a proxy
to route to a human operator in the correct language. The language tags are reg-
istered by IANA. The primary tag is an ISO-639 language abbreviation. The use
of q values allows multiple preferences to be specified. Examples are shown in
Table 6.13.

SIP Header Fields 141

Table 6.12
Examples of Accept Header Field

Header Field Meaning

Accept: application/sdp This is the default assumed even if no Accept header
field is present

Accept: text/* Accept all text encoding schemes
Accept: application/h.245;q=0.1,

application/sdp;q=0.9

Use SDP if possible, otherwise, use H.245

6.2.5 Authorization

The Authorization header field is used to carry the credentials of a user
agent in a request to a server. It can be sent in reply to a 401 Unauthor-
ized response containing challenge information, or it can be sent first without
waiting for the challenge if the form of the challenge is known (e.g., if it has
been cached from a previous call). The authentication mechanism for HTTP
digest is described in Section 3.8. Examples are shown in Table 6.14.

6.2.6 Call-Info

The Call-Info header field is included in a request by a UAC or proxy to
provide a URI with information relating to the session setup. It may be present
in an INVITE, OPTIONS or REGISTER request. The header field parame-
ter purpose indicates the purpose of the URI and may have the values
icon, info, card, or other IANA registered tokens.

An example follows:

Call-Info: <http://www.code.com/my_picture.jpg>;purpose=icon

142 SIP: Understanding the Session Initiation Protocol

Table 6.13
Examples of Accept-Language Header Field

Header Field Meaning

Accept-Language: fr French is the only acceptable language
Accept-Language: en, ea Acceptable languages include both English and Spanish
Accept-Language: ea; q=0.5,
en ;q=0.9, fr ;q=0.2

Preferred languages are English, Spanish, and French, in
that order

Table 6.14
Example of Authorization Header Field

Header Field Meaning

Authorization: Digest username="Cust1",
realm="company.com",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", uri="sip:user2@company.com",
response="e56131d19580cd833064787ecc"

This HTTP digest authorization header
field contains the credentials of Cust1;
the nonce was supplied by the SIP
server located at the uri specified.
The response contains the encrypted
username and password. No opaque
string is present.

6.2.7 Event

The Event header field is used in a SUBSCRIBE (see Section 4.1.8) or
NOTIFY (see Section 4.1.9) methods to indicate which event package is being
used by the method. In a SUBSCRIBE, it lists the event package to which the
client would like to subscribe. In a NOTIFY, it lists the event package that the
notification contains state information about. Currently defined event packages
are listed in Table 4.8. The compact form is o.

An example follows:

Event: dialog
o: refer

6.2.8 Hide

The Hide header field was defined in RFC 2543 but has been deprecated from
RFC 3261. It was intended to be used by user agents or proxies to request that
the next hop proxy encrypts the Via header fields to hide message routing path
information. Encrypted Via headers were identified with the hidden Via
parameter. However, the security provided and the mechanism requiring next
hop trust made the value of this header field minimal.

6.2.9 In-Reply-To

The In-Reply-To header field is used to indicate the Call-ID that this
request references or is returning. For example, a missed call could be returned
with a new INVITE and the Call-ID from the missed INVITE copied into
the In-Reply-To header field. This allows the UAS to determine that this is
not an unsolicited call, which could be used to override call screening logic, for
example. Examples of this header field are as follows:

In-Reply-To: a8-43-73-ff-43@company.com
In-Reply-To: 12934375@persistance.org, 12934376@persistance.org

6.2.10 Join

The Join header field [8] is used in an INVITE to request that the dialog (ses-
sion) be joined with an existing dialog (session). The parameters of the Join
header field identify the dialog by the Call-ID, To tag, and From tag in a
similar way to the Replaces header field.

If the Join header field references a point-to-point dialog between two
user agents, the Join header field is effectively a request to turn the call into a
conference call. If the dialog is already part of a conference, the Join header
field is a request to be added into the conference. An example call flow is shown
in Figure 6.2 in which a two-way call is turned into a conference call.

SIP Header Fields 143

If the dialog referenced in the Join header field does not exist, a 481
Call/Dialog Does Not Exist response is returned. A UA supporting
Join should indicate this in all requests with a Supported: join header
field.

In the following example, the dialog:

To: <sip:moe@example.org>;tag=42312
From: <sip:larry@server.org>;tag=3443212
Call-ID: 243134123234

would match the Join header field:

Join: 243134123234;to-tag=42312;from-tag=3443212

6.2.11 Priority

The Priority header field is used by a UAC to set the urgency of a request.
Defined values are non-urgent, normal, urgent, and emergency.
This header field could be used to override screening or by servers in load-
shedding mechanisms. Because this header field is set by the user agent, it may
not be possible for a carrier network to use this field to route emergency traffic,
for example. An example is:

144 SIP: Understanding the Session Initiation Protocol

Alice Bob

INVITE (Join)

Carol

200 OK

ACK

Media session

180 Ringing

INVITE

200 OK

ACK

Conference media session

Conference media session

Figure 6.2 Use of Join to create a conference call.

Priority: emergency

6.2.12 Privacy

The Privacy header field [14] is used by a UAC to request varying degrees
and types of privacy. Currently defined tags include critical, header,
id, session, user, or none.

An example follows:

Privacy: header;user;critical

6.2.13 Proxy-Authorization

The Proxy-Authorization header field is to carry the credentials of a
user agent in a request to a server. It can be sent in reply to a 407 Proxy
Authentication Required response containing challenge information,
or it can be sent first without waiting for the challenge if the form of the chal-
lenge is known (e.g., if it has been cached from a previous call). The authentica-
tion mechanism for SIP digest is described in Section 3.9. A proxy receiving a
request containing a Proxy-Authorization header field searches for its
own realm. If found, it processes the entry. If the credentials are correct, any
remaining entries are kept in the request when it is forwarded to the next proxy.
An example of this is in Figure 6.3.

Examples are shown in Table 6.15.

6.2.14 Proxy-Require

The Proxy-Require header field is used to list features and extensions that
a user agent requires a proxy to support in order to process the request. A 420
Bad Extension response is returned by the proxy listing any unsupported
feature in an Unsupported header field. Because proxies by default ignore
header fields and features they do not understand, the use of a Proxy-
Require header field is needed for the UAC to be certain that the feature is
understood by the proxy. If the support of this option is desired but not
required, it is listed in a Supported header field instead. An example is:

Proxy-Require: timer

6.2.15 P-OSP-Auth-Token

The P-OSP-Auth-Token header field [15] is used to transport an Open
Settlements Protocol (OSP) token [16] with a SIP INVITE request. A gateway
or proxy server receiving a token can verify the token and use this information
about accepting the INVITE or rejecting the call. This approach is suitable for a
clearinghouse model of VoIP carrier interconnection.

SIP Header Fields 145

An example is:

P-OSP-Auth-Token: 3b8a40c10b4930ff19a85766c15182a34048d9398b834d6
;realm="carrier.com"

146 SIP: Understanding the Session Initiation Protocol

Table 6.15
Example of Proxy-Authorization Header Field

Header Field Meaning

Proxy-Authorization: Digest
username="Customer1",
realm="company.com",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", uri="sip:user@company.com",
response="e56131d19580cd833064787ecc"

This digest authorization header field
contains the credentials of Customer1;
the nonce was supplied by the SIP
server located at the URI specified; the
response contains the encrypted user-
name and password; no opaque string is
present

Proxy server 2

INVITE

407 Proxy
Authentication required

INVITE

Proxy server 1SIP phone

INVITE

100 Trying

INVITE
INVITE

100 Trying
100 Trying

.

.

.

407 Proxy
A requireduthentication

407 Proxy
A requireduthentication

.

.

.

Figure 6.3 Multiproxy authentication example.

6.2.16 P-Asserted-Identity

The P-Asserted-Identity header field [17] is used between trusted
intermediaries (proxies) to assert the identity of a user agent that has been
authenticated using some means such as those described in Section 3.8. A UA
receiving a request from a proxy that it trusts will typically render the value in a
P-Asserted-Identity header field to the user as a “Verified Caller ID”
as opposed to a From header value which is unverified. A proxy receiving a
P-Asserted-Identity from another proxy that it does not trust will
remove the header field.

An example is:

P-Asserted-Identity: <sip:user@example.com>

6.2.17 P-Preferred-Identity

The P-Preferred-Identity header field [17] is used by a user agent to
tell a trusted intermediary which identity it would prefer be asserted on its
behalf when more than one identities are associated with that user agent.

An example is:

P-Preferred-Identity: <sip:alternate@example.com>

6.2.18 Max-Forwards

The Max-Forwards header field is used to indicate the maximum number of
hops that a SIP request may take. The value of the header field is decremented
by each proxy that forwards the request. A proxy receiving the header field with
a value of zero discards the message and sends a 483 Too Many Hops
response back to the originator.

Max-Forwards is a mandatory header field in requests generated by a
RFC 3261 compliant UA. However, an RFC 2543 UA generally will not
include the header field field. The suggested initial value is 70 hops.

An example is:

Max-Forwards: 10

6.2.19 Reason

The Reason header field [18] can be used in BYE and CANCEL messages to
indicate the reason why the session or call attempt is being terminated. It can
carry a SIP response code or a Q.850 cause value (from an ISUP REL message,
for example).

For example, a forking proxy could include the following header field in a
CANCEL sent to a leg after one leg has answered the call:

SIP Header Fields 147

Reason: SIP ;cause=200 ;text="Call completed elsewhere"

6.2.20 Refer-To

The Refer-To header field [19] is a required header field in a REFER
request, which contains the URI or URL resource that is being referenced. It
may contain any type of URI from a sip or sips to a tel URI to a http or
mailto URI. For a sip or sips URI, the URI may contain a method or
escaped header fields. For example, the following Refer-To header field:

Refer-To: <sip:UserC@client.anywhere.com?Replaces=
sdjfdjfskdf@there.com%3Bto-tag%3D5f35a3%3Bfrom-tag%3D8675309>

contains an escaped Replaces header field. The resulting INVITE message
generated by this Refer-To header field would have a Request-URI of
sip:UserC@client.anywhere.com and a

Replaces: sdjfdjfskdf@there.com;to-tag=5f35a3;from-tag=8675309

header field. Note that the characters ; and = are replaced by their hex equiva-
lents %3B and %3D. In the next example, the header field contains a method:

Refer-To: <sip:UserC@client.anywhere.com?method=SUBSCRIBE>

would cause a SUBSCRIBE request to be sent instead of an INVITE, which is
the default method if none is present. An example of the Refer-To header
field in compact form with an HTTP URL is:

r: <http://www.artech-house.com>

6.2.21 Referred-By

The Referred-By header field [20] is an optional header field in a REFER
request and a request triggered by a REFER. It provides the recipient of a trig-
gered request information that the request was generated as a result of a REFER
and the originator of the REFER. This information can be presented to the user
or have policy applied in deciding how the UA should handle the request. An
unsigned Referred-By has the form:

Referred-By: <sip:user@host.com>

However, as this header field could be modified or fabricated, a more
secure usage involves the addition of a Referred-By security token. The
token is carried as a message body whose content id (cid) is indicated in the
Referred-By header field. The token is an S/MIME signature over a mes-
sage/sipfrag, which contains, at a minimum, the From, Date,

148 SIP: Understanding the Session Initiation Protocol

Call-ID, Refer-To, and Referred-By header fields from the REFER
request. An example part of a REFER request is shown here:

Referred-By: sip:referror@referror.example
;cid=%3C39438823.FWQF33093@referror.example%3E

Content-Type: multipart/mixed; boundary=unique-boundary-1
Content-Length: (appropriate value)

—unique-boundary-1

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=sha1; boundary=divider42
Content-ID: <39438823.FWQF33093@referror.example>
Content-Length: (appropriate value)

—divider42
Content-Type: message/sipfrag
Content-Disposition: auth-id; handling=optional

From: sip:referror@referror.example
Date: Thu, 14 Feb 2003 16:23:03 GMT
Call-ID: 2203900ef0299349d9209f023a
Refer-To: sip:refertarget@target.example
Referred-By: sip:referror@referror.example
;cid=%3C39438823.FWQF33093@referror.example%3E

—divider42
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s;
handling=required

(appropriate signature goes here)

—divider42—

—unique-boundary-1—

An unsigned Referred-By header field may be rejected requesting that
the Referred-By security token be included using the 429 Provide
Referror Identity response code (see Section 5.4.22). An example using
the compact form is:

b: <sips:friend@neighbor.org>

6.2.22 Reply-To

The Reply-To header field is used to indicate a sip or sips URI, which
should be used in replying to this request. Normally, this URI is present in the
From header field (the Contact is not used as it is only assumed valid for the
duration of the dialog). However, in some cases, the From cannot be populated

SIP Header Fields 149

with this information, so the URI in this header field should be used instead of
the From URI.

An example is:

Reply-To: <sip:l.tolstoy@stpetersburg.ru>

6.2.23 Replaces

The Replaces header field [11] is used in SIP call control applications. A user
agent in an established dialog receiving another INVITE with a Replaces
header field that matches the existing dialog must accept the INVITE, termi-
nate the existing dialog with a BYE, and transfer all resources and state from the
existing dialog to the newly established dialog.

If the Replaces header field matches no dialog, the INVITE must be
rejected with a 481 Dialog Does Not Exist response.

In addition, Replaces has one application in pending dialogs. A UAC
that has sent an INVITE but has not yet received a final response may receive
an INVITE containing a Replaces header field that matches the pending
INVITE. The UAC must terminate the pending dialog with a CANCEL (and
be prepared to send a ACK and BYE if a 200 OK eventually arrives) and accept
the new INVITE.

For an INVITE containing both a Require: replaces and
Replaces header field, this results in the return of one of the following set of
responses:

• 200 (if a match is found);

• 481 (if no match is found);

• 420 (if Replaces is not supported).

Figure 6.4 shows a call flow using Replaces to implement a feature
called “call pickup.” Figure 4.7 shows the use of Replaces in an “attended
transfer example.”

This example Replaces header field:

Replaces: 3232904875945@server.org;to-tag=34314;from-tag=2343

would match the dialog identified by:

To: <sip:moe@example.org>;tag=34314
From: <sip:larry@server.org>;tag=2343
Call-ID: 3232904875945@server.org

6.2.24 Reject-Contact

The Reject-Contact [4] header field specifies the URIs to which the
request may not be proxied. Some additional parameters are also defined for

150 SIP: Understanding the Session Initiation Protocol

Contact header fields such as media, duplex, and language when
used in this header field. This header field, along with Accept-Contact
and Request-Disposition are part of the SIP caller preferences exten-
sions. The compact form is j. Examples include:

Reject-Contact: sip:admin@boss.com
j: *;media=video

6.2.25 Request-Disposition

The Request-Disposition [4] header field can be used to request servers
to either proxy or redirect, or initiate serial or parallel (forking) searches. An
example is:

Request-Disposition: redirect

6.2.26 Require

The Require header field is used to list features and extensions that a UAC
requires a UAS to support in order to process the request. A 420 Bad
Extension response is returned by the UAS listing any unsupported features

SIP Header Fields 151

Caller
Called
party Pickup

INVITE

INVITE (Replaces)

180 Ringing

CANCEL

200 OK

Media session

200 OK

487

ACK

ACK

Figure 6.4 Call pickup call flow using Replaces.

in an Unsupported header field. If support or use of a feature is desirable but
not required, the Supported header field is used instead. See Table 6.8 for a
list of feature tags.

An example is:

Require: rel100

6.2.27 Response-Key

The Response-Key header field was defined in RFC 2543 but was depre-
cated in RFC 3261 along with all PGP-based encryption in favor of S/MIME
encryption.

6.2.28 Route

The Route header field is used to provide routing information for requests.
RFC 3261 introduces two types of routing: strict and loose routing, which have
similar meaning as the IP routing modes of the same name. In strict routing, a
proxy must use the first URI in the Route header field to rewrite the Request-
URI, which is then forwarded. In loose routing, a proxy does not re-write the
Request-URI, but either forwards the request to the first URI in the Route
header field or it may forward the request to another loose routing element. In
loose routing, the request must route through every server in the Route list
(but may also route through other servers) before it may be routed based on the
Request-URI. In strict routing, the request must only route through the set of
servers in the Route header field with the Request-URI being rewritten at each
hop. A proxy or UAC can tell if the next element in the route set supports loose
routing by the presence of a lr parameter. An example is:

Route: <sip:proxy@example.com;lr>

Chapter 10 contains an example of the use of the Record-Route and
Route header fields. Examples of Route header fields constructed from the
example Record-Route header fields in Section 6.2.12 are:

Route: <sip:firewall33.corporation.com;lr>,
<sip:proxy1.carrier.com;lr>

Route: <sip:139.23.1.44 ;lr>

6.2.29 RAck

The RAck header field [10] is used within a response to a PRACK request to
reliably acknowledge a provisional response that contained a RSeq header field.
The RAck header field echoes the CSeq and the RSeq from the provisional

152 SIP: Understanding the Session Initiation Protocol

response. The reliable sequence number is incremented for each response sent
reliably. A call flow is shown in Figure 4.11. An example is:

RAck: 8342523 1 INVITE

6.2.30 Session-Expires

The Session-Expires header field [21] is used to specify the expiration
time of the session. To extend the session, either UA can send a re-INVITE or
UPDATE with a new Session-Expires header field. At the expiration of
the interval in the Session-Expires, either UA may send a BYE and call-
stateful proxies may destroy any state information. A proxy may shorten the
expiration time by reducing the interval in the header field as it proxies the
request. A UAS confirms the session timer by including the Session-
Expires header field in the response to the request. A UAS may also shorten
the interval by reducing the interval. An example is:

Session-Expires: 3600

6.2.31 Subscription-State

The Subscription-State header field [3] is a required header field in a
NOTIFY request. It indicates the current state of the subscription. Values
defined include active, pending, or terminated. Additional parame-
ters include expires, reason, and retry-after. Values defined for
the reason parameter include deactivated, giveup, probation,
noresource, rejected, and timeout.

An example is:

Subscription-State: terminated ;reason=rejected

6.3 Response Header Fields

These header fields are present only in responses.

6.3.1 Authenticaton-Info

The Authentication-Info header field can be inserted in responses
when performing mutual authentication using HTTP Digest. In normal
HTTP Digest as described in Section 3.8, the server challenges the client to
provide a shared secret, which the client then provides in a repeat of the
request containing an Authorization or WWW-Authenticate header
field. To do mutual authentication, the server would then provide an
Authentication-Info header field containing either a next nonce or a

SIP Header Fields 153

response in an repath parameter. The response auth digest is calculated by the
server on the SIP response using the same algorithm as the successful request
authentication and using the same shared secret (client’s username and pass-
word). In this way, the server proves that it also knows the client’s secret, provid-
ing mutual authentication. The credentials are carried in the rspauth
parameter in the header field.

An example is:

Authentication-Info: rspauth="9105jr98li459jgfp"

6.3.2 Error-Info

The Error-Info header field is used in failure response to convey more infor-
mation about an error. A UAC receiving the header field in a failure response
may fetch and render the URI to the user. The header field can be used to give
the client the choice of how the error can be presented to the user. For example, a
client with a graphical interface will likely display the reason phrase on the
response, which should provide very specific information about the failure. How-
ever, an audio-only UA does not have this capability (although a text-to-speech
synthesizer could be used to provide this capability). Instead, an audio-only UA
could fetch the URI and play the resulting audio stream to the user.

If the URI is a sip or sips URI, the UA may treat the Error-Info
as a Contact in a redirection response, which would result in a SIP session
established to play the recording.

An example is:

Error-Info: <sip:recording5@announcementsrus.com>

6.3.3 Min-Expires

The Min-Expires header field is used in a 423 Interval Too Brief
response (Section 5.4.20) from a registrar rejecting a REGISTER request in
which one or more Contacts have an expiration time that is too short. The
header field contains an integer number of seconds that represents the mini-
mum expiration interval that the registrar will accept. A client receiving this
header field can update the expiration intervals of the registration request
accordingly and resend the REGISTER request.

An example is:

Min-Expires: 1200

6.3.4 Min-SE

The Min-SE header field [21] is a required header field in a 422 Session
Timer Interval Too Small response (Section 5.4.19). The response

154 SIP: Understanding the Session Initiation Protocol

may also be present in an INVITE or UPDATE containing a Session-
Expires header field. It contains an integer number of seconds.

An example is:

Min-SE: 480

6.3.5 Proxy-Authenticate

The Proxy-Authenticate header field is used in a 407 Proxy
Authentication Required authentication challenge by a proxy server
to a UAC. It contains the nature of the challenge so that the UAC may formu-
late credentials in a Proxy-Authorization header field in a subsequent
request. Examples are shown in Table 6.16.

6.3.6 Server

The Server header field is used to convey information about the UAS gener-
ating the response. The use and contents of the header field are similar to the
User-Agent header field in Section 6.1.16. An example is:

Server: Dotcom Announcement Server B3

6.3.7 Unsupported

The Unsupported header field is used to indicate features that are not sup-
ported by the server. The header field is used in a 420 Bad Extension
response to a request containing an unsupported feature listed in a Require
header field. Because multiple features may have been listed in the Require
header field, the Unsupported header field indicates all the unsupported fea-
tures—the rest can be assumed by the UAC to be supported. See Table 6.8 for a
list of feature tags.

An example is:

Unsupported: rel100

SIP Header Fields 155

Table 6.16
Example of Proxy-Authenticate Header Field

Header Field Meaning

Proxy-Authenticate: Digest
realm="example.com",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", stale=FALSE, algorithm=MD5

HTTP digest challenge header field

6.3.8 Warning

The Warning header field is used in a response to provide more specific infor-
mation than the response code alone can convey. The header field contains a
three-digit warning code, a warning agent that indicates what server inserted the
header field, and warning text enclosed in quotes used for display purposes.
Warning codes in the 1xx and 2xx range are specific to HTTP [2]. The SIP
standard defines 12 new warning codes in the 3xx class. The breakdown of the
class is shown in Table 6.17. The complete set of defined warning codes is listed
in Table 6.18.

Examples are:

Warning: 302 proxy "Incompatible transport protocol"
Warning: 305 room132.hotel.com:5060 "Incompatible media type"

6.3.9 WWW-Authenticate

The WWW-Authenticate header field is used in a 401 Unauthorized
authentication challenge by a user agent or registrar server to a UAC. It con-
tains the nature of the challenge so that the UAC may formulate credentials
in a Proxy-Authorization header field in a subsequent request. SIP
supports HTTP digest authentication mechanisms. Examples are shown in
Table 6.19.

6.3.10 RSeq

The RSeq header field [10] is used in provisional (1xx class) responses to
INVITEs to request reliable transport. The header field may only be used if the
INVITE request contained the Supported: rel100 header field. If pres-
ent in a provisional response, the UAC should acknowledge receipt of the

156 SIP: Understanding the Session Initiation Protocol

Table 6.17
SIP Warning Codes

Warning Code Range Error Type

30x, 31x, 32x SDP keywords
33x Network services
34x, 35x, 36x Reserved for future use
37x QoS parameters
38x Reserved
39x Miscellaneous

response with a PRACK method, as described in Section 4.1.12. The RSeq
header field contains a reliable sequence number that is an integer randomly
initialized by the UAS. Each subsequent provisional response sent reliably for
this dialog will have a monotonically increasing RSeq number. The UAS
matches the reliable sequence number and CSeq from the RAck in a PRACK
request to a sent response to confirm receipt and stop all retransmissions of the
response.

An example is:

RSeq: 2345263

SIP Header Fields 157

Table 6.18
SIP Warning Code List

Warning Code Description

300 Incompatible network protocol
301 Incompatible network address formats
302 Incompatible transport protocol
303 Incompatible bandwidth units
304 Media type not available
305 Incompatible media format
306 Attribute not understood
307 Session description parameter not understood
330 Multicast not available
331 Unicast not available
370 Insufficient bandwidth
399 Miscellaneous warning

Table 6.19
Example of WWW-Authenticate Header Field

Header Field Meaning

WWW-Authenticate: Digest
realm="example.com",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", stale=FALSE, algorithm=MD5

HTTP digest challenge

6.4 Message Body Header Fields

These header fields contain information about the message body or entity.

