

Beginning Python
From Novice to Professional,
Second Edition

■ ■ ■

Magnus Lie Hetland

Beginning Python: From Novice to Professional, Second Edition

Copyright © 2008 by Magnus Lie Hetland

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-982-2

ISBN-10 (pbk): 1-59059-982-9

ISBN-13 (electronic): 978-1-4302-0634-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Frank Pohlmann
Technical Reviewers: Gregg Bolinger, Richard Taylor
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan

Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Pat Christenson
Proofreader: April Eddy
Indexer: John Collin
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

iv

Contents at a Glance

About the Author . xxiii

About the Technical Reviewer .xxv

Preface . xxvii

Introduction . xxix

■CHAPTER 1 Instant Hacking: The Basics . 1

■CHAPTER 2 Lists and Tuples . 31

■CHAPTER 3 Working with Strings . 53

■CHAPTER 4 Dictionaries: When Indices Won’t Do . 69

■CHAPTER 5 Conditionals, Loops, and Some Other Statements 83

■CHAPTER 6 Abstraction . 113

■CHAPTER 7 More Abstraction . 141

■CHAPTER 8 Exceptions . 161

■CHAPTER 9 Magic Methods, Properties, and Iterators . 175

■CHAPTER 10 Batteries Included . 209

■CHAPTER 11 Files and Stuff . 261

■CHAPTER 12 Graphical User Interfaces . 277

■CHAPTER 13 Database Support . 293

■CHAPTER 14 Network Programming . 305

■CHAPTER 15 Python and the Web . 321

■CHAPTER 16 Testing, 1-2-3 . 349

■CHAPTER 17 Extending Python . 365

■CHAPTER 18 Packaging Your Programs . 383

■CHAPTER 19 Playful Programming . 393

■CHAPTER 20 Project 1: Instant Markup . 403

■CHAPTER 21 Project 2: Painting a Pretty Picture . 425

■CHAPTER 22 Project 3: XML for All Occasions . 435

■CHAPTER 23 Project 4: In the News . 453

v

■CHAPTER 24 Project 5: A Virtual Tea Party . 469

■CHAPTER 25 Project 6: Remote Editing with CGI . 489

■CHAPTER 26 Project 7: Your Own Bulletin Board . 499

■CHAPTER 27 Project 8: File Sharing with XML-RPC . 517

■CHAPTER 28 Project 9: File Sharing II—Now with GUI! . 537

■CHAPTER 29 Project 10: Do-It-Yourself Arcade Game . 547

■APPENDIX A The Short Version . 569

■APPENDIX B Python Reference . 579

■APPENDIX C Online Resources . 595

■APPENDIX D Python 3.0 . 599

■INDEX . 607

vii

Contents

About the Author . xxiii

About the Technical Reviewer. xxv

Preface . xxvii

Introduction . xxix

■CHAPTER 1 Instant Hacking: The Basics . 1

Installing Python . 1

Windows . 1

Linux and UNIX . 3

Macintosh . 5

Other Distributions . 5

Keeping in Touch and Up-to-Date . 7

The Interactive Interpreter. 7

Algo . . . What? . 9

Numbers and Expressions. 9

Large Integers . 11

Hexadecimals and Octals. 12

Variables. 13

Statements. 13

Getting Input from the User. 14

Functions . 16

Modules . 17

cmath and Complex Numbers. 18

Back to the __future__ . 19

Saving and Executing Your Programs . 19

Running Your Python Scripts from a Command Prompt. 20

Making Your Scripts Behave Like Normal Programs 20

Comments . 22

viii ■C O N T E N T S

Strings . 22

Single-Quoted Strings and Escaping Quotes 23

Concatenating Strings . 24

String Representations, str and repr . 24

input vs. raw_input . 26

Long Strings, Raw Strings, and Unicode. 26

A Quick Summary. 29

New Functions in This Chapter . 30

What Now? . 30

■CHAPTER 2 Lists and Tuples . 31

Sequence Overview . 31

Common Sequence Operations . 32

Indexing . 32

Slicing . 34

Adding Sequences . 37

Multiplication . 37

Membership . 38

Length, Minimum, and Maximum . 40

Lists: Python’s Workhorse. 40

The list Function . 40

Basic List Operations . 41

List Methods. 43

Tuples: Immutable Sequences . 49

The tuple Function . 50

Basic Tuple Operations . 50

So What’s the Point? . 51

A Quick Summary. 51

New Functions in This Chapter . 52

What Now? . 52

■CHAPTER 3 Working with Strings . 53

Basic String Operations . 53

String Formatting: The Short Version . 53

■C O N T E N T S ix

String Formatting: The Long Version. 56

Simple Conversion . 57

Width and Precision . 57

Signs, Alignment, and Zero-Padding . 58

String Methods . 60

find. 60

join . 61

lower . 62

replace . 63

split . 63

strip . 64

translate . 64

A Quick Summary. 66

New Functions in This Chapter . 66

What Now? . 67

■CHAPTER 4 Dictionaries: When Indices Won’t Do . 69

Dictionary Uses . 69

Creating and Using Dictionaries . 70

The dict Function. 71

Basic Dictionary Operations . 71

String Formatting with Dictionaries . 73

Dictionary Methods . 74

A Quick Summary. 81

New Functions in This Chapter . 81

What Now? . 81

■CHAPTER 5 Conditionals, Loops, and Some Other Statements. 83

More About print and import. 83

Printing with Commas . 83

Importing Something As Something Else . 84

Assignment Magic . 85

Sequence Unpacking . 85

Chained Assignments. 87

Augmented Assignments . 87

x ■C O N T E N T S

Blocks: The Joy of Indentation . 88

Conditions and Conditional Statements . 88

So That’s What Those Boolean Values Are For 89

Conditional Execution and the if Statement . 90

else Clauses . 90

elif Clauses. 91

Nesting Blocks. 91

More Complex Conditions . 92

Assertions. 97

Loops . 97

while Loops . 98

for Loops. 99

Iterating Over Dictionaries . 100

Some Iteration Utilities . 100

Breaking Out of Loops . 102

else Clauses in Loops. 105

List Comprehension—Slightly Loopy . 105

And Three for the Road . 107

Nothing Happened! . 107

Deleting with del . 107

Executing and Evaluating Strings with exec and eval. 108

A Quick Summary. 111

New Functions in This Chapter . 112

What Now? . 112

■CHAPTER 6 Abstraction. 113

Laziness Is a Virtue. 113

Abstraction and Structure . 114

Creating Your Own Functions . 115

Documenting Functions . 116

Functions That Aren’t Really Functions . 117

The Magic of Parameters . 117

Where Do the Values Come From? . 118

Can I Change a Parameter?. 118

Keyword Parameters and Defaults. 123

Collecting Parameters . 125

Reversing the Process . 128

Parameter Practice . 129

Scoping. 131

■C O N T E N T S xi

Recursion . 133

Two Classics: Factorial and Power. 134

Another Classic: Binary Search. 136

A Quick Summary. 139

New Functions in This Chapter . 140

What Now? . 140

■CHAPTER 7 More Abstraction . 141

The Magic of Objects . 141

Polymorphism . 142

Encapsulation. 145

Inheritance . 147

Classes and Types . 147

What Is a Class, Exactly? . 147

Making Your Own Classes . 148

Attributes, Functions, and Methods . 150

Privacy Revisited . 150

The Class Namespace . 152

Specifying a Superclass. 153

Investigating Inheritance . 154

Multiple Superclasses . 155

Interfaces and Introspection . 156

Some Thoughts on Object-Oriented Design. 157

A Quick Summary. 158

New Functions in This Chapter . 159

What Now? . 159

■CHAPTER 8 Exceptions . 161

What Is an Exception? . 161

Making Things Go Wrong . . . Your Way . 161

The raise Statement . 162

Custom Exception Classes. 163

Catching Exceptions. 163

Look, Ma, No Arguments! . 164

More Than One except Clause . 165

Catching Two Exceptions with One Block. 166

Catching the Object . 166

A Real Catchall. 167

xii ■C O N T E N T S

When All Is Well . 168

And Finally . 169

Exceptions and Functions . 170

The Zen of Exceptions . 171

A Quick Summary. 173

New Functions in This Chapter . 174

What Now? . 174

■CHAPTER 9 Magic Methods, Properties, and Iterators 175

Before We Begin 175

Constructors . 176

Overriding Methods in General, and the Constructor
in Particular. 177

Calling the Unbound Superclass Constructor 179

Using the super Function . 180

Item Access . 182

The Basic Sequence and Mapping Protocol 182

Subclassing list, dict, and str . 185

More Magic . 187

Properties. 187

The property Function . 188

Static Methods and Class Methods . 189

__getattr__, __setattr__, and Friends . 191

Iterators . 192

The Iterator Protocol . 192

Making Sequences from Iterators . 194

Generators . 194

Making a Generator . 195

A Recursive Generator . 196

Generators in General. 197

Generator Methods . 198

Simulating Generators . 199

The Eight Queens . 200

Generators and Backtracking . 200

The Problem. 201

State Representation . 202

Finding Conflicts . 202

The Base Case. 203

The Recursive Case . 204

Wrapping It Up . 205

■C O N T E N T S xiii

A Quick Summary. 206

New Functions in This Chapter . 207

What Now? . 207

■CHAPTER 10 Batteries Included . 209

Modules . 209

Modules Are Programs. 209

Modules Are Used to Define Things . 211

Making Your Modules Available . 214

Packages . 217

Exploring Modules . 218

What’s in a Module? . 218

Getting Help with help . 219

Documentation . 220

Use the Source . 221

The Standard Library: A Few Favorites . 221

sys . 222

os . 223

fileinput . 225

Sets, Heaps, and Deques. 227

time . 232

random . 234

shelve . 238

re . 242

Other Interesting Standard Modules . 258

A Quick Summary. 259

New Functions in This Chapter . 260

What Now? . 260

■CHAPTER 11 Files and Stuff . 261

Opening Files. 261

File Modes . 261

Buffering . 263

The Basic File Methods . 263

Reading and Writing . 264

Piping Output . 264

Reading and Writing Lines. 266

Closing Files . 267

Using the Basic File Methods . 268

xiv ■C O N T E N T S

Iterating over File Contents . 270

Doing It Byte by Byte . 270

One Line at a Time . 271

Reading Everything . 271

Lazy Line Iteration with fileinput. 272

File Iterators . 272

A Quick Summary. 274

New Functions in This Chapter . 275

What Now? . 275

■CHAPTER 12 Graphical User Interfaces . 277

A Plethora of Platforms . 277

Downloading and Installing wxPython . 278

Building a Sample GUI Application. 279

Getting Started. 280

Windows and Components . 281

Labels, Titles, and Positions . 282

More Intelligent Layout. 284

Event Handling. 286

The Finished Program . 286

But I’d Rather Use . 288

Using Tkinter . 289

Using Jython and Swing. 290

Using Something Else. 290

A Quick Summary. 291

What Now? . 291

■CHAPTER 13 Database Support . 293

The Python Database API . 294

Global Variables. 294

Exceptions . 295

Connections and Cursors. 296

Types. 297

SQLite and PySQLite . 298

Getting Started. 300

A Sample Database Application . 300

A Quick Summary. 303

New Functions in This Chapter . 304

What Now? . 304

■C O N T E N T S xv

■CHAPTER 14 Network Programming . 305

A Handful of Networking Modules . 305

The socket Module . 306

The urllib and urllib2 Modules . 308

Other Modules . 310

SocketServer and Friends . 310

Multiple Connections . 311

Forking and Threading with SocketServer . 313

Asynchronous I/O with select and poll. 313

Twisted. 316

Downloading and Installing Twisted . 317

Writing a Twisted Server . 317

A Quick Summary. 319

New Functions in This Chapter . 320

What Now? . 320

■CHAPTER 15 Python and the Web . 321

Screen Scraping . 321

Tidy and XHTML Parsing . 322

Beautiful Soup . 327

Dynamic Web Pages with CGI . 328

Step 1. Preparing the Web Server . 328

Step 2. Adding the Pound Bang Line . 329

Step 3. Setting the File Permissions . 329

CGI Security Risks . 330

A Simple CGI Script. 331

Debugging with cgitb . 331

Using the cgi Module . 333

A Simple Form . 334

One Step Up: mod_python . 336

Installing mod_python . 337

CGI Handler . 338

PSP . 339

The Publisher . 341

Web Application Frameworks. 343

Web Services: Scraping Done Right . 344

RSS and Friends . 345

Remote Procedure Calls with XML-RPC . 345

SOAP . 346

xvi ■C O N T E N T S

A Quick Summary. 346

New Functions in This Chapter . 347

What Now? . 347

■CHAPTER 16 Testing, 1-2-3 . 349

Test First, Code Later. 349

Precise Requirement Specification . 350

Planning for Change . 351

The 1-2-3 (and 4) of Testing . 352

Tools for Testing . 352

doctest . 353

unittest . 355

Beyond Unit Tests. 358

Source Code Checking with PyChecker and PyLint 359

Profiling. 362

A Quick Summary. 364

New Functions in This Chapter . 364

What Now? . 364

■CHAPTER 17 Extending Python . 365

The Best of Both Worlds . 365

The Really Easy Way: Jython and IronPython . 367

Writing C Extensions . 369

A Swig of . . . SWIG. 371

Hacking It on Your Own . 375

A Quick Summary. 380

New Functions in This Chapter . 381

What Now? . 381

■CHAPTER 18 Packaging Your Programs . 383

Distutils Basics . 383

Wrapping Things Up. 386

Building an Archive File . 386

Creating a Windows Installer or an RPM Package. 387

Compiling Extensions. 388

Creating Executable Programs with py2exe . 389

■C O N T E N T S xvii

A Quick Summary. 390

New Functions in This Chapter . 391

What Now? . 391

■CHAPTER 19 Playful Programming . 393

Why Playful? . 393

The Jujitsu of Programming . 393

Prototyping. 394

Configuration . 396

Extracting Constants. 396

Configuration Files . 396

Logging. 399

If You Can’t Be Bothered . 400

If You Want to Learn More. 400

A Quick Summary. 401

What Now? . 401

■CHAPTER 20 Project 1: Instant Markup . 403

What’s the Problem? . 403

Useful Tools . 404

Preparations . 405

First Implementation . 406

Finding Blocks of Text . 406

Adding Some Markup. 407

Second Implementation. 408

Handlers . 409

A Handler Superclass . 410

Rules . 412

A Rule Superclass . 413

Filters . 413

The Parser . 413

Constructing the Rules and Filters . 415

Putting It All Together . 418

Further Exploration . 423

What Now? . 424

xviii ■C O N T E N T S

■CHAPTER 21 Project 2: Painting a Pretty Picture . 425

What’s the Problem? . 425

Useful Tools . 426

Preparations . 426

First Implementation . 427

Drawing with ReportLab . 427

Constructing Some PolyLines . 429

Writing the Prototype . 430

Second Implementation. 431

Getting the Data. 432

Using the LinePlot Class. 432

Further Exploration . 434

What Now? . 434

■CHAPTER 22 Project 3: XML for All Occasions . 435

What’s the Problem? . 435

Useful Tools . 436

Preparations . 437

First Implementation . 438

Creating a Simple Content Handler . 439

Creating HTML Pages . 442

Second Implementation. 444

A Dispatcher Mix-In Class . 444

Factoring Out the Header, Footer, and Default Handling 446

Support for Directories . 447

The Event Handlers . 448

Further Exploration . 451

What Now? . 452

■CHAPTER 23 Project 4: In the News . 453

What’s the Problem? . 453

Useful Tools . 454

Preparations . 454

First Implementation . 455

■C O N T E N T S xix

Second Implementation. 458

Further Exploration . 467

What Now? . 468

■CHAPTER 24 Project 5: A Virtual Tea Party . 469

What’s the Problem? . 469

Useful Tools . 470

Preparations . 470

First Implementation . 471

The ChatServer Class . 471

The ChatSession Class. 473

Putting It Together. 475

Second Implementation. 477

Basic Command Interpretation . 477

Rooms . 478

Login and Logout Rooms . 479

The Main Chat Room . 479

The New Server . 480

Further Exploration . 486

What Now? . 487

■CHAPTER 25 Project 6: Remote Editing with CGI . 489

What’s the Problem? . 489

Useful Tools . 490

Preparations . 490

First Implementation . 490

Second Implementation. 491

Creating the File Name Form . 492

Writing the Editor Script . 492

Writing the Save Script. 494

Running the Editor. 496

Further Exploration . 497

What Now? . 498

xx ■C O N T E N T S

■CHAPTER 26 Project 7: Your Own Bulletin Board . 499

What’s the Problem? . 499

Useful Tools . 500

Preparations . 500

First Implementation . 502

Second Implementation. 506

Writing the Main Script. 507

Writing the View Script. 508

Writing the Edit Script. 510

Writing the Save Script. 511

Trying It Out . 513

Further Exploration . 515

What Now? . 515

■CHAPTER 27 Project 8: File Sharing with XML-RPC . 517

What’s the Problem? . 517

Useful Tools . 518

Preparations . 519

First Implementation . 519

Implementing a Simple Node . 520

Trying Out the First Implementation . 525

Second Implementation. 527

Creating the Client Interface . 527

Raising Exceptions . 528

Validating File Names . 529

Trying Out the Second Implementation . 534

Further Exploration . 534

What Now? . 535

■CHAPTER 28 Project 9: File Sharing II—Now with GUI! 537

What’s the Problem? . 537

Useful Tools . 537

Preparations . 538

First Implementation . 538

Second Implementation. 541

Further Exploration . 545

What Now? . 545

■C O N T E N T S xxi

■CHAPTER 29 Project 10: Do-It-Yourself Arcade Game 547

What’s the Problem? . 547

Useful Tools . 548

pygame . 548

pygame.locals . 549

pygame.display . 549

pygame.font . 550

pygame.sprite . 550

pygame.mouse . 550

pygame.event . 550

pygame.image . 551

Preparations . 551

First Implementation . 551

Second Implementation. 556

Further Exploration . 567

What Now? . 567

■APPENDIX A The Short Version . 569

The Basics . 569

Functions . 571

Objects and Stuff . 572

Some Loose Ends . 576

■APPENDIX B Python Reference . 579

Expressions . 579

Statements. 589

Simple Statements . 589

Compound Statements. 592

■APPENDIX C Online Resources . 595

Python Distributions . 595

Python Documentation. 596

Useful Toolkits and Modules. 596

Newsgroups, Mailing Lists, and Blogs . 597

xxii ■C O N T E N T S

■APPENDIX D Python 3.0 . 599

Strings and I/O . 599

Strings, Bytes, and Encodings . 599

Console I/O . 600

New String Formatting . 600

Classes and Functions . 601

Function Annotation . 601

Abstract Base Classes . 601

Class Decorators and New Metaclass Syntax 601

Keyword-Only Parameters. 602

Nonlocal Variables. 602

Iterables, Comprehensions, and Views. 603

Extended Iterable Unpacking. 603

Dictionary and Set Comprehension . 603

Dictionary Views . 603

Iterator Return Values. 603

Things That Have Gone . 604

Some Minor Issues . 604

The Standard Library . 604

Other Stuff . 605

■INDEX . 607

xxiii

About the Author

■MAGNUS LIE HETLAND is an associate professor of algorithms at the
Norwegian University of Science and Technology (NTNU). Even
though he loves learning new programming languages—even quite
obscure ones—Magnus has been a devoted Python fan and an active
member of the Python community for many years, and is the author
of the popular online tutorials “Instant Python” and “Instant Hack-
ing.” His publications include the forerunner to this book, Practical
Python (Apress, 2002), as well as several scientific papers. When he
isn’t busy staring at a computer screen, he may be found reading
(even while bicycling), acting (in a local theater group), or gaming
(mostly role-playing games).

xxv

About the Technical Reviewer

■RICHARD TAYLOR is a senior analyst at QinetiQ Ltd in the UK, where he specializes in open
systems architectures for command and control systems. He has been developing in Python
since about 1994, and has used Python to build many large-scale commercial and research
applications. When not working, Richard indulges his keen interest in genealogy and open
source software, and is a regular contributor to the GRAMPS (Genealogical Research and
Analysis Management Programming System) project.

xxvii

Preface

Here it is—a shiny new edition of Beginning Python. If you count its predecessor, Practical
Python, this is actually the third edition, and a book I’ve been involved with for the better part
of a decade. During this time, Python has seen many interesting changes, and I’ve done my best
to update my introduction to the language. At the moment, Python is facing perhaps its most
marked transition in a very long time: the introduction of version 3. As I write this, the final release
isn’t out yet, but the features are clearly defined and working versions are available. One interest-
ing challenge linked to this language revision is that it isn’t backward-compatible. In other words,
it doesn’t simply add features that I could pick and choose from in my writing. It also changes the
existing language, so that certain things that are true for Python 2.5 no longer hold.

Had it been clear that the entire Python community would instantly switch to the new ver-
sion and update all its legacy code, this would hardly be a problem. Simply describe the new
language! However, a lot of code written for older versions exists, and much will probably still
be written, until version 3 is universally accepted as The Way To Go™.

So, how have I gotten myself out of this pickle? First of all, even though there are incompat-
ible changes, most of the language remains the same. Therefore, if I wrote entirely about Python
2.5, it would be mostly correct for Python 3 (and even more so for its companion release, 2.6).
As for the parts that will no longer be correct, I have been a bit conservative and assumed that
full adoption of version 3 will take some time. I have based the book primarily on 2.5, and noted
things that will change throughout the text. In addition, I’ve included Appendix D, which gives
you an overview of the main changes. I think this will work out for most readers.

In writing this second edition, I have had a lot of help from several people. Just as with the
previous two versions (the first edition, and, before it, Practical Python), Jason Gilmore got me
started and played an important role in getting the project on the road. As it has moved along,
Richard Dal Porto, Frank Pohlmann, and Dominic Shakeshaft have been instrumental in keep-
ing it going. Richard Taylor has certainly played a crucial role in ensuring that the code is
correct (and if it still isn’t, I’m the one to blame), and Marilyn Smith has done a great job tuning
my writing. My thanks also go out to other Apress staff, including Liz Berry, Beth Christmas,
Steve Anglin, and Tina Nielsen, as well as various readers who have provided errata and helpful
suggestions, including Bob Helmbold and Waclaw Kusnierczyk. I am also, of course, still thank-
ful to all those who helped in getting the first two incarnations of this book on the shelves.

Preface to the First Edition
A few years ago, Jason Gilmore approached me about writing a book for Apress. He had read my
online Python tutorials and wanted me to write a book in a similar style. I was flattered, excited,
and just a little nervous. The one thing that worried me the most was how much time it would
take, and how much it would interfere with my studies (I was a Ph.D student at the time). It
turned out to be quite an undertaking, and it took me a lot longer to finish than I had expected.

xxviii ■P R E F A C E

Luckily, it didn’t interfere too much with my school work, and I managed to get my degree
without any delays.

Last year, Jason contacted me again. Apress wanted an expanded and revised version of
my book. Was I interested? At the time, I was busy settling into a new position as associate pro-
cessor, while spending all my spare time portraying Peer Gynt, so again time became the major
issue. Eventually (after things had settled down a bit, and I had a bit more time to spare), I
agreed to do the book, and this (as I’m sure you’ve gathered) is the result. Most of the material
is taken from the first version of the book, Practical Python (Apress, 2002). The existing material
has been completely revised, based on recent changes in the Python language, and several new
chapters have been added. Some of the old material has also been redistributed to accommo-
date the new structure. I’ve received a lot of positive feedback from readers about the first
version. I hope I’ve been able to keep what people liked and to add more of the same.

Without the persistent help and encouragement from several people, this book would
never have been written. My heartfelt thanks go out to all of them. In particular, I would like
to thank the team that has worked directly with me in the process of writing the book: Jason
Gilmore, for getting the project off the ground and steering it in the right direction; Beckie
Stones, for keeping everything together; Jeremy Jones and Matt Moodie for their technical
comments and insights; and Linda Marousek for being so patient with me. I’m also grateful
to the rest of the team for making the process as smooth as it has been. But this book wouldn’t
be what it is without several people who worked with me on the previous version: I’d like to
thank Jason Gilmore and Alex Martelli for their excellent technical editing (Jason on the entire
book, and Alex on the first half) and for going above and beyond the call of duty in dispensing
advice and suggestions; Erin Mulligan and Tory McLearn for holding my hand through the pro-
cess and for nudging me along when that was needed; Nancy Rapoport for her help polishing
my prose; and Grace Wong for providing answers when no one else could. Pete Shinners gave
me several helpful suggestions on the game in Project 10, for which I am very grateful. My
morale has also been heavily boosted by several encouraging emails from satisfied readers—
thanks! Finally, I would like to thank my family and friends, and my girlfriend Ranveig, for
putting up with me while I was writing this book.

xxix

Introduction

 A C program is like a fast dance on a newly waxed dance floor by people carrying razors.

—Waldi Ravens

C++: Hard to learn and built to stay that way.

—Anonymous

Java is, in many ways, C++– –.

—Michael Feldman

And now for something completely different . . .

—Monty Python’s Flying Circus

I’ve started this introduction with a few quotes to set the tone for the book, which is rather
informal. In the hope of making it an easy read, I’ve tried to approach the topic of Python pro-
gramming with a healthy dose of humor, and true to the traditions of the Python community,
much of this humor is related to Monty Python sketches. As a consequence, some of my exam-
ples may seem a bit silly; I hope you will bear with me. (And, yes, the name Python is derived
from Monty Python, not from snakes belonging to the family Pythonidae.)

In this introduction, I give you a quick look at what Python is, why you should use it, who
uses it, who this book’s intended audience is, and how the book is organized.

So, what is Python, and why should you use it? To quote an official blurb (available from
http://python.org/doc/essays/blurb.html), it is “an interpreted, object-oriented, high-level
programming language with dynamic semantics.” Many of these terms will become clear as
you read this book, but the gist is that Python is a programming language that knows how to
stay out of your way when you write your programs. It enables you to implement the function-
ality you want without any hassle, and lets you write programs that are clear and readable
(much more so than programs in most other currently popular programming languages).

Even though Python might not be as fast as compiled languages such as C or C++, what you
save in programming time will probably be worth using it, and in most programs, the speed dif-
ference won’t be noticeable anyway. If you are a C programmer, you can easily implement the
critical parts of your program in C at a later date, and have them interoperate with the Python
parts. If you haven’t done any programming before (and perhaps are a bit confused by my ref-
erences to C and C++), Python’s combination of simplicity and power makes it an ideal choice
as a place to start.

xxx ■I N T R O D U C T I O N

So, who uses Python? Since Guido van Rossum created the language in the early 1990s, its
following has grown steadily, and interest has increased markedly in the past few years. Python
is used extensively for system administration tasks (it is, for example, a vital component of sev-
eral Linux distributions), but it is also used to teach programming to complete beginners. The
US National Aeronautics and Space Administration (NASA) uses Python both for development
and as a scripting language in several of its systems. Industrial Light & Magic uses Python in its
production of special effects for large-budget feature films. Yahoo! uses it (among other things)
to manage its discussion groups. Google has used it to implement many components of its web
crawler and search engine. Python is being used in such diverse areas as computer games and
bioinformatics. Soon one might as well ask, “Who isn’t using Python?”

This book is for those of you who want to learn how to program in Python. It is intended to
suit a wide audience, from neophyte programmer to advanced computer wiz. If you have never
programmed before, you should start by reading Chapter 1 and continue until you find that
things get too advanced for you (if, indeed, they do). Then you should start practicing and write
some programs of your own. When the time is right, you can return to the book and proceed
with the more intricate stuff.

If you already know how to program, some of the introductory material might not be new
to you (although there will probably be some surprising details here and there). You could skim
through the early chapters to get an idea of how Python works, or perhaps read through Appen-
dix A, which is based on my online Python tutorial “Instant Python.” It will get you up to speed
on the most important Python concepts. After getting the big picture, you could jump straight
to Chapter 10 (which describes the Python standard libraries).

The last ten chapters present ten programming projects, which show off various capabili-
ties of the Python language. These projects should be of interest to beginners and experts alike.
Although some of the material in the later projects may be a bit difficult for an inexperienced
programmer, following the projects in order (after reading the material in the first part of the
book) should be possible.

The projects touch upon a wide range of topics, most of which will be very useful to you
when writing programs of your own. You will learn how to do things that may seem completely
out of reach to you at this point, such as creating a chat server, a peer-to-peer file sharing sys-
tem, or a full-fledged graphical computer game. Although much of the material may seem hard
at first glance, I think you will be surprised by how easy most of it really is. If you would like to
download the source code, it’s available from the Source Code/Download section of the Apress
web site (http://www.apress.com).

Well, that’s it. I always find long introductions boring myself, so I’ll let you continue with
your Pythoneering, either in Chapter 1 or in Appendix A. Good luck, and happy hacking.

1

■ ■ ■

C H A P T E R 1

Instant Hacking: The Basics

It’s time to start hacking.1 In this chapter, you learn how to take control of your computer by
speaking a language it understands: Python. Nothing here is particularly difficult, so if you know
the basic principles of how your computer works, you should be able to follow the examples and
try them out yourself. I’ll go through the basics, startiwng with the excruciatingly simple, but
because Python is such a powerful language, you’ll soon be able to do pretty advanced things.

First, I show you how to get the software you need. Then I tell you a bit about algorithms
and their main components. Throughout these sections, there are numerous small examples
(most of them using only simple arithmetic) that you can try out in the Python interactive
interpreter (covered in the section “The Interactive Interpreter” in this chapter). You learn
about variables, functions, and modules, and after handling these topics, I show you how to
write and run larger programs. Finally, I deal with strings, an important aspect of almost any
Python program.

Installing Python
Before you can start programming, you need some new software. What follows is a short
description of how to download and install Python. If you want to jump into the installation
process without detailed guidance, you can simply visit http://www.python.org/download to
get the most recent version of Python.

Windows
To install Python on a Windows machine, follow these steps:

1. Open a web browser and go to http://www.python.org.

2. Click the Download link.

3. You should see several links here, with names such as Python 2.5.x and Python 2.5.x
Windows installer. Click the Windows installer link to download the installer file. (If
you’re running on an Itanium or AMD machine, you need to choose the appropriate
installer.)

1. Hacking is not the same as cracking, which is a term describing computer crime. The two are often con-
fused. Hacking basically means “having fun while programming.” For more information, see Eric
Raymond’s article “How to Become a Hacker” at http://www.catb.org/~esr/faqs/hacker-howto.html.

2 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note If you can’t find the link mentioned in step 3, click the link with the highest version among those
with names like Python 2.5.x. For Python 2.5, you could simply go to http://www.python.org/2.5. Follow
the instructions for Windows users. This will entail downloading a file called python-2.5.x.msi (or some-
thing similar), where 2.5.x should be the version number of the newest release.

4. Store the Windows Installer file somewhere on your computer, such as C:\download\
python-2.5.x.msi. (Just create a directory where you can find it later.)

5. Run the downloaded file by double-clicking it in Windows Explorer. This brings up the
Python install wizard, which is really easy to use. Just accept the default settings, wait
until the installation is finished, and you’re ready to roll!

Assuming that the installation went well, you now have a new program in your Windows
Start menu. Run the Python Integrated Development Environment (IDLE) by selecting Start ➤
Programs ➤ Python2 ➤ IDLE (Python GUI).

You should now see a window that looks like the one shown in Figure 1-1. If you feel a bit lost,
simply select Help ➤ IDLE Help from the menu to get a simple description of the various menu
items and basic usage. For more documentation on IDLE, check out http://www.python.org/idle.
(Here you will also find more information on running IDLE on platforms other than Windows.) If
you press F1, or select Help ➤ Python Docs from the menu, you will get the full Python documen-
tation. (The document there of most use to you will probably be the Library Reference.) All the
documentation is searchable.

Figure 1-1. The IDLE interactive Python shell

2. This menu option will probably include your version number, as in Python 2.5.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 3

Once you have the IDLE interactive Python shell running, you can continue with the sec-
tion “The Interactive Interpreter,” later in this chapter.

Linux and UNIX
In most Linux and UNIX installations (including Mac OS X), a Python interpreter will already
be present. You can check whether this is the case for you by running the python command at
the prompt, as follows:

$ python

Running this command should start the interactive Python interpreter, with output simi-
lar to the following:

Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

■Note To exit the interactive interpreter, use Ctrl-D (press the Ctrl key and while keeping that depressed,
press D).

If there is no Python interpreter installed, you will probably get an error message similar to
the following:

bash: python: command not found

In that case, you need to install Python yourself, as described in the following sections.

WINDOWS INSTALLER

Python for Microsoft Windows is distributed as a Windows Installer file, and requires that your Windows ver-
sion supports Windows Installer 2.0 (or later). If you don’t have Windows Installer, it can be downloaded freely
for Windows 95, 98, ME, NT 4.0, and 2000. Windows XP and later versions of Windows already have Windows
Installer, and many older machines will, too. There are download instructions for the Installer on the Python
download page.

Alternatively, you could go to the Microsoft download site, http://www.microsoft.com/downloads,
and search for “Windows Installer” (or simply select it from the download menu). Choose the most recent version
for your platform and follow the download and installation instructions.

If you’re uncertain about whether you have Windows Installer, simply try executing step 5 of the previous
installation instructions: double-click the MSI file. If you get the install wizard, everything is okay. See
http://www.python.org/2.5/msi.html for advanced features of the Windows Installer related to
Python installation.

4 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Using a Package Manager

Several package systems and installation mechanisms exist for Linux. If you’re running a Linux
system with some form of package manager, chances are you can get Python through it.

■Note You will probably need to have administrator privileges (a root account) in order to install Python
using a package manager in Linux.

For example, if you’re running Debian Linux, you should be able to install Python with the
following command:

$ apt-get install python

If you’re running Gentoo Linux, you should be able to use Portage, like this:

$ emerge python

In both cases, $ is, of course, the bash prompt.

■Note Many other package managers out there have automatic download capabilities, including Yum,
Synaptic (specific to Ubuntu Linux), and other Debian-style managers. You should probably be able to get
recent versions of Python through these.

Compiling from Sources

If you don’t have a package manager, or would rather not use it, you can compile Python your-
self. This may be the method of choice if you are on a UNIX box but you don’t have root access
(installation privileges). This method is very flexible, and enables you to install Python wher-
ever you want, including in your own home directory. To compile and install Python, follow
these steps:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the instructions for downloading the sources.

3. Download the file with the extension .tgz. Store it in a temporary location. Assuming
that you want to install Python in your home directory, you may want to put it in a
directory such as ~/python. Enter this directory (e.g., using cd ~/python).

4. Unpack the archive with the command tar -xzvf Python-2.5.tgz (where 2.5 is the
version number of the downloaded source code). If your version of tar doesn’t support
the z option, you may want to uncompress the archive with gunzip first, and then use
tar -xvf afterward. If there is something wrong with the archive, try downloading it
again. Sometimes errors occur during download.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 5

5. Enter the unpacked directory:

$ cd Python-2.5

Now you should be able to execute the following commands:

./configure --prefix=$(pwd)
make
make install

You should end up with an executable file called python in the current directory. (If this
doesn’t work, consult the README file included in the distribution.) Put the current direc-
tory in your PATH environment variable, and you’re ready to rock.

To find out about the other configuration directives, execute this command:

./configure --help

Macintosh
If you’re using a Macintosh with a recent version of Mac OS X, you’ll have a version of Python
installed already. Just open the Terminal application and enter the command python to start
it. Even if you would like to install a newer version of Python, you should leave this one alone,
as it is used in several parts of the operating system. You could use either MacPorts (http://
macports.org) or Fink (http://finkproject.org), or you could use the distribution from the
Python web site, by following these steps:

1. Go to the standard download page (see steps 1 and 2 from the Windows instructions
earlier in this chapter).

2. Follow the link for the Mac OS X installer. There should also be a link to the MacPython
download page, which has more information. The MacPython page also has versions of
Python for older versions of the Mac OS.

3. Once you’ve downloaded the installer .dmg file, it will probably mount automatically. If
not, simply double-click it. In the mounted disk image, you’ll find an installer package
(.mpkg) file. If you double-click this, the installation wizard will open, which will take
you through the necessary steps.

Other Distributions
You now have the standard Python distribution installed. Unless you have a particular interest
in alternative solutions, that should be all you need. If you are curious (and, perhaps, feeling a
bit courageous), read on.

6 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Several Python distributions are available in addition to the official one. The most well-
known of these is probably ActivePython, which is available for Linux, Windows, Mac OS X,
and several UNIX varieties. A slightly less well-known but quite interesting distribution is
Stackless Python. These distributions are based on the standard implementation of Python,
written in the C programming language. Two distributions that take a different approach are
Jython and IronPython. If you’re interested in development environments other than IDLE,
Table 1-1 lists some options.3

Table 1-1. Some Integrated Development Environments (IDEs) for Python

ActivePython is a Python distribution from ActiveState (http://www.activestate.com). At
its core, it’s the same as the standard Python distribution for Windows. The main difference is
that it includes a lot of extra goodies (modules) that are available separately. It’s definitely
worth a look if you are running Windows.

3. Komodo has been made open source, so free versions are also available.

Environment Description Web Site

IDLE The standard Python
environment

http://www.python.org/idle

Pythonwin Windows-oriented
environment

http://www.python.org/download/windows

ActivePython Feature-packed; contains
Pythonwin IDE

http://www.activestate.com

Komodo Commercial IDE http://www.activestate.com3

Wingware Commercial IDE http://www.wingware.com

BlackAdder Commercial IDE and (Qt) GUI
builder

http://www.thekompany.com

Boa Constructor Free IDE and GUI builder http://boa-constructor.sf.net

Anjuta Versatile IDE for Linux/UNIX http://anjuta.sf.net

Arachno Python Commercial IDE http://www.python-ide.com

Code Crusader Commercial IDE http://www.newplanetsoftware.com

Code Forge Commercial IDE http://www.codeforge.com

Eclipse Popular, flexible, open
source IDE

http://www.eclipse.org

eric Free IDE using Qt http://eric-ide.sf.net

KDevelop Cross-language IDE for KDE http://www.kdevelop.org

VisualWx Free GUI builder http://visualwx.altervista.org

wxDesigner Commercial GUI builder http://www.roebling.de

wxGlade Free GUI builder http://wxglade.sf.net

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 7

Stackless Python is a reimplementation of Python, based on the original code, but with
some important internal changes. To a beginning user, these differences won’t matter much,
and one of the more standard distributions would probably be more useful. The main advan-
tages of Stackless Python are that it allows deeper levels of recursion and more efficient
multithreading. As mentioned, both of these are rather advanced features, not needed by the
average user. You can get Stackless Python from http://www.stackless.com.

Jython (http://www.jython.org) and IronPython (http://www.codeplex.com/IronPython)
are different—they’re versions of Python implemented in other languages. Jython is imple-
mented in Java, targeting the Java Virtual Machine, and IronPython is implemented in C#,
targeting the .NET and MONO implementations of the common language runtime (CLR). At
the time of writing, Jython is quite stable, but lagging behind Python—the current Jython ver-
sion is 2.2, while Python is at 2.5. There are significant differences in these two versions of the
language. IronPython is still rather young, but it is quite usable, and it is reported to be faster
than standard Python on some benchmarks.

Keeping in Touch and Up-to-Date
The Python language evolves continuously. To find out more about recent releases and rele-
vant tools, the python.org web site is an invaluable asset. To find out what’s new in a given
release, go to the page for the given release, such as http://python.org/2.5 for release 2.5.
There you will also find a link to Andrew Kuchling’s in-depth description of what’s new for the
release, with a URL such as http://python.org/doc/2.5/whatsnew for release 2.5. If there have
been new releases since this book went to press, you can use these web pages to check out any
new features.

■Tip For a summary of what’s changed in the more radically new release 3.0, see http://docs.
python.org/dev/3.0/whatsnew/3.0.html.

If you want to keep up with newly released third-party modules or software for Python,
check out the Python email list python-announce-list; for general discussions about Python, try
python-list, but be warned: this list gets a lot of traffic. Both of these lists are available at
http://mail.python.org. If you’re a Usenet user, these two lists are also available as the news-
groups comp.lang.python.announce and comp.lang.python, respectively. If you’re totally lost, you
could try the python-help list (available from the same place as the two other lists) or simply
email help@python.org. Before you do, you really ought to see if your question is a frequently
asked one, by consulting the Python FAQ, at http://python.org/doc/faq, or by performing a
quick Web search.

The Interactive Interpreter
When you start up Python, you get a prompt similar to the following:

Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin

8 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Type "help", "copyright", "credits" or "license" for more information.
>>>

■Note The exact appearance of the interpreter and its error messages will depend on which version you
are using.

This might not seem very interesting, but believe me—it is. This is your gateway to hacker-
dom—your first step in taking control of your computer. In more pragmatic terms, it’s an
interactive Python interpreter. Just to see if it’s working, try the following:

>>> print "Hello, world!"

When you press the Enter key, the following output appears:

Hello, world!
>>>

■Note If you are familiar with other computer languages, you may be used to terminating every line
with a semicolon. There is no need to do so in Python. A line is a line, more or less. You may add a semicolon
if you like, but it won’t have any effect (unless more code follows on the same line), and it is not a common
thing to do.

What happened here? The >>> thingy is the prompt. You can write something in this space,
like print "Hello, world!". If you press Enter, the Python interpreter prints out the string
“Hello, world!” and you get a new prompt below that.

■Note The term “printing” in this context refers to writing text to the screen, not producing hard copies
with a printer.

What if you write something completely different? Try it out:

>>> The Spanish Inquisition
SyntaxError: invalid syntax
>>>

Obviously, the interpreter didn’t understand that.4 (If you are running an interpreter other
than IDLE, such as the command-line version for Linux, the error message will be slightly

4. After all, no one expects the Spanish Inquisition . . .

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 9

dfferent.) The interpreter also indicates what’s wrong: it will emphasize the word Spanish by
giving it a red background (or, in the command-line version, by using a caret, ^).

If you feel like it, play around with the interpreter some more. For some guidance, try
entering the command help at the prompt and pressing Enter. As mentioned, you can press F1
for help about IDLE. Otherwise, let’s press on. After all, the interpreter isn’t much fun when you
don’t know what to tell it, is it?

Algo . . . What?
Before you start programming in earnest, I’ll try to give you an idea of what computer program-
ming is. Simply put, it’s telling a computer what to do. Computers can do a lot of things, but
they aren’t very good at thinking for themselves. They really need to be spoon-fed the details.
You need to feed the computer an algorithm in some language it understands. Algorithm is just
a fancy word for a procedure or recipe—a detailed description of how to do something. Con-
sider the following:

SPAM with SPAM, SPAM, Eggs, and SPAM:
First, take some SPAM.
Then add some SPAM, SPAM, and eggs.
If a particularly spicy SPAM is desired, add some SPAM.
Cook until done - Check every 10 minutes.

This recipe may not be very interesting, but how it’s constructed is. It consists of a series of
instructions to be followed in order. Some of the instructions may be done directly (“take some
SPAM”), while some require some deliberation (“If a particularly spicy SPAM is desired”), and
others must be repeated several times (“Check every 10 minutes.”)

Recipes and algorithms consist of ingredients (objects, things), and instructions (state-
ments). In this example, SPAM and eggs were the ingredients, while the instructions consisted
of adding SPAM, cooking for a given length of time, and so on. Let’s start with some reasonably
simple Python ingredients and see what you can do with them.

Numbers and Expressions
The interactive Python interpreter can be used as a powerful calculator. Try the following:

>>> 2 + 2

This should give you the answer 4. That wasn’t too hard. Well, what about this:

>>> 53672 + 235253
288925

Still not impressed? Admittedly, this is pretty standard stuff. (I’ll assume that you’ve used
a calculator enough to know the difference between 1+2*3 and (1+2)*3.) All the usual arith-
metic operators work as expected—almost. There is one potential trap here, and that is integer
division (in Python versions prior to 3.0):

>>> 1/2
0

10 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

What happened here? One integer (a nonfractional number) was divided by another, and
the result was rounded down to give an integer result. This behavior can be useful at times, but
often (if not most of the time), you need ordinary division. What do you do to get that? There
are two possible solutions: use real numbers (numbers with decimal points) rather than inte-
gers, or tell Python to change how division works.

Real numbers are called floats (or floating-point numbers) in Python. If either one of the
numbers in a division is a float, the result will be, too:

>>> 1.0 / 2.0
0.5

>>> 1/2.0
0.5
>>> 1.0/2
0.5

>>> 1/2.
0.5

If you would rather have Python do proper division, you could add the following statement
to the beginning of your program (writing full programs is described later) or simply execute it
in the interactive interpreter:

>>> from __future__ import division

■Note In case it’s not entirely clear, the future in the instruction is surrounded by two underscores on
both sides: __future__.

Another alternative, if you’re running Python from the command line (e.g., on a Linux
machine), is to supply the command-line switch -Qnew. In either case, division will suddenly
make a bit more sense:

>>> 1 / 2
0.5

Of course, the single slash can no longer be used for the kind of integer division shown
earlier. A separate operator will do this for you—the double slash:

>>> 1 // 2
0

The double slash consistently performs integer division, even with floats:

>>> 1.0 // 2.0
0.0

There is a more thorough explanation of the __future__ stuff in the section “Back to the
__future__,” later in this chapter.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 11

Now you’ve seen the basic arithmetic operators (addition, subtraction, multiplication,
and division), but one more operator is quite useful at times:

>>> 1 % 2
1

This is the remainder (modulus) operator. x % y gives the remainder of x divided by y. Here
are a few more examples:

>>> 10 / 3
3
>>> 10 % 3
1
>>> 9 / 3
3
>>> 9 % 3
0
>>> 2.75 % 0.5
0.25

Here 10/3 is 3 because the result is rounded down. But 3 3 is 9, so you get a remainder
of 1. When you divide 9 by 3, the result is exactly 3, with no rounding. Therefore, the remainder
is 0. This may be useful if you want to check something “every 10 minutes” as in the recipe ear-
lier in the chapter. You can simply check whether minute % 10 is 0. (For a description on how
to do this, see the sidebar “Sneak Peek: The if Statement,” later in this chapter.) As you can see
from the final example, the remainder operator works just fine with floats as well.

The last operator is the exponentiation (or power) operator:

>>> 2 ** 3
8
>>> -3 ** 2
-9
>>> (-3) ** 2
9

Note that the exponentiation operator binds tighter than the negation (unary minus), so
-3**2 is in fact the same as -(3**2). If you want to calculate (-3)**2, you must say so explicitly.

Large Integers
Python can handle really large integers:

>>> 1000000000000000000
1000000000000000000L

What happened here? The number suddenly got an L tacked onto the end.

12 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note If you’re using a version of Python older than 2.2, you get the following behavior:

>>> 1000000000000000000
OverflowError: integer literal too large

The newer versions of Python are more flexible when dealing with big numbers.

Ordinary integers can’t be larger than 2147483647 (or smaller than –2147483648). If you
want really big numbers, you must use longs. A long (or long integer) is written just like an ordi-
nary integer but with an L at the end. (You can, in theory, use a lowercase l as well, but that
looks all too much like the digit 1, so I’d advise against it.)

In the previous example, Python converted the integer to a long, but you can do that your-
self, too. Let’s try that big number again:

>>> 1000000000000000000L
1000000000000000000L

Of course, this is only useful in old versions of Python that aren’t capable of figuring this
stuff out.

Well, can you do math with these monster numbers, too? Sure thing. Consider the
following:

>>> 1987163987163981639186L * 198763981726391826L + 23
394976626432005567613000143784791693659L

As you can see, you can mix long integers and plain integers as you like. In all likelihood,
you won’t have to worry about the difference between longs and ints unless you’re doing type
checking, as described in Chapter 7—and that’s something you should almost never do.

Hexadecimals and Octals
To conclude this section, I should mention that hexadecimal numbers are written like this:

>>> 0xAF
175

and octal numbers like this:

>>> 010
8

The first digit in both of these is zero. (If you don’t know what this is all about, just close
your eyes and skip to the next section—you’re not missing anything important.)

■Note For a summary of Python’s numeric types and operators, see Appendix B.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 13

Variables
Another concept that might be familiar to you is variables. If math makes you queasy, don’t
worry: variables in Python are easy to understand. A variable is basically a name that represents
(or refers to) some value. For example, you might want the name x to represent 3. To make it so,
simply execute the following:

>>> x = 3

This is called an assignment. We assign the value 3 to the variable x. Another way of putting
this is to say that we bind the variable x to the value (or object) 3. After you’ve assigned a value
to a variable, you can use the variable in expressions:

>>> x * 2
6

Note that you need to assign a value to a variable before you use it. After all, it doesn’t make
any sense to use a variable if it doesn’t represent a value, does it?

■Note Variable names can consist of letters, digits, and underscore characters (_). A variable can’t begin
with a digit, so Plan9 is a valid variable name, whereas 9Plan is not.

Statements
Until now we’ve been working (almost) exclusively with expressions, the ingredients of the
recipe. But what about statements—the instructions?

In fact, I’ve cheated. I’ve introduced two types of statements already: the print statement,
and assignments. So, what’s the difference between a statement and an expression? Well, an
expression is something, while a statement does something (or, rather, tells the computer to do
something). For example, 2*2 is 4, whereas print 2*2 prints 4. What’s the difference? After all,
they behave very similarly. Consider the following:

>>> 2*2
4
>>> print 2*2
4

As long as you execute this in the interactive interpreter, the results are similar, but that is only
because the interpreter always prints out the values of all expressions (using the same represen-
tation as repr—see the section “String Representations, str and repr” later in this chapter). That is
not true of Python in general. Later in this chapter, you’ll see how to make programs that run with-
out this interactive prompt, and simply putting an expression such as 2*2 in your program won’t do
anything interesting.5 Putting print 2*2 in there, on the other hand, will print out 4.

5. In case you’re wondering—yes, it does do something. It calculates the product of 2 and 2. However, the
result isn’t kept anywhere or shown to the user; it has no side effects, beyond the calculation itself.

14 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note In Python 3.0, print is a function, which means you need to write print(42) instead of print 42,
for example. Other than that, it works more or less like the statement, as described here.

The difference between statements and expressions may be more obvious when dealing
with assignments. Because they are not expressions, they have no values that can be printed
out by the interactive interpreter:

>>> x = 3
>>>

As you can see, you get a new prompt immediately. Something has changed, however; x is
now bound to the value 3.

This is a defining quality of statements in general: they change things. For example,
assignments change variables, and print statements change how your screen looks.

Assignments are, perhaps, the most important type of statement in any programming lan-
guage, although it may be difficult to grasp their importance right now. Variables may just
seem like temporary “storage” (like the pots and pans of a cooking recipe), but the real power
of variables is that you don’t need to know what values they hold in order to manipulate them.6
For example, you know that x * y evaluates to the product of x and y, even though you may
have no knowledge of what x and y are. So, you may write programs that use variables in vari-
ous ways without knowing the values they will eventually hold (or refer to) when the program
is run.

Getting Input from the User
You’ve seen that you can write programs with variables without knowing their values. Of
course, the interpreter must know the values eventually. So how can it be that we don’t? The
interpreter knows only what we tell it, right? Not necessarily.

You may have written a program, and someone else may use it. You cannot predict what
values users will supply to the program. Let’s take a look at the useful function input. (I’ll have
more to say about functions in a minute.)

>>> input("The meaning of life: ")
The meaning of life: 42
42

What happens here is that the first line (input(...)) is executed in the interactive inter-
preter. It prints out the string "The meaning of life: " as a new prompt. I type 42 and press

6. Note the quotes around storage. Values aren’t stored in variables—they’re stored in some murky depths
of computer memory, and are referred to by variables. As will become abundantly clear as you read on,
more than one variable can refer to the same value.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 15

Enter. The resulting value of input is that very number, which is automatically printed out in
the last line. That may not seem very useful, but look at the following:

>>> x = input("x: ")
x: 34
>>> y = input("y: ")
y: 42
>>> print x * y
1428

Here, the statements at the Python prompts (>>>) could be part of a finished program, and
the values entered (34 and 42) would be supplied by some user. Your program would then print
out the value 1428, which is the product of the two. And you didn’t have to know these values
when you wrote the program, right?

■Note This is much more useful when you save your programs in a separate file so other users can exe-
cute them. You learn to do that later in this chapter, in the section “Saving and Executing Your Programs.”

SNEAK PEEK: THE IF STATEMENT

To make things a bit more fun, I’ll give you a sneak peek of something you aren’t really supposed to learn
about until Chapter 5: the if statement. The if statement lets you perform an action (another statement) if
a given condition is true. One type of condition is an equality test, using the equality operator ==. Yes, it’s a
double equality sign. The single one is used for assignments, remember?

You simply put this condition after the word if and then separate it from the following statement with
a colon:

>>> if 1 == 2: print 'One equals two'
...
>>> if 1 == 1: print 'One equals one'
...
One equals one
>>>

As you can see, nothing happens when the condition is false. When it is true, however, the following
statement (in this case, a print statement) is executed. Note also that when using if statements in the inter-
active interpreter, you need to press Enter twice before it is executed. (The reason for this will become clear
in Chapter 5—don’t worry about it for now.)

So, if the variable time is bound to the current time in minutes, you could check whether you’re “on the
hour” with the following statement:

if time % 60 == 0: print 'On the hour!'

16 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Functions
In the section on numbers and expressions, I used the exponentiation operator (**) to calcu-
late powers. The fact is that you can use a function instead, called pow:

>>> 2**3
8
>>> pow(2,3)
8

A function is like a little program that you can use to perform a specific action. Python has
a lot of functions that can do many wonderful things. In fact, you can make your own func-
tions, too (more about that later); therefore, we often refer to standard functions such as pow as
built-in functions.

Using a function as I did in the preceding example is called calling the function. You sup-
ply it with parameters (in this case, 2 and 3) and it returns a value to you. Because it returns a
value, a function call is simply another type of expression, like the arithmetic expressions dis-
cussed earlier in this chapter.7 In fact, you can combine function calls and operators to create
more complicated expressions:

>>> 10 + pow(2, 3*5)/3.0
10932.666666666666

■Note The exact number of decimals may vary depending on which version of Python you are using.

Several built-in functions can be used in numeric expressions like this. For example, abs
gives the absolute value of a number, and round rounds floating-point numbers to the nearest
integer:

>>> abs(-10)
10
>>> 1/2
0
>>> round(1.0/2.0)
1.0

Notice the difference between the two last expressions. Integer division always rounds
down, whereas round rounds to the nearest integer. But what if you want to round a given num-
ber down? For example, you might know that a person is 32.9 years old, but you would like to
round that down to 32 because she isn’t really 33 yet. Python has a function for this (called
floor)—it just isn’t available directly. As is the case with many useful functions, it is found in a
module.

7. Function calls can also be used as statements if you simply ignore the return value.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 17

Modules
You may think of modules as extensions that can be imported into Python to extend its capa-
bilities. You import modules with a special command called (naturally enough) import. The
function mentioned in the previous section, floor, is in a module called math:

>>> import math
>>> math.floor(32.9)
32.0

Notice how this works: we import a module with import, and then use the functions from
that module by writing module.function.

If you want the age to be an integer (32) and not a float (32.0), you can use the function int:8

>>> int(math.floor(32.9))
32

■Note Similar functions exist to convert to other types (for example, long and float). In fact, these aren’t
completely normal functions—they’re type objects. I’ll have more to say about types later. The opposite of
floor is ceil (short for “ceiling”), which finds the smallest integral value larger than or equal to the given
number.

If you are sure that you won’t import more than one function with a given name (from dif-
ferent modules), you might not want to write the module name each time you call the function.
Then you can use a variant of the import command:

>>> from math import sqrt
>>> sqrt(9)
3.0

After using from module import function, you can use the function without its module
prefix.

■Tip You may, in fact, use variables to refer to functions (and most other things in Python). For example, by
performing the assignment foo = math.sqrt, you can start using foo to calculate square roots; for exam-
ple, foo(4) yields 2.0.

8. The int function/type will actually round down while converting to an integer, so when converting to
an integer, using math.floor is superfluous; you could simply use int(32.9).

18 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

cmath and Complex Numbers
The sqrt function is used to calculate the square root of a number. Let’s see what happens if we
supply it with a negative number:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):
 File "<pyshell#23>", line 1, in ?
 sqrt(-1)
ValueError: math domain error

or, on some platforms:

>>> sqrt(-1)
nan

■Note nan is simply a special value meaning “not a number.”

Well, that’s reasonable. You can’t take the square root of a negative number—or can you?
Indeed you can. The square root of a negative number is an imaginary number. (This is a stan-
dard mathematical concept—if you find it a bit too mind-bending, feel free to skip ahead.) So
why couldn’t sqrt deal with it? Because it deals only with floats, and imaginary numbers (and
complex numbers, the sum of real and imaginary numbers) are something completely differ-
ent—which is why they are covered by a different module, cmath (for complex math):

>>> import cmath
>>> cmath.sqrt(-1)
1j

Notice that I didn’t use from ... import ... here. If I had, I would have lost my ordinary
sqrt. Name clashes like these can be sneaky, so unless you really want to use the from version,
you should probably stick with a plain import.

The value 1j is an imaginary number. These numbers are written with a trailing j (or J),
just like longs use L. Without delving into the theory of complex numbers, let me just show a
final example of how you can use them:

>>> (1+3j) * (9+4j)
(-3+31j)

As you can see, the support for complex numbers is built into the language.

■Note There is no separate type for imaginary numbers in Python. They are treated as complex numbers
whose real component is zero.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 19

Back to the __future__
It has been rumored that Guido van Rossum (Python’s creator) has a time machine, because
quite often when people request features in the language, the features have already been
implemented. Of course, we aren’t all allowed into this time machine, but Guido has been kind
enough to build a part of it into Python, in the form of the magic module __future__. From it,
we can import features that will be standard in Python in the future but that aren’t part of the
language yet. You saw this in the section about numbers and expressions, and you’ll be bump-
ing into it from time to time throughout this book.

Saving and Executing Your Programs
The interactive interpreter is one of Python’s great strengths. It makes it possible to test solu-
tions and to experiment with the language in real time. If you want to know how something
works, just try it! However, everything you write in the interactive interpreter is lost when you
quit. What you really want to do is write programs that both you and other people can run. In
this section, you learn how to do just that.

First of all, you need a text editor, preferably one intended for programming. (If you use
something like Microsoft Word, which I don’t really recommend, be sure to save your code as
plain text.) If you are already using IDLE, you’re in luck. With IDLE, you can simply create a
new editor window with File ➤ New Window. Another window appears, without an interactive
prompt. Whew!

Start by entering the following:

print "Hello, world!"

Now select File ➤ Save to save your program (which is, in fact, a plain text file). Be sure to
put it somewhere where you can find it later. You might want to create a directory where you
put all your Python projects, such as C:\python in Windows. In a UNIX environment, you might
use a directory like ~/python. Give your file any reasonable name, such as hello.py. The .py
ending is important.

■Note If you followed the installation instructions earlier in this chapter, you may have put your Python
installation in ~/python already, but because that has a subdirectory of its own (such as ~/python/
Python-2.5/), this shouldn’t cause any problems. If you would rather put your own programs somewhere
else, feel free to use a directory such as ~/my_python_programs.

Got that? Don’t close the window with your program in it. If you did, just open it again (File
➤ Open). Now you can run it with Edit ➤ Run script, or by pressing Ctrl+F5. (If you aren’t using
IDLE, see the next section about running your programs from the command prompt.)

What happens? Hello, world! is printed in the interpreter window, which is exactly what
we wanted. The interpreter prompt may be gone (depending on the version you’re using), but
you can get it back by pressing Enter (in the interpreter window).

20 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Let’s extend our script to the following:

name = raw_input("What is your name? ")
print "Hello, " + name + "!"

■Note Don’t worry about the difference between input and raw_input—I’ll get to that.

If you run this (remember to save it first), you should see the following prompt in the inter-
preter window:

What is your name?

Enter your name (for example, Gumby) and press Enter. You should get something like this:

Hello, Gumby!

Fun, isn’t it?

Running Your Python Scripts from a Command Prompt
Actually, there are several ways to run your programs. First, let’s assume that you have a DOS
window or a UNIX shell prompt before you, and that the directory containing the Python exe-
cutable (called python.exe in Windows, and python in UNIX) or the directory containing the
executable (in Windows) has been put in your PATH environment variable.9 Also, let’s assume
that your script from the previous section (hello.py) is in the current directory. Then you can
execute your script with the following command in Windows:

C:\>python hello.py

or UNIX:

$ python hello.py

As you can see, the command is the same. Only the system prompt changes.

■Note If you don’t want to mess with environment variables, you can simply specify the full path of the
Python interpreter. In Windows, you might do something like this:

C:\>C:\Python25\python hello.py

Making Your Scripts Behave Like Normal Programs
Sometimes you want to execute a Python program (also called a script) the same way you exe-
cute other programs (such as your web browser or text editor), rather than explicitly using the

9. If you don’t understand this sentence, you should perhaps skip the section. You don’t really need it.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 21

Python interpreter. In UNIX, there is a standard way of doing this: have the first line of your
script begin with the character sequence #! (called pound bang or shebang) followed by the
absolute path to the program that interprets the script (in our case Python). Even if you didn’t
quite understand that, just put the following in the first line of your script if you want it to run
easily on UNIX:

#!/usr/bin/env python

This should run the script, regardless of where the Python binary is located.

■Note In some operating systems if you install a recent version of Python (e.g., 2.5) you will still have an
old one lying around (e.g.,1.5.2), which is needed by some system programs (so you can’t uninstall it). In such
cases, the /usr/bin/env trick is not a good idea, as you will probably end up with your programs being exe-
cuted by the old Python. Instead, you should find the exact location of your new Python executable (probably
called python or python2) and use the full path in the pound bang line, like this:

#!/usr/bin/python2

The exact path may vary from system to system.

Before you can actually run your script, you must make it executable:

$ chmod a+x hello.py

Now it can be run like this (assuming that you have the current directory in your path):

$ hello.py

If this doesn’t work, try using ./hello.py instead, which will work even if the current direc-
tory (.) is not part of your execution path.

If you like, you can rename your file and remove the py suffix to make it look more like a
normal program.

What About Double-Clicking?

In Windows, the suffix (.py) is the key to making your script behave like a program. Try double-
clicking the file hello.py you saved in the previous section. If Python was installed correctly, a
DOS window appears with the prompt “What is your name?” Cool, huh?10 (You’ll see how to
make your programs look better, with buttons, menus, and so on, later.)

There is one problem with running your program like this, however. Once you’ve entered
your name, the program window closes before you can read the result. The window closes
when the program is finished. Try changing the script by adding the following line at the end:

raw_input("Press <enter>")

10. This behavior depends on your operating system and the installed Python interpreter. If you’ve saved
the file using IDLE in Mac OS X, for example, double-clicking the file will simply open it in the IDLE
code editor.

22 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Now, after running the program and entering your name, you should have a DOS window
with the following contents:

What is your name? Gumby
Hello, Gumby!
Press <enter>

Once you press the Enter key, the window closes (because the program is finished). Just
as a teaser, rename your file hello.pyw. (This is Windows-specific.) Double-click it as before.
What happens? Nothing! How can that be? I will tell you later in the book—I promise.

Comments
The hash sign (#) is a bit special in Python. When you put it in your code, everything to the right
of it is ignored (which is why the Python interpreter didn’t choke on the /usr/bin/env stuff
used earlier). Here is an example:

Print the circumference of the circle:
print 2 * pi * radius

The first line here is called a comment, which can be useful in making programs easier to
understand—both for other people and for yourself when you come back to old code. It has
been said that the first commandment of programmers is “Thou Shalt Comment” (although
some less charitable programmers swear by the motto “If it was hard to write, it should be hard
to read”). Make sure your comments say significant things and don’t simply restate what is
already obvious from the code. Useless, redundant comments may be worse than none. For
example, in the following, a comment isn’t really called for:

Get the user's name:
user_name = raw_input("What is your name?")

It’s always a good idea to make your code readable on its own as well, even without the
comments. Luckily, Python is an excellent language for writing readable programs.

Strings
Now what was all that raw_input and "Hello, " + name + "!" stuff about? Let’s tackle the
"Hello" part first and leave raw_input for later.

The first program in this chapter was simply

print "Hello, world!"

It is customary to begin with a program like this in programming tutorials. The problem is
that I haven’t really explained how it works yet. You know the basics of the print statement (I’ll
have more to say about that later), but what is "Hello, world!"? It’s called a string (as in “a string
of characters”). Strings are found in almost every useful, real-world Python program and have
many uses. Their main use is to represent bits of text, such as the exclamation “Hello, world!”

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 23

Single-Quoted Strings and Escaping Quotes
Strings are values, just as numbers are:

>>> "Hello, world!"
'Hello, world!'

There is one thing that may be a bit surprising about this example, though: when Python
printed out our string, it used single quotes, whereas we used double quotes. What’s the differ-
ence? Actually, there is no difference:

>>> 'Hello, world!'
'Hello, world!'

Here, we use single quotes, and the result is the same. So why allow both? Because in some
cases it may be useful:

>>> "Let's go!"
"Let's go!"
>>> '"Hello, world!" she said'
'"Hello, world!" she said'

In the preceding code, the first string contains a single quote (or an apostrophe, as we
should perhaps call it in this context), and therefore we can’t use single quotes to enclose the
string. If we did, the interpreter would complain (and rightly so):

>>> 'Let's go!'
SyntaxError: invalid syntax

Here, the string is 'Let', and Python doesn’t quite know what to do with the following s (or
the rest of the line, for that matter).

In the second string, we use double quotes as part of our sentence. Therefore, we have to
use single quotes to enclose our string, for the same reasons as stated previously. Or, actually
we don’t have to. It’s just convenient. An alternative is to use the backslash character (\) to
escape the quotes in the string, like this:

>>> 'Let\'s go!'
"Let's go!"

Python understands that the middle single quote is a character in the string and not the
end of the string. (Even so, Python chooses to use double quotes when printing out the string.)
The same works with double quotes, as you might expect:

>>> "\"Hello, world!\" she said"
'"Hello, world!" she said'

Escaping quotes like this can be useful, and sometimes necessary. For example, what
would you do without the backslash if your string contained both single and double quotes,
as in the string 'Let\'s say "Hello, world!"'?

24 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note Tired of backslashes? As you will see later in this chapter, you can avoid most of them by using long
strings and raw strings (which can be combined).

Concatenating Strings
Just to keep whipping this slightly tortured example, let me show you another way of writing
the same string:

>>> "Let's say " '"Hello, world!"'
'Let\'s say "Hello, world!"'

I’ve simply written two strings, one after the other, and Python automatically concate-
nates them (makes them into one string). This mechanism isn’t used very often, but it can be
useful at times. However, it works only when you actually write both strings at the same time,
directly following one another:

>>> x = "Hello, "
>>> y = "world!"
>>> x y
SyntaxError: invalid syntax

In other words, this is just a special way of writing strings, not a general method of concat-
enating them. How, then, do you concatenate strings? Just like you add numbers:

>>> "Hello, " + "world!"
'Hello, world!'
>>> x = "Hello, "
>>> y = "world!"
>>> x + y
'Hello, world!'

String Representations, str and repr
Throughout these examples, you have probably noticed that all the strings printed out by
Python are still quoted. That’s because it prints out the value as it might be written in Python
code, not how you would like it to look for the user. If you use print, however, the result is
different:

>>> "Hello, world!"
'Hello, world!'
>>> 10000L
10000L
>>> print "Hello, world!"
Hello, world!
>>> print 10000L
10000

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 25

As you can see, the long integer 10000L is simply the number 10000 and should be written
that way when presented to the user. But when you want to know what value a variable refers
to, you may be interested in whether it’s a normal integer or a long, for example.

What is actually going on here is that values are converted to strings through two different
mechanisms. You can use both mechanisms yourself, through the functions str and repr. str
simply converts a value into a string in some reasonable fashion that will probably be under-
stood by a user, for example.11 repr creates a string that is a representation of the value as a
legal Python expression. Here are a few examples:

>>> print repr("Hello, world!")
'Hello, world!'
>>> print repr(10000L)
10000L
>>> print str("Hello, world!")
Hello, world!
>>> print str(10000L)
10000

A synonym for repr(x) is `x` (here, you use backticks, not single quotes). This can be use-
ful when you want to print out a sentence containing a number:

>>> temp = 42
>>> print "The temperature is " + temp
Traceback (most recent call last):
 File "<pyshell#61>", line 1, in ?
 print "The temperature is " + temp
TypeError: cannot add type "int" to string
>>> print "The temperature is " + `temp`
The temperature is 42

■Note Backticks are removed in Python 3.0, so even though you may find backticks in old code, you should
probably stick with repr yourself.

The first print statement doesn’t work because you can’t add a string to a number. The
second one, however, works because I have converted temp to the string "42" by using the back-
ticks. (I could have just as well used repr, which means the same thing, but may be a bit clearer.
Actually, in this case, I could also have used str. Don’t worry too much about this right now.)

In short, str, repr, and backticks are three ways of converting a Python value to a string.
The function str makes it look good, while repr (and the backticks) tries to make the resulting
string a legal Python expression.

11. Actually, str is a type, just like int and long. repr, however, is simply a function.

26 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

input vs. raw_input
Now you know what "Hello, " + name + "!" means. But what about raw_input? Isn’t input
good enough? Let’s try it. Enter the following in a separate script file:

name = input("What is your name? ")
print "Hello, " + name + "!"

This is a perfectly valid program, but as you will soon see, it’s a bit impractical. Let’s try
to run it:

What is your name? Gumby
Traceback (most recent call last):
 File "C:/python/test.py", line 2, in ?
 name = input("What is your name? ")
 File "<string>", line 0, in ?
NameError: name 'Gumby' is not defined

The problem is that input assumes that what you enter is a valid Python expression (it’s
more or less the inverse of repr). If you write your name as a string, that’s no problem:

What is your name? "Gumby"
Hello, Gumby!

However, it’s just a bit too much to ask that users write their name in quotes like this.
Therefore, we use raw_input, which treats all input as raw data and puts it into a string:

>>> input("Enter a number: ")
Enter a number: 3
3
>>> raw_input("Enter a number: ")
Enter a number: 3
'3'

Unless you have a special need for input, you should probably use raw_input.

Long Strings, Raw Strings, and Unicode
Before ending this chapter, I want to tell you about a few other ways of writing strings. These
alternate string syntaxes can be useful when you have strings that span several lines or contain
various special characters.

Long Strings

If you want to write a really long string, one that spans several lines, you can use triple quotes
instead of ordinary quotes:

print '''This is a very long string.
It continues here.
And it's not over yet.
"Hello, world!"
Still here.'''

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 27

You can also use triple double quotes, """like this""". Note that because of the distinctive
enclosing quotes, both single and double quotes are allowed inside, without being backslash-
escaped.

■Tip Ordinary strings can also span several lines. If the last character on a line is a backslash, the line
break itself is “escaped” and ignored. For example:

print "Hello, \
world!"

would print out Hello, world!. The same goes for expressions and statements in general:

>>> 1 + 2 + \
 4 + 5
12
>>> print \
 'Hello, world'
Hello, world

Raw Strings

Raw strings aren’t too picky about backslashes, which can be very useful sometimes.12 In ordi-
nary strings, the backslash has a special role: it escapes things, letting you put things into your
string that you couldn’t normally write directly. For example, a new line is written \n, and can
be put into a string like this:

>>> print 'Hello,\nworld!'
Hello,
world!

This is normally just dandy, but in some cases, it’s not what you want. What if you wanted
the string to include a backslash followed by an n? You might want to put the DOS pathname
C:\nowhere into a string:

>>> path = 'C:\nowhere'
>>> path
'C:\nowhere'

This looks correct, until you print it and discover the flaw:

>>> print path
C:
owhere

12. Raw strings can be especially useful when writing regular expressions. More about those in Chapter 10.

28 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Not exactly what we were after, is it? So what do we do? We can escape the backslash itself:

>>> print 'C:\\nowhere'
C:\nowhere

This is just fine. But for long paths, you wind up with a lot of backslashes:

path = 'C:\\Program Files\\fnord\\foo\\bar\\baz\\frozz\\bozz'

Raw strings are useful in such cases. They don’t treat the backslash as a special character
at all. Every character you put into a raw string stays the way you wrote it:

>>> print r'C:\nowhere'
C:\nowhere
>>> print r'C:\Program Files\fnord\foo\bar\baz\frozz\bozz'
C:\Program Files\fnord\foo\bar\baz\frozz\bozz

As you can see, raw strings are prefixed with an r. It would seem that you can put anything
inside a raw string, and that is almost true. Quotes must be escaped as usual, although that
means that you get a backslash in your final string, too:

>>> print r'Let\'s go!'
Let\'s go!

The one thing you can’t have in a raw string is a lone, final backslash. In other words, the
last character in a raw string cannot be a backslash unless you escape it (and then the backslash
you use to escape it will be part of the string, too). Given the previous example, that ought to be
obvious. If the last character (before the final quote) is an unescaped backslash, Python won’t
know whether or not to end the string:

>>> print r"This is illegal\"
SyntaxError: invalid token

Okay, so it’s reasonable, but what if you want the last character in your raw string to be a
backslash? (Perhaps it’s the end of a DOS path, for example.) Well, I’ve given you a whole bag
of tricks in this section that should help you solve that problem, but basically you need to put
the backslash in a separate string. A simple way of doing that is the following:

>>> print r'C:\Program Files\foo\bar' '\\'
C:\Program Files\foo\bar\

Note that you can use both single and double quotes with raw strings. Even triple-quoted
strings can be raw.

Unicode Strings

The final type of string constant is the Unicode string (or Unicode object—they don’t really
belong to the same type as strings). If you don’t know what Unicode is, you probably don’t
need to know about this. (If you want to find out more about it, you can go to the Unicode web
site, www.unicode.org.) Normal strings in Python are stored internally as 8-bit ASCII, while
Unicode strings are stored as 16-bit Unicode. This allows for a more varied set of characters,

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 29

including special characters from most languages in the world. I’ll restrict my treatment of
Unicode strings to the following:

>>> u'Hello, world!'
u'Hello, world!'

As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r.

■Note In Python 3.0, all strings will be Unicode strings.

A Quick Summary
This chapter covered quite a bit of material. Let’s take a look at what you’ve learned before
moving on.

Algorithms: An algorithm is a recipe telling you exactly how to perform a task. When you
program a computer, you are essentially describing an algorithm in a language the com-
puter can understand, such as Python. Such a machine-friendly description is called a
program, and it mainly consists of expressions and statements.

Expressions: An expression is a part of a computer program that represents a value. For
example, 2+2 is an expression, representing the value 4. Simple expressions are built from
literal values (such as 2 or "Hello") by using operators (such as + or %) and functions (such
as pow). More complicated expressions can be created by combining simpler expressions
(e.g., (2+2)*(3-1)). Expressions may also contain variables.

Variables: A variable is a name that represents a value. New values may be assigned to
variables through assignments such as x = 2. An assignment is a kind of statement.

Statements: A statement is an instruction that tells the computer to do something. That
may involve changing variables (through assignments), printing things to the screen (such
as print "Hello, world!"), importing modules, or a host of other stuff.

Functions: Functions in Python work just like functions in mathematics: they may take
some arguments, and they return a result. (They may actually do lots of interesting stuff
before returning, as you will find out when you learn to write your own functions in
Chapter 6.)

Modules: Modules are extensions that can be imported into Python to extend its capabili-
ties. For example, several useful mathematical functions are available in the math module.

Programs: You have looked at the practicalities of writing, saving, and running Python
programs.

Strings: Strings are really simple—they are just pieces of text. And yet there is a lot to know
about them. In this chapter, you’ve seen many ways to write them, and in Chapter 3 you
learn many ways of using them.

30 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

New Functions in This Chapter

What Now?
Now that you know the basics of expressions, let’s move on to something a bit more advanced:
data structures. Instead of dealing with simple values (such as numbers), you’ll see how to
bunch them together in more complex structures, such as lists and dictionaries. In addition,
you’ll take another close look at strings. In Chapter 5, you learn more about statements, and
after that you’ll be ready to write some really nifty programs.

Function Description

abs(number) Returns the absolute value of a number

cmath.sqrt(number) Returns the square root; works with negative numbers

float(object) Converts a string or number to a floating-point number

help() Offers interactive help

input(prompt) Gets input from the user

int(object) Converts a string or number to an integer

long(object) Converts a string or number to a long integer

math.ceil(number) Returns the ceiling of a number as a float

math.floor(number) Returns the floor of a number as a float

math.sqrt(number) Returns the square root; doesn’t work with negative numbers

pow(x, y[, z]) Returns x to the power of y (modulo z)

raw_input(prompt) Gets input from the user, as a string

repr(object) Returns a string representation of a value

round(number[, ndigits]) Rounds a number to a given precision

str(object) Converts a value to a string

31

■ ■ ■

C H A P T E R 2

Lists and Tuples

This chapter introduces a new concept: data structures. A data structure is a collection of data
elements (such as numbers or characters, or even other data structures) that is structured in
some way, such as by numbering the elements. The most basic data structure in Python is the
sequence. Each element of a sequence is assigned a number—its position, or index. The first
index is zero, the second index is one, and so forth.

■Note When you count or number things in your daily life, you probably start counting from 1. The num-
bering scheme used in Python may seem odd, but it is actually quite natural. One of the reasons for this, as
you see later in the chapter, is that you can also count from the end: the last item of a sequence is numbered
–1, the next-to-last –2, and so forth. That means you can count forward or backward from the first element,
which lies at the beginning, or 0. Trust me, you get used to it.

This chapter begins with an overview of sequences, and then covers some operations that
are common to all sequences, including lists and tuples. These operations will also work with
strings, which will be used in some of the examples, although for a full treatment of string oper-
ations, you have to wait until the next chapter.

After dealing with these basics, we start working with lists and see what’s special about them.
After lists, we come to tuples, which are very similar to lists, except that you can’t change them.

Sequence Overview
Python has six built-in types of sequences. This chapter concentrates on two of the most com-
mon ones: lists and tuples. The other built-in sequence types are strings (which I revisit in the
next chapter), Unicode strings, buffer objects, and xrange objects.

The main difference between lists and tuples is that you can change a list, but you can’t
change a tuple. This means a list might be useful if you need to add elements as you go along,
while a tuple can be useful if, for some reason, you can’t allow the sequence to change. Reasons
for the latter are usually rather technical, having to do with how things work internally in
Python. That’s why you may see built-in functions returning tuples. For your own programs,
chances are you can use lists instead of tuples in almost all circumstances. (One notable excep-
tion, as described in Chapter 4, is using tuples as dictionary keys. There lists aren’t allowed,
because you aren’t allowed to modify keys.)

32 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Sequences are useful when you want to work with a collection of values. You might have a
sequence representing a person in a database, with the first element being their name, and the
second their age. Written as a list (the items of a list are separated by commas and enclosed in
square brackets), that would look like this:

>>> edward = ['Edward Gumby', 42]

But sequences can contain other sequences, too, so you could make a list of such persons,
which would be your database:

>>> edward = ['Edward Gumby', 42]
>>> john = ['John Smith', 50]
>>> database = [edward, john]
>>> database
[['Edward Gumby', 42], ['John Smith', 50]]

■Note Python has a basic notion of a kind of data structure called a container, which is basically any object
that can contain other objects. The two main kinds of containers are sequences (such as lists and tuples) and
mappings (such as dictionaries). While the elements of a sequence are numbered, each element in a mapping
has a name (also called a key). You learn more about mappings in Chapter 4. For an example of a container
type that is neither a sequence nor a mapping, see the discussion of sets in Chapter 10.

Common Sequence Operations
There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in func-
tions for finding the length of a sequence, and for finding its largest and smallest elements.

■Note One important operation not covered here is iteration. To iterate over a sequence means to perform
certain actions repeatedly, once per element in the sequence. To learn more about this, see the section
“Loops” in Chapter 5.

Indexing
All elements in a sequence are numbered—from zero and upwards. You can access them indi-
vidually with a number, like this:

>>> greeting = 'Hello'
>>> greeting[0]
'H'

C H A P T E R 2 ■ L I S T S AN D T U P L E S 33

■Note A string is just a sequence of characters. The index 0 refers to the first element, in this case the
letter H.

This is called indexing. You use an index to fetch an element. All sequences can be indexed
in this way. When you use a negative index, Python counts from the right; that is, from the last ele-
ment. The last element is at position –1 (not –0, as that would be the same as the first element):

>>> greeting[-1]
'o'

String literals (and other sequence literals, for that matter) may be indexed directly, with-
out using a variable to refer to them. The effect is exactly the same:

>>> 'Hello'[1]
'e'

If a function call returns a sequence, you can index it directly. For instance, if you are sim-
ply interested in the fourth digit in a year entered by the user, you could do something like this:

>>> fourth = raw_input('Year: ')[3]
Year: 2005
>>> fourth
'5'

Listing 2-1 contains a sample program that asks you for a year, a month (as a number from 1
to 12), and a day (1 to 31), and then prints out the date with the proper month name and so on.

Listing 2-1. Indexing Example

Print out a date, given year, month, and day as numbers

months = [
 'January',
 'February',
 'March',
 'April',
 'May',
 'June',
 'July',
 'August',
 'September',
 'October',
 'November',
 'December'
]

34 C H A P T E R 2 ■ L I S T S A N D T U P L E S

A list with one ending for each number from 1 to 31
endings = ['st', 'nd', 'rd'] + 17 * ['th'] \
 + ['st', 'nd', 'rd'] + 7 * ['th'] \
 + ['st']

year = raw_input('Year: ')
month = raw_input('Month (1-12): ')
day = raw_input('Day (1-31): ')

month_number = int(month)
day_number = int(day)

Remember to subtract 1 from month and day to get a correct index
month_name = months[month_number-1]
ordinal = day + endings[day_number-1]

print month_name + ' ' + ordinal + ', ' + year

An example of a session with this program might be as follows:

Year: 1974
Month (1-12): 8
Day (1-31): 16
August 16th, 1974

The last line is the output from the program.

Slicing
Just as you use indexing to access individual elements, you can use slicing to access ranges of
elements. You do this by using two indices, separated by a colon:

>>> tag = 'Python web site'
>>> tag[9:30]
'http://www.python.org'
>>> tag[32:-4]
'Python web site'

As you can see, slicing is very useful for extracting parts of a sequence. The numbering
here is very important. The first index is the number of the first element you want to include.
However, the last index is the number of the first element after your slice. Consider the
following:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers[3:6]
[4, 5, 6]
>>> numbers[0:1]
[1]

C H A P T E R 2 ■ L I S T S AN D T U P L E S 35

In short, you supply two indices as limits for your slice, where the first is inclusive and the
second is exclusive.

A Nifty Shortcut

Let’s say you want to access the last three elements of numbers (from the previous example).
You could do it explicitly, of course:

>>> numbers[7:10]
[8, 9, 10]

Now, the index 10 refers to element 11—which does not exist, but is one step after the last
element you want. Got it?

This is fine, but what if you want to count from the end?

>>> numbers[-3:-1]
[8, 9]

It seems you cannot access the last element this way. How about using 0 as the element
“one step beyond” the end?

>>> numbers[-3:0]
[]

Not exactly the desired result. In fact, any time the leftmost index in a slice comes later in
the sequence than the second one (in this case, the third-to-last coming later than the first), the
result is always an empty sequence. Luckily, you can use a shortcut: if the slice continues to
the end of the sequence, you may simply leave out the last index:

>>> numbers[-3:]
[8, 9, 10]

The same thing works from the beginning:

>>> numbers[:3]
[1, 2, 3]

In fact, if you want to copy the entire sequence, you may leave out both indices:

>>> numbers[:]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Listing 2-2 contains a small program that prompts you for a URL, and (assuming it is of the
form http://www.somedomainname.com) extracts the domain name.

Listing 2-2. Slicing Example

Split up a URL of the form http://www.something.com

url = raw_input('Please enter the URL: ')
domain = url[11:-4]

print "Domain name: " + domain

36 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Here is a sample run of the program:

Please enter the URL: http://www.python.org
Domain name: python

Longer Steps

When slicing, you specify (either explicitly or implicitly) the start and end points of the slice.
Another parameter (added to the built-in types in Python 2.3), which normally is left implicit,
is the step length. In a regular slice, the step length is one, which means that the slice “moves”
from one element to the next, returning all the elements between the start and end:

>>> numbers[0:10:1]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In this example, you can see that the slice includes another number. This is, as you may
have guessed, the step size, made explicit. If the step size is set to a number greater than one,
elements will be skipped. For example, a step size of two will include only every other element
of the interval between the start and the end:

>>> numbers[0:10:2]
[1, 3, 5, 7, 9]
numbers[3:6:3]
[4]

You can still use the shortcuts mentioned earlier. For example, if you want every fourth
element of a sequence, you need to supply only a step size of four:

>>> numbers[::4]
[1, 5, 9]

Naturally, the step size can’t be zero—that wouldn’t get you anywhere—but it can be neg-
ative, which means extracting the elements from right to left:

>>> numbers[8:3:-1]
[9, 8, 7, 6, 5]
>>> numbers[10:0:-2]
[10, 8, 6, 4, 2]
>>> numbers[0:10:-2]
[]
>>> numbers[::-2]
[10, 8, 6, 4, 2]
>>> numbers[5::-2]
[6, 4, 2]
>>> numbers[:5:-2]
[10, 8]

Getting things right here can involve a bit of thinking. As you can see, the first limit (the
leftmost) is still inclusive, while the second (the rightmost) is exclusive. When using a negative

C H A P T E R 2 ■ L I S T S AN D T U P L E S 37

step size, you need to have a first limit (start index) that is higher than the second one. What
may be a bit confusing is that when you leave the start and end indices implicit, Python does
the “right thing”—for a positive step size, it moves from the beginning toward the end, and for
a negative step size, it moves from the end toward the beginning.

Adding Sequences
Sequences can be concatenated with the addition (plus) operator:

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> 'Hello, ' + 'world!'
'Hello, world!'
>>> [1, 2, 3] + 'world!'
Traceback (innermost last):
 File "<pyshell#2>", line 1, in ?
 [1, 2, 3] + 'world!'
TypeError: can only concatenate list (not "string") to list

As you can see from the error message, you can’t concatenate a list and a string, although
both are sequences. In general, you cannot concatenate sequences of different types.

Multiplication
Multiplying a sequence by a number x creates a new sequence where the original sequence is
repeated x times:

>>> 'python' * 5
'pythonpythonpythonpythonpython'
>>> [42] * 10
[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

None, Empty Lists, and Initialization

An empty list is simply written as two brackets ([])—there’s nothing in it. But what if you want
to have a list with room for ten elements but with nothing useful in it? You could use [42]*10,
as before, or perhaps more realistically [0]*10. You now have a list with ten zeros in it. Some-
times, however, you would like a value that somehow means “nothing,” as in “we haven’t put
anything here yet.” That’s when you use None. None is a Python value and means exactly that—
“nothing here.” So if you want to initialize a list of length 10, you could do the following:

>>> sequence = [None] * 10
>>> sequence
[None, None, None, None, None, None, None, None, None, None]

Listing 2-3 contains a program that prints (to the screen) a “box” made up of characters,
which is centered on the screen and adapted to the size of a sentence supplied by the user. The
code may look complicated, but it’s basically just arithmetic—figuring out how many spaces,
dashes, and so on you need in order to place things correctly.

38 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Listing 2-3. Sequence (String) Multiplication Example

Prints a sentence in a centered "box" of correct width

Note that the integer division operator (//) only works in Python
2.2 and newer. In earlier versions, simply use plain division (/)

sentence = raw_input("Sentence: ")

screen_width = 80
text_width = len(sentence)
box_width = text_width + 6
left_margin = (screen_width - box_width) // 2

print
print ' ' * left_margin + '+' + '-' * (box_width-2) + '+'
print ' ' * left_margin + '| ' + ' ' * text_width + ' |'
print ' ' * left_margin + '| ' + sentence + ' |'
print ' ' * left_margin + '| ' + ' ' * text_width + ' |'
print ' ' * left_margin + '+' + '-' * (box_width-2) + '+'
print

The following is a sample run:

Sentence: He's a very naughty boy!

 +——————————————————————————+
 | |
 | He's a very naughty boy! |
 | |
 +——————————————————————————+

Membership
To check whether a value can be found in a sequence, you use the in operator. This operator is a
bit different from the ones discussed so far (such as multiplication or addition). It checks whether
something is true and returns a value accordingly: True for true and False for false. Such opera-
tors are called Boolean operators, and the truth values are called Boolean values. You learn more
about Boolean expressions in the section on conditional statements in Chapter 5.

Here are some examples that use the in operator:

>>> permissions = 'rw'
>>> 'w' in permissions
True
>>> 'x' in permissions

C H A P T E R 2 ■ L I S T S AN D T U P L E S 39

False
>>> users = ['mlh', 'foo', 'bar']
>>> raw_input('Enter your user name: ') in users
Enter your user name: mlh
True
>>> subject = '$$$ Get rich now!!! $$$'
>>> '$$$' in subject
True

The first two examples use the membership test to check whether 'w' and 'x', respec-
tively, are found in the string permissions. This could be a script on a UNIX machine checking
for writing and execution permissions on a file. The next example checks whether a supplied
user name (mlh) is found in a list of users. This could be useful if your program enforces some
security policy. (In that case, you would probably want to use passwords as well.) The last
example checks whether the string subject contains the string '$$$'. This might be used as
part of a spam filter, for example.

■Note The example that checks whether a string contains '$$$' is a bit different from the others. In general,
the in operator checks whether an object is a member (that is, an element) of a sequence (or some other collection).
However, the only members or elements of a string are its characters. So, the following makes perfect sense:

>>> 'P' in 'Python'
True

In fact, in earlier versions of Python this was the only membership check that worked with strings—finding
out whether a character is in a string. Trying to check for a longer substring, such as '$$$', would give you
an error message (it would raise a TypeError), and you’d have to use a string method. You learn more about
those in Chapter 3. In Python 2.3 and later, however, you can use the in operator to check whether any string
is a substring of another.

Listing 2-4 shows a program that reads in a user name and checks the entered PIN code
against a database (a list, actually) that contains pairs (more lists) of names and PIN codes. If
the name/PIN pair is found in the database, the string 'Access granted' is printed. (The if
statement was mentioned in Chapter 1 and will be fully explained in Chapter 5.)

Listing 2-4. Sequence Membership Example

Check a user name and PIN code

database = [
 ['albert', '1234'],
 ['dilbert', '4242'],
 ['smith', '7524'],
 ['jones', '9843']
]

40 C H A P T E R 2 ■ L I S T S A N D T U P L E S

username = raw_input('User name: ')
pin = raw_input('PIN code: ')

if [username, pin] in database: print 'Access granted'

Length, Minimum, and Maximum
The built-in functions len, min, and max can be quite useful. The function len returns the num-
ber of elements a sequence contains. min and max return the smallest and largest element of the
sequence, respectively. (You learn more about comparing objects in Chapter 5, in the section
“Comparison Operators.”)

>>> numbers = [100, 34, 678]
>>> len(numbers)
3
>>> max(numbers)
678
>>> min(numbers)
34
>>> max(2, 3)
3
>>> min(9, 3, 2, 5)
2

How this works should be clear from the previous explanation, except possibly the last two
expressions. In those, max and min are not called with a sequence argument; the numbers are
supplied directly as arguments.

Lists: Python’s Workhorse
In the previous examples, I’ve used lists quite a bit. You’ve seen how useful they are, but this
section deals with what makes them different from tuples and strings: lists are mutable—that
is, you can change their contents—and they have many useful specialized methods.

The list Function
Because strings can’t be modified in the same way as lists, sometimes it can be useful to create
a list from a string. You can do this with the list function:1

>>> list('Hello')
['H', 'e', 'l', 'l', 'o']

Note that list works with all kinds of sequences, not just strings.

1. It’s actually a type, not a function, but the difference isn’t important right now.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 41

■Tip To convert a list of characters such as the preceding code back to a string, you would use the follow-
ing expression:

''.join(somelist)

where somelist is your list. For an explanation of what this really means, see the section about join in
Chapter 3.

Basic List Operations
You can perform all the standard sequence operations on lists, such as indexing, slicing, concat-
enating, and multiplying. But the interesting thing about lists is that they can be modified. In this
section, you see some of the ways you can change a list: item assignments, item deletion, slice
assignments, and list methods. (Note that not all list methods actually change their list.)

Changing Lists: Item Assignments

Changing a list is easy. You just use ordinary assignment as explained in Chapter 1. However,
instead of writing something like x = 2, you use the indexing notation to assign to a specific,
existing position, such as x[1] = 2.

>>> x = [1, 1, 1]
>>> x[1] = 2
>>> x
[1, 2, 1]

■Note You cannot assign to a position that doesn’t exist; if your list is of length 2, you cannot assign a value
to index 100. To do that, you would have to make a list of length 101 (or more). See the section “None, Empty
Lists, and Initialization,” earlier in this chapter.

Deleting Elements

Deleting elements from a list is easy, too. You can simply use the del statement:

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']
>>> del names[2]
>>> names
['Alice', 'Beth', 'Dee-Dee', 'Earl']

42 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Notice how Cecil is completely gone, and the length of the list has shrunk from five to four.
The del statement may be used to delete things other than list elements. It can be used

with dictionaries (see Chapter 4) or even variables. For more information, see Chapter 5.

Assigning to Slices

Slicing is a very powerful feature, and it is made even more powerful by the fact that you can
assign to slices:

>>> name = list('Perl')
>>> name
['P', 'e', 'r', 'l']
>>> name[2:] = list('ar')
>>> name
['P', 'e', 'a', 'r']

So you can assign to several positions at once. You may wonder what the big deal is. Couldn’t
you just have assigned to them one at a time? Sure, but when you use slice assignments, you may
also replace the slice with a sequence whose length is different from that of the original:

>>> name = list('Perl')
>>> name[1:] = list('ython')
>>> name
['P', 'y', 't', 'h', 'o', 'n']

Slice assignments can even be used to insert elements without replacing any of the
original ones:

>>> numbers = [1, 5]
>>> numbers[1:1] = [2, 3, 4]
>>> numbers
[1, 2, 3, 4, 5]

Here, I basically “replaced” an empty slice, thereby really inserting a sequence. You can do
the reverse to delete a slice:

>>> numbers
[1, 2, 3, 4, 5]
>>> numbers[1:4] = []
>>> numbers
[1, 5]

As you may have guessed, this last example is equivalent to del numbers[1:4]. (Now why
don’t you try a slice assignment with a step size different from 1? Perhaps even a negative one?)

C H A P T E R 2 ■ L I S T S AN D T U P L E S 43

List Methods
You’ve encountered functions already, but now it’s time to meet a close relative: methods.

A method is a function that is tightly coupled to some object, be it a list, a number, a string,
or whatever. In general, a method is called like this:

object.method(arguments)

As you can see, a method call looks just like a function call, except that the object is put
before the method name, with a dot separating them. (You get a much more detailed explana-
tion of what methods really are in Chapter 7.)

Lists have several methods that allow you to examine or modify their contents.

append

The append method is used to append an object to the end of a list:

>>> lst = [1, 2, 3]
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]

You might wonder why I have chosen such an ugly name as lst for my list. Why not call it list?
I could do that, but as you might remember, list is a built-in function.2 If I use the name for a list
instead, I won’t be able to call the function anymore. You can generally find better names for a
given application. A name such as lst really doesn’t tell you anything. So if your list is a list of prices,
for instance, you probably ought to call it something like prices, prices_of_eggs, or pricesOfEggs.

It’s also important to note that append, like several similar methods, changes the list in
place. This means that it does not simply return a new, modified list; instead, it modifies the old
one directly. This is usually what you want, but it may sometimes cause trouble. I’ll return to
this discussion when I describe sort later in the chapter.

count

The count method counts the occurrences of an element in a list:

>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to')
2
>>> x = [[1, 2], 1, 1, [2, 1, [1, 2]]]
>>> x.count(1)
2
>>> x.count([1, 2])
1

2. Actually, from version 2.2 of Python, list is a type, not a function. (This is the case with tuple and str
as well.) For the full story on this, see the section “Subclassing list, dict, and str” in Chapter 9.