6.4.1 Allow

The Allow header field is used to indicate the methods supported by the user
agent or proxy server sending the response. The header field must be present in a
405 Method Not Allowed response and should be included in a positive
response to an OPTIONS request. An example is:

Allow: INVITE, ACK, BYE, INFO, OPTIONS, CANCEL

6.4.2 Content-Encoding

The Content-Encoding header field is used to indicate that the listed
encoding scheme has been applied to the message body. This allows the UAS to
determine the decoding scheme necessary to interpret the message body. Multi-
ple listings in this header field indicate that multiple encodings have been used
in the sequence in which they are listed. Only encoding schemes listed in an
Allow-Encoding header field may be used. The compact form is e. Exam-
ples include:

Content-Encoding: text/plain
e: gzip

6.4.3 Content-Disposition

The Content-Disposition header field is used to describe the function
of a message body. Defined values include session, icon, alert, and
render. The value session indicates that the message body contains informa-
tion to describe a media session. The value render indicates that the message
body should be displayed or otherwise rendered for the user. If a message body is
present in a request or a 2xx response without a Content-Disposition,
the function is assumed to be session. For all other response classes with message
bodies, the default function is render. An example is:

Content-Function: session

6.4.4 Content-Language

The Content-Language header field [2] is used to indicate the language of
a message body. It contains a language tag, which identifies the language.

Content-Language: en

158 SIP: Understanding the Session Initiation Protocol

6.4.5 Content-Length

The Content-Length is used to indicate the number of octets in the mes-
sage body. A Content-Length: 0 indicates no message body. As described
in Section 2.4.2, this header field is used to separate multiple messages sent
within a TCP stream. If not present in a UDP message, the message body is
assumed to continue to the end of the datagram. If not present in a TCP mes-
sage, the message body is assumed to continue until the connection is closed.
The Content-Length octet count does not include the CRLF that separates
the message header fields from the message body. It does, however, include the
CRLF at the end of each line of the message body. An example octet calculation
is in Chapter 2. The Content-Length header field is not a required header
field to allow dynamically generated message bodies, where the Content-
Length may not be known a priori. The compact form is l. Examples include:

Content-Length: 0
l: 287

6.4.6 Content-Type

The Content-Type header field is used to specify the Internet media
type [13] in the message body. Media types have the familiar form
type/sub-type. If this header field is not present, application/sdp
is assumed. If an Accept header field was present in the request, the response
Content-Type must contain a listed type, or a 415 Unsupported
Media Type response must be returned. The compact form is c. Specific
MIME types that are commonly use are listed in Table 6.20.

Content indirection [28] can be used to provide a URI in place of actual
MIME message body. An example is:

SIP Header Fields 159

Table 6.20
Common Content-Types Present in SIP Requests and Responses

Content-Type Use

application/sdp SDP in INVITE, ACK, or UPDATE requests [22]
message/sipfrag SIP fragment in NOTIFY in refer subscription [23]
application/xml+dialog XML dialog [24]
application/xml+conf XML conference info [25]
application/cpim CPIM [26]
text/plain Plain text
text/html HTML text
application/isup Encapsulated ISUP in INVITE, BYE, or INFO [27]

Content-Type: message/external-body; access-type="URL";
URL="http://www.example.com/"

The compact form is c. Examples are:

Content-Type: application/sdp
c: text/html

6.4.7 Expires

The Expires header field is used to indicate the time interval in which the
request or message contents are valid. When present in an INVITE request, the
header field sets a time limit on the completion of the INVITE request. That is,
the UAC must receive a final response (non-1xx) within the time period or the
INVITE request is automatically canceled with a 408 Request Timeout
response. Once the session is established, the value from the Expires header
field in the original INVITE has no effect—the Session-Expires header
field (Section 6.2.19) must be used for this purpose. When present in a
REGISTER request, the header field sets the time limit on the URIs in Con-
tact header fields that do not contain an expires parameter. Table 4.3
shows examples of the Expires header field in registration requests. The
header field is not defined for any other method types. The header field may
contain a SIP date or a number of seconds. Examples include:

Expires: 60
Expires: Fri, 15 Apr 2000 00:00:00 GMT

6.4.8 MIME-Version

The MIME-Version header field is used to indicate the version of MIME
protocol used to construct the message body. SIP, like HTTP, is not considered
MIME-compliant because parsing and semantics are defined by the SIP stan-
dard, not the MIME Specification [29]. Version 1.0 is the default value. An
example is:

MIME-Version: 1.0

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Fielding, R., et al., “Hypertext Transfer Protocol — HTTP/1.1,” RFC 2616, June 1999.

[3] Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265,
2002.

160 SIP: Understanding the Session Initiation Protocol

[4] Rosenberg, J., H. Schulzrinne, and P. Kyzivat, “Caller Preferences and Callee Capabilities
for the Session Initiation Protocol (SIP),” IETF Internet-Draft, Work in Progress, March
2003.

[5] Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control – Conferenc-
ing for User Agents,” IETF Internet-Draft, Work in Progress, April 2003.

[6] Rosenberg, J., and H. Schulzrinne, “A Session Initiation Protocol (SIP) Event Package for
Conference State,” IETF Internet-Draft, Work in Progress, June 2002.

[7] Braden, R., “Requirements for Internet Hosts: Application and Support,” RFC 1123,
1989.

[8] Mahy, R., and D. Petrie, “The Session Inititation Protocol (SIP) ‘Join’ Header,” IETF
Internet-Draft, Work in Progress, March 2003.

[9] Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field
for Registering Non-Adjacent Contacts,” RFC 3327, 2002.

[10] Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses in Session Initia-
tion Protocol (SIP),” RFC 3262, 2002.

[11] Mahy, R., B. Biggs, and R. Dean, “The Session Initiation Protocol (SIP) ‘Replaces’
Header,” IETF Internet-Draft, Work in Progress, March 2003.

[12] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),”
IETF Internet-Draft, Work in Progress, November 2002.

[13] Postel, J., “Media Type Registration Procedure,” RFC 1590, 1994.

[14] Peterson, J., “A Privacy Mechanism for the Session Initiation Protocol (SIP),” RFC 3323,
2002.

[15] Johnston, A., et al., “Session Initiation Protocol Private Extension for an OSP Authoriza-
tion Token,” IETF Internet-Draft, Work in Progress, February 2003.

[16] European Telecommunications Standards Institute, “Telecommunications and Internet
Protocol Harmonization Over Networks (TIPHON); Open Settlement Protocol (OSP)
for Inter-domain Pricing, Authorization, and Usage Exchange,” Technical Specification
101 321, Version 2.1.0.

[17] Jennings, C., J. Peterson, and M. Watson, “Private Extensions to the Session Initiation
Protocol (SIP) for Asserted Identity within Trusted Networks,” RFC 3325, 2002.

[18] Schulzrinne, H., D. Oran, and G. Camarillo, “The Reason Header Field for the Session
Initiation Protocol (SIP),” RFC 3326, 2002.

[19] Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, 2003.

[20] Sparks, R., “The SIP Referred-By Mechanism,” IETF Internet-Draft, Work in Progress,
February 2003.

[21] Donovan, S., and Rosenberg, J., “Session Timers in the Session Initiation Protocol (SIP),”
IETF Internet-Draft, Work in Progress, November 2002.

[22] Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, 1998.

[23] Sparks, R., “Internet Media Type message/sipfrag,” RFC 3420, 2003.

[24] Rosenberg, J., and H. Schulzrinne, “An INVITE Initiated Dialog Event Package for the
Session Initiation Protocol (SIP),” IETF Internet-Draft, Work in Progress, March 2003.

[25] Rosenberg, J., and H. Schulzrinne, “A Session Initiation Protocol (SIP) Event Package for
Conference State,” IETF Internet-Draft, Work in Progress, June 2002.

SIP Header Fields 161

[26] Sugano, H., et al., “Common Presence and Instant Messaging (CPIM) Presence Informa-
tion Data Format,” IETF Internet-Draft, Work in Progress, 2002

[27] Zimmerer, E., et al., “MIME Media Types for ISUP and QSIG Objects,” RFC 3204,
December 2001.

[28] Olson, S., “A Mechanism for Content Indirection in Session Initiation Protocol (SIP)
Messages,” IETF Internet-Draft, Work in Progress, February 2003.

[29] Freed, M., and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME). Part
One: Format of Internet Message Bodies,” RFC 2045, 1996.

162 SIP: Understanding the Session Initiation Protocol

7
Related Protocols

The Session Initiation Protocol (SIP) is one part of the protocol suite that makes
up the Internet Multimedia Conferencing architecture, as shown in Figure 1.1.
In this chapter, other related Internet protocols mentioned or referenced in
other sections are introduced, along with details on the use of the protocol with
SIP. This is by no means a complete discussion of multimedia communication
protocols over the Internet. First, SDP, the media description language, will be
discussed. Then the RTP and RTCP media transport protocols will be dis-
cussed. The application of RTP/AVP profiles that link SDP and RTP will then
be then covered. The chapter concludes with a brief discussion of signaling pro-
tocols in the PSTN. The H.323 protocol will be discussed and compared to SIP
in the next chapter. The chapter concludes with a discussion of SIP-T and
UPnP protocols.

7.1 SDP—Session Description Protocol

The Session Description Protocol, defined by RFC 2327 [1], was developed by
the IETF MMUSIC working group. It is more of a description syntax than a
protocol in that it does not provide a full-range media negotiation capability.
The original purpose of SDP was to describe multicast sessions set up over the
Internet’s multicast backbone, the MBONE. The first application of SDP was
by the experimental Session Announcement Protocol (SAP) [2] used to post and
retrieve announcements of MBONE sessions. SAP messages carry a SDP mes-
sage body, and was the template for SIP’s use of SDP. Even though it was

163

designed for multicast, SDP has been applied to the more general problem of
describing general multimedia sessions established using SIP.

As seen in the examples of Chapter 3, SDP contains the following infor-
mation about the media session:

• IP Address (IPv4 address or host name);

• Port number (used by UDP or TCP for transport);

• Media type (audio, video, interactive whiteboard, and so forth);

• Media encoding scheme (PCM A-Law, MPEG II video, and so forth).

In addition, SDP contains information about the following:

• Subject of the session;

• Start and stop times;

• Contact information about the session.

Like SIP, SDP uses text coding. An SDP message is composed of a series of
lines, called fields, whose names are abbreviated by a single lower-case letter, and
are in a required order to simplify parsing. The set of mandatory SDP fields is
shown in Table 2.1. The complete set is shown in Table 7.1.

SDP was not designed to be easily extensible, and parsing rules are strict.
The only way to extend or add new capabilities to SDP is to define a new attrib-
ute type. However, unknown attribute types can be silently ignored. A SDP
parser must not ignore an unknown field, a missing mandatory field, or an out-
of-sequence line. An example SDP message containing many of the optional
fields is shown here:

v=0
o=johnston 2890844526 2890844526 IN IP4 43.32.1.5
s=SIP Tutorial
i=This broadcast will cover this new IETF protocol
u=http://www.digitalari.com/sip
e=Alan Johnston alan@mci.com
p=+1-314-555-3333 (Daytime Only)
c=IN IP4 225.45.3.56/236
b=CT:144
t=2877631875 2879633673
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 23422 RTP/AVP 31
a=rtpmap:31 H261/90000

The general form of a SDP message is:

x=parameter1 parameter2 ... parameterN

164 SIP: Understanding the Session Initiation Protocol

The line begins with a single lower-case letter x. There are never any
spaces between the letter and the =, and there is exactly one space between each
parameter. Each field has a defined number of parameters. Each line ends with a
CRLF. The individual fields will now be discussed in detail.

7.1.1 Protocol Version

The v= field contains the SDP version number. Because the current version of
SDP is 0, a valid SDP message will always begin with v=0.

7.1.2 Origin

The o= field contains information about the originator of the session and ses-
sion identifiers. This field is used to uniquely identify the session. The field
contains:

Related Protocols 165

Table 7.1
SDP Field List in Their Required Order

Field Name
Mandatory/
Optional

v= Protocol version number m

o= Owner/creator and session identifier m

s= Session name m

i= Session information o

u= Uniform Resource Identifer o

e= Email address o

p= Phone number o

c= Connection information m

b= Bandwidth information o

t= Time session starts and stops m

r= Repeat times o

z= Time zone corrections o

k= Encryption key o

a= Attribute lines o

m= Media information o

a= Media attributes o

o=username session-id version network-type address-type
address

The username parameter contains the originator’s login or host or - if
none. The session-id parameter is a Network Time Protocol (NTP) [3]
timestamp or a random number used to ensure uniqueness. The version is a
numeric field that is increased for each change to the session, also recommended
to be a NTP timestamp. The network-type is always IN for Internet. The
address-type parameter is either IP4 or IP6 for IPv4 or IPv6 address
either in dotted decimal form or a fully qualified host name.

7.1.3 Session Name and Information

The s= field contains a name for the session. It can contain any non-zero
number of characters. The optional i= field contains information about the
session. It can contain any number of characters.

7.1.4 URI

The optional u= field contains a uniform resource indicator (URI) with more
information about the session.

7.1.5 E-Mail Address and Phone Number

The optional e= field contains an e-mail address of the host of the session. If a
display name is used, the e-mail address is enclosed in <>. The optional p= field
contains a phone number. The phone number should be given in globalized for-
mat, beginning with a +, then the country code, a space or -, then the local
number. Either spaces or - are permitted as spacers in SDP. A comment may be
present in ().

7.1.6 Connection Data

The c= field contains information about the media connection. The field
contains:

c=network-type address-type connection-address

The network-type parameter is defined as IN for the Internet. The address
type is defined as IP4 for IPv4 addresses, IP6 for IPv6 addresses. The
connection-address is the IP address that will be sending the media packets, which
could be either multicast or unicast. If multicast, the connection-address field
contains:

166 SIP: Understanding the Session Initiation Protocol

connection-address=base-multicast-address/ttl/number-of-
addresses

where ttl is the time-to-live value, and number-of-addresses indicates
how many contiguous multicast addresses are included starting with the
base-multicast-address.

7.1.7 Bandwidth

The optional b= field contains information about the bandwidth required. It is
of the form:

b=modifier:bandwidth-value

The modifier is either CT for conference total or AS for application
specific. CT is used for multicast session to specify the total bandwidth that can
be used by all participants in the session. AS is used to specify the bandwidth of
a single site. The bandwidth-value parameter is the specified number of
kilobytes per second.

7.1.8 Time, Repeat Times, and Time Zones

The t= field contains the start time and stop time of the session.

t=start-time stop-time

The times are specified using NTP timestamps. For a scheduled session, a
stop-time of zero indicates that the session goes on indefinitely. A
start-time and stop-time of zero for a scheduled session indicates that
it is permanent. The optional r= field contains information about the repeat
times that can be specified in either in NTP or in days (d), hours (h), or minutes
(m). The optional z= field contains information about the time zone offsets.
This field is used if a reoccurring session spans a change from daylight-savings to
standard time, or vice versa.

7.1.9 Encryption Keys

The optional k= field contains the encryption key to be used for the media ses-
sion. The field contains:

k=method:encryption-key

The method parameter can be clear, base64, uri, or prompt. If the
method is prompt, the key will not be carried in SDP; instead, the user will be

Related Protocols 167

prompted as they join the encrypted session. Otherwise, the key is sent in the
encryption-key parameter.

7.1.10 Media Announcements

The optional m= field contains information about the type of media session.
The field contains:

m=media port transport format-list

The media parameter is either audio, video, application,
data, telephone-event, or control. The port parameter contains
the port number. The transport parameter contains the transport protocol,
which is either RTP/AVP or udp. (RTP/AVP stands for Real-time Transport
Protocol [4] / audio video profiles [5], which is described in Section 7.3.) The
format-list contains more information about the media. Usually, it con-
tains media payload types defined in RTP audio video profiles. More than one
media payload type can be listed, allowing multiple alternative codecs for the
media session. For example, the following media field lists three codecs:

m=audio 49430 RTP/AVP 0 6 8 99

One of these three codecs can be used for the audio media session. If the
intention is to establish three audio channels, three separate media fields would
be used. For non-RTP media, Internet media types should be listed in the
format-list. For example,

m=application 52341 udp wb

could be used to specify the application/wb media type.

7.1.11 Attributes

The optional a= field contains attributes of the preceding media session. This
field can be used to extend SDP to provide more information about the media.
If not fully understood by a SDP user, the attribute field can be ignored. There
can be one or more attribute fields for each media payload type listed in the
media field. For the RTP/AVP example in Section 7.1.10, the following three
attribute fields could follow the media field:

a=rtpmap:0 PCMU/8000
a=rtpmap:6 DVI4/16000
a=rtpmap:8 PCMA/8000
a=rtpmap:99 iLBC

168 SIP: Understanding the Session Initiation Protocol

Other attributes are shown in Table 7.2. Full details of the use of these attributes
are in the standard document [1]. The details of the iLBC (Internet Low Bit
Rate) Codec are in [6].

7.1.12 Use of SDP in SIP

The use of SDP with SIP is given in the SDP Offer Answer RFC 3264 [7]. The
default message body type in SIP is application/sdp. The calling party
lists the media capabilities that they are willing to receive in SDP in either an
INVITE or in an ACK. The called party lists their media capabilities in the 200
OK response to the INVITE. More generally, offers or answers may be in
INVITEs, PRACKs, or UPDATEs or in reliably sent 18x or 200 responses to
these methods.

Because SDP was developed with scheduled multicast sessions in mind,
many of the fields have little or no meaning in the context of dynamic sessions
established using SIP. In order to maintain compatibility with the SDP proto-
col, however, all required fields are included. A typical SIP use of SDP includes
the version, origin, subject, time, connection, and one or more media and
attribute fields as shown in Table 2.1. The origin, subject, and time fields are
not used by SIP but are included for compatibility. In the SDP standard, the
subject field is a required field and must contain at least one character, suggested
to be s=- if there is no subject. The time field is usually set to t=0 0.

SIP uses the connection, media, and attribute fields to set up sessions
between user agents. Because the type of media session and codec to be used are
part of the connection negotiation, SIP can use SDP to specify multiple alterna-
tive media types and to selectively accept or decline those media types. When
multiple media codecs are listed, the caller and called party’s media fields must
be aligned—that is, there must be the same number, and they must be listed in
the same order. The offer answer specification, RFC 3264 [7], recommends that
an attribute containing a=rtpmap: be used for each media field [7]. A media
stream is declined by setting the port number to zero for the corresponding
media field in the SDP response. In the following example, the caller Tesla
wants to set up an audio and video call with two possible audio codecs and a
video codec in the SDP carried in the initial INVITE:

v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0 8
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000

Related Protocols 169

m=video 49172 RTP/AVP 32
a=rtpmap:32 MPV/90000

The codecs are referenced by the RTP/AVP profile numbers 0, 8, and 32.
The called party Marconi answers the call, chooses the second codec for the first
media field and declines the second media field, only wanting a PCM A-Law
audio session.

v=0
o=Marconi 2890844526 2890844526 IN IP4 tower.radio.org
s=-
c=IN IP4 200.201.202.203

170 SIP: Understanding the Session Initiation Protocol

Table 7.2
SDP Attribute Values

Attribute Name

a=rtpmap: RTP/AVP list

a=cat: Category of the session

a=keywds: Keywords of session

a=tool: Name of tool used to create SDP

a=ptime: Length of time in milliseconds for each packet

a=recvonly Receive only mode

a=sendrecv Send and receive mode

a=sendonly Send only mode

a=orient: Orientation for whiteboard sessions

a=type: Type of conference

a=charset: Character set used for subject and information fields

a=sdplang: Language for the session description

a=lang: Default language for the session

a=framerate: Maximum video frame rate in frames per second

a=quality: Suggests quality of encoding

a=fmtp: Format transport

a=mid: Media identification grouping

a=direction: Direction for symmetric media

a=rtcp: Explicit RTCP port (and address)

a=inactive Inactive mode

t=0 0
m=audio 60000 RTP/AVP 8
a=rtpmap:8 PCMA/8000
m=video 0 RTP/AVP 32

If this audio-only call is not acceptable, then Tesla would send an ACK
then a BYE to cancel the call. Otherwise, the audio session would be estab-
lished and RTP packets exchanged. As this example illustrates, unless the
number and order of media fields is maintained, the calling party would not
know for certain which media sessions were being accepted and declined by the
called party.

One party in a call can temporarily place the other on hold (i.e., suspend-
ing the media packet sending). This is done by sending an INVITE with
identical SDP to that of the original INVITE but with a=sendonly attrib-
ute present. The call is made active again by sending another INVITE with
the a=sendrecv attribute present. (Note that older RFC 2543 compliant
UAs may initiate hold using c=0.0.0.0.) For further examples of SDP use
with SIP, see the SDP Offer Answer Examples document [8].

7.2 RTP—Real-Time Transport Protocol

Real-Time Transport Protocol [4] was developed to enable the transport of
real-time packets containing voice, video, or other information over IP. RTP is
defined by IETF Proposed Standard RFC 3550 (which updates RFC 1889).
RTP does not provide any quality of service over the IP network—RTP pack-
ets are handled the same as all other packets in an IP network. However, RTP
allows for the detection of some of the impairments introduced by an IP net-
work, such as:

• Packet loss;

• Variable transport delay;

• Out of sequence packet arrival;

• Asymmetric routing.

As shown in the protocol stack of Figure 1.1, RTP is an application layer
protocol that uses UDP for transport over IP. RTP is not text encoded, but
uses a bit-oriented header similar to UDP and IP. RTP version 0 is only used
by the vat audio tool for MBONE broadcasts. Version 1 was a pre-RFC imple-
mentation and is not in use. The current RTP version 2 packet header is
shown in Figure 7.1. RTP was designed to be very general; most of the headers
are only loosely defined in the standard; the details are left to profile docu-
ments. The 12 octets are defined as:

Related Protocols 171

• Version (V): This 2-bit field is set to 2, the current version of RTP.

• Padding (P): If this bit is set, there are padding octets added to the end
of the packet to make the packet a fixed length. This is most commonly
used if the media stream is encrypted.

• Extension (X): If this bit is set, there is one additional extension follow-
ing the header (giving a total header length of 14 octets). Extensions are
defined by certain payload types.

• CSRC count (CC): This 4-bit field contains the number of content
source identifiers (CSRC) are present following the header. This field is
only used by mixers that take multiple RTP streams and output a single
RTP stream.

• Marker (M): This single bit is used to indicate the start of a new frame
in video, or the start of a talk-spurt in silence-suppressed speech.

• Payload Type (PT): This 7 bit field defines the codec in use. The value
of this field matches the profile number listed in the SDP.

• Sequence Number: This 16-bit field is incremented for each RTP
packet sent and is used to detect missing/out of sequence packets.

• Timestamp: This 32-bit field indicates in relative terms the time when
the payload was sampled. This field allows the receiver to remove jitter
and to play back the packets at the right interval assuming sufficient
buffering.

• Synchronization Source Identifier (SSRCI): This 32-bit field identifies
the sender of the RTP packet. At the start of a session, each participant
chooses a SSRC number randomly. Should two participants choose the
same number, they each choose again until each party is unique.

• CSRC Contributing Source Identifier: There can be none or up to 15
instances of this 32-bit field in the header. The number is set by the
CSRC Count (CC) header field. This field is only present if the RTP
packet is being sent by a mixer, which has received RTP packets from a
number of sources and sends out combined packets. A non-multicast
conference bridge would utilize this header.

RTP allows detection of a lost packet by a gap in the Sequence Num-
ber. Packets received out of sequence can be detected by out-of-sequence

172 SIP: Understanding the Session Initiation Protocol

V SSRCITimestampSequence NumberPTMCCP X

Figure 7.1 RTP packet header.

Sequence Numbers. Note that RTP allows detection of these transport-
related problems but leaves it up to the codec to deal with the problem. For
example, a video codec may compensate for the loss of a packet by repeating the
last video frame, while an audio codec may play background noise for the inter-
val. Variable delay or jitter can be detected by the Timestamp field. A con-
tinuous bit rate codec such as PCM will have a linearly increasing
Timestamp. A variable bit rate codec, however, which sends packets at irregu-
lar intervals, will have an irregularly increasing Timestamp, which can be used
to play back the packets at the correct interval.