44 C H A P T E R 2 ■ L I S T S A N D T U P L E S

extend

The extend method allows you to append several values at once by supplying a sequence of the
values you want to append. In other words, your original list has been extended by the other one:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a.extend(b)
>>> a
[1, 2, 3, 4, 5, 6]

This may seem similar to concatenation, but the important difference is that the extended
sequence (in this case, a) is modified. This is not the case in ordinary concatenation, in which
a completely new sequence is returned:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a + b
[1, 2, 3, 4, 5, 6]
>>> a
[1, 2, 3]

As you can see, the concatenated list looks exactly the same as the extended one in the pre-
vious example, yet a hasn’t changed this time. Because ordinary concatenation must make a
new list that contains copies of a and b, it isn’t quite as efficient as using extend if what you want
is something like this:

>>> a = a + b

Also, this isn’t an in-place operation—it won’t modify the original.
The effect of extend can be achieved by assigning to slices, as follows:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a[len(a):] = b
>>> a
[1, 2, 3, 4, 5, 6]

While this works, it isn’t quite as readable.

index

The index method is used for searching lists to find the index of the first occurrence of a value:

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni']
>>> knights.index('who')
4
>>> knights.index('herring')
Traceback (innermost last):
 File "<pyshell#76>", line 1, in ?
 knights.index('herring')
ValueError: list.index(x): x not in list

C H A P T E R 2 ■ L I S T S AN D T U P L E S 45

When you search for the word 'who', you find that it’s located at index 4:

>>> knights[4]
'who'

However, when you search for 'herring', you get an exception because the word is not
found at all.

insert

The insert method is used to insert an object into a list:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers.insert(3, 'four')
>>> numbers
[1, 2, 3, 'four', 5, 6, 7]

As with extend, you can implement insert with slice assignments:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers[3:3] = ['four']
>>> numbers
[1, 2, 3, 'four', 5, 6, 7]

This may be fancy, but it is hardly as readable as using insert.

pop

The pop method removes an element (by default, the last one) from the list and returns it:

>>> x = [1, 2, 3]
>>> x.pop()
3
>>> x
[1, 2]
>>> x.pop(0)
1
>>> x
[2]

■Note The pop method is the only list method that both modifies the list and returns a value (other than None).

Using pop, you can implement a common data structure called a stack. A stack like this
works just like a stack of plates. You can put plates on top, and you can remove plates from the
top. The last one you put into the stack is the first one to be removed. (This principle is called
last-in, first-out, or LIFO.)

46 C H A P T E R 2 ■ L I S T S A N D T U P L E S

The generally accepted names for the two stack operations (putting things in and taking
them out) are push and pop. Python doesn’t have push, but you can use append instead. The pop
and append methods reverse each other’s results, so if you push (or append) the value you just
popped, you end up with the same stack:

>>> x = [1, 2, 3]
>>> x.append(x.pop())
>>> x
[1, 2, 3]

■Tip If you want a first-in, first-out (FIFO) queue, you can use insert(0, ...) instead of append. Alter-
natively, you could keep using append but substitute pop(0) for pop(). An even better solution would be to
use a deque from the collections module. See Chapter 10 for more information.

remove

The remove method is used to remove the first occurrence of a value:

>>> x = ['to', 'be', 'or', 'not', 'to', 'be']
>>> x.remove('be')
>>> x
['to', 'or', 'not', 'to', 'be']
>>> x.remove('bee')
Traceback (innermost last):
 File "<pyshell#3>", line 1, in ?
 x.remove('bee')
ValueError: list.remove(x): x not in list

As you can see, only the first occurrence is removed, and you cannot remove something
(in this case, the string 'bee') if it isn’t in the list to begin with.

It’s important to note that this is one of the “nonreturning in-place changing” methods. It
modifies the list, but returns nothing (as opposed to pop).

reverse

The reverse method reverses the elements in the list. (Not very surprising, I guess.)

>>> x = [1, 2, 3]
>>> x.reverse()
>>> x
[3, 2, 1]

Note that reverse changes the list and does not return anything (just like remove and sort,
for example).

C H A P T E R 2 ■ L I S T S AN D T U P L E S 47

■Tip If you want to iterate over a sequence in reverse, you can use the reversed function. This function
doesn’t return a list, though; it returns an iterator. (You learn more about iterators in Chapter 9.) You can con-
vert the returned object with list:

>>> x = [1, 2, 3]
>>> list(reversed(x))
[3, 2, 1]

sort

The sort method is used to sort lists in place.3 Sorting “in place” means changing the original
list so its elements are in sorted order, rather than simply returning a sorted copy of the list:

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort()
>>> x
[1, 2, 4, 6, 7, 9]

You’ve encountered several methods already that modify the list without returning any-
thing, and in most cases that behavior is quite natural (as with append, for example). But I want
to emphasize this behavior in the case of sort because so many people seem to be confused by
it. The confusion usually occurs when users want a sorted copy of a list while leaving the origi-
nal alone. An intuitive (but wrong) way of doing this is as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = x.sort() # Don't do this!
>>> print y
None

Because sort modifies x but returns nothing, you end up with a sorted x and a y containing
None. One correct way of doing this would be to first bind y to a copy of x, and then sort y, as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = x[:]
>>> y.sort()
>>> x
[4, 6, 2, 1, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

Recall that x[:] is a slice containing all the elements of x, effectively a copy of the entire
list. Simply assigning x to y wouldn’t work because both x and y would refer to the same list:

>>> y = x
>>> y.sort()

3. In case you’re interested: from Python 2.3 on, the sort method uses a stable sorting algorithm.

48 C H A P T E R 2 ■ L I S T S A N D T U P L E S

>>> x
[1, 2, 4, 6, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

Another way of getting a sorted copy of a list is using the sorted function:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = sorted(x)
>>> x
[4, 6, 2, 1, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

This function can actually be used on any sequence, but will always return a list:4

>>> sorted('Python')
['P', 'h', 'n', 'o', 't', 'y']

If you want to sort the elements in reverse order, you can use sort (or sorted), followed by
a call to the reverse method, or you could use the reverse argument, described in the following
section.

Advanced Sorting

If you want to have your elements sorted in a specific manner (other than sort’s default behav-
ior, which is to sort elements in ascending order, according to Python’s default comparison
rules, as explained in Chapter 5), you can define your own comparison function, of the form
compare(x,y), which returns a negative number when x < y, a positive number when x > y,
and zero when x == y (according to your definition). You can then supply this as a parameter
to sort. The built-in function cmp provides the default behavior:

>>> cmp(42, 32)
1
>>> cmp(99, 100)
-1
>>> cmp(10, 10)
0
>>> numbers = [5, 2, 9, 7]
>>> numbers.sort(cmp)
>>> numbers
[2, 5, 7, 9]

The sort method has two other optional arguments: key and reverse. If you want to use
them, you normally specify them by name (so-called keyword arguments; you learn more about
those in Chapter 6). The key argument is similar to the cmp argument: you supply a function and
it’s used in the sorting process. However, instead of being used directly for determining whether

4. The sorted function can, in fact, be used on any iterable object. You learn more about iterable objects
in Chapter 9.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 49

one element is smaller than another, the function is used to create a key for each element, and the
elements are sorted according to these keys. So, for example, if you want to sort the elements
according to their lengths, you use len as the key function:

>>> x = ['aardvark', 'abalone', 'acme', 'add', 'aerate']
>>> x.sort(key=len)
>>> x
['add', 'acme', 'aerate', 'abalone', 'aardvark']

The other keyword argument, reverse, is simply a truth value (True or False; you learn
more about these in Chapter 5) indicating whether the list should be sorted in reverse:

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort(reverse=True)
>>> x
[9, 7, 6, 4, 2, 1]

The cmp, key, and reverse arguments are available in the sorted function as well. In many
cases, using custom functions for cmp or key will be useful. You learn how to define your own
functions in Chapter 6.

■Tip If you would like to read more about sorting, you may want to check out Andrew Dalke’s “Sorting
Mini-HOWTO,” found at http://wiki.python.org/moin/HowTo/Sorting.

Tuples: Immutable Sequences
Tuples are sequences, just like lists. The only difference is that tuples can’t be changed.5 (As you
may have noticed, this is also true of strings.) The tuple syntax is simple—if you separate some
values with commas, you automatically have a tuple:

>>> 1, 2, 3
(1, 2, 3)

As you can see, tuples may also be (and often are) enclosed in parentheses:

>>> (1, 2, 3)
(1, 2, 3)

The empty tuple is written as two parentheses containing nothing:

>>> ()
()

5. There are some technical differences in the way tuples and lists work behind the scenes, but you proba-
bly won’t notice it in any practical way. And tuples don’t have methods the way lists do. Don’t ask me why.

50 C H A P T E R 2 ■ L I S T S A N D T U P L E S

So, you may wonder how to write a tuple containing a single value. This is a bit peculiar—
you have to include a comma, even though there is only one value:

>>> 42
42
>>> 42,
(42,)
>>> (42,)
(42,)

The last two examples produce tuples of length one, while the first is not a tuple at all. The
comma is crucial. Simply adding parentheses won’t help: (42) is exactly the same as 42. One
lonely comma, however, can change the value of an expression completely:

>>> 3*(40+2)
126
>>> 3*(40+2,)
(42, 42, 42)

The tuple Function
The tuple function works in pretty much the same way as list: it takes one sequence argument
and converts it to a tuple.6 If the argument is already a tuple, it is returned unchanged:

>>> tuple([1, 2, 3])
(1, 2, 3)
>>> tuple('abc')
('a', 'b', 'c')
>>> tuple((1, 2, 3))
(1, 2, 3)

Basic Tuple Operations
As you may have gathered, tuples aren’t very complicated—and there isn’t really much you can
do with them except create them and access their elements, and you do this the same as with
other sequences:

>>> x = 1, 2, 3
>>> x[1]
2
>>> x[0:2]
(1, 2)

As you can see, slices of a tuple are also tuples, just as list slices are themselves lists.

6. Like list, tuple isn’t really a function—it’s a type. And, as with list, you can safely ignore this for now.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 51

So What’s the Point?
By now you are probably wondering why anyone would ever want such a thing as an immuta-
ble (unchangeable) sequence. Can’t you just stick to lists and leave them alone when you don’t
want them to change? Basically, yes. However, there are two important reasons why you need
to know about tuples:

• They can be used as keys in mappings (and members of sets); lists can’t be used this way.
You’ll learn more mappings in Chapter 4.

• They are returned by some built-in functions and methods, which means that you have
to deal with them. As long as you don’t try to change them, “dealing” with them most
often means treating them just like lists (unless you need methods such as index and
count, which tuples don’t have).

In general, lists will probably be adequate for all your sequencing needs.

A Quick Summary
Let’s review some of the most important concepts covered in this chapter:

Sequences: A sequence is a data structure in which the elements are numbered (starting
with zero). Examples of sequence types are lists, strings, and tuples. Of these, lists are
mutable (you can change them), whereas tuples and strings are immutable (once they’re
created, they’re fixed). Parts of a sequence can be accessed through slicing, supplying two
indices, indicating the starting and ending position of the slice. To change a list, you assign
new values to its positions, or use assignment to overwrite entire slices.

Membership: Whether a value can be found in a sequence (or other container) is checked
with the operator in. Using in with strings is a special case—it will let you look for sub-
strings.

Methods: Some of the built-in types (such as lists and strings, but not tuples) have many
useful methods attached to them. These are a bit like functions, except that they are tied
closely to a specific value. Methods are an important aspect of object-oriented program-
ming, which we look at in Chapter 7.

52 C H A P T E R 2 ■ L I S T S A N D T U P L E S

New Functions in This Chapter

What Now?
Now that you’re acquainted with sequences, let’s move on to character sequences, also known
as strings.

Function Description

cmp(x, y) Compares two values

len(seq) Returns the length of a sequence

list(seq) Converts a sequence to a list

max(args) Returns the maximum of a sequence or set of arguments

min(args) Returns the minimum of a sequence or set of arguments

reversed(seq) Lets you iterate over a sequence in reverse

sorted(seq) Returns a sorted list of the elements of seq

tuple(seq) Converts a sequence to a tuple

53

■ ■ ■

C H A P T E R 3

Working with Strings

You’ve seen strings before, and know how to make them. You’ve also looked at how to access
their individual characters by indexing and slicing. In this chapter, you see how to use them to
format other values (for printing, for example), and take a quick look at the useful things you
can do with string methods, such as splitting, joining, searching, and more.

Basic String Operations
All the standard sequence operations (indexing, slicing, multiplication, membership, length,
minimum, and maximum) work with strings, as you saw in the previous chapter. Remember,
however, that strings are immutable, so all kinds of item or slice assignments are illegal:

>>> website = 'http://www.python.org'
>>> website[-3:] = 'com'
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in ?
 website[-3:] = 'com'
TypeError: object doesn't support slice assignment

String Formatting: The Short Version
If you are new to Python programming, chances are you won’t need all the options that are
available in Python string formatting, so I’ll give you the short version here. If you are inter-
ested in the details, take a look at the section “String Formatting: The Long Version,” which
follows. Otherwise, just read this and skip down to the section “String Methods.”

String formatting uses the (aptly named) string formatting operator, the percent (%) sign.

■Note As you may remember, % is also used as a modulus (remainder) operator.

54 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

To the left of the %, you place a string (the format string); to the right of it, you place the
value you want to format. You can use a single value such as a string or a number, you can use
a tuple of values (if you want to format more than one), or, as I discuss in the next chapter, you
can use a dictionary. The most common case is the tuple:

>>> format = "Hello, %s. %s enough for ya?"
>>> values = ('world', 'Hot')
>>> print format % values
Hello, world. Hot enough for ya?

■Note If you use a list or some other sequence instead of a tuple, the sequence will be interpreted as a single
value. Only tuples and dictionaries (discussed in Chapter 4) will allow you to format more than one value.

The %s parts of the format string are called conversion specifiers. They mark the places
where the values are to be inserted. The s means that the values should be formatted as if they
were strings; if they aren’t, they’ll be converted with str. This works with most values. For a list
of other specifier types, see Table 3-1 later in the chapter.

■Note To actually include a percent sign in the format string, you must write %% so Python doesn’t mistake
it for the beginning of a conversion specifier.

If you are formatting real numbers (floats), you can use the f specifier type and supply the
precision as a . (dot), followed by the number of decimals you want to keep. The format speci-
fier always ends with a type character, so you must put the precision before that:

>>> format = "Pi with three decimals: %.3f"
>>> from math import pi
>>> print format % pi
Pi with three decimals: 3.142

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 55

1. For more information, see Section 4.1.2, “Template strings,” of the Python Library Reference
(http://python.org/doc/lib/node40.html).

TEMPLATE STRINGS

The string module offers another way of formatting values: template strings. They work more like variable
substitution in many UNIX shells, with $foo being replaced by a keyword argument called foo (for more about
keyword arguments, see Chapter 6), which is passed to the template method substitute:

>>> from string import Template
>>> s = Template('$x, glorious $x!')
>>> s.substitute(x='slurm')
'slurm, glorious slurm!'

If the replacement field is part of a word, the name must be enclosed in braces, in order to clearly indi-
cate where it ends:

>>> s = Template("It's ${x}tastic!")
>>> s.substitute(x='slurm')
"It's slurmtastic!"

In order to insert a dollar sign, use $$:

>>> s = Template("Make $$ selling $x!")
>>> s.substitute(x='slurm')
'Make $ selling slurm!'

Instead of using keyword arguments, you can supply the value-name pairs in a dictionary (see
Chapter 4):

>>> s = Template('A $thing must never $action.')
>>> d = {}
>>> d['thing'] = 'gentleman'
>>> d['action'] = 'show his socks'
>>> s.substitute(d)
'A gentleman must never show his socks.'

There is also a method called safe_substitute that will not complain about missing values or incor-
rect uses of the $ character.1

56 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

String Formatting: The Long Version
The right operand of the formatting operator may be anything; if it is either a tuple or a map-
ping (like a dictionary), it is given special treatment. We haven’t looked at mappings (such as
dictionaries) yet, so let’s focus on tuples here. We’ll use mappings in formatting in Chapter 4,
where they’re discussed in greater detail.

If the right operand is a tuple, each of its elements is formatted separately, and you need a
conversion specifier for each of the values.

■Note If you write the tuple to be converted as part of the conversion expression, you must enclose it in
parentheses to avoid confusing Python:

>>> '%s plus %s equals %s' % (1, 1, 2)
'1 plus 1 equals 2'
>>> '%s plus %s equals %s' % 1, 1, 2 # Lacks parentheses!
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: not enough arguments for format string

A basic conversion specifier (as opposed to a full conversion specifier, which may contain
a mapping key as well; see Chapter 4 for more information) consists of the items that follow.
Note that the order of these items is crucial.

• The % character: This marks the beginning of the conversion specifier.

• Conversion flags: These are optional and may be -, indicating left alignment; +, indicat-
ing that a sign should precede the converted value; “ ” (a space character), indicating
that a space should precede positive numbers; or 0, indicating that the conversion
should be zero-padded.

• The minimum field width: This is also optional and specifies that the converted string will
be at least this wide. If this is an * (asterisk), the width will be read from the value tuple.

• A . (dot) followed by the precision: This is also optional. If a real number is converted,
this many decimals should be shown. If a string is converted, this number is the maxi-
mum field width. If this is an * (asterisk), the precision will be read from the value tuple.

• The conversion type: This can be any of the types listed in Table 3-1.

Table 3-1. String Formatting Conversion Types

Conversion Type Meaning

d, i Signed integer decimal

o Unsigned octal

u Unsigned decimal

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 57

The following sections discuss the various elements of the conversion specifiers in more detail.

Simple Conversion
The simple conversion, with only a conversion type, is really easy to use:

>>> 'Price of eggs: $%d' % 42
'Price of eggs: $42'
>>> 'Hexadecimal price of eggs: %x' % 42
'Hexadecimal price of eggs: 2a'
>>> from math import pi
>>> 'Pi: %f...' % pi
'Pi: 3.141593...'
>>> 'Very inexact estimate of pi: %i' % pi
'Very inexact estimate of pi: 3'
>>> 'Using str: %s' % 42L
'Using str: 42'
>>> 'Using repr: %r' % 42L
'Using repr: 42L'

Width and Precision
A conversion specifier may include a field width and a precision. The width is the minimum
number of characters reserved for a formatted value. The precision is (for a numeric conver-
sion) the number of decimals that will be included in the result or (for a string conversion) the
maximum number of characters the formatted value may have.

These two parameters are supplied as two integer numbers (width first, then precision),
separated by a . (dot). Both are optional, but if you want to supply only the precision, you must
also include the dot:

>>> '%10f' % pi # Field width 10
' 3.141593'

x Unsigned hexadecimal (lowercase)

X Unsigned hexadecimal (uppercase)

e Floating-point exponential format (lowercase)

E Floating-point exponential format (uppercase)

f, F Floating-point decimal format

g Same as e if exponent is greater than –4 or less than precision; f otherwise

G Same as E if exponent is greater than –4 or less than precision; F otherwise

c Single character (accepts an integer or a single character string)

r String (converts any Python object using repr)

s String (converts any Python object using str)

Conversion Type Meaning

58 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

>>> '%10.2f' % pi # Field width 10, precision 2
' 3.14'
>>> '%.2f' % pi # Precision 2
'3.14'
>>> '%.5s' % 'Guido van Rossum'
'Guido'

You can use an * (asterisk) as the width or precision (or both). In that case, the number will
be read from the tuple argument:

>>> '%.*s' % (5, 'Guido van Rossum')
'Guido'

Signs, Alignment, and Zero-Padding
Before the width and precision numbers, you may put a “flag,” which may be either zero, plus,
minus, or blank. A zero means that the number will be zero-padded:

>>> '%010.2f' % pi
'0000003.14'

It’s important to note here that the leading zero in 010 in the preceding code does not
mean that the width specifier is an octal number, as it would in a normal Python number.
When you use 010 as the width specifier, it means that the width should be 10 and that the
number should be zero-padded, not that the width should be 8:

>>> 010
8

A minus sign (-) left-aligns the value:

>>> '%-10.2f' % pi
'3.14 '

As you can see, any extra space is put on the right-hand side of the number.
A blank (“ ”) means that a blank should be put in front of positive numbers. This may be

useful for aligning positive and negative numbers:

>>> print ('% 5d' % 10) + '\n' + ('% 5d' % -10)F
 10
 -10

Finally, a plus (+) means that a sign (either plus or minus) should precede both positive
and negative numbers (again, useful for aligning):

>>> print ('%+5d' % 10) + '\n' + ('%+5d' % -10)
 +10
 -10

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 59

In the example shown in Listing 3-1, I use the asterisk width specifier to format a table of
fruit prices, where the user enters the total width of the table. Because this information is sup-
plied by the user, I can’t hard-code the field widths in my conversion specifiers. By using the
asterisk, I can have the field width read from the converted tuple.

Listing 3-1. String Formatting Example

Print a formatted price list with a given width

width = input('Please enter width: ')

price_width = 10
item_width = width - price_width

header_format = '%-*s%*s'
format = '%-*s%*.2f'

print '=' * width

print header_format % (item_width, 'Item', price_width, 'Price')

print '-' * width

print format % (item_width, 'Apples', price_width, 0.4)
print format % (item_width, 'Pears', price_width, 0.5)
print format % (item_width, 'Cantaloupes', price_width, 1.92)
print format % (item_width, 'Dried Apricots (16 oz.)', price_width, 8)
print format % (item_width, 'Prunes (4 lbs.)', price_width, 12)

print '=' * width

The following is a sample run of the program:

Please enter width: 35
===================================
Item Price
———————————————————————————————————
Apples 0.40
Pears 0.50
Cantaloupes 1.92
Dried Apricots (16 oz.) 8.00
Prunes (4 lbs.) 12.00
===================================

60 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

String Methods
You have already encountered methods in lists. Strings have a much richer set of methods, in
part because strings have “inherited” many of their methods from the string module where
they resided as functions in earlier versions of Python (and where you may still find them, if
you feel the need).

Because there are so many string methods, only some of the most useful ones are described
here. For a full reference, see Appendix B. In the description of the string methods, you will find
references to other, related string methods in this chapter (marked “See also”) or in Appendix B.

find
The find method finds a substring within a larger string. It returns the leftmost index where the
substring is found. If it is not found, –1 is returned:

>>> 'With a moo-moo here, and a moo-moo there'.find('moo')
7
>>> title = "Monty Python's Flying Circus"
>>> title.find('Monty')
0

2. For a more thorough description of the module, check out Section 4.1 of the Python Library Refer-
ence (http://python.org/doc/lib/module-string.html).

3. In Python 3.0, string.letters and friends will be removed. You will need to use constants like
string.ascii_letters instead.

BUT STRING ISN’T DEAD

Even though string methods have completely upstaged the string module, the module still includes a few
constants and functions that aren’t available as string methods. The maketrans function is one example and
will be discussed together with the translate method in the material that follows. The following are some
useful constants available from string.2

• string.digits: A string containing the digits 0–9

• string.letters: A string containing all letters (uppercase and lowercase)

• string.lowercase: A string containing all lowercase letters

• string.printable: A string containing all printable characters

• string.punctuation: A string containing all punctuation characters

• string.uppercase: A string containing all uppercase letters

Note that the string constant letters (such as string.letters) are locale-dependent (that is, their
exact values depend on the language for which Python is configured).3 If you want to make sure you’re using
ASCII, you can use the variants with ascii_ in their names, such as string.ascii_letters.

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 61

>>> title.find('Python')
6
>>> title.find('Flying')
15
>>> title.find('Zirquss')
-1

In our first encounter with membership in Chapter 2, we created part of a spam filter by
using the expression '$$$' in subject. We could also have used find (which would also have
worked prior to Python 2.3, when in could be used only when checking for single character
membership in strings):

>>> subject = '$$$ Get rich now!!! $$$'
>>> subject.find('$$$')
0

■Note The string method find does not return a Boolean value. If find returns 0, as it did here, it means
that it has found the substring, at index zero.

You may also supply a starting point for your search and, optionally, an ending point:

>>> subject = '$$$ Get rich now!!! $$$'
>>> subject.find('$$$')
0
>>> subject.find('$$$', 1) # Only supplying the start
20
>>> subject.find('!!!')
16
>>> subject.find('!!!', 0, 16) # Supplying start and end
-1

Note that the range specified by the start and stop values (second and third parameters)
includes the first index but not the second. This is common practice in Python.

In Appendix B: rfind, index, rindex, count, startswith, endswith.

join
A very important string method, join is the inverse of split. It is used to join the elements of a
sequence:

>>> seq = [1, 2, 3, 4, 5]
>>> sep = '+'
>>> sep.join(seq) # Trying to join a list of numbers
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: sequence item 0: expected string, int found

62 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

>>> seq = ['1', '2', '3', '4', '5']
>>> sep.join(seq) # Joining a list of strings
'1+2+3+4+5'
>>> dirs = '', 'usr', 'bin', 'env'
>>> '/'.join(dirs)
'/usr/bin/env'
>>> print 'C:' + '\\'.join(dirs)
C:\usr\bin\env

As you can see, the sequence elements that are to be joined must all be strings. Note how
in the last two examples I use a list of directories and format them according to the conventions
of UNIX and DOS/Windows simply by using a different separator (and adding a drive name in
the DOS version).

See also: split.

lower
The lower method returns a lowercase version of the string:

>>> 'Trondheim Hammer Dance'.lower()
'trondheim hammer dance'

This can be useful if you want to write code that is case insensitive—that is, code that
ignores the difference between uppercase and lowercase letters. For instance, suppose you
want to check whether a user name is found in a list. If your list contains the string 'gumby' and
the user enters his name as 'Gumby', you won’t find it:

>>> if 'Gumby' in ['gumby', 'smith', 'jones']: print 'Found it!'
...
>>>

Of course, the same thing will happen if you have stored 'Gumby' and the user writes
'gumby', or even 'GUMBY'. A solution to this is to convert all names to lowercase both when stor-
ing and searching. The code would look something like this:

>>> name = 'Gumby'
>>> names = ['gumby', 'smith', 'jones']
>>> if name.lower() in names: print 'Found it!'
...
Found it!
>>>

See also: translate.
In Appendix B: islower, capitalize, swapcase, title, istitle, upper, isupper.

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 63

replace
The replace method returns a string where all the occurrences of one string have been
replaced by another:

>>> 'This is a test'.replace('is', 'eez')
'Theez eez a test'

If you have ever used the “search and replace” feature of a word processing program, you
will no doubt see the usefulness of this method.

See also: translate.
In Appendix B: expandtabs.

split
A very important string method, split is the inverse of join, and is used to split a string into a
sequence:

>>> '1+2+3+4+5'.split('+')
['1', '2', '3', '4', '5']
>>> '/usr/bin/env'.split('/')
['', 'usr', 'bin', 'env']
>>> 'Using the default'.split()
['Using', 'the', 'default']

TITLE CASING

One relative of lower is the title method (see Appendix B), which title cases a string—that is, all words
start with uppercase characters, and all other characters are lowercased. However, the word boundaries are
defined in a way that may give some unnatural results:

>>> "that's all folks".title()
"That'S All, Folks"

An alternative is the capwords function from the string module:

>>> import string
>>> string.capwords("that's all, folks")
"That's All, Folks"

Of course, if you want a truly correctly capitalized title (which depends on the style you’re using—possi-
bly lowercasing articles, coordinating conjunctions, prepositions with fewer than five letters, and so forth),
you’re basically on your own.

64 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

Note that if no separator is supplied, the default is to split on all runs of consecutive
whitespace characters (spaces, tabs, newlines, and so on).

See also: join.
In Appendix B: rsplit, splitlines.

strip
The strip method returns a string where whitespace on the left and right (but not internally)
has been stripped (removed):

>>> ' internal whitespace is kept '.strip()
'internal whitespace is kept'

As with lower, strip can be useful when comparing input to stored values. Let’s return to
the user name example from the section on lower, and let’s say that the user inadvertently
types a space after his name:

>>> names = ['gumby', 'smith', 'jones']
>>> name = 'gumby '
>>> if name in names: print 'Found it!'
...
>>> if name.strip() in names: print 'Found it!'
...
Found it!
>>>

You can also specify which characters are to be stripped, by listing them all in a string
parameter:

>>> '*** SPAM * for * everyone!!! ***'.strip(' *!')
'SPAM * for * everyone'

Stripping is performed only at the ends, so the internal asterisks are not removed.
In Appendix B: lstrip, rstrip.

translate
Similar to replace, translate replaces parts of a string, but unlike replace, translate works
only with single characters. Its strength lies in that it can perform several replacements simul-
taneously, and can do so more efficiently than replace.

There are quite a few rather technical uses for this method (such as translating newline
characters or other platform-dependent special characters), but let’s consider a simpler
(although slightly more silly) example. Let’s say you want to translate a plain English text into
one with a German accent. To do this, you must replace the character c with k, and s with z.

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 65

Before you can use translate, however, you must make a translation table. This transla-
tion table is a full listing of which characters should be replaced by which. Because this table
(which is actually just a string) has 256 entries, you won’t write it out yourself. Instead, you’ll
use the function maketrans from the string module.

The maketrans function takes two arguments: two strings of equal length, indicating that
each character in the first string should be replaced by the character in the same position in the
second string. Got that? In the case of our simple example, the code would look like the
following:

>>> from string import maketrans
>>> table = maketrans('cs', 'kz')

Once you have this table, you can use it as an argument to the translate method, thereby
translating your string:

>>> 'this is an incredible test'.translate(table)
'thiz iz an inkredible tezt'

An optional second argument can be supplied to translate, specifying letters that should
be deleted. If you wanted to emulate a really fast-talking German, for instance, you could
delete all the spaces:

>>> 'this is an incredible test'.translate(table, ' ')
'thizizaninkredibletezt'

See also: replace, lower.

WHAT’S IN A TRANSLATION TABLE?

A translation table is a string containing one replacement letter for each of the 256 characters in the ASCII
character set:

>>> table = maketrans('cs', 'kz')
>>> len(table)
256
>>> table[97:123]
'abkdefghijklmnopqrztuvwxyz'
>>> maketrans('', '')[97:123]
'abcdefghijklmnopqrstuvwxyz'

As you can see, I’ve sliced out the part of the table that corresponds to the lowercase letters. Take a look
at the alphabet in the table and that in the empty translation (which doesn’t change anything). The empty
translation has a normal alphabet, while in the preceding code, the letter c has been replaced by k, and s has
been replaced by z.

66 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

A Quick Summary
In this chapter, you have seen two important ways of working with strings:

String formatting: The modulo operator (%) can be used to splice values into a string that
contains conversion flags, such as %s. You can use this to format values in many ways,
including right or left justification, setting a specific field width and precision, adding a
sign (plus or minus), or left-padding with zeros.

String methods: Strings have a plethora of methods. Some of them are extremely useful
(such as split and join), while others are used less often (such as istitle or capitalize).

New Functions in This Chapter

PROBLEMS WITH NON-ENGLISH STRINGS

Sometimes string methods such as lower won’t work quite the way you want them to—for instance, if
you happen to use a non-English alphabet. Let’s say you want to convert the uppercase Norwegian word
BØLLEFRØ to its lowercase equivalent:

>>> print 'BØLLEFRØ'.lower()
bØllefrØ

As you can see, this didn’t really work because Python doesn’t consider Ø a real letter. In this case, you
can use translate to do the translation:

>>> table = maketrans('ÆØÅ', 'æøå')
>>> word = 'KÅPESØM'
>>> print word.lower()
kÅpesØm
>>> print word.translate(table)
KåPESøM
>>> print word.translate(table).lower()
kåpesøm

Then again, simply using Unicode might solve your problems:

>>> print u'ærnæringslære'.upper()
ÆRNÆRINGSLÆRE

You might also want to check out the locale module for some internationalization functionality.

Function Description

string.capwords(s[, sep]) Splits s with split (using sep), capitalize items, and join with a
single space

string.maketrans(from, to) Makes a translation table for translate

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 67

What Now?
Lists, strings, and dictionaries are three of the most important data types in Python. You’ve
seen lists and strings, so guess what’s next? In the next chapter, you see how dictionaries not
only support indices, but other kinds of keys (such as strings or tuples) as well. Dictionaries
also support a few methods, although not as many as strings.

69

■ ■ ■

C H A P T E R 4

Dictionaries: When Indices
Won’t Do

You’ve seen that lists are useful when you want to group values into a structure and refer to
each value by number. In this chapter, you learn about a data structure in which you can refer
to each value by name. This type of structure is called a mapping. The only built-in mapping
type in Python is the dictionary. The values in a dictionary don’t have any particular order but
are stored under a key, which may be a number, a string, or even a tuple.

Dictionary Uses
The name dictionary should give you a clue about the purpose of this structure. An ordinary
book is made for reading from start to finish. If you like, you can quickly open it to any given
page. This is a bit like a Python list. On the other hand, dictionaries—both real ones and their
Python equivalent—are constructed so that you can look up a specific word (key) easily, to find
its definition (value).

A dictionary is more appropriate than a list in many situations. Here are some examples of
uses of Python dictionaries:

• Representing the state of a game board, with each key being a tuple of coordinates

• Storing file modification times, with file names as keys

• A digital telephone/address book

Let’s say you have a list of people:

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']

What if you wanted to create a little database where you could store the telephone num-
bers of these people—how would you do that? One way would be to make another list. Let’s say
you’re storing only their four-digit extensions. Then you would get something like this:

>>> numbers = ['2341', '9102', '3158', '0142', '5551']

Once you’ve created these lists, you can look up Cecil’s telephone number as follows:

>>> numbers[names.index('Cecil')]
3158

70 C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

It works, but it’s a bit impractical. What you really would want to do is something like the
following:

>>> phonebook['Cecil']
3158

Guess what? If phonebook is a dictionary, you can do just that.

Creating and Using Dictionaries
Dictionaries are written like this:

phonebook = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

Dictionaries consist of pairs (called items) of keys and their corresponding values. In this
example, the names are the keys and the telephone numbers are the values. Each key is sepa-
rated from its value by a colon (:), the items are separated by commas, and the whole thing is
enclosed in curly braces. An empty dictionary (without any items) is written with just two curly
braces, like this: {}.

■Note Keys are unique within a dictionary (and any other kind of mapping). Values do not need to be
unique within a dictionary.

INTEGERS VS. STRINGS OF DIGITS

You might wonder why I have used strings to represent the telephone numbers—why not integers? Consider
what would happen to Dee-Dee’s number then:

>>> 0142
98

Not exactly what we wanted, is it? As mentioned briefly in Chapter 1, octal numbers are written with an
initial zero. It is impossible to write decimal numbers like that.

>>> 0912
 File "<stdin>", line 1
 0912

 ^
SyntaxError: invalid syntax

The lesson is this: telephone numbers (and other numbers that may contain leading zeros) should be
represented as strings of digits—not integers.

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 71

The dict Function
You can use the dict function1 to construct dictionaries from other mappings (for example,
other dictionaries) or from sequences of (key, value) pairs:

>>> items = [('name', 'Gumby'), ('age', 42)]
>>> d = dict(items)
>>> d
{'age': 42, 'name': 'Gumby'}
>>> d['name']
'Gumby'

It can also be used with keyword arguments, as follows:

>>> d = dict(name='Gumby', age=42)
>>> d
{'age': 42, 'name': 'Gumby'}

Although this is probably the most useful application of dict, you can also use it with a
mapping argument to create a dictionary with the same items as the mapping. (If used without
any arguments, it returns a new empty dictionary, just like other similar functions such as list,
tuple, and str.) If the other mapping is a dictionary (which is, after all, the only built-in map-
ping type), you can use the dictionary method copy instead, as described later in this chapter.

Basic Dictionary Operations
The basic behavior of a dictionary in many ways mirrors that of a sequence:

• len(d) returns the number of items (key-value pairs) in d.

• d[k] returns the value associated with the key k.

• d[k] = v associates the value v with the key k.

• del d[k] deletes the item with key k.

• k in d checks whether there is an item in d that has the key k.

Although dictionaries and lists share several common characteristics, there are some
important distinctions:

Key types: Dictionary keys don’t have to be integers (though they may be). They may be
any immutable type, such as floating-point (real) numbers, strings, or tuples.

Automatic addition: You can assign a value to a key, even if that key isn’t in the dictionary
to begin with; in that case, a new item will be created. You cannot assign a value to an
index outside the list’s range (without using append or something like that).

Membership: The expression k in d (where d is a dictionary) looks for a key, not a value.
The expression v in l, on the other hand (where l is a list) looks for a value, not an index.

1. The dict function isn’t really a function at all. It is a type, just like list, tuple, and str.

72 C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

This may seem a bit inconsistent, but it is actually quite natural when you get used to it.
After all, if the dictionary has the given key, checking the corresponding value is easy.

■Tip Checking for key membership in a dictionary is much more efficient than checking for membership in
a list. The difference is greater the larger the data structures are.

The first point—that the keys may be of any immutable type—is the main strength of dic-
tionaries. The second point is important, too. Just look at the difference here:

>>> x = []
>>> x[42] = 'Foobar'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
>>> x = {}
>>> x[42] = 'Foobar'
>>> x
{42: 'Foobar'}

First, I try to assign the string 'Foobar' to position 42 in an empty list—clearly impossible
because that position does not exist. To make this possible, I would have to initialize x with
[None]*43 or something, rather than simply []. The next attempt, however, works perfectly.
Here I assign 'Foobar' to the key 42 of an empty dictionary. You can see there’s no problem
here. A new item is simply added to the dictionary, and I’m in business.

Listing 4-1 shows the code for the telephone book example.

Listing 4-1. Dictionary Example

A simple database

A dictionary with person names as keys. Each person is represented as
another dictionary with the keys 'phone' and 'addr' referring to their phone
number and address, respectively.

people = {

 'Alice': {
 'phone': '2341',
 'addr': 'Foo drive 23'
 },

 'Beth': {
 'phone': '9102',
 'addr': 'Bar street 42'
 },

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 73

 'Cecil': {
 'phone': '3158',
 'addr': 'Baz avenue 90'
 }

}

Descriptive labels for the phone number and address. These will be used
when printing the output.
labels = {
 'phone': 'phone number',
 'addr': 'address'
}

name = raw_input('Name: ')

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:
if request == 'p': key = 'phone'
if request == 'a': key = 'addr'

Only try to print information if the name is a valid key in
our dictionary:
if name in people: print "%s's %s is %s." % \
 (name, labels[key], people[name][key])

Here is a sample run of the program:

Name: Beth
Phone number (p) or address (a)? p
Beth's phone number is 9102.

String Formatting with Dictionaries
In Chapter 3, you saw how you could use string formatting to format all the values in a tuple.
If you use a dictionary (with only strings as keys) instead of a tuple, you can make the string
formatting even snazzier. After the % character in each conversion specifier, you add a key
(enclosed in parentheses), which is followed by the other specifier elements:

>>> phonebook
{'Beth': '9102', 'Alice': '2341', 'Cecil': '3258'}
>>> "Cecil's phone number is %(Cecil)s." % phonebook
"Cecil's phone number is 3258."

74 C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

Except for the added string key, the conversion specifiers work as before. When using dic-
tionaries like this, you may have any number of conversion specifiers, as long as all the given
keys are found in the dictionary. This sort of string formatting can be very useful in template
systems (in this case using HTML):

>>> template = '''<html>
 <head><title>%(title)s</title></head>
 <body>
 <h1>%(title)s</h1>
 <p>%(text)s</p>
 </body>'''
>>> data = {'title': 'My Home Page', 'text': 'Welcome to my home page!'}
>>> print template % data
<html>
<head><title>My Home Page</title></head>
<body>
<h1>My Home Page</h1>
<p>Welcome to my home page!</p>
</body>

■Note The string.Template class (mentioned in Chapter 3) is also quite useful for this kind of
application.

Dictionary Methods
Just like the other built-in types, dictionaries have methods. While these methods can be very
useful, you probably will not need them as often as the list and string methods. You might want
to skim this section first to get an idea of which methods are available, and then come back
later if you need to find out exactly how a given method works.

clear

The clear method removes all items from the dictionary. This is an in-place operation (like
list.sort), so it returns nothing (or, rather, None):

>>> d = {}
>>> d['name'] = 'Gumby'
>>> d['age'] = 42
>>> d
{'age': 42, 'name': 'Gumby'}

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 75

>>> returned_value = d.clear()
>>> d
{}
>>> print returned_value
None

Why is this useful? Let’s consider two scenarios. Here’s the first one:

>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key': 'value'}
>>> x = {}
>>> y
{'key': 'value'}

And here’s the second scenario:

>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key': 'value'}
>>> x.clear()
>>> y
{}

In both scenarios, x and y originally refer to the same dictionary. In the first scenario, I
“blank out” x by assigning a new, empty dictionary to it. That doesn’t affect y at all, which still
refers to the original dictionary. This may be the behavior you want, but if you really want to
remove all the elements of the original dictionary, you must use clear. As you can see in the
second scenario, y is then also empty afterward.

copy

The copy method returns a new dictionary with the same key-value pairs (a shallow copy, since
the values themselves are the same, not copies):

>>> x = {'username': 'admin', 'machines': ['foo', 'bar', 'baz']}
>>> y = x.copy()
>>> y['username'] = 'mlh'
>>> y['machines'].remove('bar')
>>> y
{'username': 'mlh', 'machines': ['foo', 'baz']}
>>> x
{'username': 'admin', 'machines': ['foo', 'baz']}

76 C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

As you can see, when you replace a value in the copy, the original is unaffected. However,
if you modify a value (in place, without replacing it), the original is changed as well because the
same value is stored there (like the 'machines' list in this example).

One way to avoid that problem is to make a deep copy, copying the values, any values they
contain, and so forth as well. You accomplish this using the function deepcopy from the copy
module:

>>> from copy import deepcopy
>>> d = {}
>>> d['names'] = ['Alfred', 'Bertrand']
>>> c = d.copy()
>>> dc = deepcopy(d)
>>> d['names'].append('Clive')
>>> c
{'names': ['Alfred', 'Bertrand', 'Clive']}
>>> dc
{'names': ['Alfred', 'Bertrand']}

fromkeys

The fromkeys method creates a new dictionary with the given keys, each with a default corre-
sponding value of None:

>>> {}.fromkeys(['name', 'age'])
{'age': None, 'name': None}

This example first constructs an empty dictionary and then calls the fromkeys method on
that, in order to create another dictionary—a somewhat redundant strategy. Instead, you can
call the method directly on dict, which (as mentioned before) is the type of all dictionaries.
(The concept of types and classes is discussed more thoroughly in Chapter 7.)

>>> dict.fromkeys(['name', 'age'])
{'age': None, 'name': None}

If you don’t want to use None as the default value, you can supply your own default:

>>> dict.fromkeys(['name', 'age'], '(unknown)')
{'age': '(unknown)', 'name': '(unknown)'}

get

The get method is a forgiving way of accessing dictionary items. Ordinarily, when you try to
access an item that is not present in the dictionary, things go very wrong:

>>> d = {}
>>> print d['name']
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: 'name'

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 77

Not so with get:

>>> print d.get('name')
None

As you can see, when you use get to access a nonexistent key, there is no exception.
Instead, you get the value None. You may supply your own “default” value, which is then used
instead of None:

>>> d.get('name', 'N/A')
'N/A'

If the key is there, get works like ordinary dictionary lookup:

>>> d['name'] = 'Eric'
>>> d.get('name')
'Eric'

Listing 4-2 shows a modified version of the program from Listing 4-1, which uses the get
method to access the “database” entries.

Listing 4-2. Dictionary Method Example

A simple database using get()

Insert database (people) from Listing 4-1 here.

labels = {
 'phone': 'phone number',
 'addr': 'address'
}

name = raw_input('Name: ')

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:
key = request # In case the request is neither 'p' nor 'a'
if request == 'p': key = 'phone'
if request == 'a': key = 'addr'

Use get to provide default values:
person = people.get(name, {})
label = labels.get(key, key)
result = person.get(key, 'not available')

print "%s's %s is %s." % (name, label, result)

78 C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

An example run of this program follows. Notice how the added flexibility of get allows the
program to give a useful response, even though the user enters values we weren’t prepared for:

Name: Gumby
Phone number (p) or address (a)? batting average
Gumby's batting average is not available.

has_key

The has_key method checks whether a dictionary has a given key. The expression d.has_key(k)
is equivalent to k in d. The choice of which to use is largely a matter of taste, although has_key
is on its way out of the language (it will be gone in Python 3.0).

Here is an example of how you might use has_key:

>>> d = {}
>>> d.has_key('name')
False
>>> d['name'] = 'Eric'
>>> d.has_key('name')
True

items and iteritems

The items method returns all the items of the dictionary as a list of items in which each item is
of the form (key, value). The items are not returned in any particular order:

>>> d = {'title': 'Python Web Site', 'url': 'http://www.python.org', 'spam': 0}
>>> d.items()
[('url', 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')]

The iteritems method works in much the same way, but returns an iterator instead of
a list:

>>> it = d.iteritems()
>>> it
<dictionary-iterator object at 169050>
>>> list(it) # Convert the iterator to a list
[('url', 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')]

Using iteritems may be more efficient in many cases (especially if you want to iterate over
the result). For more information on iterators, see Chapter 9.

keys and iterkeys

The keys method returns a list of the keys in the dictionary, while iterkeys returns an iterator
over the keys.

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 79

pop

The pop method can be used to get the value corresponding to a given key, and then remove the
key-value pair from the dictionary:

>>> d = {'x': 1, 'y': 2}
>>> d.pop('x')
1
>>> d
{'y': 2}

popitem

The popitem method is similar to list.pop, which pops off the last element of a list. Unlike
list.pop, however, popitem pops off an arbitrary item because dictionaries don’t have a “last
element” or any order whatsoever. This may be very useful if you want to remove and process
the items one by one in an efficient way (without retrieving a list of the keys first):

>>> d
{'url': 'http://www.python.org', 'spam': 0, 'title': 'Python Web Site'}
>>> d.popitem()
('url', 'http://www.python.org')
>>> d
{'spam': 0, 'title': 'Python Web Site'}

Although popitem is similar to the list method pop, there is no dictionary equivalent of
append (which adds an element to the end of a list). Because dictionaries have no order, such a
method wouldn’t make any sense.

setdefault

The setdefault method is somewhat similar to get, in that it retrieves a value associated with
a given key. In addition to the get functionality, setdefault sets the value corresponding to the
given key if it is not already in the dictionary:

>>> d = {}
>>> d.setdefault('name', 'N/A')
'N/A'
>>> d
{'name': 'N/A'}
>>> d['name'] = 'Gumby'
>>> d.setdefault('name', 'N/A')
'Gumby'
>>> d
{'name': 'Gumby'}

80 C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

As you can see, when the key is missing, setdefault returns the default and updates the
dictionary accordingly. If the key is present, its value is returned and the dictionary is left
unchanged. The default is optional, as with get; if it is left out, None is used:

>>> d = {}
>>> print d.setdefault('name')
None
>>> d
{'name': None}

update

The update method updates one dictionary with the items of another:

>>> d = {
 'title': 'Python Web Site',
 'url': 'http://www.python.org',
 'changed': 'Mar 14 22:09:15 MET 2008'
 }
>>> x = {'title': 'Python Language Website'}
>>> d.update(x)
>>> d
{'url': 'http://www.python.org', 'changed':
'Mar 14 22:09:15 MET 2008', 'title': 'Python Language Website'}

The items in the supplied dictionary are added to the old one, supplanting any items there
with the same keys.

The update method can be called in the same way as the dict function (or type construc-
tor), as discussed earlier in this chapter. This means that update can be called with a mapping,
a sequence (or other iterable object) of (key, value) pairs, or keyword arguments.

values and itervalues

The values method returns a list of the values in the dictionary (and itervalues returns an iter-
ator of the values). Unlike keys, the list returned by values may contain duplicates:

>>> d = {}
>>> d[1] = 1
>>> d[2] = 2
>>> d[3] = 3
>>> d[4] = 1
>>> d.values()
[1, 2, 3, 1]

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 81

A Quick Summary
In this chapter, you learned about the following:

Mappings: A mapping enables you to label its elements with any immutable object, the
most usual types being strings and tuples. The only built-in mapping type in Python is the
dictionary.

String formatting with dictionaries: You can apply the string formatting operation to dic-
tionaries by including names (keys) in the formatting specifiers. When using tuples in
string formatting, you need to have one formatting specifier for each element in the tuple.
When using dictionaries, you can have fewer specifiers than you have items in the
dictionary.

Dictionary methods: Dictionaries have quite a few methods, which are called in the same
way as list and string methods.

New Functions in This Chapter

What Now?
You now know a lot about Python’s basic data types and how to use them to form expressions.
As you may remember from Chapter 1, computer programs have another important ingredi-
ent—statements. They’re covered in detail in the next chapter.

Function Description

dict(seq) Creates dictionary from (key, value) pairs (or a mapping or keyword arguments)

83

■ ■ ■

C H A P T E R 5

Conditionals, Loops, and Some
Other Statements

By now, I’m sure you are getting a bit impatient. All right—all these data types are just dandy,
but you can’t really do much with them, can you?

Let’s crank up the pace a bit. You’ve already encountered a few statement types (print
statements, import statements, and assignments). Let’s first take a look at some more ways
of using these before diving into the world of conditionals and loops. Then you’ll see how list
comprehensions work almost like conditionals and loops, even though they are expressions,
and finally you’ll take a look at pass, del, and exec.

More About print and import
As you learn more about Python, you may notice that some aspects of Python that you thought
you knew have hidden features just waiting to pleasantly surprise you. Let’s take a look at a
couple of such nice features in print1 and import.

■Tip For many applications, logging (using the logging module) will be more appropriate than using
print. See Chapter 19 for more details.

Printing with Commas
You’ve seen how print can be used to print an expression, which is either a string or automat-
ically converted to one. But you can actually print more than one expression, as long as you
separate them with commas:

>>> print 'Age:', 42
Age: 42

As you can see, a space character is inserted between each argument.

1. In Python 3.0, print is no longer a statement at all—it’s a function (with essentially the same
functionality).

84 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

■Note The arguments of print do not form a tuple, as one might expect:

>>> 1, 2, 3
(1, 2, 3)
>>> print 1, 2, 3
1 2 3
>>> print (1, 2, 3)
(1, 2, 3)

This behavior can be very useful if you want to combine text and variable values without
using the full power of string formatting:

>>> name = 'Gumby'
>>> salutation = 'Mr.'
>>> greeting = 'Hello,'
>>> print greeting, salutation, name
Hello, Mr. Gumby

If the greeting string had no comma, how would you get the comma in the result? You
couldn’t just use

print greeting, ',', salutation, name

because that would introduce a space before the comma. One solution would be the following:

print greeting + ',', salutation, name

which simply adds the comma to the greeting.
If you add a comma at the end, your next print statement will continue printing on the

same line. For example, the statements

print 'Hello,',
print 'world!'

print out Hello, world!.2

Importing Something As Something Else
Usually, when you import something from a module, you either use

import somemodule

or

from somemodule import somefunction

or

2. This will work only in a script, and not in an interactive Python session. In the interactive session, each
statement will be executed (and print its contents) separately.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 85

from somemodule import somefunction, anotherfunction, yetanotherfunction

or

from somemodule import *

The fourth version should be used only when you are certain that you want to import
everything from the given module. But what if you have two modules, each containing a func-
tion called open, for example—what do you do then? You could simply import the modules
using the first form, and then use the functions as follows:

module1.open(...)
module2.open(...)

But there is another option: you can add an as clause to the end and supply the name you
want to use, either for the entire module:

>>> import math as foobar
>>> foobar.sqrt(4)
2.0

or for the given function:

>>> from math import sqrt as foobar
>>> foobar(4)
2.0

For the open functions, you might use the following:

from module1 import open as open1
from module2 import open as open2

■Note Some modules, such as os.path, are arranged hierarchically (inside each other). For more about
module structure, see the section on packages in Chapter 10.

Assignment Magic
The humble assignment statement also has a few tricks up its sleeve.

Sequence Unpacking
You’ve seen quite a few examples of assignments, both for variables and for parts of data struc-
tures (such as positions and slices in a list, or slots in a dictionary), but there is more. You can
perform several different assignments simultaneously:

>>> x, y, z = 1, 2, 3
>>> print x, y, z
1 2 3

86 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

Doesn’t sound useful? Well, you can use it to switch the contents of two (or more)
variables:

>>> x, y = y, x
>>> print x, y, z
2 1 3

Actually, what I’m doing here is called sequence unpacking (or iterable unpacking). I have
a sequence (or an arbitrary iterable object) of values, and I unpack it into a sequence of vari-
ables. Let me be more explicit:

>>> values = 1, 2, 3
>>> values
(1, 2, 3)
>>> x, y, z = values
>>> x
1

This is particularly useful when a function or method returns a tuple (or other sequence or
iterable object). Let’s say that you want to retrieve (and remove) an arbitrary key-value pair
from a dictionary. You can then use the popitem method, which does just that, returning the
pair as a tuple. Then you can unpack the returned tuple directly into two variables:

>>> scoundrel = {'name': 'Robin', 'girlfriend': 'Marion'}
>>> key, value = scoundrel.popitem()
>>> key
'girlfriend'
>>> value
'Marion'

This allows functions to return more than one value, packed as a tuple, easily accessible
through a single assignment. The sequence you unpack must have exactly as many items as the
targets you list on the left of the = sign; otherwise Python raises an exception when the assign-
ment is performed:

>>> x, y, z = 1, 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack
>>> x, y, z = 1, 2, 3, 4
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: too many values to unpack

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 87

■Note Python 3.0 has another unpacking feature: you can use the star operator (*), just as in function
argument lists (see Chapter 6). For example, a, b, rest* = [1, 2, 3, 4] will result in rest gathering
whatever remains after assigning values to a and b. In this case, rest will be [3, 4]. The starred variable
may also be placed first, and it will always contain a list. The right-hand side of the assignment may be any
iterable object.

Chained Assignments
Chained assignments are used as a shortcut when you want to bind several variables to the
same value. This may seem a bit like the simultaneous assignments in the previous section,
except that here you are dealing with only one value:

x = y = somefunction()

which is the same as

y = somefunction()
x = y

Note that the preceding statements may not be the same as

x = somefunction()
y = somefunction()

For more information, see the section about the identity operator (is), later in this
chapter.

Augmented Assignments
Instead of writing x = x + 1, you can just put the expression operator (in this case +) before the
assignment operator (=) and write x += 1. This is called an augmented assignment, and it works
with all the standard operators, such as *, /, %, and so on:

>>> x = 2
>>> x += 1
>>> x *= 2
>>> x
6

It also works with other data types (as long as the binary operator itself works with those
data types):

>>> fnord = 'foo'
>>> fnord += 'bar'
>>> fnord *= 2
>>> fnord
'foobarfoobar'

88 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

Augmented assignments can make your code more compact and concise, and in many
cases, more readable.

Blocks: The Joy of Indentation
A block isn’t really a type of statement but something you’re going to need when you tackle the
next two sections.

A block is a group of statements that can be executed if a condition is true (conditional
statements), or executed several times (loops), and so on. A block is created by indenting a part
of your code; that is, putting spaces in front of it.

■Note You can use tab characters to indent your blocks as well. Python interprets a tab as moving to the
next tab stop, with one tab stop every eight spaces, but the standard and preferable style is to use spaces
only, not tabs, and specifically four spaces per each level of indentation.

Each line in a block must be indented by the same amount. The following is pseudocode
(not real Python code) that shows how the indenting works:

this is a line
this is another line:
 this is another block
 continuing the same block
 the last line of this block
phew, there we escaped the inner block

In many languages, a special word or character (for example, begin or {) is used to start a
block, and another (such as end or }) is used to end it. In Python, a colon (:) is used to indicate
that a block is about to begin, and then every line in that block is indented (by the same
amount). When you go back to the same amount of indentation as some enclosing block, you
know that the current block has ended. (Many programming editors and IDEs are aware of how
this block indenting works, and can help you get it right without much effort.)

Now I’m sure you are curious to know how to use these blocks. So, without further ado,
let’s have a look.

Conditions and Conditional Statements
Until now, you’ve written programs in which each statement is executed, one after the other.
It’s time to move beyond that and let your program choose whether or not to execute a block
of statements.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 89

So That’s What Those Boolean Values Are For
Now you are finally going to need those truth values (also called Boolean values, after George
Boole, who did a lot of smart stuff on truth values) that you’ve been bumping into repeatedly.

■Note If you’ve been paying close attention, you noticed the sidebar in Chapter 1, “Sneak Peek: The if
Statement,” which describes the if statement. I haven’t really introduced it formally until now, and as you’ll
see, there is a bit more to it than what I’ve told you so far.

The following values are considered by the interpreter to mean false when evaluated as a
Boolean expression (for example, as the condition of an if statement):

False None 0 "" () [] {}

In other words, the standard values False and None, numeric zero of all types (including
float, long, and so on), empty sequences (such as empty strings, tuples, and lists), and empty
dictionaries are all considered to be false. Everything else3 is interpreted as true, including the
special value True.4

Got it? This means that every value in Python can be interpreted as a truth value, which
can be a bit confusing at first, but it can also be extremely useful. And even though you have all
these truth values to choose from, the “standard” truth values are True and False. In some lan-
guages (such as C and Python prior to version 2.3), the standard truth values are 0 (for false)
and 1 (for true). In fact, True and False aren’t that different—they’re just glorified versions of 0
and 1 that look different but act the same:

>>> True
True
>>> False
False
>>> True == 1
True
>>> False == 0
True
>>> True + False + 42
43

So now, if you see a logical expression returning 1 or 0 (probably in an older version of
Python), you will know that what is really meant is True or False.

3. At least when we’re talking about built-in types—as you see in Chapter 9, you can influence whether
objects you construct yourself are interpreted as true or false.

4. As Python veteran Laura Creighton puts it, the distinction is really closer to something vs. nothing,
rather than true vs. false.

90 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

The Boolean values True and False belong to the type bool, which can be used (just like, for
example, list, str, and tuple) to convert other values:

>>> bool('I think, therefore I am')
True
>>> bool(42)
True
>>> bool('')
False
>>> bool(0)
False

Because any value can be used as a Boolean value, you will most likely rarely (if ever) need
such an explicit conversion (that is, Python will automatically convert the values for you, so
to speak).

■Note Although [] and "" are both false (that is, bool([])==bool("")==False), they are not equal (that
is, []!=""). The same goes for other false objects of different types (for example, ()!=False).

Conditional Execution and the if Statement
Truth values can be combined (which you’ll see in a while), but let’s first see what you can use
them for. Try running the following script:

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 print 'Hello, Mr. Gumby'

This is the if statement, which lets you do conditional execution. That means that if the
condition (the expression after if but before the colon) evaluates to true (as defined previ-
ously), the following block (in this case, a single print statement) is executed. If the condition
is false, then the block is not executed (but you guessed that, didn’t you?).

■Note In the sidebar “Sneak Peek: The if Statement” in Chapter 1, the statement was written on a single
line. That is equivalent to using a single-line block, as in the preceding example.

else Clauses
In the example from the previous section, if you enter a name that ends with “Gumby,” the
method name.endswith returns True, making the if statement enter the block, and the greeting

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 91

is printed. If you want, you can add an alternative, with the else clause (called a clause because
it isn’t really a separate statement, just a part of the if statement):

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 print 'Hello, Mr. Gumby'
else:
 print 'Hello, stranger'

Here, if the first block isn’t executed (because the condition evaluated to false), you enter
the second block instead. This really shows how easy it is to read Python code, doesn’t it? Just
read the code aloud (from if), and it sounds just like a normal (or perhaps not quite normal)
sentence.

elif Clauses
If you want to check for several conditions, you can use elif, which is short for “else if.” It is a
combination of an if clause and an else clause—an else clause with a condition:

num = input('Enter a number: ')
if num > 0:
 print 'The number is positive'
elif num < 0:
 print 'The number is negative'
else:
 print 'The number is zero'

■Note Instead of input(...), you might want to use int(raw_input(...)). For the difference between
input and raw_input, see Chapter 1.

Nesting Blocks
Let’s throw in a few bells and whistles. You can have if statements inside other if statement
blocks, as follows:

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 if name.startswith('Mr.'):
 print 'Hello, Mr. Gumby'
 elif name.startswith('Mrs.'):
 print 'Hello, Mrs. Gumby'
 else:
 print 'Hello, Gumby'
else:
 print 'Hello, stranger'

92 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

Here, if the name ends with “Gumby,” you check the start of the name as well—in a sepa-
rate if statement inside the first block. Note the use of elif here. The last alternative (the else
clause) has no condition—if no other alternative is chosen, you use the last one. If you want to,
you can leave out either of the else clauses. If you leave out the inner else clause, names that
don’t start with either “Mr.” or “Mrs.” are ignored (assuming the name was “Gumby”). If you
drop the outer else clause, strangers are ignored.

More Complex Conditions
That’s really all there is to know about if statements. Now let’s return to the conditions them-
selves, because they are the really interesting part of conditional execution.

Comparison Operators

Perhaps the most basic operators used in conditions are the comparison operators. They are
used (surprise, surprise) to compare things. The comparison operators are summarized in
Table 5-1.

Table 5-1. The Python Comparison Operators

Expression Description

x == y x equals y.

x < y x is less than y.

x > y x is greater than y.

x >= y x is greater than or equal to y.

x <= y x is less than or equal to y.

x != y x is not equal to y.

x is y x and y are the same object.

x is not y x and y are different objects.

x in y x is a member of the container (e.g., sequence) y.

x not in y x is not a member of the container (e.g., sequence) y.

COMPARING INCOMPATIBLE TYPES

In theory, you can compare any two objects x and y for relative size (using operators such as < and <=) and
obtain a truth value. However, such a comparison makes sense only if x and y are of the same or closely
related types (such as two integers or an integer and a floating-point number).

Just as it doesn’t make much sense to add an integer to a string, checking whether an integer is less
than a string seems rather pointless. Oddly, in Python versions prior to 3.0 you are allowed to do this. You really
should stay away from such comparisons, as the result is totally arbitrary and may change between each exe-
cution of your program. In Python 3.0, comparing incompatible types in this way is no longer allowed.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 93

■Note If you stumble across the expression x <> y somewhere, this means x != y. The <> operator is
deprecated, however, and you should avoid using it.

Comparisons can be chained in Python, just like assignments—you can put several
comparison operators in a chain, like this: 0 < age < 100.

■Tip When comparing things, you can also use the built-in function cmp, as described in Chapter 2.

Some of these operators deserve some special attention and will be described in the
following sections.

The Equality Operator

If you want to know if two things are equal, use the equality operator, written as a double
equality sign, ==:

>>> "foo" == "foo"
True
>>> "foo" == "bar"
False

Double? Why can’t you just use a single equality sign, as they do in mathematics? I’m sure
you’re clever enough to figure this out for yourself, but let’s try it:

>>> "foo" = "foo"
SyntaxError: can't assign to literal

The single equality sign is the assignment operator, which is used to change things, which
is not what you want to do when you compare things.

is: The Identity Operator

The is operator is interesting. It seems to work just like ==, but it doesn’t:

>>> x = y = [1, 2, 3]
>>> z = [1, 2, 3]
>>> x == y
True
>>> x == z
True
>>> x is y
True
>>> x is z
False

94 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

Until the last example, this looks fine, but then you get that strange result: x is not z, even
though they are equal. Why? Because is tests for identity, rather than equality. The variables x
and y have been bound to the same list, while z is simply bound to another list that happens to
contain the same values in the same order. They may be equal, but they aren’t the same object.

Does that seem unreasonable? Consider this example:

>>> x = [1, 2, 3]
>>> y = [2, 4]
>>> x is not y
True
>>> del x[2]
>>> y[1] = 1
>>> y.reverse()

In this example, I start with two different lists, x and y. As you can see, x is not y (just the
inverse of x is y), which you already know. I change the lists around a bit, and though they are
now equal, they are still two separate lists:

>>> x == y
True
>>> x is y
False

Here, it is obvious that the two lists are equal but not identical.
To summarize: use == to see if two objects are equal, and use is to see if they are identical

(the same object).

■Caution Avoid the use of is with basic, immutable values such as numbers and strings. The result is
unpredictable because of the way Python handles these objects internally.

in: The Membership Operator

I have already introduced the in operator (in Chapter 2, in the section “Membership”). It can
be used in conditions, just like all the other comparison operators:

name = raw_input('What is your name? ')
if 's' in name:
 print 'Your name contains the letter "s".'
else:
 print 'Your name does not contain the letter "s".'

String and Sequence Comparisons

Strings are compared according to their order when sorted alphabetically:

>>> "alpha" < "beta"
True

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 95

■Note The exact ordering may depend on your locale (see the standard library documentation for the
locale module, for example).

If you throw in capital letters, things get a bit messy. (Actually, characters are sorted by
their ordinal values. The ordinal value of a letter can be found with the ord function, whose
inverse is chr.) To ignore the difference between uppercase and lowercase letters, use the
string methods upper and lower (see Chapter 3):

>>> 'FnOrD'.lower() == 'Fnord'.lower()
True

Other sequences are compared in the same manner, except that instead of characters, you
may have other types of elements:

>>> [1, 2] < [2, 1]
True

If the sequences contain other sequences as elements, the same rule applies to these
sequence elements:

>>> [2, [1, 4]] < [2, [1, 5]]
True

Boolean Operators

Now, you have plenty of things that return truth values. (In fact, given the fact that all values
can be interpreted as truth values, all expressions return them.) But you may want to check for
more than one condition. For example, let’s say you want to write a program that reads a num-
ber and checks whether it’s between 1 and 10 (inclusive). You could do it like this:

number = input('Enter a number between 1 and 10: ')
if number <= 10:
 if number >= 1:
 print 'Great!'
 else:
 print 'Wrong!'
else:
 print 'Wrong!'

This would work, but it’s clumsy. The fact that you have to write print 'Wrong!' in two
places should alert you to this clumsiness. Duplication of effort is not a good thing. So what do
you do? It’s so simple:

number = input('Enter a number between 1 and 10: ')
if number <= 10 and number >= 1:
 print 'Great!'
else:
 print 'Wrong!'

96 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

■Note I could (and quite probably should) have made this example even simpler by using the following
chained comparison: 1 <= number <= 10.

The and operator is a so-called Boolean operator. It takes two truth values, and returns true
if both are true, and false otherwise. You have two more of these operators, or and not. With
just these three, you can combine truth values in any way you like:5

if ((cash > price) or customer_has_good_credit) and not out_of_stock:
 give_goods()

5. For a thorough explanation, see Alex Martelli’s recipe on the subject in the Python Cookbook (http://
aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52310).

SHORT-CIRCUIT LOGIC AND CONDITIONAL EXPRESSIONS

The Boolean operators have one interesting property: they evaluate only what they need to evaluate. For exam-
ple, the expression x and y requires both x and y to be true; so if x is false, the expression returns false
immediately, without worrying about y. Actually, if x is false, it returns x; otherwise, it returns y. (Can you
see how this gives the expected meaning?) This behavior is called short-circuit logic (or lazy evaluation): the
Boolean operators are often called logical operators, and as you can see, the second value is sometimes
“short-circuited.” This works with or, too. In the expression x or y, if x is true, it is returned; otherwise, y
is returned. (Can you see how this makes sense?) Note that this means that any code you have (such as a
function call) after a Boolean operator may not be executed at all.

So, how is this useful? Primarily, it avoids executing code uselessly, but it can also be used for some nifty
tricks. Let’s say users are supposed to enter their name, but may opt to enter nothing, and in that case, you
want to use the default value '<unknown>'. You could use an if statement, but you could also state things
very succinctly:

name = raw_input('Please enter your name: ') or '<unknown>'

In other words, if the return value from raw_input is true (not an empty string), it is assigned to name
(nothing changes); otherwise, the default '<unknown>' is assigned to name.

This sort of short-circuit logic can be used to implement the so-called ternary operator (or conditional
operator), commonly used in languages such as C and Java.5 As of version 2.5, Python has a built-in condi-
tional expression, though, which looks like this:

a if b else c

If b is true, a is returned; otherwise, c is returned. (Note that this operator cannot be used directly to get
the same result as in the raw_input example without introducing a temporary variable.)

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 97

Assertions
There is a useful relative of the if statement, which works more or less like this (pseudocode):

if not condition:
 crash program

Now, why on earth would you want something like that? Simply because it’s better that
your program crashes when an error condition emerges than at a much later time. Basically,
you can require that certain things be true (for example, when checking required properties of
parameters to your functions or as an aid during initial testing and debugging). The keyword
used in the statement is assert:

>>> age = 10
>>> assert 0 < age < 100
>>> age = -1
>>> assert 0 < age < 100
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError

It can be useful to put the assert statement in your program as a checkpoint, if you know
something must be true for your program to work correctly.

A string may be added after the condition, to explain the assertion:

>>> age = -1
>>> assert 0 < age < 100, 'The age must be realistic'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError: The age must be realistic

Loops
Now you know how to do something if a condition is true (or false), but how do you do some-
thing several times? For example, you might want to create a program that reminds you to pay
the rent every month, but with the tools we have looked at until now, you would need to write
the program like this (pseudocode):

send mail
wait one month
send mail
wait one month
send mail
wait one month
(...and so on)

98 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

But what if you wanted it to continue doing this until you stopped it? Basically, you want
something like this (again, pseudocode):

while we aren't stopped:
 send mail
 wait one month

Or, let’s take a simpler example. Let’s say that you want to print out all the numbers from
1 to 100. Again, you could do it the stupid way:

print 1
print 2
print 3
...
print 99
print 100

But you didn’t start using Python because you wanted to do stupid things, right?

while Loops
In order to avoid the cumbersome code of the preceding example, it would be useful to be able
to do something like this:

x = 1
while x <= 100:
 print x
 x += 1

Now, how do you do that in Python? You guessed it—you do it just like that. Not that com-
plicated, is it? You could also use a loop to ensure that the user enters a name, as follows:

name = ''
while not name:
 name = raw_input('Please enter your name: ')
print 'Hello, %s!' % name

Try running this, and then just pressing the Enter key when asked to enter your name.
You’ll see that the question appears again, because name is still an empty string, which evalu-
ates to false.

■Tip What would happen if you entered just a space character as your name? Try it. It is accepted because
a string with one space character is not empty, and therefore not false. This is definitely a flaw in our little
program, but easily corrected: just change while not name to while not name or name.isspace(), or
perhaps, while not name.strip().

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 99

for Loops
The while statement is very flexible. It can be used to repeat a block of code while any condition
is true. While this may be very nice in general, sometimes you may want something tailored to
your specific needs. One such need is to perform a block of code for each element of a set (or,
actually, sequence or other iterable object) of values.

■Note Basically, an iterable object is any object that you can iterate over (that is, use in a for loop). You
learn more about iterables and iterators in Chapter 9, but for now, you can simply think of them as sequences.

You can do this with the for statement:

words = ['this', 'is', 'an', 'ex', 'parrot']
for word in words:
 print word

or

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in numbers:
 print number

Because iterating (another word for looping) over a range of numbers is a common thing
to do, Python has a built-in function to make ranges for you:

>>> range(0, 10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ranges work like slices. They include the first limit (in this case 0), but not the last (in this
case 10). Quite often, you want the ranges to start at 0, and this is actually assumed if you sup-
ply only one limit (which will then be the last):

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The following program writes out the numbers from 1 to 100:

for number in range(1,101):
 print number

Notice that this is much more compact than the while loop I used earlier.

■Tip If you can use a for loop rather than a while loop, you should probably do so.

100 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

The xrange function works just like range in loops, but where range creates the whole
sequence at once, xrange creates only one number at a time.6 This can be useful when iterating
over huge sequences more efficiently, but in general, you don’t need to worry about it.

Iterating Over Dictionaries
To loop over the keys of a dictionary, you can use a plain for statement, just as you can with
sequences:

d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
 print key, 'corresponds to', d[key]

In Python versions before 2.2, you would have used a dictionary method such as keys to
retrieve the keys (since direct iteration over dictionaries wasn’t allowed). If only the values
were of interest, you could have used d.values instead of d.keys. You may remember that
d.items returns key-value pairs as tuples. One great thing about for loops is that you can use
sequence unpacking in them:

for key, value in d.items():
 print key, 'corresponds to', value

■Note As always, the order of dictionary elements is undefined. In other words, when iterating over either
the keys or the values of a dictionary, you can be sure that you’ll process all of them, but you can’t know in
which order. If the order is important, you can store the keys or values in a separate list and, for example, sort
it before iterating over it.

Some Iteration Utilities
Python has several functions that can be useful when iterating over a sequence (or other iter-
able object). Some of these are available in the itertools module (mentioned in Chapter 10),
but there are some built-in functions that come in quite handy as well.

Parallel Iteration

Sometimes you want to iterate over two sequences at the same time. Let’s say that you have the
following two lists:

names = ['anne', 'beth', 'george', 'damon']
ages = [12, 45, 32, 102]

6. In Python 3.0, range will be turned into an xrange-style function.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 101

If you want to print out names with corresponding ages, you could do the following:

for i in range(len(names)):
 print names[i], 'is', ages[i], 'years old'

Here, i serves as a standard variable name for loop indices (as these things are called).
A useful tool for parallel iteration is the built-in function zip, which “zips” together the

sequences, returning a list of tuples:

>>> zip(names, ages)
[('anne', 12), ('beth', 45), ('george', 32), ('damon', 102)]

Now I can unpack the tuples in my loop:

for name, age in zip(names, ages):
 print name, 'is', age, 'years old'

The zip function works with as many sequences as you want. It’s important to note what
zip does when the sequences are of different lengths: it stops when the shortest sequence is
used up:

>>> zip(range(5), xrange(100000000))
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

I wouldn’t recommend using range instead of xrange in the preceding example. Although
only the first five numbers are needed, range calculates all the numbers, and that may take a lot
of time. With xrange, this isn’t a problem because it calculates only those numbers needed.

Numbered Iteration

In some cases, you want to iterate over a sequence of objects and at the same time have access
to the index of the current object. For example, you might want to replace every string that con-
tains the substring 'xxx' in a list of strings. There would certainly be many ways of doing this,
but let’s say you want to do something along the following lines:

for string in strings:
 if 'xxx' in string:
 index = strings.index(string) # Search for the string in the list of strings
 strings[index] = '[censored]'

This would work, but it seems unnecessary to search for the given string before replacing
it. Also, if you didn’t replace it, the search might give you the wrong index (that is, the index of
some previous occurrence of the same word). A better version would be the following:

index = 0
for string in strings:
 if 'xxx' in string:

102 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

 strings[index] = '[censored]'
 index += 1

This also seems a bit awkward, although acceptable. Another solution is to use the built-in
function enumerate:

for index, string in enumerate(strings):
 if 'xxx' in string:
 strings[index] = '[censored]'

This function lets you iterate over index-value pairs, where the indices are supplied
automatically.

Reversed and Sorted Iteration

Let’s look at another couple of useful functions: reversed and sorted. They’re similar to the list
methods reverse and sort (with sorted taking arguments similar to those taken by sort), but
they work on any sequence or iterable object, and instead of modifying the object in place, they
return reversed and sorted versions:

>>> sorted([4, 3, 6, 8, 3])
[3, 3, 4, 6, 8]
>>> sorted('Hello, world!')
[' ', '!', ',', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']
>>> list(reversed('Hello, world!'))
['!', 'd', 'l', 'r', 'o', 'w', ' ', ',', 'o', 'l', 'l', 'e', 'H']
>>> ''.join(reversed('Hello, world!'))
'!dlrow ,olleH'

Note that although sorted returns a list, reversed returns a more mysterious iterable
object. You don’t need to worry about what this really means; you can use it in for loops or
methods such as join without any problems. You just can’t index or slice it, or call list methods
on it directly. In order to perform those tasks, you need to convert the returned object, using
the list type, as shown in the previous example.

Breaking Out of Loops
Usually, a loop simply executes a block until its condition becomes false, or until it has used up
all sequence elements. But sometimes you may want to interrupt the loop, to start a new itera-
tion (one “round” of executing the block), or to simply end the loop.

break

To end (break out of) a loop, you use break. Let’s say you wanted to find the largest square
(the result of an integer multiplied by itself) below 100. Then you start at 100 and iterate

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 103

downwards to 0. When you’ve found a square, there’s no need to continue, so you simply break
out of the loop:

from math import sqrt
for n in range(99, 0, -1):
 root = sqrt(n)
 if root == int(root):
 print n
 break

If you run this program, it will print out 81 and stop. Notice that I’ve added a third argu-
ment to range—that’s the step, the difference between every pair of adjacent numbers in the
sequence. It can be used to iterate downwards as I did here, with a negative step value, and it
can be used to skip numbers:

>>> range(0, 10, 2)
[0, 2, 4, 6, 8]

continue

The continue statement is used less often than break. It causes the current iteration to end, and
to “jump” to the beginning of the next. It basically means “skip the rest of the loop body, but
don’t end the loop.” This can be useful if you have a large and complicated loop body and sev-
eral possible reasons for skipping it. In that case, you can use continue, as follows:

for x in seq:
 if condition1: continue
 if condition2: continue
 if condition3: continue

 do_something()
 do_something_else()
 do_another_thing()
 etc()

In many cases, however, simply using an if statement is just as good:

for x in seq:
 if not (condition1 or condition2 or condition3):
 do_something()
 do_something_else()
 do_another_thing()
 etc()

Even though continue can be a useful tool, it is not essential. The break statement, how-
ever, is something you should get used to, because it is used quite often in concert with while
True, as explained in the next section.

104 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

The while True/break Idiom

The for and while loops in Python are quite flexible, but every once in a while, you may
encounter a problem that makes you wish you had more functionality. For example, let’s say
you want to do something when a user enters words at a prompt, and you want to end the loop
when no word is provided. One way of doing that would be like this:

word = 'dummy'
while word:
 word = raw_input('Please enter a word: ')
 # do something with the word:
 print 'The word was ' + word

Here is an example of a session:

Please enter a word: first
The word was first
Please enter a word: second
The word was second
Please enter a word:

This works just as desired. (Presumably, you would do something more useful with the
word than print it out, though.) However, as you can see, this code is a bit ugly. To enter
the loop in the first place, you need to assign a dummy (unused) value to word. Dummy values
like this are usually a sign that you aren’t doing things quite right. Let’s try to get rid of it:

word = raw_input('Please enter a word: ')
while word:
 # do something with the word:
 print 'The word was ' + word
 word = raw_input('Please enter a word: ')

Here the dummy is gone, but I have repeated code (which is also a bad thing): I need to use
the same assignment and call to raw_input in two places. How can I avoid that? I can use the
while True/break idiom:

while True:
 word = raw_input('Please enter a word: ')
 if not word: break
 # do something with the word:
 print 'The word was ' + word

The while True part gives you a loop that will never terminate by itself. Instead, you put the
condition in an if statement inside the loop, which calls break when the condition is fulfilled.
Thus, you can terminate the loop anywhere inside the loop instead of only at the beginning (as
with a normal while loop). The if/break line splits the loop naturally in two parts: the first takes
care of setting things up (the part that would be duplicated with a normal while loop), and the
other part makes use of the initialization from the first part, provided that the loop condition
is true.

Although you should be wary of using break too often in your code (because it can make
your loops harder to read, especially if you put more than one break in a single loop), this

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 105

specific technique is so common that most Python programmers (including yourself) will
probably be able to follow your intentions.

else Clauses in Loops
When you use break statements in loops, it is often because you have “found” something, or
because something has “happened.” It’s easy to do something when you break out (like print
n), but sometimes you may want to do something if you didn’t break out. But how do you find
out? You could use a Boolean variable, set it to False before the loop, and set it to True when
you break out. Then you can use an if statement afterward to check whether you did break out:

broke_out = False
for x in seq:
 do_something(x)
 if condition(x):
 broke_out = True
 break
 do_something_else(x)
if not broke_out:
 print "I didn't break out!"

A simpler way is to add an else clause to your loop—it is only executed if you didn’t call
break. Let’s reuse the example from the preceding section on break:

from math import sqrt
for n in range(99, 81, -1):
 root = sqrt(n)
 if root == int(root):
 print n
 break
else:
 print "Didn't find it!"

Notice that I changed the lower (exclusive) limit to 81 to test the else clause. If you run the
program, it prints out “Didn’t find it!” because (as you saw in the section on break) the largest
square below 100 is 81. You can use continue, break, and else clauses with both for loops and
while loops.

List Comprehension—Slightly Loopy
List comprehension is a way of making lists from other lists (similar to set comprehension, if
you know that term from mathematics). It works in a way similar to for loops and is actually
quite simple:

>>> [x*x for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The list is composed of x*x for each x in range(10). Pretty straightforward? What if you
want to print out only those squares that are divisible by 3? Then you can use the modulo

106 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

operator—y % 3 returns zero when y is divisible by 3. (Note that x*x is divisible by 3 only if x is
divisible by 3.) You put this into your list comprehension by adding an if part to it:

>>> [x*x for x in range(10) if x % 3 == 0]
[0, 9, 36, 81]

You can also add more for parts:

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

As a comparison, the following two for loops build the same list:

result = []
for x in range(3):
 for y in range(3)
 result.append((x, y))

This can be combined with an if clause, just as before:

>>> girls = ['alice', 'bernice', 'clarice']
>>> boys = ['chris', 'arnold', 'bob']
>>> [b+'+'+g for b in boys for g in girls if b[0] == g[0]]
['chris+clarice', 'arnold+alice', 'bob+bernice']

This gives the pairs of boys and girls who have the same initial letter in their first name.

■Note Using normal parentheses instead of brackets will not give you a “tuple comprehension.” In Python
2.3 and earlier, you’ll simply get an error; in more recent versions, you’ll end up with a generator. See the
sidebar “Loopy Generators” in Chapter 9 for more information.

A BETTER SOLUTION

The boy/girl pairing example isn’t particularly efficient because it checks every possible pairing. There are
many ways of solving this problem in Python. The following was suggested by Alex Martelli:

girls = ['alice', 'bernice', 'clarice']
boys = ['chris', 'arnold', 'bob']
letterGirls = {}
for girl in girls:
 letterGirls.setdefault(girl[0], []).append(girl)
print [b+'+'+g for b in boys for g in letterGirls[b[0]]]

This program constructs a dictionary, called letterGirls, where each entry has a single letter as its
key and a list of girls’ names as its value. (The setdefault dictionary method is described in the previous
chapter.) After this dictionary has been constructed, the list comprehension loops over all the boys and looks
up all the girls whose name begins with the same letter as the current boy. This way, the list comprehension
doesn’t need to try out every possible combination of boy and girl and check whether the first letters match.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 107

And Three for the Road
To end the chapter, let’s take a quick look at three more statements: pass, del, and exec.

Nothing Happened!
Sometimes you need to do nothing. This may not be very often, but when it happens, it’s good
to know that you have the pass statement:

>>> pass
>>>

Not much going on here.
Now, why on earth would you want a statement that does nothing? It can be useful as a

placeholder while you are writing code. For example, you may have written an if statement
and you want to try it, but you lack the code for one of your blocks. Consider the following:

if name == 'Ralph Auldus Melish':
 print 'Welcome!'
elif name == 'Enid':
 # Not finished yet...
elif name == 'Bill Gates':
 print 'Access Denied'

This code won’t run because an empty block is illegal in Python. To fix this, simply add a
pass statement to the middle block:

if name == 'Ralph Auldus Melish':
 print 'Welcome!'
elif name == 'Enid':
 # Not finished yet...
 pass
elif name == 'Bill Gates':
 print 'Access Denied'

■Note An alternative to the combination of a comment and a pass statement is to simply insert a string.
This is especially useful for unfinished functions (see Chapter 6) and classes (see Chapter 7) because they will
then act as docstrings (explained in Chapter 6).

Deleting with del
In general, Python deletes objects that you don’t use anymore (because you no longer refer to
them through any variables or parts of your data structures):

>>> scoundrel = {'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = scoundrel
>>> scoundrel

108 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> scoundrel = None
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = None

At first, robin and scoundrel are both bound to the same dictionary. So when I assign None
to scoundrel, the dictionary is still available through robin. But when I assign None to robin as
well, the dictionary suddenly floats around in the memory of the computer with no name
attached to it. There is no way I can retrieve it or use it, so the Python interpreter (in its infinite
wisdom) simply deletes it. (This is called garbage collection.) Note that I could have used any
value other than None as well. The dictionary would be just as gone.

Another way of doing this is to use the del statement (which we used to delete sequence
and dictionary elements in Chapters 2 and 4, remember?). This not only removes a reference to
an object, but it also removes the name itself:

>>> x = 1
>>> del x
>>> x
Traceback (most recent call last):
 File "<pyshell#255>", line 1, in ?
 x
NameError: name 'x' is not defined

This may seem easy, but it can actually be a bit tricky to understand at times. For instance,
in the following example, x and y refer to the same list:

>>> x = ["Hello", "world"]
>>> y = x
>>> y[1] = "Python"
>>> x
['Hello', 'Python']

You might assume that by deleting x, you would also delete y, but that is not the case:

>>> del x
>>> y
['Hello', 'Python']

Why is this? x and y referred to the same list, but deleting x didn’t affect y at all. The reason
for this is that you delete only the name, not the list itself (the value). In fact, there is no way to
delete values in Python—and you don’t really need to, because the Python interpreter does it
by itself whenever you don’t use the value anymore.

Executing and Evaluating Strings with exec and eval
Sometimes you may want to create Python code “on the fly” and execute it as a statement or eval-
uate it as an expression. This may border on dark magic at times—consider yourself warned.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 109

■Caution In this section, you learn to execute Python code stored in a string. This is a potential security
hole of great dimensions. If you execute a string where parts of the contents have been supplied by a user,
you have little or no control over what code you are executing. This is especially dangerous in network appli-
cations, such as Common Gateway Interface (CGI) scripts, which you will learn about in Chapter 15.

exec

The statement for executing a string is exec:7

>>> exec "print 'Hello, world!'"
Hello, world!

However, using this simple form of the exec statement is rarely a good thing. In most cases,
you want to supply it with a namespace—a place where it can put its variables. You want to do
this so that the code doesn’t corrupt your namespace (that is, change your variables). For
example, let’s say that the code uses the name sqrt:

>>> from math import sqrt
>>> exec "sqrt = 1"
>>> sqrt(4)
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in ?
 sqrt(4)
TypeError: object is not callable: 1

Well, why would you do something like that in the first place? The exec statement is mainly
useful when you build the code string on the fly. And if the string is built from parts that you get
from other places, and possibly from the user, you can rarely be certain of exactly what it will
contain. So to be safe, you give it a dictionary, which will work as a namespace for it.

■Note The concept of namespaces, or scopes, is a very important one. You will look at it in depth in the
next chapter, but for now, you can think of a namespace as a place where you keep your variables, much like
an invisible dictionary. So when you execute an assignment like x = 1, you store the key x with the value 1
in the current namespace, which will often be the global namespace (which we have been using, for the most
part, up until now), but doesn’t have to be.

You do this by adding in <scope>, where <scope> is some dictionary that will function as
the namespace for your code string:

>>> from math import sqrt
>>> scope = {}

7. In Python 3.0, exec is a function, not a statement.

110 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

>>> exec 'sqrt = 1' in scope
>>> sqrt(4)
2.0
>>> scope['sqrt']
1

As you can see, the potentially destructive code does not overwrite the sqrt function. The
function works just as it should, and the sqrt variable resulting from the exec’ed assignment is
available from the scope.

Note that if you try to print out scope, you see that it contains a lot of stuff because the dictio-
nary called __builtins__ is automatically added and contains all built-in functions and values:

>>> len(scope)
2
>>> scope.keys()
['sqrt', '__builtins__']

eval

A built-in function that is similar to exec is eval (for “evaluate”). Just as exec executes a series
of Python statements, eval evaluates a Python expression (written in a string) and returns the
resulting value. (exec doesn’t return anything because it is a statement itself.) For example, you
can use the following to make a Python calculator:

>>> eval(raw_input("Enter an arithmetic expression: "))
Enter an arithmetic expression: 6 + 18 * 2
42

■Note The expression eval(raw_input(...)) is, in fact, equivalent to input(...). In Python 3.0,
raw_input is renamed to input.

You can supply a namespace with eval, just as with exec, although expressions rarely
rebind variables in the way statements usually do. (In fact, you can supply eval with two
namespaces, one global and one local. The global one must be a dictionary, but the local one
may be any mapping.)

■Caution Even though expressions don’t rebind variables as a rule, they certainly can (for example, by
calling functions that rebind global variables). Therefore, using eval with an untrusted piece of code is no
safer than using exec. There is, at present, no safe way of executing untrusted code in Python. One alterna-
tive is to use an implementation of Python such as Jython (see Chapter 17) and use the some native
mechanism such as the Java sandbox.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 111

A Quick Summary
In this chapter, you’ve seen several kinds of statements:

Printing: You can use the print statement to print several values by separating them with
commas. If you end the statement with a comma, later print statements will continue
printing on the same line.

Importing: Sometimes you don’t like the name of a function you want to import—perhaps
you’ve already used the name for something else. You can use the import...as... state-
ment, to locally rename a function.

Assignments: You’ve seen that through the wonder of sequence unpacking and chained
assignments, you can assign values to several variables at once, and that with aug-
mented assignments, you can change a variable in place.

Blocks: Blocks are used as a means of grouping statements through indentation. They are
used in conditionals and loops, and as you see later in the book, in function and class def-
initions, among other things.

Conditionals: A conditional statement either executes a block or not, depending on a con-
dition (Boolean expression). Several conditionals can be strung together with if/elif/
else. A variation on this theme is the conditional expression, a if b else c.

Assertions: An assertion simply asserts that something (a Boolean expression) is true,
optionally with a string explaining why it must be so. If the expression happens to be false,
the assertion brings your program to a halt (or actually raises an exception—more on that

PRIMING THE SCOPE

When supplying a namespace for exec or eval, you can also put some values in before actually using the
namespace:

>>> scope = {}
>>> scope['x'] = 2
>>> scope['y'] = 3
>>> eval('x * y', scope)
6

In the same way, a scope from one exec or eval call can be used again in another one:

>>> scope = {}
>>> exec 'x = 2' in scope
>>> eval('x*x', scope)
4

Actually, exec and eval are not used all that often, but they can be nice tools to keep in your back
pocket (figuratively, of course).

112 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

in Chapter 8). It’s better to find an error early than to let it sneak around your program
until you don’t know where it originated.

Loops: You either can execute a block for each element in a sequence (such as a range of
numbers) or continue executing it while a condition is true. To skip the rest of the block
and continue with the next iteration, use the continue statement; to break out of the loop,
use the break statement. Optionally, you may add an else clause at the end of the loop,
which will be executed if you didn’t execute any break statements inside the loop.

List comprehension: These aren’t really statements—they are expressions that look a lot
like loops, which is why I grouped them with the looping statements. Through list compre-
hension, you can build new lists from old ones, applying functions to the elements,
filtering out those you don’t want, and so on. The technique is quite powerful, but in many
cases, using plain loops and conditionals (which will always get the job done) may be more
readable.

pass, del, exec, and eval: The pass statement does nothing, which can be useful as a place-
holder, for example. The del statement is used to delete variables or parts of a data
structure, but cannot be used to delete values. The exec statement is used to execute a
string as if it were a Python program. The built-in function eval evaluates an expression
written in a string and returns the result.

New Functions in This Chapter

What Now?
Now you’ve cleared the basics. You can implement any algorithm you can dream up; you can
read in parameters and print out the results. In the next couple of chapters, you learn about
something that will help you write larger programs without losing the big picture. That some-
thing is called abstraction.

Function Description

chr(n) Returns a one-character string when passed ordinal
n_ (0 n < 256)

eval(source[, globals[, locals]]) Evaluates a string as an expression and returns
the value

enumerate(seq) Yields (index, value) pairs suitable for iteration

ord(c) Returns the integer ordinal value of a one-character
string

range([start,] stop[, step]) Creates a list of integers

reversed(seq) Yields the values of seq in reverse order, suitable for
iteration

sorted(seq[, cmp][, key][, reverse]) Returns a list with the values of seq in sorted order

xrange([start,] stop[, step]) Creates an xrange object, used for iteration

zip(seq1,_seq2,...) Creates a new sequence suitable for parallel iteration

113

■ ■ ■

C H A P T E R 6

Abstraction

In this chapter, you learn how to group statements into functions, which enables you to tell
the computer how to do something, and to tell it only once. You won’t need to give it the same
detailed instructions over and over. The chapter provides a thorough introduction to parame-
ters and scoping, and you learn what recursion is and what it can do for your programs.

Laziness Is a Virtue
The programs we’ve written so far have been pretty small, but if you want to make something
bigger, you’ll soon run into trouble. Consider what happens if you have written some code in
one place and need to use it in another place as well. For example, let’s say you wrote a snippet
of code that computed some Fibonacci numbers (a series of numbers in which each number is
the sum of the two previous ones):

fibs = [0, 1]
for i in range(8):
 fibs.append(fibs[-2] + fibs[-1])

After running this, fibs contains the first ten Fibonacci numbers:

>>> fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

This is all right if what you want is to calculate the first ten Fibonacci numbers once. You
could even change the for loop to work with a dynamic range, with the length of the resulting
sequence supplied by the user:

fibs = [0, 1]
num = input('How many Fibonacci numbers do you want? ')
for i in range(num-2):
 fibs.append(fibs[-2] + fibs[-1])
print fibs

■Note Remember that you can use raw_input if you want to read in a plain string. In this case, you would
then need to convert it to an integer by using the int function.

114 C H A P T E R 6 ■ A B S T R A C T I O N

But what if you also want to use the numbers for something else? You could certainly just
write the same loop again when needed, but what if you had written a more complicated piece
of code, such as one that downloaded a set of web pages and computed the frequencies of all
the words used? Would you still want to write all the code several times, once for each time you
needed it? No, real programmers don’t do that. Real programmers are lazy. Not lazy in a bad
way, but in the sense that they don’t do unnecessary work.

So what do real programmers do? They make their programs more abstract. You could
make the previous program more abstract as follows:

num = input('How many numbers do you want? ')
print fibs(num)

Here, only what is specific to this program is written concretely (reading in the number
and printing out the result). Actually, computing the Fibonacci numbers is done in an abstract
manner: you simply tell the computer to do it. You don’t say specifically how it should be done.
You create a function called fibs, and use it when you need the functionality of the little
Fibonacci program. It saves you a lot of effort if you need it in several places.

Abstraction and Structure
Abstraction can be useful as a labor saver, but it is actually more important than that. It is the
key to making computer programs understandable to humans (which is essential, whether
you’re writing them or reading them). The computers themselves are perfectly happy with very
concrete and specific instructions, but humans generally aren’t. If you ask me for directions to
the cinema, for example, you wouldn’t want me to answer, “Walk 10 steps forward, turn 90
degrees to your left, walk another 5 steps, turn 45 degrees to your right, walk 123 steps.” You
would soon lose track, wouldn’t you?

Now, if I instead told you to “Walk down this street until you get to a bridge, cross the
bridge, and the cinema is to your left,” you would certainly understand me. The point is that
you already know how to walk down the street and how to cross a bridge. You don’t need
explicit instructions on how to do either.

You structure computer programs in a similar fashion. Your programs should be quite
abstract, as in “Download page, compute frequencies, and print the frequency of each word.”
This is easily understandable. In fact, let’s translate this high-level description to a Python pro-
gram right now:

page = download_page()
freqs = compute_frequencies(page)
for word, freq in freqs:
 print word, freq

From reading this, you can understand what the program does. However, you haven’t
explicitly said anything about how it should do it. You just tell the computer to download the
page and compute the frequencies. The specifics of these operations will need to be written
somewhere else—in separate function definitions.

C H A P T E R 6 ■ A B S T R A C T I O N 115

Creating Your Own Functions
A function is something you can call (possibly with some parameters—the things you put in
the parentheses), which performs an action and returns a value.1 In general, you can tell
whether something is callable or not with the built-in function callable:

 >>> import math
>>> x = 1
>>> y = math.sqrt
>>> callable(x)
False
>>> callable(y)
True

■Note The function callable no longer exists in Python 3.0. With that version, you will need to use the
expression hasattr(func, __call__). For more information about hasattr, see Chapter 7.

As you know from the previous section, creating functions is central to structured pro-
gramming. So how do you define a function? You do this with the def (or “function definition”)
statement:

def hello(name):
 return 'Hello, ' + name + '!'

After running this, you have a new function available, called hello, which returns a string
with a greeting for the name given as the only parameter. You can use this function just like you
use the built-in ones:

>>> print hello('world')
Hello, world!
>>> print hello('Gumby')
Hello, Gumby!

Pretty neat, huh? Consider how you would write a function that returned a list of Fibonacci
numbers. Easy! You just use the code from before, and instead of reading in a number from the
user, you receive it as a parameter:

def fibs(num):
 result = [0, 1]
 for i in range(num-2):
 result.append(result[-2] + result[-1])
 return result

1. Actually, functions in Python don’t always return values. More on this later in the chapter.

116 C H A P T E R 6 ■ A B S T R A C T I O N

After running this statement, you’ve basically told the interpreter how to calculate
Fibonacci numbers. Now you don’t have to worry about the details anymore. You simply use
the function fibs:

>>> fibs(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
>>> fibs(15)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

The names num and result are quite arbitrary in this example, but return is important. The
return statement is used to return something from the function (which is also how we used it
in the preceding hello function).

Documenting Functions
If you want to document your functions so that you’re certain that others will understand them
later on, you can add comments (beginning with the hash sign, #). Another way of writing com-
ments is simply to write strings by themselves. Such strings can be particularly useful in some
places, such as immediately after a def statement (and at the beginning of a module or a class—
you learn more about classes in Chapter 7 and modules in Chapter 10). If you put a string at the
beginning of a function, it is stored as part of the function and is called a docstring. The follow-
ing code demonstrates how to add a docstring to a function:

def square(x):
 'Calculates the square of the number x.'
 return x*x

The docstring may be accessed like this:

>>> square.__doc__
'Calculates the square of the number x.'

■Note __doc__ is a function attribute. You’ll learn a lot more about attributes in Chapter 7. The double
underscores in the attribute name mean that this is a special attribute. Special or “magic” attributes like this
are discussed in Chapter 9.

A special built-in function called help can be quite useful. If you use it in the interactive
interpreter, you can get information about a function, including its docstring:

>>> help(square)
Help on function square in module __main__:

square(x)
 Calculates the square of the number x.

You meet the help function again in Chapter 10.

C H A P T E R 6 ■ A B S T R A C T I O N 117

Functions That Aren’t Really Functions
Functions, in the mathematical sense, always return something that is calculated from their
parameters. In Python, some functions don’t return anything. In other languages (such as
Pascal), such functions may be called other things (such as procedures), but in Python, a func-
tion is a function, even if it technically isn’t. Functions that don’t return anything simply don’t
have a return statement. Or, if they do have return statements, there is no value after the word
return:

def test():
 print 'This is printed'
 return
 print 'This is not'

Here, the return statement is used simply to end the function:

>>> x = test()
This is printed

As you can see, the second print statement is skipped. (This is a bit like using break in
loops, except that you break out of the function.) But if test doesn’t return anything, what does
x refer to? Let’s see:

>>> x
>>>

Nothing there. Let’s look a bit closer:

>>> print x
None

That’s a familiar value: None. So all functions do return something; it’s just that they return
None when you don’t tell them what to return. I guess I was a bit unfair when I said that some
functions aren’t really functions.

■Caution Don’t let this default behavior trip you up. If you return values from inside if statements and the
like, be sure you’ve covered every case, so you don’t accidentally return None when the caller is expecting a
sequence, for example.

The Magic of Parameters
Using functions is pretty straightforward, and creating them isn’t all that complicated either.
The way parameters work may, however, seem a bit like magic at times. First, let’s do the
basics.

118 C H A P T E R 6 ■ A B S T R A C T I O N

Where Do the Values Come From?
Sometimes, when defining a function, you may wonder where parameters get their values.
In general, you shouldn’t worry about that. Writing a function is a matter of providing a service
to whatever part of your program (and possibly even other programs) might need it. Your task
is to make sure the function does its job if it is supplied with acceptable parameters, and pref-
erably fails in an obvious manner if the parameters are wrong. (You do this with assert or
exceptions in general. More about exceptions in Chapter 8.)

■Note The variables you write after your function name in def statements are often called the formal
parameters of the function. The values you supply when you call the function are called the actual parame-
ters, or arguments. In general, I won’t be too picky about the distinction. If it is important, I will call the actual
parameters values to distinguish them from the formal parameters.

Can I Change a Parameter?
So, your function gets a set of values through its parameters. Can you change them? And what
happens if you do? Well, the parameters are just variables like all others, so this works as you
would expect. Assigning a new value to a parameter inside a function won’t change the outside
world at all:

>>> def try_to_change(n):
 n = 'Mr. Gumby'

>>> name = 'Mrs. Entity'
>>> try_to_change(name)
>>> name
'Mrs. Entity'

Inside try_to_change, the parameter n gets a new value, but as you can see, that doesn’t
affect the variable name. After all, it’s a completely different variable. It’s just as if you did some-
thing like this:

>>> name = 'Mrs. Entity'
>>> n = name # This is almost what happens when passing a parameter
>>> n = 'Mr. Gumby' # This is done inside the function
>>> name
'Mrs. Entity'

Here, the result is obvious. While the variable n is changed, the variable name is not. Simi-
larly, when you rebind (assign to) a parameter inside a function, variables outside the function
will not be affected.

■Note Parameters are kept in what is called a local scope. Scoping is discussed later in this chapter.

C H A P T E R 6 ■ A B S T R A C T I O N 119

Strings (and numbers and tuples) are immutable, which means that you can’t modify
them (that is, you can only replace them with new values). Therefore, there isn’t much to say
about them as parameters. But consider what happens if you use a mutable data structure such
as a list:

>>> def change(n):
 n[0] = 'Mr. Gumby'

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> change(names)
>>> names
['Mr. Gumby', 'Mrs. Thing']

In this example, the parameter is changed. There is one crucial difference between this
example and the previous one. In the previous one, we simply gave the local variable a new
value, but in this one, we actually modify the list to which the variable names is bound. Does that
sound strange? It’s not really that strange. Let’s do it again without the function call:

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names # Again pretending to pass names as a parameter
>>> n[0] = 'Mr. Gumby' # Change the list
>>> names
['Mr. Gumby', 'Mrs. Thing']

You’ve seen this sort of thing before. When two variables refer to the same list, they . . .
refer to the same list. It’s really as simple as that. If you want to avoid this, you must make a
copy of the list. When you do slicing on a sequence, the returned slice is always a copy. Thus, if
you make a slice of the entire list, you get a copy:

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names[:]

Now n and names contain two separate (nonidentical) lists that are equal:

>>> n is names
False
>>> n == names
True

If you change n now (as you did inside the function change), it won’t affect names:

>>> n[0] = 'Mr. Gumby'
>>> n
['Mr. Gumby', 'Mrs. Thing']
>>> names
['Mrs. Entity', 'Mrs. Thing']

Let’s try this trick with change:

>>> change(names[:])
>>> names
['Mrs. Entity', 'Mrs. Thing']

120 C H A P T E R 6 ■ A B S T R A C T I O N

Now the parameter n contains a copy, and your original list is safe.

■Note In case you’re wondering, names that are local to a function, including parameters, do not clash
with names outside the function (that is, global ones). For more information about this, see the discussion of
scoping, later in this chapter.

Why Would I Want to Modify My Parameters?

Using a function to change a data structure (such as a list or a dictionary) can be a good way of
introducing abstraction into your program. Let’s say you want to write a program that stores
names and that allows you to look up people by their first, middle, or last names. You might use
a data structure like this:

storage = {}
storage['first'] = {}
storage['middle'] = {}
storage['last'] = {}

The data structure storage is a dictionary with three keys: 'first', 'middle', and 'last'.
Under each of these keys, you store another dictionary. In these subdictionaries, you’ll use
names (first, middle, or last) as keys, and insert lists of people as values. For example, to add me
to this structure, you could do the following:

>>> me = 'Magnus Lie Hetland'
>>> storage['first']['Magnus'] = [me]
>>> storage['middle']['Lie'] = [me]
>>> storage['last']['Hetland'] = [me]

Under each key, you store a list of people. In this case, the lists contain only me.
Now, if you want a list of all the people registered who have the middle name Lie, you

could do the following:

>>> storage['middle']['Lie']
['Magnus Lie Hetland']

As you can see, adding people to this structure is a bit tedious, especially when you get
more people with the same first, middle, or last names, because then you need to extend the
list that is already stored under that name. Let’s add my sister, and let’s assume you don’t know
what is already stored in the database:

>>> my_sister = 'Anne Lie Hetland'
>>> storage['first'].setdefault('Anne', []).append(my_sister)
>>> storage['middle'].setdefault('Lie', []).append(my_sister)
>>> storage['last'].setdefault('Hetland', []).append(my_sister)
>>> storage['first']['Anne']
['Anne Lie Hetland']

C H A P T E R 6 ■ A B S T R A C T I O N 121

>>> storage['middle']['Lie']
['Magnus Lie Hetland', 'Anne Lie Hetland']

Imagine writing a large program filled with updates like this. It would quickly become
quite unwieldy.

The point of abstraction is to hide all the gory details of the updates, and you can do that
with functions. Let’s first make a function to initialize a data structure:

def init(data):
 data['first'] = {}
 data['middle'] = {}
 data['last'] = {}

In the preceding code, I’ve simply moved the initialization statements inside a function.
You can use it like this:

>>> storage = {}
>>> init(storage)
>>> storage
{'middle': {}, 'last': {}, 'first': {}}

As you can see, the function has taken care of the initialization, making the code much
more readable.

■Note The keys of a dictionary don’t have a specific order, so when a dictionary is printed out, the order
may vary. If the order is different in your interpreter, don’t worry about it.

Before writing a function for storing names, let’s write one for getting them:

def lookup(data, label, name):
 return data[label].get(name)

With lookup, you can take a label (such as 'middle') and a name (such as 'Lie') and get a
list of full names returned. In other words, assuming my name was stored, you could do this:

>>> lookup(storage, 'middle', 'Lie')
['Magnus Lie Hetland']

It’s important to notice that the list that is returned is the same list that is stored in the data
structure. So if you change the list, the change also affects the data structure. (This is not the
case if no people are found; then you simply return None.)

Now it’s time to write the function that stores a name in your structure (don’t worry if it
doesn’t make sense to you immediately):

def store(data, full_name):
 names = full_name.split()
 if len(names) == 2: names.insert(1, '')
 labels = 'first', 'middle', 'last'

122 C H A P T E R 6 ■ A B S T R A C T I O N

 for label, name in zip(labels, names):
 people = lookup(data, label, name)
 if people:
 people.append(full_name)
 else:
 data[label][name] = [full_name]

The store function performs the following steps:

1. You enter the function with the parameters data and full_name set to some values that
you receive from the outside world.

2. You make yourself a list called names by splitting full_name.

3. If the length of names is 2 (you have only a first and a last name), you insert an empty
string as a middle name.

4. You store the strings 'first', 'middle', and 'last' as a tuple in labels. (You could
certainly use a list here; it’s just convenient to drop the brackets.)

5. You use the zip function to combine the labels and names so they line up properly, and
for each pair (label, name), you do the following:

• Fetch the list belonging to the given label and name.

• Append full_name to that list, or insert a new list if needed.

Let’s try it out:

>>> MyNames = {}
>>> init(MyNames)
>>> store(MyNames, 'Magnus Lie Hetland')
>>> lookup(MyNames, 'middle', 'Lie')
['Magnus Lie Hetland']

It seems to work. Let’s try some more:

>>> store(MyNames, 'Robin Hood')
>>> store(MyNames, 'Robin Locksley')
>>> lookup(MyNames, 'first', 'Robin')
['Robin Hood', 'Robin Locksley']
>>> store(MyNames, 'Mr. Gumby')
>>> lookup(MyNames, 'middle', '')
['Robin Hood', 'Robin Locksley', 'Mr. Gumby']

As you can see, if more people share the same first, middle, or last name, you can retrieve
them all together.

■Note This sort of application is well suited to object-oriented programming, which is explained in the next
chapter.

C H A P T E R 6 ■ A B S T R A C T I O N 123

What If My Parameter Is Immutable?

In some languages (such as C++, Pascal, and Ada), rebinding parameters and having these
changes affect variables outside the function is an everyday thing. In Python, it’s not directly
possible; you can modify only the parameter objects themselves. But what if you have an
immutable parameter, such as a number?

Sorry, but it can’t be done. What you should do is return all the values you need from your
function (as a tuple, if there is more than one). For example, a function that increments the
numeric value of a variable by one could be written like this:

>>> def inc(x): return x + 1
...

>>> foo = 10
>>> foo = inc(foo)
>>> foo
11

If you really wanted to modify your parameter, you could use a trick such as wrapping your
value in a list, like this:

>>> def inc(x): x[0] = x[0] + 1
...
>>> foo = [10]
>>> inc(foo)
>>> foo
[11]

Simply returning the new value would be a cleaner solution, though.

Keyword Parameters and Defaults
The parameters we’ve been using until now are called positional parameters because their
positions are important—more important than their names, in fact. The techniques intro-
duced in this section let you sidestep the positions altogether, and while they may take some
getting used to, you will quickly see how useful they are as your programs grow in size.

Consider the following two functions:

def hello_1(greeting, name):
 print '%s, %s!' % (greeting, name)

def hello_2(name, greeting):
 print '%s, %s!' % (name, greeting)

They both do exactly the same thing, only with their parameter names reversed:

>>> hello_1('Hello', 'world')
Hello, world!
>>> hello_2('Hello', 'world')
Hello, world!

124 C H A P T E R 6 ■ A B S T R A C T I O N

Sometimes (especially if you have many parameters) the order may be hard to remember.
To make things easier, you can supply the name of your parameter:

>>> hello_1(greeting='Hello', name='world')
Hello, world!

The order here doesn’t matter at all:

>>> hello_1(name='world', greeting='Hello')
Hello, world!

The names do, however (as you may have gathered):

>>> hello_2(greeting='Hello', name='world')
world, Hello!

The parameters that are supplied with a name like this are called keyword parameters. On
their own, the key strength of keyword parameters is that they can help clarify the role of each
parameter. Instead of needing to use some odd and mysterious call like this:

>>> store('Mr. Brainsample', 10, 20, 13, 5)

you could use this:

>>> store(patient='Mr. Brainsample', hour=10, minute=20, day=13, month=5)

Even though it takes a bit more typing, it is absolutely clear what each parameter does.
Also, if you get the order mixed up, it doesn’t matter.

What really makes keyword arguments rock, however, is that you can give the parameters
in the function default values:

def hello_3(greeting='Hello', name='world'):
 print '%s, %s!' % (greeting, name)

When a parameter has a default value like this, you don’t need to supply it when you call
the function! You can supply none, some, or all, as the situation might dictate:

>>> hello_3()
Hello, world!
>>> hello_3('Greetings')
Greetings, world!
>>> hello_3('Greetings', 'universe')
Greetings, universe!

As you can see, this works well with positional parameters, except that you must supply
the greeting if you want to supply the name. What if you want to supply only the name, leaving
the default value for the greeting? I’m sure you’ve guessed it by now:

>>> hello_3(name='Gumby')
Hello, Gumby!

Pretty nifty, huh? And that’s not all. You can combine positional and keyword parameters.
The only requirement is that all the positional parameters come first. If they don’t, the inter-
preter won’t know which ones they are (that is, which position they are supposed to have).

C H A P T E R 6 ■ A B S T R A C T I O N 125

■Note Unless you know what you’re doing, you might want to avoid mixing positional and keyword param-
eters. That approach is generally used when you have a small number of mandatory parameters and many
modifying parameters with default values.

For example, our hello function might require a name, but allow us to (optionally) specify
the greeting and the punctuation:

def hello_4(name, greeting='Hello', punctuation='!'):
 print '%s, %s%s' % (greeting, name, punctuation)

This function can be called in many ways. Here are some of them:

>>> hello_4('Mars')
Hello, Mars!
>>> hello_4('Mars', 'Howdy')
Howdy, Mars!
>>> hello_4('Mars', 'Howdy', '...')
Howdy, Mars...
>>> hello_4('Mars', punctuation='.')
Hello, Mars.
>>> hello_4('Mars', greeting='Top of the morning to ya')
Top of the morning to ya, Mars!
>>> hello_4()
Traceback (most recent call last):
 File "<pyshell#64>", line 1, in ?
 hello_4()
TypeError: hello_4() takes at least 1 argument (0 given)

■Note If I had given name a default value as well, the last example wouldn’t have raised an exception.

That’s pretty flexible, isn’t it? And we didn’t really need to do much to achieve it either. In
the next section we get even more flexible.

Collecting Parameters
Sometimes it can be useful to allow the user to supply any number of parameters. For example,
in the name-storing program (described in the section “Why Would I Want to Modify My
Parameters?” earlier in this chapter), you can store only one name at a time. It would be nice to
be able to store more names, like this:

>>> store(data, name1, name2, name3)

For this to be useful, you should be allowed to supply as many names as you want. Actu-
ally, that’s quite possible.

126 C H A P T E R 6 ■ A B S T R A C T I O N

Try the following function definition:

def print_params(*params):
 print params

Here, I seemingly specify only one parameter, but it has an odd little star (or asterisk) in
front of it. What does that mean? Let’s call the function with a single parameter and see what
happens:

>>> print_params('Testing')
('Testing',)

You can see that what is printed out is a tuple because it has a comma in it. (Those tuples
of length one are a bit odd, aren’t they?) So using a star in front of a parameter puts it in a tuple?
The plural in params ought to give a clue about what’s going on:

>>> print_params(1, 2, 3)
(1, 2, 3)

The star in front of the parameter puts all the values into the same tuple. It gathers them
up, so to speak. You may wonder if we can combine this with ordinary parameters. Let’s write
another function:

def print_params_2(title, *params):
 print title
 print params

and try it:

>>> print_params_2('Params:', 1, 2, 3)
Params:
(1, 2, 3)

It works! So the star means “Gather up the rest of the positional parameters.” I bet if I don’t
give any parameters to gather, params will be an empty tuple:

>>> print_params_2('Nothing:')
Nothing:
()

Indeed. How useful! Does it handle keyword arguments (the same as parameters), too?

>>> print_params_2('Hmm...', something=42)
Traceback (most recent call last):
 File "<pyshell#60>", line 1, in ?
 print_params_2('Hmm...', something=42)
TypeError: print_params_2() got an unexpected keyword argument 'something'

Doesn’t look like it. So we probably need another “gathering” operator for keyword argu-
ments. What do you think that might be? Perhaps **?

def print_params_3(**params):
 print params

C H A P T E R 6 ■ A B S T R A C T I O N 127

At least the interpreter doesn’t complain about the function. Let’s try to call it:

>>> print_params_3(x=1, y=2, z=3)
{'z': 3, 'x': 1, 'y': 2}

Yep, we get a dictionary rather than a tuple. Let’s put them all together:

def print_params_4(x, y, z=3, *pospar, **keypar):
 print x, y, z
 print pospar
 print keypar

This works just as expected:

>>> print_params_4(1, 2, 3, 5, 6, 7, foo=1, bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> print_params_4(1, 2)
1 2 3
()
{}

By combining all these techniques, you can do quite a lot. If you wonder how some com-
bination might work (or whether it’s allowed), just try it! (In the next section, you see how * and
** can be used when a function is called as well, regardless of whether they were used in the
function definition.)

Now, back to the original problem: how you can use this in the name-storing example. The
solution is shown here:

def store(data, *full_names):
 for full_name in full_names:
 names = full_name.split()
 if len(names) == 2: names.insert(1, '')
 labels = 'first', 'middle', 'last'
 for label, name in zip(labels, names):
 people = lookup(data, label, name)
 if people:
 people.append(full_name)
 else:
 data[label][name] = [full_name]

Using this function is just as easy as using the previous version, which accepted only
one name:

>>> d = {}
>>> init(d)
>>> store(d, 'Han Solo')

128 C H A P T E R 6 ■ A B S T R A C T I O N

But now you can also do this:

>>> store(d, 'Luke Skywalker', 'Anakin Skywalker')
>>> lookup(d, 'last', 'Skywalker')
['Luke Skywalker', 'Anakin Skywalker']

Reversing the Process
Now you’ve learned about gathering up parameters in tuples and dictionaries, but it is in fact
possible to do the “opposite” as well, with the same two operators, * and **. What might the
opposite of parameter gathering be? Let’s say we have the following function available:

def add(x, y): return x + y

■Note You can find a more efficient version of this function in the operator module.

Also, let’s say you have a tuple with two numbers that you want to add:

params = (1, 2)

This is more or less the opposite of what we did previously. Instead of gathering the
parameters, we want to distribute them. This is simply done by using the * operator at
the “other end”—that is, when calling the function rather than when defining it:

>>> add(*params)
3

This works with parts of a parameter list, too, as long as the expanded part is last. You
can use the same technique with dictionaries, using the ** operator. Assuming that you have
defined hello_3 as before, you can do the following:

>>> params = {'name': 'Sir Robin', 'greeting': 'Well met'}
>>> hello_3(**params)
Well met, Sir Robin!

Using * (or **) both when you define and call the function will simply pass the tuple or
dictionary right through, so you might as well not have bothered:

>>> def with_stars(**kwds):
 print kwds['name'], 'is', kwds['age'], 'years old'

>>> def without_stars(kwds):
 print kwds['name'], 'is', kwds['age'], 'years old'

C H A P T E R 6 ■ A B S T R A C T I O N 129

>>> args = {'name': 'Mr. Gumby', 'age': 42}
>>> with_stars(**args)
Mr. Gumby is 42 years old
>>> without_stars(args)
Mr. Gumby is 42 years old

As you can see, in with_stars, I use stars both when defining and calling the function. In
without_stars, I don’t use the stars in either place but achieve exactly the same effect. So the
stars are really useful only if you use them either when defining a function (to allow a varying
number of arguments) or when calling a function (to “splice in” a dictionary or a sequence).

■Tip It may be useful to use these splicing operators to “pass through” parameters, without worrying too
much about how many there are, and so forth. Here is an example:

def foo(x, y, z, m=0, n=0):
 print x, y, z, m, n
def call_foo(*args,**kwds):
 print "Calling foo!"
 foo(*args,**kwds)

This can be particularly useful when calling the constructor of a superclass (see Chapter 9 for more on that).

Parameter Practice
With so many ways of supplying and receiving parameters, it’s easy to get confused. So let me
tie it all together with an example. First, let’s define some functions:

def story(**kwds):
 return 'Once upon a time, there was a ' \
 '%(job)s called %(name)s.' % kwds

def power(x, y, *others):
 if others:
 print 'Received redundant parameters:', others
 return pow(x, y)

 def interval(start, stop=None, step=1):
 'Imitates range() for step > 0'
 if stop is None: # If the stop is not supplied...
 start, stop = 0, start # shuffle the parameters
 result = []

130 C H A P T E R 6 ■ A B S T R A C T I O N

 i = start # We start counting at the start index
 while i < stop: # Until the index reaches the stop index...
 result.append(i) # ...append the index to the result...
 i += step # ...increment the index with the step (> 0)
 return result

Now let’s try them out:

>>> print story(job='king', name='Gumby')
Once upon a time, there was a king called Gumby.
>>> print story(name='Sir Robin', job='brave knight')
Once upon a time, there was a brave knight called Sir Robin.
>>> params = {'job': 'language', 'name': 'Python'}
>>> print story(**params)
Once upon a time, there was a language called Python.
>>> del params['job']
>>> print story(job='stroke of genius', **params)
Once upon a time, there was a stroke of genius called Python.
>>> power(2,3)
8
>>> power(3,2)
9
>>> power(y=3,x=2)
8
>>> params = (5,) * 2
>>> power(*params)
3125
>>> power(3, 3, 'Hello, world')
Received redundant parameters: ('Hello, world',)
27
>>> interval(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> interval(1,5)
[1, 2, 3, 4]
>>> interval(3,12,4)
[3, 7, 11]
>>> power(*interval(3,7))
Received redundant parameters: (5, 6)
81

Feel free to experiment with these functions and functions of your own until you are
confident that you understand how this stuff works.

C H A P T E R 6 ■ A B S T R A C T I O N 131

Scoping
What are variables, really? You can think of them as names referring to values. So, after the
assignment x = 1, the name x refers to the value 1. It’s almost like using dictionaries, where
keys refer to values, except that you’re using an “invisible” dictionary. Actually, this isn’t far
from the truth. There is a built-in function called vars, which returns this dictionary:

>>> x = 1
>>> scope = vars()
>>> scope['x']
1
>>> scope['x'] += 1
>>> x
2

■Caution In general, you should not modify the dictionary returned by vars because, according to the official
Python documentation, the result is undefined. In other words, you might not get the result you’re after.

This sort of “invisible dictionary” is called a namespace or scope. So, how many name-
spaces are there? In addition to the global scope, each function call creates a new one:

>>> def foo(): x = 42
...
>>> x = 1
>>> foo()
>>> x
1

Here foo changes (rebinds) the variable x, but when you look at it in the end, it hasn’t
changed after all. That’s because when you call foo, a new namespace is created, which is used
for the block inside foo. The assignment x = 42 is performed in this inner scope (the local
namespace), and therefore it doesn’t affect the x in the outer (global) scope. Variables that are
used inside functions like this are called local variables (as opposed to global variables). The
parameters work just like local variables, so there is no problem in having a parameter with the
same name as a global variable:

>>> def output(x): print x
...
>>> x = 1
>>> y = 2
>>> output(y)
2

132 C H A P T E R 6 ■ A B S T R A C T I O N

So far, so good. But what if you want to access the global variables inside a function? As
long as you only want to read the value of the variable (that is, you don’t want to rebind it),
there is generally no problem:

>>> def combine(parameter): print parameter + external
...
>>> external = 'berry'
>>> combine('Shrub')
Shrubberry

■Caution Referencing global variables like this is a source of many bugs. Use global variables with care.

Rebinding global variables (making them refer to some new value) is another matter. If you
assign a value to a variable inside a function, it automatically becomes local unless you tell
Python otherwise. And how do you think you can tell it to make a variable global?

>>> x = 1
>>> def change_global():
 global x
 x = x + 1

>>> change_global()
>>> x
2

Piece of cake!

THE PROBLEM OF SHADOWING

Reading the value of global variables is not a problem in general, but one thing may make it problematic. If a
local variable or parameter exists with the same name as the global variable you want to access, you can’t do
it directly. The global variable is shadowed by the local one.

If needed, you can still gain access to the global variable by using the function globals, a close relative
of vars, which returns a dictionary with the global variables. (locals returns a dictionary with the local
variables.)

For example, if you had a global variable called parameter in the previous example, you couldn’t
access it from within combine because you have a parameter with the same name. In a pinch, however, you
could have referred to it as globals()['parameter']:

>>> def combine(parameter):
 print parameter + globals()['parameter']
...
>>> parameter = 'berry'
>>> combine('Shrub')
Shrubberry

C H A P T E R 6 ■ A B S T R A C T I O N 133

Recursion
You’ve learned a lot about making functions and calling them. You also know that functions
can call other functions. What might come as a surprise is that functions can call themselves.2

NESTED SCOPES

Python functions may be nested—you can put one inside another.2 Here is an example:

def foo():
 def bar():
 print "Hello, world!"
 bar()

Nesting is normally not all that useful, but there is one particular application that stands out: using one
function to “create” another. This means that you can (among other things) write functions like the following:

def multiplier(factor):
 def multiplyByFactor(number):
 return number*factor
 return multiplyByFactor

One function is inside another, and the outer function returns the inner one; that is, the function itself is
returned—it is not called. What’s important is that the returned function still has access to the scope where it
was defined; in other words, it carries its environment (and the associated local variables) with it!

Each time the outer function is called, the inner one gets redefined, and each time, the variable factor
may have a new value. Because of Python’s nested scopes, this variable from the outer local scope (of
multiplier) is accessible in the inner function later on, as follows:

>>> double = multiplier(2)
>>> double(5)
10
>>> triple = multiplier(3)
>>> triple(3)
9
>>> multiplier(5)(4)
20

A function such as multiplyByFactor that stores its enclosing scopes is called a closure.
Normally, you cannot rebind variables in outer scopes. In Python 3.0, however, the keyword nonlocal

is introduced. It is used in much the same way as global, and lets you assign to variables in outer (but non-
global) scopes.

2. This topic is a bit advanced; if you’re new to functions and scopes, you may want to skip it for now.

134 C H A P T E R 6 ■ A B S T R A C T I O N

If you haven’t encountered this sort of thing before, you may wonder what this word recur-
sion is. It simply means referring to (or, in our case, “calling”) yourself. A humorous definition
goes like this:

recursion \ri-’k&r-zh&n\ n: see recursion.

Recursive definitions (including recursive function definitions) include references to the
term they are defining. Depending on the amount of experience you have with it, recursion can
be either mind-boggling or quite straightforward. For a deeper understanding of it, you should
probably buy yourself a good textbook on computer science, but playing around with the
Python interpreter can certainly help.

In general, you don’t want recursive definitions like the humorous one of the word recur-
sion, because you won’t get anywhere. You look up recursion, which again tells you to look up
recursion, and so on. A similar function definition would be

def recursion():
 return recursion()

It is obvious that this doesn’t do anything—it’s just as silly as the mock dictionary defini-
tion. But what happens if you run it? You’re welcome to try. You’ll find that the program simply
crashes (raises an exception) after a while. Theoretically, it should simply run forever. How-
ever, each time a function is called, it uses up a little memory, and after enough function calls
have been made (before the previous calls have returned), there is no more room, and the pro-
gram ends with the error message maximum recursion depth exceeded.

The sort of recursion you have in this function is called infinite recursion (just as a loop
beginning with while True and containing no break or return statements is an infinite loop)
because it never ends (in theory). What you want is a recursive function that does something
useful. A useful recursive function usually consists of the following parts:

• A base case (for the smallest possible problem) when the function returns a value
directly

• A recursive case, which contains one or more recursive calls on smaller parts of the
problem

The point here is that by breaking the problem up into smaller pieces, the recursion can’t
go on forever because you always end up with the smallest possible problem, which is covered
by the base case.

So you have a function calling itself. But how is that even possible? It’s really not as strange
as it might seem. As I said before, each time a function is called, a new namespace is created for
that specific call. That means that when a function calls “itself,” you are actually talking about
two different functions (or, rather, the same function with two different namespaces). You
might think of it as one creature of a certain species talking to another one of the same species.

Two Classics: Factorial and Power
In this section, we examine two classic recursive functions. First, let’s say you want to compute
the factorial of a number n. The factorial of n is defined as n (n–1) (n–2) . . . 1. It’s used in

C H A P T E R 6 ■ A B S T R A C T I O N 135

many mathematical applications (for example, in calculating how many different ways there
are of putting n people in a line). How do you calculate it? You could always use a loop:

def factorial(n):
 result = n
 for i in range(1,n):
 result *= i
 return result

This works and is a straightforward implementation. Basically, what it does is this: first, it
sets the result to n; then, the result is multiplied by each number from 1 to n–1 in turn; finally,
it returns the result. But you can do this differently if you like. The key is the mathematical def-
inition of the factorial, which can be stated as follows:

• The factorial of 1 is 1.

• The factorial of a number n greater than 1 is the product of n and the factorial of n–1.

As you can see, this definition is exactly equivalent to the one given at the beginning of this
section.

Now consider how you implement this definition as a function. It is actually pretty
straightforward, once you understand the definition itself:

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

This is a direct implementation of the definition. Just remember that the function call
factorial(n) is a different entity from the call factorial(n-1).

Let’s consider another example. Assume you want to calculate powers, just like the built-in
function pow, or the operator **. You can define the (integer) power of a number in several differ-
ent ways, but let’s start with a simple one: power(x,n) (x to the power of n) is the number x
multiplied by itself n-1 times (so that x is used as a factor n times). So power(2,3) is 2 multiplied
with itself twice, or 2 2 2 = 8.

This is easy to implement:

def power(x, n):
 result = 1
 for i in range(n):
 result *= x
 return result

This is a sweet and simple little function, but again you can change the definition to a
recursive one:

• power(x, 0) is 1 for all numbers x.

• power(x, n) for n > 0 is the product of x and power(x, n-1).

136 C H A P T E R 6 ■ A B S T R A C T I O N

Again, as you can see, this gives exactly the same result as in the simpler, iterative
definition.

Understanding the definition is the hardest part—implementing it is easy:

def power(x, n):
 if n == 0:
 return 1
 else:
 return x * power(x, n-1)

Again, I have simply translated my definition from a slightly formal textual description
into a programming language (Python).

■Tip If a function or an algorithm is complex and difficult to understand, clearly defining it in your own
words before actually implementing it can be very helpful. Programs in this sort of “almost-programming-
language” are often referred to as pseudocode.

So what is the point of recursion? Can’t you just use loops instead? The truth is yes, you
can, and in most cases, it will probably be (at least slightly) more efficient. But in many cases,
recursion can be more readable—sometimes much more readable—especially if one under-
stands the recursive definition of a function. And even though you could conceivably avoid
ever writing a recursive function, as a programmer you will most likely have to understand
recursive algorithms and functions created by others, at the very least.

Another Classic: Binary Search
As a final example of recursion in practice, let’s have a look at the algorithm called binary
search.

You probably know of the game where you are supposed to guess what someone is think-
ing about by asking 20 yes-or-no questions. To make the most of your questions, you try to cut
the number of possibilities in (more or less) half. For example, if you know the subject is a
person, you might ask, “Are you thinking of a woman?” You don’t start by asking, “Are you
thinking of John Cleese?” unless you have a very strong hunch. A version of this game for those
more numerically inclined is to guess a number. For example, your partner is thinking of a
number between 1 and 100, and you have to guess which one it is. Of course, you could do it in
a hundred guesses, but how many do you really need?

As it turns out, you need only seven questions. The first one is something like “Is the num-
ber greater than 50?” If it is, then you ask, “Is it greater than 75?” You keep halving the interval
(splitting the difference) until you find the number. You can do this without much thought.

The same tactic can be used in many different contexts. One common problem is to find
out whether a number is to be found in a (sorted) sequence, and even to find out where it is.
Again, you follow the same procedure: “Is the number to the right of the middle of the
sequence?” If it isn’t, “Is it in the second quarter (to the right of the middle of the left half)?” and
so on. You keep an upper and a lower limit to where the number may be, and keep splitting that
interval in two with every question.

C H A P T E R 6 ■ A B S T R A C T I O N 137

The point is that this algorithm lends itself naturally to a recursive definition and imple-
mentation. Let’s review the definition first, to make sure we know what we’re doing:

• If the upper and lower limits are the same, they both refer to the correct position of the
number, so return it.

• Otherwise, find the middle of the interval (the average of the upper and lower bound),
and find out if the number is in the right or left half. Keep searching in the proper half.

The key to the recursive case is that the numbers are sorted, so when you have found the
middle element, you can just compare it to the number you’re looking for. If your number is
larger, then it must be to the right, and if it is smaller, it must be to the left. The recursive part is
“Keep searching in the proper half,” because the search will be performed in exactly the man-
ner described in the definition. (Note that the search algorithm returns the position where the
number should be—if it’s not present in the sequence, this position will, naturally, be occupied
by another number.)

You’re now ready to implement a binary search:

def search(sequence, number, lower, upper):
 if lower == upper:
 assert number == sequence[upper]
 return upper
 else:
 middle = (lower + upper) // 2
 if number > sequence[middle]:
 return search(sequence, number, middle+1, upper)
 else:
 return search(sequence, number, lower, middle)

This does exactly what the definition said it should: if lower == upper, then return upper,
which is the upper limit. Note that you assume (assert) that the number you are looking for
(number) has actually been found (number == sequence[upper]). If you haven’t reached your
base case yet, you find the middle, check whether your number is to the left or right, and call
search recursively with new limits. You could even make this easier to use by making the limit
specifications optional. You simply add the following conditional to the beginning of the func-
tion definition:

def search(sequence, number, lower=0, upper=None):
 if upper is None: upper = len(sequence)-1
 ...

Now, if you don’t supply the limits, they are set to the first and last positions of the
sequence. Let’s see if this works:

>>> seq = [34, 67, 8, 123, 4, 100, 95]
>>> seq.sort()
>>> seq
[4, 8, 34, 67, 95, 100, 123]
>>> search(seq, 34)
2

138 C H A P T E R 6 ■ A B S T R A C T I O N

>>> search(seq, 100)
5

But why go to all this trouble? For one thing, you could simply use the list method index,
and if you wanted to implement this yourself, you could just make a loop starting at the begin-
ning and iterating along until you found the number.

Sure, using index is just fine. But using a simple loop may be a bit inefficient. Remember I
said you needed seven questions to find one number (or position) among 100? And the loop
obviously needs 100 questions in the worst-case scenario. “Big deal,” you say. But if the list has
100,000,000,000,000,000,000,000,000,000,000,000 elements, and the same number of questions
with a loop (perhaps a somewhat unrealistic size for a Python list), this sort of thing starts to
matter. Binary search would then need only 117 questions. Pretty efficient, huh? 34

■Tip You can actually find a standard implementation of binary search in the bisect module.

3. In fact, with the estimated number of particles in the observable universe at 1087, you would need only
about 290 questions to discern between them!

4. There is also apply, but that was really only needed before we had the splicing discussed previously.

THROWING FUNCTIONS AROUND

By now, you are probably used to using functions just like other objects (strings, number, sequences, and so
on) by assigning them to variables, passing them as parameters, and returning them from other functions.
Some programming languages (such as Scheme or Lisp) use functions in this way to accomplish almost
everything. Even though you usually don’t rely that heavily on functions in Python (you usually make your own
kinds of objects—more about that in the next chapter), you can.

Python has a few functions that are useful for this sort of “functional programming”: map, filter, and
reduce.4 (In Python 3.0, these are moved to the functools module.) The map and filter functions are not
really all that useful in current versions of Python, and you should probably use list comprehensions instead.
You can use map to pass all the elements of a sequence through a given function:

>>> map(str, range(10)) # Equivalent to [str(i) for i in range(10)]
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

You use filter to filter out items based on a Boolean function:

>>> def func(x):
... return x.isalnum()
...
>>> seq = ["foo", "x41", "?!", "***"]
>>> filter(func, seq)
['foo', 'x41']

C H A P T E R 6 ■ A B S T R A C T I O N 139

A Quick Summary
In this chapter, you’ve learned several things about abstraction in general, and functions in
particular:56

Abstraction: Abstraction is the art of hiding unnecessary details. You can make your pro-
gram more abstract by defining functions that handle the details.

Function definition: Functions are defined with the def statement. They are blocks of
statements that receive values (parameters) from the “outside world” and may return one
or more values as the result of their computation.

Parameters: Functions receive what they need to know in the form of parameters—vari-
ables that are set when the function is called. There are two types of parameters in Python:
positional parameters and keyword parameters. Parameters can be made optional by giv-
ing them default values.

For this example, using a list comprehension would mean you didn’t need to define the custom function:

>>> [x for x in seq if x.isalnum()]
['foo', 'x41']

Actually, there is a feature called lambda expressions,5 which lets you define simple functions in-line
(primarily used with map, filter, and reduce):

>>> filter(lambda x: x.isalnum(), seq)
['foo', 'x41']

Isn’t the list comprehension more readable, though?
The reduce function cannot easily be replaced by list comprehensions, but you probably won’t need its

functionality all that often (if ever). It combines the first two elements of a sequence with a given function,
combines the result with the third element, and so on until the entire sequence has been processed and a sin-
gle result remains. For example, if you wanted to sum all the numbers of a sequence, you could use reduce
with lambda x, y: x+y (still using the same numbers):6

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> reduce(lambda x, y: x+y, numbers)
1161

Of course, here you could just as well have used the built-in function sum.

5. The name “lambda” comes from the Greek letter, which is used in mathematics to indicate an anony-
mous function.

6. Actually, instead of this lambda function, you could import the function add from the operator module,
which has a function for each of the built-in operators. Using functions from the operator module is
always more efficient than using your own functions.

140 C H A P T E R 6 ■ A B S T R A C T I O N

Scopes: Variables are stored in scopes (also called namespaces). There are two main
scopes in Python: the global scope and the local scope. Scopes may be nested.

Recursion: A function can call itself—and if it does, it’s called recursion. Everything you
can do with recursion can also be done by loops, but sometimes a recursive function is
more readable.

Functional programming: Python has some facilities for programming in a functional
style. Among these are lambda expressions and the map, filter, and reduce functions.

New Functions in This Chapter

What Now?
The next chapter takes abstractions to another level, through object-oriented programming.
You learn how to make your own types (or classes) of objects to use alongside those provided
by Python (such as strings, lists, and dictionaries), and you learn how this enables you to write
better programs. Once you’ve worked your way through the next chapter, you’ll be able to write
some really big programs without getting lost in the source code.

Function Description

map(func, seq [, seq, ...]) Applies the function to all the elements in the sequences

filter(func, seq) Returns a list of those elements for which the function is true

reduce(func, seq [, initial]) Equivalent to func(func(func(seq[0], seq[1]), seq[2]), ...)

sum(seq) Returns the sum of all the elements of seq

apply(func[, args[, kwargs]]) Calls the function, optionally supplying argument

141

■ ■ ■

C H A P T E R 7

More Abstraction

In the previous chapters, you looked at Python’s main built-in object types (numbers, strings,
lists, tuples, and dictionaries); you peeked at the wealth of built-in functions and standard
libraries; and you even created your own functions. Now, only one thing seems to be missing—
making your own objects. And that’s what you do in this chapter.

You may wonder how useful this is. It might be cool to make your own kinds of objects, but
what would you use them for? With all the dictionaries and sequences and numbers and strings
available, can’t you just use them and make the functions do the job? Certainly, but making
your own objects (and especially types or classes of objects) is a central concept in Python—so
central, in fact, that Python is called an object-oriented language (along with Smalltalk, C++,
Java, and many others). In this chapter, you learn how to make objects. You learn about poly-
morphism and encapsulation, methods and attributes, superclasses, and inheritance— you
learn a lot. So let’s get started.

■Note If you’re already familiar with the concepts of object-oriented programming, you probably know
about constructors. Constructors will not be dealt with in this chapter; for a full discussion, see Chapter 9.

The Magic of Objects
In object-oriented programming, the term object loosely means a collection of data (attributes)
with a set of methods for accessing and manipulating those data. There are several reasons for
using objects instead of sticking with global variables and functions. Some of the most impor-
tant benefits of objects include the following:

• Polymorphism: You can use the same operations on objects of different classes, and
they will work as if “by magic.”

• Encapsulation: You hide unimportant details of how objects work from the outside
world.

• Inheritance: You can create specialized classes of objects from general ones.

In many presentations of object-oriented programming, the order of these concepts is
different. Encapsulation and inheritance are presented first, and then they are used to model
real-world objects. That’s all fine and dandy, but in my opinion, the most interesting feature of

142 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

object-oriented programming is polymorphism. It is also the feature that confuses most
people (in my experience). Therefore I’ll start with polymorphism, and try to show that this
concept alone should be enough to make you like object-oriented programming.

Polymorphism
The term polymorphism is derived from a Greek word meaning “having multiple forms.” Basi-
cally, that means that even if you don’t know what kind of object a variable refers to, you may
still be able to perform operations on it that will work differently depending on the type (or
class) of the object. For example, assume that you are creating an online payment system for a
commercial web site that sells food. Your program receives a “shopping cart” of goods from
another part of the system (or other similar systems that may be designed in the future)—all
you need to worry about is summing up the total and billing some credit card.

Your first thought may be to specify exactly how the goods must be represented when your
program receives them. For example, you may want to receive them as tuples, like this:

('SPAM', 2.50)

If all you need is a descriptive tag and a price, this is fine. But it’s not very flexible. Let’s say
that some clever person starts an auctioning service as part of the web site—where the price of
an item is gradually reduced until someone buys it. It would be nice if the user could put the
object in her shopping cart, proceed to the checkout (your part of the system), and just wait
until the price was right before clicking the Pay button.

But that wouldn’t work with the simple tuple scheme. For that to work, the object would
need to check its current price (through some network magic) each time your code asked for
the price—it couldn’t be frozen like in a tuple. You can solve that by making a function:

Don't do it like this...
def getPrice(object):
 if isinstance(object, tuple):
 return object[1]
 else:
 return magic_network_method(object)

■Note The type/class checking and use of isinstance here is meant to illustrate a point—namely that
type checking isn’t generally a satisfactory solution. Avoid type checking if you possibly can. The function
isinstance is described in the section “Investigating Inheritance,” later in this chapter.

In the preceding code, I use the function isinstance to find out whether the object is a
tuple. If it is, its second element is returned; otherwise, some “magic” network method is
called.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 143

Assuming that the network stuff already exists, you’ve solved the problem—for now. But
this still isn’t very flexible. What if some clever programmer decides that she’ll represent the
price as a string with a hex value, stored in a dictionary under the key 'price'? No problem—
you just update your function:

Don't do it like this...
def getPrice(object):
 if isinstance(object, tuple):
 return object[1]
 elif isinstance(object, dict):
 return int(object['price'])
 else:
 return magic_network_method(object)

Now, surely you must have covered every possibility? But let’s say someone decides to add
a new type of dictionary with the price stored under a different key. What do you do now? You
could certainly update getPrice again, but for how long could you continue doing that? Every
time someone wanted to implement some priced object differently, you would need to reim-
plement your module. But what if you already sold your module and moved on to other, cooler
projects—what would the client do then? Clearly, this is an inflexible and impractical way of
coding the different behaviors.

So what do you do instead? You let the objects handle the operation themselves. It sounds
really obvious, but think about how much easier things will get. Every new object type can
retrieve or calculate its own price and return it to you—all you have to do is ask for it. And this
is where polymorphism (and, to some extent, encapsulation) enters the scene.

Polymorphism and Methods

You receive an object and have no idea of how it is implemented—it may have any one of many
“shapes.” All you know is that you can ask for its price, and that’s enough for you. The way you
do that should be familiar:

>>> object.getPrice()
2.5

Functions that are bound to object attributes like this are called methods. You’ve already
encountered them in the form of string, list, and dictionary methods. There, too, you saw some
polymorphism:

>>> 'abc'.count('a')
1
>>> [1, 2, 'a'].count('a')
1

If you had a variable x, you wouldn’t need to know whether it was a string or a list to call
the count method—it would work regardless (as long as you supplied a single character as the
argument).

144 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

Let’s do an experiment. The standard library random contains a function called choice that
selects a random element from a sequence. Let’s use that to give your variable a value:

>>> from random import choice
>>> x = choice(['Hello, world!', [1, 2, 'e', 'e', 4]])

After performing this, x can either contain the string 'Hello, world!' or the list [1, 2,
'e', 'e', 4]—you don’t know, and you don’t have to worry about it. All you care about is how
many times you find 'e' in x, and you can find that out regardless of whether x is a list or a
string. By calling the count method as before, you find out just that:

>>> x.count('e')
2

In this case, it seems that the list won out. But the point is that you didn’t need to check. Your
only requirement was that x has a method called count that takes a single character as an argu-
ment and returned an integer. If someone else had made his own class of objects that had this
method, it wouldn’t matter to you—you could use his objects just as well as the strings and lists.

Polymorphism Comes in Many Forms

Polymorphism is at work every time you can “do something” to an object without having to
know exactly what kind of object it is. This doesn’t apply only to methods—we’ve already used
polymorphism a lot in the form of built-in operators and functions. Consider the following:

>>> 1+2
3
>>> 'Fish'+'license'
'Fishlicense'

Here, the plus operator (+) works fine for both numbers (integers in this case) and strings
(as well as other types of sequences). To illustrate the point, let’s say you wanted to make a
function called add that added two things together. You could simply define it like this (equiv-
alent to, but less efficient than, the add function from the operator module):

def add(x, y):
 return x+y

This would also work with many kinds of arguments:

>>> add(1, 2)
3
>>> add('Fish', 'license')
'Fishlicense'

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 145

This might seem silly, but the point is that the arguments can be anything that supports
addition.1 If you want to write a function that prints a message about the length of an object,
all that’s required is that it has a length (that the len function will work on it):

def length_message(x):
 print "The length of", repr(x), "is", len(x)

As you can see, the function also uses repr, but repr is one of the grand masters of poly-
morphism—it works with anything. Let’s see how:

>>> length_message('Fnord')
The length of 'Fnord' is 5
>>> length_message([1, 2, 3])
The length of [1, 2, 3] is 3

Many functions and operators are polymorphic—probably most of yours will be, too, even
if you don’t intend them to be. Just by using polymorphic functions and operators, the poly-
morphism “rubs off.” In fact, virtually the only thing you can do to destroy this polymorphism
is to do explicit type checking with functions such as type, `, and issubclass. If you can, you
really should avoid destroying polymorphism this way. What matters should be that an object
acts the way you want, not whether it is of the right type (or class).

■Note The form of polymorphism discussed here, which is so central to the Python way of programming,
is sometimes called “duck typing.” The term derives from the phrase, “If it quacks like a duck ...” For more
information, see http://en.wikipedia.org/wiki/Duck_typing.

Encapsulation
Encapsulation is the principle of hiding unnecessary details from the rest of the world. This
may sound like polymorphism—there, too, you use an object without knowing its inner
details. The two concepts are similar because they are both principles of abstraction. They both
help you deal with the components of your program without caring about unnecessary detail,
just as functions do.

But encapsulation isn’t the same as polymorphism. Polymorphism enables you to call the
methods of an object without knowing its class (type of object). Encapsulation enables you to
use the object without worrying about how it’s constructed. Does it still sound similar? Let’s
construct an example with polymorphism, but without encapsulation. Assume that you have a
class called OpenObject (you learn how to create classes later in this chapter):

>>> o = OpenObject() # This is how we create objects...
>>> o.setName('Sir Lancelot')
>>> o.getName()
'Sir Lancelot'

1. Note that these objects need to support addition with each other. So calling add(1, 'license') would
not work.

146 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

You create an object (by calling the class as if it were a function) and bind the variable o to
it. You can then use the methods setName and getName (assuming that they are methods that are
supported by the class OpenObject). Everything seems to be working perfectly. However, let’s
assume that o stores its name in the global variable globalName:

>>> globalName
'Sir Lancelot'

This means that you need to worry about the contents of globalName when you use
instances (objects) of the class OpenObject. In fact, you must make sure that no one changes it:

>>> globalName = 'Sir Gumby'
>>> o.getName()
'Sir Gumby'

Things get even more problematic if you try to create more than one OpenObject because
they will all be messing with the same variable:

>>> o1 = OpenObject()
>>> o2 = OpenObject()
>>> o1.setName('Robin Hood')
>>> o2.getName()
'Robin Hood'

As you can see, setting the name of one automatically sets the name of the other—not
exactly what you want.

Basically, you want to treat objects as abstract. When you call a method, you don’t want to
worry about anything else, such as not disturbing global variables. So how can you “encapsu-
late” the name within the object? No problem. You make it an attribute.

Attributes are variables that are a part of the object, just like methods; actually, methods
are almost like attributes bound to functions. (You’ll see an important difference between
methods and functions in the section “Attributes, Functions, and Methods,” later in this chap-
ter.) If you rewrite the class to use an attribute instead of a global variable, and you rename it
ClosedObject, it works like this:

>>> c = ClosedObject()
>>> c.setName('Sir Lancelot')
>>> c.getName()
'Sir Lancelot'

So far, so good. But for all you know, this could still be stored in a global variable. Let’s
make another object:

>>> r = ClosedObject()
>>> r.setName('Sir Robin')
r.getName()
'Sir Robin'

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 147

Here, you can see that the new object has its name set properly, which is probably what
you expected. But what has happened to the first object now?

>>> c.getName()
'Sir Lancelot'

The name is still there! This is because the object has its own state. The state of an object is
described by its attributes (like its name, for example). The methods of an object may change
these attributes. So it’s like lumping together a bunch of functions (the methods) and giving
them access to some variables (the attributes) where they can keep values stored between
function calls.

You’ll see even more details on Python’s encapsulation mechanisms in the section
“Privacy Revisited,” later in the chapter.

Inheritance
Inheritance is another way of dealing with laziness (in the positive sense). Programmers want
to avoid typing the same code more than once. We avoided that earlier by making functions,
but now I will address a more subtle problem. What if you have a class already, and you want
to make one that is very similar? Perhaps one that adds only a few methods? When making this
new class, you don’t want to need to copy all the code from the old one over to the new one.

For example, you may already have a class called Shape, which knows how to draw itself on
the screen. Now you want to make a class called Rectangle, which also knows how to draw itself
on the screen, but which can, in addition, calculate its own area. You wouldn’t want to do all
the work of making a new draw method when Shape has one that works just fine. So what do you
do? You let Rectangle inherit the methods from Shape. You can do this in such a way that when
draw is called on a Rectangle object, the method from the Shape class is called automatically
(see the section “Specifying a Superclass,” later in this chapter).

Classes and Types
By now, you’re getting a feeling for what classes are—or you may be getting impatient for me
to tell you how to make the darn things. Before jumping into the technicalities, let’s have a look
at what a class is, and how it is different from (or similar to) a type.

What Is a Class, Exactly?
I’ve been throwing around the word class a lot, using it more or less synonymously with words
such as kind or type. In many ways that’s exactly what a class is—a kind of object. All objects
belong to a class and are said to be instances of that class.

So, for example, if you look outside your window and see a bird, that bird is an instance of
the class “birds.” This is a very general (abstract) class that has several subclasses; your bird
might belong to the subclass “larks.” You can think of the class “birds” as the set of all birds,
while the class “larks” is just a subset of that. When the objects belonging to one class form a
subset of the objects belonging to another class, the first is called a subclass of the second.
Thus, “larks” is a subclass of “birds.” Conversely, “birds” is a superclass of “larks.”

148 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

■Note In everyday speech, we denote classes of objects with plural nouns such as “birds” and “larks.” In
Python, it is customary to use singular, capitalized nouns such as Bird and Lark.

When stated like this, subclasses and superclasses are easy to understand. But in object-
oriented programming, the subclass relation has important implications because a class is
defined by what methods it supports. All the instances of a class have these methods, so all the
instances of all subclasses must also have them. Defining subclasses is then only a matter of
defining more methods (or, perhaps, overriding some of the existing ones).

For example, Bird might supply the method fly, while Penguin (a subclass of Bird) might
add the method eatFish. When making a Penguin class, you would probably also want to over-
ride a method of the superclass, namely the fly method. In a Penguin instance, this method
should either do nothing, or possibly raise an exception (see Chapter 8), given that penguins
can’t fly.

■Note In older versions of Python, there was a sharp distinction between types and classes. Built-in
objects had types; your custom objects had classes. You could create classes, but not types. In recent ver-
sions of Python, things are starting to change. The division between basic types and classes is blurring. You
can now make subclasses (or subtypes) of the built-in types, and the types are behaving more like classes.
Chances are you won’t notice this change much until you become more familiar with the language. If you’re
interested, you can find more information on the topic in Chapter 9.

Making Your Own Classes
Finally, you get to make your own classes! Here is a simple example:

__metaclass__ = type # Make sure we get new style classes

class Person:

 def setName(self, name):
 self.name = name

 def getName(self):
 return self.name

 def greet(self):
 print "Hello, world! I'm %s." % self.name

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 149

■Note There is a difference between so-called old-style and new-style classes. There is really no reason
to use the old-style classes anymore, except that they’re what you get by default in Python versions prior to
3.0. To get new-style classes, you should place the assignment __metaclass__ = type at the beginning of
your script or module. (I may not explicitly include this statement in every example.) There are also other solu-
tions, such as subclassing a new-style class (for example, object). You learn more about subclassing in a
minute. In Python 3.0, there is no need to worry about this, as old-style classes don’t exist there. You find
more information about this in Chapter 9.

This example contains three method definitions, which are like function definitions
except that they are written inside a class statement. Person is, of course, the name of the class.
The class statement creates its own namespace where the functions are defined. (See the sec-
tion “The Class Namespace” later in this chapter.) All this seems fine, but you may wonder
what this self parameter is. It refers to the object itself. And what object is that? Let’s make a
couple of instances and see:

>>> foo = Person()
>>> bar = Person()
>>> foo.setName('Luke Skywalker')
>>> bar.setName('Anakin Skywalker')
>>> foo.greet()
Hello, world! I'm Luke Skywalker.
>>> bar.greet()
Hello, world! I'm Anakin Skywalker.

Okay, so this example may be a bit obvious, but perhaps it clarifies what self is. When I
call setName and greet on foo, foo itself is automatically passed as the first parameter in each
case—the parameter that I have so fittingly called self. You may, in fact, call it whatever you
like, but because it is always the object itself, it is almost always called self, by convention.

It should be obvious why self is useful, and even necessary here. Without it, none of the
methods would have access to the object itself—the object whose attributes they are supposed
to manipulate. As before, the attributes are also accessible from the outside:

>>> foo.name
'Luke Skywalker'
>>> bar.name = 'Yoda'
>>> bar.greet()
Hello, world! I'm Yoda.

■Tip Another way of viewing this is that foo.greet() is simply a convenient way of writing
Person.greet(foo), if you know that foo is an instance of Person.

150 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

Attributes, Functions, and Methods
The self parameter (mentioned in the previous section) is, in fact, what distinguishes methods
from functions. Methods (or, more technically, bound methods) have their first parameter
bound to the instance they belong to, so you don’t have to supply it. While you can certainly
bind an attribute to a plain function, it won’t have that special self parameter:

>>> class Class:
 def method(self):
 print 'I have a self!'

>>> def function():
 print "I don't..."

>>> instance = Class()
>>> instance.method()
I have a self!
>>> instance.method = function
>>> instance.method()
I don't...

Note that the self parameter is not dependent on calling the method the way I’ve done
until now, as instance.method. You’re free to use another variable that refers to the same
method:

>>> class Bird:
 song = 'Squaawk!'
 def sing(self):
 print self.song

>>> bird = Bird()
>>> bird.sing()
Squaawk!
>>> birdsong = bird.sing
>>> birdsong()
Squaawk!

Even though the last method call looks exactly like a function call, the variable birdsong
refers to the bound method bird.sing, which means that it still has access to the self parame-
ter (that is, it is still bound to the same instance of the class).

Privacy Revisited
By default, you can access the attributes of an object from the “outside.” Let’s revisit the exam-
ple from the earlier discussion on encapsulation:

>>> c.name
'Sir Lancelot'
>>> c.name = 'Sir Gumby'

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 151

>>> c.getName()
'Sir Gumby'

Some programmers are okay with this, but some (like the creators of Smalltalk, a language
where attributes of an object are accessible only to the methods of the same object) feel that it
breaks with the principle of encapsulation. They believe that the state of the object should be
completely hidden (inaccessible) to the outside world. You might wonder why they take such
an extreme stand. Isn’t it enough that each object manages its own attributes? Why should you
hide them from the world? After all, if you just used the name attribute directly on ClosedObject
(the class of c in this case), you wouldn’t need to make the setName and getName methods.

The point is that other programmers may not know (and perhaps shouldn’t know) what’s
going on inside your object. For example, ClosedObject may send an email message to some
administrator every time an object changes its name. This could be part of the setName method.
But what happens when you set c.name directly? Nothing happens—no email message is sent.
To avoid this sort of thing, you have private attributes. These are attributes that are not acces-
sible outside the object; they are accessible only through accessor methods, such as getName
and setName.

■Note In Chapter 9, you learn about properties, a powerful alternative to accessors.

Python doesn’t support privacy directly, but relies on the programmer to know when it is
safe to modify an attribute from the outside. After all, you should know how to use an object
before using that object. It is, however, possible to achieve something like private attributes
with a little trickery.

To make a method or attribute private (inaccessible from the outside), simply start its
name with two underscores:

class Secretive:

 def __inaccessible(self):
 print "Bet you can't see me..."

 def accessible(self):
 print "The secret message is:"
 self.__inaccessible()

Now __inaccessible is inaccessible to the outside world, while it can still be used inside
the class (for example, from accessible):

>>> s = Secretive()
>>> s.__inaccessible()
Traceback (most recent call last):
 File "<pyshell#112>", line 1, in ?
 s.__inaccessible()
AttributeError: Secretive instance has no attribute '__inaccessible'

152 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

>>> s.accessible()
The secret message is:
Bet you can't see me...

Although the double underscores are a bit strange, this seems like a standard private
method, as found in other languages. What’s not so standard is what actually happens. Inside
a class definition, all names beginning with a double underscore are “translated” by adding a
single underscore and the class name to the beginning:

>>> Secretive._Secretive__inaccessible
<unbound method Secretive.__inaccessible>

If you know how this works behind the scenes, it is still possible to access private methods
outside the class, even though you’re not supposed to:

>>> s._Secretive__inaccessible()
Bet you can't see me...

So, in short, you can’t be sure that others won’t access the methods and attributes of your
objects, but this sort of name-mangling is a pretty strong signal that they shouldn’t.

If you don’t want the name-mangling effect, but you still want to send a signal for other
objects to stay away, you can use a single initial underscore. This is mostly just a convention,
but has some practical effects. For example, names with an initial underscore aren’t imported
with starred imports (from module import *).2

The Class Namespace
The following two statements are (more or less) equivalent:

def foo(x): return x*x
foo = lambda x: x*x

Both create a function that returns the square of its argument, and both bind the variable
foo to that function. The name foo may be defined in the global (module) scope, or it may be
local to some function or method. The same thing happens when you define a class: all the
code in the class statement is executed in a special namespace—the class namespace. This
namespace is accessible later by all members of the class. Not all Python programmers know
that class definitions are simply code sections that are executed, but it can be useful informa-
tion. For example, you aren’t restricted to def statements inside the class definition block:

>>> class C:
 print 'Class C being defined...'

Class C being defined...
>>>

2. Some languages support several degrees of privacy for its member variables (attributes). Java, for exam-
ple, has four different levels. Python doesn’t really have equivalent privacy support, although single
and double initial underscores do to some extent give you two levels of privacy.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 153

Okay, that was a bit silly. But consider the following:

class MemberCounter:
 members = 0
 def init(self):
 MemberCounter.members += 1

>>> m1 = MemberCounter()
>>> m1.init()
>>> MemberCounter.members
1
>>> m2 = MemberCounter()
>>> m2.init()
>>> MemberCounter.members
2

In the preceding code, a variable is defined in the class scope, which can be accessed by all
the members (instances), in this case to count the number of class members. Note the use of
init to initialize all the instances: I’ll automate that (that is, turn it into a proper constructor)
in Chapter 9.

This class scope variable is accessible from every instance as well, just as methods are:

>>> m1.members
2
>>> m2.members
2

What happens when you rebind the members attribute in an instance?

>>> m1.members = 'Two'
>>> m1.members
'Two'
>>> m2.members
2

The new members value has been written into an attribute in m1, shadowing the class-wide
variable. This mirrors the behavior of local and global variables in functions, as discussed in the
sidebar “The Problem of Shadowing” in Chapter 6.

Specifying a Superclass
As I discussed earlier in the chapter, subclasses expand on the definitions in their superclasses.
You indicate the superclass in a class statement by writing it in parentheses after the class name:

class Filter:
 def init(self):
 self.blocked = []
 def filter(self, sequence):
 return [x for x in sequence if x not in self.blocked]

154 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

class SPAMFilter(Filter): # SPAMFilter is a subclass of Filter
 def init(self): # Overrides init method from Filter superclass
 self.blocked = ['SPAM']

Filter is a general class for filtering sequences. Actually it doesn’t filter out anything:

>>> f = Filter()
>>> f.init()
>>> f.filter([1, 2, 3])
[1, 2, 3]

The usefulness of the Filter class is that it can be used as a base class (superclass) for other
classes, such as SPAMFilter, which filters out 'SPAM' from sequences:

>>> s = SPAMFilter()
>>> s.init()
>>> s.filter(['SPAM', 'SPAM', 'SPAM', 'SPAM', 'eggs', 'bacon', 'SPAM'])
['eggs', 'bacon']

Note two important points in the definition of SPAMFilter:

• I override the definition of init from Filter by simply providing a new definition.

• The definition of the filter method carries over (is inherited) from Filter, so you don’t
need to write the definition again.

The second point demonstrates why inheritance is useful: I can now make a number of
different filter classes, all subclassing Filter, and for each one I can simply use the filter
method I have already implemented. Talk about useful laziness . . .

Investigating Inheritance
If you want to find out whether a class is a subclass of another, you can use the built-in method
issubclass:

>>> issubclass(SPAMFilter, Filter)
True
>>> issubclass(Filter, SPAMFilter)
False

If you have a class and want to know its base classes, you can access its special attribute
__bases__:

>>> SPAMFilter.__bases__
(<class __main__.Filter at 0x171e40>,)
>>> Filter.__bases__
()

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 155

In a similar manner, you can check whether an object is an instance of a class by using
isinstance:

>>> s = SPAMFilter()
>>> isinstance(s, SPAMFilter)
True
>>> isinstance(s, Filter)
True
>>> isinstance(s, str)
False

■Note Using isinstance is usually not good practice. Relying on polymorphism is almost always better.

As you can see, s is a (direct) member of the class SPAMFilter, but it is also an indirect
member of Filter because SPAMFilter is a subclass of Filter. Another way of putting it is that
all SPAMFilters are Filters. As you can see in the preceding example, isinstance also works
with types, such as the string type (str).

If you just want to find out which class an object belongs to, you can use the __class__
attribute:

>>> s.__class__
<class __main__.SPAMFilter at 0x1707c0>

■Note If you have a new-style class, either by setting __metaclass__ = type or subclassing object,
you could also use type(s) to find the class of your instance.

Multiple Superclasses
I’m sure you noticed a small detail in the previous section that may have seemed odd: the plu-
ral form in __bases__. I said you could use it to find the base classes of a class, which implies
that it may have more than one. This is, in fact, the case. To show how it works, let’s create a few
classes:

class Calculator:
 def calculate(self, expression):
 self.value = eval(expression)

class Talker:
 def talk(self):
 print 'Hi, my value is', self.value

class TalkingCalculator(Calculator, Talker):
 pass

156 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

The subclass (TalkingCalculator) does nothing by itself; it inherits all its behavior from its
superclasses. The point is that it inherits both calculate from Calculator and talk from Talker,
making it a talking calculator:

>>> tc = TalkingCalculator()
>>> tc.calculate('1+2*3')
>>> tc.talk()
Hi, my value is 7

This is called multiple inheritance, and can be a very powerful tool. However, unless you
know you need multiple inheritance, you may want to stay away from it, as it can, in some
cases, lead to unforeseen complications.

If you are using multiple inheritance, there is one thing you should look out for: if a
method is implemented differently by two or more of the superclasses (that is, you have two
different methods with the same name), you must be careful about the order of these super-
classes (in the class statement). The methods in the earlier classes override the methods in the
later ones. So if the Calculator class in the preceding example had a method called talk, it
would override (and make inaccessible) the talk method of the Talker. Reversing their order,
like this:

class TalkingCalculator(Talker, Calculator): pass

would make the talk method of the Talker accessible. If the superclasses share a common
superclass, the order in which the superclasses are visited while looking for a given attribute or
method is called the method resolution order (MRO), and follows a rather complicated algo-
rithm. Luckily, it works very well, so you probably don’t need to worry about it.

Interfaces and Introspection
The “interface” concept is related to polymorphism. When you handle a polymorphic object, you
only care about its interface (or “protocol”)—the methods and attributes known to the world. In
Python, you don’t explicitly specify which methods an object needs to have to be acceptable as a
parameter. For example, you don’t write interfaces explicitly (as you do in Java); you just assume
that an object can do what you ask it to do. If it can’t, the program will fail.

Usually, you simply require that objects conform to a certain interface (in other words,
implement certain methods), but if you want to, you can be quite flexible in your demands.
Instead of just calling the methods and hoping for the best, you can check whether the required
methods are present, and if not, perhaps do something else:

>>> hasattr(tc, 'talk')
True
>>> hasattr(tc, 'fnord')
False

In the preceding code, you find that tc (a TalkingCalculator, as described earlier in this
chapter) has the attribute talk (which refers to a method), but not the attribute fnord. If you
wanted to, you could even check whether the talk attribute was callable:

>>> callable(getattr(tc, 'talk', None))
True

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 157

>>> callable(getattr(tc, 'fnord', None))
False

■Note The function callable is no longer available in Python 3.0. Instead of callable(x), you can use
hasattr(x, '__call__').

Note that instead of using hasattr in an if statement and accessing the attribute directly,
I’m using getattr, which allows me to supply a default value (in this case None) that will be used
if the attribute is not present. I then use callable on the returned object.

■Note The inverse of getattr is setattr, which can be used to set the attributes of an object:

>>> setattr(tc, 'name', 'Mr. Gumby')
>>> tc.name
'Mr. Gumby'

If you want to see all the values stored in an object, you can examine its __dict__ attribute.
And if you really want to find out what an object is made of, you should take a look at the
inspect module. It is meant for fairly advanced users who want to make object browsers (pro-
grams that enable you to browse Python objects in a graphical manner) and other similar
programs that require such functionality. For more information on exploring objects and mod-
ules, see the section “Exploring Modules” in Chapter 10.

Some Thoughts on Object-Oriented Design
Many books have been written about object-oriented program design, and although that’s not
the focus of this book, I’ll give you some pointers:

• Gather what belongs together. If a function manipulates a global variable, the two of
them might be better off in a class, as an attribute and a method.

• Don’t let objects become too intimate. Methods should mainly be concerned with the
attributes of their own instance. Let other instances manage their own state.

• Go easy on the inheritance, especially multiple inheritance. Inheritance is useful at
times, but can make things unnecessarily complex in some cases. And multiple inherit-
ance can be very difficult to get right and even harder to debug.

• Keep it simple. Keep your methods small. As a rule of thumb, it should be possible to
read (and understand) most of your methods in, say, 30 seconds. For the rest, try to keep
them shorter than one page or screen.

158 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

When determining which classes you need and which methods they should have, you may
try something like this:

1. Write down a description of your problem (what should the program do?). Underline all
the nouns, verbs, and adjectives.

2. Go through the nouns, looking for potential classes.

3. Go through the verbs, looking for potential methods.

4. Go through the adjectives, looking for potential attributes.

5. Allocate methods and attributes to your classes.

Now you have a first sketch of an object-oriented model. You may also want to think about
what responsibilities and relationships (such as inheritance or cooperation) the classes and
objects will have. To refine your model, you can do the following:

1. Write down (or dream up) a set of use cases—scenarios of how your program may be
used. Try to cover all the functionality.

2. Think through every use case step by step, making sure that everything you need is
covered by your model. If something is missing, add it. If something isn’t quite right,
change it. Continue until you are satisfied.

When you have a model you think will work, you can start hacking away. Chances are
you’ll need to revise your model or revise parts of your program. Luckily, that’s easy in Python,
so don’t worry about it. Just dive in. (If you would like some more guidance in the ways of
object-oriented programming, check out the list of suggested books in Chapter 19.)

A Quick Summary
This chapter has given you more than just information about the Python language; it has
introduced you to several concepts that may have been completely foreign to you. Here’s a
summary:

Objects: An object consists of attributes and methods. An attribute is merely a variable
that is part of an object, and a method is more or less a function that is stored in an
attribute. One difference between (bound) methods and other functions is that methods
always receive the object they are part of as their first argument, usually called self.

Classes: A class represents a set (or kind) of objects, and every object (instance) has a class.
The class’s main task is to define the methods its instances will have.

Polymorphism: Polymorphism is the characteristic of being able to treat objects of differ-
ent types and classes alike—you don’t need to know which class an object belongs to in
order to call one of its methods.

Encapsulation: Objects may hide (or encapsulate) their internal state. In some languages,
this means that their state (their attributes) is available only through their methods. In

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 159

Python, all attributes are publicly available, but programmers should still be careful about
accessing an object’s state directly, since they might unwittingly make the state inconsis-
tent in some way.

Inheritance: One class may be the subclass of one or more other classes. The subclass then
inherits all the methods of the superclasses. You can use more than one superclass, and
this feature can be used to compose orthogonal (independent and unrelated) pieces of
functionality. A common way of implementing this is using a core superclass along with
one or more mix-in superclasses.

Interfaces and introspection: In general, you don’t want to prod an object too deeply. You
rely on polymorphism, and call the methods you need. However, if you want to find out
what methods or attributes an object has, there are functions that will do the job for you.

Object-oriented design: There are many opinions about how (or whether!) to do object-
oriented design. No matter where you stand on the issue, it’s important to understand
your problem thoroughly, and to create a design that is easy to understand.

New Functions in This Chapter

What Now?
You’ve learned a lot about creating your own objects and how useful that can be. Before diving
headlong into the magic of Python’s special methods (Chapter 9), let’s take a breather with a
little chapter about exception handling.

Function Description

callable(object) Determines if the object is callable (such as a function or a
method)

getattr(object, name[, default]) Gets the value of an attribute, optionally providing a
default

hasattr(object, name) Determines if the object has the given attribute

isinstance(object, class) Determines if the object is an instance of the class

issubclass(A, B) Determines if A is a subclass of B

random.choice(sequence) Chooses a random element from a nonempty sequence

setattr(object, name, value) Sets the given attribute of the object to value

type(object) Returns the type of the object

161

■ ■ ■

C H A P T E R 8

Exceptions

When writing computer programs, it is usually possible to discern between a normal course
of events and something that’s exceptional (out of the ordinary). Such exceptional events
might be errors (such as trying to divide a number by zero) or simply something you might not
expect to happen very often. To handle such exceptional events, you might use conditionals
everywhere the events might occur (for example, have your program check whether the
denominator is zero for every division). However, this would not only be inefficient and inflex-
ible, but would also make the programs illegible. You might be tempted to ignore these
exceptional events and just hope they won’t occur, but Python offers a powerful alternative
through its exception objects.

In this chapter, you learn how to create and raise your own exceptions, as well as how to
handle exceptions in various ways.

What Is an Exception?
To represent exceptional conditions, Python uses exception objects. When it encounters an
error, it raises an exception. If such an exception object is not handled (or caught), the program
terminates with a so-called traceback (an error message):

>>> 1/0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

If such error messages were all you could use exceptions for, they wouldn’t be very inter-
esting. The fact is, however, that each exception is an instance of some class (in this case
ZeroDivisionError), and these instances may be raised and caught in various ways, allowing
you to trap the error and do something about it instead of just letting the entire program fail.

Making Things Go Wrong . . . Your Way
As you’ve seen, exceptions are raised automatically when something is wrong. Before looking
at how to deal with those exceptions, let’s take a look at how you can raise exceptions your-
self—and even create your own kinds of exceptions.

162 C H A P T E R 8 ■ EX C EP T I O N S

The raise Statement
To raise an exception, you use the raise statement with an argument that is either a class
(which should subclass Exception) or an instance. When using a class, an instance is created
automatically Here is an example, using the built-in exception class Exception:

>>> raise Exception
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception
>>> raise Exception('hyperdrive overload')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception: hyperdrive overload

The first example, raise Exception, raises a generic exception with no information about
what went wrong. In the last example, I added the error message hyperdrive overload.

Many built-in classes are available. You can find a description of all of them in the Python
Library Reference, in the section “Built-in Exceptions.” You can also explore them yourself with
the interactive interpreter. You can find all the built-in exceptions in the module exceptions (as
well as in the built-in namespace). To list the contents of a module, you can use the dir function,
which is described in Chapter 10:

>>> import exceptions
>>> dir(exceptions)
['ArithmeticError', 'AssertionError', 'AttributeError', ...]

In your interpreter, this list will be quite a lot longer; I’ve deleted most of the names in the
interest of brevity. All of these exception classes can be used in your raise statements:

>>> raise ArithmeticError
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ArithmeticError

Table 8-1 describes some of the most important built-in exception classes.

Table 8-1. Some Built-in Exceptions

Class Name Description

Exception The base class for all exceptions

AttributeError Raised when attribute reference or assignment fails

IOError Raised when trying to open a nonexistent file (among other things)

IndexError Raised when using a nonexistent index on a sequence

KeyError Raised when using a nonexistent key on a mapping

NameError Raised when a name (variable) is not found

C H A P T E R 8 ■ E X C E P T I O N S 163

Custom Exception Classes
Although the built-in exceptions cover a lot of ground and are sufficient for many purposes,
there are times when you might want to create your own. For example, in the hyperdrive
overload example, wouldn’t it be more natural to have a specific HyperdriveError class repre-
senting error conditions in the hyperdrive? It might seem that the error message is sufficient,
but as you will see in the next section (“Catching Exceptions”), you can selectively handle cer-
tain types of exceptions based on their class. Thus, if you wanted to handle hyperdrive errors
with special error-handling code, you would need a separate class for the exceptions.

So, how do you create exception classes? Just like any other class—but be sure to subclass
Exception (either directly or indirectly, which means that subclassing any other built-in excep-
tion is okay). Thus, writing a custom exception basically amounts to something like this:

class SomeCustomException(Exception): pass

Really not much work, is it? (If you want, you can certainly add methods to your exception
class as well.)

Catching Exceptions
As mentioned earlier, the interesting thing about exceptions is that you can handle them (often
called trapping or catching the exceptions). You do this with the try/except statement. Let’s
say you have created a program that lets the user enter two numbers and then divides one by
the other, like this:

x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y

This would work nicely until the user enters zero as the second number:

Enter the first number: 10
Enter the second number: 0
Traceback (most recent call last):
 File "exceptions.py", line 3, in ?
 print x/y
ZeroDivisionError: integer division or modulo by zero

SyntaxError Raised when the code is ill-formed

TypeError Raised when a built-in operation or function is applied to an object of the
wrong type

ValueError Raised when a built-in operation or function is applied to an object with
the correct type, but with an inappropriate value

ZeroDivisionError Raised when the second argument of a division or modulo operation is zero

Class Name Description

164 C H A P T E R 8 ■ EX C EP T I O N S

To catch the exception and perform some error handling (in this case simply printing a
more user-friendly error message), you could rewrite the program like this:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except ZeroDivisionError:
 print "The second number can't be zero!"

It might seem that a simple if statement checking the value of y would be easier to use, and in
this case, it might indeed be a better solution. But if you added more divisions to your program, you
would need one if statement per division; by using try/except, you need only one error handler.

■Note Exceptions propagate out of functions to where they’re called, and if they’re not caught there either,
the exceptions will “bubble up” to the top level of the program. This means that you can use try/except to
catch exceptions that are raised in other people’s functions. For more details, see the section “Exceptions and
Functions,” later in this chapter.

Look, Ma, No Arguments!
If you have caught an exception but you want to raise it again (pass it on, so to speak), you can
call raise without any arguments. (You can also supply the exception explicitly if you catch it,
as explained in the section “Catching the Object,” later in this chapter.)

As an example of how this might be useful, consider a calculator class that has the capability
to “muffle” ZeroDivisionError exceptions. If this behavior is turned on, the calculator prints out
an error message instead of letting the exception propagate. This is useful if the calculator is used
in an interactive session with a user, but if it is used internally in a program, raising an exception
would be better. Therefore, the muffling can be turned off. Here is the code for such a class:

class MuffledCalculator:
 muffled = False
 def calc(self, expr):
 try:
 return eval(expr)
 except ZeroDivisionError:
 if self.muffled:
 print 'Division by zero is illegal'
 else:
 raise

■Note If division by zero occurs and muffling is turned on, the calc method will (implicitly) return None. In
other words, if you turn on muffling, you should not rely on the return value.

C H A P T E R 8 ■ E X C E P T I O N S 165

The following is an example of how this class may be used, both with and without
muffling:

>>> calculator = MuffledCalculator()
>>> calculator.calc('10/2')
5
>>> calculator.calc('10/0') # No muffling
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "MuffledCalculator.py", line 6, in calc
 return eval(expr)
 File "<string>", line 0, in ?
ZeroDivisionError: integer division or modulo by zero
>>> calculator.muffled = True
>>> calculator.calc('10/0')
Division by zero is illegal

As you can see, when the calculator is not muffled, the ZeroDivisionError is caught but
passed on.

More Than One except Clause
If you run the program from the previous section again and enter a nonnumeric value at the
prompt, another exception occurs:

Enter the first number: 10
Enter the second number: "Hello, world!"
Traceback (most recent call last):
 File "exceptions.py", line 4, in ?
 print x/y
TypeError: unsupported operand type(s) for /: 'int' and 'str'

Because the except clause looked for only ZeroDivisionError exceptions, this one slipped
through and halted the program. To catch this exception as well, you can simply add another
except clause to the same try/except statement:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except ZeroDivisionError:
 print "The second number can't be zero!"
except TypeError:
 print "That wasn't a number, was it?"

This time using an if statement would be more difficult. How do you check whether a
value can be used in division? There are a number of ways, but by far the best way is, in fact, to
simply divide the values to see if it works.

166 C H A P T E R 8 ■ EX C EP T I O N S

Also notice how the exception handling doesn’t clutter the original code. Adding a lot of
if statements to check for possible error conditions could easily have made the code quite
unreadable.

Catching Two Exceptions with One Block
If you want to catch more than one exception type with one block, you can specify them all in
a tuple, as follows:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')

 print x/y
except (ZeroDivisionError, TypeError, NameError):
 print 'Your numbers were bogus...'

In the preceding code, if the user either enters a string or something other than a number,
or if the second number is zero, the same error message is printed. Simply printing an error
message isn’t very helpful, of course. An alternative could be to keep asking for numbers until
the division works. I show you how to do that in the section “When All Is Well,” later in this
chapter.

Note that the parentheses around the exceptions in the except clause are important. A
common error is to omit these parentheses, in which case you may end up with something
other than what you want. For an explanation, see the next section, “Catching the Object.”

Catching the Object
If you want access to the exception object itself in an except clause, you can use two arguments
instead of one. (Note that even when you are catching multiple exceptions, you are supplying
except with only one argument—a tuple.) This can be useful (for example) if you want your
program to keep running, but you want to log the error somehow (perhaps just printing it out
to the user). The following is a sample program that prints out the exception (if it occurs), but
keeps running:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except (ZeroDivisionError, TypeError), e:
 print e

■Note In Python 3.0, the except clause will be written except (ZeroDivisionError, TypeError) as e.

C H A P T E R 8 ■ E X C E P T I O N S 167

The except clause in this little program again catches two types of exceptions, but because
you also explicitly catch the object itself, you can print it out so the user can see what hap-
pened. (You see a more useful application of this later in this chapter, in the section “When All
Is Well.”)

A Real Catchall
Even if the program handles several types of exceptions, some may still slip through. For exam-
ple, using the same division program, simply try to press Enter at the prompt, without writing
anything. You should get an error message and some information about what went wrong (a
stack trace), somewhat like this:

Traceback (most recent call last):
 File 'exceptions.py', line 3, in ?
 x = input('Enter the first number: ')
 File '<string>', line 0

 ^
SyntaxError: unexpected EOF while parsing

This exception got through the try/except statement—and rightly so. You hadn’t foreseen
that this could happen and weren’t prepared for it. In these cases, it is better that the program
crash immediately (so you can see what’s wrong) than that it simply hide the exception with a
try/except statement that isn’t meant to catch it.

However, if you do want to catch all exceptions in a piece of code, you can simply omit the
exception class from the except clause:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except:
 print 'Something wrong happened...'

Now you can do practically whatever you want:

Enter the first number: "This" is *completely* illegal 123
Something wrong happened...

■Caution Catching all exceptions like this is risky business because it will hide errors you haven’t thought
of as well as those you’re prepared for. It will also trap attempts by the user to terminate execution by Ctrl-C,
attempts by functions you call to terminate by sys.exit, and so on. In most cases, it would be better to use
except Exception, e and perhaps do some checking on the exception object, e.

168 C H A P T E R 8 ■ EX C EP T I O N S

When All Is Well
In some cases, it can be useful to have a block of code that is executed unless something
bad happens; as with conditionals and loops, you can add an else clause to the try/except
statement:

try:
 print 'A simple task'
except:
 print 'What? Something went wrong?'
else:
 print 'Ah... It went as planned.'

If you run this, you get the following output:

A simple task
Ah... It went as planned.

With this else clause, you can implement the loop hinted at in the section “Catching Two
Exceptions with One Block,” earlier in this chapter:

while True:
 try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 value = x/y
 print 'x/y is', value
 except:
 print 'Invalid input. Please try again.'
 else:
 break

Here, the loop is broken (by the break statement in the else clause) only when no excep-
tion is raised. In other words, as long as something wrong happens, the program keeps asking
for new input. The following is an example run:

Enter the first number: 1
Enter the second number: 0
Invalid input. Please try again.
Enter the first number: 'foo'
Enter the second number: 'bar'
Invalid input. Please try again.
Enter the first number: baz
Invalid input. Please try again.
Enter the first number: 10
Enter the second number: 2
x/y is 5

C H A P T E R 8 ■ E X C E P T I O N S 169

As mentioned previously, an alternative to using an empty except clause is to catch all
exceptions of the Exception class (which will catch all exceptions of any subclass as well). You
cannot be 100 percent certain that you’ll catch everything then, because the code in your
try/except statement may be naughty and use the old-fashioned string exceptions, or perhaps
create a custom exception that doesn’t subclass Exception. However, if you go with the except
Exception version, you can use the technique from the section “Catching the Object,” earlier in
this chapter, to print out a more instructive error message in your little division program:

while True:
 try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 value = x/y
 print 'x/y is', value
 except Exception, e:
 print 'Invalid input:', e
 print 'Please try again'
 else:
 break

The following is a sample run:

Enter the first number: 1
Enter the second number: 0
Invalid input: integer division or modulo by zero
Please try again
Enter the first number: 'x'
Enter the second number: 'y'
Invalid input: unsupported operand type(s) for /: 'str' and 'str'
Please try again
Enter the first number: quuux
Invalid input: name 'quuux' is not defined
Please try again
Enter the first number: 10
Enter the second number: 2
x/y is 5

And Finally . . .
Finally, there is the finally clause. You use it to do housekeeping after a possible exception. It
is combined with a try clause:

x = None
try:
 x = 1/0

170 C H A P T E R 8 ■ EX C EP T I O N S

finally:
 print 'Cleaning up...'
 del x

In the preceding example, you are guaranteed that the finally clause will be executed, no
matter what exceptions occur in the try clause. The reason for initializing x before the try
clause is that otherwise it would never be assigned a value because of the ZeroDivisionError.
This would lead to an exception when using del on it within the finally clause, which you
wouldn’t catch.

If you run this, the cleanup comes before the program crashes and burns:

Cleaning up...
Traceback (most recent call last):
 File "C:\python\div.py", line 4, in ?
 x = 1/0
ZeroDivisionError: integer division or modulo by zero

While using del to remove a variable is a rather silly kind of cleanup, the finally clause may
be quite useful for closing files or network sockets and the like. (More on those in Chapter 14.)

You can also combine try, except, finally, and else (or just three of them) in a single
statement:

try:
 1/0
except NameError:
 print "Unknown variable"
else:
 print "That went well!"
finally:
 print "Cleaning up."

■Note In Python versions prior to 2.5, the finally clause had to be used on its own—it couldn’t be used
in the same try statement as an except clause. If you wanted both, you needed to wrap two statements.
From Python 2.5 onwards, you can combine these to your heart’s content, though.

Exceptions and Functions
Exceptions and functions work together quite naturally. If an exception is raised inside a func-
tion, and isn’t handled there, it propagates (bubbles up) to the place where the function was
called. If it isn’t handled there either, it continues propagating until it reaches the main pro-
gram (the global scope), and if there is no exception handler there, the program halts with a
stack trace. Let’s take a look at an example:

>>> def faulty():
... raise Exception('Something is wrong')
...

C H A P T E R 8 ■ E X C E P T I O N S 171

>>> def ignore_exception():
... faulty()
...

>>> def handle_exception():
... try:
... faulty()
... except:
... print 'Exception handled'
...
>>> ignore_exception()
Traceback (most recent call last):
 File '<stdin>', line 1, in ?
 File '<stdin>', line 2, in ignore_exception
 File '<stdin>', line 2, in faulty
Exception: Something is wrong
>>> handle_exception()
Exception handled

As you can see, the exception raised in faulty propagates through faulty and
ignore_exception, and finally causes a stack trace. Similarly, it propagates through to
handle_exception, but there it is handled with a try/except statement.

The Zen of Exceptions
Exception handling isn’t very complicated. If you know that some part of your code may cause
a certain kind of exception, and you don’t simply want your program to terminate with a stack
trace if and when that happens, then you add the necessary try/except or try/finally state-
ments (or some combination thereof) to deal with it, as needed.

Sometimes, you can accomplish the same thing with conditional statements as you can
with exception handling, but the conditional statements will probably end up being less natu-
ral and less readable. On the other hand, some things that might seem like natural applications
of if/else may in fact be implemented much better with try/except. Let’s take a look at a cou-
ple of examples.

Let’s say you have a dictionary and you want to print the value stored under a specific key, if
it is there. If it isn’t there, you don’t want to do anything. The code might be something like this:

def describePerson(person):
 print 'Description of', person['name']
 print 'Age:', person['age']
 if 'occupation' in person:
 print 'Occupation:', person['occupation']

172 C H A P T E R 8 ■ EX C EP T I O N S

If you supply this function with a dictionary containing the name Throatwobbler
Mangrove and the age 42 (but no occupation), you get the following output:

Description of Throatwobbler Mangrove
Age: 42

If you add the occupation “camper,” you get the following output:

Description of Throatwobbler Mangrove
Age: 42
Occupation: camper

The code is intuitive, but a bit inefficient (although the main concern here is really code
simplicity). It has to look up the key 'occupation' twice—once to see whether the key exists (in
the condition) and once to get the value (to print it out). An alternative definition is as follows:

def describePerson(person):
 print 'Description of', person['name']
 print 'Age:', person['age']
 try:
 print 'Occupation: ' + person['occupation']
 except KeyError: pass

■Note I use + instead of a comma for printing the occupation here; otherwise, the string 'Occupation:'
would have been printed before the exception is raised.

Here, the function simply assumes that the key 'occupation' is present. If you assume that
it normally is, this saves some effort. The value will be fetched and printed—no extra fetch to
check whether it is indeed there. If the key doesn’t exist, a KeyError exception is raised, which
is trapped by the except clause.

You may also find try/except useful when checking whether an object has a specific
attribute. Let’s say you want to check whether an object has a write attribute, for example.
Then you could use code like this:

try:
 obj.write
except AttributeError:
 print 'The object is not writeable'
else:
 print 'The object is writeable'

Here the try clause simply accesses the attribute without doing anything useful with it.
If an AttributeError is raised, the object doesn’t have the attribute; otherwise, it has the

C H A P T E R 8 ■ E X C E P T I O N S 173

attribute. This is a natural alternative to the getattr solution introduced in Chapter 7 (in the
section “Interfaces and Introspection”). Which one you prefer is largely a matter of taste.
Indeed, getattr is internally implemented in exactly this way: it tries to access the attribute
and catches the AttributeError that this attempt may raise.

Note that the gain in efficiency here isn’t great. (It’s more like really, really tiny.) In general
(unless your program is having performance problems), you shouldn’t worry about that sort of
optimization too much. The point is that using try/except statements is in many cases much
more natural (more “Pythonic”) than if/else, and you should get into the habit of using them
where you can.1

A Quick Summary
The main topics covered in this chapter are as follows:

Exception objects: Exceptional situations (such as when an error has occurred) are repre-
sented by exception objects. These can be manipulated in several ways, but if ignored,
they terminate your program.

Warnings: Warnings are similar to exceptions, but will (in general) just print out an error
message.

Raising exceptions: You can raise exceptions with the raise statement. It accepts either an
exception class or an exception instance as its argument. You can also supply two argu-
ments (an exception and an error message). If you call raise with no arguments in an
except clause, it “reraises” the exception caught by that clause.

Custom exception classes: You can create your own kinds of exceptions by subclassing
Exception.

Catching exceptions: You catch exceptions with the except clause of a try statement. If
you don’t specify a class in the except clause, all exceptions are caught. You can specify
more than one class by putting them in a tuple. If you give two arguments to except, the
second is bound to the exception object. You can have several except clauses in the same
try/except statement, to react differently to different exceptions.

else clauses: You can use an else clause in addition to except. The else clause is executed
if no exceptions are raised in the main try block.

finally: You can use try/finally if you need to make sure that some code (for example,
cleanup code) is executed, regardless of whether or not an exception is raised. This code is
then put in the finally clause.

Exceptions and functions: When you raise an exception inside a function, it propagates to
the place where the function was called. (The same goes for methods.)

1. The preference for try/except in Python is often explained through Rear Admiral Grace Hopper’s
words of wisdom, “It’s easier to ask forgiveness than permission.” This strategy of simply trying to do
something and dealing with any errors, rather than doing a lot of checking up front, is called the Leap
Before You Look idiom.

174 C H A P T E R 8 ■ EX C EP T I O N S

New Functions in This Chapter

What Now?
While you might think that the material in this chapter was exceptional (pardon the pun), the
next chapter is truly magical. Well, almost magical.

Function Description

warnings.filterwarnings(action, ...) Used to filter out warnings

175

■ ■ ■

C H A P T E R 9

Magic Methods, Properties, and
Iterators

In Python, some names are spelled in a peculiar manner, with two leading and two trailing
underscores. You have already encountered some of these (__future__, for example). This
spelling signals that the name has a special significance—you should never invent such names
for your own programs. One very prominent set of such names in the language consists of the
magic (or special) method names. If your object implements one of these methods, that
method will be called under specific circumstances (exactly which will depend on the name)
by Python. There is rarely any need to call these methods directly.

This chapter deals with a few important magic methods (most notably the __init__
method and some methods dealing with item access, allowing you to create sequences or map-
pings of your own). It also tackles two related topics: properties (dealt with through magic
methods in previous versions of Python, but now handled by the property function), and iter-
ators (which use the magic method __iter__ to enable them to be used in for loops). You’ll
find a meaty example at the end of the chapter, which uses some of the things you have learned
so far to solve a fairly difficult problem.

Before We Begin . . .
A while ago (in version 2.2), the way Python objects work changed quite a bit. This change has
several consequences, most of which won’t be important to you as a beginning Python pro-
grammer.1 One thing is worth noting, though: even if you’re using a recent version of Python,
some features (such as properties and the super function) won’t work on “old-style” classes. To
make your classes “new-style,” you should either put the assignment __metaclass__ = type at
the top of your modules (as mentioned in Chapter 7) or (directly or indirectly) subclass the
built-in class (or, actually, type) object (or some other new-style class). Consider the following
two classes:

class NewStyle(object):
 more_code_here

1. For a thorough description of the differences between old-style and new-style classes, see Chapter 8 in
Alex Martelli’s Python in a Nutshell (O’Reilly & Associates, 2003).

176 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

class OldStyle:
 more_code_here

Of these two, NewStyle is a new-style class; OldStyle is an old-style class. If the file began
with __metaclass__ = type, though, both classes would be new-style.

■Note You can also assign to the __metaclass__ variable in the class scope of your class. That would set
the metaclass of only that class. Metaclasses are the classes of other classes (or types)—a rather advanced
topic. For more information about metaclasses, take a look at the (somewhat technical) article called “Unify-
ing types and classes in Python 2.2” by Guido van Rossum (http://python.org/2.2/descrintro.html),
or do a web search for the term “python metaclasses.”

I do not explicitly set the metaclass (or subclass object) in all the examples in this book.
However, if you do not specifically need to make your programs compatible with old versions
of Python, I advise you to make all your classes new-style, and consistently use features such as
the super function (described in the section “Using the super Function,” later in this chapter).

■Note There are no “old-style” classes in Python 3.0, and no need to explicitly subclass object or set the
metaclass to type. All classes will implicitly be subclasses of object—directly, if you don’t specify a super-
class, or indirectly otherwise.