The RTP Control Protocol (RTCP) is a related protocol also defined in
RFC 3550 that allows participants in an RTP session to send each other quality
reports and statistics, and exchange some basic identity information. The four
types of RTCP packets are shown in Table 7.3. RTCP has been designed to
scale to very large conferences. Because RTCP traffic is all overhead, the band-
width allocated to these messages remains fixed regardless of the number of par-
ticipants. That is, the more participants on a conference, the less frequently
RTCP packets are sent. For example, in a basic two-participant audio RTP ses-
sion, the RTP/AVP profile states that RTCP packets are to be sent about every 5
seconds; for four participants, RTCP packets can be sent every 10 seconds.
Sender reports (SR) or receiver reports (RR) packets are sent the most fre-
quently, with the other packet types being sent less frequently. The use of
reports allows feedback on the quality of the connection including information
such as:

• Number of packets sent and received;

• Number of packets lost;

• Packet jitter.

Related Protocols 173

Table 7.3
RTCP Packet Types

Packet
Type Name Description

SR Sender report Sent by a participant that both sends and receives RTP packets

RR Receiver report Sent by a participant that only receives RTP packets

SDES Source description Contain information about the participant in the session
including e-mail address, phone number, and host

BYE Bye Sent to terminate the RTP session

APP Application specific Defined by a particular profile

XR Extended report Extended report and summaries

In a multimedia session established with SIP, the information needed to
select codecs and send the RTP packets to the right location is carried in the
SDP message body. Under some scenarios, it can be desirable to change codecs
during an RTP session. An example of this relates to the transport of dual tone
multiple frequency (DTMF) digits. A low bit rate codec that is optimized for
transmitting vocal sounds will not transport the superimposed sine waves of a
DTMF signal without introducing significant noise, which may cause the
DTMF digit receiver to fail to detect the digit. As a result, it is useful to switch
to another codec when the sender detects a DTMF tone. Because a RTP packet
contains the payload type, it is possible to change codecs “on the fly” without
any signaling information being exchanged between the user agents. On the
other hand, switching codecs in general should probably not be done without a
SIP signaling exchange (re-INVITE) beacuse the call could fail if one side
switches to a codec that the other does not support. The SIP re-INVITE mes-
sage exchange allows this change in media session parameters to fail without
causing the established session to fail.

The use of random numbers for CSRC provides a minimal amount of
security against “media spamming” where a literally uninvited third party tries to
break into a media session by sending RTP packets during an established call.
Unless the third party can guess the CSRC of the intended sender, the receiver
will detect a change in CSRC number and either ignore the packets or inform
the user that something is going on. This behavior for RTP clients, however, is
not universally accepted, because in some scenarios (wireless hand-off,
announcement server, call center, and so forth.) it might be desirable to send
media from multiple sources during the progress of a call.

RTP supports encryption of the media. In addition, RTP can use
IPSec [9] for authentication and encryption.

7.3 RTP Audio Video Profiles

The use of profiles enables RTP to be an extremely general media transport
protocol. The current audio video profiles defined by RFC 3551 are listed in
Table 7.4. The profile document makes the following specifications for RTP:

• UDP is used for underlying transport;

• RTP port numbers are always even, the corresponding RTCP port
number is the next highest port, always an odd number;

• No header extensions are used.

For each of the profiles listed in Table 7.4, the profile document lists
details of the codec, or a reference for the details is provided. Payloads in the

174 SIP: Understanding the Session Initiation Protocol

range 96–127 can be defined dynamically during a session. The minimum pay-
load support is defined as 0 (PCMU) and 5 (DVI4). The document recom-
mends dynamically assigned port numbers, although 5004 and 5005 have been
registered for use of the profile and can be used instead. The standard also
describes the process of registering new payload types with IANA. There are
other references for a tutorial description of many of these audio codecs [10] and
video codecs [11].

The information in the first three columns of Table 7.4 is also contained
in the SDP a=rtpmap: field, which is why the attribute is optional.

Related Protocols 175

Table 7.4
RTP/AVP Audio and Video Payload Types

Payload Codec Clock Description

0 PCMU 8000 ITU G.711 PCM µ-Law Audio 64 Kbps

1 1016 8000 CELP Audio 4.8 Kbps

2 G721 8000 ITU G721 ADPCM Audio 32 Kbps

3 GSM 8000 European GSM Audio 13 Kbps

5 DVI4 8000 DVI ADPCM Audio 32 Kbps

6 DVI4 16000 DVI ADPCM 64 Kbps

7 LPC 8000 Experimental LPC Audio

8 PCMA 8000 ITU G.711 PCM A-Law Audio 64 Kbps

9 G722 8000 ITU G.722 Audio

10 L16 44100 Linear 16-bit Audio 705.6 Kbps

11 L16 44100 Linear 16-bit Stereo Audio 1411.2 Kbps

14 MPA 90000 MPEG-I or MPEG-II Audio Only

15 G728 8000 ITU G.728 Audio 16 Kbps

25 CELB 90000 CelB Video

26 JBEG 90000 JBEG Video

28 NV 90000 nv Video

31 H261 90000 ITU H.261 Video

32 MPV 90000 MPEG-I and MPEG-II Video

33 MP2T 90000 MPEG-II transport stream Video

dynamic iLBC — Internet low bit rate 15 Kbps [6]

dynamic AMR — Adaptive Multirate Codec [12]

7.4 PSTN Protocols

Three types of PSTN signaling protocols are mentioned in this text: Circuit Asso-
ciated Signaling (CAS), ISDN (Integrated Services Digital Network), and ISUP
(ISDN User Part). They will be briefly introduced and explained. How these pro-
tocols work in the PSTN today are covered in other references [10].

7.4.1 Circuit Associated Signaling

This type of signaling is the oldest currently used in the PSTN today. The sig-
naling information uses the same audio circuit as the voice path, with digits and
characters represented by audio tones. These are the tones that used to be barely
discernible on long-distance calls before ring tone is heard. The tones are called
multifrequency (MF) tones. They are similar to the tones used to signal between
a telephone and a central office switch, which are DTMF tones. Long post dial
delay is introduced because of the time taken to out-pulse long strings of digits.
Also, CAS is susceptible to fraud, as fraudulent tones can be generated by the
caller to make free telephone calls. This type of signaling is common in trunk
circuits between a central office and a corporation’s private branch exchange
(PBX) switch.

7.4.2 ISUP Signaling

ISDN User Part is the protocol used between telephone switches in the PSTN
for call signaling. It is used over a dedicated packet-switched network that uses
Signaling System #7 (SS7) for transport. This signaling method was developed
to overcome some of the delay and security problems with CAS. There are
examples of ISUP signaling in the call flow examples of Chapter 10. The adop-
tion of this out-of-band signaling protocol was the first step taken by telecom-
munications carriers away from circuit-switched networks and towards
packet-switched networks. The final step will be moving the bearer channels
onto a packet-switched network.

7.4.3 ISDN Signaling

Integrated Services Digital Network (ISDN) signaling was developed for all-
digital telephone connections to the PSTN. The most common types of inter-
faces are the basic rate interface (BRI) and the primary rate interface (PRI). A
BRI can contain two 64-Kbps B-channels for either voice or data and a 16-Kbps
D-channel for signaling. BRI can be used over conventional telephone lines but
requires an ISDN telephone or terminal adapter. PRI uses a 1.544-Mbps link
called a T-1 or a DS-1, which is divided up into 23 B-channels and one
D-channel, with each channel being 64 Kbps. The H.323 protocol, described in

176 SIP: Understanding the Session Initiation Protocol

Chapter 9, reuses a subset of the ISDN Q.931 signaling protocol used over the
D-channel.

7.5 SIP for Telephones

SIP for Telephones (SIP-T) is a framework for SIP interworking with the
PSTN [13]. It includes two approaches: translation and encapsulation. Both
approaches will be discussed.

Translation is the direct mapping between PSTN protocols and SIP. The
mapping between common PSTN protocols such as ISUP [14], Q.SIG [15],
and others have been defined. Examples of SIP interworking with PSTN proto-
cols including ISDN and CAS are in the SIP PSTN Call Flows document [16].
In this approach, as much of the information that is common to each protocol
are mapped between them, with the remaining values being set to configurable
defaults. In this approach, a SIP call from a PSTN gateway is indistinguishable
from a SIP call from a native device, and is handled such by the protocol. How-
ever, since not every single parameter in a PSTN signaling message has a coun-
terpart (or has any meaning) in SIP, some information is lost if the call routes
back to a PSTN termination point.

Encapsulation is another approach that is only useful for SIP/PSTN gate-
ways. Using this approach, first, PSTN-to-SIP translation is done to construct
the appropriate SIP message, then the PSTN protocol message is encapsulated
and included with the SIP message as a message body. If the SIP message is
received by another SIP/PSTN gateway, the resulting PSTN signaling message
is constructed from both the SIP message and the encapsulated PSTN message
that was received by the other gateway. This approach offers the possibility of
transparency (i.e., no loss of PSTN information as a call is carried across a SIP
network). However, this only works in a network in which only one variation of
PSTN protocol is used. Unlike Internet protocols, PSTN protocols vary by
region and are not compatible without a special type of PSTN switch, which
converts one message format to another. There are many dozens of protocol
variants used throughout the world.

Another disadvantage of encapsulation is that it the PSTN message bodies
must be encrypted if they are transported over the public Internet, or used in a
network with native SIP devices. This is because private information can be car-
ried in PSTN messages because PSTN protocols assume a different trust model
than an Internet protocol such as SIP. To prevent accidental disclosure of this
information, the message bodies must be encrypted by the originating gateway
and decrypted by the terminating gateway, which adds significant processing
requirements and call setup delay.

Encapsulated PSTN messages are carried as MIME bodies, which have
been standardized for both ISUP and QSIG [17].

Related Protocols 177

7.6 Universal Plug and Play Protocol

The Universal Plug and Play Protocol (UPnP) [18] is a protocol developed to
allow configuration and peer-to-peer networking of intelligent IP devices. UPnP
works together with DHCP or Auto IP to configure and set up devices in small
networks typical of home and small office networks [19]. The protocol has
six basic functions: addressing, discovery, description, control, events, and
presentation.

Some SIP clients use UPnP to gain configuration information and to
talk to firewalls and NATs that are UPnP enabled to open firewalls and learn
private/public IP address mappings. For example, if a router or wireless bridge
that encompasses a firewall and NAT function is UPnP enabled, an author-
ized SIP client also UPnP enabled can automatically manage NAT and firewall
traversal.

In the future, proponents of UPnP see it playing a key role in home net-
work configurations when multiple intelligent IP devices are connected in a
home or small office. However, the protocol is unlikey to be used in medium
and large enterprises.

UPnP references a number of IETF standards such as DHCP, HTTP
Multicast UDP (HTTPMU), and Auto IP. It also uses W3C protocols such as
XML and SOAP.

References

[1] Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, 1998.

[2] Handley, M., C. Perkins, and E. Whelan, “Session Announcement Protocol,” RFC 2974,
2000.

[3] Mills, D., “Network Time Protocol (Version 3): Specification, Implementation, and
Analysis,” RFC 1305, 1992.

[4] Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” RFC
3550, 2003.

[5] Schulzrinne, H., “RTP Profile for Audio and Video Conferences with Minimal Control,”
RFC 3550, 2003.

[6] Duric, A., and S. Anderson, “RTP Payload Format for iLBC Speech,” IETF Internet-
Draft, Work in Progress, March 2003.

[7] Rosenberg, J., and H. Schulzrinne, “An Offer/Answer Model with Session Description
Protocol (SDP),” RFC 3264, 2002.

[8] Johnston, A., and R. Sparks, “SDP Offer Answer Examples,” IETF Internet-Draft, Work
in Progress, June 2003.

[9] Kent, S., and R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401,
1998.

178 SIP: Understanding the Session Initiation Protocol

[10] Anttalainen, T., Introduction to Telecommunications Network Engineering, Norwood, MA,
Artech House, 1999.

[11] Schaphorst, R., Videoconferencing and Videotelephony: Technology and Standards, 2nd ed.,
Norwood, MA: Artech House, 1999.

[12] Sjoberg, J., et al., “Real-Time Transport Protocol Payload Format and File Storage Format
for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB)
Audio Codecs,” RFC 3267, June 2002.

[13] Vermuri, A., and J. Peterson, “Session Initiation Protocol for Telephones (SIP-T): Con-
text and Architectures,” RFC 3372, 2002.

[14] Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to
Session Initiation Protocol (SIP) Mapping,” RFC 3398, 2002.

[15] Elwell, J., et al., “Interworking between SIP and QSIG,” IETF Internet-Draft, Work in
Progress, April 2003.

[16] Johnston, A., et al., “Session Initiation Protocol PSTN Call Flows,” IETF Internet-Draft,
Work in Progress, April 2003.

[17] Zimmerer, E., et al., “MIME Media Types for ISUP and QSIG Objects,” RFC 3204,
December 2001.

[18] UPnP specifications are available at http://www.upnp.org.

[19] Steinfeld, E. F., “Devices That Play Together, Work Together,” EDN Magazine, Septem-
ber 2001, pp. 65–70.

Related Protocols 179

.

8
Comparison to H.323

This chapter compares SIP to another IP telephony signaling protocol: the ITU
recommendation H.323, entitled “Packet-Based Multimedia Communication.”
H.323 is introduced and explained using a simple call flow example. H.323 and
SIP are then compared.

8.1 Introduction to H.323

H.323 [1] is an umbrella recommendation that covers all aspects of multimedia
communication over packet networks. It is part of the H.32x series1 of protocols
that describes multimedia communication over ISDN, broadband (ATM),2

telephone (PSTN), and packet (IP) networks, as shown in Table 8.1. Originally
developed for video conferencing over a single LAN segment, the protocol has
been extended to cover the general problem of telephony over the Internet. The
first version was approved by the ITU in 1996 and was adopted by early IP
telephony networks because there were no other standards. Version 2 was
adopted in 1998 to fix some of the problems and limitations in version 1. Ver-
sion 3 was adopted in 1999 and includes modifications and extensions to enable

181

1. In this chapter, the use of an x instead of a digit does not imply that all digits (0–9) in the
range are included. In this case H.32x does not include H.325 to H.329, which have yet to
be defined.

2. In this context, broadband means transported over an asynchronous transfer mode network.
In anticipation of the universal deployment of ATM networks by carriers, the ITU developed
a suite of protocols to support conventional telephony over ATM networks. For example,
Q.2931 is the extension of Q.931 ISDN over ATM. Today, the term is used to mean high
bandwidth connections—faster than modem speeds.

communications over a larger network. Version 4 was adopted in 2000 with
some major changes to the protocol. Version 5 is currently under revision at the
ITU-T. Currently, most deployed systems use Version 2. H.323 has been
designed to be backward compatible, so, for example, a version 1 compliant end
point can communicate with a version 3 gatekeeper and a version 4 end point.

H.323 references a number of other ITU and IETF protocols to com-
pletely specify the environment. Each element of the network is defined and
standardized. Figure 8.1 shows the main elements: terminals, gatekeepers, gate-
ways, and multipoint control units (MCUs). Terminals, gateways, and MCUs
are network end-devices, often called end points. An end point originates and
terminates media streams that could be audio, video, or data, or a combination

182 SIP: Understanding the Session Initiation Protocol

Table 8.1
ITU H.32x Family of Standards

Protocol Title

H.320 Communication over ISDN networks

H.321 Communication over broadband ISDN (ATM) networks

H.322 Communication over LANs with guaranteed QoS

H.323 Communication over LANs with nonguaranteed QoS (IP)

H.324 Communication over PSTN (V.34 modems)

PSTN

H.323
network

Telephone

Terminal

Terminal

Gateway

Gatekeeper MCU

Figure 8.1 Elements of an H.323 network.

of all three. At a minimum, all H.323 end points must support basic G.711
PCM audio transmission. Support of video and data are optional. An H.323
gatekeeper is a server that controls a zone, which is the smallest administrative
domain in H.323. If a gatekeeper is present, all end points within that zone
must register with and defer to the gatekeeper on authorization decisions to
place or accept a call. A gatekeeper also provides services to terminals in a zone,
such as gateway location, address translation, bandwidth management, feature
implementation, and registration. A gatekeeper is not a required element in an
H.323 network, but a terminal’s capabilities without one are severely limited. A
gateway is another optional element in an H.323 network. It interfaces the
H.323 network with another protocol network, such as the PSTN. An MCU
provides conferencing services for terminals.

Some of the protocols referenced by H.323 are shown in Table 8.2. H.225
is used for registration, admission, and status (RAS), which is used for terminal-
to-gatekeeper communication. A modified subset of Q.931 is used for call setup
signaling between terminals. (The H.323 usage of Q.931 is not compatible with
Q.931 as used in an ISDN network.) H.245 is used for control signaling or
media negotiation and capability exchange between terminals. T.120 is used for
multipoint graphic communications. H.323 audio codecs are specified in the
ITU G.7xx series. Video codecs are specified in the H.26x series. H.323 also ref-
erences two IETF protocols, RTP and RTCP, for the media transport which are
described in Sections 7.2 and 7.3. The H.235 recommendation covers privacy
and encryption, while H.450 covers supplementary services such as those com-
monly found in the PSTN (e.g., call forwarding, call hold, and call park).

Comparison to H.323 183

Table 8.2
Protocols Referenced by H.323

Protocol Description

H.225 Registration, admission, and status (RAS) and call signaling

H.245 Control signaling (media control)

T.120 Multipoint graphic communication

G.7xx Audio codecs

H.26x Video codecs

RTP Real-time transport protocol (RFC 3550)

RTCP RTP control protocol (RFC 3550)

H.235 Privacy and encryption

H.450 Supplementary services

8.2 Example of H.323

Figure 8.2 shows a basic call flow involving two terminals and a gatekeeper. The
flow shows the interaction between the various elements and the various proto-
cols used to establish the session. The call begins with an exchange of H.225.0
RAS messages between the calling terminal and the gatekeeper. All RAS messages
are transported using UDP. It is assumed that both terminals have already regis-
tered with the gatekeeper using the Registration Request (RRQ) message. The
calling terminal sends an Admission Request (ARQ) message to the gatekeeper
containing the address of the called terminal and the type of session desired. The
address could be specified as an H.323 alias, E.164 telephone number, e-mail
address, or a URL. The gatekeeper knows about all calls in the zone it controls; it
decides if the user is authorized to make a call and if there is enough bandwidth
or other resources available. In this example, there is enough bandwidth, so the

184 SIP: Understanding the Session Initiation Protocol

ACF

TerminalCapabilitySet

RTP media session

ARQ

Calling H.323
terminal

Gatekeeper Called H.323
Terminal

TerminalCapabilitySetAck

Call Proceeding

ACF
ARQ

Setup

Alerting
Connect

TerminalCapabilitySet

TerminalCapabilitySetAck

OpenLogicalChannel

OpenLogicalChannelAck

OpenLogicalChannel

OpenLogicalChannelAck

MasterSlaveDetermination

MasterSlaveDeterminationAck

Figure 8.2 H.323 call flow example.

gatekeeper allows the call to continue by sending an Admission Confirmation
(ACF) message. The ACF indicates to the calling terminal that end-point mes-
sage routing, or the direct exchange of H.225 call signaling messages with the
called terminal, is to be used. Alternatively, the gatekeeper can require gatekeeper
routed signaling, where the gatekeeper acts like a proxy and forwards all signaling
messages between the terminals. The gatekeeper has also translated the destina-
tion in the ARQ into a transport address that was returned in the ACF.

The calling terminal is now able to open a TCP connection to the called
terminal using the transport address returned in the ACF and send a Q.931
Setup message to the called terminal. The called terminal responds with a
Call Proceeding response to the calling terminal. The called terminal
must also get permission from the gatekeeper before it accepts the call, so an
ARQ is sent to the gatekeeper. When it receives the ACF from the gatekeeper,
the called terminal begins alerting the user, and sends an Alerting message
to the calling terminal. When the user at the calling terminal answers, a Con-
nect message is sent. There is no acknowledgment of messages because all
these messages are sent using TCP, which provides reliable transport. These call
signaling messages used in H.323 are a subset of the Q.931 recommendation
that covers ISDN D-channel signaling.

The next stage is the connection negotiation, which is handled by H.245
control signaling messages. A second TCP connection between the two terminals
is opened by the calling terminal using the port number selected by the called ter-
minal and returned in the Connect message. The TerminalCapabili-
tySet message sent contains the media capabilities of the calling terminal,
listing supported codecs. It is acknowledged with a TerminalCapability-
SetAck response from the called terminal. The called terminal also sends a
TerminalCapabilitySet message containing its media capabilities,
which receives a TerminalCapabilitySetAck response.

The H.323 protocol requires that one terminal be selected as the master
with the other as the slave. This is accomplished using MasterSlaveDe-
termination messages exchanged between the terminals. The messages con-
tain the terminal type of the terminal and a random number. Terminal types are
hierarchical, which determines the master. If the terminal type is the same, the
random number determines the master. The message is acknowledged with a
MasterSlaveDeterminationAck message.

The final phase of the call setup is the opening of two logical channels
between the terminals. These channels are used to set up and control the media
channels. The H.245 OpenLogicalChannel message sent in the H.245
control signaling connection contains the desired media type, including the
codec that has been determined from the exchange of capabilities. It also con-
tains a pair of addresses for the RTP and RTCP streams. The message is
acknowledged with an OpenLogicalChannelAck message.

Comparison to H.323 185

Now, the terminals begin sending RTP media packets and also RTCP
control packets using the IP addresses and port numbers exchanged in the
OpenLogicalChannel messages.

Figure 8.3 shows a call tear-down sequence, which either terminal may
initiate. In this example, the called terminal sends an EndSessionCommand
message in the H.245 control signaling channel. The other terminal responds
with an EndSessionCommand message in the H.245 control signaling
channel, which can now be closed. The called terminal then sends a Disengage
Request (DRQ) message and receives a Disengage Confirmation (DCF) message
from the gatekeeper. This way, the gatekeeper knows that the resources used in
the call have now been freed up. A Call Detail Record (CDR) or other billing
record can be written and stored by the gatekeeper. Next, a Q.931 Release
Complete message is sent in the call signaling connection, which can then be
closed. Finally, the other terminal sends a DRQ to the gatekeeper over UDP and
receives a DCF response.

The call flows in Figures 8.2 and 8.3 show direct end-point signaling,
where the calling terminal opens TCP connections to the called terminal and

186 SIP: Understanding the Session Initiation Protocol

DCF

EndSessionCommand

Media Session

DRQ

Calling
H.323

Terminal
Gatekeeper

Called
H.323

Terminal

EndSessionCommand

RLC

DCF

DRQ

Figure 8.3 H.323 call tear-down sequence.

exchanges H.225.0 and H.245 messages. In the ACF response to the calling ter-
minal, the gatekeeper can require gatekeeper routed signaling, where the call sig-
naling and control signaling channels are opened with the gatekeeper, who then
opens the channels with the called terminal. In this way, the gatekeeper stays in
the signaling path and proxies all signaling messages. This allows the gatekeeper
to know the exact call state and be able to invoke features.

8.3 Versions

There are four versions of H.323, which reflect the evolution of this protocol
with a fifth underway in 2003. H.323 is fully backward compatible, so gate-
keepers and terminals must support flows and mechanisms defined in all previ-
ous versions. Version 1 was approved in 1996 and was titled “Visual Telephone
Systems over Networks with Non-Guaranteed Quality of Service.” The example
call flow in Figure 8.2 shows the version 1 call setup. Not unexpectedly given
the number of messages and TCP connections, this process was very slow, some-
times taking as many as seven round trips to establish a call. While this may have
been acceptable for a protocol designed for video conferencing over a single
LAN segment, it is not acceptable for an IP telephony network designed to pro-
vide a similar level of service to the PSTN.

Version 2 included alternative call setup schemes to speed up the call
setup. Two schemes were added to H.323, called FastStart and H.245 tunnel-
ing. FastStart is shown in Figure 8.4, in which the Setup message contains the
TerminalCapabilitySet information. This saves multiple messages and
round trips. In H.245 tunneling, a separate H.245 control channel is not
opened. Instead, H.245 messages are encapsulated in Q.931 messages in the call
signaling channel. This saves overhead in opening and closing a second TCP
connection.

Versions 3 and 4 added more features to H.323 and additional annexes.
Of interest to Internet devices is the support for H.323 URLs [2], full UDP sup-
port instead of TCP, and also the standardization of the use of DNS by H.323
in Annex O. Version 5 is currently being worked on by the ITU-T and is sched-
uled to be finished in late 2003.

8.4 Comparison

SIP and H.323 were developed for different purposes by standards bodies with
very different requirements. H.323 was developed by the ITU. Its design and
implementation reflects its PSTN background and heritage, utilizing binary
encoding and reusing parts of ISDN signaling. SIP, on the other hand, was

Comparison to H.323 187

developed by the IETF with an Internet perspective, designed to be scalable over
the Internet and work in an interdomain way utilizing the full set of Internet
utilities and functions.