Constructors
The first magic method we’ll take a look at is the constructor. In case you have never heard the
word constructor before, it’s basically a fancy name for the kind of initializing method I have
already used in some of the examples, under the name init. What separates constructors from
ordinary methods, however, is that the constructors are called automatically right after an
object has been created. Thus, instead of doing what I’ve been doing up until now:

>>> f = FooBar()
>>> f.init()

constructors make it possible to simply do this:

>>> f = FooBar()

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 177

Creating constructors in Python is really easy; simply change the init method’s name
from the plain old init to the magic version, __init__:

class FooBar:
 def __init__(self):
 self.somevar = 42

>>> f = FooBar()
>>> f.somevar
42

Now, that’s pretty nice. But you may wonder what happens if you give the constructor
some parameters to work with. Consider the following:

class FooBar:
 def __init__(self, value=42):
 self.somevar = value

How do you think you could use this? Because the parameter is optional, you certainly
could go on like nothing had happened. But what if you wanted to use it (or you hadn’t made it
optional)? I’m sure you’ve guessed it, but let me show you anyway:

>>> f = FooBar('This is a constructor argument')
>>> f.somevar
'This is a constructor argument'

Of all the magic methods in Python, __init__ is quite certainly the one you’ll be using the
most.

■Note Python has a magic method called __del__, also known as the destructor. It is called just before
the object is destroyed (garbage-collected), but because you cannot really know when (or if) this happens,
I advise you to stay away from __del__ if at all possible.

Overriding Methods in General, and the Constructor in
Particular
In Chapter 7, you learned about inheritance. Each class may have one or more superclasses,
from which they inherit behavior. If a method is called (or an attribute is accessed) on an
instance of class B and it is not found, its superclass A will be searched. Consider the following
two classes:

class A:
 def hello(self):
 print "Hello, I'm A."

178 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

class B(A):
 pass

Class A defines a method called hello, which is inherited by class B. Here is an example of
how these classes work:

>>> a = A()
>>> b = B()
>>> a.hello()
Hello, I'm A.
>>> b.hello()
Hello, I'm A.

Because B does not define a hello method of its own, the original message is printed when
hello is called.

One basic way of adding functionality in the subclass is simply to add methods. However,
you may want to customize the inherited behavior by overriding some of the superclass’s
methods. For example, it is possible for B to override the hello method. Consider this modified
definition of B:

class B(A):
 def hello(self):
 print "Hello, I'm B."

Using this definition, b.hello() will give a different result:

>>> b = B()
>>> b.hello()
Hello, I'm B.

Overriding is an important aspect of the inheritance mechanism in general, and may be
especially important for constructors. Constructors are there to initialize the state of the newly
constructed object, and most subclasses will need to have initialization code of their own, in
addition to that of the superclass. Even though the mechanism for overriding is the same for all
methods, you will most likely encounter one particular problem more often when dealing with
constructors than when overriding ordinary methods: if you override the constructor of a class,
you need to call the constructor of the superclass (the class you inherit from) or risk having an
object that isn’t properly initialized.

Consider the following class, Bird:

class Bird:
 def __init__(self):
 self.hungry = True
 def eat(self):
 if self.hungry:
 print 'Aaaah...'
 self.hungry = False
 else:
 print 'No, thanks!'

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 179

This class defines one of the most basic capabilities of all birds: eating. Here is an example
of how you might use it:

>>> b = Bird()
>>> b.eat()
Aaaah...
>>> b.eat()
No, thanks!

As you can see from this example, once the bird has eaten, it is no longer hungry. Now con-
sider the subclass SongBird, which adds singing to the repertoire of behaviors:

class SongBird(Bird):
 def __init__(self):
 self.sound = 'Squawk!'
 def sing(self):
 print self.sound

The SongBird class is just as easy to use as Bird:

>>> sb = SongBird()
>>> sb.sing()
Squawk!

Because SongBird is a subclass of Bird, it inherits the eat method, but if you try to call it,
you’ll discover a problem:

>>> sb.eat()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "birds.py", line 6, in eat
 if self.hungry:
AttributeError: SongBird instance has no attribute 'hungry'

The exception is quite clear about what’s wrong: the SongBird has no attribute called
hungry. Why should it? In SongBird, the constructor is overridden, and the new constructor
doesn’t contain any initialization code dealing with the hungry attribute. To rectify the situa-
tion, the SongBird constructor must call the constructor of its superclass, Bird, to make sure
that the basic initialization takes place. There are basically two ways of doing this: by calling the
unbound version of the superclass’s constructor or by using the super function. In the next two
sections, I explain both techniques.

Calling the Unbound Superclass Constructor
The approach described in this section is, perhaps, mainly of historical interest. With current
versions of Python, using the super function (as explained in the following section) is clearly
the way to go (and with Python 3.0, it will be even more so). However, much existing code uses
the approach described in this section, so you need to know about it. Also, it can be quite
instructive—it’s a nice example of the difference between bound and unbound methods.

180 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

Now, let’s get down to business. If you find the title of this section a bit intimidating, relax.
Calling the constructor of a superclass is, in fact, very easy (and useful). I’ll start by giving you
the solution to the problem posed at the end of the previous section:

class SongBird(Bird):
 def __init__(self):
 Bird.__init__(self)
 self.sound = 'Squawk!'
 def sing(self):
 print self.sound

Only one line has been added to the SongBird class, containing the code Bird.__init__
(self). Before I explain what this really means, let me just show you that this really works:

>>> sb = SongBird()
>>> sb.sing()
Squawk!
>>> sb.eat()
Aaaah...
>>> sb.eat()
No, thanks!

But why does this work? When you retrieve a method from an instance, the self argument
of the method is automatically bound to the instance (a so-called bound method). You’ve seen
several examples of that. However, if you retrieve the method directly from the class (such as in
Bird.__init__), there is no instance to which to bind. Therefore, you are free to supply any
self you want to. Such a method is called unbound, which explains the title of this section.

By supplying the current instance as the self argument to the unbound method, the song-
bird gets the full treatment from its superclass’s constructor (which means that it has its hungry
attribute set).

Using the super Function
If you’re not stuck with an old version of Python, the super function is really the way to go. It
works only with new-style classes, but you should be using those anyway. It is called with the
current class and instance as its arguments, and any method you call on the returned object
will be fetched from the superclass rather than the current class. So, instead of using Bird in the
SongBird constructor, you can use super(SongBird, self). Also, the __init__ method can be
called in a normal (bound) fashion.

■Note In Python 3.0, super can be called without any arguments, and will do its job as if “by magic.”

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 181

The following is an updated version of the bird example:

__metaclass__ = type # super only works with new-style classes

class Bird:
 def __init__(self):
 self.hungry = True
 def eat(self):
 if self.hungry:
 print 'Aaaah...'
 self.hungry = False
 else:
 print 'No, thanks!'

class SongBird(Bird):
 def __init__(self):
 super(SongBird, self).__init__()
 self.sound = 'Squawk!'
 def sing(self):
 print self.sound

This new-style version works just like the old-style one:

>>> sb = SongBird()
>>> sb.sing()
Squawk!
>>> sb.eat()
Aaaah...
>>> sb.eat()
No, thanks!

WHAT’S SO SUPER ABOUT SUPER?

In my opinion, the super function is more intuitive than calling unbound methods on the superclass directly,
but that is not its only strength. The super function is actually quite smart, so even if you have multiple super-
classes, you only need to use super once (provided that all the superclass constructors also use super). Also,
some obscure situations that are tricky when using old-style classes (for example, when two of your super-
classes share a superclass) are automatically dealt with by new-style classes and super. You don’t need to
understand exactly how it works internally, but you should be aware that, in most cases, it is clearly superior
to calling the unbound constructors (or other methods) of your superclasses.

So, what does super return, really? Normally, you don’t need to worry about it, and you can just pretend
it returns the superclass you need. What it actually does is return a super object, which will take care of
method resolution for you. When you access an attribute on it, it will look through all your superclasses (and
super-superclasses, and so forth until it finds the attribute (or raises an AttributeError).

182 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

Item Access
Although __init__ is by far the most important special method you’ll encounter, many others are
available to enable you to achieve quite a lot of cool things. One useful set of magic methods
described in this section allows you to create objects that behave like sequences or mappings.

The basic sequence and mapping protocol is pretty simple. However, to implement all the
functionality of sequences and mappings, there are many magic methods to implement. Luck-
ily, there are some shortcuts, but I’ll get to that.

■Note The word protocol is often used in Python to describe the rules governing some form of behavior.
This is somewhat similar to the notion of interfaces mentioned in Chapter 7. The protocol says something
about which methods you should implement and what those methods should do. Because polymorphism in
Python is based on only the object’s behavior (and not on its ancestry, for example, its class or superclass,
and so forth), this is an important concept: where other languages might require an object to belong to a cer-
tain class or to implement a certain interface, Python often simply requires it to follow some given protocol.
So, to be a sequence, all you have to do is follow the sequence protocol.

The Basic Sequence and Mapping Protocol
Sequences and mappings are basically collections of items. To implement their basic behavior
(protocol), you need two magic methods if your objects are immutable, or four if they are
mutable:

__len__(self): This method should return the number of items contained in the collec-
tion. For a sequence, this would simply be the number of elements. For a mapping, it
would be the number of key-value pairs. If __len__ returns zero (and you don’t implement
__nonzero__, which overrides this behavior), the object is treated as false in a Boolean con-
text (as with empty lists, tuples, strings, and dictionaries).

__getitem__(self, key): This should return the value corresponding to the given key. For
a sequence, the key should be an integer from zero to n–1 (or, it could be negative, as noted
later), where n is the length of the sequence. For a mapping, you could really have any kind
of keys.

__setitem__(self, key, value): This should store value in a manner associated with key,
so it can later be retrieved with __getitem__. Of course, you define this method only for
mutable objects.

__delitem__(self, key): This is called when someone uses the del statement on a part of
the object, and should delete the element associated with key. Again, only mutable objects
(and not all of them—only those for which you want to let items be removed) should
define this method.

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 183

Some extra requirements are imposed on these methods:

• For a sequence, if the key is a negative integer, it should be used to count from the end.
In other words, treat x[-n] the same as x[len(x)-n].

• If the key is of an inappropriate type (such as a string key used on a sequence), a TypeError
may be raised.

• If the index of a sequence is of the right type, but outside the allowed range, an IndexError
should be raised.

Let’s have a go at it—let’s see if we can create an infinite sequence:

def checkIndex(key):
 """
 Is the given key an acceptable index?

 To be acceptable, the key should be a non-negative integer. If it
 is not an integer, a TypeError is raised; if it is negative, an
 IndexError is raised (since the sequence is of infinite length).
 """
 if not isinstance(key, (int, long)): raise TypeError
 if key<0: raise IndexError

class ArithmeticSequence:
 def __init__(self, start=0, step=1):
 """
 Initialize the arithmetic sequence.

 start - the first value in the sequence
 step - the difference between two adjacent values
 changed - a dictionary of values that have been modified by
 the user
 """
 self.start = start # Store the start value
 self.step = step # Store the step value
 self.changed = {} # No items have been modified

 def __getitem__(self, key):
 """
 Get an item from the arithmetic sequence.
 """
 checkIndex(key)

 try: return self.changed[key] # Modified?
 except KeyError: # otherwise...
 return self.start + key*self.step # ...calculate the value

184 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

 def __setitem__(self, key, value):
 """
 Change an item in the arithmetic sequence.
 """
 checkIndex(key)

 self.changed[key] = value # Store the changed value

This implements an arithmetic sequence—a sequence of numbers in which each is greater
than the previous one by a constant amount. The first value is given by the constructor param-
eter start (defaulting to zero), while the step between the values is given by step (defaulting to
one). You allow the user to change some of the elements by keeping the exceptions to the gen-
eral rule in a dictionary called changed. If the element hasn’t been changed, it is calculated as
self.start + key*self.step.

Here is an example of how you can use this class:

>>> s = ArithmeticSequence(1, 2)
>>> s[4]
9
>>> s[4] = 2
>>> s[4]
2
>>> s[5]
11

Note that I want it to be illegal to delete items, which is why I haven’t implemented
__del__:

>>> del s[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: ArithmeticSequence instance has no attribute '__delitem__'

Also, the class has no __len__ method because it is of infinite length.
If an illegal type of index is used, a TypeError is raised, and if the index is the correct type

but out of range (that is, negative in this case), an IndexError is raised:

>>> s["four"]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "arithseq.py", line 31, in __getitem__
 checkIndex(key)
 File "arithseq.py", line 10, in checkIndex
 if not isinstance(key, int): raise TypeError

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 185

TypeError
>>> s[-42]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "arithseq.py", line 31, in __getitem__
 checkIndex(key)
 File "arithseq.py", line 11, in checkIndex
 if key<0: raise IndexError
IndexError

The index checking is taken care of by a utility function I’ve written for the purpose,
checkIndex.

One thing that might surprise you about the checkIndex function is the use of isinstance
(which you should rarely use because type or class checking goes against the grain of Python’s
polymorphism). I’ve used it because the language reference explicitly states that the index
should be an integer (this includes long integers). And complying with standards is one of the
(very few) valid reasons for using type checking.

■Note You can simulate slicing, too, if you like. When slicing an instance that supports __getitem__,
a slice object is supplied as the key. Slice objects are described in the Python Library Reference (http://
python.org/doc/lib) in Section 2.1, “Built-in Functions,” under the slice function. Python 2.5 also has
the more specialized method called __index__, which allows you to use noninteger limits in your slices. This
is mainly useful only if you wish to go beyond the basic sequence protocol, though.

Subclassing list, dict, and str
While the four methods of the basic sequence/mapping protocol will get you far, the official
language reference also recommends that several other magic and ordinary methods be
implemented (see the section “Emulating container types” in the Python Reference Manual,
http://www.python.org/doc/ref/sequence-types.html), including the __iter__ method,
which I describe in the section “Iterators,” later in this chapter. Implementing all these
methods (to make your objects fully polymorphically equivalent to lists or dictionaries) is a
lot of work and hard to get right. If you want custom behavior in only one of the operations,
it makes no sense that you should need to reimplement all of the others. It’s just programmer
laziness (also called common sense).

So what should you do? The magic word is inheritance. Why reimplement all of these
things when you can inherit them? The standard library comes with three ready-to-use imple-
mentations of the sequence and mapping protocols (UserList, UserString, and UserDict), and
in current versions of Python, you can subclass the built-in types themselves. (Note that this is
mainly useful if your class’s behavior is close to the default. If you need to reimplement most of
the methods, it might be just as easy to write a new class.)

186 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

So, if you want to implement a sequence type that behaves similarly to the built-in lists,
you can simply subclass list.

■Note When you subclass a built-in type such as list, you are indirectly subclassing object. Therefore
your class is automatically new-style, which means that features such as the super function are available.

Let’s just do a quick example—a list with an access counter:

class CounterList(list):
 def __init__(self, *args):
 super(CounterList, self).__init__(*args)
 self.counter = 0
 def __getitem__(self, index):
 self.counter += 1
 return super(CounterList, self).__getitem__(index)

The CounterList class relies heavily on the behavior of its subclass superclass (list). Any
methods not overridden by CounterList (such as append, extend, index, and so on) may be used
directly. In the two methods that are overridden, super is used to call the superclass version of
the method, adding only the necessary behavior of initializing the counter attribute (in
__init__) and updating the counter attribute (in __getitem__).

■Note Overriding __getitem__ is not a bulletproof way of trapping user access because there are other
ways of accessing the list contents, such as through the pop method.

Here is an example of how CounterList may be used:

>>> cl = CounterList(range(10))
>>> cl
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> cl.reverse()
>>> cl
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> del cl[3:6]
>>> cl
[9, 8, 7, 3, 2, 1, 0]
>>> cl.counter
0
>>> cl[4] + cl[2]
9
>>> cl.counter
2

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 187

As you can see, CounterList works just like list in most respects. However, it has a counter
attribute (initially zero), which is incremented each time you access a list element. After per-
forming the addition cl[4] + cl[2], the counter has been incremented twice, to the value 2.

More Magic
Special (magic) names exist for many purposes—what I’ve shown you so far is just a small taste
of what is possible. Most of the magic methods available are meant for fairly advanced use, so
I won’t go into detail here. However, if you are interested, it is possible to emulate numbers,
make objects that can be called as if they were functions, influence how objects are compared,
and much more. For more information about which magic methods are available, see section
“Special method names” in the Python Reference Manual (http://www.python.org/doc/ref/
specialnames.html).

Properties
In Chapter 7, I mentioned accessor methods. Accessors are simply methods with names such
as getHeight and setHeight, and are used to retrieve or rebind some attribute (which may be
private to the class—see the section “Privacy Revisited” in Chapter 7). Encapsulating state vari-
ables (attributes) like this can be important if certain actions must be taken when accessing the
given attribute. For example, consider the following Rectangle class:

class Rectangle:
 def __init__(self):
 self.width = 0
 self.height = 0
 def setSize(self, size):
 self.width, self.height = size
 def getSize(self):
 return self.width, self.height

Here is an example of how you can use the class:

>>> r = Rectangle()
>>> r.width = 10
>>> r.height = 5
>>> r.getSize()
(10, 5)
>>> r.setSize((150, 100))
>>> r.width
150

The getSize and setSize methods are accessors for a fictitious attribute called size—
which is simply the tuple consisting of width and height. (Feel free to replace this with some-
thing more exciting, such as the area of the rectangle or the length of its diagonal.) This code
isn’t directly wrong, but it is flawed. The programmer using this class shouldn’t need to worry
about how it is implemented (encapsulation). If you someday wanted to change the imple-
mentation so that size was a real attribute and width and height were calculated on the fly, you

188 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

would need to wrap them in accessors, and any programs using the class would also have to be
rewritten. The client code (the code using your code) should be able to treat all your attributes
in the same manner.

So what is the solution? Should you wrap all your attributes in accessors? That is a possi-
bility, of course. However, it would be impractical (and kind of silly) if you had a lot of simple
attributes, because you would need to write many accessors that did nothing but retrieve or set
these attributes, with no useful action taken. This smells of copy-paste programming, or cookie-
cutter code, which is clearly a bad thing (although quite common for this specific problem
in certain languages). Luckily, Python can hide your accessors for you, making all of your
attributes look alike. Those attributes that are defined through their accessors are often called
properties.

Python actually has two mechanisms for creating properties in Python. I’ll focus on the
most recent one, the property function, which works only on new-style classes. Then I’ll give
you a short description of how to implement properties with magic methods.

The property Function
Using the property function is delightfully simple. If you have already written a class such as
Rectangle from the previous section, you need to add only a single line of code (in addition to
subclassing object, or using __metaclass__ = type):

__metaclass__ = type

class Rectangle:
 def __init__(self):
 self.width = 0
 self.height = 0
 def setSize(self, size):
 self.width, self.height = size
 def getSize(self):
 return self.width, self.height
 size = property(getSize, setSize)

In this new version of Rectangle, a property is created with the property function with the
accessor functions as arguments (the getter first, then the setter), and the name size is then
bound to this property. After this, you no longer need to worry about how things are imple-
mented, but can treat width, height, and size the same way:

>>> r = Rectangle()
>>> r.width = 10
>>> r.height = 5
>>> r.size
(10, 5)
>>> r.size = 150, 100
>>> r.width
150

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 189

As you can see, the size attribute is still subject to the calculations in getSize and setSize,
but it looks just like a normal attribute.

■Note If your properties are behaving oddly, make sure you’re using a new-style class (by subclassing
object either directly or indirectly—or by setting the metaclass directly). If you aren’t, the getter part of the
property will still work, but the setter may not (depending on your Python version). This can be a bit confusing.

In fact, the property function may be called with zero, one, three, or four arguments as
well. If called without any arguments, the resulting property is neither readable nor writable.
If called with only one argument (a getter method), the property is readable only. The third
(optional) argument is a method used to delete the attribute (it takes no arguments). The
fourth (optional) argument is a docstring. The parameters are called fget, fset, fdel, and
doc—you can use them as keyword arguments if you want a property that, say, is only writ-
able and has a docstring.

Although this section has been short (a testament to the simplicity of the property func-
tion), it is very important. The moral is this: with new-style classes, you should use property
rather than accessors.

Static Methods and Class Methods
Before discussing the old way of implementing properties, let’s take a slight detour, and look at
another couple of features that are implemented in a similar manner to the new-style proper-
ties. Static methods and class methods are created by wrapping methods in objects of the
staticmethod and classmethod types, respectively. Static methods are defined without self
arguments, and they can be called directly on the class itself. Class methods are defined with a

BUT HOW DOES IT WORK?

In case you’re curious about how property does its magic, I’ll give you an explanation here. If you don’t care,
just skip ahead.

The fact is that property isn’t really a function—it’s a class whose instances have some magic methods
that do all the work. The methods in question are __get__, __set__, and __delete__. Together, these three
methods define the so-called descriptor protocol. An object implementing any of these methods is a descriptor.
The special thing about descriptors is how they are accessed. For example, when reading an attribute (specifi-
cally, when accessing it in an instance, but when the attribute is defined in the class), if the attribute is bound to
an object that implements __get__, the object won’t simply be returned; instead, the __get__ method will be
called and the resulting value will be returned. This is, in fact, the mechanism underlying properties, bound meth-
ods, static and class methods (see the following section for more information), and super. A brief description of
the descriptor protocol may be found in the Python Reference Manual (http://python.org/doc/ref/
descriptors.html). A more thorough source of information is Raymond Hettinger’s How-To Guide for
Descriptors (http://users.rcn.com/python/download/Descriptor.htm).

190 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

self-like parameter normally called cls. You can call class methods directly on the class object
too, but the cls parameter then automatically is bound to the class. Here is a simple example:

__metaclass__ = type

class MyClass:

 def smeth():
 print 'This is a static method'
 smeth = staticmethod(smeth)

 def cmeth(cls):
 print 'This is a class method of', cls
 cmeth = classmethod(cmeth)

The technique of wrapping and replacing the methods manually like this is a bit tedious.
In Python 2.4, a new syntax was introduced for wrapping methods like this, called decorators.
(They actually work with any callable objects as wrappers, and can be used on both methods
and functions.) You specify one or more decorators (which are applied in reverse order) by list-
ing them above the method (or function), using the @ operator:

__metaclass__ = type

class MyClass:

 @staticmethod
 def smeth():
 print 'This is a static method'

 @classmethod
 def cmeth(cls):
 print 'This is a class method of', cls

Once you’ve defined these methods, they can be used like this (that is, without instantiat-
ing the class):

>>> MyClass.smeth()
This is a static method
>>> MyClass.cmeth()
This is a class method of <class '__main__.MyClass'>

Static methods and class methods haven’t historically been important in Python, mainly
because you could always use functions or bound methods instead, in some way, but also because
the support hasn’t really been there in earlier versions. So even though you may not see them used

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 191

much in current code, they do have their uses (such as factory functions, if you’ve heard of those),
and you may well think of some new ones.

__getattr__, __setattr__, and Friends
It’s possible to intercept every attribute access on an object. Among other things, you could use
this to implement properties with old-style classes (where property won’t necessarily work as
it should). To have code executed when an attribute is accessed, you must use a couple of
magic methods. The following four provide all the functionality you need (in old-style classes,
you only use the last three):

__getattribute__(self, name): Automatically called when the attribute name is accessed.
(This works correctly on new-style classes only.)

__getattr__(self, name): Automatically called when the attribute name is accessed and
the object has no such attribute.

__setattr__(self, name, value): Automatically called when an attempt is made to bind
the attribute name to value.

__delattr__(self, name): Automatically called when an attempt is made to delete the
attribute name.

Although a bit trickier to use (and in some ways less efficient) than property, these magic
methods are quite powerful, because you can write code in one of these methods that deals
with several properties. (If you have a choice, though, stick with property.)

Here is the Rectangle example again, this time with magic methods:

class Rectangle:
 def __init__(self):
 self.width = 0
 self.height = 0
 def __setattr__(self, name, value):
 if name == 'size':
 self.width, self.height = value
 else:
 self.__dict__[name] = value
 def __getattr__(self, name):
 if name == 'size':
 return self.width, self.height
 else:
 raise AttributeError

192 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

As you can see, this version of the class needs to take care of additional administrative
details. When considering this code example, it’s important to note the following:

• The __setattr__ method is called even if the attribute in question is not size. Therefore,
the method must take both cases into consideration: if the attribute is size, the same
operation is performed as before; otherwise, the magic attribute __dict__ is used. It con-
tains a dictionary with all the instance attributes. It is used instead of ordinary attribute
assignment to avoid having __setattr__ called again (which would cause the program to
loop endlessly).

• The __getattr__ method is called only if a normal attribute is not found, which means
that if the given name is not size, the attribute does not exist, and the method raises an
AttributeError. This is important if you want the class to work correctly with built-in
functions such as hasattr and getattr. If the name is size, the expression found in the
previous implementation is used.

■Note Just as there is an “endless loop” trap associated with __setattr__, there is a trap associated
with __getattribute__. Because it intercepts all attribute accesses (in new-style classes), it will intercept
accesses to __dict__ as well! The only safe way to access attributes on self inside __getattribute__ is
to use the __getattribute__ method of the superclass (using super).

Iterators
I’ve mentioned iterators (and iterables) briefly in preceding chapters. In this section, I go into
some more detail. I cover only one magic method, __iter__, which is the basis of the iterator
protocol.

The Iterator Protocol
To iterate means to repeat something several times—what you do with loops. Until now I have
iterated over only sequences and dictionaries in for loops, but the truth is that you can iterate
over other objects, too: objects that implement the __iter__ method.

The __iter__ method returns an iterator, which is any object with a method called next,
which is callable without any arguments. When you call the next method, the iterator should
return its “next value.” If the method is called, and the iterator has no more values to return, it
should raise a StopIteration exception.

■Note The iterator protocol is changed a bit in Python 3.0. In the new protocol, iterator objects should have
a method called __next__ rather than next, and a new built-in function called next may be used to access
this method. In other words, next(it) is the equivalent of the pre-3.0 it.next().

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 193

What’s the point? Why not just use a list? Because it may often be overkill. If you have a
function that can compute values one by one, you may need them only one by one—not all at
once, in a list, for example. If the number of values is large, the list may take up too much mem-
ory. But there are other reasons: using iterators is more general, simpler, and more elegant.
Let’s take a look at an example you couldn’t do with a list, simply because the list would need
to be of infinite length!

Our “list” is the sequence of Fibonacci numbers. An iterator for these could be the following:

class Fibs:
 def __init__(self):
 self.a = 0
 self.b = 1
 def next(self):
 self.a, self.b = self.b, self.a+self.b
 return self.a
 def __iter__(self):
 return self

Note that the iterator implements the __iter__ method, which will, in fact, return the iter-
ator itself. In many cases, you would put the __iter__ method in another object, which you
would use in the for loop. That would then return your iterator. It is recommended that itera-
tors implement an __iter__ method of their own in addition (returning self, just as I did here),
so they themselves can be used directly in for loops.

■Note In formal terms, an object that implements the __iter__ method is iterable, and the object imple-
menting next is the iterator.

First, make a Fibs object:

>>> fibs = Fibs()

You can then use it in a for loop—for example, to find the smallest Fibonacci number that
is greater than 1,000:

>>> for f in fibs:
 if f > 1000:
 print f
 break
...
1597

Here, the loop stops because I issue a break inside it; if I didn’t, the for loop would never end.

194 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

■Tip The built-in function iter can be used to get an iterator from an iterable object:

>>> it = iter([1, 2, 3])
>>> it.next()
1
>>> it.next()
2

It can also be used to create an iterable from a function or other callable object (see the Python Library
Reference, http://docs.python.org/lib/, for details).

Making Sequences from Iterators
In addition to iterating over the iterators and iterables (which is what you normally do), you can
convert them to sequences. In most contexts in which you can use a sequence (except in opera-
tions such as indexing or slicing), you can use an iterator (or an iterable object) instead. One
useful example of this is explicitly converting an iterator to a list using the list constructor:

>>> class TestIterator:
 value = 0
 def next(self):
 self.value += 1
 if self.value > 10: raise StopIteration
 return self.value
 def __iter__(self):
 return self
...
>>> ti = TestIterator()
>>> list(ti)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Generators
Generators (also called simple generators for historical reasons) are relatively new to Python,
and are (along with iterators) perhaps one of the most powerful features to come along for
years. However, the generator concept is rather advanced, and it may take a while before it
“clicks” and you see how it works or how it would be useful for you. Rest assured that while
generators can help you write really elegant code, you can certainly write any program you
wish without a trace of generators.

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 195

A generator is a kind of iterator that is defined with normal function syntax. Exactly how
generators work is best shown through example. Let’s first have a look at how you make them
and use them, and then take a peek under the hood.

Making a Generator
Making a generator is simple; it’s just like making a function. I’m sure you are starting to tire of
the good old Fibonacci sequence by now, so let me do something else. I’ll make a function that
flattens nested lists. The argument is a list that may look something like this:

nested = [[1, 2], [3, 4], [5]]

In other words, it’s a list of lists. My function should then give me the numbers in order.
Here’s a solution:

def flatten(nested):
 for sublist in nested:
 for element in sublist:
 yield element

Most of this function is pretty simple. First, it iterates over all the sublists of the supplied
nested list; then it iterates over the elements of each sublist in order. If the last line had been
print element, for example, the function would have been easy to understand, right?

So what’s new here is the yield statement. Any function that contains a yield statement is
called a generator. And it’s not just a matter of naming; it will behave quite differently from
ordinary functions. The difference is that instead of returning one value, as you do with return,
you can yield several values, one at a time. Each time a value is yielded (with yield), the func-
tion freezes; that is, it stops its execution at exactly that point and waits to be reawakened.
When it is, it resumes its execution at the point where it stopped.

I can make use of all the values by iterating over the generator:

>>> nested = [[1, 2], [3, 4], [5]]
>>> for num in flatten(nested):
 print num
...
1
2
3
4
5

or

>>> list(flatten(nested))
[1, 2, 3, 4, 5]

196 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

A Recursive Generator
The generator I designed in the previous section could deal only with lists nested two levels
deep, and to do that it used two for loops. What if you have a set of lists nested arbitrarily
deeply? Perhaps you use them to represent some tree structure, for example. (You can also do
that with specific tree classes, but the strategy is the same.) You need a for loop for each level
of nesting, but because you don’t know how many levels there are, you must change your solu-
tion to be more flexible. It’s time to turn to the magic of recursion:

def flatten(nested):
 try:
 for sublist in nested:
 for element in flatten(sublist):
 yield element
 except TypeError:
 yield nested

When flatten is called, you have two possibilities (as is always the case when dealing
with recursion): the base case and the recursive case. In the base case, the function is told to
flatten a single element (for example, a number), in which case the for loop raises a TypeError
(because you’re trying to iterate over a number), and the generator simply yields the element.

If you are told to flatten a list (or any iterable), however, you need to do some work. You go
through all the sublists (some of which may not really be lists) and call flatten on them. Then
you yield all the elements of the flattened sublists by using another for loop. It may seem
slightly magical, but it works:

>>> list(flatten([[[1],2],3,4,[5,[6,7]],8]))
[1, 2, 3, 4, 5, 6, 7, 8]

LOOPY GENERATORS

In Python 2.4, a relative of list comprehension (see Chapter 5) was introduced: generator comprehension (or
generator expressions). It works in the same way as list comprehension, except that a list isn’t constructed
(and the “body” isn’t looped over immediately). Instead, a generator is returned, allowing you to perform the
computation step by step:

>>> g = ((i+2)**2 for i in range(2,27))
>>> g.next()
16

As you can see, this differs from list comprehension in the use of plain parentheses. In a simple case
such as this, I might as well have used a list comprehension. However, if you wish to “wrap” an iterable object
(possibly yielding a huge number of values), a list comprehension would void the advantages of iteration by
immediately instantiating a list.

A neat bonus is that when using generator comprehension directly inside a pair of existing parentheses,
such as in a function call, you don’t need to add another pair. In other words, you can write pretty code like this:

sum(i**2 for i in range(10))

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 197

There is one problem with this, however. If nested is a string-like object (string, Unicode,
UserString, and so on), it is a sequence and will not raise TypeError, yet you do not want to iter-
ate over it.

■Note There are two main reasons why you shouldn’t iterate over string-like objects in the flatten func-
tion. First, you want to treat string-like objects as atomic values, not as sequences that should be flattened.
Second, iterating over them would actually lead to infinite recursion because the first element of a string is
another string of length one, and the first element of that string is the string itself!

To deal with this, you must add a test at the beginning of the generator. Trying to concat-
enate the object with a string and seeing if a TypeError results is the simplest and fastest way to
check whether an object is string-like.2 Here is the generator with the added test:

def flatten(nested):
 try:
 # Don't iterate over string-like objects:
 try: nested + ''
 except TypeError: pass
 else: raise TypeError
 for sublist in nested:
 for element in flatten(sublist):
 yield element
 except TypeError:
 yield nested

As you can see, if the expression nested + '' raises a TypeError, it is ignored; however, if
the expression does not raise a TypeError, the else clause of the inner try statement raises a
TypeError of its own. This causes the string-like object to be yielded as is (in the outer except
clause). Got it?

Here is an example to demonstrate that this version works with strings as well:

>>> list(flatten(['foo', ['bar', ['baz']]]))
['foo', 'bar', 'baz']

Note that there is no type checking going on here. I don’t test whether nested is a string
(which I could do by using isinstance), only whether it behaves like one (that is, it can be con-
catenated with a string).

Generators in General
If you followed the examples so far, you know how to use generators, more or less. You’ve seen
that a generator is a function that contains the keyword yield. When it is called, the code in the
function body is not executed. Instead, an iterator is returned. Each time a value is requested,

2. Thanks to Alex Martelli for pointing out this idiom and the importance of using it here.

198 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

the code in the generator is executed until a yield or a return is encountered. A yield means
that a value should be yielded. A return means that the generator should stop executing (with-
out yielding anything more; return can be called without arguments only when used inside a
generator).

In other words, generators consist of two separate components: the generator-function
and the generator-iterator. The generator-function is what is defined by the def statement con-
taining a yield. The generator-iterator is what this function returns. In less precise terms, these
two entities are often treated as one and collectively called a generator.

>>> def simple_generator():
 yield 1
...
>>> simple_generator
<function simple_generator at 153b44>
>>> simple_generator()
<generator object at 1510b0>

The iterator returned by the generator-function can be used just like any other iterator.

Generator Methods
A relatively new feature of generators (added in Python 2.5) is the ability to supply generators
with values after they have started running. This takes the form of a communications channel
between the generator and the “outside world,” with the following two end points:

• The outside world has access to a method on the generator called send, which works just
like next, except that it takes a single argument (the “message” to send—an arbitrary
object).

• Inside the suspended generator, yield may now be used as an expression, rather than a
statement. In other words, when the generator is resumed, yield returns a value—the
value sent from the outside through send. If next was used, yield returns None.

Note that using send (rather than next) makes sense only after the generator has been
suspended (that is, after it has hit the first yield). If you need to give some information to the
generator before that, you can simply use the parameters of the generator-function.

■Tip If you really want to use send on a newly started generator, you can use it with None as its parameter.

Here’s a rather silly example that illustrates the mechanism:

def repeater(value):
 while True:
 new = (yield value)
 if new is not None: value = new

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 199

Here’s an example of its use:

r = repeater(42)
r.next()
42
r.send("Hello, world!")
"Hello, world!"

Note the use of parentheses around the yield expression. While not strictly necessary in
some cases, it is probably better to be safe than sorry, and simply always enclose yield expres-
sions in parentheses if you are using the return value in some way.

Generators also have two other methods (in Python 2.5 and later):

• The throw method (called with an exception type, an optional value and traceback
object) is used to raise an exception inside the generator (at the yield expression).

• The close method (called with no arguments) is used to stop the generator.

The close method (which is also called by the Python garbage collector, when needed) is
also based on exceptions. It raises the GeneratorExit exception at the yield point, so if you want
to have some cleanup code in your generator, you can wrap your yield in a try/finally state-
ment. If you wish, you can also catch the GeneratorExit exception, but then you must reraise it
(possibly after cleaning up a bit), raise another exception, or simply return. Trying to yield a
value from a generator after close has been called on it will result in a RuntimeError.

■Tip For more information about generator methods, and how these actually turn generators into simple
coroutines, see PEP 342 (http://www.python.org/dev/peps/pep-0342/).

Simulating Generators
If you need to use an older version of Python, generators aren’t available. What follows is a
simple recipe for simulating them with normal functions.

Starting with the code for the generator, begin by inserting the following line at the begin-
ning of the function body:

result = []

If the code already uses the name result, you should come up with another. (Using a more
descriptive name may be a good idea anyway.) Then replace all lines of this form:

yield some_expression

with this:

result.append(some_expression)

200 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

Finally, at the end of the function, add this line:

return result

Although this may not work with all generators, it works with most. (For example, it fails
with infinite generators, which of course can’t stuff their values into a list.)

Here is the flatten generator rewritten as a plain function:

def flatten(nested):
 result = []
 try:
 # Don't iterate over string-like objects:
 try: nested + ''
 except TypeError: pass
 else: raise TypeError
 for sublist in nested:
 for element in flatten(sublist):
 result.append(element)
 except TypeError:
 result.append(nested)
 return result

The Eight Queens
Now that you’ve learned about all this magic, it’s time to put it to work. In this section, you see
how to use generators to solve a classic programming problem.

Generators and Backtracking
Generators are ideal for complex recursive algorithms that gradually build a result. Without
generators, these algorithms usually require you to pass a half-built solution around as an extra
parameter so that the recursive calls can build on it. With generators, all the recursive calls
need to do is yield their part. That is what I did with the preceding recursive version of flatten,
and you can use the exact same strategy to traverse graphs and tree structures.

In some applications, however, you don’t get the answer right away; you need to try sev-
eral alternatives, and you need to do that on every level in your recursion. To draw a parallel
from real life, imagine that you have an important meeting to attend. You’re not sure where it
is, but you have two doors in front of you, and the meeting room has to be behind one of them.
You choose the left and step through. There, you face another two doors. You choose the left,
but it turns out to be wrong. So you backtrack, and choose the right door, which also turns out
to be wrong (excuse the pun). So, you backtrack again, to the point where you started, ready to
try the right door there.

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 201

This strategy of backtracking is useful for solving problems that require you to try every
combination until you find a solution. Such problems are solved like this:

Pseudocode
for each possibility at level 1:
 for each possibility at level 2:
 ...
 for each possibility at level n:
 is it viable?

To implement this directly with for loops, you need to know how many levels you’ll
encounter. If that is not possible, you use recursion.

The Problem
This is a much loved computer science puzzle: you have a chessboard and eight queen pieces
to place on it. The only requirement is that none of the queens threatens any of the others; that
is, you must place them so that no two queens can capture each other. How do you do this?
Where should the queens be placed?

This is a typical backtracking problem: you try one position for the first queen (in the first
row), advance to the second, and so on. If you find that you are unable to place a queen, you
backtrack to the previous one and try another position. Finally, you either exhaust all possibil-
ities or find a solution.

GRAPHS AND TREES

If you have never heard of graphs and trees before, you should learn about them as soon as possible, because
they are very important concepts in programming and computer science. To find out more, you should proba-
bly get a book about computer science, discrete mathematics, data structures, or algorithms. For some
concise definitions, you can check out the following web pages:

• http://mathworld.wolfram.com/Graph.html

• http://mathworld.wolfram.com/Tree.html

• http://www.nist.gov/dads/HTML/tree.html

• http://www.nist.gov/dads/HTML/graph.html

A quick web search or some browsing in Wikipedia (http://wikipedia.org) will turn up a lot of
material.

202 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

In the problem as stated, you are provided with information that there will be only eight
queens, but let’s assume that there can be any number of queens. (This is more similar to real-
world backtracking problems.) How do you solve that? If you want to try to solve it yourself, you
should stop reading now, because I’m about to give you the solution.

■Note You can find much more efficient solutions for this problem. If you want more details, a web search
should turn up a wealth of information. A brief history of various solutions may be found at http://
www.cit.gu.edu.au/~sosic/nqueens.html.

State Representation
To represent a possible solution (or part of it), you can simply use a tuple (or a list, for that
matter). Each element of the tuple indicates the position (that is, column) of the queen of the
corresponding row. So if state[0] == 3, you know that the queen in row one is positioned in
column four (we are counting from zero, remember?). When working at one level of recursion
(one specific row), you know only which positions the queens above have, so you may have a
state tuple whose length is less than eight (or whatever the number of queens is).

■Note I could well have used a list instead of a tuple to represent the state. It’s mostly a matter of taste in
this case. In general, if the sequence is small and static, tuples may be a good choice.

Finding Conflicts
Let’s start by doing some simple abstraction. To find a configuration in which there are no con-
flicts (where no queen may capture another), you first must define what a conflict is. And why
not define it as a function while you’re at it?

The conflict function is given the positions of the queens so far (in the form of a state
tuple) and determines if a position for the next queen generates any new conflicts:

def conflict(state, nextX):
 nextY = len(state)
 for i in range(nextY):
 if abs(state[i]-nextX) in (0, nextY-i):
 return True
 return False

The nextX parameter is the suggested horizontal position (x coordinate, or column) of the
next queen, and nextY is the vertical position (y coordinate, or row) of the next queen. This func-
tion does a simple check for each of the previous queens. If the next queen has the same x
coordinate, or is on the same diagonal as (nextX, nextY), a conflict has occurred, and True is
returned. If no such conflicts arise, False is returned. The tricky part is the following expression:

abs(state[i]-nextX) in (0, nextY-i)

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 203

It is true if the horizontal distance between the next queen and the previous one under
consideration is either zero (same column) or equal to the vertical distance (on a diagonal).
Otherwise, it is false.

The Base Case
The Eight Queens problem can be a bit tricky to implement, but with generators it isn’t so bad.
If you aren’t used to recursion, I wouldn’t expect you to come up with this solution by yourself,
though. Note also that this solution isn’t particularly efficient, so with a very large number of
queens, it might be a bit slow.

Let’s begin with the base case: the last queen. What would you want her to do? Let’s say
you want to find all possible solutions. In that case, you would expect her to produce (generate)
all the positions she could occupy (possibly none) given the positions of the others. You can
sketch this out directly:

def queens(num, state):
 if len(state) == num-1:
 for pos in range(num):
 if not conflict(state, pos):
 yield pos

In human-speak, this means, “If all queens but one have been placed, go through all pos-
sible positions for the last one, and return the positions that don’t give rise to any conflicts.”
The num parameter is the number of queens in total, and the state parameter is the tuple of
positions for the previous queens. For example, let’s say you have four queens, and that the
first three have been given the positions 1, 3, and 0, respectively, as shown in Figure 9-1. (Pay
no attention to the white queen at this point.)

Figure 9-1. Placing four queens on a 4 4 board

204 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

As you can see in the figure, each queen gets a (horizontal) row, and the queens’ positions
are numbered across the top (beginning with zero, as is normal in Python):

>>> list(queens(4, (1,3,0)))
[2]

It works like a charm. Using list simply forces the generator to yield all of its values. In this
case, only one position qualifies. The white queen has been put in this position in Figure 9-1.
(Note that color has no special significance and is not part of the program.)

The Recursive Case
Now let’s turn to the recursive part of the solution. When you have your base case covered, the
recursive case may correctly assume (by induction) that all results from lower levels (the queens
with higher numbers) are correct. So what you need to do is add an else clause to the if state-
ment in the previous implementation of the queens function.

What results do you expect from the recursive call? You want the positions of all the lower
queens, right? Let’s say they are returned as a tuple. In that case, you probably need to change
your base case to return a tuple as well (of length one)—but I get to that later.

So, you’re supplied with one tuple of positions from “above,” and for each legal position of
the current queen, you are supplied with a tuple of positions from “below.” All you need to do to
keep things flowing is to yield the result from below with your own position added to the front:

 ...
 else:
 for pos in range(num):
 if not conflict(state, pos):
 for result in queens(num, state + (pos,)):
 yield (pos,) + result

The for pos and if not conflict parts of this are identical to what you had before, so you
can rewrite this a bit to simplify the code. Let’s add some default arguments as well:

def queens(num=8, state=()):
 for pos in range(num):
 if not conflict(state, pos):
 if len(state) == num-1:
 yield (pos,)
 else:
 for result in queens(num, state + (pos,)):
 yield (pos,) + result

If you find the code hard to understand, you might find it helpful to formulate what it does
in your own words. (And you do remember that the comma in (pos,) is necessary to make it a
tuple, and not simply a parenthesized value, right?)

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 205

The queens generator gives you all the solutions (that is, all the legal ways of placing the
queens):

>>> list(queens(3))
[]
>>> list(queens(4))
[(1, 3, 0, 2), (2, 0, 3, 1)]
>>> for solution in queens(8):
... print solution
...
(0, 4, 7, 5, 2, 6, 1, 3)
(0, 5, 7, 2, 6, 3, 1, 4)
...
(7, 2, 0, 5, 1, 4, 6, 3)
(7, 3, 0, 2, 5, 1, 6, 4)
>>>

If you run queens with eight queens, you see a lot of solutions flashing by. Let’s find out
how many:

>>> len(list(queens(8)))
92

Wrapping It Up
Before leaving the queens, let’s make the output a bit more understandable. Clear output is
always a good thing because it makes it easier to spot bugs, among other things.

def prettyprint(solution):
 def line(pos, length=len(solution)):
 return '. ' * (pos) + 'X ' + '. ' * (length-pos-1)
 for pos in solution:
 print line(pos)

Note that I’ve made a little helper function inside prettyprint. I put it there because I
assumed I wouldn’t need it anywhere outside. In the following, I print out a random solution
to satisfy myself that it is correct:

>>> import random
>>> prettyprint(random.choice(list(queens(8))))
. X . .
. X
. X .
X
. . . X
. X
. . . . X . . .
. . X

206 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , AN D I T E R AT O R S

This “drawing” corresponds to the diagram in Figure 9-2. Fun to play with Python, isn’t it?

Figure 9-2. One of many possible solutions to the Eight Queens problem

A Quick Summary
You’ve seen a lot of magic here. Let’s take stock:

New-style vs. old-style classes: The way classes work in Python is changing. Recent (pre-
3.0) versions of Python have two sorts of classes, with the old-style ones quickly going out
of fashion. The new-style classes were introduced in version 2.2, and they provide several
extra features (for example, they work with super and property, while old-style classes do
not). To create a new-style class, you must subclass object, either directly or indirectly, or
set the __metaclass__ property.

Magic methods: Several special methods (with names beginning and ending with double
underscores) exist in Python. These methods differ quite a bit in function, but most of
them are called automatically by Python under certain circumstances. (For example,
__init__ is called after object creation.)

Constructors: These are common to many object-oriented languages, and you’ll probably
implement one for almost every class you write. Constructors are named __init__ and are
automatically called immediately after an object is created.

Overriding: A class can override methods (or any other attributes) defined in its super-
classes simply by implementing the methods. If the new method needs to call the
overridden version, it can either call the unbound version from the superclass directly
(old-style classes) or use the super function (new-style classes).

Sequences and mappings: Creating a sequence or mapping of your own requires imple-
menting all the methods of the sequence and mapping protocols, including such magic

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 207

methods as __getitem__ and __setitem__. By subclassing list (or UserList) and dict (or
UserDict), you can save a lot of work.

Iterators: An iterator is simply an object that has a next method. Iterators can be used to
iterate over a set of values. When there are no more values, the next method should raise a
StopIteration exception. Iterable objects have an __iter__ method, which returns an iter-
ator, and can be used in for loops, just like sequences. Often, an iterator is also iterable;
that is, it has an __iter__ method that returns the iterator itself.

Generators: A generator-function (or method) is a function (or method) that contains the
keyword yield. When called, the generator-function returns a generator, which is a special
type of iterator. You can interact with an active generator from the outside by using the
methods send, throw, and close.

Eight Queens: The Eight Queens problem is well known in computer science and lends
itself easily to implementation with generators. The goal is to position eight queens on a
chessboard so that none of the queens is in a position from which she can attack any of the
others.

New Functions in This Chapter

Note that iter and super may be called with other parameters than those described here.
For more information, see the standard Python documentation (http://python.org/doc).

What Now?
Now you know most of the Python language. So why are there still so many chapters left? Well,
there is still a lot to learn, much of it about how Python can connect to the external world in var-
ious ways. And then we have testing, extending, packaging, and the projects, so we’re not done
yet—not by far.

Function Description

iter(obj) Extracts an iterator from an iterable object

property(fget, fset, fdel, doc) Returns a property; all arguments are optional

super(class, obj) Returns a bound instance of class’s superclass

209

■ ■ ■

C H A P T E R 1 0

Batteries Included

You now know most of the basic Python language. While the core language is powerful in
itself, Python gives you more tools to play with. A standard installation includes a set of mod-
ules called the standard library. You have already seen some of them (math and cmath, which
contain mathematical functions for real and complex numbers, for example), but there are
many more. This chapter shows you a bit about how modules work, and how to explore them
and learn what they have to offer. Then the chapter offers an overview of the standard library,
focusing on a few selected useful modules.

Modules
You already know about making your own programs (or scripts) and executing them. You have
also seen how you can fetch functions into your programs from external modules using import:

>>> import math
>>> math.sin(0)
0.0

Let’s take a look at how you can write your own modules.

Modules Are Programs
Any Python program can be imported as a module. Let’s say you have written the program in
Listing 10-1 and stored it in a file called hello.py (the name is important).

Listing 10-1. A Simple Module

hello.py
print "Hello, world!"

Where you save it is also important; in the next section you learn more about that, but for
now let’s say you save it in the directory C:\python (Windows) or ~/python (UNIX/Mac OS X).

210 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Then you can tell your interpreter where to look for the module by executing the following
(using the Windows directory):

>>> import sys
>>> sys.path.append('c:/python')

■Tip In UNIX, you cannot simply append the string '~/python' to sys.path. You must use the full path
(such as '/home/yourusername/python') or, if you want to automate it, use sys.path.expanduser('~/
python').

This simply tells the interpreter that it should look for modules in the directory c:\python
in addition to the places it would normally look. After having done this, you can import your
module (which is stored in the file c:\python\hello.py, remember?):

>>> import hello
Hello, world!

■Note When you import a module, you may notice that a new file appears—in this case c:\python\
hello.pyc. The file with the .pyc extension is a (platform-independent) processed (“compiled”) Python file
that has been translated to a format that Python can handle more efficiently. If you import the same module
later, Python will import the .pyc file rather than the .py file, unless the .py file has changed; in that case, a
new .pyc file is generated. Deleting the .pyc file does no harm (as long as there is an equivalent .py file
available)—a new one is created when needed.

As you can see, the code in the module is executed when you import it. However, if you try
to import it again, nothing happens:

>>> import hello
>>>

Why doesn’t it work this time? Because modules aren’t really meant to do things (such as
printing text) when they’re imported. They are mostly meant to define things, such as variables,
functions, classes, and so on. And because you need to define things only once, importing a
module several times has the same effect as importing it once.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 211

Modules Are Used to Define Things
So modules are executed the first time they are imported into your program. That seems sort of
useful, but not very. What makes them worthwhile is that they (just like classes) keep their
scope around afterward. That means that any classes or functions you define, and any vari-
ables you assign a value to, become attributes of the module. This may seem complicated, but
in practice it is very simple.

WHY ONLY ONCE?

The import-only-once behavior is a substantial optimization in most cases, and it can be very important in one
special case: if two modules import each other.

In many cases, you may write two modules that need to access functions and classes from each other to
function properly. For example, you may have created two modules—clientdb and billing—containing
code for a client database and a billing system, respectively. Your client database may contain calls to your
billing system (for example, automatically sending a bill to a client every month), while the billing system prob-
ably needs to access functionality from your client database to do the billing correctly.

If each module could be imported several times, you would end up with a problem here. The module
clientdb would import billing, which again imports clientdb, which . . . you get the picture. You get an
endless loop of imports (endless recursion, remember?). However, because nothing happens the second time
you import the module, the loop is broken.

If you insist on reloading your module, you can use the built-in function reload. It takes a single argu-
ment (the module you want to reload) and returns the reloaded module. This may be useful if you have made
changes to your module and want those changes reflected in your program while it is running. To reload the
simple hello module (containing only a print statement), I would use the following:

>>> hello = reload(hello)
Hello, world!

Here, I assume that hello has already been imported (once). By assigning the result of reload to
hello, I have replaced the previous version with the reloaded one. As you can see from the printed greeting,
I am really importing the module here.

If you’ve created an object x by instantiating the class Foo from the module bar, and you then reload
bar, the object x refers to will not be re-created in any way. x will still be an instance of the old version of Foo
(from the old version of bar). If, instead, you want x to be based on the new Foo from the reloaded module,
you will need to create it anew.

Note that the reload function has disappeared in Python 3.0. While you can achieve similar functionality
using exec, the best thing in most cases is simply to stay away from module reloading.

212 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Defining a Function in a Module

Let’s say you have written a module like the one in Listing 10-2 and stored it in a file called
hello2.py. Also assume that you’ve put it in a place where the Python interpreter can find it,
either using the sys.path trick from the previous section or the more conventional methods
from the section “Making Your Modules Available,” which follows.

■Tip If you make a program (which is meant to be executed, and not really used as a module) available in
the same manner as other modules, you can actually execute it using the -m switch to the Python interpreter.
Running the command python -m progname args will run the program progname with the command-line
arguments args, provided that the file progname.py (note the suffix) is installed along with your other mod-
ules (that is, provided you have imported progname).

Listing 10-2. A Simple Module Containing a Function

hello2.py
def hello():
 print "Hello, world!"

You can then import it like this:

>>> import hello2

The module is then executed, which means that the function hello is defined in the scope
of the module, so you can access the function like this:

>>> hello2.hello()
Hello, world!

Any name defined in the global scope of the module will be available in the same manner.
Why would you want to do this? Why not just define everything in your main program?

The primary reason is code reuse. If you put your code in a module, you can use it in more than
one of your programs, which means that if you write a good client database and put it in a mod-
ule called clientdb, you can use it when billing, when sending out spam (though I hope you
won’t), and in any program that needs access to your client data. If you hadn’t put this in a
separate module, you would need to rewrite the code in each one of these programs. So,
remember: to make your code reusable, make it modular! (And, yes, this is definitely related to
abstraction.)

Adding Test Code in a Module

Modules are used to define things such as functions and classes, but every once in a while
(quite often, actually), it is useful to add some test code that checks whether things work as they

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 213

should. For example, if you wanted to make sure that the hello function worked, you might
rewrite the module hello2 into a new one, hello3, defined in Listing 10-3.

Listing 10-3. A Simple Module with Some Problematic Test Code

hello3.py
def hello():
 print "Hello, world!"

A test:
hello()

This seems reasonable—if you run this as a normal program, you will see that it works.
However, if you import it as a module, to use the hello function in another program, the test
code is executed, as in the first hello module in this chapter:

>>> import hello3
Hello, world!
>>> hello3.hello()
Hello, world!

This is not what you want. The key to avoiding it is “telling” the module whether it’s being
run as a program on its own or being imported into another program. To do that, you need the
variable __name__:

>>> __name__
'__main__'
>>> hello3.__name__
'hello3'

As you can see, in the “main program” (including the interactive prompt of the inter-
preter), the variable __name__ has the value '__main__'. In an imported module, it is set to the
name of that module. Therefore, you can make your module’s test code more well behaved by
putting in an if statement, as shown in Listing 10-4.

Listing 10-4. A Module with Conditional Test Code

hello4.py

def hello():
 print "Hello, world!"

def test():
 hello()

if __name__ == '__main__': test()

214 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

If you run this as a program, the hello function is executed; if you import it, it behaves like
a normal module:

>>> import hello4
>>> hello4.hello()
Hello, world!

As you can see, I’ve wrapped up the test code in a function called test. I could have put the
code directly into the if statement; however, by putting it in a separate test function, you can
test the module even if you have imported it into another program:

>>> hello4.test()
Hello, world!

■Note If you write more thorough test code, it might be a good idea to put it in a separate program. See
Chapter 16 for more on writing tests.

Making Your Modules Available
In the previous examples, I have altered sys.path, which contains a list of directories (as strings)
in which the interpreter should look for modules. However, you don’t want to do this in general.
The ideal case would be for sys.path to contain the correct directory (the one containing your
module) to begin with. There are two ways of doing this: put your module in the right place or tell
the interpreter where to look. The following sections discuss these two solutions.

Putting Your Module in the Right Place

Putting your module in the right place (or, rather a right place, because there may be several
possibilities) is quite easy. It’s just a matter of finding out where the Python interpreter looks
for modules and then putting your file there.

■Note If the Python interpreter on the machine you’re working on has been installed by an administrator
and you do not have administrator permissions, you may not be able to save your module in any of the direc-
tories used by Python. You will then need to use the alternative solution: tell the interpreter where to look.

As you may remember, the list of directories (the so-called search path) can be found in
the path variable in the sys module:

>>> import sys, pprint
>>> pprint.pprint(sys.path)

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 215

['C:\\Python25\\Lib\\idlelib',
 'C:\\WINDOWS\\system32\\python25.zip',
 'C:\\Python25',
 'C:\\Python25\\DLLs',
 'C:\\Python25\\lib',
 'C:\\Python25\\lib\\plat-win',
 'C:\\Python25\\lib\\lib-tk',
 'C:\\Python25\\lib\\site-packages']

■Tip If you have a data structure that is too big to fit on one line, you can use the pprint function from the
pprint module instead of the normal print statement. pprint is a pretty-printing function, which makes a
more intelligent printout.

This is a relatively standard path for a Python 2.5 installation on Windows. You may not get
the exact same result. The point is that each of these strings provides a place to put modules if
you want your interpreter to find them. Even though all these will work, the site-packages
directory is the best choice because it’s meant for this sort of thing. Look through your sys.path
and find your site-packages directory, and save the module from Listing 10-4 in it, but give it
another name, such as another_hello.py. Then try the following:

>>> import another_hello
>>> another_hello.hello()
Hello, world!

As long as your module is located in a place like site-packages, all your programs will be
able to import it.

Telling the Interpreter Where to Look

Putting your module in the correct place might not be the right solution for you for a number
of reasons:

• You don’t want to clutter the Python interpreter’s directories with your own modules.

• You don’t have permission to save files in the Python interpreter’s directories.

• You would like to keep your modules somewhere else.

The bottom line is that if you place your modules somewhere else, you must tell the inter-
preter where to look. As you saw earlier, one way of doing this is to edit sys.path, but that is not
a common way to do it. The standard method is to include your module directory (or directo-
ries) in the environment variable PYTHONPATH.

Depending on which operating system you are using, the contents of PYTHONPATH varies
(see the sidebar “Environment Variables”), but basically it’s just like sys.path—a list of
directories.

216 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

■Tip You don’t need to change the sys.path by using PYTHONPATH. Path configuration files provide a use-
ful shortcut to make Python do it for you. A path configuration file is a file with the file name extension .pth
and contains directories that should be added to sys.path. Empty lines and lines beginning with # are
ignored. Files beginning with import are executed. For a path configuration file to be executed, it must be
placed in a directory where it can be found. For Windows, use the directory named by sys.prefix (probably
something like C:\Python22); in UNIX and Mac OS X, use the site-packages directory. (For more informa-
tion, look up the site module in the Python Library Reference. This module is automatically imported during
initialization of the Python interpreter.)

ENVIRONMENT VARIABLES

Environment variables are not part of the Python interpreter—they’re part of your operating system. Basically,
they are like Python variables, but they are set outside the Python interpreter. To find out how to set them, you
should consult your system documentation, but here are a few pointers.

In UNIX and Mac OS X, you will probably set environment variables in some shell file that is executed
every time you log in. If you use a shell such as bash, the file is .bashrc, found in your home directory. Add
the following to that file to add the directory ~/python to your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:~/python

Note that multiple directories are separated by colons. Other shells may have a different syntax for this,
so you should consult the relevant documentation.

In Windows, you may be able to edit environment variables from your Control Panel (in reasonably
advanced versions of Windows, such as Windows XP, 2000, NT, and Vista; on older versions such as Windows
98, this does not work, and you must edit your autoexec.bat file instead, as covered in the next paragraph).
From the Start menu, select Start ➤ Settings ➤ Control Panel. In the Control Panel, double-click the System
icon. In the dialog box that opens, select the Advanced tab and click the Environment Variables button. That
brings up another dialog box with two tables: one with your user variables and one with system variables. You
are interested in the user variables. If you see PYTHONPATH there already, select it, click Edit, and edit it. Oth-
erwise, click New and use PYTHONPATH as the name; enter your directory as the value. Note that multiple
directories are separated by semicolons.

If the previous tactic doesn’t work, you can edit the file autoexec.bat, which you can find (assuming
that you have a relatively standard setup) in the top directory of the C drive. Open the file in Notepad (or the
IDLE text editor, for that matter) and add a line setting the PYTHONPATH. If you want to add the directory
C:\python, type the following:

set PYTHONPATH=%PYTHONPATH%;C:\python

Note that the IDE you’re using might have its own mechanisms for setting environment variables and the
Python path.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 217

Naming Your Module

As you may have noticed, the file that contains the code of a module must be given the same
name as the module, with an additional .py file name extension. In Windows, you can use the
file name extension .pyw instead. You learn more about what that file name extension means
in Chapter 12.

Packages
To structure your modules, you can group them into packages. A package is basically just another
type of module. The interesting thing about them is that they can contain other modules. While
a module is stored in a file (with the file name extension .py), a package is a directory. To make
Python treat it as a package, it must contain a file (module) named __init__.py. The contents of
this file will be the contents of the package, if you import it as if it were a plain module. For exam-
ple, if you had a package named constants, and the file constants/__init__.py contains the
statement PI = 3.14, you would be able to do the following:

import constants
print constants.PI

To put modules inside a package, simply put the module files inside the package directory.
For example, if you wanted a package called drawing, which contained one module called

shapes and one called colors, you would need the files and directories (UNIX pathnames)
shown in Table 10-1.

Table 10-1. A Simple Package Layout

In Table 10-1, it is assumed that you have placed the directory ~/python in your
PYTHONPATH. In Windows, simply replace ~/python with c:\python and reverse the direction
of the slashes (to backslashes).

With this setup, the following statements are all legal:

import drawing # (1) Imports the drawing package
import drawing.colors # (2) Imports the colors module
from drawing import shapes # (3) Imports the shapes module

File/Directory Description

~/python/ Directory in PYTHONPATH

~/python/drawing/ Package directory (drawing package)

~/python/drawing/__init__.py Package code (drawing module)

~/python/drawing/colors.py colors module

~/python/drawing/shapes.py shapes module

218 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

After the first statement, the contents of the __init__ module in drawing would be available;
the shapes and colors modules, however, would not be. After the second statement, the colors
module would be available, but only under its full name, drawing.colors. After the third state-
ment, the shapes module would be available, under its short name (that is, simply shapes). Note
that these statements are just examples. There is no need, for example, to import the package
itself before importing one of its modules as I have done here. The second statement could very
well be executed on its own, as could the third. You may nest packages inside each other.

Exploring Modules
Before I describe some of the standard library modules, I’ll show you how to explore modules
on your own. This is a valuable skill because you will encounter many useful modules in your
career as a Python programmer, and I couldn’t possibly cover all of them here. The current
standard library is large enough to warrant books all by itself (and such books have been writ-
ten)—and it’s growing. New modules are added with each release, and often some of the
modules undergo slight changes and improvements. Also, you will most certainly find several
useful modules on the Web, and being able to grok1 them quickly and easily will make your
programming much more enjoyable.

What’s in a Module?
The most direct way of probing a module is to investigate it in the Python interpreter. The first
thing you need to do is to import it, of course. Let’s say you’ve heard rumors about a standard
module called copy:

>>> import copy

No exceptions are raised—so it exists. But what does it do? And what does it contain?

Using dir

To find out what a module contains, you can use the dir function, which lists all the attributes
of an object (and therefore all functions, classes, variables, and so on of a module). If you print
out dir(copy), you get a long list of names. (Go ahead, try it.) Several of these names begin with
an underscore—a hint (by convention) that they aren’t meant to be used outside the module.
So let’s filter them out with a little list comprehension (check the section on list comprehen-
sion in Chapter 5 if you don’t remember how this works):

>>> [n for n in dir(copy) if not n.startswith('_')]
['Error', 'PyStringMap', 'copy', 'deepcopy', 'dispatch_table', 'error', 'name', 't']

The list comprehension is the list consisting of all the names from dir(copy) that don’t
have an underscore as their first letter. This list is much less confusing than the full listing.

1. The term grok is hackerspeak, meaning “to understand fully,” taken from Robert A. Heinlein’s novel
Stranger in a Strange Land (Ace Books, reissue 1995).

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 219

The __all__ Variable

What I did with the little list comprehension in the previous section was to make a guess about
what I was supposed to see in the copy module. However, you can get the correct answer
directly from the module itself. In the full dir(copy) list, you may have noticed the name
__all__. This is a variable containing a list similar to the one I created with list comprehension,
except that this list has been set in the module itself. Let’s see what it contains:

>>> copy.__all__
['Error', 'copy', 'deepcopy']

My guess wasn’t all that bad. I got only a few extra names that weren’t intended for my use.
But where did this __all__ list come from, and why is it really there? The first question is easy
to answer. It was set in the copy module, like this (copied directly from copy.py):

__all__ = ["Error", "copy", "deepcopy"]

So why is it there? It defines the public interface of the module. More specifically, it tells
the interpreter what it means to import all the names from this module. So if you use this:

from copy import *

you get only the four functions listed in the __all__ variable. To import PyStringMap, for exam-
ple, you would need to be explicit, by either importing copy and using copy.PyStringMap, or by
using from copy import PyStringMap.

Setting __all__ like this is actually a useful technique when writing modules, too. Because
you may have a lot of variables, functions, and classes in your module that other programs
might not need or want, it is only polite to filter them out. If you don’t set __all__, the names
exported in a starred import defaults to all global names in the module that don’t begin with an
underscore.

Getting Help with help
Until now, you’ve been using your ingenuity and knowledge of various Python functions and
special attributes to explore the copy module. The interactive interpreter is a very powerful tool
for this sort of exploration because your mastery of the language is the only limit to how deeply
you can probe a module. However, there is one standard function that gives you all the infor-
mation you would normally need. That function is called help. Let’s try it on the copy function:

>>> help(copy.copy)
Help on function copy in module copy:

copy(x)
 Shallow copy operation on arbitrary Python objects.

 See the module's __doc__ string for more info.

>>>

220 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

This tells you that copy takes a single argument x, and that it is a “shallow copy operation.”
But it also mentions the module’s __doc__ string. What’s that? You may remember that I men-
tioned docstrings in Chapter 6. A docstring is simply a string you write at the beginning of a
function to document it. That string may then be referred to by the function attribute __doc__.
As you may understand from the preceding help text, modules may also have docstrings (they
are written at the beginning of the module), as may classes (they are written at the beginning of
the class).

Actually, the preceding help text was extracted from the copy function’s docstring:

>>> print copy.copy.__doc__
Shallow copy operation on arbitrary Python objects.

 See the module's __doc__ string for more info.

The advantage of using help over just examining the docstring directly like this is that you
get more information, such as the function signature (that is, the arguments it takes). Try to call
help(copy) (on the module itself) and see what you get. It prints out a lot of information,
including a thorough discussion of the difference between copy and deepcopy (essentially that
deepcopy(x) makes copies of the values found in x as attributes and so on, while copy(x) just
copies x, binding the attributes of the copy to the same values as those of x).

Documentation
A natural source for information about a module is, of course, its documentation. I’ve post-
poned the discussion of documentation because it’s often much quicker to just examine the
module a bit yourself first. For example, you may wonder, “What were the arguments to range
again?” Instead of searching through a Python book or the standard Python documentation for
a description of range, you can just check it directly:

>>> print range.__doc__
range([start,] stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2,..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

You now have a precise description of the range function, and because you probably had
the Python interpreter running already (wondering about functions like this usually happens
while you are programming), accessing this information took just a couple of seconds.

However, not every module and every function has a good docstring (although it should),
and sometimes you may need a more thorough description of how things work. Most modules
you download from the Web have some associated documentation. In my opinion, some of the
most useful documentation for learning to program in Python is the Python Library Reference,
which describes all of the modules in the standard library. If I want to look up some fact about
Python, nine times out of ten, I find it there. The library reference is available for online brows-
ing (at http://python.org/doc/lib) or for download, as are several other standard documents

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 221

(such as the Python Tutorial and the Python Language Reference). All of the documentation is
available from the Python web site at http://python.org/doc.

Use the Source
The exploration techniques I’ve discussed so far will probably be enough for most cases. But
those of you who wish to truly understand the Python language may want to know things about
a module that can’t be answered without actually reading the source code. Reading source
code is, in fact, one of the best ways to learn Python—besides coding yourself.

Doing the actual reading shouldn’t be much of a problem, but where is the source? Let’s
say you wanted to read the source code for the standard module copy. Where would you find it?
One solution would be to examine sys.path again and actually look for it yourself, just like the
interpreter does. A faster way is to examine the module’s __file__ property:

>>> print copy.__file__
C:\Python24\lib\copy.py

■Note If the file name ends with .pyc, just use the corresponding file whose name ends with .py.

There it is! You can open the copy.py file in your code editor (for example, IDLE) and start
examining how it works.

■Caution When opening a standard library file in a text editor, you run the risk of accidentally modifying
it. Doing so might break it, so when you close the file, make sure that you don’t save any changes you might
have made.

Note that some modules don’t have any Python source you can read. They may be built
into the interpreter (such as the sys module) or they may be written in the C programming
language.2 (See Chapter 17 for more information on extending Python using C.)

The Standard Library: A Few Favorites
Chances are that you’re beginning to wonder what the title of this chapter means. The phrase
“batteries included” with reference to Python was originally coined by Frank Stajano and
refers to Python’s copious standard library. When you install Python, you get a lot of useful
modules (the “batteries”) for “free.” Because there are so many ways of getting more infor-
mation about these modules (as explained in the first part of this chapter), I won’t include a
full reference here (which would take up far too much space anyway); instead, I’ll describe

2. If the module was written in C, the C source code should be available.

222 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

a few of my favorite standard modules to whet your appetite for exploration. You’ll encoun-
ter more standard modules in the project chapters (Chapters 20 through 29). The module
descriptions are not complete but highlight some of the interesting features of each module.

sys
The sys module gives you access to variables and functions that are closely linked to the
Python interpreter. Some of these are shown in Table 10-2.

Table 10-2. Some Important Functions and Variables in the sys Module

The variable sys.argv contains the arguments passed to the Python interpreter, including
the script name.

The function sys.exit exits the current program. (If called within a try/finally block, dis-
cussed in Chapter 8, the finally clause is still executed.) You can supply an integer to indicate
whether the program succeeded—a UNIX convention. You’ll probably be fine in most cases if
you rely on the default (which is zero, indicating success). Alternatively, you can supply a
string, which is used as an error message and can be very useful for a user trying to figure out
why the program halted; then, the program exits with that error message and a code indicating
failure.

The mapping sys.modules maps module names to actual modules. It applies to only cur-
rently imported modules.

The module variable sys.path was discussed earlier in this chapter. It’s a list of strings, in
which each string is the name of a directory where the interpreter will look for modules when
an import statement is executed.

The module variable sys.platform (a string) is simply the name of the “platform” on which
the interpreter is running. This may be a name indicating an operating system (such as sunos5
or win32), or it may indicate some other kind of platform, such as a Java Virtual Machine (for
example, java1.4.0) if you’re running Jython.

The module variables sys.stdin, sys.stdout, and sys.stderr are file-like stream objects.
They represent the standard UNIX concepts of standard input, standard output, and standard
error. To put it simply, sys.stdin is where Python gets its input (used in the functions input

Function/Variable Description

argv The command-line arguments, including the script name

exit([arg]) Exits the current program, optionally with a given return value or error
message

modules A dictionary mapping module names to loaded modules

path A list of directory names where modules can be found

platform A platform identifier such as sunos5 or win32

stdin Standard input stream—a file-like object

stdout Standard output stream—a file-like object

stderr Standard error stream—a file-like object

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 223

and raw_input, for example), and sys.stdout is where it prints. You learn more about files (and
these three streams) in Chapter 11.

As an example, consider the problem of using printing arguments in reverse order. When you
call a Python script from the command line, you may add some arguments after it—the so-called
command-line arguments. These will then be placed in the list sys.argv, with the name of the
Python script as sys.argv[0]. Printing these out in reverse order is pretty simple, as you can see in
Listing 10-5.

Listing 10-5. Reversing and Printing Command-Line Arguments

reverseargs.py
import sys
args = sys.argv[1:]
args.reverse()
print ' '.join(args)

As you can see, I make a copy of sys.argv. You can modify the original, but in general, it’s
safer not to because other parts of the program may also rely on sys.argv containing the original
arguments. Notice also that I skip the first element of sys.argv—the name of the script. I reverse
the list with args.reverse(), but I can’t print the result of that operation. It is an in-place modifi-
cation that returns None. An alternative approach would be the following:

print ' '.join(reversed(sys.argv[1:]))

Finally, to make the output prettier, I use the join string method. Let’s try the result
(assuming a UNIX shell here, but it will work equally well at an MS-DOS prompt, for example):

$ python reverseargs.py this is a test
test a is this

os
The os module gives you access to several operating system services. The os module is exten-
sive; only a few of the most useful functions and variables are described in Table 10-3. In
addition to these, os and its submodule os.path contain several functions to examine, con-
struct, and remove directories and files, as well as functions for manipulating paths (for
example, os.path.split and os.path.join let you ignore os.pathsep most of the time). For
more information about this functionality, see the standard library documentation.

Table 10-3. Some Important Functions and Variables in the os Module

Function/Variable Description

environ Mapping with environment variables

system(command) Executes an operating system command in a subshell

sep Separator used in paths

pathsep Separator to separate paths

Continued

224 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Table 10-3. Continued

The mapping os.environ contains environment variables described earlier in this chapter.
For example, to access the environment variable PYTHONPATH, you would use the expression
os.environ['PYTHONPATH']. This mapping can also be used to change environment variables,
although not all platforms support this.

The function os.system is used to run external programs. There are other functions for
executing external programs, including execv, which exits the Python interpreter, yielding con-
trol to the executed program, and popen, which creates a file-like connection to the program.
For more information about these functions, consult the standard library documentation.

■Tip In current versions of Python, the subprocess module is available. It collects the functionality of the
os.system, execv, and popen functions.

The module variable os.sep is a separator used in pathnames. The standard separator in
UNIX (and the Mac OS X command-line version of Python) is /. The standard in Windows is \\
(the Python syntax for a single backslash), and in Mac OS, it is :. (On some platforms, os.altsep
contains an alternate path separator, such as / in Windows.)

You use os.pathsep when grouping several paths, as in PYTHONPATH. The pathsep is used to
separate the pathnames: : in UNIX (and the Mac OS X command-line version of Python), ; in
Windows, and :: in Mac OS.

The module variable os.linesep is the line separator string used in text files. In UNIX (and,
again, the command-line version in Mac OS X), this is a single newline character (\n), in Mac
OS, it’s a single carriage return character (\r); and in Windows, it’s the combination of a car-
riage return and a newline (\r\n).

The urandom function uses a system-dependent source of “real” (or, at least, cryptographi-
cally strong) randomness. If your platform doesn’t support it, you’ll get a NotImplementedError.

As an example, consider the problem of starting a web browser. The system command can
be used to execute any external program, which is very useful in environments such as UNIX
where you can execute programs (or commands) from the command line to list the contents of
a directory, send email, and so on. But it can be useful for starting programs with graphical user
interfaces, too—such as a web browser. In UNIX, you can do the following (provided that you
have a browser at /usr/ bin/firefox):

os.system('/usr/bin/firefox')

Here’s a Windows version (again, use the path of a browser you have installed):

os.system(r'c:\"Program Files"\"Mozilla Firefox"\firefox.exe')

Function/Variable Description

linesep Line separator ('\n', '\r', or '\r\n')

urandom(n) Returns n bytes of cryptographically strong random data

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 225

Note that I’ve been careful about enclosing Program Files and Mozilla Firefox in quotes;
otherwise, DOS (which handles the command) balks at the whitespace. (This may be impor-
tant for directories in your PYTHONPATH as well.) Note also that you must use backslashes here
because DOS gets confused by forward slashes. If you run this, you will notice that the browser
tries to open a web site named Files"\Mozilla...—the part of the command after the white-
space. Also, if you try to run this from IDLE, a DOS window appears, but the browser doesn’t
start until you close that DOS window. All in all, not exactly ideal behavior.

Another function that suits the job better is the Windows-specific function os.startfile:

os.startfile(r'c:\Program Files\Mozilla Firefox\firefox.exe')

As you can see, os.startfile accepts a plain path, even if it contains whitespace (that is,
don’t enclose Program Files in quotes as in the os.system example).

Note that in Windows, your Python program keeps on running after the external program
has been started by os.system (or os.startfile); in UNIX, your Python program waits for the
os.system command to finish.

fileinput
You learn a lot about reading from and writing to files in Chapter 11, but here is a sneak pre-
view. The fileinput module enables you to easily iterate over all the lines in a series of text files.
If you call your script like this (assuming a UNIX command line):

$ python some_script.py file1.txt file2.txt file3.txt

you will be able to iterate over the lines of file1.txt through file3.txt in turn. You can also
iterate over lines supplied to standard input (sys.stdin, remember?), for example, in a UNIX
pipe, using the standard UNIX command cat:

$ cat file.txt | python some_script.py

If you use fileinput, calling your script with cat in a UNIX pipe works just as well as
supplying the file names as command-line arguments to your script. The most important func-
tions of the fileinput module are described in Table 10-4.

A BETTER SOLUTION: WEBBROWSER

The os.system function is useful for a lot of things, but for the specific task of launching a web browser,
there’s an even better solution: the webbrowser module. It contains a function called open, which lets you
automatically launch a web browser to open the given URL. For example, if you want your program to open the
Python web site in a web browser (either starting a new browser or using one that is already running), you sim-
ply use this:

import webbrowser
webbrowser.open('http://www.python.org')

The page should pop up. Pretty nifty, huh?

226 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Table 10-4. Some Important Functions in the fileinput Module

fileinput.input is the most important of the functions. It returns an object that you can
iterate over in a for loop. If you don’t want the default behavior (in which fileinput finds
out which files to iterate over), you can supply one or more file names to this function (as a
sequence). You can also set the inplace parameter to a true value (inplace=True) to enable
in-place processing. For each line you access, you’ll need to print out a replacement, which will
be put back into the current input file. The optional backup argument gives a file name exten-
sion to a backup file created from the original file when you do in-place processing.

The function fileinput.filename returns the file name of the file you are currently in (that
is, the file that contains the line you are currently processing).

The function fileinput.lineno returns the number of the current line. This count is
cumulative so that when you are finished with one file and begin processing the next, the line
number is not reset but starts at one more than the last line number in the previous file.

The function fileinput.filelineno returns the number of the current line within the cur-
rent file. Each time you are finished with one file and begin processing the next, the file line
number is reset, and restarts at 1.

The function fileinput.isfirstline returns a true value if the current line is the first line
of the current file; otherwise, it returns a false value.

The function fileinput.isstdin returns a true value if the current file is sys.stdin; other-
wise, it returns false.

The function fileinput.nextfile closes the current file and skips to the next one. The lines
you skip do not count against the line count. This can be useful if you know that you are finished
with the current file—for example, if each file contains words in sorted order, and you are looking
for a specific word. If you have passed the word’s position in the sorted order, you can safely skip
to the next file.

The function fileinput.close closes the entire chain of files and finishes the iteration.
As an example of using fileinput, let’s say you have written a Python script and you want to

number the lines. Because you want the program to keep working after you’ve done this, you
must add the line numbers in comments to the right of each line. To line them up, you can use
string formatting. Let’s allow each program line to get 40 characters maximum and add the com-
ment after that. The program in Listing 10-6 shows a simple way of doing this with fileinput and
the inplace parameter.

Function Description

input([files[, inplace[, backup]]) Facilitates iteration over lines in multiple input streams

filename() Returns the name of the current file

lineno() Returns the current (cumulative) line number

filelineno() Returns the line number within current file

isfirstline() Checks whether the current line is first in file

isstdin() Checks whether the last line was from sys.stdin

nextfile() Closes the current file and moves to the next

close() Closes the sequence

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 227

Listing 10-6. Adding Line Numbers to a Python Script

numberlines.py

import fileinput

for line in fileinput.input(inplace=True):
 line = line.rstrip()
 num = fileinput.lineno()
 print '%-40s # %2i' % (line, num)

If you run this program on itself, like this:

$ python numberlines.py numberlines.py

you end up with the program in Listing 10-7. Note that the program itself has been modified,
and that if you run it like this several times, you will have multiple numbers on each line. Recall
that rstrip is a string method that returns a copy of a string, where all the whitespace on the
right has been removed (see the section “String Methods” in Chapter 3 and Table B-6 in
Appendix B).

Listing 10-7. The Line Numbering Program with Line Numbers Added

numberlines.py # 1
 # 2
import fileinput # 3
 # 4
for line in fileinput.input(inplace=1): # 5
 line = line.rstrip() # 6
 num = fileinput.lineno() # 7
 print '%-40s # %2i' % (line, num) # 8

■Caution Be careful about using the inplace parameter—it’s an easy way to ruin a file. You should test
your program carefully without setting inplace (this will simply print out the result), making sure the program
works before you let it modify your files.

For another example using fileinput, see the section about the random module, later in
this chapter.

Sets, Heaps, and Deques
There are many useful data structures around, and Python supports some of the more com-
mon ones. Some of these, such as dictionaries (or hash tables) and lists (or dynamic arrays), are
integral to the language. Others, although somewhat more peripheral, can still come in handy
sometimes.

228 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Sets

Sets were introduced in Python 2.3, through the Set class in the sets module. Although you
may come upon Set instances in existing code, there is really very little reason to use them
yourself, unless you want to be backward-compatible. In Python 2.3, sets were made part of the
language, through the set type. This means that you don’t need to import the sets module—
you can just create sets directly:

>>> set(range(10))
set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Sets are constructed from a sequence (or some other iterable object). Their main use is to
check membership, and thus duplicates are ignored:

>>> set([0, 1, 2, 3, 0, 1, 2, 3, 4, 5])
set([0, 1, 2, 3, 4, 5])

Just as with dictionaries, the ordering of set elements is quite arbitrary and shouldn’t be
relied on:

>>> set(['fee', 'fie', 'foe'])
set(['foe', 'fee', 'fie'])

In addition to checking for membership, you can perform various standard set operations
(which you may know from mathematics), such as union and intersection, either by using
methods or by using the same operations as you would for bit operations on integers (see
Appendix B). For example, you can find the union of two sets using either the union method of
one of them or the bitwise OR operator, |:

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])
>>> a.union(b)
set([1, 2, 3, 4])
>>> a | b
set([1, 2, 3, 4])

Here are some other methods and their corresponding operators; the names should make
it clear what they mean:

>>> c = a & b
>>> c.issubset(a)
True
>>> c <= a
True
>>> c.issuperset(a)
False
>>> c >= a
False
>>> a.intersection(b)
set([2, 3])

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 229

>>> a & b
set([2, 3])
>>> a.difference(b)
set([1])
>>> a - b
set([1])
>>> a.symmetric_difference(b)
set([1, 4])
>>> a ^ b
set([1, 4])
>>> a.copy()
set([1, 2, 3])
>>> a.copy() is a
False

There are also various in-place operations, with corresponding methods, as well as the
basic methods add and remove. For more information, see the section about set types in the
Python Library Reference (http://python.org/doc/lib/types-set.html).

■Tip If you need a function for finding, say, the union of two sets, you can simply use the unbound version
of the union method, from the set type. This could be useful, for example, in concert with reduce:

>>> mySets = []
>>> for i in range(10):
... mySets.append(set(range(i,i+5)))
...
>>> reduce(set.union, mySets)
set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])

Sets are mutable, and may therefore not be used, for example, as keys in dictionaries.
Another problem is that sets themselves may contain only immutable (hashable) values, and
thus may not contain other sets. Because sets of sets often occur in practice, this could be a
problem. Luckily, there is the frozenset type, which represents immutable (and, therefore,
hashable) sets:

>>> a = set()
>>> b = set()
>>> a.add(b)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: set objects are unhashable
>>> a.add(frozenset(b))

The frozenset constructor creates a copy of the given set. It is useful whenever you want
to use a set either as a member of another set or as the key to a dictionary.

230 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Heaps

Another well-known data structure is the heap, a kind of priority queue. A priority queue lets
you add objects in an arbitrary order, and at any time (possibly in between the adding), find
(and possibly remove) the smallest element. It does so much more efficiently than, say, using
min on a list.

In fact, there is no separate heap type in Python—only a module with some heap-
manipulating functions. The module is called heapq (the q stands for queue), and it contains
six functions (see Table 10-5), the first four of which are directly related to heap manipula-
tion. You must use a list as the heap object itself.

Table 10-5. Some Important Functions in the fileinput Module

The heappush function is used to add an item to a heap. Note that you shouldn’t use it on
any old list—only one that has been built through the use of the various heap functions. The
reason for this is that the order of the elements is important (even though it may look a bit hap-
hazard; the elements aren’t exactly sorted).

>>> from heapq import *
>>> from random import shuffle
>>> data = range(10)
>>> shuffle(data)
>>> heap = []
>>> for n in data:
... heappush(heap, n)
>>> heap
[0, 1, 3, 6, 2, 8, 4, 7, 9, 5]
>>> heappush(heap, 0.5)
>>> heap
[0, 0.5, 3, 6, 1, 8, 4, 7, 9, 5, 2]

The order of the elements isn’t as arbitrary as it seems. They aren’t in strictly sorted order,
but there is one guarantee made: the element at position i is always greater than the one in
position i // 2 (or, conversely, it’s smaller than the elements at positions 2*i and 2*i + 1).
This is the basis for the underlying heap algorithm. This is called the heap property.

Function Description

heappush(heap, x) Pushes x onto the heap

heappop(heap) Pops off the smallest element in the heap

heapify(heap) Enforces the heap property on an arbitrary list

heapreplace(heap, x) Pops off the smallest element and pushes x

nlargest(n, iter) Returns the n largest elements of iter

nsmallest(n, iter) Returns the n smallest elements of iter

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 231

The heappop function pops off the smallest element, which is always found at index 0, and
makes sure that the smallest of the remaining elements takes over this position (while preserv-
ing the heap property). Even though popping the first element of a list isn’t terribly efficient in
general, it’s not a problem here, because heappop does some nifty shuffling behind the scenes:

>>> heappop(heap)
0
>>> heappop(heap)
0.5
>>> heappop(heap)
1
>>> heap
[2, 5, 3, 6, 9, 8, 4, 7]

The heapify function takes an arbitrary list and makes it a legal heap (that is, it imposes the
heap property) through the least possible amount of shuffling. If you don’t build your heap
from scratch with heappush, this is the function to use before starting to use heappush and
heappop:

>>> heap = [5, 8, 0, 3, 6, 7, 9, 1, 4, 2]
>>> heapify(heap)
>>> heap
[0, 1, 5, 3, 2, 7, 9, 8, 4, 6]

The heapreplace function is not quite as commonly used as the others. It pops the smallest
element off the heap and then pushes a new element onto it. This is a bit more efficient than a
heappop followed by a heappush:

>>> heapreplace(heap, 0.5)
0
>>> heap
[0.5, 1, 5, 3, 2, 7, 9, 8, 4, 6]
>>> heapreplace(heap, 10)
0.5
>>> heap
[1, 2, 5, 3, 6, 7, 9, 8, 4, 10]

The remaining two functions of the heapq module, nlargest(n, iter) and nsmallest(n,
iter), are used to find the n largest or smallest elements, respectively, of any iterable object iter.
You could do this by using sorting (for example, using the sorted function) and slicing, but the
heap algorithm is faster and more memory-efficient (and, not to mention, easier to use).

Deques (and Other Collections)

Double-ended queues, or deques, can be useful when you need to remove elements in the
order in which they were added. In Python 2.4, the collections module was added, which
contains the deque type.

232 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

■Note As of Python 2.5, the collections module contains the deque type and defaultdict—a dictio-
nary with a default value for nonexisting keys. Possible future additions are B-trees and Fibonacci heaps.

A deque is created from an iterable object (just like sets) and has several useful methods:

>>> from collections import deque
>>> q = deque(range(5))
>>> q.append(5)
>>> q.appendleft(6)
>>> q
deque([6, 0, 1, 2, 3, 4, 5])
>>> q.pop()
5
>>> q.popleft()
6
>>> q.rotate(3)
>>> q
deque([2, 3, 4, 0, 1])
>>> q.rotate(-1)
>>> q
deque([3, 4, 0, 1, 2])

The deque is useful because it allows appending and popping efficiently at the beginning
(to the left), which you cannot do with lists. As a nice side effect, you can also rotate the ele-
ments (that is, shift them to the right or left, wrapping around the ends) efficiently. Deque
objects also have the extend and extendleft methods, with extend working like the corre-
sponding list method, and extendleft working analogously to appendleft. Note that the
elements in the iterable object used in extendleft will appear in the deque in reverse order.

time
The time module contains functions for, among other things, getting the current time, manip-
ulating times and dates, reading dates from strings, and formatting dates as strings. Dates can
be represented as either a real number (the seconds since 0 hours, January 1 in the “epoch,” a
platform-dependent year; for UNIX, it’s 1970), or a tuple containing nine integers. These inte-
gers are explained in Table 10-6. For example, the tuple

(2008, 1, 21, 12, 2, 56, 0, 21, 0)

represents January 21, 2008, at 12:02:56, which is a Monday and the twenty-first day of the year
(no daylight savings).

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 233

Table 10-6. The Fields of Python Date Tuples

The range for seconds is 0–61 to account for leap seconds and double-leap seconds. The
daylight savings number is a Boolean value (true or false), but if you use –1, mktime (a function
that converts such a tuple to a timestamp measured in seconds since the epoch) will probably get
it right. Some of the most important functions in the time module are described in Table 10-7.

Table 10-7. Some Important Functions in the time Module

The function time.asctime formats the current time as a string, like this:

>>> time.asctime()
'Fri Dec 21 05:41:27 2008'

You can also supply a date tuple (such as those created by localtime) if you don’t want the
current time. (For more elaborate formatting, you can use the strftime function, described in
the standard documentation.)

Index Field Value

0 Year For example, 2000, 2001, and so on

1 Month In the range 1–12

2 Day In the range 1–31

3 Hour In the range 0–23

4 Minute In the range 0–59

5 Second In the range 0–61

6 Weekday In the range 0–6, where Monday is 0

7 Julian day In the range 1–366

8 Daylight savings 0, 1, or –1

Function Description

asctime([tuple]) Converts a time tuple to a string

localtime([secs]) Converts seconds to a date tuple, local time

mktime(tuple) Converts a time tuple to local time

sleep(secs) Sleeps (does nothing) for secs seconds

strptime(string[, format]) Parses a string into a time tuple

time() Current time (seconds since the epoch, UTC)

234 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The function time.localtime converts a real number (seconds since epoch) to a date
tuple, local time. If you want universal time,3 use gmtime instead.

The function time.mktime converts a date tuple to the time since epoch in seconds; it is the
inverse of localtime.

The function time.sleep makes the interpreter wait for a given number of seconds.
The function time.strptime converts a string of the format returned by asctime to a date

tuple. (The optional format argument follows the same rules as those for strftime; see the
standard documentation.)

The function time.time returns the current (universal) time as seconds since the epoch.
Even though the epoch may vary from platform to platform, you can reliably time something
by keeping the result of time from before and after the event (such as a function call), and then
computing the difference. For an example of these functions, see the next section, which cov-
ers the random module.

The functions shown in Table 10-7 are just a selection of those available from the time mod-
ule. Most of the functions in this module perform tasks similar to or related to those described in
this section. If you need something not covered by the functions described here, take a look at the
section about the time module in the Python Library Reference (http://python.org/doc/lib/
module-time.html); chances are you may find exactly what you are looking for.

Additionally, two more recent time-related modules are available: datetime (which sup-
ports date and time arithmetic) and timeit (which helps you time pieces of your code). You can
find more information about both in the Python Library Reference, and timeit is also dis-
cussed briefly in Chapter 16.

random
The random module contains functions that return random numbers, which can be useful for
simulations or any program that generates random output.

■Note Actually, the numbers generated are pseudo-random. That means that while they appear com-
pletely random, there is a predictable system that underlies them. However, because the module is so good
at pretending to be random, you probably won’t ever have to worry about this (unless you want to use these
numbers for strong-cryptography purposes, in which case they may not be “strong” enough to withstand a
determined attack—but if you’re into strong cryptography, you surely don’t need me to explain such elemen-
tary issues). If you need real randomness, you should check out the urandom function of the os module. The
class SystemRandom in the random module is based on the same kind of functionality, and gives you data
that is close to real randomness.

Some important functions in this module are shown in Table 10-8.

3. For more information about universal time, see http://en.wikipedia.org/wiki/Universal_time.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 235

Table 10-8. Some Important Functions in the random Module

The function random.random is one of the most basic random functions; it simply returns a
pseudo-random number n such that 0 n 1. Unless this is exactly what you need, you should
probably use one of the other functions, which offer extra functionality. The function ran-
dom.getrandbits returns a given number of bits (binary digits), in the form of a long integer.
This is probably mostly useful if you’re really into random stuff (for example, working with
cryptography).

The function random.uniform, when supplied with two numerical parameters a and b,
returns a random (uniformly distributed) real number n such that a n b. So, for example, if
you want a random angle, you could use uniform(0,360).

The function random.randrange is the standard function for generating a random integer
in the range you would get by calling range with the same arguments. For example, to get a
random number in the range from 1 to 10 (inclusive), you would use randrange(1,11) (or, alter-
natively, randrange(10)+1), and if you want a random odd positive integer lower than 20, you
would use randrange(1,20,2).

The function random.choice chooses (uniformly) a random element from a given
sequence.

The function random.shuffle shuffles the elements of a (mutable) sequence randomly,
such that every possible ordering is equally likely.

The function random.sample chooses (uniformly) a given number of elements from a given
sequence, making sure that they’re all different.

■Note For the statistically inclined, there are other functions similar to uniform that return random num-
bers sampled according to various other distributions, such as betavariate, exponential, Gaussian, and several
others.

Let’s look at some examples using the random module. In these examples, I use several
of the functions from the time module described previously. First, let’s get the real numbers
representing the limits of the time interval (the year 2008). You do that by expressing the date

Function Description

random() Returns a random real number n such that 0 n 1

getrandbits(n) Returns n random bits, in the form of a long integer

uniform(a, b) Returns a random real number n such that a n b

randrange([start], stop, [step]) Returns a random number from range(start, stop, step)

choice(seq) Returns a random element from the sequence seq

shuffle(seq[, random]) Shuffles the sequence seq in place

sample(seq, n) Chooses n random, unique elements from the sequence seq

236 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

as a time tuple (using -1 for day of the week, day of the year, and daylight savings, making
Python calculate that for itself) and calling mktime on these tuples:

from random import *
from time import *
date1 = (2008, 1, 1, 0, 0, 0, -1, -1, -1)
time1 = mktime(date1)
date2 = (2009, 1, 1, 0, 0, 0, -1, -1, -1)
time2 = mktime(date2)

Then you generate a random number uniformly in this range (the upper limit excluded):

>>> random_time = uniform(time1, time2)

Then you simply convert this number back to a legible date:

>>> print asctime(localtime(random_time))
Mon Jun 24 21:35:19 2008

For the next example, let’s ask the user how many dice to throw, and how many sides each
one should have. The die-throwing mechanism is implemented with randrange and a for loop:

from random import randrange
num = input('How many dice? ')
sides = input('How many sides per die? ')
sum = 0
for i in range(num): sum += randrange(sides) + 1
print 'The result is', sum

If you put this in a script file and run it, you get an interaction something like the following:

How many dice? 3
How many sides per die? 6
The result is 10

Now assume that you have made a text file in which each line of text contains a fortune.
Then you can use the fileinput module described earlier to put the fortunes in a list, and then
select one randomly:

fortune.py
import fileinput, random
fortunes = list(fileinput.input())
print random.choice(fortunes)

In UNIX, you could test this on the standard dictionary file /usr/dict/words to get a
random word:

$ python fortune.py /usr/dict/words
dodge

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 237

As a last example, suppose that you want your program to deal you cards, one at a time,
each time you press Enter on your keyboard. Also, you want to make sure that you don’t get the
same card more than once. First, you make a “deck of cards”—a list of strings:

>>> values = range(1, 11) + 'Jack Queen King'.split()
>>> suits = 'diamonds clubs hearts spades'.split()
>>> deck = ['%s of %s' % (v, s) for v in values for s in suits]

The deck you just created isn’t very suitable for a game of cards. Let’s just peek at some of
the cards:

>>> from pprint import pprint
>>> pprint(deck[:12])
['1 of diamonds',
 '1 of clubs',
 '1 of hearts',
 '1 of spades',
 '2 of diamonds',
 '2 of clubs',
 '2 of hearts',
 '2 of spades',
 '3 of diamonds',
 '3 of clubs',
 '3 of hearts',
 '3 of spades']

A bit too ordered, isn’t it? That’s easy to fix:

>>> from random import shuffle
>>> shuffle(deck)
>>> pprint(deck[:12])
['3 of spades',
 '2 of diamonds',
 '5 of diamonds',
 '6 of spades',
 '8 of diamonds',
 '1 of clubs',
 '5 of hearts',
 'Queen of diamonds',
 'Queen of hearts',
 'King of hearts',
 'Jack of diamonds',
 'Queen of clubs']

Note that I’ve just printed the 12 first cards here, to save some space. Feel free to take a
look at the whole deck yourself.

238 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Finally, to get Python to deal you a card each time you press Enter on your keyboard, until
there are no more cards, you simply create a little while loop. Assuming that you put the code
needed to create the deck into a program file, you could simply add the following at the end:

while deck: raw_input(deck.pop())

■Note If you try the while loop shown here in the interactive interpreter, you’ll notice that an empty string
is printed out every time you press Enter. This is because raw_input returns what you write (which is noth-
ing) and that will get printed. In a normal program, this return value from raw_input is simply ignored. To
have it “ignored” interactively, too, just assign the result of raw_input to some variable you won’t look at
again and name it something like ignore.

shelve
In the next chapter, you learn how to store data in files, but if you want a really simple storage
solution, the shelve module can do most of the work for you. All you need to do is supply it with
a file name. The only function of interest in shelve is open. When called (with a file name) it
returns a Shelf object, which you can use to store things. Just treat it as a normal dictionary
(except that the keys must be strings), and when you’re finished (and want things saved to
disk), call its close method.

A Potential Trap

It is important to realize that the object returned by shelve.open is not an ordinary mapping, as
the following example demonstrates:

>>> import shelve
>>> s = shelve.open('test.dat')
>>> s['x'] = ['a', 'b', 'c']
>>> s['x'].append('d')
>>> s['x']
['a', 'b', 'c']

Where did the 'd' go?
The explanation is simple: when you look up an element in a shelf object, the object is

reconstructed from its stored version; and when you assign an element to a key, it is stored.
What happened in the preceding example was the following:

• The list ['a', 'b', 'c'] was stored in s under the key 'x'.

• The stored representation was retrieved, a new list was constructed from it, and 'd' was
appended to the copy. This modified version was not stored!

• Finally, the original is retrieved again—without the 'd'.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 239

To correctly modify an object that is stored using the shelve module, you must bind a tem-
porary variable to the retrieved copy, and then store the copy again after it has been modified:4

>>> temp = s['x']
>>> temp.append('d')
>>> s['x'] = temp
>>> s['x']
['a', 'b', 'c', 'd']

From Python 2.4 onward, there is another way around this problem: set the writeback
parameter of the open function to true. If you do, all of the data structures that you read from
or assign to the shelf will be kept around in memory (cached) and written back to disk only
when you close the shelf. If you’re not working with a huge amount of data, and you don’t want
to worry about these things, setting writeback to true (and making sure you close your shelf at
the end) may be a good idea.

A Simple Database Example

Listing 10-8 shows a simple database application that uses the shelve module.

Listing 10-8. A Simple Database Application

database.py
import sys, shelve

def store_person(db):
 """
 Query user for data and store it in the shelf object
 """
 pid = raw_input('Enter unique ID number: ')
 person = {}
 person['name'] = raw_input('Enter name: ')
 person['age'] = raw_input('Enter age: ')
 person['phone'] = raw_input('Enter phone number: ')

 db[pid] = person

def lookup_person(db):
 """
 Query user for ID and desired field, and fetch the corresponding data from
 the shelf object
 """
 pid = raw_input('Enter ID number: ')
 field = raw_input('What would you like to know? (name, age, phone) ')
 field = field.strip().lower()

4. Thanks to Luther Blissett for pointing this out.

240 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

 print field.capitalize() + ':', \
 db[pid][field]

def print_help():
 print 'The available commands are:'
 print 'store : Stores information about a person'
 print 'lookup : Looks up a person from ID number'
 print 'quit : Save changes and exit'
 print '? : Prints this message'

def enter_command():
 cmd = raw_input('Enter command (? for help): ')
 cmd = cmd.strip().lower()
 return cmd

def main():
 database = shelve.open('C:\\database.dat') # You may want to change this name
 try:
 while True:
 cmd = enter_command()
 if cmd == 'store':
 store_person(database)
 elif cmd == 'lookup':
 lookup_person(database)
 elif cmd == '?':
 print_help()
 elif cmd == 'quit':
 return
 finally:
 database.close()

if __name__ == '__main__': main()

The program shown in Listing 10-8 has several interesting features:

• Everything is wrapped in functions to make the program more structured. (A possible
improvement is to group those functions as the methods of a class.)

• The main program is in the main function, which is called only if __name__ == '__main__'.
That means you can import this as a module and then call the main function from another
program.

• I open a database (shelf) in the main function, and then pass it as a parameter to the other
functions that need it. I could have used a global variable, too, because this program is
so small, but it’s better to avoid global variables in most cases, unless you have a reason
to use them.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 241

• After reading in some values, I make a modified version by calling strip and lower on
them because if a supplied key is to match one stored in the database, the two must be
exactly alike. If you always use strip and lower on what the users enter, you can allow
them to be sloppy about using uppercase or lowercase letters and additional white-
space. Also, note that I’ve used capitalize when printing the field name.

• I have used try and finally to ensure that the database is closed properly. You never
know when something might go wrong (and you get an exception), and if the program
terminates without closing the database properly, you may end up with a corrupt data-
base file that is essentially useless. By using try and finally, you avoid that.

So, let’s take this database out for a spin. Here is a sample interaction:

Enter command (? for help): ?
The available commands are:
store : Stores information about a person
lookup : Looks up a person from ID number
quit : Save changes and exit
? : Prints this message
Enter command (? for help): store
Enter unique ID number: 001
Enter name: Mr. Gumby
Enter age: 42
Enter phone number: 555-1234
Enter command (? for help): lookup
Enter ID number: 001
What would you like to know? (name, age, phone) phone
Phone: 555-1234
Enter command (? for help): quit

This interaction isn’t terribly interesting. I could have done exactly the same thing with an
ordinary dictionary instead of the shelf object. But now that I’ve quit the program, let’s see
what happens when I restart it—perhaps the following day?

Enter command (? for help): lookup
Enter ID number: 001
What would you like to know? (name, age, phone) name
Name: Mr. Gumby
Enter command (? for help): quit

As you can see, the program reads in the file I created the first time, and Mr. Gumby is still
there!

Feel free to experiment with this program, and see if you can extend its functionality and
improve its user-friendliness. Perhaps you can think of a version that you have use for yourself?
How about a database of your record collection? Or a database to help you keep track of friends
who have borrowed books from you. (I know I could use that last one.)

242 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

re

Some people, when confronted with a problem, think, “I know, I’ll use regular expres-
sions.” Now they have two problems.

—Jamie Zawinski

The re module contains support for regular expressions. If you’ve heard about regular
expressions, you probably know how powerful they are; if you haven’t, prepare to be amazed.

You should note, however, that mastering regular expressions may be a bit tricky at first.
(Okay, very tricky, actually.) The key is to learn about them a little bit at a time—just look up (in
the documentation) the parts you need for a specific task. There is no point in memorizing it all
up front. This section describes the main features of the re module and regular expressions,
and enables you to get started.

■Tip In addition to the standard documentation, Andrew Kuchling’s “Regular Expression HOWTO”
(http://amk.ca/python/howto/regex/) is a useful source of information on regular expressions in
Python.

What Is a Regular Expression?

A regular expression (also called a regex or regexp) is a pattern that can match a piece of text.
The simplest form of regular expression is just a plain string, which matches itself. In other
words, the regular expression 'python' matches the string 'python'. You can use this matching
behavior for such things as searching for patterns in text, replacing certain patterns with some
computed values, or splitting text into pieces.

The Wildcard

A regular expression can match more than one string, and you create such a pattern by using
some special characters. For example, the period character (dot) matches any character
(except a newline), so the regular expression '.ython' would match both the string 'python'
and the string 'jython'. It would also match strings such as 'qython', '+ython', or ' ython' (in
which the first letter is a single space), but not strings such as 'cpython' or 'ython' because the
period matches a single letter, and neither two nor zero.

Because it matches “anything” (any single character except a newline), the period is called
a wildcard.

Escaping Special Characters

When you use special characters in regular expressions, it’s important to know that you may run
into problems if you try to use them as normal characters. For example, imagine you want to
match the string 'python.org'. Do you simply use the pattern 'python.org'? You could, but that
would also match 'pythonzorg', for example, which you probably wouldn’t want. (The dot
matches any character except a newline, remember?) To make a special character behave like a

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 243

normal one, you escape it, just as I demonstrated how to escape quotes in strings in Chapter 1.
You place a backslash in front of it. Thus, in this example, you would use 'python\\.org', which
would match 'python.org' and nothing else.

■Note To get a single backslash, which is required here by the re module, you need to write two back-
slashes in the string—to escape it from the interpreter. Thus you have two levels of escaping here: (1) from
the interpreter, and (2) from the re module. (Actually, in some cases you can get away with using a single
backslash and have the interpreter escape it for you automatically, but don’t rely on it.) If you are tired of dou-
bling up backslashes, use a raw string, such as r'python\.org'.

Character Sets

Matching any character can be useful, but sometimes you want more control. You can create a
so-called character set by enclosing a substring in brackets. Such a character set will match any
of the characters it contains. For example, '[pj]ython' would match both 'python' and
'jython', but nothing else. You can also use ranges, such as '[a-z]' to match any character
from a to z (alphabetically), and you can combine such ranges by putting one after another,
such as '[a-zA-Z0-9]' to match uppercase and lowercase letters and digits. (Note that the
character set will match only one such character, though.)

To invert the character set, put the character ^ first, as in '[^abc]' to match any character
except a, b, or c.

Alternatives and Subpatterns

Character sets are nice when you let each letter vary independently, but what if you want to
match only the strings 'python' and 'perl'? You can’t specify such a specific pattern with char-
acter sets or wildcards. Instead, you use the special character for alternatives: the pipe character
(|). So, your pattern would be 'python|perl'.

However, sometimes you don’t want to use the choice operator on the entire pattern—just a
part of it. To do that, you enclose the part, or subpattern, in parentheses. The previous example

SPECIAL CHARACTERS IN CHARACTER SETS

In general, special characters such as dots, asterisks, and question marks must be escaped with a backslash
if you want them to appear as literal characters in the pattern, rather than function as regular expression oper-
ators. Inside character sets, escaping these characters is generally not necessary (although perfectly legal).
You should, however, keep in mind the following rules:

• You do need to escape the caret (^) if it appears at the beginning of the character set, unless you want
it to function as a negation operator. (In other words, don’t place it at the beginning unless you mean it.)

• Similarly, the right bracket (]) and the dash (-) must be put either at the beginning of the character set
or escaped with a backslash. (Actually, the dash may also be put at the end, if you wish.)

244 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

could be rewritten as 'p(ython|erl)'. (Note that the term subpattern can also apply to a single
character.)

Optional and Repeated Subpatterns

By adding a question mark after a subpattern, you make it optional. It may appear in the
matched string, but it isn’t strictly required. So, for example, this (slightly unreadable) pattern:

r'(http://)?(www\.)?python\.org'

would match all of the following strings (and nothing else):

'http://www.python.org'
'http://python.org'
'www.python.org'
'python.org'

A few things are worth noting here:

• I’ve escaped the dots, to prevent them from functioning as wildcards.

• I’ve used a raw string to reduce the number of backslashes needed.

• Each optional subpattern is enclosed in parentheses.

• The optional subpatterns may or may not appear , independently of each other.

The question mark means that the subpattern can appear once or not at all. A few other
operators allow you to repeat a subpattern more than once:

• (pattern)*: pattern is repeated zero or more times.

• (pattern)+: pattern is repeated one or more times.

• (pattern){m,n}: pattern is repeated from m to n times.

So, for example, r'w*\.python\.org' matches 'www.python.org', but also '.python.org',
'ww.python.org', and 'wwwwwww.python.org'. Similarly, r'w+\.python\.org' matches
'w.python.org' but not '.python.org', and r'w{3,4}\.python\.org' matches only
'www.python.org' and 'wwww.python.org'.

■Note The term match is used loosely here to mean that the pattern matches the entire string. The match
function (see Table 10-9) requires only that the pattern matches the beginning of the string.

The Beginning and End of a String

Until now, you’ve only been looking at a pattern matching an entire string, but you can also
try to find a substring that matches the pattern, such as the substring 'www' of the string
'www.python.org' matching the pattern 'w+'. When you’re searching for substrings like this,
it can sometimes be useful to anchor this substring either at the beginning or the end of the
full string. For example, you might want to match 'ht+p' at the beginning of a string, but not

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 245

anywhere else. Then you use a caret ('^') to mark the beginning. For example, '^ht+p' would
match 'http://python.org' (and 'htttttp://python.org', for that matter) but not
'www.http.org'. Similarly, the end of a string may be indicated by the dollar sign ($).

■Note For a complete listing of regular expression operators, see the section “Regular Expression Syntax”
in the Python Library Reference (http://python.org/doc/lib/re-syntax.html).

Contents of the re Module

Knowing how to write regular expressions isn’t much good if you can’t use them for anything.
The re module contains several useful functions for working with regular expressions. Some of
the most important ones are described in Table 10-9.

Table 10-9. Some Important Functions in the re Module

The function re.compile transforms a regular expression (written as a string) to a pattern
object, which can be used for more efficient matching. If you use regular expressions repre-
sented as strings when you call functions such as search or match, they must be transformed
into regular expression objects internally anyway. By doing this once, with the compile func-
tion, this step is no longer necessary each time you use the pattern. The pattern objects have
the searching/matching functions as methods, so re.search(pat, string) (where pat is a reg-
ular expression written as a string) is equivalent to pat.search(string) (where pat is a pattern
object created with compile). Compiled regular expression objects can also be used in the
normal re functions.

The function re.search searches a given string to find the first substring, if any, that
matches the given regular expression. If one is found, a MatchObject (evaluating to true) is
returned; otherwise, None (evaluating to false) is returned. Due to the nature of the return val-
ues, the function can be used in conditional statements, like this:

if re.search(pat, string):
 print 'Found it!'

Function Description

compile(pattern[, flags]) Creates a pattern object from a string with a regular
expression

search(pattern, string[, flags]) Searches for pattern in string

match(pattern, string[, flags]) Matches pattern at the beginning of string

split(pattern, string[, maxsplit=0]) Splits a string by occurrences of pattern

findall(pattern, string) Returns a list of all occurrences of pattern in string

sub(pat, repl, string[, count=0]) Substitutes occurrences of pat in string with repl

escape(string) Escapes all special regular expression characters in
string

246 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

However, if you need more information about the matched substring, you can examine
the returned MatchObject. (More about MatchObject in the next section.)

The function re.match tries to match a regular expression at the beginning of a given
string. So re.match('p', 'python') returns true (a match object), while re.match('p',
'www.python.org') returns false (None).

■Note The match function will report a match if the pattern matches the beginning of a string; the pattern
is not required to match the entire string. If you want to do that, you need to add a dollar sign to the end of
your pattern. The dollar sign will match the end of the string and thereby “stretch out” the match.

The function re.split splits a string by the occurrences of a pattern. This is similar to
the string method split, except that you allow full regular expressions instead of only a fixed
separator string. For example, with the string method split, you could split a string by the
occurrences of the string ', ' but with re.split you can split on any sequence of space
characters and commas:

>>> some_text = 'alpha, beta,,,,gamma delta'
>>> re.split('[,]+', some_text)
['alpha', 'beta', 'gamma', 'delta']

■Note If the pattern contains parentheses, the parenthesized groups are interspersed between the split
substrings. For example, re.split('o(o)', 'foobar') would yield ['f', 'o', 'bar'].

As you can see from this example, the return value is a list of substrings. The maxsplit
argument indicates the maximum number of splits allowed:

>>> re.split('[,]+', some_text, maxsplit=2)
['alpha', 'beta', 'gamma delta']
>>> re.split('[,]+', some_text, maxsplit=1)
['alpha', 'beta,,,,gamma delta']

The function re.findall returns a list of all occurrences of the given pattern. For example,
to find all words in a string, you could do the following:

>>> pat = '[a-zA-Z]+'
>>> text = '"Hm... Err -- are you sure?" he said, sounding insecure.'
>>> re.findall(pat, text)
['Hm', 'Err', 'are', 'you', 'sure', 'he', 'said', 'sounding', 'insecure']

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 247

Or you could find the punctuation:

>>> pat = r'[.?\-",]+'
>>> re.findall(pat, text)
['"', '...', '--', '?"', ',', '.']

Note that the dash (-) has been escaped so Python won’t interpret it as part of a character
range (such as a-z).

The function re.sub is used to substitute the leftmost, nonoverlapping occurrences of a
pattern with a given replacement. Consider the following example:

>>> pat = '{name}'
>>> text = 'Dear {name}...'
>>> re.sub(pat, 'Mr. Gumby', text)
'Dear Mr. Gumby...'

See the section “Group Numbers and Functions in Substitutions” later in this chapter for
information about how to use this function more effectively.

The function re.escape is a utility function used to escape all the characters in a string that
might be interpreted as a regular expression operator. Use this if you have a long string with a
lot of these special characters and you want to avoid typing a lot of backslashes, or if you get
a string from a user (for example, through the raw_input function) and want to use it as a part
of a regular expression. Here is an example of how it works:

>>> re.escape('www.python.org')
'www\\.python\\.org'
>>> re.escape('But where is the ambiguity?')
'But\\ where\\ is\\ the\\ ambiguity\\?'

■Note In Table 10-9, you’ll notice that some of the functions have an optional parameter called flags.
This parameter can be used to change how the regular expressions are interpreted. For more information
about this, see the section about the re module in the Python Library Reference (http://python.org/doc/
lib/module-re.html). The flags are described in the subsection “Module Contents.”

Match Objects and Groups

The re functions that try to match a pattern against a section of a string all return MatchObject
objects when a match is found. These objects contain information about the substring that
matched the pattern. They also contain information about which parts of the pattern matched
which parts of the substring. These parts are called groups.

A group is simply a subpattern that has been enclosed in parentheses. The groups are
numbered by their left parenthesis. Group zero is the entire pattern. So, in this pattern:

'There (was a (wee) (cooper)) who (lived in Fyfe)'

248 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

the groups are as follows:

0 There was a wee cooper who lived in Fyfe
1 was a wee cooper
2 wee
3 cooper
4 lived in Fyfe

Typically, the groups contain special characters such as wildcards or repetition operators,
and thus you may be interested in knowing what a given group has matched. For example, in
this pattern:

r'www\.(.+)\.com$'

group 0 would contain the entire string, and group 1 would contain everything between 'www.'
and '.com'. By creating patterns like this, you can extract the parts of a string that interest you.

Some of the more important methods of re match objects are described in Table 10-10.

Table 10-10. Some Important Methods of re Match Objects

The method group returns the (sub)string that was matched by a given group in the pat-
tern. If no group number is given, group 0 is assumed. If only a single group number is given (or
you just use the default, 0), a single string is returned. Otherwise, a tuple of strings correspond-
ing to the given group numbers is returned.

■Note In addition to the entire match (group 0), you can have only 99 groups, with numbers in the
range 1–99.

The method start returns the starting index of the occurrence of the given group (which
defaults to 0, the whole pattern).

The method end is similar to start, but returns the ending index plus one.
The method span returns the tuple (start, end) with the starting and ending indices of a

given group (which defaults to 0, the whole pattern).

Method Description

group([group1, ...]) Retrieves the occurrences of the given subpatterns (groups)

start([group]) Returns the starting position of the occurrence of a given group

end([group]) Returns the ending position (an exclusive limit, as in slices) of the
occurrence of a given group

span([group]) Returns both the beginning and ending positions of a group

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 249

Consider the following example:

>>> m = re.match(r'www\.(.*)\..{3}', 'www.python.org')
>>> m.group(1)
'python'
>>> m.start(1)
4
>>> m.end(1)
10
>>> m.span(1)
(4, 10)

Group Numbers and Functions in Substitutions

In the first example using re.sub, I simply replaced one substring with another—something I
could easily have done with the replace string method (described in the section “String Meth-
ods” in Chapter 3). Of course, regular expressions are useful because they allow you to search
in a more flexible manner, but they also allow you to perform more powerful substitutions.

The easiest way to harness the power of re.sub is to use group numbers in the substitution
string. Any escape sequences of the form '\\n' in the replacement string are replaced by the
string matched by group n in the pattern. For example, let’s say you want to replace words
of the form '*something*' with 'something', where the former is a normal way of
expressing emphasis in plain-text documents (such as email), and the latter is the correspond-
ing HTML code (as used in web pages). Let’s first construct the regular expression:

>>> emphasis_pattern = r'*([^*]+)*'

Note that regular expressions can easily become hard to read, so using meaningful vari-
able names (and possibly a comment or two) is important if anyone (including you!) is going to
view the code at some point.

■Tip One way to make your regular expressions more readable is to use the VERBOSE flag in the re func-
tions. This allows you to add whitespace (space characters, tabs, newlines, and so on) to your pattern, which
will be ignored by re—except when you put it in a character class or escape it with a backslash. You can also
put comments in such verbose regular expressions. The following is a pattern object that is equivalent to the
emphasis pattern, but which uses the VERBOSE flag:

>>> emphasis_pattern = re.compile(r'''
... * # Beginning emphasis tag -- an asterisk
... (# Begin group for capturing phrase
... [^*]+ # Capture anything except asterisks
...) # End group
... * # Ending emphasis tag
... ''', re.VERBOSE)
...

250 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Now that I have my pattern, I can use re.sub to make my substitution:

>>> re.sub(emphasis_pattern, r'\1', 'Hello, *world*!')
'Hello, world!'

As you can see, I have successfully translated the text from plain text to HTML.
But you can make your substitutions even more powerful by using a function as the replace-

ment. This function will be supplied with the MatchObject as its only parameter, and the string it
returns will be used as the replacement. In other words, you can do whatever you want to the
matched substring, and do elaborate processing to generate its replacement. What possible use
could you have for such power, you ask? Once you start experimenting with regular expressions,
you will surely find countless uses for this mechanism. For one application, see the section “A
Sample Template System” a little later in the chapter.

GREEDY AND NONGREEDY PATTERNS

The repetition operators are by default greedy, which means that they will match as much as possible. For
example, let’s say I rewrote the emphasis program to use the following pattern:

>>> emphasis_pattern = r'*(.+)*'

This matches an asterisk, followed by one or more characters, and then another asterisk. Sounds
perfect, doesn’t it? But it isn’t:

>>> re.sub(emphasis_pattern, r'\1', '*This* is *it*!')
'This* is *it!'

As you can see, the pattern matched everything from the first asterisk to the last—including the two
asterisks between! This is what it means to be greedy: take everything you can.

In this case, you clearly don’t want this overly greedy behavior. The solution presented in the preceding
text (using a character set matching anything except an asterisk) is fine when you know that one specific letter
is illegal. But let’s consider another scenario. What if you used the form '**something**' to signify empha-
sis? Now it shouldn’t be a problem to include single asterisks inside the emphasized phrase. But how do you
avoid being too greedy?

Actually, it’s quite easy—you just use a nongreedy version of the repetition operator. All the repetition
operators can be made nongreedy by putting a question mark after them:

>>> emphasis_pattern = r'**(.+?)**'
>>> re.sub(emphasis_pattern, r'\1', '**This** is **it**!')
'This is it!'

Here I’ve used the operator +? instead of +, which means that the pattern will match one or more occur-
rences of the wildcard, as before. However, it will match as few as it can, because it is now nongreedy. So, it
will match only the minimum needed to reach the next occurrence of '**', which is the end of the pattern.
As you can see, it works nicely.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 251

Finding the Sender of an Email

Have you ever saved an email as a text file? If you have, you may have seen that it contains a lot
of essentially unreadable text at the top, similar to that shown in Listing 10-9.

Listing 10-9. A Set of (Fictitious) Email Headers

From foo@bar.baz Thu Dec 20 01:22:50 2008
Return-Path: <foo@bar.baz>
Received: from xyzzy42.bar.com (xyzzy.bar.baz [123.456.789.42])
 by frozz.bozz.floop (8.9.3/8.9.3) with ESMTP id BAA25436
 for <magnus@bozz.floop>; Thu, 20 Dec 2004 01:22:50 +0100 (MET)
Received: from [43.253.124.23] by bar.baz
 (InterMail vM.4.01.03.27 201-229-121-127-20010626) with ESMTP
 id <20041220002242.ADASD123.bar.baz@[43.253.124.23]>;
 Thu, 20 Dec 2004 00:22:42 +0000
User-Agent: Microsoft-Outlook-Express-Macintosh-Edition/5.02.2022
Date: Wed, 19 Dec 2008 17:22:42 -0700
Subject: Re: Spam
From: Foo Fie <foo@bar.baz>
To: Magnus Lie Hetland <magnus@bozz.floop>
CC: <Mr.Gumby@bar.baz>
Message-ID: <B8467D62.84F%foo@baz.com>
In-Reply-To: <20041219013308.A2655@bozz.floop>
Mime-version: 1.0
Content-type: text/plain; charset="US-ASCII"
Content-transfer-encoding: 7bit
Status: RO
Content-Length: 55
Lines: 6

So long, and thanks for all the spam!

Yours,

Foo Fie

Let’s try to find out who this email is from. If you examine the text, I’m sure you can figure
it out in this case (especially if you look at the signature at the bottom of the message itself, of
course). But can you see a general pattern? How do you extract the name of the sender, without
the email address? Or how can you list all the email addresses mentioned in the headers? Let’s
handle the former task first.

252 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The line containing the sender begins with the string 'From: ' and ends with an email
address enclosed in angle brackets (< and >). You want the text found between those brackets.
If you use the fileinput module, this should be an easy task. A program solving the problem is
shown in Listing 10-10.

■Note You could solve this problem without using regular expressions if you wanted. You could also use
the email module.

Listing 10-10. A Program for Finding the Sender of an Email

find_sender.py
import fileinput, re
pat = re.compile('From: (.*) <.*?>$')
for line in fileinput.input():
 m = pat.match(line)
 if m: print m.group(1)

You can then run the program like this (assuming that the email message is in the text file
message.eml):

$ python find_sender.py message.eml
Foo Fie

You should note the following about this program:

• I compile the regular expression to make the processing more efficient.

• I enclose the subpattern I want to extract in parentheses, making it a group.

• I use a nongreedy pattern to so the email address matches only the last pair of angle
brackets (just in case the name contains some brackets).

• I use a dollar sign to indicate that I want the pattern to match the entire line, all the way
to the end.

• I use an if statement to make sure that I did in fact match something before I try to
extract the match of a specific group.

To list all the email addresses mentioned in the headers, you need to construct a regular
expression that matches an email address but nothing else. You can then use the method findall
to find all the occurrences in each line. To avoid duplicates, you keep the addresses in a set
(described earlier in this chapter). Finally, you extract the keys, sort them, and print them out:

import fileinput, re
pat = re.compile(r'[a-z\-\.]+@[a-z\-\.]+', re.IGNORECASE)
addresses = set()

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 253

for line in fileinput.input():
 for address in pat.findall(line):
 addresses.add(address)
for address in sorted(addresses):
 print address

The resulting output when running this program (with the email message in Listing 10-9
as input) is as follows:

Mr.Gumby@bar.baz
foo@bar.baz
foo@baz.com
magnus@bozz.floop

Note that when sorting, uppercase letters come before lowercase letters.

■Note I haven’t adhered strictly to the problem specification here. The problem was to find the addresses
in the header, but in this case the program finds all the addresses in the entire file. To avoid that, you can call
fileinput.close() if you find an empty line, because the header can’t contain empty lines. Alternatively,
you can use fileinput.nextfile() to start processing the next file, if there is more than one.

A Sample Template System

A template is a file you can put specific values into to get a finished text of some kind. For exam-
ple, you may have a mail template requiring only the insertion of a recipient name. Python
already has an advanced template mechanism: string formatting. However, with regular
expressions, you can make the system even more advanced. Let’s say you want to replace all
occurrences of '[something]' (the “fields”) with the result of evaluating something as an
expression in Python. Thus, this string:

'The sum of 7 and 9 is [7 + 9].'

should be translated to this:

'The sum of 7 and 9 is 16.'

Also, you want to be able to perform assignments in these fields, so that this string:

'[name="Mr. Gumby"]Hello, [name]'

should be translated to this:

'Hello, Mr. Gumby'

254 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

This may sound like a complex task, but let’s review the available tools:

• You can use a regular expression to match the fields and extract their contents.

• You can evaluate the expression strings with eval, supplying the dictionary containing
the scope. You do this in a try/except statement. If a SyntaxError is raised, you probably
have a statement (such as an assignment) on your hands and should use exec instead.

• You can execute the assignment strings (and other statements) with exec, storing the
template’s scope in a dictionary.

• You can use re.sub to substitute the result of the evaluation into the string being processed.

Suddenly, it doesn’t look so intimidating, does it?

■Tip If a task seems daunting, it almost always helps to break it down into smaller pieces. Also, take stock
of the tools at your disposal for ideas on how to solve your problem.

See Listing 10-11 for a sample implementation.

Listing 10-11. A Template System

templates.py

import fileinput, re

Matches fields enclosed in square brackets:
field_pat = re.compile(r'\[(.+?)\]')

We'll collect variables in this:
scope = {}

This is used in re.sub:
def replacement(match):
 code = match.group(1)
 try:
 # If the field can be evaluated, return it:
 return str(eval(code, scope))
 except SyntaxError:
 # Otherwise, execute the assignment in the same scope...
 exec code in scope
 # ...and return an empty string:
 return ''

Get all the text as a single string:

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 255

(There are other ways of doing this; see Chapter 11)
lines = []
for line in fileinput.input():
 lines.append(line)
text = ''.join(lines)

Substitute all the occurrences of the field pattern:
print field_pat.sub(replacement, text)

Simply put, this program does the following:

• Define a pattern for matching fields.

• Create a dictionary to act as a scope for the template.

• Define a replacement function that does the following:

• Grabs group 1 from the match and puts it in code.

• Tries to evaluate code with the scope dictionary as namespace, converts the result to
a string, and returns it. If this succeeds, the field was an expression and everything is
fine. Otherwise (that is, a SyntaxError is raised), go to the next step.

• Execute the field in the same namespace (the scope dictionary) used for evaluating
expressions, and then returns an empty string (because the assignment doesn’t eval-
uate to anything).

• Use fileinput to read in all available lines, put them in a list, and join them into one big
string.

• Replace all occurrences of field_pat using the replacement function in re.sub, and
print the result.

■Note In previous versions of Python, it was much more efficient to put the lines into a list and then join
them at the end than to do something like this:

text = ''
for line in fileinput.input():
 text += line

Although this looks elegant, each assignment must create a new string, which is the old string with the new
one appended, which can lead to a waste of resources and make your program slow. In older versions of
Python, the difference between this and using join could be huge. In more recent versions, using the +=
operator may, in fact, be faster. If performance is important to you, you could try out both solutions. And if you
want a more elegant way to read in all the text of a file, take a peek at Chapter 11.

So, I have just created a really powerful template system in only 15 lines of code (not
counting whitespace and comments). I hope you’re starting to see how powerful Python

256 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

becomes when you use the standard libraries. Let’s finish this example by testing the template
system. Try running it on the simple file shown in Listing 10-12.

Listing 10-12. A Simple Template Example

[x = 2]
[y = 3]
The sum of [x] and [y] is [x + y].

You should see this:

The sum of 2 and 3 is 5.

■Note It may not be obvious, but there are three empty lines in the preceding output—two above and one
below the text. Although the first two fields have been replaced by empty strings, the newlines following them
are still there. Also, the print statement adds a newline, which accounts for the empty line at the end.

But wait, it gets better! Because I have used fileinput, I can process several files in turn. That
means that I can use one file to define values for some variables, and then another file as a tem-
plate where these values are inserted. For example, I might have one file with definitions as in
Listing 10-13, named magnus.txt, and a template file as in Listing 10-14, named template.txt.

Listing 10-13. Some Template Definitions

[name = 'Magnus Lie Hetland']
[email = 'magnus@foo.bar']
[language = 'python']

Listing 10-14. A Template

[import time]
Dear [name],

I would like to learn how to program. I hear you use
the [language] language a lot -- is it something I
should consider?

And, by the way, is [email] your correct email address?

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 257

Fooville, [time.asctime()]

Oscar Frozzbozz

The import time isn’t an assignment (which is the statement type I set out to handle), but
because I’m not being picky and just use a simple try/except statement, my program supports
any statement or expression that works with eval or exec. You can run the program like this
(assuming a UNIX command line):

$ python templates.py magnus.txt template.txt

You should get some output similar to the following:

Dear Magnus Lie Hetland,

I would like to learn how to program. I hear you use
the python language a lot -- is it something I
should consider?

And, by the way, is magnus@foo.bar your correct email address?

Fooville, Wed Apr 24 20:34:29 2008

Oscar Frozzbozz

Even though this template system is capable of some quite powerful substitutions, it still
has some flaws. For example, it would be nice if you could write the definition file in a more
flexible manner. If it were executed with execfile, you could simply use normal Python syntax.
That would also fix the problem of getting all those blank lines at the top of the output.

Can you think of other ways of improving the program? Can you think of other uses for the
concepts used in this program? The best way to become really proficient in any programming
language is to play with it—test its limitations and discover its strengths. See if you can rewrite
this program so it works better and suits your needs.

■Note There is, in fact, a perfectly good template system available in the standard libraries, in the string
module. Just take a look at the Template class, for example.

258 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Other Interesting Standard Modules
Even though this chapter has covered a lot of material, I have barely scratched the surface of
the standard libraries. To tempt you to dive in, I’ll quickly mention a few more cool libraries:

functools: Here, you can find functionality that lets you use a function with only some of
its parameters (partial evaluation), filling in the remaining ones at a later time. In Python
3.0, this is where you will find filter and reduce.

difflib: This library enables you to compute how similar two sequences are. It also
enables you to find the sequences (from a list of possibilities) that are “most similar” to
an original sequence you provide. difflib could be used to create a simple searching pro-
gram, for example.

hashlib: With this module, you can compute small “signatures” (numbers) from strings.
And if you compute the signatures for two different strings, you can be almost certain that
the two signatures will be different. You can use this on large text files. These modules have
several uses in cryptography and security.5

csv: CSV is short for comma-separated values, a simple format used by many applications
(for example, many spreadsheets and database programs) to store tabular data. It is
mainly used when exchanging data between different programs. The csv module lets you
read and write CSV files easily, and it handles some of the trickier parts of the format quite
transparently.

timeit, profile, and trace: The timeit module (with its accompanying command-line
script) is a tool for measuring the time a piece of code takes to run. It has some tricks up its
sleeve, and you probably ought to use it rather than the time module for performance
measurements. The profile module (along with its companion module, pstats) can be
used for a more comprehensive analysis of the efficiency of a piece of code. The trace
module (and program) can give you a coverage analysis (that is, which parts of your code
are executed and which are not). This can be useful when writing test code, for example.

datetime: If the time module isn’t enough for your time-tracking needs, it’s quite possible
that datetime will be. It has support for special date and time objects, and allows you to
construct and combine these in various ways. The interface is in many ways a bit more
intuitive than that of the time module.

itertools: Here, you have a lot of tools for creating and combining iterators (or other iter-
able objects). There are functions for chaining iterables, for creating iterators that return
consecutive integers forever (similar to range, but without an upper limit), to cycle
through an iterable repeatedly, and other useful stuff.

logging: Simply using print statements to figure out what’s going on in your program can
be useful. If you want to keep track of things even without having a lot of debugging out-
put, you might write this information to a log file. This module gives you a standard set of
tools for managing one or more central logs, with several levels of priority for your log mes-
sages, among other things.

5. See also the md5 and sha modules.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 259

getopt and optparse: In UNIX, command-line programs are often run with various options
or switches. (The Python interpreter is a typical example.) These will all be found in
sys.argv, but handling these correctly yourself is far from easy. The getopt library is a
tried-and-true solution to this problem, while optparse is newer, more powerful, and
much easier to use.

cmd: This module enables you to write a command-line interpreter, somewhat like the
Python interactive interpreter. You can define your own commands that the user can exe-
cute at the prompt. Perhaps you could use this as the user interface to one of your
programs?

A Quick Summary
In this chapter, you’ve learned about modules: how to create them, how to explore them, and
how to use some of those included in the standard Python libraries.

Modules: A module is basically a subprogram whose main function is to define things,
such as functions, classes, and variables. If a module contains any test code, it should
be placed in an if statement that checks whether __name__=='__main__'. Modules can be
imported if they are in the PYTHONPATH. You import a module stored in the file foo.py with
the statement import foo.

Packages: A package is just a module that contains other modules. Packages are imple-
mented as directories that contain a file named __init__.py.

Exploring modules: After you have imported a module into the interactive interpreter, you
can explore it in many ways. Among them are using dir, examining the __all__ variable,
and using the help function. The documentation and the source code can also be excellent
sources of information and insight.

The standard library: Python comes with several modules included, collectively called the
standard library. Some of these were reviewed in this chapter:

• sys: A module that gives you access to several variables and functions that are tightly
linked with the Python interpreter.

• os: A module that gives you access to several variables and functions that are tightly
linked with the operating system.

• fileinput: A module that makes it easy to iterate over the lines of several files or
streams.

• sets, heapq, and deque: Three modules that provide three useful data structures. Sets
are also available in the form of the built-in type set.

• time: A module for getting the current time, and for manipulating and formatting
times and dates.

260 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

• random: A module with functions for generating random numbers, choosing random
elements from a sequence, and shuffling the elements of a list.

• shelve: A module for creating a persistent mapping, which stores its contents in a
database with a given file name.

• re: A module with support for regular expressions.

If you are curious to find out more about modules, I again urge you to browse the Python
Library Reference (http://python.org/doc/lib). It’s really interesting reading.

New Functions in This Chapter

What Now?
If you have grasped at least a few of the concepts in this chapter, your Python prowess has
probably taken a great leap forward. With the standard libraries at your fingertips, Python
changes from powerful to extremely powerful. With what you have learned so far, you can write
programs to tackle a wide range of problems. In the next chapter, you learn more about using
Python to interact with the outside world of files and networks, and thereby tackle problems of
greater scope.

Function Description

dir(obj) Returns an alphabetized list of attribute names

help([obj]) Provides interactive help or help about a specific object

reload(module) Returns a reloaded version of a module that has already been
imported. To be abolished in Python 3.0.

261

■ ■ ■

C H A P T E R 1 1

Files and Stuff

So far, we’ve mainly been working with data structures that reside in the interpreter itself.
What little interaction our programs have had with the outside world has been through input,
raw_input, and print. In this chapter, we go one step further and let our programs catch a
glimpse of a larger world: the world of files and streams. The functions and objects described
in this chapter will enable you to store data between program invocations and to process data
from other programs.

Opening Files
You can open files with the open function, which has the following syntax:

open(name[, mode[, buffering]])

The open function takes a file name as its only mandatory argument, and returns a file
object. The mode and buffering arguments are both optional and will be explained in the fol-
lowing sections.

Assuming that you have a text file (created with your text editor, perhaps) called somefile.txt
stored in the directory C:\text (or something like ~/text in UNIX), you can open it like this:

>>> f = open(r'C:\text\somefile.txt')

If the file doesn’t exist, you may see an exception traceback like this:

Traceback (most recent call last):
 File "<pyshell#0>", line 1, in ?
IOError: [Errno 2] No such file or directory: "C:\\text\\somefile.txt"

You’ll see what you can do with such file objects in a little while, but first, let’s take a look
at the other two arguments of the open function.

File Modes
If you use open with only a file name as a parameter, you get a file object you can read from. If
you want to write to the file, you must state that explicitly, supplying a mode. (Be patient—I get
to the actual reading and writing in a little while.) The mode argument to the open function can
have several values, as summarized in Table 11-1.

262 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

Table 11-1. Most Common Values for the Mode Argument of the open Function

Explicitly specifying read mode has the same effect as not supplying a mode string at all.
The write mode enables you to write to the file.

The '+' can be added to any of the other modes to indicate that both reading and writing is
allowed. So, for example, 'r+' can be used when opening a text file for reading and writing. (For
this to be useful, you will probably want to use seek as well; see the sidebar “Random Access”
later in this chapter.)

The 'b' mode changes the way the file is handled. Generally, Python assumes that you
are dealing with text files (containing characters). Typically, this is not a problem. But if you are
processing some other kind of file (called a binary file) such as a sound clip or an image, you
should add a 'b' to your mode: for example, 'rb' to read a binary file.

Value Description

'r' Read mode

'w' Write mode

'a' Append mode

'b' Binary mode (added to other mode)

'+' Read/write mode (added to other mode)

WHY USE BINARY MODE?

If you use binary mode when you read (or write) a file, things won’t be much different. You are still able to read
a number of bytes (basically the same as characters), and perform other operations associated with text files.
The main point is that when you use binary mode, Python gives you exactly the contents found in the file—
and in text mode, it won’t necessarily do that.

If you find it shocking that Python manipulates your text files, don’t worry. The only “trick” it employs is
to standardize your line endings. Generally, in Python, you end your lines with a newline character (\n), as is
the norm in UNIX systems. This is not standard in Windows, however. In Windows, a line ending is marked with
\r\n. To hide this from your program (so it can work seamlessly across different platforms), Python does
some automatic conversion here. When you read text from a file in text mode in Windows, it converts \r\n to
\n. Conversely, when you write text to a file in text mode in Windows, it converts \n to \r\n. (The Macintosh
version does the same thing, but converts between \n and \r.)

The problem occurs when you work with a binary file, such as a sound clip. It may contain bytes that can
be interpreted as the line-ending characters mentioned in the previous paragraph, and if you are using text
mode, Python performs its automatic conversion. However, that will probably destroy your binary data. So, to
avoid that, you simply use binary mode, and no conversions are made.

Note that this distinction is not important on platforms (such as UNIX) where the newline character is the
standard line terminator, because no conversion is performed there anyway.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 263

■Note Files can be opened in universal newline support mode, using the mode character U together with,
for example, r. In this mode, all line-ending characters/strings (\r\n, \r, or \n) are then converted to newline
characters (\n), regardless of which convention is followed on the current platform.

Buffering
The open function takes a third (optional) parameter, which controls the buffering of the file. If
the parameter is 0 (or False), input/output (I/O) is unbuffered (all reads and writes go directly
from/to the disk); if it is 1 (or True), I/O is buffered (meaning that Python may use memory
instead of disk space to make things go faster, and only update when you use flush or close—
see the section “Closing Files,” later in this chapter). Larger numbers indicate the buffer size (in
bytes), while –1 (or any negative number) sets the buffer size to the default.

The Basic File Methods
Now you know how to open files. The next step is to do something useful with them. In this
section, you learn about some basic methods of file objects (and some other file-like objects,
sometimes called streams).

■Note You will probably run into the term file-like repeatedly in your Python career (I’ve used it a few times
already). A file-like object is simply one supporting a few of the same methods as a file, most notably either
read or write or both. The objects returned by urllib.urlopen (see Chapter 14) are a good example of
this. They support methods such as read, readline, and readlines, but not (at the time of writing) meth-
ods such as isatty, for example.

THREE STANDARD STREAMS

In Chapter 10, in the section about the sys module, I mentioned three standard streams. These are actually
files (or file-like objects), and you can apply most of what you learn about files to them.

A standard source of data input is sys.stdin. When a program reads from standard input, you can
supply text by typing it, or you can link it with the standard output of another program, using a pipe, as dem-
onstrated in the section “Piping Output.” (This is a standard UNIX concept.)

The text you give to print appears in sys.stdout. The prompts for input and raw_input also go
there. Data written to sys.stdout typically appears on your screen, but can be rerouted to the standard input
of another program with a pipe, as mentioned.

Error messages (such as stack traces) are written to sys.stderr. In many ways, it is similar to
sys.stdout.

264 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

Reading and Writing
The most important capabilities of files (or streams) are supplying and receiving data. If you
have a file-like object named f, you can write data (in the form of a string) with the method
f.write, and read data (also as a string) with the method f.read.

Each time you call f.write(string), the string you supply is written to the file after those
you have written previously:

>>> f = open('somefile.txt', 'w')
>>> f.write('Hello, ')
>>> f.write('World!')
>>> f.close()

Notice that I call the close method when I’m finished with the file. You learn more about
it in the section “Closing Your Files” later in this chapter.

Reading is just as simple. Just remember to tell the stream how many characters (bytes)
you want to read.

Here’s an example (continuing where I left off):

>>> f = open('somefile.txt', 'r')
>>> f.read(4)
'Hell'
>>> f.read()
'o, World!'

First, I specify how many characters to read (4), and then I simply read the rest of the file
(by not supplying a number). Note that I could have dropped the mode specification from the
call to open because 'r' is the default.

Piping Output
In a UNIX shell (such as GNU bash), you can write several commands after one another, linked
together with pipes, as in this example (assuming GNU bash):

$ cat somefile.txt | python somescript.py | sort

■Note GNU bash is also available in Windows. For more information, visit http://www.cygwin.com. In
Mac OS X, the shell is available out of the box, through the Terminal application, for example.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 265

This pipeline consists of three commands:

• cat somefile.txt: This command simply writes the contents of the file somefile.txt to
standard output (sys.stdout).

• python somescript.py: This command executes the Python script somescript. The script
presumably reads from its standard input and writes the result to standard output.

• sort: This command reads all the text from standard input (sys.stdin), sorts the lines
alphabetically, and writes the result to standard output.

But what is the point of these pipe characters (|), and what does somescript.py do?
The pipes link up the standard output of one command with the standard input of the

next. Clever, eh? So you can safely guess that somescript.py reads data from its sys.stdin
(which is what cat somefile.txt writes) and writes some result to its sys.stdout (which is
where sort gets its data).

A simple script (somescript.py) that uses sys.stdin is shown in Listing 11-1. The contents
of the file somefile.txt are shown in Listing 11-2.

Listing 11-1. Simple Script That Counts the Words in sys.stdin

somescript.py
import sys
text = sys.stdin.read()
words = text.split()
wordcount = len(words)
print 'Wordcount:', wordcount

Listing 11-2. A File Containing Some Nonsensical Text

Your mother was a hamster and your
father smelled of elderberries.

Here are the results of cat somefile.txt | python somescript.py:

Wordcount: 11

266 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

Reading and Writing Lines
Actually, what I’ve been doing until now is a bit impractical. Usually, I could just as well be
reading in the lines of a stream as reading letter by letter. You can read a single line (text from
where you have come so far, up to and including the first line separator you encounter) with
the method file.readline. You can either use it without any arguments (in which case a line is
simply read and returned) or with a nonnegative integer, which is then the maximum number
of characters (or bytes) that readline is allowed to read. So if someFile.readline() returns
'Hello, World!\n', someFile.readline(5) returns 'Hello'. To read all the lines of a file and
have them returned as a list, use the readlines method.

RANDOM ACCESS

In this chapter, I treat files only as streams—you can read data only from start to finish, strictly in order. In
fact, you can also move around a file, accessing only the parts you are interested in (called random access)
by using the two file-object methods seek and tell.

The method seek(offset[, whence]) moves the current position (where reading or writing is per-
formed) to the position described by offset and whence. offset is a byte (character) count. whence
defaults to 0, which means that the offset is from the beginning of the file (the offset must be nonnegative).
whence may also be set to 1 (move relative to current position; the offset may be negative), or 2 (move relative
to the end of the file). Consider this example:

>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.write('01234567890123456789')
>>> f.seek(5)
>>> f.write('Hello, World!')
>>> f.close()
>>> f = open(r'c:\text\somefile.txt')
>>> f.read()
'01234Hello, World!89'

The method tell() returns the current file position, as in the following example:

>>> f = open(r'c:\text\somefile.txt')
>>> f.read(3)
'012'
>>> f.read(2)
'34'
>>> f.tell()
5L

Note that the number returned from f.tell in this case was a long integer. That may not always be
the case.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 267

The method writelines is the opposite of readlines: give it a list (or, in fact, any sequence
or iterable object) of strings, and it writes all the strings to the file (or stream). Note that new-
lines are not added; you need to add those yourself. Also, there is no writeline method because
you can just use write.

■Note On platforms that use other line separators, substitute “carriage return” (Mac) or “carriage return
and newline” (Windows) for “newline” (as determined by os.linesep).

Closing Files
You should remember to close your files by calling their close method. Usually, a file object is
closed automatically when you quit your program (and possibly before that), and not closing
files you have been reading from isn’t really that important. However, closing those files can’t
hurt, and might help to avoid keeping the file uselessly “locked” against modification in some
operating systems and settings. It also avoids using up any quotas for open files your system
might have.

You should always close a file you have written to because Python may buffer (keep stored
temporarily somewhere, for efficiency reasons) the data you have written, and if your program
crashes for some reason, the data might not be written to the file at all. The safe thing is to close
your files after you’re finished with them.

If you want to be certain that your file is closed, you should use a try/finally statement
with the call to close in the finally clause:

Open your file here
try:
 # Write data to your file
finally:
 file.close()

There is, in fact, a statement designed specifically for this situation (introduced in Python
2.5)—the with statement:

with open("somefile.txt") as somefile:
 do_something(somefile)

The with statement lets you open a file and assign it to a variable name (in this case,
soefile). You then write data to your file (and, perhaps, do other things) in the body of the
statement, and the file is automatically closed when the end of the statement is reached, even
if that is caused by an exception.

In Python 2.5, the with statement is available only after the following import:

from __future__ import with_statement

In later versions, the statement is always available.

268 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

■Tip After writing something to a file, you usually want the changes to appear in that file, so other programs
reading the same file can see the changes. Well, isn’t that what happens, you say? Not necessarily. As men-
tioned, the data may be buffered (stored temporarily somewhere in memory), and not written until you close
the file. If you want to keep working with the file (and not close it) but still want to make sure the file on disk
is updated to reflect your changes, call the file object’s flush method. (Note, however, that flush might not
allow other programs running at the same time to access the file, due to locking considerations that depend
on your operating system and settings. Whenever you can conveniently close the file, that is preferable.)

Using the Basic File Methods
Assume that somefile.txt contains the text in Listing 11-3. What can you do with it?

Listing 11-3. A Simple Text File

Welcome to this file
There is nothing here except
This stupid haiku

Let’s try the methods you know, starting with read(n):

>>> f = open(r'c:\text\somefile.txt')
>>> f.read(7)
'Welcome'
>>> f.read(4)
' to '
>>> f.close()

CONTEXT MANAGERS

The with statement is actually a quite general construct, allowing you to use so-called context managers. A
context manager is an object that supports two methods: __enter__ and __exit__.

The __enter__ method takes no arguments. It is called when entering the with statement, and the
return value is bound to the variable after the as keyword.

The __exit__ method takes three arguments: an exception type, an exception object, and an exception
traceback. It is called when leaving the method (with any exception raised supplied through the parameters).
If __exit__ returns false, any exceptions are suppressed.

Files may be used as context managers. Their __enter__ methods return the file objects themselves,
while their __exit__ methods close the files. For more information about this powerful, yet rather advanced,
feature, check out the description of context managers in the Python Reference Manual. Also see the sections
on context manager types and on contextlib in the Python Library Reference.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 269

Next up is read():

>>> f = open(r'c:\text\somefile.txt')
>>> print f.read()
Welcome to this file
There is nothing here except
This stupid haiku
>>> f.close()

Here’s readline():

>>> f = open(r'c:\text\somefile.txt')
>>> for i in range(3):
 print str(i) + ': ' + f.readline(),
0: Welcome to this file
1: There is nothing here except
2: This stupid haiku
>>> f.close()

And here’s readlines():

>>> import pprint
>>> pprint.pprint(open(r'c:\text\somefile.txt').readlines())
['Welcome to this file\n',
'There is nothing here except\n',
'This stupid haiku']

Note that I relied on the file object being closed automatically in this example.
Now let’s try writing, beginning with write(string):

>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.write('this\nis no\nhaiku')
>>> f.close()

After running this, the file contains the text in Listing 11-4.

Listing 11-4. The Modified Text File

this
is no
haiku

Finally, here’s writelines(list):

>>> f = open(r'c:\text\somefile.txt')
>>> lines = f.readlines()
>>> f.close()
>>> lines[1] = "isn't a\n"
>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.writelines(lines)
>>> f.close()

270 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

After running this, the file contains the text in Listing 11-5.

Listing 11-5. The Text File, Modified Again

this
isn't a
haiku

Iterating over File Contents
Now you’ve seen some of the methods file objects present to us, and you’ve learned how to
acquire such file objects. One of the common operations on files is to iterate over their con-
tents, repeatedly performing some action as you go. There are many ways of doing this, and
you can certainly just find your favorite and stick to that. However, others may have done it dif-
ferently, and to understand their programs, you should know all the basic techniques. Some of
these techniques are just applications of the methods you’ve already seen (read, readline, and
readlines); others I’ll introduce here (for example, xreadlines and file iterators).

In all the examples in this section, I use a fictitious function called process to represent the
processing of each character or line. Feel free to implement it in any way you like. Here’s one
simple example:

def process(string):
 print 'Processing: ', string

More useful implementations could do such things as storing data in a data structure,
computing a sum, replacing patterns with the re module, or perhaps adding line numbers.

Also, to try out the examples, you should set the variable filename to the name of some
actual file.

Doing It Byte by Byte
One of the most basic (but probably least common) ways of iterating over file contents is to use
the read method in a while loop. For example, you might want to loop over every character
(byte) in the file. You could do that as shown in Listing 11-6.

Listing 11-6. Looping over Characters with read

f = open(filename)
char = f.read(1)
while char:
 process(char)
 char = f.read(1)
f.close()

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 271

This program works because when you have reached the end of the file, the read method
returns an empty string, but until then, the string always contains one character (and thus has
the Boolean value true). As long as char is true, you know that you aren’t finished yet.

As you can see, I have repeated the assignment char = f.read(1), and code repetition is gen-
erally considered a bad thing. (Laziness is a virtue, remember?) To avoid that, I can use the while
True/break technique introduced in Chapter 5. The resulting code is shown in Listing 11-7.

Listing 11-7. Writing the Loop Differently

f = open(filename)
while True:
 char = f.read(1)
 if not char: break
 process(char)
f.close()

As mentioned in Chapter 5, you shouldn’t use the break statement too often (because it
tends to make the code more difficult to follow). Even so, the approach shown in Listing 11-7 is
usually preferred to that in Listing 11-6, precisely because you avoid duplicated code.

One Line at a Time
When dealing with text files, you are often interested in iterating over the lines in the file, not
each individual character. You can do this easily in the same way as we did with characters,
using the readline method (described earlier, in the section “Reading and Writing Lines”), as
shown in Listing 11-8.

Listing 11-8. Using readline in a while Loop

f = open(filename)
while True:
 line = f.readline()
 if not line: break
 process(line)
f.close()

Reading Everything
If the file isn’t too large, you can just read the whole file in one go, using the read method with
no parameters (to read the entire file as a string), or the readlines method (to read the file into
a list of strings, in which each string is a line). Listings 11-9 and 11-10 show how easy it is to iter-
ate over characters and lines when you read the file like this. Note that reading the contents of
a file into a string or a list like this can be useful for other things besides iteration. For example,
you might apply a regular expression to the string, or you might store the list of lines in some
data structure for further use.

272 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

Listing 11-9. Iterating over Characters with read

f = open(filename)
for char in f.read():
 process(char)
f.close()

Listing 11-10. Iterating over Lines with readlines

f = open(filename)
for line in f.readlines():
 process(line)
f.close()

Lazy Line Iteration with fileinput
Sometimes you need to iterate over the lines in a very large file, and readlines would use too
much memory. You could use a while loop with readline, of course, but in Python, for loops
are preferable when they are available. It just so happens that they are in this case. You can use
a method called lazy line iteration—it’s lazy because it reads only the parts of the file actually
needed (more or less).

You have already encountered fileinput in Chapter 10. Listing 11-11 shows how you
might use it. Note that the fileinput module takes care of opening the file. You just need to
give it a file name.

Listing 11-11. Iterating over Lines with fileinput

import fileinput
for line in fileinput.input(filename):
 process(line)

■Note In older code, you may also see lazy line iteration performed using the xreadlines method.
It works almost like readlines except that it doesn’t read all the lines into a list. Instead it creates an
xreadlines object. Note that xreadlines is somewhat old-fashioned, and you should instead use
fileinput or file iterators (explained next) in your own code.

File Iterators
It’s time for the coolest (and, perhaps, the most common) technique of all. If Python had had
this since the beginning, I suspect that several of the other methods (at least xreadlines) would
never have appeared. So what is this cool technique? In current versions of Python (from ver-
sion 2.2), files are iterable, which means that you can use them directly in for loops to iterate
over their lines. See Listing 11-12 for an example. Pretty elegant, isn’t it?

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 273

Listing 11-12. Iterating over a File

f = open(filename)
for line in f:
 process(line)
f.close()

In these iteration examples, I have explicitly closed my files. Although this is generally a
good idea, it’s not critical, as long as I don’t write to the file. If you are willing to let Python take
care of the closing, you could simplify the example even further, as shown in Listing 11-13.
Here, I don’t assign the opened file to a variable (like the variable f I’ve used in the other exam-
ples), and therefore I have no way of explicitly closing it.

Listing 11-13. Iterating over a File Without Storing the File Object in a Variable

for line in open(filename):
 process(line)

Note that sys.stdin is iterable, just like other files, so if you want to iterate over all the lines
in standard input, you can use this form:

import sys
for line in sys.stdin:
 process(line)

Also, you can do all the things you can do with iterators in general, such as converting
them into lists of strings (by using list(open(filename))), which would simply be equivalent
to using readlines.

Consider the following example:

>>> f = open('somefile.txt', 'w')
>>> f.write('First line\n')
>>> f.write('Second line\n')
>>> f.write('Third line\n')
>>> f.close()
>>> lines = list(open('somefile.txt)')
>>> lines
['First line\n', 'Second line\n', 'Third line\n']
>>> first, second, third = open('somefile.txt')
>>> first
'First line\n'
>>> second
'Second line\n'
>>> third
'Third line\n'

274 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

In this example, it’s important to note the following:

• I’ve used print to write to the file. This automatically adds newlines after the strings
I supply.

• I use sequence unpacking on the opened file, putting each line in a separate variable.
(This isn’t exactly common practice because you usually won’t know the number of lines
in your file, but it demonstrates the “iterability” of the file object.)

• I close the file after having written to it, to ensure that the data is flushed to disk. (As you
can see, I haven’t closed it after reading from it. Sloppy, perhaps, but not critical.)

A Quick Summary
In this chapter, you’ve seen how to interact with the environment through files and file-like
objects, one of the most important techniques for I/O in Python. Here are some of the high-
lights from the chapter:

File-like objects: A file-like object is (informally) an object that supports a set of methods
such as read and readline (and possibly write and writelines).

Opening and closing files: You open a file with the open function (in newer versions of
Python, actually just an alias for file), by supplying a file name. If you want to make sure
your file is closed, even if something goes wrong, you can use the with statement.

Modes and file types: When opening a file, you can also supply a mode, such as 'r' for read
mode or 'w' for write mode. By appending 'b' to your mode, you can open files as binary
files. (This is necessary only on platforms where Python performs line-ending conversion,
such as Windows, but might be prudent elsewhere, too.)

Standard streams: The three standard files (stdin, stdout, and stderr, found in the sys
module) are file-like objects that implement the UNIX standard I/O mechanism (also
available in Windows).

Reading and writing: You read from a file or file-like object using the method read. You
write with the method write.

Reading and writing lines: You can read lines from a file using readline, readlines, and
(for efficient iteration) xreadlines. You can write files with writelines.

Iterating over file contents: There are many ways of iterating over file contents. It is most
common to iterate over the lines of a text file, and you can do this by simply iterating over
the file itself. There are other methods too, such as readlines and xreadlines, that are
compatible with older versions of Python.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 275

New Functions in This Chapter

What Now?
So now you know how to interact with the environment through files, but what about interact-
ing with the user? So far we’ve used only input, raw_input, and print, and unless the user writes
something in a file that your program can read, you don’t really have any other tools for creat-
ing user interfaces. That changes in the next chapter, where I cover graphical user interfaces,
with windows, buttons, and so on.

Function Description

file(name[, mode[, buffering]]) Opens a file and returns a file object.

open(name[, mode[, buffering]]) Alias for file; use open rather than file when opening a file.

277

■ ■ ■

C H A P T E R 1 2

Graphical User Interfaces

In this chapter, you learn how to make graphical user interfaces (GUIs) for your Python pro-
grams—you know, windows with buttons and text fields and stuff like that. Pretty cool, huh?

Plenty of so-called “GUI toolkits” are available for Python, but none of them is recognized
as the standard GUI toolkit. This has its advantages (greater freedom of choice) and drawbacks
(others can’t use your programs unless they have the same GUI toolkit installed). Fortunately,
there is no conflict between the various GUI toolkits available for Python, so you can install as
many different GUI toolkits as you want.

This chapter gives a brief introduction to one of the most mature cross-platform GUI
toolkits for Python, called wxPython. For a more thorough introduction to wxPython program-
ming, consult the official documentation (http://wxpython.org). For some more information
about GUI programming, see Chapter 28.

A Plethora of Platforms
Before writing a GUI program in Python, you need to decide which GUI platform you want to
use. Simply put, a platform is one specific set of graphical components, accessible through a
given Python module, called a GUI toolkit. As noted earlier, many such toolkits are available for
Python. Some of the most popular ones are listed in Table 12-1. For an even more detailed list,
you could search the Vaults of Parnassus (http://py.vaults.ca/) for the keyword “GUI.” An
extensive list of toolkits can also be found in the Python Wiki (http://wiki.python.org/moin/
GuiProgramming), and Guilherme Polo has written a paper comparing four major platforms.1

Table 12-1. Some Popular GUI Toolkits Available for Python

1. “PyGTK, PyQt, Tkinter and wxPython comparison,” The Python Papers, Volume 3, Issue 1, pages 26–37.
Available from http://pythonpapers.org.

Package Description Web Site

Tkinter Uses the Tk platform.
Readily available.
Semistandard.

http://wiki.python.org/moin/TkInter

wxPython Based on wxWindows.
Cross-platform. Increas-
ingly popular.

http://wxpython.org

Continued

278 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Table 12-1. Continued

So which GUI toolkit should you use? It is largely a matter of taste, although each toolkit
has its advantages and drawbacks. Tkinter is sort of a de facto standard because it has been
used in most “official” Python GUI programs, and it is included as a part of the Windows binary
distribution. On UNIX, however, you need to compile and install it yourself. I’ll cover Tkinter,
as well as Java Swing, in the section “But I’d Rather Use . . .” later in this chapter.

Another toolkit that is gaining in popularity is wxPython. This is a mature and feature-rich
toolkit, which also happens to be the favorite of Python’s creator, Guido van Rossum. We’ll use
wxPython for this chapter’s example.

For information about PythonWin, PyGTK, and PyQt, check out the project home pages
(see Table 12-1).

Downloading and Installing wxPython
To download wxPython, simply visit the download page, http://wxpython.org/download.php.
This page gives you detailed instructions about which version to download, as well as the pre-
requisites for the various versions.

If you’re running Windows, you probably want a prebuilt binary. You can choose between
one version with Unicode support and one without; unless you know you need Unicode, it
probably won’t make much of a difference which one you choose. Make sure you choose the
binary that corresponds to your version of Python. A version of wxPython compiled for Python
2.3 won’t work with Python 2.4, for example.

For Mac OS X, you should again choose the wxPython version that agrees with your Python
version. You might also need to take the OS version into consideration. Again, you may need to
choose between a version with Unicode support and one without; just take your pick. The down-
load links and associated explanations should make it perfectly clear which version you need.

Package Description Web Site

PythonWin Windows only. Uses native
Windows GUI capabilities.

http://starship.python.net/crew/mhammond

Java Swing Jython only. Uses native
Java GUI capabilities.

http://java.sun.com/docs/books/tutorial/uiswing

PyGTK Uses the GTK platform.
Especially popular on
Linux.

http://pygtk.org

PyQt Uses the Qt platform.
Cross-platform.

http://wiki.python.org/moin/PyQt

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 279

If you’re using Linux, you could check to see if your package manager has wxPython. It
should be present in most mainstream distributions. There are also RPM packages for various
flavors of Linux. If you’re running a Linux distribution with RPM, you should at least download
the wxPython common and runtime packages; you probably won’t need the devel package.
Again, choose the version corresponding to your Python version and Linux distribution.

If none of the binaries fit your hardware or operating system (or Python version, for that
matter), you can always download the source distribution. Getting this to compile might
require downloading other source packages for various prerequisites. You’ll find fairly detailed
explanations on the wxPython download page.

Once you have wxPython itself, I strongly suggest that you download the demo distribution,
which contains documentation, sample programs, and one very thorough (and instructive)
demo program. This demo program exercises most of the wxPython features, and lets you see the
source code for each portion in a very user-friendly manner—definitely worth a look if you want
to keep learning about wxPython on your own.

Installation should be fairly automatic and painless. To install Windows binaries, simply
run the downloaded executables (.exe files). In OS X, the downloaded file should appear as if it
were a CD-ROM that you can open, with a .pkg you can double-click. To install using RPM,
consult your RPM documentation. Both the Windows and Mac OS X versions will start an
installation wizard, which should be simple to follow. Simply accept all default settings, keep
clicking Continue, and, finally, click Finish.

To see whether your installation works, you could try out the wxPython demo (which must
be installed separately). In Windows, it should be available in your Start menu. When installing
it in OS X, you could simply drag the wxPython Demo file to Applications, and then run it from
there later. Once you’ve finished playing with the demo (for now, anyway), you can get started
writing your own program, which is, of course, much more fun.

Building a Sample GUI Application
To demonstrate using wxPython, I will show you how to build a simple GUI application. Your
task is to write a basic program that enables you to edit text files. We aren’t going to write a full-
fledged text editor, but instead stick to the essentials. After all, the goal is to demonstrate the
basic mechanisms of GUI programming in Python.

The requirements for this minimal text editor are as follows:

• It must allow you to open text files, given their file names.

• It must allow you to edit the text files.

• It must allow you to save the text files.

• It must allow you to quit.

280 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

When writing a GUI program, it’s often useful to draw a sketch of how you want it to look.
Figure 12-1 shows a simple layout that satisfies the requirements for our text editor.

Figure 12-1. A sketch of the text editor

The elements of the interface can be used as follows:

• Type a file name in the text field to the left of the buttons and click Open to open a file.
The text contained in the file is put in the text field at the bottom.

• You can edit the text to your heart’s content in the large text field.

• If and when you want to save your changes, click the Save button, which again uses the text
field containing the file name, and writes the contents of the large text field to the file.

• There is no Quit button. If you close the window, the program quits.

In some languages, writing a program like this is a daunting task, but with Python and the
right GUI toolkit, it’s really a piece of cake. (You may not agree with me right now, but by the
end of this chapter, I hope you will.)

Getting Started
To get started, import the wx module:

import wx

There are several ways of writing wxPython programs, but one thing you can’t escape is
creating an application object. The basic application class is called wx.App, and it takes care of
all kinds of initialization behind the scenes. The simplest wxPython program would be some-
thing like this:

import wx
app = wx.App()
app.MainLoop()

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 281

■Note If you’re having trouble getting wx.App to work, you may want to try to replace it with
wx.PySimpleApp.

Because there are no windows the user can interact with, the program exits immediately.
As you can see from this example, the methods in the wx package are written with an initial

uppercase character, contrary to common practice in Python. The reason for this is that the
method names mirror method names from the underlying C++ package, wxWidgets. Even
though there is no formal rule against initial cap method or function names, the norm is to
reserve such names for classes.

Windows and Components
Windows, also known as frames, are simply instances of the wx.Frame class. Widgets in the wx
framework are created with their parent as the first argument to their constructor. If you’re creat-
ing an individual window, there will be no parent to consider, so simply use None, as you see in
Listing 12-1. Also, make sure you call the window’s Show method before you call app.MainLoop;
otherwise, it will remain hidden. (You could also call win.Show in an event handler, as discussed a
bit later.)

Listing 12-1. Creating and Showing a Frame

import wx
app = wx.App()
win = wx.Frame(None)
win.Show()
app.MainLoop()

If you run this program, you should see a single window appear, similar to that in Figure 12-2.

Figure 12-2. A GUI program with only one window

Adding a button to this frame is about as simple as it can be—simply instantiate wx.Button,
using win as the parent argument, as shown in Listing 12-2.

282 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Listing 12-2. Adding a Button to a Frame

import wx
app = wx.App()
win = wx.Frame(None)
btn = wx.Button(win)
win.Show()
app.MainLoop()

This will give you a window with a single button, as shown in Figure 12-3.

Figure 12-3. The program after adding a button

This certainly is quite rough. The window has no title, the button has no label, and you
probably don’t want the button to cover the entire window in this way.

Labels, Titles, and Positions
You can set the labels of widgets when you create them, by using the label argument of the
constructor. Similarly, you can set the titles of frames by using the title argument. I find it
most practical to use keyword arguments with the wx constructors, so I don’t need to remem-
ber their order. You can see an example of this in Listing 12-3.

Listing 12-3. Adding Labels and Titles with Keyword Arguments

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor")

loadButton = wx.Button(win, label='Open')

saveButton = wx.Button(win, label='Save')

win.Show()

app.MainLoop()

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 283

The result of running this program should be something like what you see in Figure 12-4.

Figure 12-4. A window with layout problems

Something isn’t quite right about this version of the program: one button seems to be
missing! Actually, it’s not missing—it’s just hiding. By placing the buttons more carefully, you
should be able to uncover the hidden button. A very basic (and not very practical) method is to
simply set positions and size by using the pos and size arguments to the constructors, as in the
code presented in Listing 12-4.

Listing 12-4. Setting Button Positions

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))
win.Show()

loadButton = wx.Button(win, label='Open',
 pos=(225, 5), size=(80, 25))

saveButton = wx.Button(win, label='Save',
 pos=(315, 5), size=(80, 25))

filename = wx.TextCtrl(win, pos=(5, 5), size=(210, 25))

contents = wx.TextCtrl(win, pos=(5, 35), size=(390, 260),
 style=wx.TE_MULTILINE | wx.HSCROLL)

app.MainLoop()

As you can see, both position and size are pairs of numbers. The position is a pair of x and
y coordinates, while the size consists of width and height.

This piece of code has a couple other new things: I’ve created a couple of text controls
(wx.TextCtrl objects) and given one of them a custom style. The default text control is a text
field, with a single line of editable text, and no scroll bar. In order to create a text area, you
can simply tweak the style with the style parameter. The style is actually a single integer, but

284 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

you don’t need to specify it directly. Instead, you use bitwise OR (the pipe) to combine various
style facets that are available under special names from the wx module. In this case, I’ve com-
bined wx.TE_MULTILINE, to get a multiline text area (which, by default, has a vertical scroll bar),
and wx.HSCROLL, to get a horizontal scroll bar. The result of running this program is shown in
Figure 12-5.

Figure 12-5. Properly positioned components

More Intelligent Layout
Although specifying the geometry of each component is easy to understand, it can be a bit
tedious. Doodling a bit on graph paper may help in getting the coordinates right, but there are
more serious drawbacks to this approach than having to play around with numbers. If you run
the program and try to resize the window, you’ll notice that the geometries of the components
don’t change. This is no disaster, but it does look a bit odd. When you resize a window, you
assume that its contents will be resized and relocated as well.

If you consider how I did the layout, this behavior shouldn’t really come as a surprise. I
explicitly set the position and size of each component, but didn’t say anything about how they
should behave when the window was resized. There are many ways of specifying this. One of
the easiest ways of doing layout in wx is using sizers, and the easiest one to use is wx.BoxSizer.

A sizer manages the size of contents. You simply add widgets to a sizer, together with a few lay-
out parameters, and then give this sizer the job of managing the layout of the parent component. In
our case, we’ll add a background component (a wx.Panel), create some nested wx.BoxSizers, and
then set the sizer of the panel with its SetSizer method, as shown in Listing 12-5.

Listing 12-5. Using a Sizer

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 285

bkg = wx.Panel(win)

loadButton = wx.Button(bkg, label='Open')
saveButton = wx.Button(bkg, label='Save')
filename = wx.TextCtrl(bkg)
contents = wx.TextCtrl(bkg, style=wx.TE_MULTILINE | wx.HSCROLL)

hbox = wx.BoxSizer()
hbox.Add(filename, proportion=1, flag=wx.EXPAND)
hbox.Add(loadButton, proportion=0, flag=wx.LEFT, border=5)
hbox.Add(saveButton, proportion=0, flag=wx.LEFT, border=5)

vbox = wx.BoxSizer(wx.VERTICAL)
vbox.Add(hbox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vbox.Add(contents, proportion=1,
 flag=wx.EXPAND | wx.LEFT | wx.BOTTOM | wx.RIGHT, border=5)

bkg.SetSizer(vbox)
win.Show()

app.MainLoop()

This code gives the same result as the previous program, but instead of using lots of abso-
lute coordinates, I am now placing things in relation to one another.

The constructor of the wx.BoxSizer takes an argument determining whether it’s horizontal
or vertical (wx.HORIZONTAL or wx.VERTICAL), with horizontal being the default. The Add method
takes several arguments. The proportion argument sets the proportions according to which
space is allocated when the window is resized. For example, in the horizontal box sizer (the first
one), the filename widget gets all of the extra space when resizing. If each of the three had its
proportion set to 1, each would get an equal share. You can set the proportion to any number.

The flag argument is similar to the style argument of the constructor. You construct it by
using bitwise OR between symbolic constants (integers that have special names). The
wx.EXPAND flag makes sure the component will expand into the allotted space. The wx.LEFT,
wx.RIGHT, wx.TOP, wx.BOTTOM, and wx.ALL flags determine on which sides the border argument
applies, and the border arguments gives the width of the border (spacing).

And that’s it. I’ve got the layout I wanted. One crucial thing is lacking, however. If you click
the buttons, nothing happens.

■Tip For more information about sizers, or anything else related to wxPython, check out the wxPython
demo. It has sample code for anything you might want to know about, and then some. If that seems daunting,
check out the wxPython web site, http://wxpython.org.

286 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Event Handling
In GUI lingo, the actions performed by the user (such as clicking a button) are called events.
You need to make your program notice these events somehow, and then react to them. You
accomplish this by binding a function to the widget where the event in question might occur.
When the event does occur (if ever), that function will then be called. You link the event han-
dler to a given event with a widget method called Bind.

Let’s assume that you have written a function responsible for opening a file, and you’ve
called it load. Then you can use that as an event handler for loadButton as follows:

loadButton.Bind(wx.EVT_BUTTON, load)

This is pretty intuitive, isn’t it? I’ve linked a function to the button—when the button is
clicked, the function is called. The symbolic constant wx.EVT_BUTTON signifies a button event.
The wx framework has such event constants for all kinds of events, from mouse motion to key-
board presses and more.

■Note There is nothing magical about my choice to use loadButton and load as the button and handler
names, even though the button text says “Open.” It’s just that if I had called the button openButton, open
would have been the natural name for the handler, and that would have made the built-in file-opening func-
tion open unavailable. While there are ways of dealing with this, I found it easier to use a different name.

The Finished Program
Let’s fill in the remaining blanks. All you need now are the two event handlers, load and save.
When an event handler is called, it receives a single event object as its only parameter, which
holds information about what happened. But let’s ignore that here, because you’re only inter-
ested in the fact that a click occurred.

Even though the event handlers are the meat of the program, they are surprisingly simple.
Let’s take a look at the load function first. It looks like this:

def load(event):
 file = open(filename.GetValue())
 contents.SetValue(file.read())
 file.close()

The file opening/reading part should be familiar from Chapter 11. As you can see, the file
name is found by using filename’s GetValue method (where filename is the small text field,
remember?). Similarly, to put the text into the text area, you simply use contents.SetValue.

The save function is just as simple. It’s the exact same as load, except that it has a 'w' and
a write for the file-handling part, and GetValue for the text area:

def save(event):
 file = open(filename.GetValue(), 'w')
 file.write(contents.GetValue())
 file.close()

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 287

And that’s it. Now I simply bind these to their respective buttons, and the program is ready
to run. See Listing 12-6 for the final program.

Listing 12-6. The Final GUI Program

import wx
def load(event):
 file = open(filename.GetValue())
 contents.SetValue(file.read())
 file.close()

def save(event):
 file = open(filename.GetValue(), 'w')
 file.write(contents.GetValue())
 file.close()

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))

bkg = wx.Panel(win)

loadButton = wx.Button(bkg, label='Open')
loadButton.Bind(wx.EVT_BUTTON, load)

saveButton = wx.Button(bkg, label='Save')
saveButton.Bind(wx.EVT_BUTTON, save)

filename = wx.TextCtrl(bkg)
contents = wx.TextCtrl(bkg, style=wx.TE_MULTILINE | wx.HSCROLL)

hbox = wx.BoxSizer()
hbox.Add(filename, proportion=1, flag=wx.EXPAND)
hbox.Add(loadButton, proportion=0, flag=wx.LEFT, border=5)
hbox.Add(saveButton, proportion=0, flag=wx.LEFT, border=5)

vbox = wx.BoxSizer(wx.VERTICAL)
vbox.Add(hbox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vbox.Add(contents, proportion=1,
 flag=wx.EXPAND | wx.LEFT | wx.BOTTOM | wx.RIGHT, border=5)

bkg.SetSizer(vbox)
win.Show()

app.MainLoop()

288 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

You can try out the editor using the following steps:

1. Run the program. You should get a window like the one in the previous runs.

2. Type something in the large text area (for example, “Hello, world!”).

3. Type a file name in the small text field (for example, hello.txt). Make sure that this file
does not already exist or it will be overwritten.

4. Click the Save button.

5. Close the editor window (just for fun).

6. Restart the program.

7. Type the same file name in the little text field.

8. Click the Open button. The text of the file should reappear in the large text area.

9. Edit the file to your heart’s content, and save it again.

Now you can keep opening, editing, and saving until you grow tired of that. Then you can
start thinking of improvements. How about allowing your program to download files with the
urllib module, for example?

You might also consider using more object-oriented design in your programs, of course.
For example, you may want to manage the main application as an instance of a custom appli-
cation class (a subclass of wx.App, perhaps?), and instead of setting up your layout at the top
level of your program, you could make a separate window class (a subclass of wx.Frame?). See
Chapter 28 for some examples.

But I’d Rather Use . . .
As you’ve learned, you can choose from many GUI toolkits for Python. Here, I will give you
some examples from a couple of the more popular ones: Tkinter and Jython/Swing.

To illustrate these toolkits, I’ve created a simple example—simpler, even, than the editor
example you just completed. It’s just a single window containing a single button with the label

HEY! WHAT ABOUT PYW?

In Windows, you could save your GUI programs with a .pyw ending. In Chapter 1, I asked you to give your file
this ending and double-click it (in Windows). Nothing happened then, and I promised to explain it later. In
Chapter 10, I mentioned it again, and said I would explain it in this chapter. So I will.

It’s no big deal, really. It’s just that when you double-click an ordinary Python script in Windows, a DOS
window appears with a Python prompt in it. That’s fine if you use print and raw_input as the basis of your
interface, but now that you know how to make GUIs, this DOS window will only be in your way. The truth
behind the .pyw window is that it will run Python without the DOS window, which is just perfect for GUI
programs.

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 289

“Hello” filling the window. When you click the button, it prints out the words “Hello, world!”
In the interest of simplicity, I’m not using any fancy layout features here. Here is a simple
wxPython version:

import wx

def hello(event):
 print "Hello, world!"

app = wx.App()

win = wx.Frame(None, title="Hello, wxPython!",
 size=(200, 100))
button = wx.Button(win, label="Hello")
button.Bind(wx.EVT_BUTTON, hello)

win.Show()
app.MainLoop()

The resulting window is shown in Figure 12-6.

Figure 12-6. A simple GUI example

Using Tkinter
Tkinter is an old-timer in the Python GUI business. It is a wrapper around the Tk GUI toolkit
(associated with the programming language Tcl). It is included by default in the Windows and
Mac OS distributions. The following URLs may be useful:

• http://www.ibm.com/developerworks/linux/library/l-tkprg

• http://www.nmt.edu/tcc/help/lang/python/tkinter.pdf

Here is the GUI example implemented with Tkinter:

from Tkinter import *
def hello(): print 'Hello, world'
win = Tk() # Tkinter's 'main window'
win.title('Hello, Tkinter! ')
win.geometry('200x100') # Size 200, 100

btn = Button(win, text='Hello ', command=hello)
btn.pack(expand=YES, fill=BOTH)

mainloop()

290 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Using Jython and Swing
If you’re using Jython (the Java implementation of Python), packages such as wxPython and
Tkinter aren’t available. The only GUI toolkits that are readily available are the Java standard
library packages Abstract Window Toolkit (AWT) and Swing (Swing is the most recent and con-
sidered the standard Java GUI toolkit). The good news is that both of these are automatically
available so you don’t need to install them separately. For more information, visit the Jython
web site and look into the Swing documentation written for Java:

• http://www.jython.org

• http://java.sun.com/docs/books/tutorial/uiswing

Here is the GUI example implemented with Jython and Swing:

from javax.swing import *
import sys

def hello(event): print 'Hello, world! '
btn = JButton('Hello')
btn.actionPerformed = hello

win = JFrame('Hello, Swing!')
win.contentPane.add(btn)

def closeHandler(event): sys.exit()
win.windowClosing = closeHandler

btn.size = win.size = 200, 100
win.show()

Note that one additional event handler has been added here (closeHandler) because the
Close button doesn’t have any useful default behavior in Java Swing. Also note that you don’t
need to explicitly enter the main event loop because it’s running in parallel with the program
(in a separate thread).

Using Something Else
The basics of most GUI toolkits are the same. Unfortunately, however, when learning how to
use a new package, it takes time to find your way through all the details that enable you to do
exactly what you want. So you should take your time before deciding which package you want
to work with (the section “A Plethora of Platforms” earlier in this chapter should give you some
idea of where to start), and then immerse yourself in its documentation and start writing code.
I hope this chapter has provided the basic concepts you need to make sense of that documen-
tation.

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 291

A Quick Summary
Once again, let’s review what we’ve covered in this chapter:

Graphical user interfaces (GUIs): GUIs are useful in making your programs more user
friendly. Not all programs need them, but whenever your program interacts with a user,
a GUI is probably helpful.

GUI platforms for Python: Many GUI platforms are available to the Python programmer.
Although this richness is definitely a boon, choosing between them can sometimes be
difficult.

wxPython: wxPython is a mature and feature-rich cross-platform GUI toolkit for Python.

Layout: You can position components quite simply by specifying their geometry directly.
However, to make them behave properly when their containing window is resized, you
will need to use some sort of layout manager. One common layout mechanism in wxPython
is sizers.

Event handling: Actions performed by the user trigger events in the GUI toolkit. To be of
any use, your program will probably be set up to react to some of these events; otherwise,
the user won’t be able to interact with it. In wxPython, event handlers are added to com-
ponents with the Bind method.

What Now?
That’s it. You now know how to write programs that can interact with the outside world
through files and GUIs. In the next chapter, you learn about another important component of
many program systems: databases.

293

■ ■ ■

C H A P T E R 1 3

Database Support

Using simple, plain-text files can get you only so far. Yes, they can get you very far, but at some
point, you may need some extra functionality. You may want some automated serialization,
and you can turn to shelve (see Chapter 10) and pickle (a close relative of shelve). But you may
want features that go beyond even this. For example, you might want to have automated sup-
port for concurrent access to your data; that is, to allow several users to read from and write to
your disk-based data without causing any corrupted files or the like. Or you may want to be
able to perform complex searches using many data fields or properties at the same time, rather
than the simple single-key lookup of shelve. There are plenty of solutions to choose from, but
if you want this to scale to large amounts of data and you want the solution to be easily under-
standable by other programmers, choosing a relatively standard form of database is probably a
good idea.

This chapter discusses the Python Database API, a standardized way of connecting to SQL
databases, and demonstrates how to execute some basic SQL using this API. The last section
also discusses some alternative database technology.

I won’t be giving you a tutorial on relational databases or the SQL language. The documen-
tation for most databases (such as PostgreSQL or MySQL, or, the one used in this chapter,
SQLite) should cover what you need to know. If you haven’t used relational databases before,
you might want to check out http://www.sqlcourse.com (or just do a Web search on the sub-
ject) or Beginning SQL Queries by Clare Churcher (Apress, 2008).

The simple database used throughout this chapter (SQLite) is, of course, not the only
choice—by far. There are several popular commercial choices (such as Oracle or Microsoft
SQL Server), as well as some solid and widespread open source databases (such as MySQL,
PostgreSQL, and Firebird). Chapter 26 uses PostgreSQL and has some instructions for
MySQL and SQLite. For a list of some other databases supported by Python packages, check
out http://www.python.org/topics/database/ or visit the Database category of Vaults of
Parnassus (http://www.vex.net/parnassus).

Relational (SQL) databases aren’t the only kind around, of course. There are object
databases such as the Zope Object Database (ZODB, http://wiki.zope.org/ZODB), compact
table-based ones such as Metakit (http://www.equi4.com/metakit/python.html), or even sim-
pler key-value databases, such as BSD DB (http://docs.python.org/lib/module-bsddb.html).

While this chapter focuses on rather low-level database interaction, you can find several
high-level libraries to help you abstract away some of the grind (see, for example, http://
www.sqlalchemy.org or http://www.sqlobject.org, or search the Web for other so-called
object-relational mappers for Python).

294 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

The Python Database API
As I’ve mentioned, you can choose from various SQL databases, and many of them have corre-
sponding client modules in Python (some databases even have several). Most of the basic
functionality of all the databases is the same, so a program written to use one of them might eas-
ily—in theory—be used with another. The problem with switching between different modules
that provide the same functionality (more or less) is usually that their interfaces (APIs) are differ-
ent. In order to solve this problem for database modules in Python, a standard Database API (DB
API) has been agreed upon. The current version of the API (2.0) is defined in PEP 249, Python
Database API Specification v2.0 (available from http://python.org/peps/pep-0249.html).

This section gives you an overview of the basics. I won’t cover the optional parts of the API,
because they don’t apply to all databases. You can find more information in the PEP men-
tioned, or in the database programming guide in the official Python Wiki (available from
http://wiki.python.org/moin/DatabaseProgramming). If you’re not really interested in all the
API details, you can skip this section.

Global Variables
Any compliant database module (compliant, that is, with the DB API, version 2.0) must have
three global variables, which describe the peculiarities of the module. The reason for this is that
the API is designed to be very flexible and to work with several different underlying mecha-
nisms without too much wrapping. If you want your program to work with several different
databases, this can be a nuisance, because you need to cover many different possibilities. A
more realistic course of action, in many cases, would be to simply check these variables to see
that a given database module is acceptable to your program. If it isn’t, you could simply exit
with an appropriate error message, for example, or raise some exception. The global variables
are summarized in Table 13-1.

Table 13-1. The Module Properties of the Python DB API

The API level (apilevel) is simply a string constant, giving the API version in use. Accord-
ing to the DB API version 2.0, it may either have the value '1.0' or the value '2.0'. If the
variable isn’t there, the module is not 2.0-compliant, and you should (according to the API)
assume that the DB API version 1.0 is in effect. It also probably wouldn’t hurt to write your code
to allow other values here (who knows when, say, version 3.0 of the DB API will come out?).

The thread-safety level (threadsafety) is an integer ranging from 0 to 3, inclusive. 0 means
that threads may not share the module at all, and 3 means that the module is completely
thread-safe. A value of 1 means that threads may share the module itself, but not connections

Variable Name Use

apilevel The version of the Python DB API in use

threadsafety How thread-safe the module is

paramstyle Which parameter style is used in the SQL queries

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 295

(see “Connections and Cursors,” later in this chapter), and 2 means that threads may share
modules and connections, but not cursors. If you don’t use threads (which, most of the time,
you probably won’t), you don’t have to worry about this variable at all.

The parameter style (paramstyle) indicates how parameters are spliced into SQL queries
when you make the database perform multiple similar queries. The value 'format' indicates
standard string formatting (using basic format codes), so you insert %s where you want to splice
in parameters, for example. The value 'pyformat' indicates extended format codes, as used
with dictionary splicing, such as %(foo)s. In addition to these Pythonic styles, there are three
ways of writing the splicing fields: 'qmark' means that question marks are used, 'numeric'
means fields of the form :1 or :2 (where the numbers are the numbers of the parameters), and
'named' means fields like :foobar, where foobar is a parameter name. If parameter styles seem
confusing, don’t worry. For basic programs, you won’t need them, and if you need to under-
stand how a specific database interface deals with parameters, the relevant documentation
will probably explain it.

Exceptions
The API defines several exceptions, to make fine-grained error handling possible. However,
they’re defined in a hierarchy, so you can also catch several types of exceptions with a single
except block. (Of course, if you expect everything to work nicely, and you don’t mind having
your program shut down in the unlikely event of something going wrong, you can just ignore
the exceptions altogether.)

The exception hierarchy is shown in Table 13-2. The exceptions should be available glo-
bally in the given database module. For more in-depth descriptions of these exceptions, see
the API specification (the PEP mentioned previously).

Table 13-2. Exceptions Specified in the Python DB API

Exception Superclass Description

StandardError Generic superclass of all exceptions

Warning StandardError Raised if a nonfatal problem occurs

Error StandardError Generic superclass of all error conditions

InterfaceError Error Errors relating to the interface, not the database

DatabaseError Error Superclass for errors relating to the database

DataError DatabaseError Problems related to the data; e.g., values out of range

OperationalError DatabaseError Errors internal to the operation of the database

IntegrityError DatabaseError Relational integrity compromised; e.g., key check fails

InternalError DatabaseError Internal errors in the database; e.g., invalid cursor

ProgrammingError DatabaseError User programming error; e.g., table not found

NotSupportedError DatabaseError An unsupported feature (e.g., rollback) requested

296 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

Connections and Cursors
In order to use the underlying database system, you must first connect to it. For this you use the
aptly named function connect. It takes several parameters; exactly which depends on the data-
base. The API defines the parameters in Table 13-3 as a guideline. It recommends that they be
usable as keyword arguments, and that they follow the order given in the table. The arguments
should all be strings.

Table 13-3. Common Parameters of the connect Function

You’ll see specific examples of using the connect function in the section “Getting Started”
later in this chapter, as well as in Chapter 26.

The connect function returns a connection object. This represents your current session
with the database. Connection objects support the methods shown in Table 13-4.

Table 13-4. Connection Object Methods

The rollback method may not be available, because not all databases support transac-
tions. (Transactions are just sequences of actions.) If it exists, it will “undo” any transactions
that have not been committed.

The commit method is always available, but if the database doesn’t support transactions, it
doesn’t actually do anything. If you close a connection and there are still transactions that have
not been committed, they will implicitly be rolled back—but only if the database supports roll-
backs! So if you don’t want to rely on this, you should always commit before you close your
connection. If you commit, you probably don’t need to worry too much about closing your con-
nection; it’s automatically closed when it’s garbage-collected. If you want to be on the safe side,
though, a call to close won’t cost you that many keystrokes.

The cursor method leads us to another topic: cursor objects. You use cursors to execute
SQL queries and to examine the results. Cursors support more methods than connections, and

Parameter Name Description Optional?

dsn Data source name. Specific meaning database dependent. No

user User name Yes

password User password Yes

host Host name Yes

database Database name Yes

Method Name Description

close() Closes the connection. Connection object and its cursors are now unusable.

commit() Commits pending transactions, if supported; otherwise does nothing.

rollback() Rolls back pending transactions (may not be available).

cursor() Returns a cursor object for the connection.

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 297

probably will be quite a bit more prominent in your programs. Table 13-5 gives an overview of
the cursor methods, and Table 13-6 gives an overview of the attributes.

Table 13-5. Cursor Object Methods

Table 13-6. Cursor Object Attributes

Some of these methods will be explained in more detail in the upcoming text, while some
(such as setinputsizes and setoutputsizes) will not be discussed. Consult the PEP for more
details.

Types
In order to interoperate properly with the underlying SQL databases, which may place various
requirements on the values inserted into columns of certain types, the DB API defines certain
constructors and constants (singletons) used for special types and values. For example, if you
want to add a date to a database, it should be constructed with (for example) the Date construc-
tor of the corresponding database connectivity module. That allows the connectivity module
to perform any necessary transformations behind the scenes. Each module is required to
implement the constructors and special values shown in Table 13-7. Some modules may not be
entirely compliant. For example, the sqlite3 module (discussed next) does not export the spe-
cial values (STRING through ROWID) in Table 13-7.

Name Description

callproc(name[, params]) Calls a named database procedure with given name and param-
eters (optional).

close() Closes the cursor. Cursor is now unusable.

execute(oper[, params]) Executes a SQL operation, possibly with parameters.

executemany(oper, pseq) Executes a SQL operation for each parameter set in a sequence.

fetchone() Fetches the next row of a query result set as a sequence, or None.

fetchmany([size]) Fetches several rows of a query result set. Default size is
arraysize.

fetchall() Fetches all (remaining) rows as a sequence of sequences.

nextset() Skips to the next available result set (optional).

setinputsizes(sizes) Used to predefine memory areas for parameters.

setoutputsize(size[, col]) Sets a buffer size for fetching big data values.

Name Description

description Sequence of result column descriptions. Read-only.

rowcount The number of rows in the result. Read-only.

arraysize How many rows to return in fetchmany. Default is 1.

298 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

Table 13-7. DB API Constructors and Special Values

SQLite and PySQLite
As mentioned previously, many SQL database engines are available, with corresponding
Python modules. Most of these database engines are meant to be run as server programs, and
require administrator privileges even to install them. In order to lower the threshold for playing
around with the Python DB API, I’ve chosen to use a tiny database engine called SQLite, which
doesn’t need to be run as a stand-alone server, and which can work directly on local files,
instead of with some centralized database storage mechanism.

In recent Python versions (from 2.5) SQLite has the advantage that a wrapper for it
(PySQLite) is included in the standard library. Unless you’re compiling Python from source
yourself, chances are that the database itself is also included. You might want to just try the
program snippets in the section “Getting Started.” If they work, you don’t need to bother with
installing PySQLite and SQLite separately.

■Note If you’re not using the standard library version of PySQLite, you may need to modify the import
statement. Refer to the relevant documentation for more information.