While H.323 was deployed in early VoIP and IP videoconferencing appli-
cations, SIP with its Internet architecture is gaining momentum and is emerging
as the future signaling standard for IP communications, as IP telephony is some-
times called.

8.4.1 Fundamental Differences

The first key difference is in the encoding scheme used by the protocol. SIP is a
text-based protocol like HTTP and SMTP, while H.323 uses binary-encoded
ASN.1 messages. The binary encoding of H.323 may result in smaller message
sizes but it adds complexity to implementations. A text-based protocol such as
SIP can be easily scripted and requires no tools to monitor and interpret mes-
sages—a simple packet dump from a LAN provides the ASCII-encoded SIP
messages, which can be easily logged, examined, and inspected. Simple applica-
tions can be written to test and simulate SIP traffic. The text-based encoding of

188 SIP: Understanding the Session Initiation Protocol

ACF

OpenLogicalChannel

RTP media session

ARQ

Calling
H.323

Terminal

Gatekeeper Called
H.323

Terminal

OpenLogicalChannelAck

Call Proceeding

ACF
ARQ

Setup (fastStart)

Alerting

Connect (fastStart)

OpenLogicalChannel

OpenLogicalChannelAck

Figure 8.4 FastStart Connections with H.323.

SIP has made it seem more friendly to Internet and Web developers who have
embraced it in developing various applications.

Another important difference is that while H.323 is exclusively a signaling
protocol, SIP has both presence and instant message capability. The combina-
tion of presence and signaling in one protocol using a common universal
addressing scheme, URIs, will be a very powerful driver in new applications in
the future. This makes SIP an extremely powerful “rendezvous” protocol that
allows a user with multiple mobile end points to locate and communicate with
another user with multiple capabilities. It is for this reason that the most exciting
and innovative services are being developed with SIP rather than H.323.

Another important difference is in key vendor support and momentum.
SIP has been adopted by some key players in both the PC and telecommunica-
tions industries. It is widely regarded in the industry as the signaling protocol for
session establishment over IP. While it may not immediately replace many
established H.323 networks used for basic services such as simple phone calls, it
is being adopted or investigated by all major players in the industry, even those
who currently have a vested interest in legacy H.323 systems.

SIP has also been adopted by mobile operators as the call signaling and
instant message protocol for their third generation networks currently under
development. This offers the promise of millions of SIP-enabled wireless devices
in the next few years. SIP is also being coupled with 802.11 wireless networks
for another set of mobile services.

Another important difference is the level of security in the protocol. SIP as
defined in RFC 3261 has very robust security mechanisms to provide encryp-
tion, authentication using certificates, and end-to-end message integrity even in
the presence of untrusted intermediary servers. SIP did not need to develop
these security features; instead, since it is an Internet protocol, it was able to
inherit the rich set of Internet security protocols such as TLS and S/MIME in
very straightforward way. For example, the same security mechanisms that make
it safe to enter credit card information on a secure Web page form is what allows
SIP to provide secure signaling between servers.

While it is not directly related to SIP, the media capability/negotiation
capabilities of SDP are quite different to that provided by H.245 for H.323.
H.245 is often criticized for its complexity, but SDP is often correctly criticized
for its lack of expressiveness. The multicast legacy of SDP has not provided SIP
with a good basis for media negotiation. As a result, some codec/media negotia-
tion capabilities interwork poorly between implementations due to these prob-
lems. Much industry work has gone into fixing the problem, but a replacement
for SDP is not yet within sight yet.

Over the years that they have coexisted, SIP and H.323 have actually
become more similar in some functionality. This is natural in that each protocol
seems to have adopted some of the useful features of each. For example,

Comparison to H.323 189

while SIP had DNS and URL support right from the start, H.323 began with
none but has added some support for them. Another similarity relates to confer-
encing. While H.323 had the concept of an MCU right from the start, SIP ini-
tially had no defined conferencing mechanisms. However, work is currently
underway to define the SIP signaling equivalent, called a “focus” as described in
Section 11.1.2. Additional work is underway in the IETF to standardize the
media mixing functions of an MCU.

In other ways, the protocols started out at opposite ends of the spectrum
and have moved towards each other. For example, SIP was initially deployed
exclusively with UDP, but TCP support has grown and become more impor-
tant over the years. H.323 on the other hand initially could not be used over
UDP exclusively, but now has been extended to be used over UDP. Another
example relates to the number of messages used to set up sessions. H.323 started
with a large number of messages, then reduced that number as it evolved using
FastStart. Some SIP applications that use extensions such as UPDATE and
PRACK to perform precondition negotiation prior to session establishment now
use many more messages to set up a session than the three in the original specifi-
cation. (However, this complexity in these SIP preconditions applications sug-
gests that they, like H.323, will never achieve wide deployment, and will instead
be displaced by the simpler SIP model.) Finally, H.323 started with a larger
specification than SIP [3], but as SIP has grown and added functionality, it now
wins the “paperweight” war in terms of more pages of specification text. As a
result, most SIP versus H.323 comparisons are badly out of date due to the revi-
sions in each protocol.

8.4.2 Strengths of Each Protocol

H.323 has carved out two niche areas in current deployed systems—it is widely
deployed in small PSTN replacement networks for handling simple phone calls,
and it dominates the IP videoconferencing market. Simple PSTN replacement
networks that only originate and terminate phone calls without even basic fea-
tures do not use most of the key advantages of SIP. As a result, they have little
incentive to upgrade to SIP until the widespread adoption of SIP eventually
makes SIP gateway ports much cheaper than H.323 ports. However, since SIP is
earlier in its development cycle than H.323, this is not likely to happen for a
number of years. New implementations of these types of systems will likely
deploy SIP from the start, seeking to “future proof” the investment, but there is
little incentive for deployed systems to upgrade. Also, the availability of com-
mercial SIP to H.323 signaling gateways allows both networks to work together
and complete calls [4, 5].

The videoconferencing market is dominated by PSTN ISDN devices,
which have been deployed since 1990. Since H.323 shares the same heritage, it

190 SIP: Understanding the Session Initiation Protocol

was designed to easily interwork with these existing systems. SIP was not
designed to interwork with these systems and was also not designed specifically
with video in mind. In fact, some key signaling components needed to do video
conferencing are still not fully standardized in the IETF, although there is active
work to finalize these standards. As a result, a fully functional, standards-based
SIP videoconferencing system is not currently available (but will be soon). How-
ever, the deployment of videoconferencing systems has been disappointing com-
pared to many predictions of this useful technology. This largely has to do with
bandwidth and cost factors. Now that bandwidth and camera costs are falling,
SIP is well positioned to handle much simpler videoconferencing systems
enabled by PCs with cheap Webcams. It is likely that SIP will play a bigger role
in these future software-based video systems than the current dedicated hard-
ware videoconferencing systems. In this way, SIP may in the future be a major
player in the videoconferencing market but without ever displacing the current
installed base.

The major strength of SIP is that it is still relatively simple—it is an Inter-
net protocol based on the Internet’s architecture. While complex architectures
have been developed using a multitude of SIP extensions, it is likely that these
systems will be the exception rather than the rule. Most SIP end points will only
need to support the base SIP specification and perhaps a few call control exten-
sions to provide a wide variety of useful and innovative services.

8.5 Conclusion

This chapter has introduced H.323 and discussed and compared it to SIP. While
there are some similarities between the protocols in call setup, and some
niche markets that H.323 currently dominates, SIP, with its text encoding,
presence and instant message extensions, and Internet architecture, is poised to
be the signaling and “rendezvous” protocol of choice for Internet devices in the
future.

References

[1] “Packet-Based Multimedia Communications Systems,” ITU Recommendation H.323,
2000.

[2] Levin, O., “H.323 Uniform Resource Locator (URL) Scheme Registration,” RFC 3508,
2003.

[3] Rosenberg, J., and H. Schulzrinne, “A Comparison of SIP and H.323 for Internet Teleph-
ony,” Network and Operating System Support for Digital Audio and Video (NOSSDAV),
Cambridge, England, July 1998.

Comparison to H.323 191

[4] Schulzrinne, H., and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking
Requirements,” IETF Internet-Draft, Work in Progress, 2003.

[5] Agrawl, C., “Session Initiation Protocol (SIP) – H.323 Interworking,” IETF Internet-
Draft, Work in Progress, 2000.

192 SIP: Understanding the Session Initiation Protocol

9
Wireless and 3GPP

The mobility features of SIP have been discussed in earlier chapters. In this
chapter, those aspects will be explored further. In 2000 the Third Generation
Partnership Project [1] adopted SIP as their call signaling protocol starting with
Intelligent Multimedia core Subsystem (IMS) Release 5. Since then, a number
of extensions and usage documents have been authored describing their planned
use of SIP; these will be discussed in this chapter. The future direction of wire-
less SIP will be discussed in the final section of this chapter.

9.1 IP Mobility

There are a number of different types of mobility that will be discussed in this
chapter, which include terminal mobility, personal mobility, and service mobil-
ity [2]. Terminal mobility is the ability of an end device to maintain its connec-
tion to the Internet as it moves around and possibly changes its point of
connection. Personal mobility is the ability to have a constant address (identi-
fier) across a number of devices. Finally, service mobility is the ability of a user
to keep the same services when mobile.

Terminal mobility can be addressed by Mobile IP [3], which has been
standardized in the IETF. It allows a terminal to keep the same IP address when
roaming as it does in its home network. While roaming, the terminal is reach-
able by a “care of” address, which is registered in the home network. Packets des-
tined for the roaming terminal are received in the home network, then tunneled
to the terminal at the “care of” address, as shown in Figure 9.1. Mobile IP has
the advantage of hiding the mobile nature of the terminal from layer 3 protocols
and above. These protocols can then be used without any modification.

193

For example, a TCP connection can be maintained since the terminal
appears to have a constant IP address. However, Mobile IP has the disadvantage
that incoming packets are not routed directly, and as a result, most efficiently.
This results in increased packet latency. While this is not a problem for
nonreal-time services such as Web browsing or e-mail, real-time media transport
has critical requirements on packet latency. A solution that has been proposed
[2] uses the fact that a protocol such as SIP already has mobility support built in.
In addition, SIP is capable of handling some of the terminal mobility aspects at
the application layer. This can result in more efficient RTP packet routing and
better efficiency (as the additional overhead of IP packet encapsulation required
by Mobile IP are avoided).

The result is that mobile SIP devices are utilizing two different architec-
tures. One is based on the use of Mobile IP and the other utilizes the built-in
mobility support in SIP. The next sections will discuss these two approaches. As
discussed in the next section, SIP is ideally suited to provide both personal and
service mobility.

9.2 SIP Mobility

Personal mobility is the ability to have a constant identifier across a number of
devices. A sip or sips URI has exactly this property and is fundamentally
supported by SIP. SIP can also support service mobility, the ability of a user to
keep the same services when mobile, although some conventions and extensions
have been proposed that provide this in certain architectures.

194 SIP: Understanding the Session Initiation Protocol

Roaming terminal

Mobile IP
router

Home terminal

Direct routed packets

Indirect routed packetsPackets “tunneled”
To “care-of” address

Figure 9.1 Triangular routing of IP packets in Mobile IP.

Basic personal mobility is supported by SIP using the REGISTER
method, which allows a mobile device to change its IP address and point of con-
nection to the Internet and still be able to receive incoming calls. As discussed in
Chapters 2 and 4, registration in SIP temporarily binds a user’s AOR URI with
a Contact URI of a particular device. As a device’s IP address changes, regis-
tration allows this information to be automatically updated in the SIP network.
An end device can also move between service providers using multiple layers of
registrations, in which a registration is actually performed with a Contact as
an address of record with another service provider. For example, consider the
user agent in Figure 9.2, which has temporarily acquired a new SIP URI with a
new service provider. (The reasons for doing so could include security, local pol-
icy, NAT/firewall traversal.) The user agent then performs a double registration
as shown in Figure 9.2. The first registration is with the new service provider,
which binds the Contact URI of the device with the new service provider’s
AOR URI. The second REGISTER request is routed back to the original serv-
ice provider and provides the new service provider’s AOR as the Contact
URI. As shown later in the call flow, when a request comes in to the original
service provider’s network, the INVITE is redirected to the new service pro-
vider who then routes the call to the user.

For the first registration message containing the device URI would be:

REGISTER sip:registrar.capetown.org SIP/2.0
Via: SIP/2.0/TLS 128.5.2.1:5060;branch=z9hG4bK382112
Max-Forwards: 70
To: Nathaniel Bowditch <sip:bowditch321@capetown.org>
From: Nathaniel Bowditch <sip:bowditch321@capetown.org>
;tag=887865
Call-ID: 54-34-19-87-34-ar-gr
CSeq: 3 REGISTER
Contact: <sip:nat@128.5.2.1>
Content-Length: 0

and the second registration message with the roaming URI would be:

REGISTER sip:registrar.salem.ma.us SIP/2.0
Via: SIP/2.0/TLS 128.5.2.1:5060;branch=z9hG4bK1834
Max-Forwards: 70
To: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>
From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>;tag=344231
Call-ID: 152-45-N-32-23-W3-45-43-12
CSeq: 6421 REGISTER
Contact: <sip:bowditch321@capetown.org>
Content-Length: 0

The first INVITE that is depicted in Figure 9.2 would be sent to
sip:n.bowditch@salem.ma.us; the second INVITE would be sent to
sip:bowditch321@capetown.org; and the third INVITE would be

Wireless and 3GPP 195

sent to sip:nat@128.5.2.1, which reaches Bowditch and allows the ses-
sion to be established. Both registrations would need to be periodically refreshed.

A disadvantage of this approach that SIP does not currently have a means
to obtain a local URI. This would have to be done using a non-SIP method such
as a Web page sign-up, which would be coupled with the proper authentication,
authorization, and accounting mechanisms.

An optimization of this is for the local registrar to forward the registration
information on the roaming user agent back to the home registrar. This has
been proposed in the IETF [4] but has yet to be adopted or standardized. No

196 SIP: Understanding the Session Initiation Protocol

Bowditch
Visited
registrar/
proxy

REGISTER

302 Moved

INVITE

200 OK

Home
registrar/
proxy

Laplace

200 OK

INVITE

200 OK

REGISTER

200 OK

ACK

INVITE

ACK

Media session

DHCP Request

DHCP ACK

Figure 9.2 Precall mobility using SIP REGISTER.

changes to SIP messages are required, just a convention adopted by registrars to
recognize a roaming registration and take the appropriate action. It is possible
that these conventions may become standardized if the authentication and
accounting systems needed to properly process such registrations are standard-
ized in the future.

During a session, a mobile device may also change IP address as it switches
between one wireless network and another (the Mobile IP protocol is not
assumed—it will be discussed in the next section). Basic SIP supports this sce-
nario as well, since a re-INVITE in a dialog can be used to update the Con-
tact URI and change media information in the SDP. This is shown in the call
flow of Figure 9.3. Here, Bowditch detects a new wireless network, uses DHCP
to acquire a new IP address, then performs a re-INVITE to make the signaling
and media flow to the new IP address. If the user agent momentarily is able to

Wireless and 3GPP 197

Bowditch
Visited
registrar

INVITE

200 OK

REGISTER

200 OK

New media session

DHCP request

DHCP ACK

ACK

Media session

Laplace

Figure 9.3 Midcall mobility using a re-INVITE.

receive media from both networks, the interruption can be almost negligible. If
this is not the case, a few RTP packets may be lost as the media catches up with
the signaling, resulting in a slight interruption to the call. The re-INVITE
would appear as follows:

INVITE sip:laplace@client.mathematica.org SIP/2.0
Via: SIP/2.0/UDP 65.32.21.2:5060;branch=z9hG4bK34213
Max-Forwards: 70
To: Marquis de Laplace <sip:laplace@mathematica.org>;tag=90210
From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>;tag=4552345
Call-ID: 413830e4leoi34ed4223123343ed21
CSeq: 5 INVITE
Contact: <sip:nat@65.43.21.2>
Content-Type: application/sdp
Content-Length: 143

v=0
o=bowditch 2590844326 2590944533 IN IP4 65.32.21.2
s=Bearing
c=IN IP4 65.32.21.2
t=0 0
m=audio 32852 RTP/AVP 0
a=rtpmap:0 PCMU/8000

which contains Bowditch’s new IP address in the Via, Contact header
fields and SDP media information.

Note that both of the mobility scenarios in Figures 9.2 and 9.3 do not
require cooperation between the two wireless networks. As such, this is a useful
scenario in which a user agent can hand off a call between, for example, a com-
mercial wireless network and a home or office 802.11 wireless network.

For midcall mobility in which the actual route set (set of SIP proxies that
the SIP messages must traverse) must change, a re-INVITE cannot be used.
For example, if a proxy is necessary for NAT/firewall traversal, then more
than just the Contact URI must be changed—a new dialog must be created.
The solution to this is to send a new INVITE (which creates a new dialog and
a new route set including the new set of proxies) with a Replaces header
(Section 6.2.23), which identifies the existing session. The call flow is shown in
Figure 9.4. It is similar to that in Figure 9.3 except that a BYE is automatically
generated to terminate the existing dialog when the INVITE with the
Replaces is accepted. In this scenario, the existing dialog between Bowditch
and Laplace includes the old visited proxy server (this proxy Record-Routed
during the initial INVITE). The new dialog using the new wireless network
requires the inclusion of the new visited proxy server. As a result, an INVITE
with Replaces is sent by Bowditch, which creates a new dialog that includes
the new visited proxy server (which Record-Routes) but not the old visited
proxy server. When Laplace accepts the INVITE, a BYE is automatically sent to
terminate the old dialog that routes through the old visited proxy server that is

198 SIP: Understanding the Session Initiation Protocol

now no longer involved in the session. The resulting media session is established
using Bowditch’s new IP address from the SDP in the INVITE.

Services in SIP can be provided in either proxies or in user agents. If the
service is resident in the user agent, then there are no service mobility problems
as the user moves around. However, combining service mobility and personal
mobility can be challenging unless each of the user’s devices are identically con-
figured with the same services. Also, end-point resident services are only avail-
able when the end point is connected to the Internet. A terminating service such
as a call forwarding service implemented in an end point will fail if the end point
has temporarily lost its Internet connection. For this and other reasons, some
services are implemented in the network using SIP proxy servers. For these

Wireless and 3GPP 199

New visited
registrar/
proxy

INVITE (Replaces)

200 OK

200 OK

Old visited
registrar/
proxy

200 OK

BYE

200 OK

REGISTER

200 OK

BYE

New media session

DHCP Request

DHCP ACK

Media session

INVITE (Replaces)

ACKACK

Bowditch Laplace

Figure 9.4 Midcall mobility using INVITE with Replaces.

services, service mobility for a user agent means that the same set of proxies are
used to route incoming and outgoing requests when mobile.

Due to the nature of the Internet, in general, there is no reason why a user
agent cannot use the same proxies when connected to the Internet at a different
point. That is, a user agent that is normally in the United States that is config-
ured to use a set of proxies in the United States can still use those proxies when
roaming in Europe, for example. Perhaps the SIP hops will have a slightly higher
latency due to more router hops and a call setup request may take a second or
two longer to complete. However, this has no impact on the quality of the
media session as the media always flows directly between the two user agents and
does not traverse the SIP proxy servers. As a result, SIP can easily support service
mobility over the Internet.

However, there are some cases in which this service mobility approach will
not work. For example, if a local proxy server must be traversed in order to
facilitate firewall or NAT traversal, or for some other security reason, then a user
agent may have to use a different first hop proxy when roaming. In this case,
service mobility is still possible provided that:

1. The roaming user agent is able to discover the necessary local proxy.

2. Both incoming and outgoing requests are routed through the home
proxy in addition to any local proxies.

The first requirement is met by the DHCP extension to SIP [5], which
allows a user agent to learn of a local proxy server at the same time it learns its IP
address and other IP configuration information. The second requirement is met
using a “preloaded” Route header field in requests. Normally a Route header
is inserted in a request when a proxy requests it using a Record-Route
header field. However, it is possible for a configured user agent to include a
Route header field. If the Route header contains the URI of the home proxy,
the request will be routed to the home proxy after the local proxies have been
traversed, meeting the requirement for outgoing requests. For incoming
requests, the double registration technique will result in both the home and local
proxies being traversed by incoming requests. This will result in a call flow
similar to Figure 9.2 but with the home proxy server forwarding the INVITE
instead of redirecting.

These SIP mobility capabilities are well suited to use over a wireless net-
work such as 802.11 in a home, office, or public space. As roaming agreements
allow such wireless “hotspots” to be linked up in metropolitan areas, this will
provide a wireless service. However, commercial wireless providers plan a spe-
cific purpose wireless telephony network using SIP. For some of their business
and service requirements, some SIP extensions have been developed, which will
be discussed in this chapter.

200 SIP: Understanding the Session Initiation Protocol

Wireless SIP clients may also make use of voice codecs such as the
iLBC [6], which is highly tolerant to packet loss, which may be experienced in a
heavily loaded 802.11 network.

9.3 3GPP Architecture and SIP

The 3GPP architecture uses SIP in the IP Multimedia Core Network Subsystem
(IMS). A simplified architecture is shown in Figure 9.5. The elements of the
IMS architecture are listed in Table 9.1. The specification of SIP in 3GPP is
described in 3GPP TS 24.229 and in [7].

Wireless and 3GPP 201

Table 9.1
IMS Elements

Abbreviation Name

P-CSCF Proxy – Call Session Control Function

I-CSCF Interrogating – Call Session Control Function

S-CSCF Serving – Call Session Control Function

UE User Equipment

MGCF Media Gateway Control Function

MGW Media Gateway

AS Application Server

MRFC Media Resource Function Controller

BGCF Breakout Gateway Control Function

HSS Home Subscriber Server

User equipment
(SIP UA)

Proxy-CSCF
visited network
(local SIP proxy)

Interrogating-CSCF
home network
(home SIP proxy)

Serving-CSCF
home network
(home services
SIP proxy)

Figure 9.5 3GPP IMS architecture.

The 3GPP architecture relies on Mobile IP instead of some of the mobility
aspects of SIP described in the previous section. The reasons for doing so are pri-
marily business related rather then technical in nature.

Another requirement of mobility systems is a keep alive signal, which
allows end points and proxies to know that a user agent still has network con-
nectivity. On an end point to end point basis, this can be done using RTCP (see
Section 7.2) reports sent periodically, even when the media is on hold or silence
suppression is taking place. However, proxies do not have access to these direct
end-to-end reports. Instead, the Session Timer extension [8] and re-INVITEs
can be used for this purpose.

CSCF are SIP proxies that also sometimes behave as a B2BUA under cer-
tain circumstances. For example, if a P-CSCF looses the radio link to the UE
(user equipment) that contains the SIP UA, it can send a BYE on behalf of the
UE to tear down the session. The motivation for doing this is for sessions that
have a per-minute billing charge, which the out-of-contact UE would otherwise
have to pay for but not have the ability to disconnect. To save bandwidth on
the wireless connection, a P-CSCF removes Route, Record-Route,
Path, Via, Service-Route and other header fields and reinserts them
in the opposite direction. To prevent high bandwidth codecs from being used
by a UE, a P-CSCF may edit the list of codecs in an SDP offer or answer, pre-
venting the codec from being used. A P-CSCF may change the To and From
headers to provide privacy, which is a B2BUA function.

The Proxy CSCF provides emergency service, triggers for local services,
and does telephone number normalization for the rest of the network. The
P-CSCF is used as the default outbound proxy server for a UE outside its home
network. The Interrogating CSCF queries the HSS to determine the proper
Service CSCF. The I-CSCF also can do hiding of the S-CSCF network by
removing or encrypting Via header fields. The Serving CSCF provides the
services for the subscriber. It identifies the user’s service profile and privileges.

The 3GPP plans to exclusively use IPv6 addresses. This is due to the
number of 3GPP subscribers envisioned and the fact that with Mobile IP, each
device may use more than one IP address at a time. SIP RFC 3261 includes full
support for IPv6 addresses, and an extension to SDP [9] adds IPv6 support to
SDP.

The 3GPP also uses signaling compression [10] to co mpress SIP messages
transmitted over a wireless link. This is primarily done to minimize latency
rather than bandwidth savings. The use of signaling compression with SIP is
described in [11], which defines a parameter comp=sigcomp that can be used
in Via header fields and as a URI parameter that can be used, for example, in a
Contact header field.