Name Description

Date(year, month, day) Creates an object holding a date value

Time(hour, minute, second) Creates an object holding a time value

Timestamp(y, mon, d, h, min, s) Creates an object holding a timestamp value

DateFromTicks(ticks) Creates an object holding a date value from ticks since
epoch

TimeFromTicks(ticks) Creates an object holding a time value from ticks

TimestampFromTicks(ticks) Creates an object holding a timestamp value from ticks

Binary(string) Creates an object holding a binary string value

STRING Describes string-based column types (such as CHAR)

BINARY Describes binary columns (such as LONG or RAW)

NUMBER Describes numeric columns

DATETIME Describes date/time columns

ROWID Describes row ID columns

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 299

If you’re using a recent version of Python, you will most certainly have PySQLite. If any-
thing is missing, it will be the database itself, SQLite (but again, that will probably be available
as well). You can get the sources from the SQLite web page, http://sqlite.org. (Make sure you
get one of the source packages where automatic code generation has already been performed.)
Compiling SQLite is basically a matter of following the instructions in the included README
file. When subsequently compiling PySQLite, you need to make sure that the compilation
process can access the SQLite libraries and include files. If you’ve installed SQLite in some
standard location, it may well be that the setup script in the PySQLite distribution can find it on
its own. In that case, you simply need to execute the following commands:

python setup.py build
python setup.py install

You could simply use the latter command, which will perform the build automatically.
If this gives you heaps of error messages, chances are the installation script didn’t find the
required files. Make sure you know where the include files and libraries are installed, and sup-
ply them explicitly to the install script. Let’s say I compiled SQLite in place in a directory called
/home/mlh/sqlite/current; then the header files could be found in /home/mlh/sqlite/current/
src and the library in /home/mlh/sqlite/current/build/lib. In order to let the installation pro-
cess use these paths, edit the setup script, setup.py. In this file you’ll want to set the variables
include_dirs and library_dirs:

include_dirs = ['/home/mlh/sqlite/current/src']
library_dirs = ['/home/mlh/sqlite/current/build/lib']

After rebinding these variables, the install procedure described earlier should work with-
out errors.

GETTING PYSQLITE

If you are using an older version of Python, you will need to install PySQLite before you can use the SQLite
database. You can download it from the official web page, http://pysqlite.org.

For Linux systems with package manager systems, chances are you can get PySQLite and SQLite directly
from the package manager.

The Windows binaries for PySQLite actually include the database engine itself (that is, SQLite), so all you
need to do is to download the PySQLite installer corresponding to your Python version, run it, and you’re all set.

If you’re not using Windows, and your operating system does not have a package manager where you
can find PySQLite and SQLite, you will need to get the source packages for PySQLite and SQLite and compile
them yourself.

300 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

Getting Started
You can import SQLite as a module, under the name sqlite3 (if you are using the one in the
Python standard library). You can then create a connection directly to a database file—which
will be created if it does not exist—by supplying a file name (which can be a relative or absolute
path to the file):

>>> import sqlite3
>>> conn = sqlite3.connect('somedatabase.db')

You can then get a cursor from this connection:

>>> curs = conn.cursor()

This cursor can then be used to execute SQL queries. Once you’re finished, if you’ve made
any changes, make sure you commit them, so they’re actually saved to the file:

>>> conn.commit()

You can (and should) commit each time you’ve modified the database, not just when
you’re ready to close it. When you are ready to close it, just use the close method:

>>> conn.close()

A Sample Database Application
As an example, I’ll demonstrate how to construct a little nutrient database, based on data from the
United States Department of Agriculture (USDA) Nutrient Data Laboratory (http://www.ars.
usda.gov/nutrientdata). On their web page, follow the link to the USDA National Nutrient Data-
base for Standard Reference. There, you should find a lot of different data files in plain-text (ASCII)
format, just the way we like it. Follow the Download link, and download the zip file referenced by
the ASCII link under the heading “Abbreviated.” You should now get a zip file containing a text file
named ABBREV.txt, along with a PDF file describing its contents.1 If you have trouble finding this
particular file, any old data will do. Just modify the source code to suit.

The data in the ABBREV.txt file has one data record per line, with the fields separated by
caret (^) characters. The numeric fields contain numbers directly, while the textual fields have
their string values “quoted” with a tilde (~) on each side. Here is a sample line, with parts
deleted for brevity:

~07276~^~HORMEL SPAM ... PORK W/ HAM MINCED CND~^ ... ^~1 serving~^^~~^0

Parsing such a line into individual fields is a simple as using line.split('^'). If a field
starts with a tilde, you know it’s a string and can use field.strip('~') to get its contents. For
the other (numeric) fields, float(field) should do the trick, except, of course, when the field is
empty. The program developed in the following sections will transfer the data in this ASCII file
into your SQL database, and let you perform some (semi-)interesting queries on them.

1. At the time of writing, you can get this file from http://www.nal.usda.gov/fnic/foodcomp/Data/SR20/
dnload/sr20abbr.zip.

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 301

■Note This sample program is intentionally simple. For a slightly more advanced example of database use
in Python, see Chapter 26.

Creating and Populating Tables

To actually create the tables of the database and populate them, writing a completely separate
one-shot program is probably the easiest solution. You can run this program once, and then
forget about both it and the original data source (the ABBREV.txt file), although keeping them
around is probably a good idea.

The program shown in Listing 13-1 creates a table called food with some appropriate
fields, reads the file ABBREV.txt, parses it (by splitting the lines and converting the individual
fields using a utility function, convert), and inserts values read from the text field into the data-
base using a SQL INSERT statement in a call to curs.execute.

■Note It would have been possible to use curs.executemany, supplying a list of all the rows extracted
from the data file. This would have given a minor speedup in this case, but might have given a more substan-
tial speedup if a networked client/server SQL system were used.

Listing 13-1. Importing Data into the Database (importdata.py)

import sqlite3

def convert(value):
 if value.startswith('~'):
 return value.strip('~')
 if not value:
 value = '0'
 return float(value)

conn = sqlite3.connect('food.db')
curs = conn.cursor()

curs.execute('''
CREATE TABLE food (
 id TEXT PRIMARY KEY,
 desc TEXT,
 water FLOAT,
 kcal FLOAT,
 protein FLOAT,
 fat FLOAT,
 ash FLOAT,
 carbs FLOAT,

302 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

 fiber FLOAT,
 sugar FLOAT
)
''')

query = 'INSERT INTO food VALUES (?,?,?,?,?,?,?,?,?,?)'

for line in open('ABBREV.txt'):
 fields = line.split('^')
 vals = [convert(f) for f in fields[:field_count]]
 curs.execute(query, vals)

conn.commit()
conn.close()

■Note In Listing 13-1, I use the “qmark” version of paramstyle; that is, a question mark as a field marker.
If you’re using an older version of PySQLite, you may need to use % characters instead.

When you run this program (with ABBREV.txt in the same directory), it will create a new file
called food.db, containing all the data of the database.

I encourage you to play around with this example, using other inputs, adding print state-
ments, and the like.

Searching and Dealing with Results

Using the database is really simple. Again, you create a connection and get a cursor from that
connection. Execute the SQL query with the execute method and extract the results with, for
example, the fetchall method. Listing 13-2 shows a tiny program that takes a SQL SELECT con-
dition as a command-line argument and prints out the returned rows in a record format. You
could try it out with a command line like the following:

$ python food_query.py "kcal <= 100 AND fiber >= 10 ORDER BY sugar"

You may notice a problem when you run this. The first row, raw orange peel, seems to have
no sugar at all. That’s because the field is missing in the data file. You could improve the import
script to detect this condition, and insert None instead of a real value, to indicate missing data.
Then you could use a condition such as the following:

"kcal <= 100 AND fiber >= 10 AND sugar ORDER BY sugar"

requiring the sugar field to have real data in any returned rows. As it happens, this strategy will
work with the current database, as well, where this condition will discard rows where the sugar
level is zero.

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 303

■Caution You might want to try a condition that searches for a specific food item, using an ID, such as
08323 for Cocoa Pebbles. The problem is that SQLite handles its values in a rather nonstandard fashion. Inter-
nally, all values are, in fact, strings, and some conversion and checking goes on between the database and
the Python API. Usually, this works just fine, but this is an example of where you might run into trouble. If you
supply the value 08323, it will be interpreted as the number 8323, and subsequently converted into the string
"8323"—an ID that doesn’t exist. One might have expected an error message here, rather than this surpris-
ing and rather unhelpful behavior, but if you are careful, and use the string "08323" in the first place, you’ll
be fine.

Listing 13-2. Food Database Query Program (food_query.py)

import sqlite3, sys

conn = sqlite3.connect('food.db')
curs = conn.cursor()

query = 'SELECT * FROM food WHERE %s' % sys.argv[1]
print query
curs.execute(query)
names = [f[0] for f in curs.description]
for row in curs.fetchall():
 for pair in zip(names, row):
 print '%s: %s' % pair
 print

A Quick Summary
This chapter has given a rather brief introduction to making Python programs interact with
relational databases. It’s brief because, if you master Python and SQL, the coupling between
the two, in the form of the Python DB API, is quite easy to master. Here are some of the con-
cepts covered in this chapter:

The Python DB API: This API provides a simple, standardized interface to which database
wrapper modules should conform, to make it easier to write programs that will work with
several different databases.

Connections: A connection object represents the communication link with the SQL data-
base. From it, you can get individual cursors, using the cursor method. You also use the
connection object to commit or roll back transactions. After you’re finished with the data-
base, the connection can be closed.

Cursors: A cursor is used to execute queries and to examine the results. Resulting rows can
be retrieved one by one, or many (or all) at once.

304 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

Types and special values: The DB API specifies the names of a set of constructors and
special values. The constructors deal with date and time objects, as well as binary data
objects. The special values represent the types of the relational database, such as STRING,
NUMBER, and DATETIME.

SQLite: This is a small, embedded SQL database, whose Python wrapper is called
PySQLite. It’s fast and simple to use, and does not require a separate server to be set up.

New Functions in This Chapter

What Now?
Persistence and database handling are important parts of many, if not most, big program sys-
tems. Another component shared by a great number of such systems is a network, which is
dealt with in the next chapter.2

Function Description

connect(...) Connect to a database and return a connection object2

2. The parameters to the connect function are database dependent.

305

■ ■ ■

C H A P T E R 1 4

Network Programming

In this chapter, I give you a sample of the various ways in which Python can help you write
programs that use a network, such as the Internet, as an important component. Python is a
very powerful tool for network programming. Many libraries for common network protocols
and for various layers of abstractions on top of them are available, so you can concentrate on
the logic of your program, rather than on shuffling bits across wires. Also, it’s easy to write code
for handling various protocol formats that may not have existing code, because Python’s really
good at tackling patterns in byte streams (you’ve already seen this in dealing with text files in
various ways).

Because Python has such an abundance of network tools available for you to use, I can
only give you a brief peek at its networking capabilities here. You can find some other examples
elsewhere in this book. Chapter 15 includes a discussion of web-oriented network program-
ming, and several of the projects in later chapters use networking modules to get the job done.
If you want to know even more about network programming in Python, I can heartily recom-
mend John Goerzen’s Foundations of Python Network Programming (Apress, 2004), which
deals with the subject very thoroughly.

In this chapter, I give you an overview of some of the networking modules available in the
Python standard library. Then comes a discussion of the SocketServer class and its friends, fol-
lowed by a brief look at the various ways in which you can handle several connections at once.
Finally, I give you a look at the Twisted framework, a rich and mature framework for writing
networked applications in Python.

■Note If you have a strict firewall in place, it will probably warn you once you start running your own net-
work programs and stop them from connecting to the network. You should either configure your firewall to let
your Python do its work, or, if the firewall has an interactive interface (such as the Windows XP firewall), sim-
ply allow the connections when asked. Note, though, that any software connected to a network is a potential
security risk, even if (or especially if) you wrote the software yourself.

A Handful of Networking Modules
You can find plenty of networking modules in the standard library, and many more elsewhere.
In addition to those that clearly deal mainly with networking, several modules (such as those

306 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

that deal with various forms of data encoding for network transport) may be seen as network
related. I’ve been fairly restrictive in my selection of modules here.

The socket Module
A basic component in network programming is the socket. A socket is basically an “information
channel” with a program on both ends. The programs may be on different computers (con-
nected through a network) and may send information to each other through the socket. Most
network programming in Python hides the basic workings of the socket module and doesn’t
interact with the sockets directly.

Sockets come in two varieties: server sockets and client sockets. After you create a server
socket, you tell it to wait for connections. It will then listen at a certain network address (a com-
bination of an IP address and a port number) until a client socket connects. The two can then
communicate.

Dealing with client sockets is usually quite a bit easier than dealing with the server side,
because the server must be ready to deal with clients whenever they connect, and it must deal
with multiple connections, while the client simply connects, does its thing, and disconnects.
Later in this chapter, I discuss server programming through the SocketServer class family and
the Twisted framework.

A socket is an instance of the socket class from the socket module. It is instantiated with
up to three parameters: an address family (defaulting to socket.AF_INET), whether it’s a stream
(socket.SOCK_STREAM, the default) or a datagram (socket.SOCK_DGRAM) socket, and a protocol
(defaulting to 0, which should be okay). For a plain-vanilla socket, you don’t really need to sup-
ply any arguments.

A server socket uses its bind method followed by a call to listen to listen to a given address.
A client socket can then connect to the server by using its connect method with the same
address as used in bind. (On the server side, you can, for example, get the name of the current
machine using the function socket.gethostname.) In this case, an address is just a tuple of the
form (host, port), where host is a host name (such as www.example.com) and port is a port
number (an integer). The listen method takes a single argument, which is the length of its
backlog (the number of connections allowed to queue up, waiting for acceptance, before con-
nections start being disallowed).

Once a server socket is listening, it can start accepting clients. This is done using the accept
method. This method will block (wait) until a client connects, and then it will return a tuple of
the form (client, address), where client is a client socket and address is an address, as
explained earlier. The server can deal with the client as it sees fit, and then start waiting for new
connections, with another call to accept. This is usually done in an infinite loop.

■Note The form of server programming discussed here is called blocking or synchronous network pro-
gramming. In the section “Multiple Connections” later in this chapter, you’ll see examples of nonblocking or
asynchronous network programming, as well as using threads to be able to deal with several clients at once.

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 307

For transmitting data, sockets have two methods: send and recv (for “receive”). You can
call send with a string argument to send data, and recv with a desired (maximum) number of
bytes to receive data. If you’re not sure which number to use, 1024 is as good a choice as any.

Listings 14-1 and 14-2 show an example client/server pair that is about as simple as it gets.
If you run them on the same machine (starting the server first), the server should print out a
message about getting a connection, and the client should then print out a message it has
received from the server. You can run several clients while the server is still running. By replac-
ing the call to gethostname in the client with the actual host name of the machine where the
server is running, you can have the two programs connect across a network from one machine
to another.

■Note The port numbers you use are normally restricted. In a Linux or UNIX system, you need administrator
privileges to use a port below 1024. These low-numbered ports are used for standard services, such as port 80
for your web server (if you have one). Also, if you stop a server with Ctrl+C, for example, you might need to wait
for a bit before using the same port number again (you may get an “Address already in use” error).

Listing 14-1. A Minimal Server

import socket

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

s.listen(5)
while True:
 c, addr = s.accept()
 print 'Got connection from', addr
 c.send('Thank you for connecting')
 c.close()

Listing 14-2. A Minimal Client

import socket

s = socket.socket()

host = socket.gethostname()
port = 1234

s.connect((host, port))
print s.recv(1024)

308 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

You can find more information about the socket module in the Python Library Reference
(http://python.org/doc/lib/module-socket.html) and in Gordon McMillan’s Socket Program-
ming HOWTO (http://docs.python.org/dev/howto/sockets.html).

The urllib and urllib2 Modules
Of the networking libraries available, the ones that probably give you the most bang for the
buck are urllib and urllib2. They enable you to access files across a network, just as if they
were located on your computer. Through a simple function call, virtually anything you can
refer to with a Uniform Resource Locator (URL) can be used as input to your program. Just
imagine the possibilities you get if you combine this with the re module: you can download
web pages, extract information, and create automatic reports of your findings.

The two modules do more or less the same job, with urllib2 being a bit more “fancy.” For
simple downloads, urllib is quite all right. If you need HTTP authentication or cookies, or you
want to write extensions to handle your own protocols, then urllib2 might be the right choice
for you.

Opening Remote Files

You can open remote files almost exactly as you do local files; the difference is that you can use
only read mode, and instead of open (or file), you use urlopen from the urllib module:

>>> from urllib import urlopen
>>> webpage = urlopen('http://www.python.org')

If you are online, the variable webpage should now contain a file-like object linked to the
Python web page at http://www.python.org.

■Note If you want to experiment with urllib but aren’t currently online, you can access local files with
URLs that start with file:, such as file:c:\text\somefile.txt. (Remember to escape your
backslashes.)

The file-like object that is returned from urlopen supports (among others) the close, read,
readline, and readlines methods, as well as iteration.

Let’s say you want to extract the (relative) URL of the “About” link on the Python page you
just opened. You could do that with regular expressions (for more information about regular
expressions, see the section about the re module in Chapter 10):

>>> import re
>>> text = webpage.read()
>>> m = re.search('about', text, re.IGNORECASE)
>>> m.group(1)
'/about/'

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 309

■Note You may need to modify the regular expression if the web page has changed since the time of writ-
ing, of course.

Retrieving Remote Files

The urlopen function gives you a file-like object you can read from. If you would rather have
urllib take care of downloading the file for you, storing a copy in a local file, you can use
urlretrieve instead. Rather than returning a file-like object, it returns a tuple (filename,
headers), where filename is the name of the local file (this name is created automatically by
urllib), and headers contains some information about the remote file. (I’ll ignore headers
here; look up urlretrieve in the standard library documentation of urllib if you want to know
more about it.) If you want to specify a file name for the downloaded copy, you can supply that
as a second parameter:

urlretrieve('http://www.python.org', 'C:\\python_webpage.html')

This retrieves the Python home page and stores it in the file C:\python_webpage.html. If
you don’t specify a file name, the file is put in some temporary location, available for you to
open (with the open function), but when you’re finished with it, you may want to have it
removed so that it doesn’t take up space on your hard drive. To clean up such temporary files,
you can call the function urlcleanup without any arguments, and it takes care of things for you.

SOME UTILITIES

In addition to reading and downloading files through URLs, urllib also offers some functions for manipulat-
ing the URLs themselves. (The following assumes some knowledge of URLs and CGI.) The following functions
are available:

• quote(string[, safe]): Returns a string in which all special characters (characters that have spe-
cial significance in URLs) have been replaced by URL-friendly versions (such as %7E instead of ~). This
can be useful if you have a string that might contain such special characters and you want to use it as
a URL. The safe string includes characters that should not be coded like this. The default is '/'.

• quote_plus(string[, safe]): Works like quote, but also replaces spaces with plus signs.

• unquote(string): The reverse of quote.

• unquote_plus(string): The reverse of quote_plus.

• urlencode(query[, doseq]): Converts a mapping (such as a dictionary) or a sequence of two-ele-
ment tuples—of the form (key, value)—into a “URL-encoded” string, which can be used in CGI
queries. (Check the Python documentation for more information.)

310 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

Other Modules
As mentioned, beyond the modules explicitly discussed in this chapter, there are hordes of
network-related modules in the Python library and elsewhere. Table 14-1 lists some network-
related modules from the Python standard library. As noted in the table, some of these
modules are discussed elsewhere in the book.

Table 14-1. Some Network-Related Modules in the Standard Library

SocketServer and Friends
As you saw in the section about the socket module earlier, writing a simple socket server isn’t
really hard. If you want to go beyond the basics, however, getting some help can be nice. The
SocketServer module is the basis for a framework of several servers in the standard library,

Module Description

asynchat Additional functionality for asyncore (see Chapter 24)

asyncore Asynchronous socket handler (see Chapter 24)

cgi Basic CGI support (see Chapter 15)

Cookie Cookie object manipulation, mainly for servers

cookielib Client-side cookie support

email Support for e-mail messages (including MIME)

ftplib FTP client module

gopherlib Gopher client module

httplib HTTP client module

imaplib IMAP4 client module

mailbox Reads several mailbox formats

mailcap Access to MIME configuration through mailcap files

mhlib Access to MH mailboxes

nntplib NNTP client module (see Chapter 23)

poplib POP client module

robotparser Support for parsing web server robot files

SimpleXMLRPCServer A simple XML-RPC server (see Chapter 27)

smtpd SMTP server module

smtplib SMTP client module

telnetlib Telnet client module

urlparse Support for interpreting URLs

xmlrpclib Client support for XML-RPC (see Chapter 27)

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 311

including BaseHTTPServer, SimpleHTTPServer, CGIHTTPServer, SimpleXMLRPCServer, and
DocXMLRPCServer, all of which add various specific functionality to the basic server.

SocketServer contains four basic classes: TCPServer, for TCP socket streams; UDPServer, for
UDP datagram sockets; and the more obscure UnixStreamServer and UnixDatagramServer. You
probably won’t need the last three.

To write a server using the SocketServer framework, you put most of your code in a request
handler. Each time the server gets a request (a connection from a client), a request handler is
instantiated, and various handler methods are called on it to deal with the request. Exactly which
methods are called depends on the specific server and handler class used, and you can subclass
them to make the server call a custom set of handlers. The basic BaseRequestHandler class places all
of the action in a single method on the handler, called handle, which is called by the server. This
method then has access to the client socket in the attribute self.request. If you’re working with a
stream (which you probably are, if you use TCPServer), you can use the class StreamRequestHandler,
which sets up two other attributes, self.rfile (for reading) and self.wfile (for writing). You can
then use these file-like objects to communicate with the client.

The various other classes in the SocketServer framework implement basic support for
HTTP servers, including running CGI scripts, as well as support for XML-RPC (discussed in
Chapter 27).

Listing 14-3 gives you a SocketServer version of the minimal server from Listing 14-1. It
can be used with the client in Listing 14-2. Note that the StreamRequestHandler takes care of
closing the connection when it has been handled. Also note that giving '' as the host name
means that you’re referring to the machine where the server is running.

Listing 14-3. A SocketServer-Based Minimal Server

from SocketServer import TCPServer, StreamRequestHandler

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print 'Got connection from', addr
 self.wfile.write('Thank you for connecting')

server = TCPServer(('', 1234), Handler)
server.serve_forever()

You can find more information about the SocketServer framework in the Python Library
Reference (http://python.org/doc/lib/module-SocketServer.html) and in John Goerzen’s
Foundations of Python Network Programming (Apress, 2004).

Multiple Connections
The server solutions discussed so far have been synchronous: only one client can connect and get
its request handled at a time. If one request takes a bit of time, such as, for example, a complete
chat session, it’s important that more than one connection can be dealt with simultaneously.

312 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

You can deal with multiple connections in three main ways: forking, threading, and asyn-
chronous I/O. Forking and threading can be dealt with very simply, by using mix-in classes
with any of the SocketServer servers (see Listings 14-4 and 14-5). Even if you want to imple-
ment them yourself, these methods are quite easy to work with. They do have their drawbacks,
however. Forking takes up resources, and may not scale well if you have many clients
(although, for a reasonable number of clients, on modern UNIX or Linux systems, forking is
quite efficient, and can be even more so if you have a multi-CPU system). Threading can lead
to synchronization problems. I won’t go into these problems in any detail here (nor will I dis-
cuss multithreading in depth), but I’ll show you how to use the techniques in the following
sections.

Asynchronous I/O is a bit more difficult to implement at a low level. The basic mechanism
is the select function of the select module (described in the section “Asynchronous I/O with
select and poll”), which is quite hard to deal with. Luckily, frameworks exist that work with
asynchronous I/O on a higher level, giving you a simple, abstract interface to a very powerful

FORKS? THREADS? WHAT’S ALL THIS, THEN?

Just in case you don’t know about forking or threads, here is a little clarification. Forking is a UNIX term. When
you fork a process (a running program), you basically duplicate it, and both resulting processes keep running
from the current point of execution, each with its own copy of the memory (variables and such). One process
(the original one) will be the parent process, while the other (the copy) will be the child. If you’re a science fic-
tion fan, you might think of parallel universes; the forking operation creates a fork in the timeline, and you end
up with two universes (the two processes) existing independently. Luckily, the processes are able to determine
whether they are the original or the child (by looking at the return value of the fork function), so they can act
differently. (If they couldn’t, what would be the point, really? Both processes would do the same job, and you
would just bog down your computer.)

In a forking server, a child is forked off for every client connection. The parent process keeps listening
for new connections, while the child deals with the client. When the client is satisfied, the child process simply
exits. Because the forked processes run in parallel, the clients don’t need to wait for each other.

Because forking can be a bit resource intensive (each forked process needs its own memory), an alter-
native exists: threading. Threads are lightweight processes, or subprocesses, all of them existing within the
same (real) process, sharing the same memory. This reduction in resource consumption comes with a down-
side, though. Because threads share memory, you must make sure they don’t interfere with the variables for
each other, or try to modify the same things at the same time, creating a mess. These issues fall under the
heading of “synchronization.” With modern operating systems (except Microsoft Windows, which doesn’t sup-
port forking), forking is actually quite fast, and modern hardware can deal with the resource consumption
much better than before. If you don’t want to bother with synchronization issues, then forking may be a good
alternative.

The best thing may, however, be to avoid this sort of parallelism altogether. In this chapter, you find other
solutions, based on the select function. Another way to avoid threads and forks is to switch to Stackless
Python (http://stackless.com), a version of Python designed to be able to switch between different con-
texts quickly and painlessly. It supports a form of thread-like parallelism called microthreads, which scale
much better than real threads. For example, Stackless Python microthreads have been used in EVE Online
(http://www.eve-online.com) to serve thousands of users.

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 313

and scalable mechanism. A basic framework of this kind, which is included in the standard
library, consists of the asyncore and asynchat modules, discussed in Chapter 24. Twisted
(which is discussed last in this chapter) is a very powerful asynchronous network programming
framework.

Forking and Threading with SocketServer
Creating a forking or threading server with the SocketServer framework is so simple it hardly
needs any explanation. Listings 14-4 and 14-5 show you how to make the server from Listing 14-3
forking and threading, respectively. The forking or threading behavior is useful only if the handle
method takes a long time to finish. Note that forking doesn’t work in Windows.

Listing 14-4. A Forking Server

from SocketServer import TCPServer, ForkingMixIn, StreamRequestHandler

class Server(ForkingMixIn, TCPServer): pass

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print 'Got connection from', addr
 self.wfile.write('Thank you for connecting')

server = Server(('', 1234), Handler)
server.serve_forever()

Listing 14-5. A Threading Server

from SocketServer import TCPServer, ThreadingMixIn, StreamRequestHandler

class Server(ThreadingMixIn, TCPServer): pass

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print 'Got connection from', addr
 self.wfile.write('Thank you for connecting')

server = Server(('', 1234), Handler)
server.serve_forever()

Asynchronous I/O with select and poll
When a server communicates with a client, the data it receives from the client may come in fits
and spurts. If you’re using forking and threading, that’s not a problem. While one parallel waits

314 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

for data, other parallels may continue dealing with their own clients. Another way to go, how-
ever, is to deal only with the clients that actually have something to say at a given moment. You
don’t even have to hear them out—you just hear (or, rather, read) a little, and then put it back
in line with the others.

This is the approach taken by the frameworks asyncore/asynchat (see Chapter 24) and
Twisted (see the following section). The basis for this kind of functionality is the select func-
tion, or, where available, the poll function, both from the select module. Of the two, poll is
more scalable, but it is available only in UNIX systems (that is, not in Windows).

The select function takes three sequences as its mandatory arguments, with an optional
timeout in seconds as its fourth argument. The sequences are file descriptor integers (or
objects with a fileno method that return such an integer). These are the connections that
we’re waiting for. The three sequences are for input, output, and exceptional conditions (errors
and the like). If no timeout is given, select blocks (that is, waits) until one of the file descriptors
is ready for action. If a timeout is given, select blocks for at most that many seconds, with zero
giving a straight poll (that is, no blocking). select returns three sequences (a triple—that is, a
tuple of length three), each representing an active subset of the corresponding parameter. For
example, the first sequence returned will be a sequence of input file descriptors where there is
something to read.

The sequences can, for example, contain file objects (not in Windows) or sockets.
Listing 14-6 shows a server using select to serve several connections. (Note that the server
socket itself is supplied to select, so that it can signal when there are new connections ready
to be accepted.) The server is a simple logger that prints out (locally) all data received from
its clients. You can test it by connecting to it using telnet (or by writing a simple socket-based
client that feeds it some data). Try connecting with multiple telnet connections to see that it
can serve more than one client at once (although its log will then be a mixture of the input from
the two).

Listing 14-6. A Simple Server Using select

import socket, select

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

s.listen(5)
inputs = [s]
while True:
 rs, ws, es = select.select(inputs, [], [])
 for r in rs:
 if r is s:
 c, addr = s.accept()
 print 'Got connection from', addr
 inputs.append(c)

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 315

 else:
 try:
 data = r.recv(1024)
 disconnected = not data
 except socket.error:
 disconnected = True

 if disconnected:
 print r.getpeername(), 'disconnected'
 inputs.remove(r)
 else:
 print data

The poll method is easier to use than select. When you call poll, you get a poll object. You
can then register file descriptors (or objects with a fileno method) with the poll object, using
its register method. You can later remove such objects again, using the unregister method.
Once you’ve registered some objects (for example, sockets), you can call the poll method (with
an optional timeout argument) and get a list (possibly empty) of pairs of the form (fd, event),
where fd is the file descriptor and event tells you what happened. It’s a bitmask, meaning that
it’s an integer where the individual bits correspond to various events. The various events are
constants of the select module, and are explained in Table 14-2. To check whether a given bit
is set (that is, if a given event occurred), you use the bitwise and operator (&), like this:

if event & select.POLLIN: ...

Table 14-2. Polling Event Constants in the select Module

The program in Listing 14-7 is a rewrite of the server from Listing 14-6, now using poll
instead of select. Note that I’ve added a map (fdmap) from file descriptors (ints) to socket
objects.

Listing 14-7. A Simple Server Using poll

import socket, select

s = socket.socket()

Event Name Description

POLLIN There is data to read available from the file descriptor.

POLLPRI There is urgent data to read from the file descriptor.

POLLOUT The file descriptor is ready for data, and will not block if written to.

POLLERR Some error condition is associated with the file descriptor.

POLLHUP Hung up. The connection has been lost.

POLLNVAL Invalid request. The connection is not open.

316 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

host = socket.gethostname()
port = 1234
s.bind((host, port))

fdmap = {s.fileno(): s}

s.listen(5)
p = select.poll()
p.register(s)
while True:
 events = p.poll()
 for fd, event in events:
 if fd in fdmap:
 c, addr = s.accept()
 print 'Got connection from', addr
 p.register(c)
 fdmap[c.fileno()] = c
 elif event & select.POLLIN:
 data = fdmap[fd].recv(1024)
 if not data: # No data -- connection closed
 print fdmap[fd].getpeername(), 'disconnected'
 p.unregister(fd)
 del fdmap[fd]
 else:
 print data

You can find more information about select and poll in the Python Library Reference
(http://python.org/doc/lib/module-select.html). Also, reading the source code of the stan-
dard library modules asyncore and asynchat (found in the asyncore.py and asynchat.py files in
your Python installation) can be enlightening.

Twisted
Twisted, from Twisted Matrix Laboratories (http://twistedmatrix.com), is an event-driven
networking framework for Python, originally developed for network games but now used by all
kinds of network software. In Twisted, you implement event handlers, much like you would in
a GUI toolkit (see Chapter 12). In fact, Twisted works quite nicely together with several com-
mon GUI toolkits (Tk, GTK, Qt, and wxWidgets). In this section, I’ll cover some of the basic
concepts and show you how to do some relatively simple network programming using
Twisted. Once you grasp the basic concepts, you can check out the Twisted documentation
(available on the Twisted web site, along with quite a bit of other information) to do some more
serious network programming. Twisted is a very rich framework and supports, among other
things, web servers and clients, SSH2, SMTP, POP3, IMAP4, AIM, ICQ, IRC, MSN, Jabber,
NNTP, DNS, and more!

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 317

Downloading and Installing Twisted
Installing Twisted is quite easy. First, go to the Twisted Matrix web site (http://twistedmatrix.com)
and, from there, follow one of the download links. If you’re using Windows, download the Windows
installer for your version of Python. If you’re using some other system, download a source archive.
(If you’re using a package manager such as Portage, RPM, APT, Fink, or MacPorts, you can probably
get it to download and install Twisted directly.) The Windows installer is a self-explanatory step-by-
step wizard. It may take some time compiling and unpacking things, but all you have to do is wait.
To install the source archive, you first unpack it (using tar and then either gunzip or bunzip2,
depending on which type of archive you downloaded), and then run the Distutils script:

python setup.py install

You should then be able to use Twisted.

Writing a Twisted Server
The basic socket servers written earlier in this chapter are very explicit. Some of them have an
explicit event loop, looking for new connections and new data. SocketServer-based servers
have an implicit loop where the server looks for connections and creates a handler for each
connection, but the handlers still must be explicit about trying to read data. Twisted (like the
asyncore/asynchat framework, discussed in Chapter 24) uses an even more event-based
approach. To write a basic server, you implement event handlers that deal with situations such
as a new client connecting, new data arriving, and a client disconnecting (as well as many other
events). Specialized classes can build more refined events from the basic ones, such as wrap-
ping “data arrived” events, collecting the data until a newline is found, and then dispatching a
“line of data arrived” event.

■Note One thing I have not dealt with in this section, but which is somewhat characteristic of Twisted, is
the concept of deferreds and deferred execution. See the Twisted documentation for more information (see,
for example, the tutorial called “Deferreds are beautiful,” available from the HOWTO page of the Twisted
documentation).

Your event handlers are defined in a protocol. You also need a factory that can construct
such protocol objects when a new connection arrives. If you just want to create instances of a
custom protocol class, you can use the factory that comes with Twisted, the Factory class in the
module twisted.internet.protocol. When you write your protocol, use the Protocol from the
same module as your superclass. When you get a connection, the event handler connectionMade
is called. When you lose a connection, connectionLost is called. Data is received from the client
through the handler dataReceived. Of course, you can’t use the event-handling strategy to send
data back to the client—for that you use the object self.transport, which has a write method. It
also has a client attribute, which contains the client address (host name and port).

Listing 14-8 contains a Twisted version of the server from Listings 14-6 and 14-7. I hope
you agree that the Twisted version is quite a bit simpler and more readable. There is a little bit
of setup involved; you need to instantiate Factory and set its protocol attribute so it knows

318 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

which protocol to use when communicating with clients (that is, your custom protocol).
Then you start listening at a given port with that factory standing by to handle connections by
instantiating protocol objects. You do this using the listenTCP function from the reactor mod-
ule. Finally, you start the server by calling the run function from the same module.

Listing 14-8. A Simple Server Using Twisted

from twisted.internet import reactor
from twisted.internet.protocol import Protocol, Factory

class SimpleLogger(Protocol):

 def connectionMade(self):
 print 'Got connection from', self.transport.client

 def connectionLost(self, reason):
 print self.transport.client, 'disconnected'

 def dataReceived(self, data):
 print data

factory = Factory()
factory.protocol = SimpleLogger

reactor.listenTCP(1234, factory)
reactor.run()

If you connected to this server using telnet to test it, you may have gotten a single character on
each line of output, depending on buffering and the like. You could simply use sys.sout.write
instead of print, but in many cases, you might like to get a single line at a time, rather than just arbi-
trary data. Writing a custom protocol that handles this for you would be quite easy, but there is, in
fact, such a class available already. The module twisted.protocols.basic contains a couple of use-
ful predefined protocols, among them LineReceiver. It implements dataReceived and calls the
event handler lineReceived whenever a full line is received.

■Tip If you need to do something when you receive data in addition to using lineReceived, which
depends on the LineReceiver implementation of dataReceived, you can use the new event handler
defined by LineReceiver called rawDataReceived.

Switching the protocol requires only a minimum of work. Listing 14-9 shows the result.
If you look at the resulting output when running this server, you’ll see that the newlines are
stripped; in other words, using print won’t give you double newlines anymore.

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 319

Listing 14-9. An Improved Logging Server, Using the LineReceiver Protocol

from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class SimpleLogger(LineReceiver):

 def connectionMade(self):
 print 'Got connection from', self.transport.client

 def connectionLost(self, reason):
 print self.transport.client, 'disconnected'

 def lineReceived(self, line):
 print line

factory = Factory()
factory.protocol = SimpleLogger

reactor.listenTCP(1234, factory)
reactor.run()

As noted earlier, there is a lot more to the Twisted framework than what I’ve shown you
here. If you’re interested in learning more, you should check out the online documentation,
available at the Twisted web site (http://twistedmatrix.com).

A Quick Summary
This chapter has given you a taste of several approaches to network programming in Python.
Which approach you choose will depend on your specific needs and preferences. Once you’ve
chosen, you will, most likely, need to learn more about the specific method. Here are some of
the topics this chapter touched upon:

Sockets and the socket module: Sockets are information channels that let programs (pro-
cesses) communicate, possibly across a network. The socket module gives you low-level
access to both client and server sockets. Server sockets listen at a given address for client
connections, while clients simply connect directly.

urllib and urllib2: These modules let you read and download data from various servers,
given a URL to the data source. The urllib module is a simpler implementation, while
urllib2 is very extensible and quite powerful. Both work through straightforward func-
tions such as urlopen.

The SocketServer framework: This is a network of synchronous server base classes, found
in the standard library, which lets you write servers quite easily. There is even support for
simple web (HTTP) servers with CGI. If you want to handle several connections simulta-
neously, you need to use a forking or threading mix-in class.

320 C H A P T E R 1 4 ■ N E T W O R K P R O G R AM M I N G

select and poll: These two functions let you consider a set of connections and find out
which ones are ready for reading and writing. This means that you can serve several con-
nections piecemeal, in a round-robin fashion. This gives the illusion of handling several
connections at the same time, and, although superficially a bit more complicated to code,
is a much more scalable and efficient solution than threading or forking.

Twisted: This framework, from Twisted Matrix Laboratories, is very rich and complex,
with support for most major network protocols. Even though it is large, and some of the
idioms used may seem a bit foreign, basic usage is very simple and intuitive. The Twisted
framework is also asynchronous, so it’s very efficient and scalable. If you have Twisted
available, it may very well be the best choice for many custom network applications.

New Functions in This Chapter

What Now?
You thought we were finished with network stuff now, huh? Not a chance. The next chapter
deals with a quite specialized and much publicized entity in the world of networking: the Web.

Function Description

urllib.urlopen(url[, data[, proxies]]) Opens a file-like object from a URL

urllib.urlretrieve(url[, fname[, hook[, data]]]) Downloads a file from a URL

urllib.quote(string[, safe]) Quotes special URL characters

urllib.quote_plus(string[, safe]) The same as quote, but quotes spaces as +

urllib.unquote(string) The reverse of quote

urllib.unquote_plus(string) The reverse of quote_plus

urllib.urlencode(query[, doseq]) Encodes mapping for use in CGI queries

select.select(iseq, oseq, eseq[, timeout]) Finds sockets ready for reading/writing

select.poll() Creates a poll object, for polling sockets

reactor.listenTCP(port, factory) Twisted function; listens for
connections

reactor.run() Twisted function; main server loop

321

■ ■ ■

C H A P T E R 1 5

Python and the Web

This chapter tackles some aspects of web programming with Python. This is a really vast area,
but I’ve selected three main topics for your amusement: screen scraping, CGI, and mod_python.
In addition, I give you some pointers for finding the proper toolkits for more advanced web appli-
cation and web service development. For extended examples using CGI, see Chapters 25 and 26.
For an example of using the specific web service protocol XML-RPC, see Chapter 27.

Screen Scraping
Screen scraping is a process whereby your program downloads web pages and extracts infor-
mation from them. This is a useful technique that pops up every time there is a page online that
has information you want to use in your program. It is especially useful, of course, if the web
page in question is dynamic; that is, if it changes over time. Otherwise, you could just down-
load it once and extract the information manually. (The ideal situation is, of course, one where
the information is available through web services, as discussed later in this chapter.)

Conceptually, the technique is very simple. You download the data and analyze it. You
could, for example, simply use urllib, get the web page’s HTML source, and then use regular
expressions (see Chapter 10) or another technique to extract the information. Let’s say, for exam-
ple, that you wanted to extract the various employer names and web sites from the Python Job
Board, at http://python.org/community/jobs. You browse the source and see that the names and
URLs can be found as links in h3 elements, like this (except on one, unbroken line):

<h3><a class="reference"
href="http://www.google.com">Google ...

Listing 15-1 shows a sample program that uses urllib and re to extract the required
information.

Listing 15-1. A Simple Screen-Scraping Program

from urllib import urlopen
import re
p = re.compile('<h3><a .*?><a .*? href="(.*?)">(.*?)')
text = urlopen('http://python.org/community/jobs').read()
for url, name in p.findall(text):
 print '%s (%s)' % (name, url)

322 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

The code could certainly be improved (for example, by filtering out duplicates), but it does
its job pretty well. There are, however, at least three weaknesses with this approach:

• The regular expression isn’t exactly readable. For more complex HTML code and more
complex queries, the expressions can become even more hairy and unmaintainable.

• It doesn’t deal with HTML peculiarities like CDATA sections and character entities (such
as &). If you encounter such beasts, the program will, most likely, fail.

• The regular expression is tied to details in the HTML source code, rather than some
more abstract structure. This means that small changes in how the web page is struc-
tured can break the program. (By the time you’re reading this, it may already be broken.)

The following sections deal with two possible solutions for the problems posed by the reg-
ular expression-based approach. The first is to use a program called Tidy (as a Python library)
together with XHTML parsing. The second is to use a library called Beautiful Soup, specifically
designed for screen scraping.

■Note There are other tools for screen scraping with Python. You might, for example, want to check out
Ka-Ping Yee’s scrape.py (found at http://zesty.ca/python).

Tidy and XHTML Parsing
The Python standard library has plenty of support for parsing structured formats such as
HTML and XML (see the Python Library Reference, Section 8, “Structured Markup Processing
Tools,” at http://python.org/doc/lib/markup.html). I discuss XML and XML parsing in more
depth in Chapter 22. In this section, I just give you the tools needed to deal with XHTML, the
most up-to-date dialect of HTML, which just happens to be a form of XML.

If every web page consisted of correct and valid XHTML, the job of parsing it would be
quite simple. The problem is that older HTML dialects are a bit more sloppy, and some people
don’t even care about the strictures of those sloppier dialects. The reason for this is, probably,
that most web browsers are quite forgiving, and will try to render even the most jumbled and
meaningless HTML as best they can. If this happens to look acceptable to the page authors,
they may be satisfied. This does make the job of screen scraping quite a bit harder, though.

The general approach for parsing HTML in the standard library is event-based; you write
event handlers that are called as the parser moves along the data. The standard library modules
sgmllib and htmllib will let you parse really sloppy HTML in this manner, but if you want to
extract data based on document structure (such as the first item after the second level-two
heading), you’ll need to do some heavy guessing if there are missing tags, for example. You are
certainly welcome to do this, if you like, but there is another way: Tidy.

What’s Tidy?

Tidy (http://tidy.sf.net) is a tool for fixing ill-formed and sloppy HTML. It can fix a range of
common errors in a rather intelligent manner, doing a lot of work that you would probably rather
not do yourself. It’s also quite configurable, letting you turn various corrections on or off.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 323

Here is an example of an HTML file filled with errors, some of them just Old Skool HTML,
and some of them plain wrong (can you spot all the problems?):

<h1>Pet Shop
<h2>Complaints</h3>

<p>There is no <i>way at all</i> we can accept returned
parrots.

<h1><i>Dead Pets</h1>

<p>Our pets may tend to rest at times, but rarely die within the
warranty period.

<i><h2>News</h2></i>

<p>We have just received a really nice parrot.

<p>It's really nice.

<h3><hr>The Norwegian Blue</h3>

<h4>Plumage and <hr>pining behavior</h4>
More information<a>

<p>Features:
<body>
Beautiful plumage

Here is the version that is fixed by Tidy:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title></title>
</head>
<body>
<h1>Pet Shop</h1>
<h2>Complaints</h2>
<p>There is no <i>way</i> at all we can accept returned
parrots.</p>
<h1><i>Dead Pets</i></h1>
<p>Our pets may tend to rest at times, but rarely die within the
warranty period.</p>
<h2><i>News</i></h2>
<p>We have just received a really nice parrot.</p>
<p>It's really nice.</p>
<hr>

324 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

<h3>The Norwegian Blue</h3>
<h4>Plumage and</h4>
<hr>
<h4>pining behavior</h4>
More information
<p>Features:</p>
<ul class="noindent">
Beautiful plumage

</body>
</html>

Of course, Tidy can’t fix all problems with an HTML file, but it does make sure it’s well-
formed (that is, all elements nest properly), which makes it much easier for you to parse it.

Getting a Tidy Library

You can get Tidy and the library version of Tidy, Tidylib, from http://tidy.sf.net. You should
also get a Python wrapper. You can get TidyLib from http://utidylib.berlios.de, or mxTidy
from http://egenix.com/products/python/mxExperimental/mxTidy.

At the time of writing, TidyLib seems to be the most up-to-date of the two, but mxTidy is
a bit easier to install. In Windows, simply download the installer for mxTidy, run it, and you
have the module mx.Tidy at your fingertips. There are also RPM packages available. If you want
to install the source package (presumably in a UNIX or Linux environment), you can simply
run the Distutils script, using python setup.py install.

Using Command-Line Tidy in Python

You don’t have to install either of the libraries, though. If you’re running a UNIX or Linux
machine of some sort, it’s quite possible that you have the command-line version of Tidy avail-
able. And no matter what operating system you’re using, you can probably get an executable
binary from the TidyLib web site (http://tidy.sf.net).

Once you have the binary version, you can use the subprocess module (or some of the
popen functions) to run the Tidy program. Assuming, for example, that you have a messy HTML
file called messy.html, the following program will run Tidy on it and print the result.

from subprocess import Popen, PIPE

text = open('messy.html').read()
tidy = Popen('tidy', stdin=PIPE, stdout=PIPE, stderr=PIPE)

tidy.stdin.write(text)
tidy.stdin.close()

print tidy.stdout.read()

In practice, instead of printing the result, you would, most likely, extract some useful infor-
mation from it, as demonstrated in the following sections.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 325

But Why XHTML?

The main difference between XHTML and older forms of HTML (at least for our current pur-
poses) is that XHTML is quite strict about closing all elements explicitly. So in HTML you might
end one paragraph simply by beginning another (with a <p> tag), but in XHTML, you first need
to close the paragraph explicitly (with a </p> tag). This makes XHTML much easier to parse,
because you can tell directly when you enter or leave the various elements. Another advantage
of XHTML (which I won’t really capitalize on in this chapter) is that it is an XML dialect, so
you can use all kinds of nifty XML tools on it, such as XPath. For example, the links to the forms
extracted by the program in Listing 15-1 could also be extracted by the XPath expression
//h3/a/@href. (For more about XML, see Chapter 22; for more about the uses of XPath, see, for
example, http://www.w3schools.com/xpath.)

A very simple way of parsing the kind of well-behaved XHTML you get from Tidy is using
the standard library module (and class) HTMLParser.1

Using HTMLParser

Using HTMLParser simply means subclassing it and overriding various event-handling methods
such as handle_starttag and handle_data. Table 15-1 summarizes the relevant methods and
when they’re called (automatically) by the parser.

Table 15-1. The HTMLParser Callback Methods

For screen-scraping purposes, you usually won’t need to implement all the parser callbacks
(the event handlers), and you probably won’t need to construct some abstract representation
of the entire document (such as a document tree) to find what you want. If you just keep track of
the minimum of information needed to find what you’re looking for, you’re in business. (See
Chapter 22 for more about this topic, in the context of XML parsing with SAX.) Listing 15-2 shows
a program that solves the same problem as Listing 15-1, but this time using HTMLParser.

1. This is not to be confused with the class HTMLParser from the htmllib module, which you can also use,
of course, if you’re so inclined. It’s more liberal in accepting ill-formed input.

Callback Method When Is It Called?

handle_starttag(tag, attrs) When a start tag is found, attrs is a sequence of (name,
value) pairs.

handle_startendtag(tag, attrs) For empty tags; default handles start and end separately.

handle_endtag(tag) When an end tag is found.

handle_data(data) For textual data.

handle_charref(ref) For character references of the form &#ref;.

handle_entityref(name) For entity references of the form &name;.

handle_comment(data) For comments; called with only the comment contents.

handle_decl(decl) For declarations of the form <!…>.

handle_pi(data) For processing instructions.

326 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Listing 15-2. A Screen-Scraping Program Using the HTMLParser Module

from urllib import urlopen
from HTMLParser import HTMLParser

class Scraper(HTMLParser):

 in_h3 = False
 in_link = False

 def handle_starttag(self, tag, attrs):
 attrs = dict(attrs)
 if tag == 'h3':
 self.in_h3 = True

 if tag == 'a' and 'href' in attrs:
 self.in_link = True
 self.chunks = []
 self.url = attrs['href']

 def handle_data(self, data):
 if self.in_link:
 self.chunks.append(data)

 def handle_endtag(self, tag):
 if tag == 'h3':
 self.in_h3 = False
 if tag == 'a':
 if self.in_h3 and self.in_link:
 print '%s (%s)' % (''.join(self.chunks), self.url)
 self.in_link = False

text = urlopen('http://python.org/community/jobs').read()
parser = Scraper()
parser.feed(text)
parser.close()

A few things are worth noting. First of all, I’ve dropped the use of Tidy here, because the
HTML in the web page is well behaved enough. If you’re lucky, you may find that you don’t
need to use Tidy either. Also note that I’ve used a couple of Boolean state variables (attributes)
to keep track of whether I’m inside h3 elements and links. I check and update these in the event
handlers. The attrs argument to handle_starttag is a list of (key, value) tuples, so I’ve used
dict to turn them into a dictionary, which I find to be more manageable.

The handle_data method (and the chunks attribute) may need some explanation. It uses a
technique that is quite common in event-based parsing of structured markup such as HTML and
XML. Instead of assuming that I’ll get all the text I need in a single call to handle_data, I assume
that I may get several chunks of it, spread over more than one call. This may happen for several
reasons—buffering, character entities, markup that I’ve ignored, and so on—and I just need to

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 327

make sure I get all the text. Then, when I’m ready to present my result (in the handle_endtag
method), I simply join all the chunks together. To actually run the parser, I call its feed method
with the text, and then call its close method.

This solution is, most likely, more robust to any changes in the input data than the version
using regular expressions (Listing 15-1). Still, you may object that it is too verbose (it’s certainly
more verbose than the XPath expression, for example) and perhaps almost as hard to under-
stand as the regular expression. For a more complex extraction task, the arguments in favor of
this sort of parsing might seem more convincing, but one is still left with the feeling that there
must be a better way. And, if you don’t mind installing another module, there is . . .

Beautiful Soup
Beautiful Soup is a spiffy little module for parsing and dissecting the kind of HTML you often
find on the Web—the sloppy and ill-formed kind. To quote the Beautiful Soup web site
(http://crummy.com/software/BeautifulSoup):

You didn’t write that awful page. You’re just trying to get some data out of it. Right now,
you don’t really care what HTML is supposed to look like.

Neither does this parser.

Downloading and installing Beautiful Soup is a breeze. Download the file BeautifulSoup.py
and put it in your Python path (for example, in the site-packages directory of your Python installa-
tion). If you want, you can instead download a tar archive with installer scripts and tests. With
Beautiful Soup installed, the running example of extracting Python jobs from the Python Job Board
becomes really, really simple and readable, as shown in Listing 15-3.

Listing 15-3. A Screen-Scraping Program Using Beautiful Soup

from urllib import urlopen
from BeautifulSoup import BeautifulSoup

text = urlopen('http://python.org/community/jobs').read()
soup = BeautifulSoup(text)

jobs = set()
for header in soup('h3'):
 links = header('a', 'reference')
 if not links: continue
 link = links[0]
 jobs.add('%s (%s)' % (link.string, link['href']))

print '\n'.join(sorted(jobs, key=lambda s: s.lower()))

I simply instantiate the BeautifulSoup class with the HTML text I want to scrape, and
then use various mechanisms to extract parts of the resulting parse tree. For example, I call
soup('h3') to get a list of all h3 elements. I iterate over these, binding the header variable to
each one in turn, and call header('a', 'reference') to get a list of a child elements of the

328 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

reference class (I’m talking CSS classes here). I could also have followed the strategy from pre-
vious examples, of retrieving the a elements that have href attributes; in Beautiful Soup, using
class attributes like this is easier.

As I’m sure you noticed, I added the use of set and sorted (with a key function set to ignore
case differences) in Listing 15-3. This has nothing to do with Beautiful Soup; it was just to make
the program more useful, by eliminating duplicates and printing the names in sorted order.

If you want to use your scrapings for an RSS feed (discussed later in this chapter), you
can use another tool related to Beautiful Soup, called Scrape ‘N’ Feed (at http://crummy.com/
software/ScrapeNFeed).

Dynamic Web Pages with CGI
While the first part of this chapter dealt with client-side technology, now we switch gears and
tackle the server side. This section deals with a basic web programming technology: the
Common Gateway Interface (CGI). CGI is a standard mechanism by which a web server can
pass your queries (typically supplied through a web form) to a dedicated program (for exam-
ple, your Python program) and display the result as a web page. It is a simple way of creating
web applications without writing your own special-purpose application server. For more infor-
mation about CGI programming in Python, see the Web Programming topic guide on the
Python web site (http://wiki.python.org/moin/WebProgramming).

The key tool in Python CGI programming is the cgi module. You can find a thorough
description of it in the Python Library Reference (http://python.org/doc/lib/module-cgi.html).
Another module that can be very useful during the development of CGI scripts is cgitb—more
about that later, in the section “Debugging with cgitb.”

Before you can make your CGI scripts accessible (and runnable) through the Web, you
need to put them where a web server can access them, add a pound bang line, and set the
proper file permissions. These three steps are explained in the following sections.

Step 1. Preparing the Web Server
I’m assuming that you have access to a web server—in other words, that you can put stuff on
the Web. Usually, that is a matter of putting your web pages, images, and so on in a particular
directory (in UNIX, typically called public_html). If you don’t know how to do this, you should
ask your Internet service provider (ISP) or system administrator.

■Tip If you are running Mac OS X, you have the Apache web server as part of your operating system instal-
lation. It can be switched on through the Sharing preference pane of System Preferences, by checking the
Web Sharing option.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 329

Your CGI programs must also be put in a directory where they can be accessed via the
Web. In addition, they must somehow be identified as CGI scripts, so the web server doesn’t
just serve the plain source code as a web page. There are two typical ways of doing this:

• Put the script in a subdirectory called cgi-bin.

• Give your script the file name extension .cgi.

Exactly how this works varies from server to server—again, check with your ISP or system
administrator if you’re in doubt. (For example, if you’re using Apache, you may need to turn on
the ExecCGI option for the directory in question.)

Step 2. Adding the Pound Bang Line
When you’ve put the script in the right place (and possibly given it a specific file name exten-
sion), you must add a pound bang line to the beginning of the script. I mentioned this in
Chapter 1 as a way of executing your scripts without needing to explicitly execute the Python
interpreter. Usually, this is just convenient, but for CGI scripts, it’s crucial—without it, the web
server won’t know how to execute your script. (For all it knows, the script could be written in
some other programming language such as Perl or Ruby.) In general, simply adding the follow-
ing line to the beginning of your script will do:

#!/usr/bin/env python

Note that it must be the very first line. (No empty lines before it.) If that doesn’t work, you
need to find out exactly where the Python executable is and use the full path in the pound bang
line, as in the following:

#!/usr/bin/python

If this doesn’t work, it may be that there is something wrong that you cannot see, namely
that the line ends in \r\n instead of simply \n, and your web server gets confused. Make sure
you’re saving the file as a plain UNIX-style text file.

In Windows, you use the full path to your Python binary, as in this example:

#!C:\Python22\python.exe

Step 3. Setting the File Permissions
The final thing you need to do (at least if your web server is running on a UNIX or Linux
machine) is to set the proper file permissions. You must make sure that everyone is allowed
to read and execute your script file (otherwise the web server wouldn’t be able to run it), but
also make sure that only you are allowed to write to it (so no one can change your script).

330 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

■Tip Sometimes, if you edit a script in Windows and it’s stored on a UNIX disk server (you may be accessing
it through Samba or FTP, for example), the file permissions may be fouled up after you’ve made a change to
your script. So if your script won’t run, make sure that the permissions are still correct.

The UNIX command for changing file permissions (or file mode) is chmod. Simply run the
following command (if your script is called somescript.cgi), using your normal user account,
or perhaps one set up specifically for such web tasks:

chmod 755 somescript.cgi

After having performed all these preparations, you should be able to open the script as if it
were a web page and have it executed.

■Note You shouldn’t open the script in your browser as a local file. You must open it with a full http URL
so that you actually fetch it via the Web (through your web server).

Your CGI script won’t normally be allowed to modify any files on your computer. If you
want to allow it to change a file, you must explicitly give it permission to do so. You have two
options. If you have root (system administrator) privileges, you may create a specific user
account for your script and change ownership of the files that need to be modified. If you don’t
have root access, you can set the file permissions for the file so all users on the system (includ-
ing that used by the web server to run your CGI scripts) are allowed to write to the file. You can
set the file permissions with this command:

chmod 666 editable_file.txt

■Caution Using file mode 666 is a potential security risk. Unless you know what you’re doing, it’s best
avoided.

CGI Security Risks
Some security issues are associated with using CGI programs. If you allow your CGI script to
write to files on your server, that ability may be used to destroy data unless you code your
program carefully. Similarly, if you evaluate data supplied by a user as if it were Python code
(for example, with exec or eval) or as a shell command (for example, with os.system or using
the subprocess module), you risk performing arbitrary commands, which is a huge (as in
humongous) risk.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 331

For a relatively comprehensive source of information about web security, see the World Wide
Web Consortium’s security FAQ (http://www.w3.org/Security/Faq). See also the security note on
the subject in the Python Library Reference (http://python.org/doc/lib/cgi-security.html).

A Simple CGI Script
The simplest possible CGI script looks something like Listing 15-4.

Listing 15-4. A Simple CGI Script

#!/usr/bin/env python

print 'Content-type: text/plain'
print # Prints an empty line, to end the headers

print 'Hello, world!'

If you save this in a file called simple1.cgi and open it through your web server, you should
see a web page containing only the words “Hello, world!” in plain text. To be able to open this
file through a web server, you must put it where the web server can access it. In a typical UNIX
environment, putting it in a directory called public_html in your home directory would enable
you to open it with the URL http://localhost/~username/simple1.cgi (substitute your user
name for username). Ask your ISP or system administrator for details.

As you can see, everything the program writes to standard output (for example, with print)
ends up in the resulting web page—at least almost everything. The fact is that the first things
you print are HTTP headers, which are lines of information about the page. The only header I
concern myself with here is Content-type. As you can see, the phrase Content-type is followed
by a colon, a space, and the type name text/plain. This indicates that the page is plain text. To
indicate HTML, this line should instead be as follows:

print 'Content-type: text/html'

After all the headers have been printed, a single empty line is printed to signal that the
document itself is about to begin. And, as you can see, in this case the document is simply
the string 'Hello, world!'.

Debugging with cgitb
Sometimes a programming error makes your program terminate with a stack trace due to an
uncaught exception. When running the program through CGI, this will most likely result in an
unhelpful error message from the web server. In Python 2.2, a module called cgitb (for CGI tra-
ceback) was added to the standard library. By importing it and calling its enable function, you
can get a quite helpful web page with information about what went wrong. Listing 15-5 gives
an example of how you might use the cgitb module.

332 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Listing 15-5. A CGI Script That Invokes a Traceback (faulty.cgi)

#!/usr/bin/env python

import cgitb; cgitb.enable()

print 'Content-type: text/html'

print

print 1/0

print 'Hello, world!'

The result of accessing this script in a browser (through a web server) is shown in
Figure 15-1.

Figure 15-1. A CGI traceback from the cgitb module

Note that you might want to turn off the cgitb functionality after developing the program,
since the traceback page isn’t meant for the casual user of your program.2

2. An alternative is to turn off the display and log the errors to files instead. See the Python Library Refer-
ence for more information.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 333

Using the cgi Module
So far, the programs have only produced output; they haven’t used any form of input. Input is
supplied to the CGI script from an HTML form (described in the next section) as key-value
pairs, or fields. You can retrieve these fields in your CGI script using the FieldStorage class
from the cgi module. When you create your FieldStorage instance (you should create only
one), it fetches the input variables (or fields) from the request and presents them to your pro-
gram through a dictionary-like interface. The values of the FieldStorage can be accessed
through ordinary key lookup, but due to some technicalities (related to file uploads, which we
won’t be dealing with here), the elements of the FieldStorage aren’t really the values you’re
after. For example, if you knew the request contained a value named name, you couldn’t simply
do this:

form = cgi.FieldStorage()
name = form['name']

You would need to do this:

form = cgi.FieldStorage()
name = form['name'].value

A simpler way of fetching the values is the getvalue method, which is similar to the dictio-
nary method get, except that it returns the value of the value attribute of the item. Here is an
example:

form = cgi.FieldStorage()
name = form.getvalue('name', 'Unknown')

In the preceding example, I supplied a default value ('Unknown'). If you don’t supply one,
None will be the default. The default is used if the field is not filled in.

Listing 15-6 contains a simple example that uses cgi.FieldStorage.

Listing 15-6. A CGI Script That Retrieves a Single Value from a FieldStorage (simple2.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

name = form.getvalue('name', 'world')

print 'Content-type: text/plain'
print

print 'Hello, %s!' % name

334 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

A Simple Form
Now you have the tools for handling a user request; it’s time to create a form that the user can
submit. That form can be a separate page, but I’ll just put it all in the same script.

To find out more about writing HTML forms (or HTML in general), you should perhaps get
a good book on HTML (your local bookstore probably has several). You can also find plenty of
information on the subject online. Here are some resources:

• http://www.webreference.com/htmlform

• http://www.htmlhelp.com/faq/html/forms.html

• http://www.cs.tut.fi/~jkorpela/forms

• http://www.w3schools.com/html/html_forms.asp

• http://www.htmlgoodies.com/tutors/fm.html

Also, if you find some page that you think looks like a good example for what you would
like to do, you can inspect its source in your browser by choosing View Source or something
similar (depending on which browser you have) from one of the menus.

INVOKING CGI SCRIPTS WITHOUT FORMS

Input to CGI scripts generally comes from web forms that have been submitted, but it is also possible to call
the CGI program with parameters directly. You do this by adding a question mark after the URL to your script,
and then adding key-value pairs separated by ampersands (&). For example, if the URL to the script in
Listing 15-6 were http://www.someserver.com/simple2.cgi, you could call it with name=Gumby
and age=42 with the URL http://www.someserver.com/simple2.cgi?name=Gumby&age=42. If you
try that, you should get the message “Hello, Gumby!” instead of “Hello, world!” from your CGI script. (Note that
the age parameter isn’t used.) You can use the urlencode method of the urllib module to create this kind
of URL query:

>>> urllib.urlencode({'name': 'Gumby', 'age': '42'})
'age=42&name=Gumby'

You can use this strategy in your own programs, together with urllib, to create a screen-scraping pro-
gram that can actually interact with a CGI script. However, if you’re writing both ends (that is, both server and
client side) of such a contraption, you would, most likely, be better off using some form of web service (as
described in the section “Web Services: Scraping Done Right” in this chapter).

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 335

■Note There are two main ways of getting information from a CGI script: the GET method and the POST
method. For the purposes of this chapter, the difference between the two isn’t really important. Basically, GET is
for retrieving things, and encodes its query in the URL; POST can be used for any kind of query, but encodes the
query a bit differently. For more information about GET and POST, see the forms tutorials in the preceding list.

Let’s return to our script. An extended version can be found in Listing 15-7.

Listing 15-7. A Greeting Script with an HTML Form (simple3.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

name = form.getvalue('name', 'world')

print """Content-type: text/html

<html>
 <head>
 <title>Greeting Page</title>
 </head>
 <body>
 <h1>Hello, %s!</h1>

 <form action='simple3.cgi'>
 Change name <input type='text' name='name' />
 <input type='submit' />
 </form>
 </body>
</html>
""" % name

In the beginning of this script, the CGI parameter name is retrieved, as before, with the
default 'world'. If you just open the script in your browser without submitting anything,
the default is used.

336 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Then a simple HTML page is printed, containing name as a part of the headline. In addition,
this page contains an HTML form whose action attribute is set to the name of the script itself
(simple3.cgi). That means that if the form is submitted, you are taken back to the same script.
The only input element in the form is a text field called name. Thus, if you submit the field with
a new name, the headline should change because the name parameter now has a value.

Figure 15-2 shows the result of accessing the script in Listing 15-7 through a web server.

Figure 15-2. The result of executing the CGI script in Listing 15-7

One Step Up: mod_python
If you like CGI, you will probably love mod_python. It’s an extension (module) for the Apache
web server, and you can get it from the mod_python web site (http://modpython.org). It makes
the Python interpreter directly available as a part of Apache, which makes a whole host of dif-
ferent cool stuff possible. At the core, it gives you the ability to write Apache handlers in Python,
as opposed to in C, which is the norm. The mod_python handler framework gives you access to
a rich API, uncovering Apache internals and more.

In addition to the basic functionality, mod_python comes with several handlers that can
make web development a more pleasant task:

• The CGI handler, which lets you run CGI scripts using the mod_python interpreter,
considerably speeding up their execution

• The PSP handler, which lets you mix HTML and Python code to create executable web
pages, or Python Server Pages

• The publisher handler, which lets you call Python functions using URLs

In this section, I will focus on these three standard handlers; if you want to write your own
custom handlers, you should check out the mod_python documentation.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 337

Installing mod_python
Installing mod_python and getting it to work is, perhaps, a bit more difficult than doing so for
many of the other packages I’ve discussed so far. If nothing else, you need to make it cooperate
with Apache. So, if you plan to install mod_python yourself, you should either use some form
of package manager system (which will install it automatically) or make sure you know a bit
about running and maintaining the Apache web server. (You can find more information
about Apache at http://httpd.apache.org.) If you’re lucky, you may already have access to
a machine where mod_python is installed; if you’re uncertain, just try to use it, as described
here, and see if your code runs properly. (Of course, you could also bug your ISP or administra-
tor to install it for you.)

If you do want to install it yourself, you can get the information you need in the
mod_python documentation, available online or for download at the mod_python web
site (http://modpython.org). You can probably also get some assistance on the mod_python
mailing list (with subscription available from the same web site). The process is slightly dif-
ferent depending on whether you use UNIX or Windows.

Installing on UNIX

Assuming you have already compiled your Apache web server and you have the Apache source
code available, here are the highlights of compiling and installing mod_python.

First, download the mod_python source code. Unpack the archive and enter the directory.
Then, run the configure script of mod_python:

$./configure --with-apxs=/usr/local/apache/bin/apxs

Modify the path to the apxs program if this is not where it is found. On my Gentoo system,
for example, I would use /usr/sbin/apxs2. (Or, rather, I would install mod_python automati-
cally with the Portage package system, but that’s beside the point.)

Make a note of any useful messages, such as any messages about LoadModule.
Once this configuration is done, compile everything:

$ make

Once everything has been compiled, install mod_python:

$ make install

You may need to run this with root privileges (or give a --prefix option to configure).

■Note On a Mac OS X system, you can use MacPorts to install mod_python.

Installing on Windows

You can download the mod_python installer from http://www.apache.org/dist/httpd/
modpython/win/ (get the newest version) and double-click it. The installation is straight-
forward and will take you through the steps of finding your Python and Apache installations.

338 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

You may get an error at the end of the process if you did not install Tcl/Tk with Python,
though the installer tells you how to finish the installation manually. To do this, copy
mod_python_so.pyd from Python’s Lib\site-packages folder to the modules directory under
your Apache root folder.

Configuring Apache

Assuming everything went well (if not, check out the sources of information given earlier),
you now must configure Apache to use mod_python. Find the Apache configuration file that
is used for specifying modules. This file it is usually called httpd.conf or apache.conf, although
it may have a different name in your distribution (consult the relevant documentation, if
needed). Add the line that corresponds to your operating system:

UNIX
LoadModule python_module libexec/mod_python.so

Windows
LoadModule python_module modules/mod_python.so

There may be slight variations in how to write this (for example, the exact path to
mod_python.so), though the correct version for UNIX should have been reported as a result
of running configure, earlier.

Now Apache knows where to find mod_python, but it has no reason to use it—you need to
tell it when to do so. To do that, you must add some lines to your Apache configuration, either
in some main configuration file (possibly commonapache2.conf, depending on your installation)
or in a file called .htaccess in the directory where you place your scripts for web access. (The
latter option is only available if it has been allowed in the main configuration of the server
using the AllowOverride directive.) In the following, I assume that you’re using the .htaccess
method; otherwise, you need to wrap the directives like this (remember to use quotes around
the path if you are a Windows user):

<Directory /path/to/your/directory>
 (Add the directives here)
</Directory>

The specific directives to use are described in the following sections.

■Note If the procedure described here fails for you, see the Apache and mod_python web sites for more
detailed information about installation.

CGI Handler
The CGI handler simulates the environment your program runs in when you actually use CGI.
This means that you’re really using mod_python to run your program, but you can still (mostly)

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 339

write it as if it were a CGI script, using the cgi and cgitb modules, for example. (There are some
limitations; see the documentation for details.)

The main reason for using the CGI handler as opposed to plain CGI is performance.
According to a simple test in the mod_python documentation, you can increase your perfor-
mance by about one order of magnitude (a factor of about 10) or even more. The publisher
(described later) is faster than this, and writing your own handler is even faster, possibly
tripling the speed of the CGI handler. If you want only speed, the CGI handler may be an easy
option. If you’re writing new code, though, and want some extra functionality and flexibility,
using one of the other solutions (described in the following sections) is probably a better idea.
The CGI handler doesn’t really tap into the great potential of mod_python and is best used with
legacy code.

To use the CGI handler, put the following in an .htaccess file in the directory where you
keep your CGI scripts:

SetHandler mod_python
PythonHandler mod_python.cgihandler

■Note Make sure you don’t have conflicting definitions in your global Apache configuration, as the
.htaccess file won’t override it.

For debugging information (which can be useful when something goes wrong, as it usually
will), you can add the following:

PythonDebug On

You should remove this directive when you’re finished developing; there’s no point in
exposing the innards of your program to the (potentially malevolent) public.

Once you’ve set things up properly, you should be able to run your CGI scripts just as
before.

■Note In order to run your CGI script, you might need to give your script a .py ending, even if you access
it with a URL ending in .cgi. mod_python converts the .cgi to a .py when it looks for a file to fulfill the
request.

PSP
If you’ve used PHP (the PHP: Hypertext Preprocessor, originally known as Personal Home Page
Tools, or PHP Tools), Microsoft Active Server Pages (ASP), JavaServer Pages (JSP), or something
similar, the concepts underlying Python Server Pages (PSP), should be familiar. PSP docu-
ments are a mix of HTML (or, for that matter, some other form of document) and Python code,

340 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

with the Python code enclosed in special-purpose tags. Any HTML (or other plain data) will be
converted to calls to an output function.

Setting up Apache to serve your PSP pages is as simple as putting the following in your
.htaccess file:

AddHandler mod_python .psp
PythonHandler mod_python.psp

This will treat files with the .psp file extension as PSP files.

■Caution While developing your PSP pages, using the directive PythonDebug On can be useful. You
should not, though, keep it on when the system is used for real, because any error in the PSP page will result
in an exception traceback including the source code being served to the user. Letting a potentially hostile user
see the source code of your program is something that should not be done lightly. If you publish the code
deliberately, others may help you find security flaws, and this can definitely be one of the strong sides to open
source software development. However, simply letting users glimpse your code through error messages is
probably not useful, and it’s potentially a security risk.

There are two main sets of PSP tags: one for statements and another for expressions. The
values of expressions in expression tags are put directly into the output document. Listing 15-8
is a simple PSP example, which first performs some setup code (statements) and then outputs
some random data as part of the web page, using an expression tag.

Listing 15-8. A Slightly Stochastic PSP Example

<%
from random import choice
adjectives = ['beautiful', 'cruel']
%>
<html>
 <head>
 <title>Hello</title>
 </head>
 <body>
 <p>Hello, <%=choice(adjectives)%> world. My name is Mr. Gumby.</p>
 </body>
</html>

You can mix plain output, statements, and expressions in any way you like. You can write
comments (which will not be part of the output) <%- like this -%>.

There is really very little to PSP programming beyond these basics. You need to be aware
of one issue, though: if code in a statement tag starts an indented block, the block will persist,

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 341

with the following HTML being put inside the block. One way to close such a block is to insert
a comment, as in the following:

A <%
for i in range(3):
%> merry, <%
End the for loop
%> merry christmas time.

In general, if you’ve used PHP, JSP, or the like, you will probably notice that PSP is more
picky about newlines and indentation—a feature inherited from Python itself.

■Note Many other systems somewhat resemble mod_python’s PSP. Some are almost identical, such as the
Webware PSP system (http://webwareforpython.org). Some are similarly named, but with a rather differ-
ent syntax, such as the Spyce PSP (http://spyce.sf.net). The web development system Zope (http://
zope.org) has its own template languages (such as ZPT). The rather innovative template system Clearsilver
(http://clearsilver.net) has Python bindings, and could be an interesting alternative for the curious. A visit
to the Vaults of Parnassus Web category (http://py.vaults.ca/apyllo.py?i=127386987) or a web search
for “python template system” (or something similar) should point you toward several other interesting systems.

The Publisher
This is where mod_python really comes into its own: it lets you write Python programs that
have a much more interesting environment than CGI scripts. To use the publisher handler, put
the following in your .htaccess file (again, optionally adding PythonDebug On while you’re
developing):

AddHandler mod_python .py
PythonHandler mod_python.publisher

This will run any file with a name ending in .py as a Python script, using the publisher han-
dler.

The first thing to know about the publisher is that it exposes functions to the Web as if
they were documents. For example, if you have a script called script.py available from
http://example.com/script.py that contains a function called func, the URL http://example.
com/script.py/func will make the publisher first run the function (with a special request object
as the only parameter), and then display whatever is returned as the document displayed to the
user. As is the custom with ordinary web documents, the default “document” (that is, function)
is called index, so the URL http://example.com/script.py will call the function by that name.
In other words, something like the following is sufficient to make use of the publisher handler:

def index(req):
 return "Hello, world!"

342 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

The request object lets you access several pieces of information about the request received,
as well as setting custom HTTP headers and the like. Consult the mod_python documentation
for instructions on how to use the request object. If you don’t care about it, you can just drop it,
like this:

def index():
 return "Hello, world!"

The publisher actually checks how many arguments the given function takes as well as
what they’re called and supplies only what it can accept.

■Tip You can do the same sort of magic checking as the publisher, if that interests you. The technique is
not necessarily portable across Python implementations (for example, to Jython), but if you’re sticking to
CPython, you can use the inspect module to poke at such corners of functions (and other objects) to see how
many arguments they take and what the arguments are called.

You can give your function more (or just other) arguments than the request object, too:

def greet(name='world'):
 return 'Hello, %s!' % name

Note that the dispatcher uses the names of the arguments, so when there is no argument
called req, you won’t receive the request object. You can now access this function and supply
it with an argument using a URL such as http://example.com/script.py/greet?name=Gumby.
The resulting web page should now contain the greeting “Hello, Gumby!”.

Note that the default argument is quite useful. If the user (or the calling program) doesn’t
supply all parameters, it’s better to display a default page of some sort than to confront the user
with a rather obscure “internal server error” message. Also, it would be problematic if supply-
ing extra arguments (not used by the function) would lead to an error condition. Luckily, that
won’t happen, because the dispatcher uses only the arguments it needs.

One nice thing about the dispatcher is that access control and authorization are very easy
to implement. The path given in the URL (after the script name) is actually a series of attribute
lookups. For each step in the series of lookups, mod_python also looks for the attributes
__auth__ and __access__ in the same object (or module) as the attribute itself. If you have
defined the __auth__ attribute, and it is callable (for example, a function or method), the user
is queried for a user name and password, and __auth__ is called with the request object, the
user name, and the password. If the return value is true, the user is authenticated. If __auth__
is a dictionary, the user name will be looked up, and the password will be matched against the
corresponding key. The __auth__ attribute can also be some constant value. If it is false, the
user is never authorized. (You can use the __auth_realm__ attribute to give the realm name,
usually used in the login query dialog box.)

 Once a user has been authenticated, it is time to check whether that user should be granted
access to a given object (for example, the module or script itself). For this check, you use the
__access__ attribute. If you have defined __access__ and it is callable, it is called with the request
object and the user name, and, again, the truth value returned determines whether the user is
granted access (with a true value granting access). If __access__ is a list, then the user is granted

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 343

access if the user name is found in the list. Just like __auth__, __access__ can be a Boolean
constant.

Listing 15-9 gives a simple example of a script with authentication and access control.

Listing 15-9. Simple Authentication with the mod_python Publisher

from sha import sha

__auth_realm__ = "A simple test"

def __auth__(req, user, pswd):
 return user == "gumby" and sha(pswd).hexdigest() == \
 '17a15a277d43d3d9514ff731a7b5fa92dfd37aff'

def __access__(req, user):
 return True

def index(req, name="world"):
 return "<html>Hello, %s!</html>" % name

Note that the script in Listing 15-9 uses the sha module to avoid storing the password
(which is goop, by the way) in plain text. Instead, a digest of the correct password is compared
with a digest of the password supplied by the user. This doesn’t give a great increase in security,
but it’s better than nothing.

The __access__ function doesn’t really do anything useful in the example in Listing 15-9.
In a real application, you might have a common authentication function, to check that the
users really are who they claim to be (that is, verify that the passwords fit the user names), and
then use specialized __access__ functions (or lists) in different objects to restrict access to a
subset of the users. For more information about how objects are published, see the section
“The Publishing Algorithm” in the mod_python documentation.

■Note The __auth__ mechanism uses HTTP authentication, as opposed to the cookie-based authentica-
tion used by some systems (where your session, or logged-in status, is stored in a cookie).

Web Application Frameworks
The CGI mechanism and the mod_python toolkit are, in many ways, very basic building blocks
for web application development. If you wish to develop more complex systems, you will prob-
ably want to use a web application framework. Four safe choices are Zope (often used along
with the content management system Plone), Django, Pylons, and TurboGears.3 These are
systems that include support for mapping from URLs to method calls (like mod_python),

3. Maybe you’ve heard of Ruby on Rails. Frameworks such as Django, Pylon, and TurboGears are, in some
ways, Python parallels.

344 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

object-relational mapping for persistent storage (for example, in SQL databases), templating
for dynamic web page generation, and much more. Twisted (described in Chapter 14) is also
relevant here.

Much documentation (including books) is available for these frameworks. For a quick
start, check out their web pages. For even more hints, check out the Web Programming topic
guide in the Python Wiki (http://wiki.python.org/moin/WebProgramming). Table 15-2 lists the
URLs for the frameworks mentioned, as well as some other frameworks that might be of
interest.

Table 15-2. Python Web Application Frameworks

Web Services: Scraping Done Right
Web services are a bit like computer-friendly web pages. They are based on standards and
protocols that enable programs to exchange information across the network, usually with
one program, the client or service requester, asking for some information or service, and the
other program, the server or service provider, providing this information or service. Yes, this
is glaringly obvious stuff, and it also seems very similar to the network programming dis-
cussed in Chapter 14, but there are differences.

Web services often work on a rather high level of abstraction. They use HTTP (the “Web
protocol”) as the underlying protocol. On top of this, they use more content-oriented proto-
cols, such as some XML format to encode requests and responses. This means that a web server
can be the platform for web services. As the title of this section indicates, it’s web scraping
taken to another level. You could see the web service as a dynamic web page designed for a
computerized client, rather than for human consumption.

There are standards for web services that go really far in capturing all kinds of complexity,
but you can get a lot done with utter simplicity as well. In this section, I give only a brief intro-
duction to the subject, with some pointers to where you can find the tools and information you
might need.

Name Web Site

Albatross http://object-craft.com.au/projects/albatross

CherryPy http://cherrypy.org

Django http://djangoproject.com

Plone http://plone.org

Pylons http://pylonshq.com

Quixote http://quixote.ca

Spyce http://spyce.sf.net

TurboGears http://turbogears.org

web.py http://webpy.org

Webware http://webwareforpython.org

Zope http://zope.org

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 345

■Note As there are many ways of implementing web services, including a multitude of protocols, and each
web service system may provide several services, it can sometimes be necessary to describe a service in a
manner that can be interpreted automatically by a client—a metaservice, so to speak. The standard for this
sort of description is the Web Service Description Language (WSDL). WSDL is an XML format that describes
such things as which methods are available through a service, along with their arguments and return values.
Many, if not most, web service toolkits will include support for WSDL in addition to the actual service proto-
cols, such as SOAP.

RSS and Friends
RSS, which stands for either Rich Site Summary, RDF Site Summary, or Really Simple Syndica-
tion (depending on the version number), is, in its simplest form, a format for listing news items
in XML. What makes RSS documents (or feeds) more of a service than simply a static document
is that they’re expected to be updated regularly (or irregularly). They may even be computed
dynamically, representing, for example, the most recent additions to a blog or the like. A newer
format used for the same thing is Atom. For information about RSS and its relative Resource
Description Framework (RDF), see http://www.w3.org/RDF. For a specification of Atom, see
http://tools.ietf.org/html/rfc4287.

Plenty of RSS readers are out there, and often they can also handle other formats such as
Atom. Because the RSS format is so easy to deal with, developers keep coming up with new
applications for it. For example, some browsers (such as Mozilla Firefox) will let you bookmark
an RSS feed, and will then give you a dynamic bookmark submenu with the individual news
items as menu items. RSS is also the backbone of podcasting (web-based “broadcasting” of
sound or video files).

The problem is that if you want to write a client program that handles feeds from several sites,
you must be prepared to parse several different formats, and you may even need to parse HTML
fragments found in the individual entries of the feed. Even though you could use BeautifulSoup
(more specifically, the XML-oriented BeautifulStoneSoup class) to tackle this, it’s probably a better
idea to use Mark Pilgrim’s Universal Feed Parser (http://feedparser.org), which handles several
feed formats (including RSS and Atom, along with some extensions) and has support for some
degree of content cleanup. Pilgrim has also written a useful article, “Parsing RSS At All Costs”
(http://xml.com/pub/a/2003/01/22/dive-into-xml.html), in case you want to deal with some of
the cleanup yourself.

Remote Procedure Calls with XML-RPC
Beyond the simple download-and-parse mechanic of RSS lies the remote procedure call. A
remote procedure call is an abstraction of a basic network interaction. Your client program
asks the server program to perform some computation and return the result, but it is all cam-
ouflaged as a simple procedure (or function or method) call. In the client code, it looks like an
ordinary method is called, but the object on which it is called actually resides on a different
machine entirely. Probably the simplest mechanism for this sort of procedure call is XML-RPC,
which implements the network communication with HTTP and XML. Because there is nothing
language-specific about the protocol, it is easy for client programs written in one language to
call functions on a server program written in another.

346 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

■Tip For Python-specific alternatives to XML-RPC, check out the remote procedure call mechanisms of
Pyro (http://pyro.sf.net) and Twisted (http://twistedmatrix.com).

The Python standard library includes support for both client-side and server-side XML-
RPC programming. For examples of using XML-RPC, see Chapters 27 and 28.

SOAP
SOAP4 is also a protocol for exchanging messages, with XML and HTTP as underlying technolo-
gies. Like XML-RPC, SOAP supports remote procedure calls, but the SOAP specification is much
more complex than that of XML-RPC. SOAP is asynchronous, supports metarequests about rout-
ing, and has a complex typing system (as opposed to XML-RPC’s simple set of fixed types).

There is no single standard SOAP toolkit for Python. You might want to consider Twisted
(http://twistedmatrix.com), ZSI (http://pywebsvcs.sf.net), or SOAPy (http://soapy.sf.net).
For more information about the SOAP format itself, see http://www.w3.org/TR/soap.

A Quick Summary
Here is a summary of the topics covered in this chapter:

Screen scraping: This is the practice of downloading web pages automatically, and
extracting information from them. The Tidy program and its library version are useful
tools for fixing ill-formed HTML before using an HTML parser. Another option is to use
Beautiful Soup, which is very forgiving of messy input.

RPC AND REST

Even though the two mechanisms are rather different, remote procedure calls may be compared to the
so-called representational state transfer style of network programming, usually called REST. REST-based
(or RESTful) programs also allow clients to access the servers programmatically, but the server program is
assumed not to have any hidden state. Returned data is uniquely determined by the given URL (or, in the case
of HTTP POST, additional data supplied by the client).

More information about REST is readily available online. For example, you could start with the Wiki-
pedia article on it, at http://en.wikipedia.org/wiki/Representational_State_Transfer. A
simple and elegant protocol that is used quite a bit in RESTful programming is JavaScript Object Notation,
or JSON (http://www.json.org), which allows you to represent complex objects in a plain-text format.
A comparison of JSON modules for Python can be found at http://deron.meranda.us/python/
comparing_json_modules.

4. While the name once stood for Simple Object Access Protocol, this is no longer true. Now it’s just SOAP.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 347

CGI: The Common Gateway Interface is a way of creating dynamic web pages, by making
a web server run and communicate with your programs, and display the results. The cgi
and cgitb modules are useful for writing CGI scripts. CGI scripts are usually invoked from
HTML forms.

mod_python: The mod_python handler framework makes it possible to write Apache
handlers in Python. It includes three useful standard handlers: the CGI handler, the PSP
handler, and the publisher handler.

Web application frameworks and servers: For developing large, complex web applica-
tions in Python, a web application framework is almost a must. Zope, Django, Pylon, and
TurboGears are some good Python framework choices.

Web services: Web services are to programs what (dynamic) web pages are to people. You
may see them as a way of making it possible to do network programming at a higher level
of abstraction. Common web service standards are RSS (and its relatives, RDF and Atom),
XML-RPC, and SOAP.

New Functions in This Chapter

What Now?
I’m sure you’ve tested the programs you’ve written so far by running them. In the next chapter,
you will learn how you can really test them—thoroughly and methodically, maybe even obses-
sively (if you’re lucky).

Function Description

cgitb.enable() Enables tracebacks in CGI script

349

■ ■ ■

C H A P T E R 1 6

Testing, 1-2-3

How do you know that your program works? Can you rely on yourself to write flawless code
all the time? Meaning no disrespect, I would guess that’s unlikely. It’s quite easy to write cor-
rect code in Python most of the time, certainly, but chances are your code will have bugs.1
Debugging is a fact of life for programmers—an integral part of the craft of programming.
However, the only way to get started debugging is to run your program. Right? And simply run-
ning your program might not be enough. If you have written a program that processes files in
some way, for example, you will need some files to run it on. Or if you have written a utility
library with mathematical functions, you will need to supply those functions with parameters
in order to get your code to run.

Programmers do this kind of thing all the time. In compiled languages, the cycle goes
something like “edit, compile, run,” around and around. In some cases, even getting the pro-
gram to compile may be a problem, so the programmer simply switches between editing and
compiling. In Python, the compilation step isn’t there—you simply edit and run. Running your
program is what testing is all about.

In this chapter, I discuss the basics of testing. I give you some notes on how to let testing
become one of your programming habits and show you some useful tools for writing your tests.
In addition to the testing and profiling tools of the standard library, I show you how to use the
code analyzers PyChecker and PyLint.

For more on programming practice and philosophy, see Chapter 19. There, I also mention
logging, which is somewhat related to testing.

Test First, Code Later
To plan for change and flexibility, which is crucial if your code is going to survive even to
the end of your own development process, it’s important to set up tests for the various parts
of your program (so-called unit tests). It’s also a very practical and pragmatic part of designing
your application. Rather than the intuitive “code a little, test a little” practice, the Extreme
Programming crowd (a relatively new movement in software design and development) has
introduced the highly useful, but somewhat counterintuitive, dictum “test a little, code a little.”

1. Did you know that the original computer bug was, in fact, a moth? It was found stuck in a relay in
the Mark II computer at Harvard in 1945. The term bug for a computer glitch and the related word
debugging are credited to Grace Hopper, who taped the original bug into her logbook. The logbook—
with the bug—is on display at the US Naval Surface Weapons Center in Dahlgren, Virginia. (See
http://en.wikipedia.org/wiki/Software_bug for more information.)

350 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

In other words, test first and code later. This is also known as test-driven programming. While
this may be unfamiliar at first, it can have many advantages, and it does grow on you over time.
Eventually, once you’ve used test-driven programming for a while, writing code without hav-
ing tests in place will seem really backwards.

Precise Requirement Specification
When developing a piece of software, you must first know what problem the software will
solve—what objectives it will meet. You can clarify your goals for the program by writing a
requirement specification, a document (or just some quick notes) describing requirements the
program must satisfy. It is then easy to check at some later time whether the requirements are
indeed satisfied. But many programmers dislike writing reports and in general prefer to have
their computer do as much of their work as possible. Here’s good news: you can specify the
requirements in Python and have the interpreter check whether they are satisfied!

■Note There are many types of requirements, including such vague concepts as client satisfaction. In this
section, I focus on functional requirements—that is, what is required of the program’s functionality.

The idea is to start by writing a test program, and then write a program that passes the
tests. The test program is your requirement specification and helps you stick to those require-
ments while developing the program.

Let’s take a simple example. Suppose you want to write a module with a single function
that will compute the area of a rectangle with a given height and a given width. Before you start
coding, you write a unit test with some examples for which you know the answers. Your test
program might look like the one in Listing 16-1.

Listing 16-1. A Simple Test Program

from area import rect_area
height = 3
width = 4
correct_answer = 12
answer = rect_area(height, width)
if answer == correct_answer:
 print 'Test passed '
else:
 print 'Test failed '

In this example, I call the function rect_area (which I haven’t written yet) on the height 3
and width 4, and compare the answer with the correct one, which is 12.2

2. Of course, testing only one case like this won’t give you much confidence in the correctness of the code.
A real test program would probably be a lot more thorough.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 351

If you then carelessly implement rect_area (in the file area.py) as follows, and try to run
the test program, you would get an error message:

def rect_area(height, width):
 return height * height # This is wrong...

You could then examine the code to see what was wrong, and replace the returned expres-
sion with height * width.

Writing a test before you write your code isn’t just a preparation for finding bugs—it’s
much more profound than that. It’s a preparation for seeing whether your code works at all. It’s
a bit like the old Zen koan: “Does a tree falling in the forest make a sound if no one is there to
hear it?” Well, of course it does (sorry, Zen monks), but the sound doesn’t have any impact on
you or anyone else. With your code, the question is, “Until you test it, does it actually do any-
thing?” Philosophy aside, it can be useful to adopt the attitude that a feature doesn’t really exist
(or isn’t really a feature) until you have a test for it. Then you can clearly demonstrate that it’s
there and is doing what it’s supposed to do. This isn’t only useful while developing the program
initially, but also when you later extend and maintain the code.

Planning for Change
In addition to helping a great deal as you write the program, automated tests help you avoid
accumulating errors when you introduce changes. As discussed in Chapter 19, you should be
prepared to change your code, rather than clinging frantically to what you have, but change
has its dangers. When you change some piece of your code, you very often introduce an
unforeseen bug or two. If you have designed your program well (with a lot of abstraction and
encapsulation), the effects of a change should be local, and affect only a small piece of the
code. That means that debugging is easier if you spot the bug.

CODE COVERAGE

The concept of coverage is an important part of testing lore. When you run your tests, chances are you won’t
run all parts of your code, even though that would be the ideal situation. (Actually, the ideal situation would be
to run through every possible state of your program, using every possible input, but that’s really not going to
happen.) One of the goals of a good test suite is to get good coverage, and one way of ensuring that is to use
a coverage tool, which measures the percentage of your code that was actually run during the testing. At the
time of writing, there is no really standardized coverage tool for Python, but a web search for something like
“test coverage python” should turn up a few options. One option is the (currently undocumented) program
trace.py, which comes with the Python distribution. You can run it as a program on the command line (pos-
sibly using the -m switch, saving you the trouble of finding the file), or you can import it as a module. For help
on how to use it, you can either run the program with the --help switch or import the module and execute
help(trace) in the interpreter.

At times, you may feel overwhelmed by the requirement to test everything extensively. Don’t worry—you
don’t have to test hundreds of combinations of inputs and state variables, at least not to begin with. The most
important part of test-driven programming is that you actually run your method (or function or script) repeat-
edly while coding, to get continual feedback on how you’re doing. If you want to increase your confidence in
the correctness of the code (as well as the coverage), you can always add more tests later.

352 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

The point is that if you don’t have a thorough set of tests handy, you may not even discover
that you have introduced a bug until later, when you no longer know how the error was intro-
duced. And without a good suite of tests, it is much harder to pinpoint exactly what is wrong.
You can’t roll with the punches unless you see them coming. One way of making sure that you
get good test coverage (that is, that your tests exercise much, if not most, of your code) is, in fact,
to follow the tenets of test-driven programming. If you make sure that you have written the
tests before you write the function, you can be certain that every function is tested.

The 1-2-3 (and 4) of Testing
Before we get into the nitty-gritty of writing tests, here’s a breakdown of the test-driven devel-
opment process (or one variation of it):

1. Figure out the new feature you want. Possibly document it, and then write a test for it.

2. Write some skeleton code for the feature, so that your program runs without any syntax
errors or the like, but your test fails. It is important to see your test fail, so you are sure
that it actually can fail. If there is something wrong with the test, and it always succeeds
no matter what (this has happened to me many times), you aren’t really testing any-
thing. This bears repeating: see your test fail before you try to make it succeed.

3. Write dummy code for your skeleton, just to appease the test. This doesn’t have to accu-
rately implement the functionality; it just needs to make the test pass. This way, you can
have all your tests pass all the time when developing (except the first time you run the
test, remember?), even while initially implementing the functionality.

4. Rewrite (or refactor) the code so that it actually does what it’s supposed to, all the while
making sure that your test keeps succeeding.

You should keep your code in a healthy state when you leave it—don’t leave it with any
tests failing. Well, that’s what they say. I find that I sometimes leave it with one test failing,
which is the point at which I’m currently working, as a sort of “to-do” or “continue here” for
myself. This is really bad form if you’re developing together with others, though. You should
never check failing code into the common code repository.

Tools for Testing
You may think that writing a lot of tests to make sure that every detail of your program works
correctly sounds like a chore. Well, I have good news for you: there is help in the standard
libraries (isn’t there always?). Two brilliant modules are available to automate the testing
process for you:

• unittest: A generic testing framework.

• doctest: A simpler module, designed for checking documentation, but excellent for
writing unit tests as well.

Let’s begin with a look at doctest, which is a great starting point.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 353

doctest
Throughout this book, I use examples taken directly from the interactive interpreter. I find that
this is an effective way to show how things work, and when you have such an example, it’s easy
to test it for yourself. In fact, interactive interpreter sessions can be a useful form of documen-
tation to put in docstrings. For instance, let’s say I write a function for squaring a number, and
add an example to its docstring:

def square(x):
 '''
 Squares a number and returns the result.

 >>> square(2)
 4
 >>> square(3)
 9
 '''
 return x*x

As you can see, I’ve included some text in the docstring, too. What does this have to do
with testing? Let’s say the square function is defined in the module my_math (that is, a file called
my_math.py). Then you could add the following code at the bottom:

if __name__=='__main__':
 import doctest, my_math
 doctest.testmod(my_math)

That’s not a lot, is it? You simply import doctest and the my_math module itself, and then
run the testmod (for “test module”) function from doctest. What does this do? Let’s try it:

$ python my_math.py
$

Nothing seems to have happened, but that’s a good thing. The doctest.testmod function
reads all the docstrings of a module and seeks out any text that looks like an example from the
interactive interpreter. Then it checks whether the example represents reality.

■Note If I were writing a real function here, I would (or should, according to the rules I laid down earlier)
first write the docstring, run the script with doctest to see the test fail, add a dummy version (for example
using if statements to deal with the specific inputs in the docstring) so that the test succeeds, and then start
working on getting the implementation right. On the other hand, if you’re going to do full-out “test-first, code-
later” programming, the unittest framework (discussed later) might suit your needs better.