The 3GPP uses the adaptive multirate (AMR) [12] codec for the audio
encoding.

202 SIP: Understanding the Session Initiation Protocol

9.4 3GPP Header Fields

Some SIP header fields have been developed based on 3GPP requirements
and are discussed in the next sections. They are listed here instead of the
main listing of SIP header fields in Chapter 6 since their use is not well stan-
dardized outside the 3GPP architecture. In the future, however, their use
may be standardized within the IETF and they may be used more widely.

9.4.1 Service-Route

The Service-Route header field [13] can be used in a 2xx response to a
REGISTER request. It can be used by a registrar server to provide to the regis-
tering UA URIs to include in a preloaded Route header field in future
requests. The Service-Route URIs are only valid for the duration of the
registration and should be updated when the registration is refreshed.

An example is:

Service-Route: <sip:proxy23.service.provider.com;lr>

9.4.2 Path

The Path header field [14] is an optional header field in REGISTER
requests. It can be thought of as a Record-Route mechanism for
REGISTER requests, which establishes a route set that is valid for the dura-
tion of the registration. The Path header field may be inserted by a proxy,
which forwards a REGISTER request to a registrar server. The registrar copies
the Path header field into the 200 OK response to the REGISTER, which
then provides the route set information to the user agent that is registering. In
a mobile network, the Path header field can be used to discover and inform
the user agent of the proxies can be used to populate preloaded Route header
fields.

An example is:

Path: <sip:proxy2.another.provider.com;lr>

9.4.3 Other P-Headers

In addition, some headers that are specific to 3GPP have been defined [15].
These so-called P-headers (which stands for proprietary, preliminary, or pri-
vate) are defined in syntax only in an informational RFC per the SIP change
process [16]. Examples of the use of these P-headers are given in the call flow of
Section 10.7. They are listed in Table 9.2.

Wireless and 3GPP 203

9.5 Future of SIP and Wireless

It is clear that as IP networks become increasingly wireless, SIP will often be util-
ized over wireless networks. It is well suited for such use for the reasons dis-
cussed in this chapter: it has both built-in mobility support when Mobile IP is
not used, and can also be used with Mobile IP depending on the wireless net-
work design.

Additional work on authentication and roaming will likely be done with
SIP as the extensions developed for the 3GPP architecture are too specific to be
useful in most other networks.

References

[1] Information about the 3GPP project, including the latest technical specifications (TS),
can be found at http://www.3gpp.org.

[2] Schulzrinne, H., and E. Wedlund, “Application-Layer Mobility Using SIP,” Mobility
Mobile Computing and Communications Review (MC2R), Vol. 4, No. 3, July 2000.

[3] Perkins, C., “IP Mobility Support,” RFC 2002, 1996.

[4] Vakil, F., et al., “Supporting Mobility for Multimedia with SIP,” IETF Internet-Draft,
Work in Progress, December 2000.

[5] Schulzrinne, H., “Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for
Session Initiation Protocol (SIP) Servers,” RFC 3361, 2002.

[6] Duric, A., and S. Anderson, “RTP Payload Format for iLBC Speech,” IETF Internet-
Draft, Work in Progress, March 2003.

[7] 3GPP TS relating to SIP include TS 23.228 and TS 24.229. For the latest on these and
other SIP-related specifications, visit http://www.3gpp.org.

204 SIP: Understanding the Session Initiation Protocol

Table 9.2
3GPP P-Headers

Header Field Use

P-Associated-URI Lists other URIs associated with the user
P-Called-Party-ID Lists the URI of the called party
P-Visited-Network-ID Identifies the visited network
P-Access-Network-Info Identifies the access network
P-Charging-Function-Addresses Contains charging information
P-Charging-Vector More charging information

Source: [15].

[8] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),”
IETF Internet-Draft, Work in Progress, November 2002.

[9] Olson, S., G. Camarillo, and A. Roach, “Support for IPv6 in Session Description Protocol
(SDP),” RFC 3266, 2002.

[10] Price, R., et al., “Signaling Compression (SigComp),” RFC 3320, 2003.

[11] Camarillo, G., “Compressing the Session Initiation Protocol (SIP),” RFC 3486, February
2003.

[12] Sjoberg, J., et al., “Real-Time Transport Protocol Payload Format and File Storage Format
for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB)
Audio Codecs,” RFC 3267, June 2002.

[13] Willis, D., and B. Hoeneisen, “Session Initiation Protocol Extension Header Field for
Service Route Discovery During Registration,” IETF Internet-Draft, Work in Progress,
February 2003.

[14] Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field
for Registering Non-Adjacent Contacts,” RFC 3327, 2003.

[15] Garcia-Martin, M., E. Henrikson, and D. Mills, “Private Header (P-Header) Extensions
to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project
(3GPP),” RFC 3255, 2003

[16] Mankin, A., et al., “Change Process for the Session Initiation Protocol (SIP),” RFC 3427,
2002.

Wireless and 3GPP 205

.

10
Call Flow Examples

In this chapter, many of the concepts and details presented in the preceding
chapters will be illustrated with examples. Each example includes a call flow dia-
gram, a discussion of the example, followed by the message details. Each mes-
sage is labeled in the figure with a message number for easy reference. For
more examples of the protocol, refer to the SIP specification [1] and the SIP call
flows [2, 3] documents.

The purpose of the examples in this chapter is to illustrate aspects of the
SIP protocol. The interoperation scenarios with the PSTN and with an H.323
network are not intended to fully define the interworking or show a complete
parameter mapping between the protocols. Likewise, simplifications such as
minimal authentication and direct client-to-gateway messaging are used to make
the examples more clear.

10.1 SIP Call with Authentication, Proxies, and Record-Route

Figure 10.1 shows a basic SIP call between two SIP user agents involving two
proxy servers. Rather than perform a DNS query on the SIP URI of the called
party, the calling SIP phone sends the INVITE request to a proxy server for
address resolution. The proxy server requires authentication to perform this
service and replies with a 407 Proxy Authorization Required
response. Using the nonce from the challenge, the caller resends the INVITE
with the caller’s username and password credentials encrypted. The proxy
checks the credentials, and finding them to be correct, performs the DNS
lookup on the Request-URI. The INVITE is then forwarded to the proxy
server listed in the DNS SRV record that handles the language.org

207

domain. That proxy then looks up the Request-URI and locates a registration
for the called party. The INVITE is forwarded to the destination UAS, a
Record-Route header having been inserted to ensure that the proxy is pres-
ent in all future requests by either party. This is because a direct routed SIP mes-
sage to Ada would be blocked by the firewall.

The called party receives the INVITE request and sends 180 Ringing
and 200 OK responses, which are routed back to the caller using the Via
header chain from the initial INVITE. The ACK sent by the caller includes
a Route header built from the Record-Route header field in the 200 OK
response. This routing skips the first proxy but includes the firewall proxy.
The media session begins with the user agents exchanging RTP and RTCP
packets.

The call terminates when the called party, Ada, sends a BYE, which
includes a Route header generated from the Record-Route header field in
the INVITE. Note that the CSeq for the called user agent is initialized to

208 SIP: Understanding the Session Initiation Protocol

INVITE
sip:ada@language.org

407 M2

RTP media packets

ACK M3

Babbage
12.26.17.91

Proxy
Server

15.16.17.18
Ada

1.2.3.4
DNS

Server

Firewall
Proxy

10.14.92.1
Location
Server

INVITE
sip:ada@language.org SRV

language.org?

INVITE M8

10.14.92.1 M7

100 M5

ada?
M10

1.2.3.4
M11

INVITE M12

180 M13

200 M16

100 M9

180 M14

200 M17

180 M15

200 M18

ACK M19 ACK M20

BYE M21BYE M22

200 M23 200 M24

M1

M4
M6

Figure 10.1 SIP-to-SIP call with authentication, proxies, and record-route.

1000. The acknowledgment of the BYE with a 200 OK response causes both
sides to stop sending media packets.

M1 INVITE sip:ada@language.org SIP/2.0 ⇐Request-URI
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1 INVITE ⇐CSeq initialized to 1
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: Difference Engine 1
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91 ⇐Babbage’s IP address
m=audio 49170 RTP/AVP 0 ⇐Port number
a=rtpmap:0 PCMU/8000 ⇐Codec info

M2 SIP/2.0 407 Proxy Authentication Required
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=34q4356g
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1 INVITE
Proxy-Authenticate: Digest ⇐Authentication
realm="language.org", challenge
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", stale=FALSE, algorithm=MD5

M3 ACK sip:ada@language.org SIP/2.0
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=34q4356g
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1 ACK ⇐CSeq not incremented

Method set to ACK

M4 INVITE sip:ada@language.org SIP/2.0XX X ⇐INVITE resent with
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221 XXcredentials
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org

Call Flow Examples 209

Call-ID:f6-32-9a-34-91-e7@analyticalsoc.org ⇐Call-ID unchanged
CSeq: 2 INVITE ⇐CSeq incremented
Proxy-Authorization: Digest
username="Babbage", ⇐Credentials
realm="language.org",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", response="e56131d19580cd833064787ecc"
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: Difference Engine 1
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M5 SIP/2.0 100 Trying ⇐Credentials accepted
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE

M6 DNS Query: SRV language.org?

M7 DNS SRV Record: 10.14.92.1

M8 INVITE sip:ada@language.org SIP/2.0
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
Max-Forwards: 69
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: Difference Engine 1
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0

210 SIP: Understanding the Session Initiation Protocol

c=IN IP4 12.26.17.91
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M9 SIP/2.0 100 Trying ⇐Not Forwarded
Via:SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE

M10 Location Service Query: ada?

M11 Location Service Response: 1.2.3.4

M12 INVITE sip:ada@1.2.3.4 SIP/2.0
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
Max-Forwards: 68
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: Difference Engine 1
Record-Route: <sip:10.14.92.1;lr> ⇐Record-route added by proxy
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M13 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3 ⇐Tag added by
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org called party
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org

Call Flow Examples 211

Record-Route: <sip:10.14.92.1;lr>

M14 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>

M15 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE

M16 SIP/2.0 200 OK ⇐Call accepted
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>
Content-Type: application/sdp
Content-Length: 126

v=0
o=Ada 2890844536 2890844536 IN IP4 1.2.3.4
s=-
t=0 0
c=IN IP4 1.2.3.4 ⇐Ada’sIPaddress
m=audio 52310 RTP/AVP 0 ⇐Port number
a=rtpmap:0 PCMU/8000 ⇐Codec information

M17 SIP/2.0 200 OK
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>
Content-Type: application/sdp

212 SIP: Understanding the Session Initiation Protocol

Content-Length: 126

v=0
o=Ada 2890844536 2890844536 IN IP4 1.2.3.4
s=-
t=0 0
c=IN IP4 1.2.3.4
m=audio 52310 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M18 SIP/2.0 200 OK
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>
Content-Type: application/sdp
Content-Length: 126

v=0
o=Ada 2890844536 2890844536 IN IP4 1.2.3.4
s=-
t=0 0
c=IN IP4 1.2.3.4
m=audio 52310 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M19 ACK sip:ada@drawingroom.language.org SIP/2.0 ⇐Sent to ALG
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK789
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 ACK
Route: <sip:10.14.92.1;lr>

M20 ACK sip:ada@drawingroom.language.org SIP/2.0
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK789
Max-Forwards: 69
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 2 INVITE

M21 BYE sip:babbage@client.analyticalsoc.org SIP/2.0
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
Max-Forwards: 70

Call Flow Examples 213

From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1000 BYE ⇐CSeq initialized to 1000
Route: <sip:10.14.92.1;lr> ⇐From Record-Route header

M22 BYE sip:babbage@client.analyticalsoc.org SIP/2.0
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
Max-Forwards: 69
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1000 BYE

M23 SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.14.92.1:5060;branch= z9hG4bK24105.1
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1000 BYE

M24 SIP/2.0 200 OK
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org
CSeq: 1000 BYE

10.2 SIP Call with Stateless and Stateful Proxies with Called
Party Busy

Figure 10.2 shows an example of a SIP with a stateless proxy server and a stateful
proxy server. The call is not completed because called party is busy. The called
user agent initially sends a 180 Ringing response but then sends a 600
Busy Everywhere response containing a Retry-After header to indi-
cate that the call is being rejected. The stateful proxy returns a 100 Trying
response to the INVITE, and also acknowledges the 600 Busy Every-
where response with an ACK. The stateless proxy does not send a 100 Try-
ing and forwards the 600 Busy Everywhere and the ACK sent by the
caller user agent. Also note that the initial INVITE does not contain a message
body.

M1 INVITE sip:schockley@transistor.org SIP/2.0
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654

214 SIP: Understanding the Session Initiation Protocol

Max-Forwards: 70
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Contact: <sip:Shannon@discrete.sampling.org>
Date: Sat, 8 Jul 2000 08:23:00 GMT ⇐Optional date header
Content-Length: 0 ⇐Optional Content-Length header

M2 INVITE sip:schockley@transistor.org SIP/2.0 X ⇐Stateless proxy
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1 does not send 100
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 69
From: Shannon <sip:shannon@sampling.org>
To: Schockley <sip:shockley@transistor.com>
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Contact: <sip:Shannon@discrete.sampling.org>
Date: Sat, 8 Jul 2000 08:23:00 GMT
Content-Length: 0

M3 SIP/2.0 100 Trying ⇐Stateful proxy does send 100
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1XX X
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Content-Length: 0

Call Flow Examples 215

INVITE M1

Shannon

600 M11

600 M8

100 M3

Stateless proxy
server

Stateful proxy
server Schockley

I M2NVITE
I M4NVITE

180 M6

600 M10

180 M7
180 M5

ACK M9

ACK M12 ACK M13

sampling.org 9.8.7.6 10.9.8.7 67.3.2.1

Figure 10.2 SIP call example with stateless and stateful proxies with busy called party.

M4 INVITE sip:schockley@transistor.org SIP/2.0
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bkff7d.1
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 68
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Contact: <sip:Shannon@discrete.sampling.org>
Date: Sat, 8 Jul 2000 08:23:00 GMT
Content-Length: 0

M5 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bKff7d.1
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Contact: <sip:shockley@4.5.6.7>
Content-Length: 0

M6 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Contact: <sip:shockley@4.5.6.7>
Content-Length: 0

M7 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Contact: <sip:shockley@4.5.6.7>
Content-Length: 0

M8 SIP/2.0 600 Busy Everywhere ⇐Schockley is busy
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bKff7d.1
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org

216 SIP: Understanding the Session Initiation Protocol

CSeq: 1 INVITE
Retry-After: Sun, 9 Jul 2000 11:59:00 GMT
Content-Length: 0

M9 ACK sip:schockley@transistor.com SIP/2.0 ⇐Stateful proxy does ACK
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bK5f7e.1
Max-Forwards: 70
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 ACK
Content-Length: 0

M10 SIP/2.0 600 Busy Everywhere
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Retry-After: Sun, 9 Jul 2000 11:59:00 GMT
Content-Length: 0
Call Flow Examples 163

M11 SIP/2.0 600 Busy Everywhere ⇐Stateless proxy does not ACK response
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 INVITE
Retry-After: Sun, 9 Jul 2000 11:59:00 GMT
Content-Length: 0

M12 ACK sip:schockley@transistor.com SIP/2.0
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 70
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org
CSeq: 1 ACK
Content-Length: 0

M13 ACK sip:schockley@transistor.com SIP/2.0
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK5.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 69
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: adf8gasdd7fld@discrete.sampling.org

Call Flow Examples 217

CSeq: 1 ACK
Content-Length: 0

10.3 SIP to PSTN Call Through Gateway

In the example shown in Figure 10.3, the calling SIP phone places a telephone
call to the PSTN through a PSTN gateway. The SIP phone collects the dialed
digits and puts them into a SIP URI used in the Request-URI and the To
header. The caller may have dialed either the globalized phone number
1-202-555-1313 or they may have just dialed a local number 555-1313, and the
SIP phone added the assumed country code and area code to produce the
globalized URI. The SIP phone has been preconfigured with the IP address of

218 SIP: Understanding the Session Initiation Protocol

I sip:+12025551313@gw.carrier.comNVITE

PRACK M5

ACM M3

Ringing voltage

RTP packets

ANM M7

183 M4

Answer
200 M8

IAM M2

SIP
caller PSTN gateway

ISUP
telephone

switch
Telephone

+1-202-555-1313

M1

Ring tone

ACK M9

RTP packets PCM speech Analog speech

BYE M10

REL M11

RLC M13

200 M12

Hangup

50.60.70.80

200 M6

8.19.19.06

Figure 10.3 SIP to PSTN call through gateway.

the PSTN gateway, so it is able to send the INVITE directly to gw.car-
rier.com. The gateway initiates the call into the PSTN by selecting an SS7
ISUP trunk to the next telephone switch in the PSTN. The dialed digits from
the INVITE are mapped into the ISUP IAM. The ISUP Address Complete
Message (ACM) is sent back by the PSTN to indicate that the trunk has been
seized. Progress tones are generated in the one-way audio path established in the
PSTN. In this example, ring tone is generated by the far end telephone switch.
The gateway maps the ACM to the 183 Session Progress response
containing SDP indicating the RTP port that the gateway will bridge the audio
from the PSTN. Upon reception of the 183, the caller’s UAC begins receiving
the RTP packets sent from the gateway and presents the audio to the caller so
they know that the call is progressing in the PSTN.

The call completes when the called party answers the telephone, which
causes the telephone switch to send an Answer Message (ANM) to the gateway.
The gateway then cuts the PSTN audio connection through in both directions
and sends a 200 OK response to the caller. Because the RTP media path is
already established, the gateway echoes the SDP in the 183 but causes no
changes to the RTP connection. The UAC sends an ACK to complete the SIP
signaling exchange. Because there is no equivalent message in ISUP, the gateway
absorbs the ACK.

The call terminates when the caller sends the BYE to the gateway. The
gateway maps the BYE to the ISUP Release message or REL. The gateway sends
the 200 OK to the BYE and receives a RLC from the PSTN. These two mes-
sages have no dependency on each other; if, for some reason, either the SIP or
PSTN network does not respond properly, one does not want resources held in
the other network as a result.

M1 INVITE sip:+12025551313@gw.carrier.com;user=phone SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545
Max-Forwards: 70
From: <sip:filo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>
Call-ID: 49235243082018498@television.tv
CSeq: 1 INVITE
Supported: 100rel
Contact: sip:filo.farnsworth@studio.television.tv
Content-Type: application/sdp
Content-Length: 154

v=0
o=FF 2890844535 2890844535 IN IP4 8.19.19.06
s=-
t=0 0
c=IN IP4 8.19.19.06
m=audio 5004 RTP/AVP 0 8 ⇐Two alternative codecs,
a=rtpmap:0 PCMU/8000 PCM µ-Law or
a=rtpmap:8 PCMA/8000 PCM A-Law

Call Flow Examples 219

M2 IAM
CdPN=202-555-1313, NPI=E.164,
NOA=National ⇐Gateway maps telephone

into called party number

M3 ACM

M4 SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545
From: <sip:filo.farnsworth@television.tv>;tag=12
To: <+12025551313@gw.carrier.com;user=phone>;tag=37 ⇐Tag and brackets
Call-ID: 49235243082018498@television.tv
CSeq: 1 INVITE
RSeq: 08071
Contact: <sip:50.60.70.80>
Content-Type: application/sdp
Content-Length: 139

v=0
o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80
s=-
t=0 0
c=IN IP4 50.60.70.80
m=audio 62002 RTP/AVP 0 ⇐Gateway selects µ-Law codec
a=rtpmap:0 PCMU/8000

M5 PRACK sip:50.60.70.80 SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK454
Max-Forwards: 70
From: <sip:filo.farnsworth@television.tv>;tag=37
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=12
Call-ID: 49235243082018498@television.tv
CSeq: 2 PRACK
Contact: sip:filo.farnsworth@studio.television.tv
RAck: 08071 1 INVITE
Content-Length: 0

M6 SIP/2.0 200 OK
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK454
From: <sip:filo.farnsworth@television.tv>;tag=37
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=12
Call-ID: 49235243082018498@television.tv
CSeq: 2 PRACK

M7 ANM

220 SIP: Understanding the Session Initiation Protocol

M8 SIP/2.0 200 OK
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545
From: <sip:filo.farnsworth@television.tv>;tag=12
To: <+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498@television.tv
CSeq: 1 INVITE
Contact: <sip:50.60.70.80>
Content-Type: application/sdp
Content-Length: 139

v=0
o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80
s=-
t=0 0
c=IN IP4 50.60.70.80
m=audio 62002 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M9 ACK sip:50.60.70.80 SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bKfgrw
Max-Forwards: 70
From: <sip:filo.farnsworth@television.tv>;tag=12
To: <+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498@television.tv
CSeq: 1 ACK

M10 BYE sip:50.60.70.80 SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK321
Max-Forwards: 70
From: <sip:filo.farnsworth@television.tv>;tag=12
To: <+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498@television.tv
CSeq: 3 BYE ⇐CSeq incremented

M11 REL
CauseCode=16 Normal Clearing

M12 SIP/2.0 200 OK
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK321
From: <sip:filo.farnsworth@television.tv>;tag=12
To: <+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498@television.tv
CSeq: 3 BYE

M13 RLC

Call Flow Examples 221

10.4 PSTN to SIP Call Through Gateway

Figure 10.4 shows a call originating from a telephone in the PSTN that termi-
nates on a SIP phone in the Internet. The compact form of SIP is used through-
out the example. Note that there is no compact form for CSeq or
Max-Forwards.

M1 Setup
CdPN=6512345, NPI=E.164,XXXXXXX
NOA=International ⇐Dialed telephone number
CgPN=4567890, NPI=E.164,
NOA=International ⇐PSTN caller’s number

M2 INVITE sip:+6512345@incoming.com;user=phone SIP/2.0
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343 ⇐Compact form of headers
Max-Forwards: 70
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1 ⇐includes tag
t: <sip:+65.12345@incoming.com;user=phone>
i: a3-65-99-1d@65.3.4.1
CSeq: 1 INVITE
m: sip:gw3.incoming.com
c: application/sdp
l: 126

v=0

222 SIP: Understanding the Session Initiation Protocol

Setup CdPn=+6512345 M1

100 M3

180 M7

INVITEsip:+6512345@gw.carrier.com M2

ISDN
telephone

switch

PSTN
gateway

RTP packetsPCM speech

ACK M13

Proxy
server

SIP
phoneDatabase

+6512345? M4

sip-phone@home.com M5

I sipphone@home.com M6NVITE

180 M8Alterting M9

Connect M12 200 M11 200 M10

Figure 10.4 PSTN to SIP phone through gateway.

o=- 2890844535 2890844535 IN IP4 65.3.4.1
s=-
t=0 0
c=IN IP4 65.3.4.1
m=audio 62432 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M3 SIP/2.0 100 Trying
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: sip:+65.12345@incoming.com;user=phone
i: a3-65-99-1d@65.3.4.1
CSeq: 1 INVITE

M4 Service Query: +65-12345

M5 Location Service Response:
sip:user@home.com ⇐Number maps to SIP URI

M6 INVITE sip:user@home.com SIP/2.0
v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
Max-Forwards: 69
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: sip:+65.12345@incoming.com;user=phone
i: a3-65-99-1d@65.3.4.1
CSeq: 1 INVITE
m: sip:gw3.incoming.com
c: application/sdp
l: 126

v=0
o=- 2890844535 2890844535 IN IP4 65.3.4.1
s=-
t=0 0
c=IN IP4 65.3.4.1
m=audio 62432 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M7 SIP/2.0 180 Ringing
v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d@65.3.4.1
m: sip:user@client.home.com
CSeq: 1 INVITE

Call Flow Examples 223

M8 SIP/2.0 180 Ringing
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d@65.3.4.1
CSeq: 1 INVITE

M9 Alerting

M10 SIP/2.0 200 OK
v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d@65.3.4.1
CSeq: 1 INVITE
m: sip:user@client.home.com
c: application/sdp
l: 125

v=0
o=- 2890844565 2890844565 IN IP4 7.8.9.10
s=-
t=0 0
c=IN IP4 7.8.9.10
m=audio 5004 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M11 SIP/2.0 200 OK
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d@65.3.4.1
CSeq: 1 INVITE
M: sip:user@home.com
c: application/sdp
l: 125

v=0
o=- 2890844565 2890844565 IN IP4 7.8.9.10
s=-
t=0 0
c=IN IP4 7.8.9.10
m=audio 5004 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M12 Connect

M13 ACK sip:user@home.com SIP/2.0

224 SIP: Understanding the Session Initiation Protocol

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK453
Max-Forwards: 70
f: <sip+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d@65.3.4.1
CSeq: 1 ACK

10.5 Parallel Search

In this example the caller receives multiple possible locations for the called party
from a redirect server. Instead of trying the locations one at a time, the user
agent implements a parallel search for the called party by simultaneously send-
ing the INVITE to three different locations, as shown in Figure 10.5. The SIP
specification gives an example of this behavior in a proxy server, which is called a
forking proxy.

In this example the first location responds with a 404 Not Found
response. The second location responds with a 180 Ringing response, while
the third location returns a 180 Ringing then a 200 OK response. The
caller then sends an ACK to the third location to establish the call. Because one
successful response has been received, a CANCEL is sent to the second location
to terminate the search. The second location sends a 200 OK to the CANCEL
and a 487 Request Terminated to the INVITE. This example shows
some customized reason phrases in messages M7, M10, and M11.

M1 INVITE sip:faraday@effect.org;user=ip SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3 ⇐Port 60000 is used
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>;
tag=4
To: <sip:faraday@effect.org;user=ip>
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 54 INVITE ⇐CSeq initialized to 54
Contact:<sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 4
a=rtpmap:4 DVI/8000

M2 SIP/2.0 300 Multiple locations ⇐Redirect server returns
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3 three locations

Call Flow Examples 225

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=4
To:<sip:faraday@effect.org;user=ip>;tag=1024
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 54 INVITE
Contact:<sip:faraday@lab.royalsoc.gb>
Contact:<sip:+44.555.1212@sip-phone.effect.org;user=phone>
Contact: <sip:michael.faraday@commonroom.club.gb>

M3 ACK sip:faraday@effect.org;user=ip
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=4
To: <sip:faraday@effect.org;user=ip>;tag=1024
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 54 INVITE

M4 INVITE sip:faraday@lab.royalsoc.gb SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK1

226 SIP: Understanding the Session Initiation Protocol

ACK M3

I faraday@effect.orgNVITE

Babbage Redirect
server

RTP media packets
CANCEL M13

180 M9

ACK M8

Royal
society

Common room
(Faraday)

SIP
phone

300 M2

404 M7

I faraday@lab.royalsoc.org M4NVITE

I +44.555.1212@sip-phone.effect.org M5NVITE

I faraday@commonroom.club.gb M6NVITE

180 M10
200 M11
ACK M12

200 M14
487 M15

M1

Figure 10.5 Parallel search example.

Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip> ⇐Tag is not copied
Call-ID: mNjdwWjkBfWrd@7.9.18.12 ⇐Call-ID unchanged
CSeq: 55 INVITE ⇐CSeq incremented
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 4
a=rtpmap:4 DVI/8000

M5 INVITE sip:+44.555.1212@sip-phone.effect.org;user=phone SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK2
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 4
a=rtpmap:4 DVI/8000

M6 INVITE sip:faraday@commonroom.club.gb SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12

Call Flow Examples 227

s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 4
a=rtpmap:4 DVI/8000

M7 SIP/2.0 404 The member you have requested is not available
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK1
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=f6
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE

M8 ACK sip:faraday@lab.royalsoc.gb SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000z9hG4bK1
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=f6
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 ACK

M9 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK2
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
Contact: <sip:+44.555.1212@sip-phone.effect.org>
CSeq: 55 INVITE

M10 SIP/2.0 180 Please wait while we locate Mr. Faraday
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=531
Call-ID: mNjdwWjkBfWrd@7.9.18.12
Contact: <sip:faraday@commonroom.club.gb>
CSeq: 55 INVITE

M11 SIP/2.0 200 Mr. Faraday at your service?
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=531
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE
User-Agent: PDV v4

228 SIP: Understanding the Session Initiation Protocol

Contact: <sip:faraday@commonroom.club.gb>
Content-Type: application/sdp
Content-Length: 131

v=0
o=max 2890844521 2890844521 IN IP4 6.22.17.89
t=0 0
c=IN IP4 6.22.17.89
m=audio 43782 RTP/AVP 4
a=rtpmap:4 DVI/8000

M12 ACK sip:faraday@commonroom.club.gb;user=ip SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK3
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=531
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 ACK

M13 CANCEL sip:+44.555.1212@sip-phone.effect.org;user=phone SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK2 ⇐Cancels search
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 CANCEL ⇐CSeq not incremented

Method set to CANCEL

M14 SIP/2.0 200 OK ⇐CANCEL acknowledged
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK2
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 CANCEL

M15 SIP/2.0 487 Request Terminated ⇐Final response to INVITE
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK2
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5
To: <sip:faraday@effect.org;user=ip>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE

M16 ACK SIP/2.0
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=z9hG4bK2
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
;tag=5

Call Flow Examples 229

To: <sip:faraday@effect.org;user=ip>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 ACK

10.6 H.323 to SIP Call

In this example, a H.323 terminal calls a SIP-enabled PC through a H.323/SIP
gateway. The gateway does signaling translation between the protocols but
allows the two end points to exchange media packets directly with each other.
The full details of SIP/H.323 interworking are being developed in the SIP
working group [4].

In this example, shown in Figure 10.6, the initial message exchange is
between the calling H.323 terminal and the H.323 gatekeeper. The gatekeeper
resolves the H.323 alias into an address served by the H.323/SIP gateway. The
ACF response indicates that gatekeeper-routed signaling is required, so the
Q.931 and H.245 TCP connections are opened to the gatekeeper, which opens
TCP connections to the gateway. The calling H.323 terminal sends a Q.931
Setup message to the gatekeeper, which proxies it to the H.323/SIP gateway.
The gateway then looks up the H.323 alias and resolves it to the SIP URI of the
called party. It constructs an INVITE from the Setup message and forwards it
to a SIP proxy, which forwards it to the called party. Note that because the
Setup message does not contain any media information, the INVITE does not
contain any media information either. The called party sends a 180 Ringing
then a 200 OK to indicate that the call has been answered. The media informa-
tion present in the SDP message body is stored by the gateway, which sends
Alerting and Connect messages.

Messages are sent to the gatekeeper, which proxies them to the calling
H.323 terminal. The gateway holds off sending the ACK response to the
INVITE until the H.245 media exchange is completed between the H.323 ter-
minal and the gateway. Once that is complete, the negotiated media capabilities
are returned in the ACK and the media session begins.

M1 ARQ
address(h323alias=Stibitz)

M2 ACF
gatekeeper routed signaling

M3 Setup
Cd address(h323alias=Stibitz)
Cg address(h323alias=Burroughs)

M4 Setup

230 SIP: Understanding the Session Initiation Protocol

Cd address(h323alias=Stibitz)
Cg address(h323alias=Burroughs)

M5 ARQ

M6 ACF

M7 INVITE sip:stibitz@proxy.com SIP/2.0
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544 ⇐TCP used for transport
Max-Forwards: 70
From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>
Call-ID: 526272332146783569054
CSeq: 43252 INVITE ⇐CSeq initialized to 43252
Contact: <sip:burroughs@h323-gateway.com;transport=tcp>

Call Flow Examples 231

H.323
Terminal

Proxy
server

RTP media packets

Sip/H323
gateway

SIP PC

ARQ M1

Gatekeeper

AFC M2

Setup M3 Setup M4
ARQ M5

AFC M6
INVITE M7

INVITE M9
100 M8

180 M10
180 M11
200 M15

Alerting M12Alerting M13

Connect M16Connect M17

TCS M19
TCS M18

TSCAck M21
TCSAck M20

TCS M22TCS M23

TSCAck M25TCSAck M24

MSD M27MSD M26

MSDAck M28MSDAck M29

OLC M31OLC M30

OLCAck M32OLCAck M33
OLC M34OLC M35

OLCAck M37OLCAck M36 ACK M38 ACK M39

1.28.18.57 2.3.4.5 3.4.5.6 4.30.19.04

200 M14

Figure 10.6 H.323 to SIP call.

Content-Length: 0
M8 100 Trying

Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544
From: <sip:burroughs@h323-gateway.com>
To: <sip:stibitz@proxy.com>
Call-ID: 526272332146783569054
CSeq: 43252 INVITE
Content-Length: 0

M9 INVITE sip:gstibitz123@snailmail.com SIP/2.0
Via: SIP/2.0/TCP 3.4.5.6:5060;branch=z9hG4bK452.1
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544
Max-Forwards: 69
From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>
Call-ID: 526272332146783569054
CSeq: 43252 INVITE
Contact: <sip:burroughs@h323-gateway.com;transport=tcp>

M10 SIP/2.0 180 Ringing
Via: SIP/2.0/TCP 3.4.5.6:5060; branch=z9hG4bK452.1
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544
From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>;tag=1926
Call-ID: 526272332146783569054
CSeq: 43252 INVITE
Contact: <sip:gstibitz123@snailmail.com;transport=tcp>
Content-Length: 0

M11 SIP/2.0 180 Ringing
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544
From: <sip:burroughs@h323-gateway.com>
To: <sip:stibitz@proxy.com>;tag=1926
Call-ID: 526272332146783569054
CSeq: 43252 INVITE
Contact: <sip:gstibitz123@snailmail.com;transport=tcp>
Content-Length: 0

M12 Alerting

M13 Alerting

M14 SIP/2.0 200 OK
Via: SIP/2.0/TCP 3.4.5.6:5060; branch=z9hG4bK452.1
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544
From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>;tag=1926

232 SIP: Understanding the Session Initiation Protocol

Call-ID: 526272332146783569054
CSeq: 43252 INVITE
Contact: <sip:gstibitz123@snailmail.com;transport=tcp>
Content-Type: application/sdp
Content-Length: 134

v=0
o=George 2890844576 2890844576 IN IP4 4.30.19.04
s=-
t=0 0
c=IN IP4 4.30.19.04
m=audio 5004 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M15 SIP/2.0 200 OK
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK544
From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>;tag=1926
Call-ID: 526272332146783569054
CSeq: 43252 INVITE
Contact: <sip:gstibitz123@snailmail.com>
Content-Type: application/sdp
Content-Length: 134

v=0
o=George 2890844576 2890844576 IN IP4 4.30.19.04
s=-
t=0 0
c=IN IP4 4.30.19.04
m=audio 5004 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M16 Connect

M17 Connect

M18 TerminalCapabilitySet

M19 TerminalCapabilitySet

M20 TerminalCapabilitySetAck

M21 TerminalCapabilitySetAck

M22 TerminalCapabilitySet

Call Flow Examples 233

M23 TerminalCapabilitySet

M24 TerminalCapabilitySetAck

M25 TerminalCapabilitySetAck

M26 MasterSlaveDetermination

M27 MasterSlaveDetermination

M28 MasterSlaveDeterminationAck

M29 MasterSlaveDeterminationAck

M30 OpenLogicalChannel
g711uLaw 1.28.18.57 60002

M31 OpenLogicalChannel
g711uLaw 1.28.18.57 60002

M32 OpenLogicalChannelAck

M33 OpenLogicalChannelAck
Call Flow Examples 181

M34 OpenLogicalChannel
g711uLaw 4.30.19.04 5004

M35 OpenLogicalChannel
g711uLaw 4.30.19.04 5004

M36 OpenLogicalChannelAck

M37 OpenLogicalChannelAck

M38 ACK sip:gstibitz123@snailmail.com SIP/2.0
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK32
Max-Forwards: 70

234 SIP: Understanding the Session Initiation Protocol

From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>;tag=1926
Call-ID: 526272332146783569054
CSeq: 43252 ACK
Content-Type: application/sdp
Content-Length: 130

v=0
o=- 2890844577 2890844577 IN IP4 1.28.18.57
s=-
t=0 0
c=IN IP4 1.28.18.57
m=audio 60002 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M39 ACK sip:gstibitz123@snailmail.com SIP/2.0
Via: SIP/2.0/TCP 3.4.5.6:5060;branch=z9hG4bK452.1
Via: SIP/2.0/TCP 2.3.4.5:4344;branch=z9hG4bK532
Max-Forwards: 69
From: <sip:burroughs@h323-gateway.com>;tag=3q526g45
To: <sip:stibitz@proxy.com>;tag=1926
Call-ID: 526272332146783569054
CSeq: 43252 ACK
Content-Type: application/sdp
Content-Length: 130

v=0
o=- 2890844577 2890844577 IN IP4 1.28.18.57
s=-
t=0 0
c=IN IP4 1.28.18.57
m=audio 60002 RTP/AVP 0
a=rtpmap:0 PCMU/8000

10.7 3GPP Wireless Call Flow

An example SIP 3GPP call flow is shown in Figure 10.7. Some of the 3GPP
P-headers are not shown with their actual values—instead, “. . .” is listed. Also,
some call flows show SDP in the PRACK, but this is only needed if another SDP
offer is made—in this case, the initial offer is accepted. Also, PRACKs are not
shown in response to the 180 Ringing response since it does not carry any
SDP and does not need to be delivered reliably. In this call flow, the use of
QoS preconditions is shown (as indicated by the Require: precondi-
tion header field and the QoS attributes in the SDP). After the initial offer
and answer in the INVITE and 183, the QoS setup is performed. When it has
been done successfully, each side indicates in the UPDATE and 200 OK
response in the SDP that the setup is complete. Only after that does the called
UE begin alerting and sends a 180 Ringing response.

Call Flow Examples 235

INVITE tel:+1-314-555-1234 SIP/2.0
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Max-Forwards: 70
Route: <sip:pcscf.visitednet.com:4323;lr>,
<sip:scscf.homenet.com;lr>
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Preferred-Identity: “Alice” <sip:mobile1@homnet.com>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-
3gpp=544542332
Privacy: none
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE

236 SIP: Understanding the Session Initiation Protocol

UE caller
Visited
P-CSCF

INVITE INVITE
INVITE INVITE100 Trying 100 Trying 100 Trying

183183
183183

PRACK PRACK
PRACK PRACK

UPDATE UPDATE
UPDATE UPDATE

ACK ACK
ACK ACK

200 OK200 OK200 OK200 OK

200 OK200 OK
200 OK200 OK 180180

180180 200 OK200 OK200 OK200 OK

Home
S-CSCF

Home
P-CSCF UE called

Media Session

Figure 10.7 3GPP SIP call flow.

Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition, sec-agree
Proxy-Require: sec-agree
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi=34341
;port1=4323
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 2890844526 2890844526 IN IP4 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 100 Trying
Via: SIP/2.0/UDP
[::0000:1111:2222:3333]:2343;branch=z9hG4bKmp17a43
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Content-Length: 0

INVITE tel:+1-314-555-1234 SIP/2.0
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Max-Forwards: 69
Route: <sip:scscf.homenet.com;lr>
Record-Route: <sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Asserted-Identity: "Alice" <sip:mobile1@homnet.com>
P-Access-Network-Info: 3GPP-UTRAN-TDD;
utran-cell-id-3gpp=544542332
Privacy: none
P-Charging-Vector: icid-value=914052945
;icid-generated-at=[::01:34:3F:34]
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>

Call Flow Examples 237

Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi=34341
;port1=4323
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 2890844526 2890844526 IN IP4 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 100 Trying
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Content-Length: 0

INVITE sip:mobile2@homenet.com SIP/2.0
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK34fd2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Max-Forwards: 68
Record-Route: <scscf.homenet.com>, <sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Asserted-Identity: “Alice” <sip:mobile1@homnet.com>,
<tel:+1-972-555-4321>
P-Access-Network-Info: . . .
Privacy: none
P-Charging-Vector: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition

238 SIP: Understanding the Session Initiation Protocol

Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi=34341
;port1=4323
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 2890844526 2890844526 IN IP4 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 100 Trying
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK34fd2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Content-Length: 0

INVITE sip:mobile2@homenet.com SIP/2.0
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK42234
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK34fd2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Max-Forwards: 67
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Asserted-Identity: “Alice” <sip:mobile1@homnet.com>,
<tel:+1-972-555-4321>
P-Access-Network-Info: . . .
Privacy: none
P-Charging-Vector: . . .
P-Called-Party-ID: <sip:mobile2@homenet.com>
P-Media-Authorization: 4504958682459049502984084485948945

Call Flow Examples 239

Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi=34341
;port1=4323
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 2890844526 2890844526 IN IP4 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK42234
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK34fd2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Privacy: none
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RSeq: 98205
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 28908445761 28908445761 IN IP6 [::0000:aaaa:bbbb:cccc]
s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96

240 SIP: Understanding the Session Initiation Protocol

b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK34fd2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=9459495
Privacy: none
P-Charging-Vector: . . .
P-Asserted-Identity: “Bob” <sip:mobile2@homenet.com>,
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RSeq: 98205
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 28908445761 28908445761 IN IP6 [::0000:aaaa:bbbb:cccc]
s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>

Call Flow Examples 241

To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=9459495
Privacy: none
P-Charging-Vector: . . .
P-Asserted-Identity: “Bob” <sip:mobile2@homenet.com>,
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RSeq: 98205
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 28908445761 28908445761 IN IP6 [::0000:aaaa:bbbb:cccc]
s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKmp17a43
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=9459495
Privacy: none
P-Charging-Vector: . . .
P-Asserted-Identity: “Bob” <sip:mobile2@homenet.com>,
P-Media-Authorization: 4509884094409582095820203058
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RSeq: 98205
Content-Type: application/sdp
Content-Length: 159

v=0
o=- 28908445761 28908445761 IN IP6 [::0000:aaaa:bbbb:cccc]

242 SIP: Understanding the Session Initiation Protocol

s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

PRACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
Max-Forwards: 70
Route: <sip:pcscf.visitednet.com;lr>, <scscf.homenet.com;lr>,
<sip:pscsf.homenet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RAck: 98205 15 INVITE
Content-Length: 0

PRACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK565355
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
Max-Forwards: 69
Route: <sip:pscsf.homenet.com;lr>, <sip:scscf.homenet.com;er>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RAck: 98205 15 INVITE
Content-Length: 0

PRACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKhj5fy

Call Flow Examples 243

Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
Max-Forwards: 68
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RAck: 98205 15 INVITE <Route: <sip:pscsf.homenet.com;lr>
Content-Length: 0

PRACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK4524
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKhj5fy
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
Max-Forwards: 67
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-
3gpp=544542332
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
RAck: 98205 15 INVITE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK4524
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKhj5fy
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-
3gpp=544542332
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKhj5fy

244 SIP: Understanding the Session Initiation Protocol

Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 3GPP-UTRAN-TDD
;utran-cell-id-3gpp=544542332
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK7866
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK454245
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 16 PRACK
Content-Length: 0

UPDATE sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
Max-Forwards: 70
Route: <sip:pcscf.visitednet.com;lr>, <scscf.homenet.com;lr>,
<sip:pscsf.homenet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Proxy-Require: sec-agree
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi=34341
;port1=4323
Content-Type: application/sdp
Content-Length: ...

Call Flow Examples 245

v=0
o=- 2890844526 2890844527 IN IP6 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

UPDATE sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK56565
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
Max-Forwards: 69
Route: <scscf.homenet.com;lr>, <sip:pscsf.homenet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
P-Charging-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 2890844526 2890844527 IN IP6 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

UPDATE sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0

246 SIP: Understanding the Session Initiation Protocol

Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKsa6wee
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK56565
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
Max-Forwards: 68
Route: <sip:pscsf.homenet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 2890844526 2890844527 IN IP6 [::0000:1111:2222:3333]
s=Phone Call
t=0 0
c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

UPDATE sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK4gnm86
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKsa6wee
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK56565
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
Max-Forwards: 67
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Supported: 100rel
Require: precondition
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 2890844526 2890844527 IN IP6 [::0000:1111:2222:3333]
s=Phone Call
t=0 0

Call Flow Examples 247

c=IN IP6 [::0000:1111:2222:3333]
m=audio 49170 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK4gnm86
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKsa6wee
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK56565
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 28908445761 28908445762 IN IP6 [::0000:aaaa:bbbb:cccc]
s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote sendrecv
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 200 OK
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKsa6wee
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK56565
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0

248 SIP: Understanding the Session Initiation Protocol

o=- 28908445761 28908445762 IN IP6 [::0000:aaaa:bbbb:cccc]
s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote sendrecv
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bK56565
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 28908445761 28908445762 IN IP6 [::0000:aaaa:bbbb:cccc]
s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote sendrecv
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 200 OK
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKkuyrt
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 17 UPDATE
Content-Type: application/sdp
Content-Length: ...

v=0
o=- 28908445761 28908445762 IN IP6 [::0000:aaaa:bbbb:cccc]

Call Flow Examples 249

s=-
t=0 0
c=IN IP6 [::0000:aaaa:bbbb:cccc]
m=audio 5434 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote sendrecv
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7 ;maxframes=2
a=rtpmap:96 telephone-event

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bKa3423
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKkut
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKghf
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKkut
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKghf
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKghf
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,

250 SIP: Understanding the Session Initiation Protocol

<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bKa3423
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKkut
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKghf
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bKkut
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKghf
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh

Call Flow Examples 251

CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKghf
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bKdfewqh
Record-Route: <sip:pscsf.homenet.com;lr>, <scscf.homenet.com;lr>,
<sip:pcscf.visitednet.com;lr>
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 INVITE
Contact: <sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp>
Require: 100rel
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

ACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK54343
Route: <sip:pcscf.visitednet.com;lr>, <scscf.homenet.com;lr>,
<sip:pscsf.homenet.com;lr>
Max-Forwards: 70
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 ACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

252 SIP: Understanding the Session Initiation Protocol

ACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKnv3
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK54343
Route: <scscf.homenet.com;lr>,
<sip:pscsf.homenet.com;lr>
Max-Forwards: 69
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: 394893842917847375
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 ACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

ACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK6fgn2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKnv3
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK54343
Route: <sip:pscsf.homenet.com;lr>
Max-Forwards: 68
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 ACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

ACK sip:[::0000:aaaa:bbbb:cccc]:8767;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP pcscf.homenet.com;branch=z9hG4bK45hmk
Via: SIP/2.0/UDP scscf.homenet.com;branch=z9hG4bK6fgn2
Via: SIP/2.0/UDP pcscf.visitednet.com;branch=z9hG4bKnv3
Via: SIP/2.0/UDP [::0000:1111:2222:3333]:2343;comp=sigcomp
;branch=z9hG4bK54343
Max-Forwards: 67
To: <tel:+1-314-555-1234>;tag=g41334
From: <sip:mobile1@homenet.com>;tag=34199357834
P-Access-Network-Info: . . .
Call-ID: 7o5452gfvtyrfghdgrtt6900gh
CSeq: 15 ACK
Contact: <sip:[::0000:1111:2222:3333]:2343;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, MESSSAGE, REFER, UPDATE
Content-Length: 0

Call Flow Examples 253

10.8 Call Setup Example with Two Proxies

This section contains the complete message flow shown in Figure 2.2.

M1 INVITE sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
t=0 0
c=IN IP4 100.101.102.103
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M2 INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 69
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
c=IN IP4 100.101.102.103
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M3 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE

254 SIP: Understanding the Session Initiation Protocol

Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

M4 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

M5 SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg7 <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
s=Phone Call
c=IN IP4 200.201.202.203
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M6 SIP/2.0 200 OK
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 INVITE
Contact: sip:werner.heisenberg@200.201.202.203
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
c=IN IP4 200.201.202.203
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M7 ACK sip:werner.heisenberg@200.201.202.203 SIP/2.0

Call Flow Examples 255

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKka42
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 10@100.101.102.103
CSeq: 1 ACK
Content-Length: 0

M8 BYE sip:schroed5244@pc33.aol.com SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
Max-Forwards: 70
To: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
Call-ID: 10@100.101.102.103
CSeq: 2000 BYE
Content-Length: 0

M9 SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
To: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
Call-ID: 10@100.101.102.103
CSeq: 2000 BYE
Content-Length: 0

10.9 SIP Presence and Instant Message Example

This section contains the call flow details of Figure 2.4.