To get some more input, you can just give the -v (for “verbose”) switch to your script:

$ python my_math.py -v

354 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

This command would result in the following output:

Running my_math.__doc__
0 of 0 examples failed in my_math.__doc__
Running my_math.square.__doc__
Trying: square(2)
Expecting: 4
ok

Trying: square(3)
Expecting: 9
ok
0 of 2 examples failed in my_math.square.__doc__
1 items had no tests:
 test
1 items passed all tests:
 2 tests in my_math.square
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

As you can see, a lot happened behind the scenes. The testmod function checks both the
module docstring (which, as you can see, contains no tests) and the function docstring (which
contains two tests, both of which succeed).

With this in place, you can safely change your code. Let’s say that you want to use the
Python exponentiation operator instead of plain multiplication, and use x**2 instead of x*x.
You edit the code, but accidentally forget to enter the number 2, ending up with x**x. Try it,
and then run the script to test the code. What happens? This is the output you get:

Failure in example: square(3)
from line #5 of my_math.square
Expected: 9
Got: 27

1 items had failures:
 1 of 2 in my_math.square
Test Failed 1 failures.

So the bug was caught, and you get a very clear description of what is wrong. Fixing the
problem shouldn’t be difficult now.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 355

■Caution Don’t trust your tests blindly, and be sure to test enough cases. As you can see, the test using
square(2) does not catch the bug because for x==2, x**2 and x**x are the same thing!

For more information about the doctest module, you should again check out the library
reference (http://python.org/doc/lib/module-doctest.html).

unittest
While doctest is very easy to use, unittest (based on the popular test framework JUnit, for
Java) is more flexible and powerful. unittest may have a steeper learning curve than doctest,
but I suggest that you take a look at this module, because it allows you to write very large and
thorough test sets in a more structured manner.

I will give you just a gentle introduction here.unittest includes some features that you
probably won’t need for most of your testing. For complete details, see the Python Library
Reference (http://python.org/doc/lib/module-unittest.html).

■Tip A couple of interesting alternatives to the unit test tools in the standard library are py.test
(http://codespeak.net/py/dist/test.html) and nose (http://code.google.com/p/python-nose).

Again, let’s take a look at a simple example. You’re going to write a module called my_math
containing a function for calculating products, called product. So where do you begin? With a
test, of course (in a file called test_my_math.py), using the TestCase class from the unittest
module (see Listing 16-2).

Listing 16-2. A Simple Test Using the unittest Framework

import unittest, my_math

class ProductTestCase(unittest.TestCase):

 def testIntegers(self):
 for x in xrange(-10, 10):
 for y in xrange(-10, 10):
 p = my_math.product(x, y)
 self.failUnless(p == x*y, 'Integer multiplication failed')

 def testFloats(self):
 for x in xrange(-10, 10):

356 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

 for y in xrange(-10, 10):
 x = x/10.0
 y = y/10.0
 p = my_math.product(x, y)
 self.failUnless(p == x*y, 'Float multiplication failed')

if __name__ == '__main__': unittest.main()

The function unittest.main takes care of running the tests for you. It will instantiate all
subclasses of TestCase and run all methods whose names start with test.

■Tip If you define methods called startUp and tearDown, they will be executed before and after each of
the test methods. You can use these methods to provide common initialization and cleanup code for all the
tests, a so-called test fixture.

Running this test script will, of course, simply give you an exception about the module my_math
not existing. Methods such as failUnless check a condition to determine whether the given test
succeeds or fails. The module has many other methods, such as failIf, failUnlessEqual, and
failIfEqual. See Table 16-1 for a brief overview. (Again, refer to the Python Library Reference,
http://python.org/doc/lib/testcase-objects.html, for complete information.)

Table 16-1. Some Useful TestCase Methods

Method Description

assert_(expr[, msg]) Fail if the expression is false, optionally giv-
ing a message. (Note the underscore.)

failUnless(expr[, msg]) Same as assert_.

assertEqual(x, y[, msg]) Fail if two values are different, printing both
values in traceback.

failUnlessEqual(x, y[, msg]) Same as assertEqual.

assertNotEqual(x, y[, msg]) The opposite of assertEqual.

failIfEqual(x, y[, msg]) The same as assertNotEqual.

assertAlmostEqual(x, y[, places[, msg]]) Similar to assertEqual, but with some lee-
way for float values.

failUnlessAlmostEqual(x, y[, places[, msg]]) The same as assertAlmostEqual.

assertNotAlmostEqual(x, y[, places[, msg]]) The opposite of assertAlmostEqual.

failIfAlmostEqual(x, y[, msg]) The same as assertNotAlmostEqual.

assertRaises(exc, callable, ...) Fail unless the callable raises exc when
called (with optional arguments).

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 357

The unittest module distinguishes between errors, where an exception is raised, and fail-
ures, which result from calls to failUnless and the like. The next step is to write skeleton code,
so we don’t get errors—only failures. This simply means to create a module called my_math (that
is, a file called my_math.py) containing the following:

def product(x, y):
 pass

All filler, no fun. If you run the test now, you should get two FAIL messages, like this:

FF
==
FAIL: testFloats (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 17, in testFloats
 self.failUnless(p == x*y, 'Float multiplication failed')
AssertionError: Float multiplication failed

==
FAIL: testIntegers (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 9, in testIntegers
 self.failUnless(p == x*y, 'Integer multiplication failed')
AssertionError: Integer multiplication failed

--
Ran 2 tests in 0.001s

FAILED (failures=2)

This was all expected, so don’t worry too much. Now, at least, you know that the tests are
really linked to the code—the code was wrong, and the tests failed. Wonderful.

The next step is to make it work. In this case, there isn’t much to it, of course:

def product(x, y):
 return x * y

failUnlessRaises(exc, callable, ...) Same as assertRaises.

failIf(expr[, msg]) Opposite of assert_.

fail([msg]) Unconditional failure, with an optional mes-
sage, as for the other methods.

Method Description

358 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Now the output is simply as follows:

..
--
Ran 2 tests in 0.015s

OK

The two dots at the top are the tests. If you look closely at the jumbled output from the
failed version, you’ll see two characters on the top there as well: two Fs, indicating two failures.

Just for fun, change the product function so that it fails for the specific parameters 7 and 9:

def product(x, y):
 if x == 7 and y == 9:
 return 'An insidious bug has surfaced!'
 else:
 return x * y

If you run the test script again, you should get a single failure:

.F
==
FAIL: testIntegers (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 9, in testIntegers
 self.failUnless(p == x*y, 'Integer multiplication failed')
AssertionError: Integer multiplication failed

--
Ran 2 tests in 0.005s

FAILED (failures=1)

■Tip There is also a GUI for unittest. See the PyUnit (another name for unittest) web page, http://
pyunit.sf.net, for more information.

Beyond Unit Tests
Tests are clearly important, and for any somewhat complex project, they are absolutely vital.
Even if you don’t want to bother with structured suites of unit tests, you really must have some
way of running your program to see whether it works. Having this capability in place before you
do any significant amount of coding can save you a bundle of work (and pain) later on.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 359

There are other ways of probulating (what, you don’t watch Futurama?) your program, and
here I’ll show you several tools for doing just that: source code checking and profiling. Source
code checking is a way of looking for common mistakes or problems in your code (a bit like what
compilers can do for statically typed languages, but going far beyond that). Profiling is a way of
finding out how fast your program really is. I discuss the topics in this order to honor the good old
rule, “Make it work, make it better, make it faster.” The unit testing helped make it work; source
code checking can help make it better; and, finally, profiling can help make it faster.

Source Code Checking with PyChecker and PyLint
For quite some time, PyChecker (http://pychecker.sf.net) was the only tool for checking
Python source code, looking for mistakes such as supplying arguments that won’t work
with a given function and so forth. (All right, there was tabnanny, in the standard library, but
that isn’t all that powerful, since it just checks your indentation.) Then along came PyLint
(http://www.logilab.org/projects/pylint), which supports most of the features of
PyChecker and quite a few more (such as whether your variable names fit a given naming
convention, whether you’re adhering to your own coding standards, and the like).

Installing the tools is simple. They are both available from several package manager
systems (such as Debian APT and Gentoo Portage), and may also be downloaded directly from
their respective web sites. You install using Distutils, with the standard command:

python setup.py install

PyLint also requires the Logilab Common libraries to work. Download that package, called
logilab-common, available from the PyLint web site, and install it the same way as PyLint.

Once this is done, the tools should be available as command-line scripts (pychecker and
pylint for PyChecker and PyLint, respectively) and as Python modules (with the same names).

■Note In Windows, the two tools use the batch files pychecker.bat and pylint.bat as command-line
tools. You may need to add these to your PATH environment variable to have the pychecker and pylint
commands available on the command line.

To check files with PyChecker, you run the script with the file names as arguments,
like this:

pychecker file1.py file2.py ...

With PyLint, you use the module (or package) names:

pylint module

You can get more information about both tools by running them with the -h command-
line switch. When you run either of these commands, you will probably get quite a bit of output
(most likely more output from pylint than from pychecker). Both tools are quite configurable
with respect to which warnings you want to get (or suppress); see their respective documenta-
tion for more information.

360 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Before leaving the checkers, let’s see how you can combine them with unit tests. After all,
it would be very pleasant to have them (or just one of them) run automatically as a test in your
test suite, and to silently succeed if nothing is wrong. Then you could actually have a test suite
that doesn’t just test functionality, but code quality as well.

Both PyChecker and PyLint can be imported as modules (pychecker.checker and
pylint.lint, respectively), but they aren’t really designed to be used programmatically.
When you import pychecker.checker, it will check the code that comes later (including
imported modules), printing warnings to standard output. The pylint.lint module has an
undocumented function called Run, which is used in the pylint script itself. This also prints
out warnings rather than returning them in some way. Instead of grappling with these issues,
I suggest using PyChecker and PyLint in the way they’re meant to be used: as command-line
tools. And the way of using command-line tools in Python is the subprocess module (or one
of its older relatives; see the Python Library Reference for more information). Listing 16-3 is
an example of the earlier test script, now with two code-checking tests.

Listing 16-3. Calling External Checkers Using the subprocess Module

import unittest, my_math
from subprocess import Popen, PIPE

class ProductTestCase(unittest.TestCase):

 # Insert previous tests here

 def testWithPyChecker(self):
 cmd = 'pychecker', '-Q', my_math.__file__.rstrip('c')
 pychecker = Popen(cmd, stdout=PIPE, stderr=PIPE)
 self.assertEqual(pychecker.stdout.read(), '')

 def testWithPyLint(self):
 cmd = 'pylint', '-rn', 'my_math'
 pylint = Popen(cmd, stdout=PIPE, stderr=PIPE)
 self.assertEqual(pylint.stdout.read(), '')

if __name__ == '__main__': unittest.main()

I’ve given some command-line switches to the checker programs, to avoid extraneous out-
put that would interfere with the tests. For pychecker, I have supplied the -Q (quiet) switch. For
pylint, I have supplied -rn (with n standing for “no”) to turn off reports, meaning that it will
display only warnings and errors. I have used assertEqual (instead of, for example, failIf) in
order to have the actual output read from the stdout attribute displayed in the failure messages
of unittest (this is, in fact, the main reason for using assertEqual instead of failUnless
together with == in general).

The pylint command runs directly with a module name supplied, so that’s pretty straight-
forward. To get pychecker to work properly, we need to get a file name. To get that, I’ve used the
__file__ property of the my_math module, rstriping away any c that may be found at the end
of the file name (because the module may actually come from a .pyc file).

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 361

In order to appease PyLint (rather than configuring it to shut up about things such as short
variable names, missing revisions, and docstrings), I have rewritten the my_math module slightly:

"""
A simple math module.
"""
__revision__ = '0.1'

def product(factor1, factor2):
 'The product of two numbers'
 return factor1 * factor2

If you run the tests now, you should not get any errors. Try to play around with the code
and see if you can get any of the checkers to report errors while the functionality tests still work.
(Feel free to drop either PyChecker or PyLint—one is probably enough.) For example, try to
rename the parameters back to x and y, and PyLint should complain about short variable
names. Or add print 'Hello, world!' after the return statement, and both checkers, quite
reasonably, will complain (possibly giving different reasons for the complaint).

THE LIMITS OF AUTOMATIC CHECKING: WILL IT EVER END?

It should be obvious that there are limits to the capabilities of an automatic checker such as PyChecker or
PyLint. While they are quite impressive in the breadth of errors and problems they can uncover, they can’t
know what your program is ultimately intended to do; hence, the need for custom-tailored unit tests. But
beyond this obvious barrier, automatic checkers have other limits. If you like slightly theoretical oddities, you
might be interested in a result from the exotic world of computation theory known as the halting theorem. Let’s
consider a hypothetical checker program that we could run like this:

halts.py myprog.py data.txt

As you can probably guess, the checker should check the behavior of myprog.py when run on the input
data.txt. We want to check for only one thing: infinite loops (or infinite recursion, so two things, actually).
In other words, the program halts.py should determine whether myprog.py would ever stop (halt) when
run on data.txt. Given that existing checker programs can analyze the code and figure out which types the
various variables must be for things to work, detecting such a simple thing as an infinite loop would seem like
a breeze, right? Sorry, but no, not in the general case, anyway. According to the halting problem, it simply
can’t be done.

Don’t take my word for it—the reasoning is actually quite simple. Assume that we have a working
halting-checker, and assume (for simplicity) that it’s written as a Python module. Now, let’s assume that we
write the following little insidious program, named trouble.py:

import halts, sys
name = sys.argv[1]
if halts.check(name, name):
 while True: pass

362 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Profiling
Now that you’ve made your code work, and possibly made it better than the initial version, it
may be time to make it faster. Then, again, it may not. One very important rule (along with such
principles as KISS = Keep It Small and Simple, or YAGNI = You Ain’t Gonna Need It) that you
should heed when tempted to fiddle with your code to speed it up:3

Premature optimization is the root of all evil.

—Donald Knuth, paraphrasing C. A. R. Hoare

Another way of stating this, in the words of Ken Thompson, co-inventor of UNIX, is “When
in doubt, use brute force.” In other words, don’t worry about fancy algorithms or clever optimi-
zation tricks if you don’t really, really need them. If the program is fast enough, chances are
that the value of clean, simple, understandable code is much higher than that of a slightly faster
program. After all, in a few months, faster hardware will probably be available anyway.

It uses the functionality of the halts module to check whether a program given as the first command-
line argument will ever halt if supplied with itself as input. It could be run like this, for example:

trouble.py myprog.py

This would determine whether myprog.py would ever halt if supplied with myprog.py (that is, itself)
as input. If the determination is that it would halt, trouble.py will enter an infinite loop. Otherwise, it will
simply finish (that is, halt).

With me so far? Good. (If not, try rereading the previous stuff a couple of times; that usually helps.) Now
consider the following slightly mind-bending scenario:

halts.py trouble.py trouble.py

Ta-da! What, it doesn’t seem mind-bending to you? It just checks whether trouble.py would halt with
trouble.py (that is, itself) as input. Sure, that’s not so mind-bending in itself. But what would the result be?
Consider the two alternatives: if halts.py says “yes”—that is, trouble.py trouble.py will halt—then
trouble.py trouble.py is defined not to halt. We run into the same (converse) problem if we get a “no.”
Either way, halts.py is destined to get it wrong, and there is no way to fix it. We began the story by assuming
that the checker actually worked, and now we have reached a contradiction, which means our assumption
was wrong.

This doesn’t mean that we can’t detect any kinds of infinite looping, of course. Seeing a while True
without a break, raise, or return would be a strong clue, for example. It’s just not possible to detect this
in general. Sadly, many other similar properties can’t be automatically analyzed in general.3 So even with such
nifty tools as PyChecker and PyLint, we’ll need to rely on manual debugging rooted in our knowledge of the
special circumstances of our program. And, perhaps, we should try to avoid intentionally writing tricky pro-
grams such as trouble.py.

3. Check out Computers Ltd: What They Really Can’t Do by David Harel (Oxford University Press, 2000) for
a lot of interesting material on the subject.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 363

But if you do need to optimize your program, because it simply isn’t fast enough for your
requirements, you absolutely should profile it before doing anything else. That is because it’s
really hard to guess where the bottlenecks are, unless your program is really simple. And if
you don’t know what’s slowing down your program, chances are you’ll be optimizing the
wrong thing.

The standard library includes a nice profiler module called profile (and a faster drop-in
C version, called hotshot). Using the profiler is straightforward. Just call its run method with a
string argument.

>>> import profile
>>> from my_math import product
>>> profile.run('product(1, 2)')

■Note In some Linux distributions, you may need to install a separate package in order to get the profile
module to work. If it works, fine. If not, you might want to check out the relevant documentation to see if this
is the problem.

This will give you a printout with information about how many times various functions
and methods were called and how much time was spent in the various functions. If you supply
a file name, for example, 'my_math.profile', as the second argument to run, the results will be
saved to a file. You can then later use the pstats module to examine the profile:

>>> import pstats
>>> p = pstats.Stats('my_math.profile')

Using this Stats object, you can examine the results programmatically. (For details on the
API, consult the standard library documentation.)

■Tip The standard library also contains a module called timeit, which is a simple way of timing small
snippets of Python code. The timeit module isn’t really useful for detailed profiling, but it can be a nice tool
when all you want to do is figure out how much time a piece of code takes to execute. Trying to do this your-
self can often lead to inaccurate measurements (unless you know what you’re doing). Using timeit is usually
a better choice (unless you opt for a full profiling, of course). You can find more information about timeit in
the Python Library Reference (http://python.org/doc/lib/module-timeit.html).

Now, if you’re really worried about the speed of your program, you could add a unit test
that profiles your program and enforces certain constraints (such as failing if the program takes
more than a second to finish). It might be a fun thing to do, but it’s not something I recom-
mend. Obsessive profiling can easily take your attention away from things that really matter,
such as clean, understandable code. If the program is really slow, you’ll notice that anyway,
because your tests will take forever to finish.

364 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

A Quick Summary
Here are the main topics covered in the chapter:

Test-driven programming: Basically, test-driven programming means to test first, code
later. Tests let you rewrite your code with confidence, making your development and
maintenance more flexible.

The doctest and unittest modules: These are indispensable tools if you want to do unit
testing in Python. The doctest module is designed to check examples in docstrings, but
can easily be used to design test suites. For more flexibility and structure in your suites, the
unittest framework is very useful.

PyChecker and PyLint: These two tools read source code and point out potential (and
actual) problems. They check everything from short variable names to unreachable pieces
of code. With a little coding you can make them (or one of them) part of your test suite, to
make sure all of your rewrites and refactorings conform to your coding standards.

Profiling: If you really care about speed and want to optimize your program (only do this
if it’s absolutely necessary), you should profile it first. Use the profile (or hotshot) module
to find bottlenecks in your code.

New Functions in This Chapter

What Now?
Now you’ve seen all kinds of things you can do with the Python language and the standard
libraries. You’ve seen how to probe and tweak your code until it screams (if you got serious
about profiling, despite my warnings). If you still aren’t getting the oomph you require, it’s
time to reach for heavier weapons. In the words of Neo in The Matrix. “We need guns. Lots of
guns.” In less metaphorical terms, it’s time to pop the cover and tweak the engine with some
low-level tools. (Wait, that was still metaphorical, wasn’t it?)

Function Description

doctest.testmod(module) Checks docstring examples. (Takes many more arguments.)

unittest.main() Runs the unit tests in the current module.

profile.run(stmt[, filename]) Executes and profiles statement. Optionally, saves results to
filename.

365

■ ■ ■

C H A P T E R 1 7

Extending Python

You can implement anything in Python, really; it’s a powerful language, but sometimes it can
get a bit too slow. For example, if you’re writing a scientific simulation of some form of nuclear
reaction, or you’re rendering the graphics for the next Star Wars movie (wait—there won’t be
any more now, will there?), writing the high-performance code in Python will probably not be
a good choice. Python is meant to be easy to work with and to help make the development fast.
The flexibility needed for this comes with a hefty price in terms of efficiency. It’s certainly fast
enough for most common programming tasks, but if you need real speed, languages such as C,
C++, and Java can usually beat it by several orders of magnitude.

The Best of Both Worlds
Now, I don’t want to encourage the speed freaks among you to start developing exclusively in
C. Although this may speed up the program itself, it will most certainly slow down your pro-
gramming. So you need to consider what is most important: getting the program done quickly,
or eventually (in the distant future) getting a program that runs really, really fast. If Python is
fast enough, the extra pain involved will make using a low-level language such as C something
of a meaningless choice (unless you have other requirements, such as running on an embed-
ded device that doesn’t have room for Python, or something like that).

This chapter deals with the cases where you do need extra speed. The best solution then
probably isn’t to switch entirely to C (or some other low- or mid-level language); instead, I rec-
ommend the following approach, which has worked for plenty of industrial-strength speed
freaks out there (in one form or another):

1. Develop a prototype in Python. (See Chapter 19 for some material on prototyping.)

2. Profile your program and determine the bottlenecks. (See Chapter 16 for some material
on testing.)

3. Rewrite the bottlenecks as a C (or C++, C#, Java, Fortran,1 and so on) extension.

1. Fortran was the first “real” programming language (originally developed in 1954). In some areas, For-
tran is still the language of choice for high-performance computing. If you want to (or, perhaps more
likely, have to) use Fortran for your extensions, you should check out Pyfort (http://pyfortran.sf.net)
and F2PY (http://cens.ioc.ee/projects/f2py2e).

366 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

The resulting architecture—a Python framework with one or more C components—is a
very powerful one, because it combines the best of two worlds. It’s a matter of choosing the
right tools for each job. It affords you the benefits of developing a complex system in a high-
level language (Python), and it lets you develop your smaller (and presumably simpler) speed-
critical components in a low-level language (C).

■Note There are other reasons for reaching for C. For example, if you want to write low-level code for inter-
facing with a strange piece of hardware, you really have no alternative.

If you have some knowledge of what the bottlenecks of your system will be even before you
begin, you can (and probably should) design your prototype so that replacing the critical parts
is easy. I think I might as well state this in the form of a tip:

■Tip Encapsulate potential bottlenecks.

You may find that you don’t need to replace the bottlenecks with C extensions (perhaps
you suddenly got hold of a faster computer), but at least the option is there.

There is another situation that is a common use case for extensions as well: legacy code.
You may want to use some code that exists only in, say, C. You can then “wrap” this code (write
a small C library that gives you a proper interface) and create a Python extension library from
your wrapper.

In the following sections, I give you some starting points for extending both the classic C
implementation of Python, either by writing all the code yourself or by using a tool called
SWIG, and for extending two other implementations: Jython and IronPython. You will also find
some hints about other options for accessing external code. Read on . . .

THE OTHER WAY AROUND

In this chapter, I focus on writing extensions to your Python programs in a compiled language. But turning this on
its head—writing a program in a compiled language and embedding a Python interpreter for minor scripting and
extensions—can have its uses. In that case, what you’re after when embedding Python isn’t speed—it’s flexibil-
ity. In many ways, it’s the same “best of both worlds” argument that is used for writing compiled extensions; it’s
just that the focus is shifted.

The embedding approach is used in many real-world systems. For example, many computer games (which
are almost invariably written in compiled languages, with a code base primarily developed for maximum speed)
use dynamic languages such as Python for describing high-level behavior (such as the “intelligence” of the char-
acters in the game), while the main code engine takes care of graphics and the like.

The documentation referenced in the main text (for CPython, Jython, and IronPython) also discusses the
embedding option, in case you wish to go that route.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 367

The Really Easy Way: Jython and IronPython
If you happen to be running Jython or IronPython (both mentioned in Chapter 1), extending
Python with native modules is quite easy. The reason for this is that Jython and IronPython give
you direct access to modules and classes from the underlying languages (Java for Jython, and
C# and other .NET languages for IronPython), so you don’t need to conform to some specific
API (as you must when extending CPython). You simply implement the functionality you need,
and, as if by magic, it will work in Python. As a case in point, you can access the Java standard
libraries directly in Jython and the C# standard libraries directly in IronPython.

Listing 17-1 shows a simple Java class.

Listing 17-1. A Simple Java Class (JythonTest.java)

public class JythonTest {

 public void greeting() {
 System.out.println("Hello, world!");
 }

}

You can compile this with some Java compiler, such as javac (freely downloadable from
http://java.sun.com):

$ javac JythonTest.java

■Tip If you’re working with Java, you can also use the command jythonc to compile your Python classes
into Java classes, which can then be imported into your Java programs.

Once you have compiled the class, you fire up Jython (and put the .class file either in your
current directory or somewhere in your Java CLASSPATH):

$ CLASSPATH=JythonTest.class jython

You can then import the class directly:

>>> import JythonTest
>>> test = JythonTest()
>>> test.greeting()
Hello, world!

See? There’s nothing to it.

368 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

Listing 17-2 shows a similar class in C#.

Listing 17-2. A Simple C# Class (IronPythonTest.cs)

using System;
namespace FePyTest {
 public class IronPythonTest {

 public void greeting() {
 Console.WriteLine("Hello, world!");
 }

 }
}

JYTHON PROPERTY MAGIC

Jython has several nifty tricks up its sleeve when it comes to interacting with Java classes. One of the most
obviously useful is that it gives you access to so-called JavaBean properties through ordinary attribute access.
In Java, you use accessor methods to read or modify these. What this means is that if the Java instance foo
has a method called setBar, you can simply use foo.bar = baz instead of foo.setBar(baz). Similarly,
if the instance has a method called either getBar or isBar (for Boolean properties), you can access the value
using foo.bar. Using an example from the Jython documentation, instead of this:

b = awt.Button()
b.setEnabled(False)

you could use this:

b = awt.Button()
b.enabled = False

In fact, all properties can be set through keyword arguments in constructors as well. So you could, in
fact, simply write this:

b = awt.Button(enabled=False)

This works with tuples for multiple arguments and even function arguments for Java idioms such as
event listeners:

def exit(event):
 java.lang.System.exit(0)
b = awt.Button("Close Me!", actionPerformed=exit)

In Java, you would need to implement a separate class with the proper actionPerformed method, and
then add that using b.addActionListener.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 369

Compile this with your compiler of choice (free software is available from http://
www.mono-project.com). For Microsoft .NET, the command is as follows:

csc.exe /t:library IronPythonTest.cs

One way of using this in IronPython would be to compile the class to a dynamic link library
(DLL; see the documentation for your C# installation for details) and update the relevant
environment variables (such as PATH) as needed. Then you should be able to use it as in the
following (using the IronPython interactive interpreter):

>>> import clr
>>> clr.AddReferenceToFile("IronPythonTest.dll")
>>> import FePyTest
>>> f = FePyTest.IronPythonTest()
>>> f.greeting()

For more details on these implementations of Python, visit the Jython web site
(http://www.jython.org) and the IronPython web site (http://www.codeplex.com/Wiki/
View.aspx?ProjectName=IronPython).

Writing C Extensions
This is what it’s all about, really. Extending Python normally means extending CPython, the
standard version of Python, implemented in the programming language C.

■Tip For a basic introduction and some background material, see the Wikipedia article on C, http://
en.wikipedia.org/wiki/C_programming_language. For more information, check out Ivor Horton’s
book Beginning C: From Novice to Professional, Fourth Edition (Apress, 2006). A really authoritative source
of information is the all-time classic by Brian Kernighan and Dennis Ritchie, the inventors of the language:
C Programming Language, Second Edition (Prentice-Hall, 1988).

C isn’t quite as dynamic as Java or C#, and it’s not as easy for Python to figure out things for
itself if you just supply it with your compiled C code. Therefore, you need to adhere to a strict
API when writing C extensions for Python. I discuss this API a bit later, in the section “Hacking
It on Your Own.” Several projects try to make the process of writing C extensions easier,
though, and one of the better-known projects is SWIG, which I discuss in the following section.
(See the sidebar “Other Approaches” for some . . . well . . . other approaches.)

370 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

OTHER APPROACHES

If you’re using CPython, plenty of tools are available to help you speed up your programs, either by generating
and using C libraries or by actually speeding up your Python code. Here is an overview of some options:

• Psyco (http://psyco.sf.net): A specialized just-in-time compiler for Python, which can speed up
certain kinds of code (especially low-level code dealing with lists of numbers) by an order of magnitude
or more. It won’t help in all cases, and does need quite a bit of memory to do its job well. It’s very easy
to use. In the simplest case, just import it and call psyco.full(). One of the interesting things about
Psyco is that it actually analyzes what goes on while the program is running, so it may, in fact, speed
up some Python code beyond what you could achieve by writing a C extension! (Perhaps it’s worth a try,
before you dive into the nearest C textbook?)

• Pyrex (http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex): A Python “dialect”—
sort of. It’s a language specifically designed for writing extension modules for Python. The Pyrex
language combines Python (or a subset of it) with optional static typing as in C. Once you’ve written a
module in Pyrex, you can translate it into C code using the pyrexc program. The resulting C code will
have been constructed to conform to the Python C API, so after compiling it (as described in the main
text), you should be able to use it in your Python program without problems. Pyrex can certainly take
much of the drudgery out of writing C extensions, while still letting you control the details you might
care about, such as the exact C data types for some of your variables.

• PyPy (http://codespeak.net/pypy): This is an ambitious and forward-looking implementation
of Python—in Python. While this might sound super-slow, the hope is that eventually, through quite
advanced code analysis and compilation, it will outperform CPython. According to the web site,
“Rumors have it that the secret goal is being faster-than-C, which is nonsense, isn’t it?” At the core of
PyPy lies RPython, which is a restricted dialect of Python. RPython is suited for automated type infer-
ence and the like, permitting translation into static languages or native machine code, or to other
dynamic languages (such as JavaScript), for that matter.

• Weave (http://www.scipy.org/Weave). Part of the SciPy distribution, but also available sepa-
rately, Weave is a tool for including C or C++ code directly in your Python code (as strings) and having
the code compiled and executed seamlessly. If you have certain mathematical expressions you want to
compute quickly, for example, then this might be the way to go. Weave can also speed up expressions
using numeric arrays (see the next item).

• NumPy (http://numeric.scipy.org): NumPy gives you access to numeric arrays, which are very
useful for analyzing many forms of numeric data (from stock values to astronomical images). One advan-
tage is the simple interface, which relieves the need to explicitly specify many low-level operations. The
main advantage, however, is speed. Performing many common operations on every element in a numeric
array is much, much faster than doing something equivalent with lists and for loops, because the implicit
loops are implemented directly in C. Numeric arrays work well with both Pyrex and Weave.

• ctypes (http://python.net/crew/theller/ctypes): The ctypes library takes a very direct
approach—it simply lets you import existing (shared) C libraries. While there are some restrictions, this
is, perhaps, one of the simplest ways of accessing C code. There is no need for wrappers or special
APIs. You just import the library and use it. As of Python 2.5, ctypes is part of the Python standard
library.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 371

A Swig of . . . SWIG
SWIG (http://www.swig.org), short for Simple Wrapper and Interface Generator, is a tool that
works with several languages. On the one hand, it lets you write your extension code in C or
C++; on the other hand, it automatically wraps these so that you can use them in several high-
level languages such as Tcl, Python, Perl, Ruby, and Java. This means that if you decide to write
some of your system as a C extension, rather than implement it directly in Python, the C exten-
sion library can also be made available (using SWIG) to a host of other languages. This can be
very useful if you want several subsystems written in different languages to work together; your
C (or C++) extension can then become a hub for the cooperation.

Installing SWIG follows the same pattern as installing other Python tools:

• You can get SWIG from the web site, http://www.swig.org.

• Many UNIX/Linux distributions come with SWIG. Many package managers will let you
install it directly.

• There is a binary installer for Windows.

• Compiling the sources yourself is again simply a matter of calling configure and make
install.

• subprocess (http://docs.python.org/lib/module-subprocess.html): Okay, this one is a
bit different. The subprocess module can be found in the standard library, along with the older mod-
ules and functions with similar functionality. It allows you to have Python run external programs, and
communicate with them through command-line arguments and the standard input, output, and error
streams. If your speed-critical code can do much of its work in a few long-running batch jobs, little time
will be lost starting the program and communicating with it. In that case, simply placing your C code in
a completely separate program and running it as a subprocess could well be the cleanest solution of all.

• modulator: Found in the Tools directory of your Python distribution, this script can be used to generate
some of the boilerplate code needed for C extensions.

• PyCXX (http://cxx.sourceforge.net): Previously known as CXX, or CXX/Objects, this is a set of
C++ facilities for writing Python extensions. For example, it includes a good deal of support for refer-
ence counting, to reduce the chances of making errors.

• SIP (http://www.riverbankcomputing.co.uk/software/sip): SIP (a pun on SWIG?) was orig-
inally created as a tool for the development of the GUI package PyQt and consists of a code generator
and a Python module. It uses specification files in a manner similar to SWIG.

• Boost.Python (http://www.boost.org/libs/python/doc): Boost.Python is designed to enable
seamless interoperability between Python and C++, and can give you great help with issues such as
reference counting and manipulating Python objects in C++. One of the main ways of using it is to write
C++ code in a rather Python-like style (enabled by Boost.Python’s macros), and then compile that
directly into Python extensions using your favorite C++ compiler. As a rather different yet very solid
alternative to SWIG, this might certainly be worth a look.

372 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

If you have problems installing SWIG, you should be able to find helpful information on
the web site.

What Does It Do?

Using SWIG is a simple process, provided that you have some C code:

1. Write an interface file for your code. This is quite similar to C header files (and, for
simple cases, you can use your header file directly).

2. Run SWIG on the interface file, in order to automatically produce some more C code
(wrapper code).

3. Compile the original C code together with the generated wrapper code in order to
generate a shared library.

In the following, I discuss each of these steps, starting with a bit of C code.

I Prefer Pi

A palindrome (such as the title of this section) is a sentence that is the same when read back-
wards, if you ignore spaces and punctuation and the like. Let’s say you want to recognize huge
palindromes, without the allowance for whitespace and friends. (Perhaps you need it for ana-
lyzing a protein sequence or something.) Of course, the string would have to be really big for
this to be a problem for a pure Python program, but let’s say the strings are really big, and that
you need to do a whole lot of these checks. You decide to write a piece of C code to deal with it
(or perhaps you find some finished code—as mentioned, using existing C code in Python is one
of the main uses of SWIG). Listing 17-3 shows a possible implementation.

Listing 17-3. A Simple C Function for Detecting a Palindrome (palindrome.c)

#include <string.h>

int is_palindrome(char *text) {
 int i, n=strlen(text);
 for (i=0; i<=n/2; ++i) {
 if (text[i] != text[n-i-1]) return 0;
 }
 return 1;
}

Just for reference, an equivalent pure Python function is shown in Listing 17-4.

Listing 17-4. Detecting Palindromes in Python

def is_palindrome(text):
 n = len(text)
 for i in range(len(text)//2):

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 373

 if text[i] != text[n-i-1]:
 return False
 return True

You’ll see how to compile and use the C code in a bit.

The Interface File

Assuming that you put the code from Listing 17-3 in a file called palindrome.c, you should now put
an interface description in a file called palindrome.i. In many cases, if you define a header file (that
is, palindrome.h), SWIG may be able to get the information it needs from that. So if you have a
header file, feel free to try to use it. One of the reasons for explicitly writing an interface file is that
you can tweak how SWIG actually wraps the code; the most important tweak is excluding things.
For example, if you’re wrapping a huge C library, perhaps you just want to export a couple of func-
tions to Python. In that case, you put only the functions you want to export in the interface file.

In the interface file, you simply declare all the functions (and variables) you want to export,
just like in a header file. In addition, there is a section at the top (delimited by %{ and %}) where
you specify included header files (such as string.h in our case) and before even that, a %module
declaration, giving the name of the module. (Some of this is optional, and there is a lot more you
can do with interface files; see the SWIG documentation for more information.) Listing 17-5
shows this interface file.

Listing 17-5. Interface to the Palindrome Library (palindrome.i)

%module palindrome

%{
#include <string.h>
%}

extern int is_palindrome(char *text);

Running SWIG

Running SWIG is probably the easiest part of the process. Although many command-line
switches are available (try running swig -help for a list of options), the only one needed is the
-python option, to make sure SWIG wraps your C code so you can use it in Python. Another
option you may find useful is -c++, which you use if you’re wrapping a C++ library. You run
SWIG with the interface file (or, if you prefer, a header file) like this:

$ swig -python palindrome.i

After this, you should have two new files: one called palindrome_wrap.c and one called
palindrome.py.

Compiling, Linking, and Using

Compiling is, perhaps, the trickiest part (at least I think so). In order to compile things properly,
you need to know where you keep the source code of your Python distribution (or, at least, the

374 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

header files called pyconfig.h and Python.h; you will probably find these in the root directory
of your Python installation, and in the Include subdirectory, respectively). You also need to fig-
ure out the correct switches to compile your code into a shared library with your C compiler of
choice. If you’re having trouble finding the right combination of arguments and switches, take
a look at the next section “A Shortcut Through the Magic Forest of Compilers.”

Here is an example for Solaris using the cc compiler, assuming that $PYTHON_HOME points to
the root of Python installation:

$ cc -c palindrome.c
$ cc -I$PYTHON_HOME -I$PYTHON_HOME/Include -c palindrome_wrap.c
$ cc -G palindrome.o palindrome_wrap.o -o _palindrome.so

Here is the sequence for using the gcc compiler in Linux:

$ gcc -c palindrome.c
$ gcc -I$PYTHON_HOME -I$PYTHON_HOME/Include -c palindrome_wrap.c
$ gcc -shared palindrome.o palindrome_wrap.o -o _palindrome.so

It may be that all the necessary include files are found in one place, such as /usr/include/
python2.5 (update the version number as needed). In this case, the following should do the trick:

$ gcc -c palindrome.c
$ gcc -I/usr/include/python2.5 -c palindrome_wrap.c
$ gcc -shared palindrome.o palindrome_wrap.o -o _palindrome.so

In Windows (again assuming that you’re using gcc on the command line), you could use
the following command as the last one, for creating the shared library:

$ gcc -shared palindrome.o palindrome_wrap.o C:/Python25/libs/libpython25.a -o
 _palindrome.dll

In Mac OS X, you could do something like the following (where PYTHON_HOME would be
/Library/Frameworks/Python.framework/Versions/Current if you’re using the official Python
installation):

$ gcc -dynamic -I$PYTHON_HOME/include/python2.5 -c palindrome.c
$ gcc -dynamic -I$PYTHON_HOME/include/python2.5 -c palindrome_wrap.c
$ gcc -dynamiclib palindrome_wrap.o palindrome.o -o _palindrome.so -Wl, -undefined,
 dynamic_lookup

■Note If you use gcc on Solaris, add the flag -fPIC to the first two command lines (right after the com-
mand gcc). Otherwise, the compiler will become mighty confused when you try to link the files in the last
command. Also, if you’re using a package manager (as is common in many Linux platforms), you may need
to install a separate package (called something like python-dev) to get the header files needed to compile
your extensions.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 375

After these darkly magical incantations, you should end up with a highly useful file called
_palindrome.so. This is your shared library, which can be imported directly into Python (if it’s
put somewhere in your PYTHONPATH, such as in the current directory):

>>> import _palindrome
>>> dir(_palindrome)
['__doc__', '__file__', '__name__', 'is_palindrome']
>>> _palindrome.is_palindrome('ipreferpi')
1
>>> _palindrome.is_palindrome('notlob')
0

In older versions of SWIG, that would have been all there was to it. Recent versions of
SWIG, however, generate some wrapping code in Python as well (the file palindrome.py,
remember?). This wrapper code imports the _palindrome module and takes care of a bit of
checking. If you would rather skip that, you could just remove the palindrome.py file and link
your library directly into a file named palindrome.so.

Using the wrapper code works just as well as using the shared library:

>>> import palindrome
>>> from palindrome import is_palindrome
>>> if is_palindrome('abba'):
... print 'Wow -- that never occurred to me...'
...
Wow -- that never occurred to me...

A Shortcut Through the Magic Forest of Compilers

If you think the compilation process can be a bit arcane, you’re not alone. If you automate the
compilation (say, using a makefile), users will need to configure the setup by specifying where
their Python installation is, which specific options to use with their compiler, and, not the least,
which compiler to use. You can avoid this elegantly by using Distutils. In fact, it has direct sup-
port for SWIG, so you don’t even need to run that manually. You just write the code and the
interface file, and run your Distutils script. For more information about this magic, see the
section “Compiling Extensions” in Chapter 18.

Hacking It on Your Own
SWIG does quite a bit of magic behind the scenes, but not all of it is strictly necessary. If you
want to get close to the metal and grind your teeth on the processor, so to speak, you can cer-
tainly write your wrapper code yourself, or simply write your C code so that it uses the Python
C API directly.

The Python C API is described in the documents “Extending and Embedding the Python
Interpreter” (a tutorial) and “Python/C API Reference Manual” (a reference), both by Guido
van Rossum and available from http://python.org/doc. There is quite a bit of information to
swallow in these documents, but if you know some C programming, the tutorial includes a

376 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

fairly gentle introduction. I’ll try to be even gentler (and briefer) here. If you’re curious about
what I’m leaving out (which is rather a lot), you should take a look at the documents on the
Python site.

Reference Counting

If you haven’t worked with it before, reference counting will probably be one of the most for-
eign concepts you’ll encounter in this section, although it’s not really all that complicated. In
Python, memory used is dealt with automatically—you just create objects, and they disappear
when you no longer use them. In C, this isn’t the case. You must explicitly deallocate objects
(or, rather, chunks of memory) that you’re no longer using. If you don’t, your program may
start hogging more and more memory, and you have what’s called a memory leak.

When writing Python extensions, you have access to the same tools Python uses “under
the hood” to manage memory, one of which is reference counting. The idea is that as long as
some parts of your code have references to an object (that is, in C-speak, pointers pointing to
it), it should not be deallocated. However, once the number of references to an object hits zero,
the number can no longer increase—there is no code that can create new references to it, and
it’s just “free floating” in memory. At this point, it’s safe to deallocate it. Reference counting
automates this process. You follow a set of rules where you increment or decrement the refer-
ence count for an object under various circumstances (through a part of the Python API), and
if the count ever goes to zero, the object is automatically deallocated. This means that no single
piece of code has the sole responsibility for managing an object. You can create an object,
return it from a function, and forget about it, safe in the knowledge that it will disappear when
it is no longer needed.

You use two macros, called Py_INCREF and Py_DECREF, to increment and decrement the ref-
erence count of an object, respectively. You can find detailed information about how to use
these in the Python documentation (http://python.org/doc/ext/refcounts.html). Here is the
gist of it:

• You can’t own an object, but you can own a reference to it. The reference count of an
object is the number of owned references to that object.

• If you own a reference, you are responsible for calling Py_DECREF when you no longer
need the reference.

• If you borrow a reference temporarily, you should not call Py_DECREF when you’re fin-
ished with the object; that’s the responsibility of the owner.

■Caution You should certainly never use a borrowed reference after the owner has disposed of it. See the
“Thin Ice” sections in the documentation for some more advice on staying safe.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 377

• You can turn a borrowed reference into an owned reference by calling Py_INCREF. This
creates a new owned reference; the original owner still owns the original reference.

• When you receive an object as a parameter, it’s up to you whether you want the owner-
ship of its reference transferred (for example, if you’re going to store it somewhere) or
you simply want to borrow it. This should be documented clearly. If your function is
called from Python, it’s safe to simply borrow—the object will live for the duration of the
function call. If, however, your function is called from C, this cannot be guaranteed, and
you might want to create an owned reference, and then release it when you’re finished.

Hopefully, this will all seem clearer when we get down to a concrete example in a little while.

A Framework for Extensions

Quite a lot of cookie-cutter code is needed to write a Python C extension, which is why tools
such as SWIG, Pyrex, and modulator are so nice. Automating cookie-cutter code is the way to
go. Doing it by hand can be a great learning experience, though. You do have quite some lee-
way in how you structure your code, really. I’ll just show you a way that works.

The first thing to remember is that the Python.h header file must be included first, before
other standard header files. That is because it may, on some platforms, perform some redefini-
tions that should be used by the other headers. So, for simplicity, just place this:

#include <Python.h>

as the first line of your code.
Your function can be called anything you want. It should be static, return a pointer (an

owned reference) to an object of the PyObject type, and take two arguments, both also pointers
to PyObject. The objects are conventionally called self and args (with self being the self-
object, or NULL, and args being a tuple of arguments). In other words, the function should look
something like this:

static PyObject *somename(PyObject *self, PyObject *args) {
 PyObject *result;

MORE GARBAGE COLLECTION

Reference counting is a form of garbage collection, where the term garbage refers to objects that are no longer
of use to the program. Python also uses a more sophisticated algorithm to detect cyclic garbage; that is,
objects that refer only to each other (and thus have nonzero reference counts), but have no other objects refer-
ring to them.

You can access the Python garbage collector in your Python programs, through the gc module. You can find
more information about it in the Python Library Reference (http://python.org/doc/lib/module-gc.html).

378 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

 /* Do something here, including allocating result. */

 Py_INCREF(result); /* Only if needed! */
 return result;
}

The self argument is actually used only in bound methods. In other functions, it will sim-
ply be a NULL pointer.

Note that the call to Py_INCREF may not be needed. If the object is created in the function
(for example, using a utility function such as Py_BuildValue), the function will already own a
reference to it, and can simply return it. If, however, you wish to return None from your func-
tion, you should use the existing object Py_None. In this case, however, the function does not
own a reference to Py_None, and so should call Py_INCREF(Py_None) before returning it.

The args parameter contains all the arguments to your function (except, if present, the
self argument). In order to extract the objects, you use the function PyArg_ParseTuple (for
positional arguments) and PyArg_ParseTupleAndKeywords (for positional and keyword argu-
ments). I’ll stick to positional arguments here.

The function PyArg_ParseTuple has the following signature:

int PyArg_ParseTuple(PyObject *args, char *format, ...);

The format string describes the arguments you’re expecting, and then you supply the
addresses of the variables you want populated at the end. The return value is a Boolean value.
If it’s true, everything went well; otherwise, there was an error. If there was an error, the proper
preparations for raising an exception will have been made (you can learn more about that in the
documentation), and all you need to do is to return NULL to set it off. So, if you’re not expecting
any arguments (an empty format string), the following is a useful way of handling arguments:

 if (!PyArg_ParseTuple(args, "")) {
 return NULL;
 }

If the code proceeds beyond this statement, you know you have your arguments (in this
case, no arguments). Format strings can look like "s" for a string, "i" for an integer, "o" for a
Python object, with possible combinations such as "iis" for two integers and a string. There
are many more format string codes. A full reference of how to write format strings can be found
in the Python/C API Reference Manual (http://python.org/doc/api/arg-parsing.html).

■Note You can create your own built-in types and classes in extension modules, too. It’s not too hard,
really, but still a rather involved subject. If you mainly need to factor out some bottleneck code into C, using
functions will probably be enough for most of your needs anyway. If you want to learn how to create types and
classes, the Python documentation is a good source of information.

Once you have your function in place, some extra wrapping is still needed to make your C code
act as a module. But let’s get back to that once we have a real example to work with, shall we?

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 379

Palindromes, Detartrated2 for Your Pleasure

Without further ado, I give you the hand-coded Python C API version of the palindrome module
(with some interesting new stuff added) in Listing 17-6.

Listing 17-6. Palindrome Checking Again (palindrome2.c)

#include <Python.h>

static PyObject *is_palindrome(PyObject *self, PyObject *args) {
 int i, n;
 const char *text;
 int result;
 /* "s" means a single string: */
 if (!PyArg_ParseTuple(args, "s", &text)) {
 return NULL;
 }
 /* The old code, more or less: */
 n=strlen(text);
 result = 1;
 for (i=0; i<=n/2; ++i) {
 if (text[i] != text[n-i-1]) {
 result = 0;
 break;
 }
 }
 /* "i" means a single integer: */
 return Py_BuildValue("i", result);
}

/* A listing of our methods/functions: */
static PyMethodDef PalindromeMethods[] = {
 /* name, function, argument type, docstring */
 {"is_palindrome", is_palindrome, METH_VARARGS, "Detect palindromes"},
 /* An end-of-listing sentinel: */
 {NULL, NULL, 0, NULL}
};

/* An initialization function for the module (the name is
 significant): */
PyMODINIT_FUNC initpalindrome() {
 Py_InitModule("palindrome", PalindromeMethods);
}

2. That is, the tartrates have been removed. Okay, so the word is totally irrelevant to the code (and more
relevant to fruit juices), but at least it’s a palindrome.

380 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

Most of the added stuff in Listing 17-6 is total boilerplate. Where you see palindrome, you
could insert the name of your module. Where you see is_palindrome, insert the name of your
function. If you have more functions, simply list them all in the PyMethodDef array. One thing
is worth noting, though: the name of the initialization function must be initmodule, where
module is the name of your module; otherwise, Python won’t find it.

So, let’s compile! You do this just as described in the section on SWIG, except that there is
only one file to deal with now. Here is an example using gcc (remember to add -fPIC in Solaris):

$ gcc -I$PYTHON_HOME -I$PYTHON_HOME/Include -shared palindrome2.c -o palindrome.so

Again, you should have a file called palindrome.so, ready for your use. Put it somewhere in
your PYTHONPATH (such as the current directory) and away we go:

>>> from palindrome import is_palindrome
>>> is_palindrome('foobar')
0
>>> is_palindrome('deified')
1

And that’s it. Now go play. (But be careful; remember the Waldi Ravens quote from this
book’s Introduction.)

A Quick Summary
Extending Python is a huge subject. The tiny glimpse provided by this chapter included the
following:

Extension philosophy: Python extensions are useful mainly for two things: for using exist-
ing (legacy) code or for speeding up bottlenecks. If you’re writing your own code from
scratch, try to prototype it in Python, find the bottlenecks, and factor them out as exten-
sions if needed. Encapsulating potential bottlenecks beforehand can be useful.

Jython and IronPython: Extending these implementations of Python is quite easy. You
simply implement your extension as a library in the underlying implementation (Java for
Jython and C# or some other .NET language for IronPython) and the code is immediately
usable from Python.

Extension approaches: Plenty of tools are available for extending or speeding up your
code. You can find tools for making the incorporation of C code into your Python program
easier, for speeding up common operations such as numeric array manipulation, and for
speeding up Python itself. Such tools include SWIG, Psyco, Pyrex, Weave, NumPy, ctypes,
subprocess, and modulator.

SWIG: SWIG is a tool for automatically generating wrapper code for your C libraries. The
wrapper code takes care of the Python C API so you don’t have to deal with it. SWIG is one
of the easiest and most popular ways of extending Python.

Using the Python/C API: You can write C code yourself that can be imported directly into
Python as shared libraries. To do this, you must adhere to the Python/C API. Things you
need to take care of for each function include reference counting, extracting arguments,

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 381

and building return values. There is also a certain amount of code needed to make a C
library work as a module, including listing the functions in the module and creating a
module initialization function.

New Functions in This Chapter

What Now?
Now you should either have some really cool programs or at least some really cool program
ideas. Once you have something you want to share with the world (and you do want to share
your code with the world, don’t you?), the next chapter can be your next step.

Function Description

Py_INCREF(obj) Increments reference count of obj

Py_DECREF(obj) Decrements reference count of obj

PyArg_ParseTuple(args, fmt, ...) Extracts positional arguments

PyArg_ParseTupleAndKeywords(args, kws, fmt, kwlist) Extracts positional and keyword
arguments

PyBuildValue(fmt, value) Builds a PyObject from a C value

383

■ ■ ■

C H A P T E R 1 8

Packaging Your Programs

Once your program is ready for release, you will probably want to package it properly before
distributing it. If it consists of a single .py file, this might not be much of an issue. If you’re deal-
ing with nonprogrammer users, however, even placing a simple Python library in the right
place or fiddling with the PYTHONPATH may be more than they want to deal with. Users normally
want to simply double-click an installation program, follow some installation wizard, and then
have your program ready to run.

Lately, Python programmers have also become used to a similar convenience, although
with a slightly more low-level interface. The Distutils toolkit for distributing Python packages
makes it easy to write install scripts in Python. You can use these scripts to build archive files
for distribution, which the programmer (user) can then use for compiling and installing your
libraries.

In this chapter, I focus on Distutils, because it is an essential tool in every Python program-
mer’s toolkit. And Distutils actually goes beyond the script-based installation of Python libraries.
Using Distutils, you can build simple Windows installers and, with the extension py2exe, you can
also build stand-alone Windows executable programs. And if you want a self-installing archive
for your binaries, I provide a few pointers for achieving that as well.

Distutils Basics
Distutils is documented thoroughly in the two documents “Distributing Python Modules”
and “Installing Python Modules,” both available from the Python Library Reference (http://
python.org/doc/lib/module-distutils.html). You can use Distutils to do all manner of useful
things by writing a script as simple as the one shown in Listing 18-1.

Listing 18-1. Simple Distutils Setup Script (setup.py)

from distutils.core import setup

setup(name='Hello',
 version='1.0',
 description='A simple example',
 author='Magnus Lie Hetland',
 py_modules=['hello'])

384 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

You don’t really have to supply all of this information in the setup function (you don’t
actually need to supply any arguments at all), and you certainly can supply more (such as
author_email or url). The names should be self-explanatory.

■Tip The setuptools project (http://peak.telecommunity.com/DevCenter/setuptools) is based
on Distutils, but includes several enhancements. For example, setuptools lets you create so-called “Python
eggs,” which are portable, single-file bundles designed for distributing Python packages. It also provides
quite a bit of automatic interaction with the Python Package Index (http://pypi.python.org), a centralized
index of Python packages.

Save the script in Listing 18-1 as setup.py (this is a universal convention for Distutils setup
scripts), and make sure that you have a simple module called hello.py in the same directory.

■Caution The setup script will create new files and subdirectories in the current directory when you run
it, so you should probably experiment with it in a fresh directory to avoid having old files being overwritten.

Now let’s see how you can put this simple script to use. Execute it as follows:

python setup.py

You should get some output like the following:

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

error: no commands supplied

As you can see, you can get more information using the --help or --help-commands
switches. Try issuing the build command, just to see Distutils in action:

python setup.py build

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 385

You should now see output like the following:

running build
running build_py
creating build
creating build/lib
copying hello.py -> build/lib

Distutils has created a subdirectory called build, with yet another subdirectory named
lib, and placed a copy of hello.py in build/lib. The build subdirectory is a sort of working
area where Distutils assembles a package (and compiles extension libraries, for example). You
don’t really need to run the build command when installing, because it will be run automati-
cally, if needed, when you run the install command.

■Note In this example, the install command will copy the hello.py module to some system-specific
directory in your PYTHONPATH. This should not pose a risk, but if you don’t want to clutter your system, you
might want to remove it afterward. Make a note of the specific location where it is placed, as output by
setup.py. You could also use the -n switch to do a dry run. At the time of writing, there is no standard
uninstall command (although you can find custom uninstallation implementations online), so you’ll need
to uninstall the module by hand.

Speaking of which . . . let’s try to install the module:

python setup.py install

Now you should see something like the following:

running install
running build
running build_py
running install_lib
copying build/lib/hello.py -> /path/to/python/lib/python2.5/site-packages
byte-compiling /path/to/python/lib/python2.5/site-packages/hello.py to hello.pyc

386 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

■Note If you’re running a version of Python that you didn’t install yourself, and don’t have the proper priv-
ileges, you may not be allowed to install the module as shown, because you don’t have write permissions to
the correct directory.

This is the standard mechanism used to install Python modules, packages, and extensions.
All you need to do is provide the little setup script.

The sample script uses only the Distutils directive py_modules. If you want to install entire
packages, you can use the directive packages in an equivalent manner (just list the package
names). You can set many other options (some of which are covered in the section “Compiling
Extensions,” later in this chapter). You can also create configuration files for Distutils to set var-
ious properties (see the section “Distutils Configuration Files” in “Installing Python Modules,”
http://python.org/doc/inst/config-syntax.html).

The various ways of providing options (command-line switches, keyword arguments to
setup, and Distutils configuration files) let you specify such things as what to install and where
to install it. And these options can be used for more than one thing. The following section
shows you how to wrap the modules you specified for installation as an archive file, ready for
distribution.

Wrapping Things Up
Once you’ve written a setup.py script that will let the user install your modules, you can use it
yourself to build an archive file, a Windows installer, or an RPM package.

Building an Archive File
You do this with the sdist (for “source distribution”) command:

python setup.py sdist

If you run this, you will probably get quite a bit of output, including some warnings. The
warnings I get include a complaint about a missing author_email option, a missing MANIFEST.in
file, and a missing README file. You can safely ignore all of these (although feel free to add an
author_email option to your setup.py script, similar to the author option, a README or README.txt
text file, and an empty file called MANIFEST.in in the current directory).

After the warnings you should see output like the following:

writing manifest file 'MANIFEST'
creating Hello-1.0
making hard links in Hello-1.0...
hard linking hello.py -> Hello-1.0
hard linking setup.py -> Hello-1.0
tar -cf dist/Hello-1.0.tar Hello-1.0
gzip -f9 dist/Hello-1.0.tar
removing 'Hello-1.0' (and everything under it)

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 387

As you can see, when you create a source distribution, a file called MANIFEST is created. This
file contains a list of all your files. The MANIFEST.in file is a template for the manifest, and it is
used when figuring out what to install. You can include lines like the following to specify files
that you want to have included, if Distutils hasn’t figured it out by itself, using your setup.py
script (and default includes, such as README):

include somedirectory/somefile.txt

include somedirectory/*

■Note If you’ve run the sdist command before, and you have a file called MANIFEST already, you will see
the word reading instead of writing at the beginning. If you’ve restructured your package and want to
repackage it, deleting the MANIFEST file can be a good idea, in order to start afresh.

Now, in addition to the build subdirectory, you should have one called dist. Inside it, you
will find a gzip’ed tar archive called Hello-1.0.tar.gz. This can now be distributed to others,
and they can unpack it and install it using the included setup.py script. If you don’t want a
.tar.gz file, plenty of other distribution formats are available, and you can set them all through
the command-line switch --formats. (As the plural name indicates, you can supply more than
one format, separated by commas, to create more archive files in one go.) The format names
available in Python 2.5 (accessible through the --help-formats switch to the sdist command) are
bztar (for bzip2’ed tar files), gztar (the default, for gzip’ed tar files), tar (for uncompressed tar
files), zip (for ZIP files), and ztar (for compressed tar files, using the UNIX command compress).

Creating a Windows Installer or an RPM Package
Using the command bdist, you can create simple Windows installers and Linux RPM files.
(You normally use this to create binary distributions, where extensions have been compiled for
a particular architecture. See the following section for information about compiling exten-
sions.) The formats available for bdist (in addition to the ones available for sdist) are rpm (for
RPM packages) and wininst (for Windows executable installer).

One interesting twist is that you can, in fact, build Windows installers for your package in
non-Windows systems, provided that you don’t have any extensions you need to compile. If
you have access to both, say, a Linux machine and a Windows box, you could try running the
following on a Linux machine:

python setup.py bdist --formats=wininst

Then (after ignoring a few warnings about compiler settings) copy the file dist/
Hello-1.0.win32.exe to your Windows machine and run it. You should be presented
with a rudimentary installer wizard. (You can cancel the process before actually installing
the module.)

388 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

Compiling Extensions
In Chapter 17, you saw how to write extensions for Python. You may agree that compiling these
extensions could be a bit cumbersome at times. Luckily, you can use Distutils for this as well.
You may want to refer back to Chapter 17 for the source code to the program palindrome (in
Listing 17-6). Assuming that you have the source file palindrome2.c in the current (empty)
directory, the following setup.py script could be used to compile (and install) it:

from distutils.core import setup, Extension

setup(name='palindrome',
 version='1.0',
 ext_modules = [
 Extension('palindrome', ['palindrome2.c'])
])

If you run the install command with this setup.py script, the palindrome extension mod-
ule should be compiled automatically before it is installed. As you can see, instead of specifying
a list of module names, you give the ext_modules argument a list of Extension instances. The
constructor takes a name and a list of related files; this is where you would specify header (.h)
files, for example.

If you would rather just compile the extension in place (resulting in a file called
palindrome.so in the current directory for most UNIX systems), you can use the following
command:

python setup.py build_ext --inplace

USING A REAL INSTALLER

The installer you get with the wininst format in Distutils is very basic. As with normal Distutils installation, it
will not let you uninstall your packages, for example. This may be acceptable in some situations, but some-
times you may want a more professional look, especially if you’re creating an executable using py2exe (as
described in this chapter). In this case, you might want to consider using some standard installer such as Inno
Setup (http://jrsoftware.org/isinfo.php), which works very well with executables created with
py2exe. This type of installer will install your program in a more normal Windows fashion and give you func-
tionality such as the ability to uninstall the program.

A more Python-centric (but, at present, unmaintained) option is the McMillan installer (a web search
should give you an updated download location), which can also work as an alternative to py2exe when
building executable programs. Other options include InstallShield (http://installshield.com), Wise
installer (http://wise.com), Installer VISE (http://www.mindvision.com), Nullsoft Scriptable Install
System (http://nsis.sf.net), Youseful Windows Installer (http://youseful.com), and Ghost
Installer (http://ethalone.com). A web search will probably turn up several other solutions.

For more information about Windows installer technology, see Phil Wilson’s The Definitive Guide to
Windows Installer (Apress, 2004).

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 389

Now we get to a real juicy bit. If you have SWIG installed (see Chapter 17), you can have
Distutils use it directly!

Take a look at the source for the original palindrome.c (without all the wrapping code) in
Listing 17-3. It’s certainly much simpler than the wrapped-up version. Being able to compile it
directly as a Python extension, having Distutils use SWIG for you, can be very convenient. It’s
all very simple, really—you just add the name of the interface (.i) file (see Listing 17-5) to the
list of files in the Extension instance:

from distutils.core import setup, Extension

setup(name='palindrome',
 version='1.0',
 ext_modules = [
 Extension('palindrome', ['palindrome.c',
 'palindrome.i'])
])

If you run this script using the same command as before (build_ext, possibly with the
--inplace switch), you should end up with a palindrome.so file again, but this time without
needing to write all the wrapper code yourself.

Creating Executable Programs with py2exe
The py2exe extension to Distutils (available from http://www.py2exe.org) allows you to build
executable Windows programs (.exe files), which can be useful if you don’t want to burden
your users with having to install a Python interpreter separately.

■Tip After creating your executable program, you may want to use an installer, such as Inno Setup
(http://jrsoftware.org/isinfo.php), to distribute the executable program and the accompanying
files created by py2exe. See the “Using a Real Installer” sidebar.

The py2exe package can be used to create executables with GUIs (such as wx, as described in
Chapter 12). Let’s use a very simple example here (it uses the raw_input trick first discussed in the
section “What About Double-Clicking?” in Chapter 1):

print 'Hello, world!'
raw_input('Press <enter>')

Again, starting in an empty directory containing only this file, called hello.py, create a
setup.py file like this:

from distutils.core import setup
import py2exe

setup(console=['hello.py'])

390 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

You can run this script like this:

python setup.py py2exe

This will create a console application (called hello.exe) along with a couple of other files
in the dist subdirectory. You can either run it from the command line or double-click it.

For more information about how py2exe works, and how you can use it in more advanced
ways, visit the py2exe web site (http://www.py2exe.org).

■Tip If you’re using Mac OS, you might want to check out Bob Ippolito’s py2app (http://undefined.org/
python/py2app.html).

A Quick Summary
Finally, you now know how to create shiny, professional-looking software with fancy GUI
installers—or how to automate the generation of those precious .tar.gz files. Here is a sum-
mary of the specific concepts covered:

Distutils: The Distutils toolkit lets you write installer scripts, conventionally called
setup.py. With these scripts, you can install modules, packages, and extensions. You
can also build distributable archives and simple Windows installers.

Distutils commands: You can run your setup.py script with several commands, such as
build, build_ext, install, sdist, and bdist.

Installers: Many installer generators are available. Using an installer to install your Python
program makes the process easier for your users.

Compiling extensions: You can use Distutils to have your C extensions compiled automat-
ically, with Distutils automatically locating your Python installation and figuring out
which compiler to use. You can even have it run SWIG automatically.

Executable binaries: The py2exe extension to Distutils can be used to create executable
binaries from your Python programs. Along with a couple of extra files (which can be

LETTING THE WORLD KNOW

You have a choice of many places to announce your new software, such as Freshmeat (http://freshmeat.
net). There is, however, a standard, centralized index of Python packages called, fittingly, the Python Package
Index, or simply PyPI. Visit the PyPI web site (http://pypi.python.org) to look for new packages or new
versions of old packages, or to publish your own packages.

In addition to the packages themselves, you can register a lot of useful metadata (possibly with the aid
of Distutils or its relation setuptools), such as author, license, platform, categories, and descriptive key-
words. The register command in Distutils will do most of the work for you.

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 391

conveniently installed with an installer), these .exe files can be run without installing a
Python interpreter separately.

New Functions in This Chapter

What Now?
That’s it for the technical stuff—sort of. In the next chapter, you get some programming meth-
odology and philosophy, and then come the projects. Enjoy!

Function Description

distutils.core.setup(...) Configures Distutils with keyword arguments in your setup.py
script

393

■ ■ ■

C H A P T E R 1 9

Playful Programming

At this point, you should have a clearer picture of how Python works than when you started.
Now the rubber hits the road, so to speak, and in the next ten chapters you put your newfound
skills to work. Each chapter contains a single do-it-yourself project with a lot of room for exper-
imentation, while at the same time giving you the necessary tools to implement a solution.

In this chapter, I give you some general guidelines for programming in Python.

Why Playful?
I think one of the strengths of Python is that it makes programming fun—for me, anyway. It’s
much easier to be productive when you’re having fun; and one of the fun things about Python
is that it allows you to be very productive. It’s a positive feedback loop, and you get far too few
of those in life.

The expression Playful Programming is one I invented as a less extreme version of Extreme
Programming, or XP.1 I like many of the ideas of the XP movement but have been too lazy to
commit completely to their principles. Instead, I’ve picked up a few things, and combined
them with what I feel is a natural way of developing programs in Python.

The Jujitsu of Programming
You have perhaps heard of jujitsu? It’s a Japanese martial art, which, like its descendants judo
and aikido,2 focuses on flexibility of response, or “bending instead of breaking.” Instead of
trying to impose your preplanned moves on an opponent, you go with the flow, using your
opponent’s movements against him. This way (in theory), you can beat an opponent who is
bigger, meaner, and stronger than you.

How does this apply to programming? The key is the syllable “ju,” which may be (very
roughly) translated as flexibility. When you run into trouble while programming (as you invari-
ably will), instead of trying to cling stiffly to your initial designs and ideas, be flexible. Roll with
the punches. Be prepared to change and adapt. Don’t treat unforeseen events as frustrating

1. Extreme Programming is an approach to software development that, arguably, has been in use by pro-
grammers for years, but that was first named and documented by Kent Beck. For more information,
see http://www.extremeprogramming.org.

2. Or, for that matter, its Chinese relatives, such as taijiquan or baguazhang.

394 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

interruptions; treat them as stimulating starting points for creative exploration of new options
and possibilities.

The point is that when you sit down and plan how your program should be, you don’t have
any real experience with that specific program. How could you? After all, it doesn’t exist yet. By
working on the implementation, you gradually learn new things that could have been useful
when you did the original design. Instead of ignoring these lessons you pick up along the way,
you should use them to redesign (or refactor) your software. I’m not saying that you should just
start hacking away with no idea of where you are headed, but that you should prepare for
change, and accept that your initial design will need to be revised. It’s like the old writer’s say-
ing: “Writing is rewriting.”

This practice of flexibility has many aspects; here I’ll touch upon two of them:

Prototyping: One of the nice things about Python is that you can write programs quickly.
Writing a prototype program is an excellent way to learn more about your problem.

Configuration: Flexibility comes in many forms. The purpose of configuration is to make
it easy to change certain parts of your program, both for you and your users.

A third aspect, automated testing, is absolutely essential if you want to be able to change
your program easily. With tests in place, you can be sure that your program still works after
introducing a modification. Prototyping and configuration are discussed in the following sec-
tions. For information about testing, see Chapter 16.

Prototyping
In general, if you wonder how something works in Python, just try it. You don’t need to do
extensive preprocessing, such as compiling or linking, which is necessary in many other lan-
guages. You can just run your code directly. And not only that, you can run it piecemeal in the
interactive interpreter, prodding at every corner until you thoroughly understand its behavior.

This kind of exploration doesn’t cover only language features and built-in functions. Sure,
it’s useful to be able to find out exactly how, say, the iter function works, but even more impor-
tant is the ability to easily create a prototype of the program you are about to write, just to see
how that works.

■Note In this context, the word prototype means a tentative implementation, a mock-up that implements
the main functionality of the final program, but which may need to be completely rewritten at some later
stage—or not. Quite often, what started out as a prototype can be turned into a working program.

After you have put some thought into the structure of your program (such as which classes
and functions you need), I suggest implementing a simple version of it, possibly with very lim-
ited functionality. You’ll quickly notice how much easier the process becomes when you have
a running program to play with. You can add features, change things you don’t like, and so on.
You can really see how it works, instead of just thinking about it or drawing diagrams on paper.

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 395

You can use prototyping in any programming language, but the strength of Python is that
writing a mock-up is a very small investment, so you’re not committed to using it. If you find
that your design wasn’t as clever as it could have been, you can simply toss out your prototype
and start from scratch. The process might take a few hours, or a day or two. If you were
programming in C++, for example, much more work would probably be involved in getting
something up and running, and discarding it would be a major decision. By committing to one
version, you lose flexibility; you get locked in by early decisions that may prove wrong in light
of the real-world experience you get from actually implementing it.

In the projects that follow this chapter, I consistently use prototyping instead of detailed
analysis and design up front. Every project is divided into two implementations. The first is a fum-
bling experiment in which I’ve thrown together a program that solves the problem (or possibly only
a part of the problem) in order to learn about the components needed and what’s required of a
good solution. The greatest lesson will probably be seeing all the flaws of the program in action. By
building on this newfound knowledge, I take another, hopefully more informed, whack at it. Of
course, you should feel free to revise the code, or even start afresh a third time. Usually, starting
from scratch doesn’t take as much time as you might think. If you have already thought through the
practicalities of the program, the typing shouldn’t take too long.

THE CASE AGAINST REWRITING

Although I’m advocating the use of prototypes here, there is reason to be a bit cautious about restarting your
project from scratch at any point, especially if you’ve invested some time and effort into the prototype. It is
probably better to refactor and modify that prototype into a more functional system, for several reasons.

One common problem that can occur is “second system syndrome.” This is the tendency to try to make
the second version so clever or perfect that it’s never finished.

The “continual rewriting syndrome,” quite prevalent in fiction writing, is the tendency to keep fiddling
with your program, perhaps starting from scratch again and again. At some point, leaving well enough alone
may be the best strategy—just get something that works.

Then there is “code fatigue.” You grow tired of your code. It seems ugly and clunky to you after you’ve
worked with it for a long time. Sadly, one of the reasons it may seem hacky and clunky is that it has grown to
accommodate a range of special cases, and to incorporate several forms of error handling and the like. These
are features you would need to reintroduce in a new version anyway, and they have probably cost you quite a
bit of effort (not the least in the form of debugging) to implement in the first place.

In other words, if you think your prototype could be turned into a workable system, by all means, keep
hacking at it, rather than restarting. In the project chapters that follow, I have separated the development
cleanly into two versions: the prototype and the final program. This is partly for clarity and partly to highlight
the experience and insight one can get by writing the first version of a piece of software. In the real world, I
might very well have started with the prototype and “refactored myself” in the direction of the final system.

For more on the horrors of restarting from scratch, take a look at Joel Spolsky’s article “Things You
Should Never Do, Part I” (found on his web site, http://joelonsoftware.com). According to Spolsky,
rewriting the code from scratch is the single worst strategic mistake that any software company can make.

396 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

Configuration
In this section, I return to the ever important principle of abstraction. In Chapters 6 and 7,
I showed you how to abstract away code by putting it in functions and methods, and hiding
larger structures inside classes. Let’s take a look at another, much simpler, way of introducing
abstraction in your program: extracting symbolic constants from your code.

Extracting Constants
By constants, I mean built-in literal values such as numbers, strings, and lists. Instead of writing
these repeatedly in your program, you can gather them in global variables. I know I’ve been
warning you about those, but problems with global variables occur primarily when you start
changing them, because it can be difficult to keep track of which part of your code is responsi-
ble for which change. I’ll leave these variables alone, however, and use them as if they were
constant (hence the term symbolic constants). To signal that a variable is to be treated as a sym-
bolic constant, you can use a special naming convention, using only capital letters in their
variable names and separating words with underscores.

Let’s take a look at an example. In a program that calculates the area and circumference of
circles, you could keep writing 3.14 every time you needed the value . But what if you, at some
later time, wanted a more exact value, say 3.14159? You would need to search through the code
and replace the old value with the new. This isn’t very hard, and in most good text editors, it
could be done automatically. However, what if you had started out with the value 3? Would you
later want to replace every occurrence of the number 3 with 3.14159? Hardly. A much better
way of handling this would be to start the program with the line PI = 3.14, and then use the
name PI instead of the number itself. That way, you could simply change this single line to get
a more exact value at some later time. Just keep this in the back of your mind: whenever you
write a constant (such as the number 42 or the string “Hello, world!”) more than once, consider
placing it in a global variable instead.

■Note Actually, the value of is found in the math module, under the name math.pi:

>> from math import pi
>> pi
3.1415926535897931

This may seem agonizingly obvious to you. But the real point of all this comes in the next
section, where I talk about configuration files.

Configuration Files
Extracting constants for your own benefit is one thing, but some constants can even be
exposed to your users. For example, if they don’t like the background color of your GUI pro-
gram, perhaps you should let them use another color. Or perhaps you could let users decide

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 397

what greeting message they would like to get when they start your exciting arcade game or the
default starting page of the new web browser you just implemented.

Instead of putting these configuration variables at the top of one of your modules, you can
put them in a separate file. The simplest way of doing this is to have a separate module for con-
figuration. For example, if PI is set in the module file config.py, you can (in your main program)
do the following:

from config import PI

Then, if the user wants a different value for PI, she can simply edit config.py without hav-
ing to wade through your code.

■Caution There is a trade-off with the use of configuration files. On the one hand, configuration is useful,
but using a central, shared repository of variables for an entire project can make it less modular and more
monolithic. Make sure you’re not breaking abstractions (such as encapsulation).

Another possibility is to use the standard library module ConfigParser, which will allow
you to use a reasonably standard format for configuration files. It allows both standard Python
assignment syntax, such as this:

greeting = 'Hello, world!'

(although this would give you two extraneous quotes in your string) and another configuration
format used in many programs:

greeting: Hello, world!

You must divide the configuration file into sections, using headers such as [files] or
[colors]. The names can be anything, but you need to enclose them in brackets. A sample
configuration file is shown in Listing 19-1, and a program using it is shown in Listing 19-2. For
more information about the features of the ConfigParser module, consult the library docu-
mentation (http://python.org/doc/lib/module-ConfigParser.html).

Listing 19-1. A Simple Configuration File

[numbers]

pi: 3.1415926535897931

[messages]

greeting: Welcome to the area calculation program!
question: Please enter the radius:
result_message: The area is

398 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

Listing 19-2. A Program Using ConfigParser

from ConfigParser import ConfigParser

CONFIGFILE = "python.txt"

config = ConfigParser()
Read the configuration file:
config.read(CONFIGFILE)

Print out an initial greeting;
'messages' is the section to look in:
print config.get('messages', 'greeting')

Read in the radius, using a question from the config file:
radius = input(config.get('messages', 'question') + ' ')

Print a result message from the config file;
end with a comma to stay on same line:
print config.get('messages', 'result_message'),

getfloat() converts the config value to a float:
print config.getfloat('numbers', 'pi') * radius**2

I won’t go into much detail about configuration in the following projects, but I suggest you
think about making your programs highly configurable. That way, users can adapt the program
to their tastes, which can make using it more pleasurable. After all, one of the main frustrations
of using software is that you can’t make it behave the way you want it to.3

LEVELS OF CONFIGURATION

Configurability is an integral part of the UNIX tradition of programming. In Chapter 10 of his excellent book, The
Art of UNIX Programming (Addison-Wesley, 2003), Eric S. Raymond describes the following three sources of
configuration or control information, which (if included) should probably be consulted in this order,3 so the later
sources override the earlier ones:

• Configuration files: See the “Configuration Files” section in this chapter.

• Environment variables: These can be fetched using the dictionary os.environ.

• Switches and arguments passed to the program on the command line: For handling command-line
arguments, you can use sys.argv directly. If you want to deal with switches (options), you should
check out the optparse module (or perhaps getopt), as mentioned in Chapter 10.

3. Actually, global configuration files and system-set environment variables come before these. See the
book for more details.

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 399

Logging
Somewhat related to testing (discussed in Chapter 16), and quite useful when furiously rework-
ing the innards of a program, logging can certainly help you discover problems and bugs.
Logging is basically collecting data about your program as it runs, so you can examine it after-
ward (or as the data accumulates, for that matter). A very simple form of logging can be done
with the print statement. Just put a statement like this at the beginning of your program:

log = open('logfile.txt', 'w')

You can then later put any interesting information about the state of your program into
this file, as follows:

print >> log, ('Downloading file from URL %s' % url)
text = urllib.urlopen(url).read()
print >> log, 'File successfully downloaded'

This approach won’t work well if your program crashes during the download. It would be
safer if you opened and closed your file for every log statement (or, at least, flushed the file after
writing). Then, if your program crashed, you could see that the last line in your log file said
“Downloading file from . . .” and you would know that the download wasn’t successful.

The way to go, actually, is using the logging module in the standard library. Basic usage is
pretty straightforward, as demonstrated by the program in Listing 19-3.

Listing 19-3. A Program Using the logging Module

import logging

logging.basicConfig(level=logging.INFO, filename='mylog.log')

logging.info('Starting program')

logging.info('Trying to divide 1 by 0')

print 1 / 0

logging.info('The division succeeded')

logging.info('Ending program')

Running that program would result in the following log file (called mylog.log):

INFO:root:Starting program
INFO:root:Trying to divide 1 by 0

As you can see, nothing is logged after trying to divide 1 by 0 because this error effectively
kills the program. Because this is such a simple error, you can tell what is wrong by the excep-
tion traceback that prints as the program crashes. The most difficult type of bug to track down

400 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

is one that doesn’t stop your program, but simply makes it behave strangely. Examining a
detailed log file may help you find out what’s going on.

The log file in this example isn’t very detailed, but by configuring the logging module
properly, you can set up just how you want your logging to work. Here are a few examples:

• Log entries of different types (information, debug info, warnings, custom types, and so
on). By default, only warnings are let through (which is why I explicitly set the level to
logging.INFO in Listing 19-3).

• Log just items that relate to certain parts of your program.

• Log information about time, date, and so forth.

• Log to different locations, such as sockets.

• Configure the logger to filter out some or most of the logging, so you get only what you
need at any one time, without rewriting the program.

The logging module is quite sophisticated, and there is much to be learned in the docu-
mentation (http://python.org/doc/lib/module-logging.html).

If You Can’t Be Bothered
“All this is well and good,” you may think, “but there’s no way I’m going to put that much effort
into writing a simple little program. Configuration, testing, logging—it sounds really boring.”

Well, that’s fine. You may not need it for simple programs. And even if you’re working on
a larger project, you may not really need all of this at the beginning. I would say that the mini-
mum is that you have some way of testing your program (as discussed in Chapter 16), even if
it’s not based on automatic unit tests. For example, if you’re writing a program that automati-
cally makes you coffee, you should have a coffee pot around, to see if it works.

In the project chapters that follow, I don’t write full test suites, intricate logging facilities,
and so forth. I present you with some simple test cases to demonstrate that the programs
work, and that’s it. If you find the core idea of a project interesting, you should take it fur-
ther—try to enhance and expand it. And in the process, you should consider the issues you
read about in this chapter. Perhaps a configuration mechanism would be a good idea? Or a
more extensive test suite? It’s up to you.

If You Want to Learn More
Just in case you want more information about the art, craft, and philosophy of programming,
here are some books that discuss these things more in depth:

• The Pragmatic Programmer, by Andrew Hunt and David Thomas (Addison-Wesley, 1999)

• Refactoring, by Kent Beck et al. (Addison-Wesley, 1999)

• Design Patterns, by the “Gang of Four,” Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides (Addison-Wesley, 1994)

• Test-Driven Development: By Example, by Kent Beck (Addison-Wesley, 2002)

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 401

• The Art of UNIX Programming, by Eric S. Raymond (Addison-Wesley, 2003)4

• Introduction to Algorithms, Second Edition, by Thomas H. Cormen et al. (MIT Press, 2001)

• The Art of Computer Programming, Volumes 1–3, by Donald Knuth (Addison-Wesley, 1998)

• Concepts, Techniques, and Models of Computer Programming, by Peter Van Roy and Seif
Haridi (MIT Press, 2004)

Even if you don’t read every page of every book (I know I haven’t), just browsing through a
few of these can give you quite a lot of insight.

A Quick Summary
In this chapter, I described some general principles and techniques for programming in
Python, conveniently lumped under the heading “Playful Programming.” Here are the
highlights:

Flexibility: When designing and programming, you should aim for flexibility. Instead of
clinging to your initial ideas, you should be willing to—and even prepared to—revise and
change every aspect of your program as you gain insight into the problem at hand.

Prototyping: One important technique for learning about a problem and possible imple-
mentations is to write a simple version of your program to see how it works. In Python, this
is so easy that you can write several prototypes in the time it takes to write a single version
in many other languages. Still, you should be wary of rewriting your code from scratch if
you don’t have to—refactoring is usually a better solution.

Configuration: Extracting constants from your program makes it easier to change them at
some later point. Putting them in a configuration file makes it possible for your users to
configure the program to behave as they would like. Employing environment variables
and command-line options can make your program even more configurable.

Logging: Logging can be quite useful for uncovering problems with your program—or just
to monitor its ordinary behavior. You can implement simple logging yourself, using the
print statement, but the safest bet is to use the logging module from the standard library.

What Now?
Indeed, what now? Now is the time to take the plunge and really start programming. It’s time
for the projects.

All ten project chapters have a similar structure, with the following sections:

What’s the Problem?: In this section, the main goals of the project are outlined, including
some background information.

Useful Tools: Here, I describe modules, classes, functions, and so on that might be useful
for the project.

4. Also available online at Raymond’s web site (http://catb.org/~esr/writings/taoup).

402 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

Preparations: This section covers any preparations necessary before starting to program.
This may include setting up the necessary framework for testing the implementation.

First Implementation: This is the first whack—a tentative implementation to learn more
about the problem.

Second Implementation: After the first implementation, you will probably have a better
understanding of things, which will enable you to create a new and improved version.

Further Exploration: Finally, I give pointers for further experimentation and exploration.

Let’s get started with the first project, which is to create a program that automatically
marks up files for HTML.

403

■ ■ ■

C H A P T E R 2 0

Project 1: Instant Markup

In this project, you see how to use Python’s excellent text-processing capabilities, including
the capability to use regular expressions to change a plain-text file into one marked up in a lan-
guage such as HTML or XML. You need such skills if you want to use text written by people who
don’t know these languages in a system that requires the contents to be marked up.

Don’t speak fluent XML? Don’t worry about that—if you have only a passing acquaintance
with HTML, you’ll do fine in this chapter. If you need an introduction to HTML, I suggest you
take a look at Dave Raggett’s excellent guide “Getting Started with HTML” at the World Wide
Web Consortium’s site (http://www.w3.org/MarkUp/Guide). For an example of XML use, see
Chapter 22.

Let’s start by implementing a simple prototype that does the basic processing, and then
extend that program to make the markup system more flexible.

What’s the Problem?
You want to add some formatting to a plain-text file. Let’s say you’ve been handed the file from
someone who can’t be bothered with writing in HTML, and you need to use the document as a
web page. Instead of adding all the necessary tags manually, you want your program to do it
automatically.

■Note In recent years, this sort of “plain-text markup” has, in fact, become quite common, probably
mainly because of the explosion of wiki and blog software with plain-text interfaces. See the section “Further
Exploration” at the end of this chapter for more information.

Your task is basically to classify various text elements, such as headlines and emphasized
text, and then clearly mark them. In the specific problem addressed here, you add HTML
markup to the text, so the resulting document can be displayed in a web browser and used as a
web page. However, once you have built your basic engine, there is no reason why you can’t
add other kinds of markup (such as various forms of XML or perhaps codes). After ana-
lyzing a text file, you can even perform other tasks, such as extracting all the headlines to make
a table of contents.

ALTEX

404 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

■Note is another markup system (based on the typesetting program) for creating various types
of technical documents. I mention it here only as an example of other uses for your program. If you want to
know more, you can visit the Users Group web site at http://www.tug.org.

The text you’re given may contain some clues (such as emphasized text being marked
like this), but you’ll probably need some ingenuity in making your program guess how the
document is structured.

Before starting to write your prototype, let’s define some goals:

• The input shouldn’t be required to contain artificial codes or tags.

• You should be able to deal with both different blocks, such as headings, paragraphs, and
list items, and in-line text, such as emphasized text or URLs.

• Although this implementation deals with HTML, it should be easy to extend it to other
markup languages.

You may not be able to reach these goals fully in the first version of your program, but
that’s the point of the prototype, You write the prototype to find flaws in your original ideas and
to learn more about how to write a program that solves your problem.

■Tip If you can, it’s probably a good idea to modify your original program incrementally rather than begin-
ning from scratch. In the interest of clarity, I give you two completely separate versions of the program here.

Useful Tools
Consider what tools might be needed in writing this program:

• You certainly need to read from and write to files (see Chapter 11), or at least read from
standard input (sys.stdin) and output with print.

• You probably need to iterate over the lines of the input (see Chapter 11).

• You need a few string methods (see Chapter 3).

• Perhaps you’ll use a generator or two (see Chapter 9).

• You probably need the re module (see Chapter 10).

If any of these concepts seem unfamiliar to you, you should perhaps take a moment to
refresh your memory.

ALTEX XET

XET

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 405

Preparations
Before you start coding, you need some way of assessing your progress; you need a test suite.
In this project, a single test may suffice: a test document (in plain text). Listing 20-1 contains
sample text that you want to mark up automatically.

Listing 20-1. A Sample Plain-Text Document (test_input.txt)

Welcome to World Wide Spam, Inc.

These are the corporate web pages of *World Wide Spam*, Inc. We hope
you find your stay enjoyable, and that you will sample many of our
products.

A short history of the company

World Wide Spam was started in the summer of 2000. The business
concept was to ride the dot-com wave and to make money both through
bulk email and by selling canned meat online.

After receiving several complaints from customers who weren't
satisfied by their bulk email, World Wide Spam altered their profile,
and focused 100% on canned goods. Today, they rank as the world's
13,892nd online supplier of SPAM.

Destinations

From this page you may visit several of our interesting web pages:

 - What is SPAM? (http://wwspam.fu/whatisspam)

 - How do they make it? (http://wwspam.fu/howtomakeit)

 - Why should I eat it? (http://wwspam.fu/whyeatit)

How to get in touch with us

You can get in touch with us in *many* ways: By phone (555-1234), by
email (wwspam@wwspam.fu) or by visiting our customer feedback page
(http://wwspam.fu/feedback).

406 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

To test your implementation, just use this document as input and view the results in a web
browser, or perhaps examine the added tags directly.

■Note It is usually better to have an automated test suite than to check your test results manually. (Do you
see any way of automating this test?)

First Implementation
One of the first things you need to do is split the text into paragraphs. It’s obvious from
Listing 20-1 that the paragraphs are separated by one or more empty lines. A better word than
paragraph might be block, because this name can apply to headlines and list items as well.

Finding Blocks of Text
A simple way to find these blocks is to collect all the lines you encounter until you find an
empty line, and then return the lines you have collected so far. That would be one block. Then,
you could start all over again. You don’t need to bother collecting empty lines, and you won’t
return empty blocks (where you have encountered more than one empty line). Also, you
should make sure that the last line of the file is empty; otherwise, you won’t know when the last
block is finished. (There are other ways of finding out, of course.)

Listing 20-2 shows an implementation of this approach.

Listing 20-2. A Text Block Generator (util.py)

def lines(file):
 for line in file: yield line
 yield '\n'

def blocks(file):
 block = []
 for line in lines(file):
 if line.strip():
 block.append(line)
 elif block:
 yield ''.join(block).strip()
 block = []

The lines generator is just a little utility that tacks an empty line onto the end of the file.
The blocks generator implements the approach described. When a block is yielded, its lines are
joined, and the resulting string is stripped, giving you a single string representing the block,
with excessive whitespace at either end (such as list indentations or newlines) removed. (If you
don’t like this way of finding paragraphs, I’m sure you can figure out several other approaches.
It might even be fun to see how many you can invent.)

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 407

■Note In older versions of Python (prior to 2.3), you needed to add from __future__ import
generators as the first line of this module. See also the section “Simulating Generators” in Chapter 9.

I’ve put the code in the file util.py, which means that you can import the utility genera-
tors in your program later.

Adding Some Markup
With the basic functionality from Listing 20-2, you can create a simple markup script. The basic
steps of this program are as follows:

1. Print some beginning markup.

2. For each block, print the block enclosed in paragraph tags.

3. Print some ending markup.

This isn’t very difficult, but it’s not extremely useful either. Let’s say that instead of enclos-
ing the first block in paragraph tags, you enclose it in top heading tags (h1). Also, you replace
any text enclosed in asterisks with emphasized text (using em tags). At least that’s a bit more
useful. Given the blocks function, and using re.sub, the code is very simple. See Listing 20-3.

Listing 20-3. A Simple Markup Program (simple_markup.py)

import sys, re
from util import *

print '<html><head><title>...</title><body>'

title = True
for block in blocks(sys.stdin):
 block = re.sub(r'*(.+?)*', r'\1', block)
 if title:
 print '<h1>'
 print block
 print '</h1>'
 title = False
 else:
 print '<p>'
 print block
 print '</p>'

print '</body></html>'

408 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

This program can be executed on the sample input as follows:

$ python simple_markup.py < test_input.txt > test_output.html

The file test_output.html will then contain the generated HTML code. Figure 20-1 shows
how this HTML code looks in a web browser.

Figure 20-1. The first attempt at generating a web page

Although not very impressive, this prototype does perform some important tasks. It
divides the text into blocks that can be handled separately, and it applies a filter (consisting
of a call to re.sub) to each block in turn. This seems like a good approach to use in your final
program.

Now what would happen if you tried to extend this prototype? You would probably add
checks inside the for loop to see whether the block was a heading, a list item, or something
else. You would add more regular expressions. It could quickly grow into a mess. Even more
important, it would be very difficult to make it output anything other than HTML; and one of
the goals of this project is to make it easy to add other output formats. Let’s assume you want
to refactor your program and structure it a bit differently.

Second Implementation
So, what did you learn from this first implementation? To make it more extensible, you need to
make your program more modular (divide the functionality into independent components).
One way of achieving modularity is through object-oriented design (see Chapter 7). You need

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 409

to find some abstractions to make your program more manageable as its complexity grows.
Let’s begin by listing some possible components:

• A parser: Add an object that reads the text and manages the other classes.

• Rules: You can make one rule for each type of block. The rule should be able to detect the
applicable block type and to format it appropriately.

• Filters: Use filters to wrap up some regular expressions to deal with in-line elements.

• Handlers: The parser uses handlers to generate output. Each handler can produce a
different kind of markup.

Although this isn’t a very detailed design, at least it gives you some ideas about how to
divide your code into smaller parts and make each part manageable.

Handlers
Let’s begin with the handlers. A handler is responsible for generating the resulting marked-up
text, but it receives detailed instructions from the parser. Let’s say it has a pair of methods for
each block type: one for starting the block and one for ending it. For example, it might have the
methods start_paragraph and end_paragraph to deal with paragraph blocks. For HTML, these
could be implemented as follows:

class HTMLRenderer:
 def start_paragraph(self):
 print '<p>'
 def end_paragraph(self):
 print '</p>'

Of course, you’ll need similar methods for other block types. (For the full code of the
HTMLRenderer class, see Listing 20-4 later in this chapter.) This seems flexible enough. If you
wanted some other type of markup, you would just make another handler (or renderer) with
other implementations of the start and end methods.

■Note The term handler (as opposed to renderer, for example) was chosen to indicate that it handles the
method calls generated by the parser (see also the following section, “A Handler Superclass”). It doesn’t have
to render the text in some markup language, as HTMLRenderer does. A similar handler mechanism is used
in the XML parsing scheme called SAX, which is explained in Chapter 22.

How do you deal with regular expressions? As you may recall, the re.sub function can take
a function as its second argument (the replacement). This function is called with the match
object, and its return value is inserted into the text. This fits nicely with the handler philosophy

410 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

discussed previously—you just let the handlers implement the replacement methods. For
example, emphasis can be handled like this:

 def sub_emphasis(self, match):
 return '%s' % match.group(1)

If you don’t understand what the group method does, perhaps you should take another
look at the re module, described in Chapter 10.

In addition to the start, end, and sub methods, you’ll have a method called feed, which you use
to feed actual text to the handler. In your simple HTML renderer, you’ll just implement it like this:

 def feed(self, data):
 print data

A Handler Superclass
In the interest of flexibility, let’s add a Handler class, which will be the superclass of your han-
dlers and will take care of some administrative details. Instead of needing to call the methods
by their full name (for example, start_paragraph), it may at times be useful to handle the block
types as strings (for example, 'paragraph') and supply the handler with those. You can do
this by adding some generic methods called start(type), end(type), and sub(type). In addi-
tion, you can make start, end, and sub check whether the corresponding methods (such as
start_paragraph for start('paragraph')) are really implemented, and do nothing if no such
method is found. An implementation of this Handler class follows. (This code is taken from the
module handlers shown later in Listing 20-4.)

class Handler:
 def callback(self, prefix, name, *args):
 method = getattr(self, prefix+name, None)
 if callable(method): return method(*args)
 def start(self, name):
 self.callback('start_', name)
 def end(self, name):
 self.callback('end_', name)
 def sub(self, name):
 def substitution(match):
 result = self.callback('sub_', name, match)
 if result is None: match.group(0)
 return result
 return substitution

■Note This code requires nested scopes, which are not available prior to Python 2.1. If, for some reason,
you’re using Python 2.1, you need to add the line from __future__ import nested_scopes at the top of
the handlers module. (To some degree, nested scopes can be simulated with default arguments. See the
sidebar “Nested Scopes” in Chapter 6.) Also, callable is not available in Python 3.0. To get around that, you
could simply use a try/except statement to see if you’re able to call it.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 411

Several things in this code warrant some explanation:

• The callback method is responsible for finding the correct method (such as
start_paragraph), given a prefix (such as 'start_') and a name (such as 'paragraph').
It performs its task by using getattr with None as the default value. If the object
returned from getattr is callable, it is called with any additional arguments supplied.
So, for example, calling handler.callback ('start_', 'paragraph') calls the method
handler.start_paragraph with no arguments, given that it exists.

• The start and end methods are just helper methods that call callback with the respec-
tive prefixes start_ and end_.

• The sub method is a bit different. It doesn’t call callback directly, but returns a new func-
tion, which is used as the replacement function in re.sub (which is why it takes a match
object as its only argument).

Let’s consider an example. Say HTMLRenderer is a subclass of Handler and it implements the
method sub_emphasis as described in the previous section (see Listing 20-4 for the actual code
of handlers.py). Let’s say you have an HTMLRenderer instance in the variable handler:

>>> from handlers import HTMLRenderer
>>> handler = HTMLRenderer()

What then will handler.sub('emphasis') do?