M1 SUBSCRIBE sip:poisson@probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK348471123
Max-Forwards: 70
To: M. Poisson <sip:poisson@probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:pafnuty@lecturehall21.academy.ru;transport=tcp>
Event: presence
Content-Length: 0

M2 SIP/2.0 202 Accepted
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK348471123;received=19.34.3.1
To: M. Poisson <sip:poisson@probability.org>;tag=25140
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520

256 SIP: Understanding the Session Initiation Protocol

CSeq: 3412 SUBSCRIBE
Allow-Events: presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Event: presence
Expires: 3600
Content-Length: 0

M3 NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4321
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: dialog
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=3600
Event: presence
Content-Type: application/cpim-pidf+xml
Content-Length: 244

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"
entity="sip:poisson@probability.org">
<tuple id="452426775">
<status>
<basic>closed</basic>
</status>
</tuple>
</presence>

M4 SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4321;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Content-Length: 0

M5 NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK334241
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY

Call Flow Examples 257

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: presence
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=1800
Event: presence
Content-Type: application/cpim-pidf+xml
Content-Length: 325

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"
entity="sip:poisson@probability.org">
<tuple id="452426775">
<status>
<basic>open</basic>
</status>
<contact>sip:s.possion@dist.probability.org;transport=tcp
</contact>

</tuple>
</presence>

M6 SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK334241;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Content-Length: 0

M7 MESSAGE sip:s.possion@dist.probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK3gtr2
Max-Forwards: 70
To: M. Poisson <sip:s.possion@dist.probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 9

Hi There!

M8 SIP/2.0 200 OK
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
;branch=z9hG4bK3gtr2;received=19.34.3.1
To: M. Poisson <sip:s.possion@dist.probability.org>;tag=2321
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Content-Length: 0

258 SIP: Understanding the Session Initiation Protocol

M9 MESSAGE sip:chebychev@academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4526245
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>
From: M. Poisson <sip:s.possion@dist.probability.org>;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 30

Well, hello there to you, too!

M10 SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
;branch=z9hG4bK4526245;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=mc3bg5q77wms
From: M. Poisson <sip:s.possion@dist.probability.org>;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Content-Length: 0

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Johnston, A., et al., “Basic SIP Call Flow Examples,” IETF Internet-Draft, Work in Pro-
gress, April 2003.

[3] Johnston, A., et al., ”SIP/PSTN Call Flow Examples,” IETF Internet-Draft, Work in Pro-
gress, April 2003.

[4] Schulzrinne, H., and H. Agrawl, “Session Initiation Protocol (SIP)-H.323 Interworking
Requirements,” IETF Internet-Draft, Work in Progress, February 2003.

Call Flow Examples 259

.

11
Future Directions

This chapter will discuss some future areas of work in SIP-related working
groups in the IETF. Instead of attempting to list and discuss a snapshot of cur-
rent activity in the IETF, the reader should gather the information directly from
the IETF itself. Table 11.1 lists the charter Web pages for the three most impor-
tant SIP working groups: SIP, SIPPING, and SIMPLE. The charter page for
each working group lists the deliverables of the group along with RFCs (finished
documents) and Internet-Drafts (works in progress). Only Internet-Drafts that
have been adopted as official work group items are listed on these Web
pages—these are the documents most likely to become RFCs in the near future.
The Web page also contains information about joining the working group
e-mail list, which discusses the listed set of Internet-Drafts.

Finally, one can search the IETF Internet-Draft archives for documents
relating to SIP at http://search.ietf.org. However, be warned: There are many,
many documents and most will likely never be published as an RFC—always
consult someone familiar with the working group activity before assuming that
an Internet-Draft not listed on a working group charter page is likely to ever
become an Internet Standard.

11.1 SIP, SIPPING, and SIMPLE Working Group Design Teams

From time to time working groups use a design team to work on a particular
topic. The teams report regularly to the working group and have a working
group chair who provides guidance. The approach has been successful in the
past and will likely result in new RFCs being produced by the design teams
described in the next sections.

261

Some of the referenced Internet-Drafts in this chapter may have become
RFCs or have changed. Useful archives of expired Internet-Drafts are available
at http://www.softarmor.com/sipwg, http://www.softarmor.com/sipping, http://
www.softarmor.com/simple, http://www.softarmor.com/xcon, and http://www.
iptel.org/info/players/ietf.

11.1.1 SIP and Hearing Impairment Design Team

This design team is developing requirements, guidelines, and directions for SIP
to support the needs of hearing impaired users. The design team has produced a
requirements document [1] that includes scenarios and requirements. The work
has also produced general requirements on transcoding, which have wider scope
than the hearing impaired.

11.1.2 Conferencing Design Team

This design team is working on issues relating to tightly coupled multiparty con-
ferencing. The work so far has produced a requirements [2], framework [3], and
call control [4] documents that are SIPPING working group items. The frame-
work includes voice, video, IM, and collaboration. Other items include the defi-
nition of the isfocus feature tag [5] and the conference event package [6].

The design team is also working on areas relating to standardizing XML
messages for conference and media mixing policy. This will allow an intelligent
end point or automata to set up and configure a multimedia conferencing ses-
sion. The media policy manipulation will allow an end point to control their
view and mixing of the overall conference. This work will be standardized in
the new XCON (centralized conferencing) IETF working group. However,

262 SIP: Understanding the Session Initiation Protocol

Table 11.1
Latest Status of SIP-Related IETF Work

Working
Group Web Page URL Area

SIP http://www.ietf.org/html.charters/sip-charter.html SIP protocol extensions

SIPPING http://www.ietf.org/html.charters/sipping-charter.html SIP requirements, best
current practice documents,
and usage

SIMPLE http://www.ietf.org/html.charters/simple-charter.html SIP for IM and presence

XCON http://www.ietf.org/html.charters/xcon-charter.html Centralized conferencing

intelligent SIP end points and clients will likely support these extensions and
protocols.

11.1.3 Application Interaction Design Team

This design team is developing a framework for application interaction using
SIP. It will cover areas such as dual-tone multifrequency (DTMF) and stimulus
(button pressing) transport and integration with SIP signaling.

11.1.4 Emergency Calling Design Team

This design team is developing requirements for SIP support of emergency call-
ing (911 in the United States and 112 in other parts of the world).

11.2 Other SIP Work Areas

Some other important work areas relating to SIP are discussed in the following
sections.

11.2.1 Emergency Preparedness

The IETF Internet Emergency Preparedness (IEPREP) working group has been
working on requirements on how to make sure that the Internet functions prop-
erly and can provide reliable communications for emergency personnel in the
event of an emergency or disaster. There is a document of requirements for
SIP [7] that may produce some SIP extensions and conventions.

11.2.2 Globally Routable Contact URIs

Work is currently underway to try to provide a mechanism to guarantee that a
Contact URI is globally routable. While in general, a Contact URI is glob-
ally routable, in the presence of NATs, firewalls, and screening proxies, this
may not be so. Contributing to the problem is that a UA may not know if its
Contact URI is globally routable or not. Current work is discussing the
requirements, which, when agreed upon, can be translated into a SIP extension
or convention to solve.

11.2.3 Service Examples

This service examples document [8] shows how intelligent end points can
implement a set of service commonly found in PBX switches and in service
provider Centrex offerings. The set of features includes call hold, call park, call

Future Directions 263

pickup, auto recall, music on hold, attended and unattended transfer, and oth-
ers. All of the flows use standard SIP operations and call control extensions.

11.3 SIP Instant Message and Presence Work

In the SIMPLE working group, there has been much work in the area of instant
message sessions, similar to that shown in Figure 4.10 in which an INVITE
sets up an IM session between the end points. The current approach being
developed uses a SIP-like protocol called Message Session Relay Protocol
(MSRP) [9], which allows the IM session to be established either directly end-
to-end or through a relay necessary for logging or NAT/firewall traversal.

The SIMPLE working group is also working on documents to enable all
aspects of a standard presence and IM client to be implemented using standard
IETF protocols. While the basic ability is provided through the defined
MESSAGE, SUBSCRIBE, and NOTIFY methods, tools to upload or publish
presence information, and protocols for “buddy list” creation and manipulation
are still needed.

Other interesting work continues in the area of “rich” presence informa-
tion delivery using SIP [10]. The current presence XML formats only list con-
tacts and describe them as “open” or “closed,” essentially on-line or off-line.
This work extends so that more presence information can be automatically
updated based on calendars and other applications from the network.

References

[1] Charlton, N., et al., “User Requirements for the Session Initiation Protocol (SIP) in Sup-
port of Deaf, Hard of Hearing and Speech-Impaired Individuals,” RFC 3351, 2002.

[2] Levin, O., and R. Evan, “High Level Requirements for Tightly Coupled SIP Conferenc-
ing,” IETF Internet-Draft, Work in Progress, April 2003.

[3] Rosenberg, J., “A Framework for Conferencing with the Session Initiation Protocol,”
IETF Internet-Draft, Work in Progress, May 2003.

[4] Johnston, A., and O. Levin, “SIP Call Control – Conferencing for User Agents,” IETF
Internet-Draft, Work in Progress, April 2003.

[5] Rosenberg, J., H. Schulzrinne, and P. Kyzivat, “Caller Preferences and Callee Capabilities
for the Session Initiation Protocol (SIP),” IETF Internet-Draft, Work in Progress, March
2003.

[6] Rosenberg, J., and H. Schulzrinne, “A Session Initiation Protocol (SIP) Event Package for
Conference State,” IETF Internet-Draft, Work in Progress, June 2002.

[7] Peterson, J., “Considerations on the IEPREP Requirements for SIP,” IETF Internet-
Draft, Work in Progress, April 2003.

264 SIP: Understanding the Session Initiation Protocol

[8] Johnston, A., et al., “Session Initiation Protocol Service Examples,” IETF Internet-Draft,
Work in Progress, March 2003.

[9] Campbell, B., et al., “Instant Message Sessions in SIMPLE,” IETF Internet-Draft, Work
in Progress, April 2003.

[10] Schulzrinne, H., et al., “RPIDS—Rich Presence Information Data Format for Presence
Based on the Session Initiation Protocol (SIP),” IETF Internet-Draft, Work in Progress.

Future Directions 265

.

Appendix A: Changes in the SIP
Specification from RFC 2543 to RFC 3261

In late 2001 and early 2002, the base SIP specification RFC 2543 was rewritten
and published as RFC 3261. The new RFC was backwards compatible with the
old RFC except in areas in which the old RFC was deemed to be broken or
buggy. Besides these fixes, the document was also rewritten from the ground up
with a new structure and new coauthors to increase the clarity of the specifica-
tion. The new structure included a redefinition of the SIP finite state machine
(FSM) into three layers: transport, transaction, and transaction user (TU).
Additional timers and time-outs were also defined. The core specification also
had related topics such as SDP handling and DNS Procedures removed and
published as separate specifications RFC 3264 and RFC 3263.

This appendix describes some of the key differences between the two
RFCs. Many of these differences have been mentioned throughout the
book—others have not been mentioned.

Some parts of RFC 2543 were removed or deprecated from RFC 3261. In
the area of security, HTTP Basic authentication was removed, as it allowed the
transport of passwords in the clear (HTTP Digest does not do this and is still
supported in RFC 3261). Also deprecated was Pretty Good Privacy (PGP)
encryption in favor of S/MIME encryption. PGP had not been implemented
and the S/MIME approach is the one currently favored by the IETF to secure
bodies end-to-end of the Internet. The Authentication header field
(which was used for PGP encryption) was deprecated. The Response-Key
and Hide header fields were also deprecated due to security problems associ-
ated with their use.

267

The new RFC also deprecates the use of Via header field loop detection
in favor of a required Max-Forwards header field in every request. This is
because of the difficulty and processing burden on proxies to parse long sets of
Via headers.

Perhaps the most major change outside of security relates to the introduc-
tion of loose routing concepts in place of the strict routing used with Route
headers in RFC 2543. In the old RFC, for example, a request containing three
Route headers could only route to those three proxies then to the end
point—no deviations were allowed. Also, a Route header could only be built
from a received Record-Route header field. In RFC 3261, a request con-
taining three loose Route headers must route through those three proxies but
may also visit other proxies as needed. Also, a preloaded Route header may be
constructed at the start of a dialog without first receiving a Record-Route
header in dialog setup. This permits much more flexible routing for services and
mobile applications. They can also be used to provide midcall services and home
proxy services as discussed in Chapter 9. In addition, the mechanism used is
much cleaner and understandable than the old “strict” routing, and it is also
backwards compatible, even in a mixed network of strict and loose routing
proxies.

A major improvement in RFC 3261 comes in the security area. Besides the
deprecation of HTTP Basic authentication and PGP and the addition of
S/MIME for bodies, the specification also introduces the secure SIP (sips)
URI scheme, which requires the use of end-to-end TLS transport (with the
exception of the last hop, which may use some other encryption mechanism).
This allows a UA to know that the SIP message path does not traverse any unen-
crypted links end-to-end through the presence of intermediary proxies.

Other changes include a new requirement that Contact URIs be glob-
ally routable (which is useful in certain call control scenarios). SIP now also
includes full support for IPv6 addresses. The use of hostnames instead of literal
addresses is now recommended in Via and Contact URIs. The new specifi-
cation renames the “call leg” as a dialog. The definition of a dialog was also
changed so that it includes the To and From tags but not URIs. This will allow
future versions of SIP to permit To and From URIs to be changed within a dia-
log for clarity. (For example, if A calls B but the call is forwarded to C, when C
answers, the 200 OK could contain the URI of C instead of B in the To header
field, alerting A that C not B has picked up the call.)

The new specification also formally defines an “early” dialog, which is cre-
ated when a response to an INVITE (or SUSCRIBE) is received which con-
tains a tag. In the case of forking, multiple independent early dialogs may be
created for a single INVITE request. As a result, Contact and Record-
Route header fields must be returned in responses that create early dialogs.

268 SIP: Understanding the Session Initiation Protocol

RFC 3261 also included new header fields such as Alert-Info,
Call-Info, Reply-To, In-Reply-To, and Error-Info, which add
new and useful functionality to SIP.

Appendix A: Changes in the SIP Specification from RFC 2543 to RFC 3261 269

.

About the Author

Alan B. Johnston is a distinguished technical member with MCI in their engi-
neering department, and is also an adjunct assistant professor of electrical and
systems engineering at Washington University in St. Louis, Missouri. He is cur-
rently working with the SIP protocol in their MCI Advantage product. Prior to
MCI, he worked at a competitive local exchange carrier (CLEC), Brooks Fiber
Properties, Telcordia (formerly Bellcore), and SBC Technology Resources. Dr.
Johnston is a coauthor of the new SIP specification RFC 3261 and the cochair
of the new XCON Centralized Conferencing IETF Working Group. He has a
Ph.D. from Lehigh University, Bethlehem, Pennsylvania, in electrical engineer-
ing and a B.S. in engineering (first class honors) from the University of
Melbourne, Melbourne, Australia, in electrical engineering. Born in Melbourne,
Australia, Dr. Johnston currently resides in a national historic district in St.
Louis, Missouri, with his wife Lisa, son Aidan, and daughter Nora.

271

.

Index

3GPP architecture, 201–2
illustrated, 201
IMS elements, 201
IPv6 addresses, 202
Mobile IP reliance, 202
signaling compression, 202

3GPP header fields, 203–4
3GPP wireless call flow, 235–54

defined, 235–36
illustrated, 236

100 Trying response, 109
180 Ringing response, 109
181 Call Is Being Forwarded

response, 109
182 Call Queued response, 109
183 Session Progress response,

110
200 OK response, 112
202 Accepted response, 112
300 Multiple Choices response,

113
301 Moved Permanently response,

113
302 Moved Temporarily response,

113
305 Use Proxy response, 113
380 Alternative Service

response, 113
400 Bad Request response, 114
401 Unauthorized response, 114

402 Payment Required response,
114

403 Forbidden response, 115
404 Not Found response, 115
405 Method Not Allowed response,

115
407 Proxy Authentication

Required response, 115–16
408 Request Timeout response, 116
410 Gone response, 116
411 Length Required response, 116
413 Request Entity Too Large

response, 117
414 Request-URI Too Long

response, 117
415 Unsupported Media Type

response, 117
416 Unsupported URI Scheme

response, 117
420 Bad Extension response, 117
421 Extension Required response,

117–18
422 Session Timer Interval
Too Small response, 118
423 Interval Too Brief response,

118
428 Use Authentication Token

response, 118
429 Provide Referror Identity

response, 118–19

273

480 Temporarily Unavailable
response, 119

481 Dialog/Transaction Does
Not Exist response, 119

482 Loop Detected response, 119
483 Too Many Hops response, 119–20
484 Address Incomplete response,

120
485 Ambiguous response, 120–21
486 Busy Here response, 121
487 Request Terminated response,

122
488 Not Acceptable Here

response, 122
489 Bad Event response, 122
491 Request Pending response, 122
493 Request Undecipherable

response, 122–23
501 Not Implemented response, 124
502 Bad Gateway response, 124
503 Service Unavailable response,

124
504 Gateway Timeout response, 124
505 Version Not Supported

response, 124
513 Message Too Large response,

125
600 Busy Everywhere response, 125
603 Decline response, 125
604 Does Not Exist Anywhere

response, 125
606 Not Acceptable response, 125

Accept-Contact header field, 140–41
Accept-Encoding header field, 141
Accept header field, 140
Accept-Language header field, 141–42
ACK method, 77–79

application/sdp message body, 77
defined, 77
end-to-end, 77, 78
example, 78
hop-by-hop, 77, 78
mandatory headers, 79
See also Methods

acknowledgment messages, 55–56
defined, 56
UA generation, 55

Address Complete Message (ACM), 219

addresses
e-mail-like names, 26
IP, 25–26, 202
MAC, 10

address of record (AOR), 26
Alert-Info header field, 128–29
Allow-Events header field, 129
Allow header field, 158
application design team, 263
application layer, 8–9
Augmented Backus-Naur Format (ABNF), 1

comments, 14
representation, 13–14
token definition, 14

authentication, 57–59
digest call flow, 59
forms, 57–58
HTTP Digest, 58
lightweight, 58
multiproxy, 146
robust, 58
of user agent, 58

Authentication-Info header field,
153–54
Authorization header field, 142

back-to-back user agents (B2BUA), 45
BYE method, 76–77

defined, 76
example, 76–77
mandatory headers, 77
See also Methods

call flow
3GPP, 235–54
with authentication, proxies, and

record-route, 207–14
authentication digest, 59
examples, 207–59
H.323, 184
H.323 to SIP, 230–35
NOTIFY method, 87
parallel search, 225–30
PSTN to SIP, 222–25
REFER method, 83
SIP to PSTN, 218–22
with stateless/stateful proxies, 214–18
SUBSCRIBE method, 87

Call-ID header field, 129–30
Call-Info header field, 142

274 SIP: Understanding the Session Initiation Protocol

calls
cancellation race condition, 80
H.323 to SIP, 230–35
with proxy server, 25–30
PSTN to SIP through gateway, 222–25
queuing example, 110
setup example, 254–56
SIP to PSTN through gateway, 218–22
SIP with authentication, proxies,

record-route, 207–14
SIP with stateless/stateful proxies with

busy called party, 214–18
state information, 30

CANCEL method, 79–81
branch ID, 80
defined, 79
example, 81
mandatory headers, 81
proxies receiving, 80
See also Methods

circuit associated signaling, 176
client error responses, 113–23

400 Bad Request, 114
401 Unauthorized, 114
402 Payment Required, 114
403 Forbidden, 115
404 Not Found, 115
405 Method Not Allowed, 115
406 Not Acceptable, 115
407 Proxy Authentication

Required, 115–16
408 Request Timeout, 116
410 Gone, 116
411 Length Required, 116
413 Request Entity Too

Large, 117
414 Request-URI Too Long, 117
415 Unsupported Media Type,

117
416 Unsupported URI Scheme,

117
420 Bad Extension, 117
421 Extension Required,

117–18
422 Session Timer Interval

Too Small, 118
423 Interval Too Brief, 118
428 Use Authentication

Token, 118

429 Provide Referror
Identity, 118–19

480 Temporarily Unavail-
able, 119

481 Dialog/Transaction Does
Not Exist, 119

482 Loop Detected, 119
483 Too Many Hops, 119–20
484 Address Incomplete, 120
485 Ambiguous, 120–21
486 Busy Here, 121
487 Request Terminated, 122
488 Not Acceptable Here, 122
489 Bad Event, 122
491 Request Pending, 122
493 Request Undecipherable,

122–23
defined, 113–14
See also Response(s)

Common Presence and Instant Message
Presence Information Data Format
(CPIM PIDF), 36

conferencing design team, 262–63
congestion control

TCP, 40
UDP and, 39

Contact header field, 130–32
defined, 130
examples, 131
feature tag, 131–32
in INVITE requests, 130
parameters, 131
See also Header fields

Content-Disposition header field,
158

Content-Encoding header field, 158
Content-Language header field, 158
content-length calculation example, 21
Content-Length header field, 159
Content-Type header field, 159–60
CSeq header field, 132, 133

Date header field, 132–33
devices

initialization of, 33
URIs, 26

Domain Name Service (DNS), 1
defined, 10
lookups, 26
records, 10, 12

Index 275

Domain Name Service (DNS) (continued)
servers, 10, 11

dual tone multiple frequency (DTMF) digits,
174, 263

Dynamic Host Configuration Protocol
(DHCP), 9

emergency calling design team, 263
encryption

end-to-end, 60
hop-by-hop, 60
S/MIME, 59–60

Encryption header field, 133
Error-Info header field, 154
Event header field, 143
Events extensions, 33
Expires header field, 160

firewalls, 61
forking proxy operation, 51
From header field, 133–34
future directions, 261–64

gateways, 45–47
decomposition, 47
defined, 45–46
media (MG), 47
network with, 46
PSTN, 47
PSTN to SIP through, 222–25
SIP to PSTN through, 218–22

global error responses, 125–26
globally routable contact URIs, 263

H.323
call flow illustration, 184
call tear-down sequence, 186
comparison, 187–91
defined, 181
end points, 183
example, 184–87
FastStart connections with, 188
introduction to, 181–83
network elements, 182
niche areas, 190
protocols referenced by, 183
to SIP call flow, 230–35
versions, 187

header fields, 127–60
3GPP, 203–4
Accept, 140

Accept-Contact, 140–41
Accept-Encoding, 141
Accept-Language, 141–42
Alert-Info, 128–29
Allow, 158
Allow-Events, 129
Authentication-Info, 153–54
Authorization, 142
Call-ID, 129–30
Call-Info, 142
categories, 127
compact forms, 128
Contact, 130–32
Content-Disposition, 158
Content-Encoding, 158
Content-Language, 158
Content-Length, 159
Content-Type, 159–60
CSeq, 132, 133
Date, 132–33
Encryption, 133
Error-Info, 154
Event, 143
Expires, 160
From, 133–34
In-Reply-To, 143
inserted/modified by proxies, 129
Join, 143–44
Max-Forwards, 147
message body, 158–60
MIME-Version, 160
Min-Expires, 154

Min-SE, 154–55
Organization, 134
P-Asserted-Identity, 147
P-OSP-Auth-Token, 145–46
P-Preferred-Identity, 147
Priority, 144–45
Privacy, 145
Proxy-Authenticate, 155
Proxy-Authorization, 145, 146
Proxy-Require, 145
RAck, 152–53
Reason, 147–48
Record-Route, 134–35
Referred-By, 148–49
Refer-To, 148
Reject-Contact, 150–51
Replaces, 150

276 SIP: Understanding the Session Initiation Protocol

Reply-To, 149–50
request, 140–53
request and response, 128–40
Request-Disposition, 151
Require, 151–52
response, 153–57
Response-Key, 152
Retry-After, 135, 136
Route, 152
RSeq, 156–57
rules, 127
Server, 155
Session-Expires, 153
Subject, 135
Subscription-State, 153
Supported, 136
Timestamp, 136–37
To, 137, 138
Unsupported, 155
User-Agent, 137–38
Via, 138–40
Warning, 156
WWW-Authenticate, 156

hearing impairment design team, 262
HTTP Digest authentication, 58
HyperText Transport Protocol (HTTP),

3, 107

INFO method, 93–94
defined, 93
example, 93–94
mandatory headers, 94
See also Methods

informational responses, 108–11
100 Trying, 109
180 Ringing, 109
181 Call Is Being

Forwarded, 109
182 Call Queued, 109
183 Session Progress, 110
defined, 108
See also Response(s)

In-Reply-To header field, 143
instant messaging

call flow example, 256–59
example, 33–38, 92
session, establishing, 92
transport, 90
URLs, 101
work, 264

Internet Assigned Number Association
(IANA), 5

Internet Engineering Task Force (IETF), 2–3
Internet Emergency Preparedness

(IEPREP), 263
PINT working group, 3
Request for Comments (RFCs),

2, 267–69
SIMPLE working group, 3
SIPPING working group, 3
SIP-related work status, 262
SPIRITS working group, 3
working groups, 2–3

Internet layer, 4–5
Internet Multicast Backbone Network

(MBONE), 13
Internet Multimedia Protocol stack, 4–9

application layer, 8–9
illustrated, 4
Internet layer, 4–5
physical layer, 4
transport layer, 5–8

Internet Protocol. See IP
Internet service providers (ISPs), 25
INVITE method, 72–74

defined, 72
example, 73–74
for existing dialog references, 73
Expires header, 73
mandatory headers, 74
with no SDP message body, 72
See also Methods

IP, 1
addresses, 25–26
mobility, 193–94
Multimedia Core Network Subsystem

(IMS), 201
ISDN signaling, 176–77
ISUP

ACM, 219
signaling, 176

Join header field, 143–44

Max-Forwards header field, 147
media access control (MAC) addresses, 10
media gateway controllers (MGCs), 47
media gateways (MGs), 47
message bodies, 102–4

format, 102–3

Index 277

message bodies (continued)
information types, 102
intended use, 102
MIME encoding, 103
number of octets in, 103
SIP carrying of, 103

message body header fields, 158–60
Allow, 158
Content-Disposition, 158
Content-Encoding, 158
Content-Language, 158
Content-Length, 159
Content-Type, 159–60
Expires, 160
MIME-Version, 160
See also Header fields

MESSAGE method, 90–93
200 OK response, 91
defined, 90–91
example, 92–93
mandatory header fields, 93
See also Methods

message transport, 38–42
SCTP, 41–42
TCP, 40
TLS, 40–41
UDP, 38–39

methods, 71–104
ACK, 77–79
BYE, 76–77
CANCEL, 79–81
defined, 71
INFO, 93–94
INVITE, 72–74
MESSAGE, 90–93
names, 71
NOTIFY, 89–90
OPTIONS, 81–82
PRACK, 94–96
REFER, 82–86
REGISTER, 74–76
SUBSCRIBE, 86–89
unknown, 71
UPDATE, 96–98

midcall mobility, 197–99
with INVITE and Replaces, 199
with re-INVITE, 197

MIME-Version header field, 160
Min-Expires header field, 154

Min-SE header field, 154–55
Mobile IP, 193–94

3GPP reliance on, 202
defined, 193
triangular routing, 194

mobility
IP, 193–94
midcall, 197–99
personal, 194–95
precall, 196
scenarios, 198
SIP, 194–201

multicast, 12–13
support, 60
uses, 60

multihoming, 8, 42
Multipart Internet Mail Extensions (MIME)

encoding, 103
example, 103–4

network address translators (NATs), 61–62
address binding, 62
problems, 61, 62
TCP and, 66–67
transparency, 61
traversal protocols/extensions, 62–68

NOTIFY method, 89–90
defined, 89
example, 90
example call flow, 87
mandatory header fields, 91
OK response, 90
sent within dialog, 89–90

OPTIONS method, 81–82
defined, 81
example, 81–82
mandatory headers, 76
message body, 81
See also Methods

Organization header field, 134
overlap dialing, 121

parallel search example, 225–30
defined, 225
illustrated, 226
See also Call flow

P-Asserted-Identity header field,
147

Path header field, 203

278 SIP: Understanding the Session Initiation Protocol

personal mobility, 194–95
defined, 194
support, 195
See also Mobility

P-headers, 203–4
physical layer, 4
Point-to-Point Protocol (PPP), 4
P-OSP-Auth-Token header field,

145–46
P-Preferred-Identity header field,

147
PRACK method, 94–96

defined, 94
example, 95–96
mandatory header fields, 96
message body, 95
reliable responses, 95
UAC generation, 94
See also Methods

precall mobility, 196
presence

call flow example, 256–59
Events extensions and, 33
example, 33–38
information, 33
packages, 38
protocol, 33
servers, 45
URLs, 101
work, 264

presence agents (PAs), 44–45
authentication, 45
defined, 44
information collection, 44

Priority header field, 144–45
Privacy header field, 145
proxies

call flow example, 214–18
forking operation, 51
header fields inserted/modified by, 129
number of, 52
transaction stateful, 50
unknown methods and, 71

Proxy-Authenticate header field, 155
Proxy-Authorization header field,
145, 146
Proxy-Require header field, 145
proxy servers, 47–52

access, 48

calls with, 25–30
defined, 47–48
forking, 52
search service, 50
stateful, 49, 50
stateless, 49
UAs vs., 48
See also Servers

PSTN and Internet Interworking (PINT)
protocol, 88

Public Switched Telephone Network
(PSTN), 46

gateways, 47
interworking, 111
overlap dialing, 121
protocols, 176–77

RAck header field, 152–53
Real-Time Transport Protocol (RTP), 8,

171–74
audio video profiles, 174–75
Control Protocol (RTCP), 173
development, 171
lost packet detection, 172–73
octets, 171–72
packet header, 172
packet types, 173
sessions, 174

Reason header field, 147–48
Record-Route header field, 134–35
redirection responses, 112–13
redirect servers, 52–55

defined, 52–53
example, 53
redirection response, 53–54
See also Servers

REFER method, 82–86
acceptance of, 85
defined, 82
example call flow, 83
example message, 83
inside/outside dialog, 82
mandatory headers, 86
for performing attended transfer feature,

85
for pushing Web page, 84
See also Methods

Referred-By header field, 148–49
Refer-To header field, 148

Index 279

REGISTER method, 74–76
CSeq incremented for, 74
defined, 74
forwarding, 75
mandatory headers, 76

registrar servers, 31–32
defined, 31
successful registration acknowledgement,

32
registration

as additive process, 33
automatic performance of, 33
defined, 31
example, 31–33
illustration, 31
security, 55
servers, 55
successful, 32

registration, admission, and status (RAS),
183

Reject-Contact header field, 150–51
reliability, 56–57

example, 57
mechanisms, 39, 56

Replaces header field, 150
Reply-To header field, 149–50
request and response header fields, 128–40

Alert-Info, 128–29
Allow-Events, 129
Call-ID, 129–30
Contact, 130–32
CSeq, 132, 133
Date, 132–33
Encryption, 133
From, 133–34
Organization, 134
Record-Route, 134–35
Retry-After, 135, 136
Subject, 135
Supported, 136
Timestamp, 136–37
To, 137, 138
User-Agent, 137–38
Via, 138–40

Request-Disposition header field,
151

Request for Comments (RFCs), 2, 267–69
RFC 2543, 267–68
RFC 3261, 268–69

request header fields, 140–53
Accept, 140
Accept-Contact, 140–41
Accept-Encoding, 141
Accept-Language, 141–42
Authorization, 142
all-Info, 142
defined, 140
Event, 143
In-Reply-To, 143
Join, 143–44
Max-Forwards, 147
P-Asserted-Identity, 147
P-OSP-Auth-Token, 145–46
P-Preferred-Identity, 147
Priority, 144–45
Privacy, 145
Proxy-Authorization, 145, 146
Proxy-Require, 145
RAck, 152–53
Reason, 147–48
Referred-By, 148–49
Refer-To, 148
Reject-Contact, 150–51
Replaces, 150
Reply-To, 149–50
Request-Disposition, 151
Require, 151–52
Response-Key, 152
Route, 152
Session-Expires, 153
Subscription-State, 153
See also Header fields

requests. See Methods
Require header field, 151–52
response code, 107

HTTP, 107
number, 21
use of, 107

response header fields, 153–57
Authentication-Info, 153–54
defined, 153
Error-Info, 154
Min-Expires, 154
Min-SE, 154–55
Proxy-Authenticate, 155
RSeq, 156–57
Server, 155
Unsupported, 155

280 SIP: Understanding the Session Initiation Protocol

Warning, 156
WWW-Authenticate, 156
See also Header fields

Response-Key header field, 152
response(s), 107–26

100 Trying, 109
180 Ringing, 109
181 Call Is Being

Forwarded, 109
182 Call Queued, 109
183 Session Progress, 110
200 OK, 112
202 Accepted, 112
300 Multiple Choices, 113
301 Moved Permanently, 113
302 Moved Temporarily, 113
305 Use Proxy, 113
380 Alternative Service, 113
400 Bad Request, 114
401 Unauthorized, 114
402 Payment Required, 114
403 Forbidden, 115
404 Not Found, 115
405 Method Not Allowed, 115
406 Not Acceptable, 115
407 Proxy Authentication

Required, 115–16
408 Request Timeout, 116
410 Gone, 116
411 Length Required, 116
413 Request Entity Too

Large, 117
414 Request-URI Too Long, 117
415 Unsupported Media Type,

117
416 Unsupported URI Scheme,

117
420 Bad Extension, 117
421 Extension Required

, 117–18
422 Session Timer Interval

Too Small, 118
423 Interval Too Brief, 118
428 Use Authentication

Token, 118
429 Provide Referror

Identity, 118–19
480 Temporarily

Unavailable, 119

481 Dialog/Transaction Does
Not Exist, 119

482 Loop Detected, 119
483 Too Many Hops, 119–20
484 Address Incomplete, 120
485 Ambiguous, 120–21
486 Busy Here, 121
487 Request Terminated, 122
488 Not Acceptable Here, 122
489 Bad Event, 122
491 Request Pending, 122
493 Request Undecipherable,

122–23
501 Not Implemented, 124
502 Bad Gateway, 124
503 Service Unavailable, 124
504 Gateway Timeout, 124
505 Version Not Supported,

124
513 Message Too Large, 125
600 Busy Everywhere, 125
603 Decline, 125
604 Does Not Exist

Anywhere, 125
606 Not Acceptable, 125
classes, 108
client error, 113–23
global error, 125–26
informational, 108–11
redirection, 112–13
server error, 123–25
success, 112

Retry-After header field, 135, 136
RFC 2543, 267–68
RFC 3261, 268–69
round-trip time (RTT), 57
Route header field, 152
routing

Internet packet, 12
triangular, 65, 194
unicast, 12

RSeq header field, 156–57

server error responses, 123–25
501 Not Implemented, 124
502 Bad Gateway, 124
503 Service Unavailable, 124
504 Gateway Timeout, 124
505 Version Not Supported,

124

Index 281

server error responses (continued)
513 Message Too Large, 125
defined, 123–24
See also Response(s)

Server header field, 155
servers, 47–55

defined, 47
proxy, 47–52
redirect, 52–55
registrar, 31–32
registration, 55

Service-Route header field, 203
Session Announcement Protocol (SAP), 163
Session Description Protocol (SDP),

8, 163–71
applications, 163–64
attributes field, 168–69
attribute values, 170
bandwidth field, 167
connection data field, 166–67
development, 163
email address field, 166
encryption keys field, 167–68
field list, 165
information, 164
media announcements field, 168
media capability/negotiation capabilities,

189
message form, 164
origin field, 165–66
protocol version field, 165
session name and information field, 166
text coding, 164
time field, 167
URI field, 166
use of, 169–71

Session-Expires header field, 153
Session Initiation Protocol. See SIP
sessions

establishment example, 17–25
negotiation, 126
RTP, 174
timer, 52

signaling protocols, 1–2
Simple Mail Transport Protocol (SMTP), 3
Simple Traversal of UDP through NATs.

See STUN protocol
SIP

3GPP architecture and, 201–2

address names, 26
brief history, 3–4
calls with proxy server, 25–31
defined, 1
Events extensions, 33
extended functions, 2
gateways, 45–47
H.323 comparison, 187–91
header fields, 127–60
hearing impairment design team and, 262
Internet and, 1–14
interoperability test events (SIPit), 3
introduction to, 17–42
mobile operators and, 189
mobility, 194–95
popularity, 3
presence and instant message example,

33–38
as PSTN, 46
registration example, 31–33
request messages, 71–104
response code number, 21
response messages, 107–26
servers, 47–55
session timer, 52
signaling functions, 1–2
text-based encoding, 188–89
Trapezoid, 49
URIs, 99–100
user agents, 43–44
warning codes, 156–57

SIP for Telephones (SIP-T), 177
S/MIME encryption, 59–60
stateful proxies, 214–18
stateless proxies, 214–18
Stream Control Transport Protocol

(SCTP), 7–8
defined, 7
as layer 2 transport protocol, 8
multihoming, 8, 41
transport, 41

STUN protocol, 63–65
address translation types, 65
client, 63
defined, 63
illustrated, 64
server, 63

Subject header field, 135
SUBSCRIBE method, 86–89

282 SIP: Understanding the Session Initiation Protocol

Accepted response to, 87
defined, 86
Event header field, 88
example call flow, 87
mandatory header fields, 89
refresh, 88
See also Methods

Subscription-State header field, 153
success responses, 112
Supported header field, 136

tags, 102
telephone URLs, 100–101
Telephony Gateway Registration Protocol

(TGREP), 47
Telephony Routing over IP (TRIP), 47
Timestamp header field, 136–37
To header field, 137, 138
Transmission Control Protocol (TCP),

1, 5, 6–7
congestion control, 40
connections, 39
defined, 6
disadvantages, 40
opening/closing connections, 6
segment header, 7
transmission illustration, 39
transport, 40–41
transport layer, 40

Transmission Layer Security (TLS), 1, 5
defined, 7
end-to-end authentication and, 41
Handshake protocol, 7
opening/closing connections, 8
over TCP, 40–41
between proxies, 41
transport, 40–41

transport layer, 5–8
Traversal Using Relay NAT. See TURN

protocol
TURN protocol, 65–66

defined, 65
illustrated, 66
syntax, 65
triangular routing, 65

uniform resource indicators (URIs), 1, 12
AOR, 26
binding, 26
categories, 26

common schemes, 98
device, 26
globally routable contact, 263
port number, 99
SIP, 99–100
telephone scheme, 100
user, 26

uniform resource locators (URLs), 1
defined, 12
format, 12
IM, 101
presence, 101
telephone, 100–101

Universal Plug and Play (UPnP) Protocol,
178

Unsupported header field, 155
UPDATE method, 96–98

defined, 96
example, 97
mandatory header fields, 98
See also Methods

User-Agent header field, 137–38
user agents (UA), 43–44

acknowledgment discard, 44
acknowledgment generation, 55
authentication, 58
back-to-back (B2BUA), 45
client/server applications, 44
defined, 43
functions, 44
proxy servers vs., 48

User Datagram Protocol (UDP), 1, 5
congestion control and, 39
defined, 7
transmission illustration, 39
transport, 38–39

user URIs, 26
utility applications, 9–10

Via forwarding decision tree, 138, 139
Via header field, 138–40

contents, 138
defined, 138
examples, 140
See also Header fields

warning codes, 156–57
Warning header field, 156
WWW-Authenticate header field, 156

Index 283

	Cover
	Contents
	Foreword to the First Edition
	Preface to the Second Edition
	Preface to the First Edition
	1 SIP and the Internet
	1.1 Signaling Protocols
	1.2 The Internet Engineering Task Force
	1.3 A Brief History of SIP
	1.4 Internet Multimedia Protocol Stack
	1.4.1 Physical Layer
	1.4.2 Internet Layer
	1.4.3 Transport Layer
	1.4.4 Application Layer

	1.5 Utility Applications
	1.6 DNS and IP Addresses
	1.7 URLs and URIs
	1.8 Multicast
	1.9 ABNF Representation
	References

	2 Introduction to SIP
	2.1 A Simple Session Establishment Example
	2.2 SIP Call with Proxy Server
	2.3 SIP Registration Example
	2.4 SIP Presence and Instant Message Example
	2.5 Message Transport
	2.5.1 UDP Transport
	2.5.2 TCP Transport
	2.5.3 TLS Transport
	2.5.4 SCTP Transport

	References

	3 SIP Clients and Servers
	3.1 SIP User Agents
	3.2 Presence Agents
	3.3 Back- to- Back User Agents
	3.4 SIP Gateways
	3.5 SIP Servers
	3.5.1 Proxy Servers
	3.5.2 Redirect Servers
	3.5.3 Registration Servers

	3.6 Acknowledgment of Messages
	3.7 Reliability
	3.8 Authentication
	3.9 S/ MIME Encryption
	3.10 Multicast Support
	3.11 Firewalls and NAT Interaction
	3.12 Protocols and Extensions for NAT Traversal
	3.12.1 STUN Protocol
	3.12.2 TURN Protocol
	3.12.3 Other SIP/ SDP NAT- Related Extensions

	References

	4 SIP Request Messages
	4.1 Methods
	4.1.1 INVITE
	4.1.2 REGISTER
	4.1.3 BYE
	4.1.4 ACK
	4.1.5 CANCEL
	4.1.6 OPTIONS
	4.1.7 REFER
	4.1.8 SUBSCRIBE
	4.1.9 NOTIFY
	4.1.10 MESSAGE
	4.1.11 INFO
	4.1.12 PRACK
	4.1.13 UPDATE

	4.2 URI and URL Schemes Used by SIP
	4.2.1 SIP and SIPS URIs
	4.2.2 Telephone URLs
	4.2.3 Presence and Instant Messaging URLs

	4.3 Tags
	4.4 Message Bodies
	References

	5 SIP Response Messages
	5.1 Informational
	5.1.1 100 Trying
	5.1.2 180 Ringing
	5.1.3 181 Call Is Being Forwarded
	5.1.4 182 Call Queued
	5.1.5 183 Session Progress

	5.2 Success
	5.2.1 200 OK
	5.2.2 202 Accepted

	5.3 Redirection
	5.3.1 300 Multiple Choices
	5.3.2 301 Moved Permanently
	5.3.3 302 Moved Temporarily
	5.3.4 305 Use Proxy
	5.3.5 380 Alternative Service

	5.4 Client Error
	5.4.1 400 Bad Request
	5.4.2 401 Unauthorized
	5.4.3 402 Payment Required
	5.4.4 403 Forbidden
	5.4.5 404 Not Found
	5.4.6 405 Method Not Allowed
	5.4.7 406 Not Acceptable
	5.4.8 407 Proxy Authentication Required
	5.4.9 408 Request Timeout
	5.4.10 409 Conflict
	5.4.11 410 Gone
	5.4.12 411 Length Required
	5.4.13 413 Request Entity Too Large
	5.4.14 414 Request- URI Too Long
	5.4.15 415 Unsupported Media Type
	5.4.16 416 Unsupported URI Scheme
	5.4.17 420 Bad Extension
	5.4.18 421 Extension Required
	5.4.19 422 Session Timer Interval Too Small
	5.4.20 423 Interval Too Brief
	5.4.21 428 Use Authentication Token
	5.4.22 429 Provide Referror Identity
	5.4.23 480 Temporarily Unavailable
	5.4.24 481 Dialog/ Transaction Does Not Exist
	5.4.25 482 Loop Detected
	5.4.26 483 Too Many Hops
	5.4.27 484 Address Incomplete
	5.4.28 485 Ambiguous
	5.4.29 486 Busy Here
	5.4.30 487 Request Terminated
	5.4.31 488 Not Acceptable Here
	5.4.32 489 Bad Event
	5.4.33 491 Request Pending
	5.4.34 493 Request Undecipherable

	5.5 Server Error
	5.5.1 500 Server Internal Error
	5.5.2 501 Not Implemented
	5.5.3 502 Bad Gateway
	5.5.4 503 Service Unavailable
	5.5.5 504 Gateway Timeout
	5.5.6 505 Version Not Supported
	5.5.7 513 Message Too Large

	5.6 Global Error
	5.6.1 600 Busy Everywhere
	5.6.2 603 Decline
	5.6.3 604 Does Not Exist Anywhere
	5.6.4 606 Not Acceptable

	References

	6 SIP Header Fields
	6.1 Request and Response Header Fields
	6.1.1 Alert- Info
	6.1.2 Allow- Events
	6.1.3 Call- ID
	6.1.4 Contact
	6.1.5 CSeq
	6.1.6 Date
	6.1.7 Encryption
	6.1.8 From
	6.1.9 Organization
	6.1.10 Record- Route
	6.1.11 Retry- After
	6.1.12 Subject
	6.1.13 Supported
	6.1.14 Timestamp
	6.1.15 To
	6.1.16 User- Agent
	6.1.17 Via

	6.2 Request Header Fields
	6.2.1 Accept
	6.2.2 Accept- Contact
	6.2.3 Accept- Encoding
	6.2.4 Accept- Language
	6.2.5 Authorization
	6.2.6 Call- Info
	6.2.7 Event
	6.2.8 Hide
	6.2.9 In- Reply- To
	6.2.10 Join
	6.2.11 Priority
	6.2.12 Privacy
	6.2.13 Proxy- Authorization
	6.2.14 Proxy- Require
	6.2.15 P- OSP- Auth- Token
	6.2.16 P- Asserted- Identity
	6.2.17 P- Preferred- Identity
	6.2.18 Max- Forwards
	6.2.19 Reason
	6.2.20 Refer- To
	6.2.21 Referred- By
	6.2.22 Reply- To
	6.2.23 Replaces
	6.2.24 Reject- Contact
	6.2.25 Request- Disposition
	6.2.26 Require
	6.2.27 Response- Key
	6.2.28 Route
	6.2.29 RAck
	6.2.30 Session- Expires
	6.2.31 Subscription- State

	6.3 Response Header Fields
	6.3.1 Authenticaton- Info
	6.3.2 Error- Info
	6.3.3 Min- Expires
	6.3.4 Min- SE
	6.3.5 Proxy- Authenticate
	6.3.6 Server
	6.3.7 Unsupported
	6.3.8 Warning
	6.3.9 WWW- Authenticate
	6.3.10 RSeq

	6.4 Message Body Header Fields
	6.4.1 Allow
	6.4.2 Content- Encoding
	6.4.3 Content- Disposition
	6.4.4 Content- Language
	6.4.5 Content- Length
	6.4.6 Content- Type
	6.4.7 Expires
	6.4.8 MIME- Version

	References

	7 Related Protocols
	7.1 SDP ¡ª Session Description Protocol
	7.1.1 Protocol Version
	7.1.2 Origin
	7.1.3 Session Name and Information
	7.1.4 URI
	7.1.5 E- Mail Address and Phone Number
	7.1.6 Connection Data
	7.1.7 Bandwidth
	7.1.8 Time, Repeat Times, and Time Zones
	7.1.9 Encryption Keys
	7.1.10 Media Announcements
	7.1.11 Attributes
	7.1.12 Use of SDP in SIP

	7.2 RTP ¡ª Real- Time Transport Protocol
	7.3 RTP Audio Video Profiles
	7.4 PSTN Protocols
	7.4.1 Circuit Associated Signaling
	7.4.2 ISUP Signaling
	7.4.3 ISDN Signaling

	7.5 SIP for Telephones
	7.6 Universal Plug and Play Protocol
	References

	8 Comparison to H. 323
	8.1 Introduction to H. 323
	8.2 Example of H. 323
	8.3 Versions
	8.4 Comparison
	8.4.1 Fundamental Differences
	8.4.2 Strengths of Each Protocol

	8.5 Conclusion
	References

	9 Wireless and 3GPP
	9.1 IP Mobility
	9.2 SIP Mobility
	9.3 3GPP Architecture and SIP
	9.4 3GPP Header Fields
	9.4.1 Service- Route
	9.4.2 Path
	9.4.3 Other P- Headers

	9.5 Future of SIP and Wireless
	References

	10 Call Flow Examples
	10.1 SIP Call with Authentication, Proxies, and Record- Route
	10.2 SIP Call with Stateless and Stateful Proxies with Called Party Busy
	10.3 SIP to PSTN Call Through Gateway
	10.4 PSTN to SIP Call Through Gateway
	10.5 Parallel Search
	10.6 H. 323 to SIP Call
	10.7 3GPP Wireless Call Flow
	10.8 Call Setup Example with Two Proxies
	10.9 SIP Presence and Instant Message Example
	References

	11 Future Directions
	11.1 SIP, SIPPING, and SIMPLE Working Group Design Teams
	11.1.1 SIP and Hearing Impairment Design Team
	11.1.2 Conferencing Design Team
	11.1.3 Application Interaction Design Team
	11.1.4 Emergency Calling Design Team

	11.2 Other SIP Work Areas
	11.2.1 Emergency Preparedness
	11.2.2 Globally Routable Contact URIs
	11.2.3 Service Examples

	11.3 SIP Instant Message and Presence Work
	References

	Appendix A: Changes in the SIP Specification from RFC 2543 to RFC 3261
	About the Author
	Index