>>> handler.sub('emphasis')
<function substitution at 0x168cf8>

It returns a function (substitution) that basically calls the handler.sub_emphasis method
when you call it. That means that you can use this function in a re.sub statement:

>>> import re
>>> re.sub(r'*(.+?)*', handler.sub('emphasis'), 'This *is* a test')
'This is a test'

Magic! (The regular expression matches occurrences of text bracketed by asterisks, which
I’ll discuss shortly.) But why go to such lengths? Why not just use r'\1', as in the
simple version? Because then you would be committed to using the em tag, but you want the
handler to be able to decide which markup to use. If your handler were a (hypothetical)
LaTeXRenderer, for example, you might get another result altogether:

>> re.sub(r'*(.+?)*', handler.sub('emphasis'), 'This *is* a test')
'This \emph{is} a test'

The markup has changed, but the code has not.
We also have a backup, in case no substitution is implemented. The callback method

tries to find a suitable sub_something method, but if it doesn’t find one, it returns None.
Because your function is a re.sub replacement function, you don’t want it to return None.
Instead, if you do not find a substitution method, you just return the original match without
any modifications. If the callback returns None, substitution (inside sub) returns the original
matched text (match.group(0)) instead.

412 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

Rules
Now that you’ve made the handlers quite extensible and flexible, it’s time to turn to the parsing
(interpretation of the original text). Instead of making one big if statement with various condi-
tions and actions, such as in the simple markup program, let’s make the rules a separate kind
of object.

The rules are used by the main program (the parser), which must determine which rules
are applicable for a given block, and then make each rule do what is needed to transform the
block. In other words, a rule must be able to do the following:

• Recognize blocks where it applies (the condition).

• Transform blocks (the action).

So each rule object must have two methods: condition and action.
The condition method needs only one argument: the block in question. It should return a

Boolean value indicating whether the rule is applicable to the given block.

■Tip For complex rule parsing, you might want to give the rule object access to some state variables as
well, so it knows more about what has happened so far, or which other rules have or have not been applied.

The action method also needs the block as an argument, but to be able to affect the out-
put, it must also have access to the handler object.

In many circumstances, only one rule may be applicable; that is, if you find that a headline
rule is used (indicating that the block is a headline), you should not attempt to use the para-
graph rule. A simple implementation of this would be to have the parser try the rules one by
one, and stop the processing of the block once one of the rules is triggered. This would be fine
in general, but as you’ll see, sometimes a rule may not preclude the execution of other rules.
Therefore, you add another piece of functionality to your action method: it returns a Boolean
value indicating whether the rule processing for the current block should stop. (You could also
use an exception for this, similarly to the StopIteration mechanism of iterators.)

Pseudocode for the headline rule might be as follows:

class HeadlineRule:
 def condition(self, block):
 if the block fits the definition of a headline, return True;
 otherwise, return False.
 def action(self, block, handler):
 call methods such as handler.start('headline'), handler.feed(block) and
 handler.end('headline').
 because we don't want to attempt to use any other rules,
 return True, which will end the rule processing for this block.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 413

A Rule Superclass
Although you don’t strictly need a common superclass for your rules, several of them may
share the same general action—calling the start, feed, and end methods of the handler with
the appropriate type string argument, and then returning True (to stop the rule processing).
Assuming that all the subclasses have an attribute called type containing this type name as a
string, you can implement your superclass as shown in the code that follows. (The Rule class is
found in the rules module; the full code is shown later in Listing 20-5.)

class Rule:
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block)
 handler.end(self.type)
 return True

The condition method is the responsibility of each subclass. The Rule class and its sub-
classes are put in the rules module.

Filters
You won’t need a separate class for your filters. Given the sub method of your Handler class,
each filter can be represented by a regular expression and a name (such as emphasis or url).
You see how in the next section, when I show you how to deal with the parser.

The Parser
We’ve come to the heart of the application: the Parser class. It uses a handler and a set of rules
and filters to transform a plain-text file into a marked-up file—in this specific case, an HTML
file. Which methods does it need? It needs a constructor to set things up, a method to add rules,
a method to add filters, and a method to parse a given file.

The following is the code for the Parser class (from Listing 20-6, later in this chapter, which
details markup.py).

class Parser:
 """
 A Parser reads a text file, applying rules and controlling a
 handler.
 """
 def __init__(self, handler):
 self.handler = handler
 self.rules = []
 self.filters = []
 def addRule(self, rule):
 self.rules.append(rule)

414 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

 def addFilter(self, pattern, name):
 def filter(block, handler):
 return re.sub(pattern, handler.sub(name), block)
 self.filters.append(filter)
 def parse(self, file):
 self.handler.start('document')
 for block in blocks(file):
 for filter in self.filters:
 block = filter(block, self.handler)
 for rule in self.rules:
 if rule.condition(block):
 last = rule.action(block, self.handler)
 if last: break
 self.handler.end('document')

Although there is quite a lot to digest in this class, most of it isn’t very complicated. The
constructor simply assigns the supplied handler to an instance variable (attribute) and then
initializes two lists: one of rules and one of filters. The addRule method adds a rule to the rule
list. The addFilter method, however, does a bit more work. Like addRule, it adds a filter to the
filter list, but before doing so, it creates that filter. The filter is simply a function that applies
re.sub with the appropriate regular expression (pattern) and uses a replacement from the han-
dler, accessed with handler.sub(name).

The parse method, although it might look a bit complicated, is perhaps the easiest method
to implement because it merely does what you’ve been planning to do all along. It begins by
calling start('document') on the handler, and ends by calling end('document'). Between these
calls, it iterates over all the blocks in the text file. For each block, it applies both the filters and
the rules. Applying a filter is simply a matter of calling the filter function with the block and
handler as arguments, and rebinding the block variable to the result, as follows:

block = filter(block, self.handler)

This enables each of the filters to do its work, which is replacing parts of the text with
marked-up text (such as replacing *this* with this).

There is a bit more logic in the rule loop. For each rule, there is an if statement, checking
whether the rule applies by calling rule.condition(block). If the rule applies, rule.action is
called with the block and handler as arguments. Remember that the action method returns a
Boolean value indicating whether to finish the rule application for this block. Finishing the rule
application is done by setting the variable last to the return value of action, and then condi-
tionally breaking out of the for loop:

if last: break

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 415

■Note You can collapse these two statements into one, eliminating the last variable:

if rule.action(block, self.handler): break

Whether or not to do so is largely a matter of taste. Removing the temporary variable makes the code simpler,
but leaving it in clearly labels the return value.

Constructing the Rules and Filters
Now you have all the tools you need, but you haven’t created any specific rules or filters yet.
The motivation behind much of the code you’ve written so far is to make the rules and filters as
flexible as the handlers. You can write several independent rules and filters and add them to
your parser through the addRule and addFilter methods, making sure to implement the appro-
priate methods in your handlers.

A complicated rule set makes it possible to deal with complicated documents. However,
let’s keep it simple for now. Let’s create one rule for the title, one rule for other headings,
and one for list items. Because list items should be treated collectively as a list, you’ll create a
separate list rule, which deals with the entire list. Lastly, you can create a default rule for para-
graphs, which covers all blocks not dealt with by the previous rules.

We can specify the rules in informal terms as follows:

• A heading is a block that consists of only one line, which has a length of at most 70 char-
acters. If the block ends with a colon, it is not a heading.

• The title is the first block in the document, provided that it is a heading.

• A list item is a block that begins with a hyphen (-).

• A list begins between a block that is not a list item and a following list item and ends
between a list item and a following block that is not a list item.

These rules follow some of my intuitions about how a text document is structured. Your
opinions on this (and your text documents) may differ. Also, the rules have weaknesses (for
example, what happens if the document ends with a list item?). Feel free to improve on them.

The complete source code for the rules is shown later in Listing 20-5 (rules.py, which also
contains the basic Rule class).

416 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

Let’s begin with the heading rule:

class HeadingRule(Rule):
 """
 A heading is a single line that is at most 70 characters and
 that doesn't end with a colon.
 """
 type = 'heading'
 def condition(self, block):
 return not '\n' in block and len(block) <= 70 and not block[-1] == ':'

The attribute type has been set to the string 'heading', which is used by the action method
inherited from Rule. The condition simply checks that the block does not contain a newline
(\n) character, that its length is at most 70, and that the last character is not a colon.

The title rule is similar, but only works once, for the first block. After that, it ignores all
blocks because its attribute first has been set to a false value.

class TitleRule(HeadingRule):
 """
 The title is the first block in the document, provided that it is
 a heading.
 """
 type = 'title'
 first = True

 def condition(self, block):
 if not self.first: return False
 self.first = False
 return HeadingRule.condition(self, block)

The list item rule condition is a direct implementation of the preceding specification.

class ListItemRule(Rule):
 """
 A list item is a paragraph that begins with a hyphen. As part of
 the formatting, the hyphen is removed.
 """
 type = 'listitem'
 def condition(self, block):
 return block[0] == '-'
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block[1:].strip())
 handler.end(self.type)
 return True

Its action is a reimplementation of that found in Rule. The only difference is that it removes the
first character from the block (the hyphen) and strips away excessive whitespace from the remain-
ing text. The markup provides its own “list bullet,” so you won’t need the hyphen anymore.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 417

All the rule actions so far have returned True. The list rule does not, because it is triggered
when you encounter a list item after a nonlist item or when you encounter a nonlist item after a
list item. Because it doesn’t actually mark up these blocks but merely indicates the beginning and
end of a list (a group of list items) you don’t want to halt the rule processing—so it returns False.

class ListRule(ListItemRule):
 """
 A list begins between a block that is not a list item and a
 subsequent list item. It ends after the last consecutive list
 item.
 """
 type = 'list'
 inside = False
 def condition(self, block):
 return True
 def action(self, block, handler):
 if not self.inside and ListItemRule.condition(self, block):
 handler.start(self.type)
 self.inside = True
 elif self.inside and not ListItemRule.condition(self, block):
 handler.end(self.type)
 self.inside = False
 return False

The list rule might require some further explanation. Its condition is always true because
you want to examine all blocks. In the action method, you have two alternatives that may lead
to action:

• If the attribute inside (indicating whether the parser is currently inside the list) is false (as
it is initially), and the condition from the list item rule is true, you have just entered a list.
Call the appropriate start method of the handler, and set the inside attribute to True.

• Conversely, if inside is true, and the list item rule condition is false, you have just left a list.
Call the appropriate end method of the handler, and set the inside attribute to False.

After this processing, the function returns False to let the rule handling continue. (This
means, of course, that the order of the rules is critical.)

The final rule is ParagraphRule. Its condition is always true because it is the “default” rule.
It is added as the last element of the rule list, and handles all blocks that aren’t dealt with by any
other rule.

class ParagraphRule(Rule):
 """
 A paragraph is simply a block that isn't covered by any of the
 other rules.
 """
 type = 'paragraph'
 def condition(self, block):
 return True

418 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

The filters are simply regular expressions. Let’s add three filters: one for emphasis, one for
URLs, and one for email addresses. Let’s use the following three regular expressions:

r'*(.+?)*'
r'(http://[\.a-zA-Z/]+)'
r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)'

The first pattern (emphasis) matches an asterisk followed by one or more arbitrary charac-
ters (matching as few as possible, hence the question mark), followed by another asterisk. The
second pattern (URLs) matches the string 'http://' (here, you could add more protocols) fol-
lowed by one or more characters that are dots, letters, or slashes. (This pattern will not match
all legal URLs—feel free to improve it.) Finally, the email pattern matches a sequence of letters
and dots followed by an at sign (@), followed by more letters and dots, finally followed by a
sequence of letters, ensuring that you don’t end with a dot. (Again—feel free to improve this.)

Putting It All Together
You now just need to create a Parser object and add the relevant rules and filters. Let’s do that by
creating a subclass of Parser that does the initialization in its constructor. Then let’s use that to
parse sys.stdin. The final program is shown in Listings 20-4 through 20-6. (These listings
depend on the utility code in Listing 20-2.) The final program may be run just like the prototype:

$ python markup.py < test_input.txt > test_output.html

Listing 20-4. The Handlers (handlers.py)

class Handler:
 """
 An object that handles method calls from the Parser.

 The Parser will call the start() and end() methods at the
 beginning of each block, with the proper block name as a
 parameter. The sub() method will be used in regular expression
 substitution. When called with a name such as 'emphasis', it will
 return a proper substitution function.
 """
 def callback(self, prefix, name, *args):
 method = getattr(self, prefix+name, None)
 if callable(method): return method(*args)
 def start(self, name):
 self.callback('start_', name)
 def end(self, name):
 self.callback('end_', name)
 def sub(self, name):
 def substitution(match):
 result = self.callback('sub_', name, match)
 if result is None: match.group(0)
 return result
 return substitution

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 419

class HTMLRenderer(Handler):
 """
 A specific handler used for rendering HTML.

 The methods in HTMLRenderer are accessed from the superclass
 Handler's start(), end(), and sub() methods. They implement basic
 markup as used in HTML documents.
 """
 def start_document(self):
 print '<html><head><title>...</title></head><body>'
 def end_document(self):
 print '</body></html>'
 def start_paragraph(self):
 print '<p>'
 def end_paragraph(self):
 print '</p>'
 def start_heading(self):
 print '<h2>'
 def end_heading(self):
 print '</h2>'
 def start_list(self):
 print ''
 def end_list(self):
 print ''
 def start_listitem(self):
 print ''
 def end_listitem(self):
 print ''
 def start_title(self):
 print '<h1>'
 def end_title(self):
 print '</h1>'
 def sub_emphasis(self, match):
 return '%s' % match.group(1)
 def sub_url(self, match):
 return '%s' % (match.group(1), match.group(1))
 def sub_mail(self, match):
 return '%s' % (match.group(1), match.group(1))
 def feed(self, data):
 print data

Listing 20-5. The Rules (rules.py)

class Rule:
 """
 Base class for all rules.
 """

420 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block)
 handler.end(self.type)
 return True

class HeadingRule(Rule):
 """
 A heading is a single line that is at most 70 characters and
 that doesn't end with a colon.
 """
 type = 'heading'
 def condition(self, block):
 return not '\n' in block and len(block) <= 70 and not block[-1] == ':'

class TitleRule(HeadingRule):
 """
 The title is the first block in the document, provided that it is
 a heading.
 """
 type = 'title'
 first = True

 def condition(self, block):
 if not self.first: return False
 self.first = False
 return HeadingRule.condition(self, block)

class ListItemRule(Rule):
 """
 A list item is a paragraph that begins with a hyphen. As part of
 the formatting, the hyphen is removed.
 """
 type = 'listitem'
 def condition(self, block):
 return block[0] == '-'
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block[1:].strip())
 handler.end(self.type)
 return True

class ListRule(ListItemRule):
 """
 A list begins between a block that is not a list item and a
 subsequent list item. It ends after the last consecutive list
 item.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 421

 """
 type = 'list'
 inside = False
 def condition(self, block):
 return True
 def action(self, block, handler):
 if not self.inside and ListItemRule.condition(self, block):
 handler.start(self.type)
 self.inside = True
 elif self.inside and not ListItemRule.condition(self, block):
 handler.end(self.type)
 self.inside = False
 return False

class ParagraphRule(Rule):
 """
 A paragraph is simply a block that isn't covered by any of the
 other rules.
 """
 type = 'paragraph'
 def condition(self, block):
 return True

Listing 20-6. The Main Program (markup.py)

import sys, re
from handlers import *
from util import *
from rules import *

class Parser:
 """
 A Parser reads a text file, applying rules and controlling a
 handler.
 """
 def __init__(self, handler):
 self.handler = handler
 self.rules = []
 self.filters = []
 def addRule(self, rule):
 self.rules.append(rule)
 def addFilter(self, pattern, name):
 def filter(block, handler):
 return re.sub(pattern, handler.sub(name), block)
 self.filters.append(filter)

422 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

 def parse(self, file):
 self.handler.start('document')
 for block in blocks(file):
 for filter in self.filters:
 block = filter(block, self.handler)
 for rule in self.rules:
 if rule.condition(block):
 last = rule.action(block, self.handler)
 if last: break
 self.handler.end('document')

class BasicTextParser(Parser):
 """
 A specific Parser that adds rules and filters in its
 constructor.
 """
 def __init__(self, handler):
 Parser.__init__(self, handler)
 self.addRule(ListRule())
 self.addRule(ListItemRule())
 self.addRule(TitleRule())
 self.addRule(HeadingRule())
 self.addRule(ParagraphRule())

 self.addFilter(r'*(.+?)*', 'emphasis')
 self.addFilter(r'(http://[\.a-zA-Z/]+)', 'url')
 self.addFilter(r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)', 'mail')

handler = HTMLRenderer()
parser = BasicTextParser(handler)

parser.parse(sys.stdin)

You can see the result of running the program on the sample text in Figure 20-2.
The second implementation is clearly more complicated and extensive than the first ver-

sion. The added complexity is well worth the effort because the resulting program is much
more flexible and extensible. Adapting it to new input and output formats is merely a matter of
subclassing and initializing the existing classes, rather than rewriting everything from scratch,
as you would have had to do in the first prototype.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 423

Figure 20-2. The second attempt at generating a web page

Further Exploration
Several expansions are possible for this program. Here are some possibilities:

• Add support for tables. Find all aligning left word borders and split the block into
columns.

• Add support for interpreting all uppercase words as emphasis. (To do this properly, you will
need to take into account acronyms, punctuations, names, and other capitalized words.)

• Add support for output.

• Write a handler that does something other than markup. Perhaps write a handler that
analyzes the document in some way.

• Create a script that automatically converts all text files in a directory to HTML files.

• Check out some existing plain-text formats (such as various forms of wiki markup). See
Table 20-1 for some ideas. A web search (or a look at some wiki or blog systems) will
probably turn up more results.

ALTEX

424 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

Table 20-1. Some Plain-Text and Wiki-Style Markup Systems

What Now?
Phew! After this strenuous (but useful, I hope) project, it’s time for some lighter material. In the
next chapter, you create some graphics based on data that is automatically downloaded from
the Internet. Piece of cake.

Markup System Web Site

Atox http://atox.sf.net

atx http://www.aaronsw.com/2002/atx

BBCode http://www.bbcode.org

Epytext http://epydoc.sourceforge.net/epytext.html

EtText http://ettext.taint.org

Grutatxt http://www.triptico.com/software/grutatxt.html

Markdown http://daringfireball.net/projects/markdown

reStructuredText http://docutils.sourceforge.net/rst.html

Setext http://www.valdemar.net/~erik/setext

SmartASCII http://www.gnosis.cx/TPiP

Textile http://www.textism.com/tools/textile

txt2html http://txt2html.sourceforge.net

WikiCreole http://www.wikicreole.org

WikiMarkupStandard http://www.usemod.com/cgi-bin/mb.pl?WikiMarkupStandard

Wikitext http://en.wikipedia.org/wiki/Wikitext

YAML http://www.yaml.org

425

■ ■ ■

C H A P T E R 2 1

Project 2: Painting a Pretty
Picture

In this project, you learn how you can create graphics in Python. More specifically, you create
a PDF file with graphics helping you visualize data that you read from a text file. While you
could get such functionality from a regular spreadsheet, Python gives you much more power,
as you’ll see when you get to the second implementation and automatically download your
data from the Internet.

In the previous chapter, we looked at HTML and XML—and here is another acronym,
which I guess you’re probably familiar with: PDF, short for Portable Document Format. PDF is
a format created by Adobe that can represent any kind of document with graphics and text. The
PDF file is not really editable (as, say, a Microsoft Word file would be), but there is reader soft-
ware freely available for most platforms, and the PDF file should look the same no matter
which reader you use or which platform you are on (as opposed to HTML, with which the cor-
rect fonts may not be available, you would normally have to ship pictures as separate files, and
so on). If you don’t already have a PDF reader, Adobe’s own Acrobat Reader is freely available
from the Adobe web site (http://adobe.com/products/acrobat/readstep.html).

What’s the Problem?
Python is excellent for analyzing data. With its file-handling and string-processing facilities, it’s
probably easier to create some form of report from a data file than to create something similar
in your average spreadsheet, especially if what you want to do requires some complicated pro-
gramming logic.

You have seen (in Chapter 3) how you can use string formatting to get pretty output—for
example, if you want to print numbers in columns. However, sometimes plain text just isn’t
enough. (As they say, a picture is worth a thousand words.) In this project, you learn the basics
of the ReportLab package, which enables you to create graphics and documents in the PDF for-
mat (and a few other formats) almost as easily as you created plain text earlier.

As you play with the concepts in this project, I encourage you to find some application that
is interesting to you. I have chosen to use data about sunspots (from the Space Weather Predic-
tion Center, a part of the US National Oceanic and Atmospheric Administration) and to create
a line diagram from this data.

426 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

The program should be able to do the following:

• Download a data file from the Internet.

• Parse the data file and extract the interesting parts.

• Create PDF graphics based on the data.

As in the previous project, these goals might not be fully met by the first prototype.

Useful Tools
The crucial tool in this project is the graphics-generating package. Quite a few such packages are
available. If you visit the Vaults of Parnassus site (http://www.vex.net/parnassus), you will find a
separate category for graphics. I have chosen ReportLab because it is easy to use and has exten-
sive functionality for both graphics and document generation in PDF. If you want to go beyond
the basics, you might also want to consider the graphics package (http://pyx.sf.net), which
is really powerful and has support for -based typography.

To get the ReportLab package, go to the official web site at http://www.reportlab.org.
There you will find the software, documentation, and samples. The software should be avail-
able at http://www.reportlab.org/downloads.html. Simply download the ReportLab toolkit,
uncompress the archive (ReportLab_x.zip, where x is a version number), and put the reportlab
directory inside the uncompressed directory in your Python path.

When you have done this, you should be able to import the reportlab module, as follows:

>>> import reportlab
>>>

■Note Although I show you how some ReportLab features work in this project, much more functionality is
available. To learn more, I suggest you obtain the user guide and the (separate) graphics guide, made avail-
able on the ReportLab web site (on the documentation page). They are quite readable and are much more
comprehensive than this one chapter could possibly be.

Preparations
Before you start programming, you need some data with which to test your program. I have
chosen (quite arbitrarily) to use data about sunspots, available from the web site of the Space
Weather Prediction Center (http://www.swpc.noaa.gov). You can find the data I use in my
examples at http://www.swpc.noaa.gov/ftpdir/weekly/Predict.txt.

This data file is updated weekly and contains information about sunspots and radio flux.
(Don’t ask me what that means.) Once you have this file, you’re ready to start playing with the
problem.

PYX
XET

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 427

Here is a part of the file to give you an idea of how the data looks:

Predicted Sunspot Number And Radio Flux Values
With Expected Ranges
#
-----Sunspot Number------ ----10.7 cm Radio Flux----
YR MO PREDICTED HIGH LOW PREDICTED HIGH LOW
#--
2007 12 4.8 5.0 4.7 67.6 70.4 64.7
2008 01 4.3 4.4 4.2 66.7 69.5 63.8
2008 02 4.0 4.1 3.9 66.1 68.9 63.2
2008 03 4.2 4.3 4.0 65.7 68.6 62.8
2008 04 4.6 4.8 4.4 65.7 68.6 62.7
2008 05 5.2 5.6 4.9 65.6 68.7 62.5
2008 06 5.8 6.3 5.2 65.2 68.5 62.0
2008 07 6.3 7.1 5.5 64.9 68.4 61.4
2008 08 7.4 8.6 6.3 65.1 68.9 61.2
2008 09 8.6 10.2 7.0 65.4 69.6 61.2

First Implementation
In this first implementation, let’s just put the data into our source code, as a list of tuples. That
way, it’s easily accessible. Here is an example of how you can do it:

data = [
Year Month Predicted High Low
(2007, 12, 4.8, 5.0, 4.7),
(2008, 1, 4.3, 4.4, 4.2),
 # Add more data here
]

With that out of the way, let’s see how you can turn the data into graphics.

Drawing with ReportLab
ReportLab consists of many parts and enables you to create output in several ways. The most
basic module for generating PDFs is pdfgen. It contains a Canvas class with several low-level
methods for drawing. To draw a line on a Canvas called c, you call the c.line method, for
example.

You’ll use the more high-level graphics framework (in the package reportlab.graphics
and its submodules), which will enable you to create various shape objects and to add them to
a Drawing object that you can later output to a file in PDF format.

Listing 21-1 shows a sample program that draws the string “Hello, world!” in the middle of
a 100 100-point PDF figure. (You can see the result in Figure 21-1.) The basic structure is as
follows: you create a drawing of a given size, you create graphical elements (in this case, a

428 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

String object) with certain properties, and then you add the elements to the drawing. Finally,
the drawing is rendered into PDF format and saved to a file.

Figure 21-1. A simple ReportLab figure

Listing 21-1. A Simple ReportLab Program (hello_report.py)

from reportlab.graphics.shapes import Drawing, String
from reportlab.graphics import renderPDF

d = Drawing(100, 100)
s = String(50, 50, 'Hello, world!', textAnchor='middle')

d.add(s)

renderPDF.drawToFile(d, 'hello.pdf', 'A simple PDF file')

The call to renderPDF.drawToFile saves your PDF file to a file called hello.pdf in the cur-
rent directory.

The main arguments to the String constructor are its x and y coordinates and its text. In
addition, you can supply various attributes (such as font size, color, and so on). In this case, I’ve
supplied a textAnchor, which is the part of the string that should be placed at the point given
by the coordinates.

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 429

■Note When you run this program, you may get two warnings: one saying that the Python Imaging Library
is not available, and the other that zlib is not available. (If you have installed either of these, that warning
will, of course, not appear.) You won’t need either of these libraries for the code in this project, so you can
simply ignore the warnings. And if you don’t get the warning, that’s not a problem, of course.

Constructing Some PolyLines
To create a line diagram (a graph) of the sunspot data, you need to create some lines. In fact,
you need to create several lines that are linked. ReportLab has a special class for this: PolyLine.

A PolyLine is created with a list of coordinates as its first argument. This list is of the form
[(x0, y0), (x1, y1), ...], with each pair of x and y coordinates making one point on the
PolyLine. See Figure 21-2 for a simple PolyLine.

Figure 21-2. PolyLine([(0, 0), (10, 0), (10, 10), (0, 10)])

To make a line diagram, one polyline must be created for each column in the data set.
Each point in these polylines will consist of a time (constructed from the year and month) and
a value (which is the number of sunspots, taken from the relevant column). To get one of the
columns (the values), list comprehensions can be useful:

pred = [row[2] for row in data]

430 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Here, pred (for “predicted”) will be a list of all the values in the third column of the data.
You can use a similar strategy for the other columns. (The time for each row would need to be
calculated from both the year and month; for example, year + month/12.)

Once you have the values and the timestamps, you can add your polylines to the drawing
like this:

drawing.add(PolyLine(zip(times, pred), strokeColor=colors.blue))

It isn’t necessary to set the stroke color, of course, but it makes it easier to tell the lines
apart. (Note how zip is used to combine the times and values into a list of tuples.)

Writing the Prototype
You now have what you need to write your first version of the program. The source code is
shown in Listing 21-2.

Listing 21-2. The First Prototype for the Sunspot Graph Program (sunspots_proto.py)

from reportlab.lib import colors
from reportlab.graphics.shapes import *
from reportlab.graphics import renderPDF

data = [
Year Month Predicted High Low
 (2007, 8, 113.2, 114.2, 112.2),
 (2007, 9, 112.8, 115.8, 109.8),
 (2007, 10, 111.0, 116.0, 106.0),
 (2007, 11, 109.8, 116.8, 102.8),
 (2007, 12, 107.3, 115.3, 99.3),
 (2008, 1, 105.2, 114.2, 96.2),
 (2008, 2, 104.1, 114.1, 94.1),
 (2008, 3, 99.9, 110.9, 88.9),
 (2008, 4, 94.8, 106.8, 82.8),
 (2008, 5, 91.2, 104.2, 78.2),
]

drawing = Drawing(200, 150)

pred = [row[2]-40 for row in data]
high = [row[3]-40 for row in data]
low = [row[4]-40 for row in data]
times = [200*((row[0] + row[1]/12.0) - 2007)-110 for row in data]

drawing.add(PolyLine(zip(times, pred), strokeColor=colors.blue))
drawing.add(PolyLine(zip(times, high), strokeColor=colors.red))
drawing.add(PolyLine(zip(times, low), strokeColor=colors.green))

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 431

drawing.add(String(65, 115, 'Sunspots', fontSize=18, fillColor=colors.red))

renderPDF.drawToFile(drawing, 'report1.pdf', 'Sunspots')

As you can see, I have adjusted the values and timestamps to get the positioning right. The
resulting drawing is shown in Figure 21-3.

Figure 21-3. A simple sunspot graph

Although it is pleasing to have made a program that works, there is clearly still room for
improvement.

Second Implementation
So, what did you learn from your prototype? You have figured out the basics of how to draw
stuff with ReportLab. You have also seen how you can extract the data in a way that works well
for drawing your graph. However, there are some weaknesses in the program. To position
things properly, I had to add some ad hoc modifications to the values and timestamps. And the
program doesn’t actually get the data from anywhere (or, rather, it “gets” the data from a list
inside the program itself, rather than reading it from an outside source).

Unlike Project 1 (in Chapter 20), the second implementation won’t be much larger or
more complicated than the first. It will be an incremental improvement that uses some more
appropriate features from ReportLab and actually fetches its data from the Internet.

432 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Getting the Data
As you saw in Chapter 14, you can fetch files across the Internet with the standard module
urllib. Its function urlopen works in a manner quite similar to open, but takes a URL instead of
a file name as its argument. When you have opened the file and read its contents, you need to
filter out what you don’t need. The file contains empty lines (consisting of only whitespace)
and lines beginning with some special characters (# and :). The program should ignore these.
(See the sample file fragment in the section “Preparations” earlier in this chapter.)

Assuming that the URL is kept in a variable called URL, and that the variable COMMENT_CHARS
has been set to the string '#:', you can get a list of rows (as in our original program) like this:

data = []
for line in urlopen(URL).readlines():
 if not line.isspace() and not line[0] in COMMENT_CHARS:
 data.append([float(n) for n in line.split()])

The preceding code will include all the columns in the data list, although you aren’t partic-
ularly interested in the ones pertaining to radio flux. However, those columns will be filtered
out when you extract the columns you really need (as you did in the original program).

■Note If you are using a data source of your own (or if, by the time you read this, the data format of the
sunspot file has changed), you will, of course, need to modify this code accordingly.

Using the LinePlot Class
If you thought getting the data was surprisingly simple, drawing a prettier line plot isn’t much
of a challenge either. In a situation like this, it’s best to thumb through the documentation (in
this case, the ReportLab docs) to see if a feature that can do what you need already exists, so
you don’t need to implement it all yourself. Luckily, there is just such a thing: the LinePlot class
from the module reportlab.graphics.charts.lineplots. Of course, you could have looked for
this to begin with, but in the spirit of rapid prototyping, you just used what was at hand to see
what you could do. Now it’s time to go one step further.

The LinePlot is instantiated without any arguments, and then you set its attributes before
adding it to the Drawing. The main attributes you need to set are x, y, height, width, and data.
The first four should be self-explanatory; the latter is simply a list of point-lists, where a point-
list is a list of tuples, like the one you used in your PolyLines.

To top it off, let’s set the stroke color of each line. The final code is shown in Listing 21-3.
The resulting figure (which will, of course, look quite a bit different with different input data) is
shown in Figure 21-4.

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 433

Listing 21-3. The Final Sunspot Program (sunspots.py)

from urllib import urlopen
from reportlab.graphics.shapes import *
from reportlab.graphics.charts.lineplots import LinePlot
from reportlab.graphics.charts.textlabels import Label
from reportlab.graphics import renderPDF

URL = 'http://www.swpc.noaa.gov/ftpdir/weekly/Predict.txt'
COMMENT_CHARS = '#:'

drawing = Drawing(400, 200)
data = []
for line in urlopen(URL).readlines():
 if not line.isspace() and not line[0] in COMMENT_CHARS:
 data.append([float(n) for n in line.split()])

pred = [row[2] for row in data]
high = [row[3] for row in data]
low = [row[4] for row in data]
times = [row[0] + row[1]/12.0 for row in data]

lp = LinePlot()
lp.x = 50
lp.y = 50
lp.height = 125
lp.width = 300
lp.data = [zip(times, pred), zip(times, high), zip(times, low)]
lp.lines[0].strokeColor = colors.blue
lp.lines[1].strokeColor = colors.red
lp.lines[2].strokeColor = colors.green

drawing.add(lp)

drawing.add(String(250, 150, 'Sunspots',
 fontSize=14, fillColor=colors.red))

renderPDF.drawToFile(drawing, 'report2.pdf', 'Sunspots')

434 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Figure 21-4. The final sunspot graph

Further Exploration
Many graphics and plotting packages are available for Python. One good alternative to
ReportLab is , which I mentioned earlier in this chapter. It is also possible to use wxPython
(discussed in Chapter 12) to create vector graphics files of different kinds.

Using either ReportLab or (or some other package), you could try to incorporate auto-
matically generated graphics into a document (perhaps generating parts of that as well). You
could use some of the techniques from Chapter 20 to add markup to the text. If you want to cre-
ate a PDF document, Platypus, a part of ReportLab, is useful for that. (You could also integrate
the PDF graphics with some typesetting system such as .) If you want to create web pages,
there are ways of creating pixmap graphics (such as GIF or PNG) using Python as well—just do
a web search on the topic.

If your primary goal is to plot data (which is what we did in this project), you have many
alternatives to ReportLab and . One good option is Matplotlib/pylab (http://matplotlib.
sf.net), but a lot of other (similar) packages are available.

What Now?
In the first project, you learned how to add markup to a plain-text file by creating an extensible
parser. In the next project, you learn about analyzing marked-up text (in XML) by using parser
mechanisms that already exist in the Python standard library. The goal of the project is to use
a single XML file to specify an entire web site, which will then be generated automatically (with
files, directories, added headers, and footers) by your program. The techniques you learn in the
next project will be applicable to XML parsing in general, and with XML being used in an
increasing number of different settings, that can’t hurt.

PYX

PYX

ALTEX

PYX

435

■ ■ ■

C H A P T E R 2 2

Project 3: XML for All
Occasions

I mentioned XML briefly in Project 1. Now it’s time to examine it in more detail. In this project,
you see how XML can be used to represent many kinds of data, and how XML files can be pro-
cessed with the Simple API for XML, or SAX. The goal of this project is to generate a full web site
from a single XML file that describes the various web pages and directories.

In this chapter, I assume that you know what XML is and how to write it. If you know
some HTML, you’re already familiar with the basics. XML isn’t really a specific language
(such as HTML); it’s more like a set of rules that define a class of languages. Basically, you still
write tags the same way as in HTML, but in XML you can invent tag names yourself. Such
specific sets of tag names and their structural relationships can be described in Document
Type Definitions or XML Schema—I won’t be discussing those here.

For a concise description of what XML is, see the World Wide Web Consortium’s (W3C’s)
“XML in 10 points” (http://www.w3.org/XML/1999/XML-in-10-points). A more thorough tuto-
rial can be found on the W3Schools web site (http://www.w3schools.com/xml). For more
information about SAX, see the official SAX web site (http://www.saxproject.org).

What’s the Problem?
The general problem you’ll be attacking in this project is to parse (read and process) XML files.
Because you can use XML to represent practically anything, and you can do whatever you want
with the data when you parse it, the applications are boundless (as the title of this chapter
indicates).

The specific problem tackled in this chapter is to generate a complete web site from a
single XML file that contains the structure of the site and the basic contents of each page.

Before you proceed with this project, I suggest that you take a few moments to read a bit
about XML and to check out its applications. That might give you a better understanding of
when it might be a useful file format and when it would just be overkill. (After all, plain-text files
can be just fine when they’re all you need.)

436 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

Let’s define the specific goals for the project:

• The entire web site should be described by a single XML file, which should include infor-
mation about individual web pages and directories.

• The program should create the directories and web pages as needed.

• It should be easy to change the general design of the entire web site and regenerate all
the pages with the new design.

This last point is perhaps enough to make it all worthwhile, but there are other benefits. By
placing all your contents in a single XML file, you could easily write other programs that use the
same XML processing techniques to extract various kinds of information, such as tables of con-
tents, indices for custom search engines, and so on. And even if you don’t use this for your web
site, you could use it to create HTML-based slide shows (or, by using something like ReportLab,
discussed in the previous chapter, you could even create PDF slide shows).

Useful Tools
Python has some built-in XML support, but if you’re using an old version, you may need to
install some extras yourself. In this project, you’ll need a functioning SAX parser. To see if you
have a usable SAX parser, try to execute the following:

>>> from xml.sax import make_parser
>>> parser = make_parser()

In all likelihood, no exceptions will be raised when you do this. In that case, you’re all set
and can continue to the “Preparations” section.

ANYTHING, YOU SAY?

You may be skeptical about what you can really represent with XML. Well, let me give you just a few examples
of the uses of XML:

• To mark up text for ordinary document processing—for example, in the form of XHTML
(http://www.w3.org/TR/xhtml1) or DocBook XML (http://www.docbook.org)

• To represent music (http://musicxml.org)

• To represent human moods, emotions, and character traits (http://xml.coverpages.org/
humanML.html)

• To describe any physical object (http://xml.coverpages.org/pml-ons.html)

• To call Python methods across a network (using XML-RPC, demonstrated in Chapter 27)

A sampling of existing applications of XML may be found on the XML Cover Pages (http://
xml.coverpages.org/xml.html#applications) and at CBEL (http://www.cbel.com/
xml_markup_languages).

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 437

■Tip Plenty of XML tools for Python are out there. One very interesting alternative to the “standard” PyXML
framework is Fredrik Lundh’s ElementTree (and the C implementation, cElementTree), which is also included
in recent versions of the Python standard library, in the package xml.etree. If you have an older Python ver-
sion, you can get ElementTree from http://effbot.org/zone. It’s quite powerful and easy to use, and may
well be worth a look if you’re serious about using XML in Python.

If you do get an exception (which may be the case for older Python versions), you must
install PyXML. First, download the PyXML package from http://sf.net/projects/pyxml.
There you can find RPM packages for Linux, binary installers for Windows, and source distri-
butions for other platforms. The RPMs are installed with rpm --install, and the binary
Windows distribution is installed simply by executing it. The source distribution is installed
through the standard Python installation mechanism, Distutils. Simply unpack the tar.gz file,
change to the unpacked directory, and execute the following:

$ python setup.py install

You should now be able to use the XML tools.

Preparations
Before you can write the program that processes your XML files, you must design your XML
format. What tags do you need, what attributes should they have, and which tags should go
where? To find out, let’s first consider what it is you want your XML to describe.

The main concepts are web site, directory, page, name, title, and contents:

• You won’t be storing any information about the web site itself, so the web site is just the
top-level element enclosing all the files and directories.

• A directory is mainly a container for files and other directories.

• A page is a single web page.

• Both directories and web pages need names. These will be used as directory names and
file names, as they will appear in the file system and the corresponding URLs.

• Each web page should have a title (not the same as its file name).

• Each web page will also have some contents. You’ll just use plain XHTML to represent
the contents here. That way, you can simply pass it through to the final web pages and
let the browsers interpret it.

In short, your document will consist of a single website element, containing several directory
and page elements, each of the directory elements optionally containing more pages and directo-
ries. The directory and page elements will have an attribute called name, which will contain their
name. In addition, the page tag has a title attribute. The page element contains XHTML code (of
the type found inside the XHTML body tag). A sample file is shown in Listing 22-1.

438 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

Listing 22-1. A Simple Web Site Represented As an XML File (website.xml)

<website>
 <page name="index" title="Home Page">
 <h1>Welcome to My Home Page</h1>

 <p>Hi, there. My name is Mr. Gumby, and this is my home page. Here
 are some of my interests:</p>

 Shouting
 Sleeping
 Eating

 </page>
 <directory name="interests">
 <page name="shouting" title="Shouting">
 <h1>Mr. Gumby's Shouting Page</h1>

 <p>...</p>
 </page>
 <page name="sleeping" title="Sleeping">
 <h1>Mr. Gumby's Sleeping Page</h1>

 <p>...</p>
 </page>
 <page name="eating" title="Eating">
 <h1>Mr. Gumby's Eating Page</h1>

 <p>...</p>
 </page>
 </directory>
</website>

First Implementation
At this point, we haven’t yet looked at how XML parsing works. The approach we are using here
(called SAX) consists of writing a set of event handlers (just as in GUI programming) and then
letting an existing XML parser call these handlers as it reads the XML document.

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 439

Creating a Simple Content Handler
Several event types are available when parsing with SAX, but let’s restrict ourselves to three: the
beginning of an element (the occurrence of an opening tag), the end of an element (the occur-
rence of a closing tag), and plain text (characters). To parse the XML file, let’s use the parse
function from the xml.sax module. This function takes care of reading the file and generating
the events, but as it generates these events, it needs some event handlers to call. These event
handlers will be implemented as methods of a content handler object. You’ll subclass the
ContentHandler class from xml.sax.handler because it implements all the necessary event han-
dlers (as dummy operations that have no effect), and you can override only the ones you need.

Let’s begin with a minimal XML parser (assuming that your XML file is called website.xml):

from xml.sax.handler import ContentHandler
from xml.sax import parse

class TestHandler(ContentHandler): pass
parse('website.xml', TestHandler())

If you execute this program, seemingly nothing happens, but you shouldn’t get any error
messages either. Behind the scenes, the XML file is parsed, and the default event handlers are
called, but because they don’t do anything, you won’t see any output.

WHAT ABOUT DOM?

There are two common ways of dealing with XML in Python (and other programming languages, for that mat-
ter): SAX and the Document Object Model (DOM). A SAX parser reads through the XML file and tells you what
it sees (text, tags, and attributes), storing only small parts of the document at a time. This makes SAX simple,
fast, and memory-efficient, which is why I have chosen to use it in this chapter. DOM takes another approach:
it constructs a data structure (the document tree), which represents the entire document. This is slower and
requires more memory, but can be useful if you want to manipulate the structure of your document, for
example.

For information about using DOM in Python, check out the Python Library Reference (http://
www.python.org/doc/current/lib/module-xml.dom.html). In addition to the standard DOM
handling, the standard library contains two other modules: xml.dom.minidom (a simplified DOM) and
xml.dom.pulldom (a cross between SAX and DOM, which reduces memory requirements).

A very fast and simple XML parser (which doesn’t really use DOM, but creates a complete document
tree from your XML document) is pyRXP (http://www.reportlab.org/pyrxp.html). And then there is
ElementTree, which is flexible and easy to use.

440 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

Let’s try a simple extension. Add the following method to the TestHandler class:

 def startElement(self, name, attrs):
 print name, attrs.keys()

This overrides the default startElement event handler. The parameters are the relevant tag
name and its attributes (kept in a dictionary-like object). If you run the program again (using
website.xml from Listing 22-1), you see the following output:

website []
page [u'name', u'title']
h1 []
p []
ul []
li []
a [u'href']
li []
a [u'href']
li []
a [u'href']
directory [u'name']
page [u'name', u'title']
h1 []
p []
page [u'name', u'title']
h1 []
p []
page [u'name', u'title']
h1 []
p []

How this works should be pretty clear. In addition to startElement, you’ll use endElement
(which takes only a tag name as its argument) and characters (which takes a string as its
argument).

The following is an example that uses all these three methods to build a list of the head-
lines (the h1 elements) of the web site file:

from xml.sax.handler import ContentHandler
from xml.sax import parse

class HeadlineHandler(ContentHandler):

 in_headline = False

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 441

 def __init__(self, headlines):
 ContentHandler.__init__(self)
 self.headlines = headlines
 self.data = []

 def startElement(self, name, attrs):
 if name == 'h1':
 self.in_headline = True

 def endElement(self, name):
 if name == 'h1':
 text = ''.join(self.data)
 self.data = []
 self.headlines.append(text)
 self.in_headline = False

 def characters(self, string):
 if self.in_headline:
 self.data.append(string)

headlines = []
parse('website.xml', HeadlineHandler(headlines))

print 'The following <h1> elements were found:'
for h in headlines:
 print h

Note that the HeadlineHandler keeps track of whether it’s currently parsing text that is
inside a pair of h1 tags. This is done by setting self.in_headline to True when startElement
finds an h1 tag, and setting self.in_headline to False when endElement finds an h1 tag. The
characters method is automatically called when the parser finds some text. As long as the
parser is between two h1 tags (self.in_headline is True), characters will append the string
(which may be just a part of the text between the tags) to self.data, which is a list of strings.
The task of joining these text fragments, appending them to self.headlines (as a single string),
and resetting self.data to an empty list also befalls endElement. This general approach (of
using Boolean variables to indicate whether you are currently “inside” a given tag type) is quite
common in SAX programming.

Running this program (again, with the website.xml file from Listing 22-1), you get the
following output:

The following <h1> elements were found:
Welcome to My Home Page
Mr. Gumby's Shouting Page
Mr. Gumby's Sleeping Page
Mr. Gumby's Eating Page

442 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

Creating HTML Pages
Now you’re ready to make the prototype. For now, let’s ignore the directories and concentrate
on creating HTML pages. You need to create a slightly embellished event handler that does the
following:

• At the start of each page element, opens a new file with the given name, and writes a suit-
able HTML header to it, including the given title

• At the end of each page element, writes a suitable HTML footer to the file, and closes it

• While inside the page element, passes through all tags and characters without modifying
them (writes them to the file as they are)

• While not inside a page element, ignores all tags (such as website and directory)

Most of this is pretty straightforward (at least if you know a bit about how HTML docu-
ments are constructed). There are two problems, however, which may not be completely
obvious:

• You can’t simply “pass through” tags (write them directly to the HTML file you’re build-
ing) because you are given their names only (and possibly some attributes). You must
reconstruct the tags (with angle brackets and so forth) yourself.

• SAX itself gives you no way of knowing whether you are currently “inside” a page element.
You must keep track of that sort of thing yourself (as you did in the HeadlineHandler exam-
ple). For this project, you’re interested only in whether or not to pass through tags and
characters, so you’ll use a Boolean variable called passthrough, which you’ll update as you
enter and leave the pages.

See Listing 22-2 for the code for the simple program.

Listing 22-2. A Simple Page Maker Script (pagemaker.py)

from xml.sax.handler import ContentHandler
from xml.sax import parse

class PageMaker(ContentHandler):
 passthrough = False
 def startElement(self, name, attrs):
 if name == 'page':
 self.passthrough = True
 self.out = open(attrs['name'] + '.html', 'w')
 self.out.write('<html><head>\n')
 self.out.write('<title>%s</title>\n' % attrs['title'])
 self.out.write('</head><body>\n')

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 443

 elif self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' %s="%s"' % (key, val))
 self.out.write('>')

 def endElement(self, name):
 if name == 'page':
 self.passthrough = False
 self.out.write('\n</body></html>\n')
 self.out.close()
 elif self.passthrough:
 self.out.write('</%s>' % name)
 def characters(self, chars):
 if self.passthrough: self.out.write(chars)

parse('website.xml', PageMaker ())

You should execute this in the directory in which you want your files to appear. Note that
even if two pages are in two different directory elements, they will end up in the same real
directory. (That will be fixed in our second implementation.)

Again, using the file website.xml from Listing 22-1, you get four HTML files. The file called
index.html contains the following:

<html><head>
<title>Home Page</title>
</head><body>

 <h1>Welcome to My Home Page</h1>

 <p>Hi, there. My name is Mr. Gumby, and this is my home page. Here
 are some of my interests:</p>

 Shouting
 Sleeping
 Eating

</body></html>

Figure 22-1 shows how this page looks when viewed in a browser.

444 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

Looking at the code, two main weaknesses should be obvious:

• It uses if statements to handle the various event types. If you need to handle many such
event types, your if statements will get large and unreadable.

• The HTML code is hard-wired. It should be easy to replace.

Both of these weaknesses will be addressed in the second implementation.

Figure 22-1. A generated web page

Second Implementation
Because the SAX mechanism is so low level and basic, you may often find it useful to write a
mix-in class that handles some administrative details such as gathering character data, manag-
ing Boolean state variables (such as passthrough), or dispatching the events to your own
custom event handlers. The state and data handling are pretty simple in this project, so let’s
focus on the handler dispatch.

A Dispatcher Mix-In Class
Rather than needing to write large if statements in the standard generic event handlers (such
as startElement), it would be nice to just write your own specific ones (such as startPage) and
have them called automatically. You can implement that functionality in a mix-in class, and
then subclass the mix-in along with ContentHandler.

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 445

■Note As mentioned in Chapter 7, a mix-in is a class with limited functionality that is meant to be sub-
classed along with some other more substantial class.

You want the following functionality in your program:

• When startElement is called with a name such as 'foo', it should attempt to find an
event handler called startFoo and call it with the given attributes.

• Similarly, if endElement is called with 'foo', it should try to call endFoo.

• If, in any of these methods, the given handler is not found, a method called defaultStart
(or defaultEnd, respectively) will be called, if present. If the default handler isn’t present
either, nothing should be done.

In addition, some care should be taken with the parameters. The custom handlers (for
example, startFoo) do not need the tag name as a parameter, while the custom default han-
dlers (for example, defaultStart) do. Also, only the start handlers need the attributes.

Confused? Let’s begin by writing the simplest parts of the class:

class Dispatcher:

 # ...

 def startElement(self, name, attrs):
 self.dispatch('start', name, attrs)
 def endElement(self, name):
 self.dispatch('end', name)

Here, the basic event handlers are implemented, and they simply call a method called
dispatch, which takes care of finding the appropriate handler, constructing the argument
tuple, and then calling the handler with those arguments. Here is the code for the dispatch
method:

 def dispatch(self, prefix, name, attrs=None):
 mname = prefix + name.capitalize()
 dname = 'default' + prefix.capitalize()
 method = getattr(self, mname, None)
 if callable(method): args = ()
 else:
 method = getattr(self, dname, None)
 args = name,
 if prefix == 'start': args += attrs,
 if callable(method): method(*args)

446 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

The following is what happens:

1. From a prefix (either 'start' or 'end') and a tag name (for example, 'page'), construct
the method name of the handler (for example, 'startPage').

2. Using the same prefix, construct the name of the default handler (for example,
'defaultStart').

3. Try to get the handler with getattr, using None as the default value.

4. If the result is callable, assign an empty tuple to args.

5. Otherwise, try to get the default handler with getattr, again using None as the default
value. Also, set args to a tuple containing only the tag name (because the default han-
dler needs that).

6. If you are dealing with a start handler, add the attributes to the argument tuple (args).

7. If your handler is callable (that is, it is either a viable specific handler or a viable default
handler), call it with the correct arguments.

Got that? This basically means that you can now write content handlers like this:

class TestHandler(Dispatcher, ContentHandler):
 def startPage(self, attrs):
 print 'Beginning page', attrs['name']
 def endPage(self):
 print 'Ending page'

Because the dispatcher mix-in takes care of most of the plumbing, the content handler is
fairly simple and readable. (Of course, you’ll add more functionality in a little while.)

Factoring Out the Header, Footer, and Default Handling
This section is much easier than the previous one. Instead of doing the calls to self.out.write
directly in the event handler, you’ll create separate methods for writing the header and footer.
That way, you can easily override these methods by subclassing the event handler. Let’s make
the default header and footer really simple:

 def writeHeader(self, title):
 self.out.write("<html>\n <head>\n <title>")
 self.out.write(title)
 self.out.write("</title>\n </head>\n <body>\n")

 def writeFooter(self):
 self.out.write("\n </body>\n</html>\n")

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 447

Handling of the XHTML contents was also linked a bit too intimately with the original han-
dlers. The XHTML will now be handled by defaultStart and defaultEnd:

 def defaultStart(self, name, attrs):
 if self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' %s="%s"' % (key, val))
 self.out.write('>')

 def defaultEnd(self, name):
 if self.passthrough:
 self.out.write('</%s>' % name)

This works just like before, except that I’ve moved the code to separate methods (which is
usually a good thing). Now, on to the last piece of the puzzle.

Support for Directories
To create the necessary directories, you need a couple of useful functions from the os and
os.path modules. One of these functions is os.makedirs, which makes all the necessary direc-
tories in a given path. For example, os.makedirs('foo/bar/baz') creates the directory foo in
the current directory, then creates bar in foo, and finally, baz in bar. If foo already exists, only
bar and baz are created, and similarly, if bar also exists, only baz is created. However, if baz
exists as well, an exception is raised.

To avoid this exception, you need the function os.path.isdir, which checks whether
a given path is a directory (that is, whether it exists already). Another useful function is
os.path.join, which joins several paths with the correct separator (for example, / in UNIX
and so forth).

At all times during the processing, keep the current directory path as a list of directory
names, referenced by the variable directory. When you enter a directory, append its name;
when you leave it, pop the name off. Assuming that directory is set up properly, you can define
a function for ensuring that the current directory exists:

 def ensureDirectory(self):
 path = os.path.join(*self.directory)
 if not os.path.isdir(path): os.makedirs(path)

Notice how I’ve used argument splicing (with the star operator, *) on the directory list
when supplying it to os.path.join.

The base directory of our web site (for example, public_html) can be given as an argument
to the constructor, which then looks like this:

 def __init__(self, directory):
 self.directory = [directory]
 self.ensureDirectory()

448 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

The Event Handlers
Finally we’ve come to the event handlers. You need four of them: two for dealing with directories,
and two for pages. The directory handlers simply use the directory list and the ensureDirectory
method:

 def startDirectory(self, attrs):
 self.directory.append(attrs['name'])
 self.ensureDirectory()

 def endDirectory(self):
 self.directory.pop()

The page handlers use the writeHeader and writeFooter methods. In addition, they set the
passthrough variable (to pass through the XHTML), and—perhaps most important—they open
and close the file associated with the page:

 def startPage(self, attrs):
 filename = os.path.join(*self.directory+[attrs['name']+'.html'])
 self.out = open(filename, 'w')
 self.writeHeader(attrs['title'])
 self.passthrough = True

 def endPage(self):
 self.passthrough = False
 self.writeFooter()
 self.out.close()

The first line of startPage may look a little intimidating, but it is more or less the same as
the first line of ensureDirectory, except that you add the file name (and give it an .html suffix).

The full source code of the program is shown in Listing 22-3.

Listing 22-3. The Web Site Constructor (website.py)

from xml.sax.handler import ContentHandler
from xml.sax import parse
import os

class Dispatcher:

 def dispatch(self, prefix, name, attrs=None):
 mname = prefix + name.capitalize()
 dname = 'default' + prefix.capitalize()
 method = getattr(self, mname, None)
 if callable(method): args = ()

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 449

 else:
 method = getattr(self, dname, None)
 args = name,
 if prefix == 'start': args += attrs,
 if callable(method): method(*args)

 def startElement(self, name, attrs):
 self.dispatch('start', name, attrs)

 def endElement(self, name):
 self.dispatch('end', name)

class WebsiteConstructor(Dispatcher, ContentHandler):

 passthrough = False

 def __init__(self, directory):
 self.directory = [directory]
 self.ensureDirectory()

 def ensureDirectory(self):
 path = os.path.join(*self.directory)
 if not os.path.isdir(path): os.makedirs(path)

 def characters(self, chars):
 if self.passthrough: self.out.write(chars)

 def defaultStart(self, name, attrs):
 if self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' %s="%s"' % (key, val))
 self.out.write('>')

 def defaultEnd(self, name):
 if self.passthrough:
 self.out.write('</%s>' % name)

 def startDirectory(self, attrs):
 self.directory.append(attrs['name'])
 self.ensureDirectory()

 def endDirectory(self):
 self.directory.pop()

450 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

 def startPage(self, attrs):
 filename = os.path.join(*self.directory+[attrs['name']+'.html'])
 self.out = open(filename, 'w')
 self.writeHeader(attrs['title'])
 self.passthrough = True

 def endPage(self):
 self.passthrough = False
 self.writeFooter()
 self.out.close()

 def writeHeader(self, title):
 self.out.write('<html>\n <head>\n <title>')
 self.out.write(title)
 self.out.write('</title>\n </head>\n <body>\n')

 def writeFooter(self):
 self.out.write('\n </body>\n</html>\n')

parse('website.xml', WebsiteConstructor('public_html'))

Listing 22-3 generates the following files and directories:

• public_html/

• public_html/index.html

• public_html/interests

• public_html/interests/shouting.html

• public_html/interests/sleeping.html

• public_html/interests/eating.html

ENCODING BLUES

If your XML file contains special characters (those with ordinal numbers above 127), you may be in trouble.
The XML parser uses Unicode strings during its processing, and returns those to you (for example, in the
characters event handler). Unicode handles the special characters just fine. However, if you want to convert
this Unicode string to an ordinary string (which is what happens when you print it, for example), an exception
is raised (assuming that your default encoding is ASCII):

>>> some_string = u'Möööse'
>>> some_string
u'M\xf6\xf6\xf6se'
>>> print some_string

C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS 451

Further Exploration
Now you have the basic program. What can you do with it? Here are some suggestions:

• Create a new ContentHandler for generating a table of contents or a menu (with links) for
the web site.

• Add navigational aids to the web pages that tell the users where (in which directory) they are.

• Create a subclass of WebsiteConstructor that overrides writeHeader and writeFooter to
provide customized design.

• Create another ContentHandler that constructs a single web page from the XML file.

• Create a ContentHandler that summarizes your web site somehow, for example in RSS.

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

As you can see, the error message is “ASCII encoding error,” which actually means that Python has tried
to encode the Unicode string with the ASCII encoding, which isn’t possible when it contains special characters
like this. (You can find the default encoding of your installation using the sys.getdefaultencoding func-
tion. You can also change it with the sys.setdefaultencoding, but only in the site-wide customization file
called site.py.) Encoding is done with the encode method:

>>> some_string.encode('ascii')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

To solve this problem, you need to use another encoding, such as ISO8859-1 (which is fine for most
European languages):

>>> print some_string.encode('iso8859-1')
Möööse

(The actual appearance of the output will depend on your terminal emulator.)
Note that if you’re using non-ASCII characters directly in your source code, you need to mark that, so that

the interpreter knows what to do with the file. For Latin 1 (another name for ISO8859-1), you could simply put
the following comment into your file (directly after the pound bang line):

-*- coding: latin-1 -*-

You can find more information about such encodings at the W3C web site (http://www.w3.org/
International/O-charset.html).

452 C H A P T E R 2 2 ■ PROJECT 3: XML FOR ALL OCCASIONS

• Check out other tools for transforming XML, especially XML Transformations (XSLT).

• Create one or more PDF documents based on the XML file, using a tool such as
ReportLab’s Platypus (http://www.reportlab.org).

• Make it possible to edit the XML file through a web interface (see Chapter 25).

What Now?
After this foray into the world of XML parsing, let’s do some more network programming. In the
next chapter, you create a program that can gather news items from various network sources
(such as web pages and Usenet groups) and generate custom news reports for you.

453

■ ■ ■

C H A P T E R 2 3

Project 4: In the News

In this project, you see how you go from a simple prototype without any form of abstraction
(no functions, no classes) to a generic system in which some important abstractions have been
added. Also, you get a brief introduction to the nntplib library, which lets you interact with
Network News Transfer Protocol (NNTP) servers.

NNTP is a standard network protocol for managing messages posted on Usenet discussion
groups. NNTP servers form a global network that collectively manages these newsgroups, and
through an NNTP client (also called a newsreader) you can post and read messages. Most
recent web browsers include NNTP clients, and separate clients exist as well.

The main network of NNTP servers, called Usenet, was established in 1980 (although the
NNTP protocol wasn’t used until 1985). Compared to current Web 2.0 trends, this is quite “old
school,” but most of the Internet is based (to some degree) on such old-school technologies,1
and it probably doesn’t hurt to play around with the low-level stuff a bit. Also, you could always
replace the NNTP stuff in this chapter with some news-gathering module of your own (perhaps
using the web API of some social networking site like Facebook or MySpace).

What’s the Problem?
The program you write in this project will be an information-gathering agent, a program that
can gather information (more specifically, news) and compile a report for you. Given the net-
work functionality you have already encountered, that might not seem very difficult—and it
isn’t, really. But in this project you go a bit beyond the simple “download a file with urllib”
approach. You use another network library that is a bit more difficult to use than urllib,
namely nntplib. In addition, you get to refactor the program to allow many types of news
sources and various types of destinations, making a clear separation between the front end and
the back end, with the main engine in the middle.

1. Did you know, for example, that the discussion groups at http://groups.google.com, such as sci.math
and rec.arts.sf.written, are really Usenet groups under the hood?

454 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

The main goals for the final program are as follows:

• The program should be able to gather news from many different sources.

• It should be easy to add new news sources (and even new kinds of sources).

• The program should be able to dispatch its compiled news report to many different
destinations, in many different formats.

• It should be easy to add new destinations (and even new kinds of destinations).

Useful Tools
For this project, you don’t need to install separate software. However, you do need some stan-
dard library modules, including one that you haven’t seen before, nntplib, which deals with
NNTP servers. Instead of explaining all the details of that module, let’s examine it through
some prototyping.

You will also be using the time module (covered in Chapter 10).

Preparations
To be able to use nntplib, you need to have access to an NNTP server. If you’re not sure
whether you do, you could ask your ISP or system administrator for details. In the code exam-
ples in this chapter, I use the newsgroup comp.lang.python.announce, so you should make sure
that your news (NNTP) server has that group, or you should find some other group you would
like to use. It is important that the NNTP server support the NEWNEWS command. If it doesn’t, the
programs in this chapter won’t work. (If you don’t know whether your server supports this
command, simply try to execute the programs and see what happens.)

If you don’t have access to an NNTP server, or your server’s NEWNEWS command is disabled,
several open servers are available for anyone to use. A quick web search for “free nntp server”
should give you some servers to choose from, or you could check out http://www.newzbot.com
as a starting point.

Assuming that your news server is news.foo.bar (this is not a real server name, and won’t
work), you can test your NNTP server like this:

>>> from nntplib import NNTP
>>> server = NNTP('news.foo.bar')
>>> server.group('comp.lang.python.announce')[0]

■Note To connect to some servers, you may need to supply additional parameters for authentication. Con-
sult the Python Library Reference (http://docs.python.org/lib/module-nntplib.html) for details on
the optional parameters of the NNTP constructor.

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 455

The result of the last line should be a string beginning with '211' (basically meaning that
the server has the group you asked for) or '411' (which means that the server doesn’t have the
group). It might look something like this:

'211 51 1876 1926 comp.lang.python.announce'

If the returned string starts with '411', you should use a newsreader to look for another
group you might want to use. (You may also get an exception with an equivalent error mes-
sage.) If an exception is raised, perhaps you got the server name wrong. Another possibility is
that you were “timed out” between the time you created the server object and the time you
called the group method—the server may allow you to stay connected for only a short period of
time (such as 10 seconds). If you’re having trouble typing that fast, simply put the code in a
script and execute it (with an added print) or put the server object creation and method call on
the same line (separated by a semicolon).

First Implementation
In the spirit of prototyping, let’s just tackle the problem head on. The first thing you want to do
is download the most recent messages from a newsgroup on an NNTP server. To keep things
simple, just print out the result to standard output (with print).

Before looking at the details of the implementation, you might want to browse the
source code in Listing 23-1 later in this section, and perhaps even execute the program to see
how it works.

The program logic isn’t very complicated, but you need to figure out how to use nntplib.
You’ll be using one single object of the NNTP class. As you saw in the previous section, this class
is instantiated with a single constructor argument—the name of an NNTP server. You need to
call three methods on this instance:

• newnews, which returns a list of articles posted after a certain date and time

• head, which gives you various information about the articles (most notably their
subjects)

• body, which gives you the main text of the articles

The newnews method requires a date string (in the form yymmdd) and an hour string (in the
form hhmmss) in addition to the group name. To construct these, you need some functions
from the time module: time, localtime, and strftime. (See Chapter 10 for more information
about the time module.)

Let’s say you want to download all new messages since yesterday. To do this, you need to
construct a date and time 24 hours before the current time. The current time (in seconds) is
found with the time function. To find the time yesterday, all you need to do is subtract 24 hours
(in seconds). To be able to use this time with strftime, it must be converted to a time tuple (see
Chapter 10) with the localtime function. The code for finding “yesterday” then becomes as
follows:

from time import time, localtime
day = 24 * 60 * 60 # Number of seconds in one day
yesterday = localtime(time() - day)

456 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

The next step is to format the time correctly, as two strings. For that, you use strftime, as
in the following example:

>>> from time import strftime
>>> strftime('%y%m%d')
'020409'
>>> strftime('%H%M%S')
'141625'

The string argument to strftime is a format string, which specifies the format to use for the
time. Most characters are used directly in the resulting time string, but those preceded by a per-
cent sign are replaced with various time-related values. For instance, %y is replaced with the last
two digits of the year, %m with the month (as a two-digit number), and so on. For a full list of these
codes, consult the Python Library Reference (http://docs.python.org/lib/module-time.html).
When supplied only with a format string, strftime uses the current time. Optionally, you may
supply a time tuple as a second argument:

from time import strftime
date = strftime('%y%m%d', yesterday)
hour = strftime('%H%M%S', yesterday)

■Tip The datetime module gives you a more object-oriented way of dealing with dates and times. Check
out the standard library documentation at http://docs.python.org/lib/module-datetime.html.

Now that you have the date and time in the correct format for the newnews method, you just
need to instantiate a server and call the method. Using the same fictitious server name as ear-
lier, the code becomes as follows:

servername = 'news.foo.bar'
group = 'comp.lang.python.announce'
server = NNTP(servername)

ids = server.newnews(group, date, hour)[1]

Note that I’ve extracted the second argument of the tuple that is returned from newnews.
It’s sufficient for this example’s purposes: a list of article IDs of the articles that were posted
after the given date and hour.

■Note The newnews method sends a NEWNEWS command to the NNTP server. As described in the “Prepa-
rations” section, this command may not be understood or supported by the server, giving you the error code
500 or 501, respectively, or disabled by the administrator, giving the error code 502. In such cases, you
should find another server.

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 457

You need the article IDs when you call the head and body methods later, to tell the server
which article you’re talking about.

So, you’re all set to start using head and body (for each of the IDs) and printing out the
results. Just like newnews, head and body return tuples with various information (such as
whether or not the command succeeded), but you care only about the returned data itself,
which is the fourth element—a list of strings. The body of the article with a given ID can be
fetched like this:

 body = server.body(id)[3]

From the head (a list of lines containing various information about the article, such as the
subject, the date it was posted, and so on), you want only the subject. The subject line is in the
form "Subject: Hello, world!", so you need to find the line that starts with "Subject:" and
extract the rest of the line. Because (according to the NNTP standard) "subject" can also be
spelled as all lowercase, all uppercase, or any kind of combination of uppercase and lowercase
letters, you simply call the lower method on the line and compare it to "subject". Here is the
loop that finds the subject within the data returned by the call to head:

 head = server.head(id)[3]
 for line in head:
 if line.lower().startswith('subject:'):
 subject = line[9:]
 break

The break isn’t strictly necessary, but when you’ve found the subject, there’s no need to
iterate over the rest of the lines.

After having extracted the subject and body of an article, you just print it, for instance,
like this:

 print subject
 print '-'*len(subject)
 print '\n'.join(body)

After printing all the articles, you call server.quit(), and that’s it. In a UNIX shell such as
bash, you could run this program like this:

$ python newsagent1.py | less

The use of less is useful for reading the articles one at a time. If you have no such pager
program available, you could rewrite the print part of the program to store the resulting text
in a file, which you’ll also be doing in the second implementation (see Chapter 11 for more
information about file handling). If you don’t get any output, try looking further back than yes-
terday. The source code for the simple news-gathering agent is shown in Listing 23-1.

Listing 23-1. A Simple News-Gathering Agent (newsagent1.py)

from nntplib import NNTP
from time import strftime, time, localtime

458 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

day = 24 * 60 * 60 # Number of seconds in one day

yesterday = localtime(time() - day)
date = strftime('%y%m%d', yesterday)
hour = strftime('%H%M%S', yesterday)

servername = 'news.foo.bar'
group = 'comp.lang.python.announce'
server = NNTP(servername)

ids = server.newnews(group, date, hour)[1]

for id in ids:
 head = server.head(id)[3]
 for line in head:
 if line.lower().startswith('subject:'):
 subject = line[9:]
 break

 body = server.body(id)[3]

 print subject
 print '-'*len(subject)
 print '\n'.join(body)

server.quit()

Second Implementation
The first implementation worked, but was quite inflexible in that it let you retrieve news only
from Usenet discussion groups. In the second implementation, you fix that by refactoring the
code a bit. You add structure and abstraction by creating some classes and methods to repre-
sent the various parts of the code. Once you’ve done that, some of the parts may be replaced by
other classes much more easily than you could replace parts of the code in the original
program.

Again, before immersing yourself in the details of the second implementation, you might
want to skim (and perhaps execute) the code in Listing 23-2, later in this chapter.

■Note You need to set the clpa_server variable to a usable server before the code in Listing 23-2
will work.

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 459

So, what classes do you need? Let’s just do a quick review of the important nouns in the
problem description, as suggested in Chapter 7: information, agent, news, report, network,
news source, destination, front end, back end, and main engine. This list of nouns suggests the
following main classes (or kinds of classes): NewsAgent, NewsItem, Source, and Destination.
The various sources will constitute the front end, and the destinations will constitute the back
end, with the news agent sitting in the middle.

The easiest of these is NewsItem. It represents only a piece of data, consisting of a title and
a body (a short text), and can be implemented as follows:

class NewsItem:

 def __init__(self, title, body):
 self.title = title
 self.body = body

To find out exactly what is needed from the news sources and the news destinations, it
could be a good idea to start by writing the agent itself. The agent must maintain two lists: one
of sources and one of destinations. Adding sources and destinations can be done through the
methods addSource and addDestination:

class NewsAgent:

 def __init__(self):
 self.sources = []
 self.destinations = []

 def addSource(self, source):
 self.sources.append(source)

 def addDestination(self, dest):
 self.destinations.append(dest)

 The only thing missing now is a method to distribute the news items from the sources to
the destinations. During distribution, each destination must have a method that returns all its
news items, and each source needs a method for receiving all the news items that are being dis-
tributed. Let’s call these methods getItems and receiveItems. In the interest of flexibility, let’s
just require getItems to return an arbitrary iterator of NewsItems. To make the destinations
easier to implement, however, let’s assume that receiveItems is callable with a sequence argu-
ment (which can be iterated over more than once, to make a table of contents before listing the
news items, for example). After this has been decided, the distribute method of NewsAgent
simply becomes as follows:

 def distribute(self):
 items = []
 for source in self.sources:
 items.extend(source.getItems())
 for dest in self.destinations:
 dest.receiveItems(items)

460 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

This iterates through all the sources, building a list of news items. Then it iterates through
all the destinations and supplies each of them with the full list of news items.

Now, all you need is a couple of sources and destinations. To begin testing, you can simply
create a destination that works like the printing in the first prototype:

class PlainDestination:

 def receiveItems(self, items):
 for item in items:
 print item.title
 print '-'*len(item.title)
 print item.body

The formatting is the same; the difference is that you have encapsulated the formatting. It
is now one of several alternative destinations, rather than a hard-coded part of the program. A
slightly more complicated destination (HTMLDestination, which produces HTML) can be seen
in Listing 23-2, later in this chapter. It builds on the approach of PlainDestination with a few
extra features:

• The text it produces is HTML.

• It writes the text to a specific file, rather than standard output.

• It creates a table of contents in addition to the main list of items.

And that’s it, really. The table of contents is created using hyperlinks that link to parts of the
page. You accomplish this by using links of the form ... (where nn is some
number), which leads to the headline with the enclosing anchor tag ...
(where nn should be the same number as in the table of contents). The table of contents and the
main listing of news items are built in two different for loops. You can see a sample result (using
the upcoming NNTPSource) in Figure 23-1.

When thinking about the design, I considered using a generic superclass to represent
news sources and one to represent news destinations. As it turns out, the sources and destina-
tions don’t really share any behavior, so there is no point in using a common superclass. As
long as they implement the necessary methods (getItems and receiveItems) correctly, the
NewsAgent will be happy. (This is an example of using a protocol, as described in Chapter 9,
rather than requiring a specific, common superclass.)

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 461

Figure 23-1. An automatically generated news page

When creating an NNTPSource, much of the code can be snipped from the original proto-
type. As you will see in Listing 23-2, the main differences from the original are the following:

• The code has been encapsulated in the getItems method. The servername and group
variables are now arguments to the constructor. Also a window (a time window) is added,
instead of assuming that you want the news since yesterday (which is equivalent to set-
ting window to 1).

• To extract the subject, a Message object from the email module is used (constructed with
the message_from_string function). This is the sort of thing you might add to later ver-
sions of your program as you thumb through the documentation (to see if features that
can do what you need already exist).

• Instead of printing each news item directly, a NewsItem object is yielded (making
getItems a generator).

462 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

To show the flexibility of the design, let’s add another news source—one that can extract
news items from web pages (using regular expressions; see Chapter 10 for more information).
SimpleWebSource (see Listing 23-2) takes a URL and two regular expressions (one representing
titles and one representing bodies) as its constructor arguments. In getItems, it uses the regu-
lar expression methods findall to find all the occurrences (titles and bodies) and zip to
combine these. It then iterates over the list of (title, body) pairs, yielding a NewsItem for each.
As you can see, adding new kinds of sources (or destinations, for that matter) isn’t very difficult.

To put the code to work, let’s instantiate an agent, some sources, and some destinations.
In the function runDefaultSetup (which is called if the module is run as a program), several
such objects are instantiated:

• A SimpleWebSource for the BBC News web site, which uses two simple regular expres-
sions to extract the information it needs

■Note The layout of the HTML on the BBC News pages might change, in which case you need to rewrite
the regular expressions. This also applies if you are using some other page. Just view the HTML source and
try to find a pattern that applies.

• An NNTPSource for comp.lang.python, with the time window set to 1, so it works just like
the first prototype

• A PlainDestination, which prints all the news gathered

• An HTMLDestination, which generates a news page called news.html

When all of these objects have been created and added to the NewsAgent, the distribute
method is called.

You can run the program like this:

$ python newsagent2.py

The resulting news.html page is shown in Figure 23-2.
The full source code of the second implementation is found in Listing 23-2.

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 463

Figure 23-2. A news page with more than one source

Listing 23-2. A More Flexible News-Gathering Agent (newsagent2.py)

from nntplib import NNTP
from time import strftime, time, localtime
from email import message_from_string
from urllib import urlopen
import textwrap
import re

day = 24 * 60 * 60 # Number of seconds in one day

def wrap(string, max=70):
 """
 Wraps a string to a maximum line width.
 """

464 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

 return '\n'.join(textwrap.wrap(string)) + '\n'

class NewsAgent:
 """
 An object that can distribute news items from news
 sources to news destinations.
 """
 def __init__(self):
 self.sources = []
 self.destinations = []

 def addSource(self, source):
 self.sources.append(source)

 def addDestination(self, dest):
 self.destinations.append(dest)

 def distribute(self):
 """
 Retrieve all news items from all sources, and
 Distribute them to all destinations.
 """
 items = []
 for source in self.sources:
 items.extend(source.getItems())
 for dest in self.destinations:
 dest.receiveItems(items)

class NewsItem:
 """
 A simple news item consisting of a title and body text.
 """
 def __init__(self, title, body):
 self.title = title
 self.body = body

class NNTPSource:
 """
 A news source that retrieves news items from an NNTP group.
 """
 def __init__(self, servername, group, window):
 self.servername = servername
 self.group = group
 self.window = window

 def getItems(self):

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 465

 start = localtime(time() - self.window*day)
 date = strftime('%y%m%d', start)
 hour = strftime('%H%M%S', start)

 server = NNTP(self.servername)

 ids = server.newnews(self.group, date, hour)[1]

 for id in ids:
 lines = server.article(id)[3]
 message = message_from_string('\n'.join(lines))

 title = message['subject']
 body = message.get_payload()
 if message.is_multipart():
 body = body[0]

 yield NewsItem(title, body)

 server.quit()

class SimpleWebSource:
 """
 A news source that extracts news items from a web page using
 regular expressions.
 """
 def __init__(self, url, titlePattern, bodyPattern):
 self.url = url
 self.titlePattern = re.compile(titlePattern)
 self.bodyPattern = re.compile(bodyPattern)

 def getItems(self):
 text = urlopen(self.url).read()
 titles = self.titlePattern.findall(text)
 bodies = self.bodyPattern.findall(text)
 for title, body in zip(titles, bodies):
 yield NewsItem(title, wrap(body))

class PlainDestination:
 """
 A news destination that formats all its news items as
 plain text.
 """
 def receiveItems(self, items):
 for item in items:
 print item.title

466 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

 print '-'*len(item.title)
 print item.body

class HTMLDestination:
 """
 A news destination that formats all its news items
 as HTML.
 """
 def __init__(self, filename):
 self.filename = filename

 def receiveItems(self, items):

 out = open(self.filename, 'w')
 print >> out, """
 <html>
 <head>
 <title>Today's News</title>
 </head>
 <body>
 <h1>Today's News</h1>
 """

 print >> out, ''
 id = 0
 for item in items:
 id += 1
 print >> out, ' %s' % (id, item.title)
 print >> out, ''

 id = 0
 for item in items:
 id += 1
 print >> out, '<h2>%s</h2>' % (id, item.title)
 print >> out, '<pre>%s</pre>' % item.body

 print >> out, """
 </body>
 </html>
 """

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 467

def runDefaultSetup():
 """
 A default setup of sources and destination. Modify to taste.
 """
 agent = NewsAgent()

 # A SimpleWebSource that retrieves news from the
 # BBC News site:
 bbc_url = 'http://news.bbc.co.uk/text_only.stm'
 bbc_title = r'(?s)a href="[^"]*">\s*\s*(.*?)\s*'
 bbc_body = r'(?s)\s*
\s*(.*?)\s*<'
 bbc = SimpleWebSource(bbc_url, bbc_title, bbc_body)

 agent.addSource(bbc)

 # An NNTPSource that retrieves news from comp.lang.python.announce:
 clpa_server = 'news.foo.bar' # Insert real server name
 clpa_group = 'comp.lang.python.announce'
 clpa_window = 1
 clpa = NNTPSource(clpa_server, clpa_group, clpa_window)

 agent.addSource(clpa)

 # Add plain-text destination and an HTML destination:
 agent.addDestination(PlainDestination())
 agent.addDestination(HTMLDestination('news.html'))

 # Distribute the news items:
 agent.distribute()

if __name__ == '__main__': runDefaultSetup()

Further Exploration
Because of its extensible nature, this project invites much further exploration. Here are
some ideas:

• Create a more ambitious WebSource, using the screen-scraping techniques discussed in
Chapter 15.

• Create an RSSSource, which parses RSS, also discussed briefly in Chapter 15.

• Improve the layout for the HTMLDestination.

468 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

• Create a page monitor that gives you a news item if a given web page has changed since
the last time you examined it. (Just download a copy when it has changed and compare
that later. Take a look at the standard library module filecmp for comparing files.)

• Create a CGI version of the news script (see Chapter 15).

• Create an EmailDestination, which sends you an email message with news items. (See
the standard library module smtplib for sending email.)

• Add command-line switches to decide which news formats you want. (See the standard
library modules getopt and optparse for some techniques.)

• Give the information about where the news comes from, to allow a fancier layout.

• Try to categorize your news items (by searching for keywords, perhaps).

• Create an XMLDestination, which produces XML files suitable for the site builder in
Project 3 (Chapter 22). Voilà—you have a news web site.

What Now?
You’ve done a lot of file creation and file handling (including downloading the required files),
and although that is very useful for a lot of things, it isn’t very interactive. In the next project,
you create a chat server, where you can chat with your friends online. You can even extend it to
create your own virtual (textual) environment.

469

■ ■ ■

C H A P T E R 2 4

Project 5: A Virtual Tea Party

In this project, you do some serious network programming. You’ll write a chat server—a pro-
gram that lets several people connect via the Internet and chat with each other in real time.
There are many ways to create such a beast in Python. A simple and natural approach might be
to use the Twisted framework (discussed in Chapter 14), for example, with the LineReceiver
class taking center stage. In this chapter, I stick to the standard libraries, basing the program on
the modules asyncore and asynchat. If you like, you could try out some of the alternative meth-
ods (such as forking or threading) discussed in Chapter 14.

What’s the Problem?
Online chatting is quite common. Many chat services of various kinds (IRC, instant messaging
services, and so forth) are available all over the Internet. Some of these are even full-fledged
text-based virtual worlds (see http://www.mudconnect.com for a long list). If you want to set up
a chat server, you can just download and install one of the many free server programs. How-
ever, writing a chat server yourself is useful for two reasons:

• You learn about network programming.

• You can customize it as much as you want.

The second point suggests that you can start with a simple chat server and develop it into
basically any kind of server (including a virtual world), with all the power of Python at your
fingertips. Pretty awesome, isn’t it?

For now, the chat server project has the following requirements:

• The server should be able to receive multiple connections from different users.

• It should let the users act in parallel.

• It should be able to interpret commands such as say or logout.

• The server should be easily extensible.

The two things that will require special tools are the network connections and the asyn-
chronous nature of the program.

470 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Useful Tools
The only new tools you need in this project are the asyncore module from the standard library
and its relative asynchat. I’ll describe the basics of how these work. You can find more details
about them in the Python Library Reference (http://python.org/doc/lib/module-asyncore.html
and http://python.org/doc/lib/module-asynchat.html).

As discussed in Chapter 14, the basic component in a network program is the socket. Sock-
ets can be created directly by importing the socket module and using the functions there. So
what do you need asyncore for?

The asyncore framework enables you to juggle several users who are connected simulta-
neously. Imagine a scenario in which you have no special tools for handling this. When you
start up the server, it waits for users to connect. When one user is connected, it starts reading
data from that user and supplying results through a socket. But what happens if another user is
already connected? The second user to connect must wait until the first one has finished. In
some cases, that will work just fine, but when you’re writing a chat server, the whole point is
that more than one user can be connected—how else could users chat with one another?

The asyncore framework is based on an underlying mechanism (the select function from
the select module, as discussed in Chapter 14) that allows the server to serve all the connected
users in a piecemeal fashion. Instead of reading all the available data from one user before
going on to the next, only some data is read. Also, the server reads only from the sockets where
there is data to be read. This is done again and again, in a loop. Writing is handled similarly.
You could implement this yourself using just the modules socket and select, but asyncore and
asynchat provide a very useful framework that takes care of the details for you. (For alternative
ways of implementing parallel user connections, see the section “Multiple Connections” in
Chapter 14.)

Preparations
The first thing you need is a computer that’s connected to a network (such as the Internet);
otherwise, others won’t be able to connect to your chat server. (It is possible to connect to the
chat server from your own machine, but that’s not much fun in the long run, is it?) To be able
to connect, the user must know the address of your machine (a machine name such as
foo.bar.baz.com or an IP address). In addition, the user must know the port number used by
your server. You can set this in your program; in the code in this chapter, I use the (rather
arbitrary) port number 5005.

■Note As mentioned in Chapter 14, certain port numbers are restricted and require administrator privi-
leges. In general, numbers greater than 1023 are okay.

To test your server, you need a client—the program on the user side of the interaction. A
simple program for this sort of thing is telnet (which basically lets you connect to any socket
server). In UNIX, you probably have this program available on the command line:

$ telnet some.host.name 5005

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 471

The preceding command connects to the machine some.host.name on port 5005. To con-
nect to the same machine on which you’re running the telnet command, simply use the
machine name localhost. (You might want to supply an escape character through the -e switch
to make sure you can quit telnet easily. See the man page for more details.)

In Windows, you can use either the standard telnet command (in a command-prompt
window) or a terminal emulator with telnet functionality, such as PuTTY (software and more
information available at http://www.chiark.greenend.org.uk/~sgtatham/putty). However, if
you are installing new software, you might as well get a client program tailored to chatting.
MUD (or MUSH or MOO or some other related acronym) clients1 are quite suitable for this
sort of thing. My client of choice is TinyFugue (software and more information available at
http://tinyfugue.sf.net). It is mainly designed for use in UNIX. (Several clients are available
for Windows as well; just do a web search for “mud client” or something similar.)

First Implementation
Let’s break things down a bit. We need to create two main classes: one representing the chat
server and one representing each of the chat sessions (the connected users).

The ChatServer Class
To create the basic ChatServer, you subclass the dispatcher class from asyncore. The
dispatcher is basically just a socket object, but with some extra event-handling features,
which you’ll be using in a minute.

See Listing 24-1 for a basic chat server program (that does very little).

Listing 24-1. A Minimal Server Program

from asyncore import dispatcher
import asyncore

class ChatServer(dispatcher): pass

s = ChatServer()
asyncore.loop()

If you run this program, nothing happens. To make the server do anything interesting, you
should call its create_socket method to create a socket, and its bind and listen methods to
bind the socket to a specific port number and to tell it to listen for incoming connections. (That
is what servers do, after all.) In addition, you’ll override the handle_accept event-handling
method to actually do something when the server accepts a client connection. The resulting
program is shown in Listing 24-2.

1. MUD stands for Multi-User Dungeon/Domain/Dimension. MUSH stands for Multi-User Shared
Hallucination. MOO means MUD, object-oriented. See, for example, Wikipedia (http://
en.wikipedia.org/wiki/MUD) for more information.

472 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Listing 24-2. A Server That Accepts Connections

from asyncore import dispatcher
import socket, asyncore

class ChatServer(dispatcher):

 def handle_accept(self):
 conn, addr = self.accept()
 print 'Connection attempt from', addr[0]

s = ChatServer()
s.create_socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 5005))
s.listen(5)
asyncore.loop()

The handle_accept method calls self.accept, which lets the client connect. This returns
a connection (a socket that is specific for this client) and an address (information about
which machine is connecting). Instead of doing anything useful with this connection, the
handle_accept method simply prints that a connection attempt was made. addr[0] is the IP
address of the client.

The server initialization calls create_socket with two arguments that specify the type of
socket you want. You could use different types, but those shown here are what you usually
want. The call to the bind method simply binds the server to a specific address (host name and
port). The host name is empty (an empty string, essentially meaning localhost, or, more tech-
nically, “all interfaces on this machine”) and the port number is 5005. The call to listen tells
the server to listen for connections; it also specifies a backlog of five connections. The final call
to asyncore.loop starts the server’s listening loop as before.

This server actually works. Try to run it and then connect to it with your client. The client
should immediately be disconnected, and the server should print out the following:

Connection attempt from 127.0.0.1

The IP address will be different if you don’t connect from the same machine as your server.
To stop the server, simply use a keyboard interrupt: Ctrl+C in UNIX or Ctrl+Break in

Windows.
Shutting down the server with a keyboard interrupt results in a stack trace. To avoid that,

you can wrap the loop in a try/except statement. With some other cleanups, the basic server
ends up as shown in Listing 24-3.

Listing 24-3. The Basic Server with Some Cleanups

from asyncore import dispatcher
import socket, asyncore

PORT = 5005

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 473

class ChatServer(dispatcher):

 def __init__(self, port):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)

 def handle_accept(self):
 conn, addr = self.accept()
 print 'Connection attempt from', addr[0]

if __name__ == '__main__':
 s = ChatServer(PORT)
 try: asyncore.loop()
 except KeyboardInterrupt: pass

The added call to set_reuse_addr lets you reuse the same address (specifically, the port
number) even if the server isn’t shut down properly. (Without this call, you may need to wait
for a while before the server can be started again, or change the port number each time the
server crashes, because your program may not be able to properly notify your operating system
that it’s finished with the port.)

The ChatSession Class
The basic ChatServer isn’t very useful. Instead of ignoring the connection attempts, a new
dispatcher object should be created for each connection. However, these objects will behave
differently from the one used as the main server. They won’t be listening on a port for incoming
connections; they already are connected to a client. Their main task is collecting data (text)
coming from the client and responding to it. You could implement this functionality yourself
by subclassing dispatcher and overriding various methods, but, luckily, there is a module that
already does most of the work: asynchat.

Despite the name, asynchat isn’t specifically designed for the type of streaming (continu-
ous) chat application that we’re working on. (The chat in the name refers to “chat-style” or
command-response protocols.) The good thing about the async_chat class (found in the
asynchat module) is that it hides the most basic socket reading and writing operations, which
can be a bit difficult to get right. All that’s needed to make it work is to override two methods:
collect_incoming_data and found_terminator. The former is called each time a bit of text has
been read from the socket, and the latter is called when a terminator is read. The terminator
(in this case) is just a line break. (You’ll need to tell the async_chat object about that by calling
set_terminator as part of the initialization.)

An updated program, now with a ChatSession class, is shown in Listing 24-4.

474 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Listing 24-4. Server Program with ChatSession Class

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005

class ChatSession(async_chat):

 def __init__(self, sock):
 async_chat.__init__(self, sock)
 self.set_terminator("\r\n")
 self.data = []

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 line = ''.join(self.data)
 self.data = []
 # Do something with the line...
 print line

class ChatServer(dispatcher):

 def __init__(self, port):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.sessions = []

 def handle_accept(self):
 conn, addr = self.accept()
 self.sessions.append(ChatSession(conn))

if __name__ == '__main__':
 s = ChatServer(PORT)
 try: asyncore.loop()
 except KeyboardInterrupt: print

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 475

Several things are worth noting in this new version:

• The set_terminator method is used to set the line terminator to "\r\n", which is the
commonly used line terminator in network protocols.

• The ChatSession object keeps the data it has read so far as a list of strings called data.
When more data is read, collect_incoming_data is called automatically, and it simply
appends the data to the list. Using a list of strings and later joining them (with the join
string method) is a common idiom (and historically more efficient than incrementally
adding strings). Feel free to use += with strings instead.

• The found_terminator method is called when a terminator is found. The current imple-
mentation creates a line by joining the current data items, and resets self.data to an
empty list. However, because you don’t have anything useful to do with the line yet, it is
simply printed.

• The ChatServer keeps a list of sessions.

• The handle_accept method of the ChatServer now creates a new ChatSession object and
appends it to the list of sessions.

Try running the server and connecting with two (or more) clients simultaneously. Every
line you type in a client should be printed in the terminal where your server is running. That
means the server is now capable of handling several simultaneous connections. Now all that’s
missing is the capability for the clients to see what the others are saying!

Putting It Together
Before the prototype can be considered a fully functional (albeit simple) chat server, one main
piece of functionality is lacking: what the users say (each line they type) should be broadcast to
the others. That functionality can be implemented by a simple for loop in the server, which
loops over the list of sessions and writes the line to each of them. To write data to an async_chat
object, you use the push method.

This broadcasting behavior also adds another problem: you must make sure that connec-
tions are removed from the list when the clients disconnect. You can do that by overriding the
event-handling method handle_close. The final version of the first prototype can be seen in
Listing 24-5.

Listing 24-5. A Simple Chat Server (simple_chat.py)

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005
NAME = 'TestChat'

476 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

class ChatSession(async_chat):
 """
 A class that takes care of a connection between the server
 and a single user.
 """
 def __init__(self, server, sock):
 # Standard setup tasks:
 async_chat.__init__(self, sock)
 self.server = server
 self.set_terminator("\r\n")
 self.data = []
 # Greet the user:
 self.push('Welcome to %s\r\n' % self.server.name)

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 """
 If a terminator is found, that means that a full
 line has been read. Broadcast it to everyone.
 """
 line = ''.join(self.data)
 self.data = []
 self.server.broadcast(line)

 def handle_close(self):
 async_chat.handle_close(self)
 self.server.disconnect(self)

class ChatServer(dispatcher):
 """
 A class that receives connections and spawns individual
 sessions. It also handles broadcasts to these sessions.
 """
 def __init__(self, port, name):
 # Standard setup tasks
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.name = name
 self.sessions = []

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 477

 def disconnect(self, session):
 self.sessions.remove(session)

 def broadcast(self, line):
 for session in self.sessions:
 session.push(line + '\r\n')

 def handle_accept(self):
 conn, addr = self.accept()
 self.sessions.append(ChatSession(self, conn))

if __name__ == '__main__':
 s = ChatServer(PORT, NAME)
 try: asyncore.loop()
 except KeyboardInterrupt: print

Second Implementation
The first prototype may be a fully functioning chat server, but its functionality is quite lim-
ited. The most obvious limitation is that you can’t discern who is saying what. Also, it does
not interpret commands (such as say or logout), which the original specification requires.
So, you need to add support for identity (one unique name per user) and command interpre-
tation, and you must make the behavior of each session depend on the state it’s in (just
connected, logged in, and so on)—all of this in a manner that lends itself easily to extension.

Basic Command Interpretation
I’ll show you how to model the command interpretation on the Cmd class of the cmd module in the
standard library. (Unfortunately, you can’t use this class directly because it can be used only with
sys.stdin and sys.stdout, and you’re working with several streams.) What you need is a function
or method that can handle a single line of text (as typed by the user). It should split off the first
word (the command) and call an appropriate method based on it. For example, this line:

say Hello, world!

might result in the following call:

do_say('Hello, world!')

possibly with the session itself as an added argument (so do_say would know who did the
talking).

Here is a simple implementation, with an added method to express that a command is
unknown:

class CommandHandler:
 """
 Simple command handler similar to cmd.Cmd from the standard
 library.
 """

478 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

 def unknown(self, session, cmd):
 session.push('Unknown command: %s\r\n' % cmd)

 def handle(self, session, line):
 if not line.strip(): return
 parts = line.split(' ', 1)
 cmd = parts[0]
 try: line = parts[1].strip()
 except IndexError: line = ''
 meth = getattr(self, 'do_'+cmd, None)
 try:
 meth(session, line)
 except TypeError:
 self.unknown(session, cmd)

The use of getattr in this class is similar to that in the markup project in Chapter 20.
With the basic command handling out of the way, you need to define some actual com-

mands. And which commands are available (and what they do) should depend on the current
state of the session. How do you represent that state?

Rooms
Each state can be represented by a custom command handler. This is easily combined with the
standard notion of chat rooms (or locations in a MUD). Each room is a CommandHandler with its
own specialized commands. In addition, it should keep track of which users (sessions) are cur-
rently inside it. Here is a generic superclass for all your rooms:

class EndSession(Exception): pass

class Room(CommandHandler):
 """
 A generic environment which may contain one or more users
 (sessions). It takes care of basic command handling and
 broadcasting.
 """

 def __init__(self, server):
 self.server = server
 self.sessions = []

 def add(self, session):
 self.sessions.append(session)

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 479

 def remove(self, session):
 self.sessions.remove(session)

 def broadcast(self, line):
 for session in self.sessions:
 session.push(line)

 def do_logout(self, session, line):
 raise EndSession

In addition to the basic add and remove methods, a broadcast method simply calls push on
all of the users (sessions) in the room. There is also a single command defined—logout (in the
form of the do_logout method). It raises an exception (EndSession), which is dealt with at a
higher level of the processing (in found_terminator).

Login and Logout Rooms
In addition to representing normal chat rooms (this project includes only one such chat room),
the Room subclasses can represent other states, which was indeed the intention. For example,
when a user connects to the server, he is put in a dedicated LoginRoom (with no other users in
it). The LoginRoom prints a welcome message when the user enters (in the add method). It also
overrides the unknown method to tell the user to log in; the only command it responds to is the
login command, which checks whether the name is acceptable (not an empty string, and not
already used by another user).

The LogoutRoom is much simpler. Its only job is to delete the user’s name from the server
(which has a dictionary called users where the sessions are stored). If the name isn’t there
(because the user never logged in), the resulting KeyError is ignored.

For the source code of these two classes, see Listing 24-6 later in this chapter.

■Note Even though the server’s users dictionary keeps references to all the sessions, no session is ever
retrieved from it. The users dictionary is used only to keep track of which names are in use. However, instead
of using some arbitrary value (such as True), I decided to let each user name refer to the corresponding ses-
sion. Even though there is no immediate use for it, it may be useful in some later version of the program (for
example, if one user wants to send a message privately to another). An alternative would have been to simply
keep a set or list of sessions.

The Main Chat Room
The main chat room also overrides the add and remove methods. In add, it broadcasts a message
about the user who is entering, and it adds the user’s name to the users dictionary in the server.
The remove method broadcasts a message about the user who is leaving.

480 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

In addition to these methods, the ChatRoom class implements three commands:

• The say command (implemented by do_say) broadcasts a single line, prefixed with the
name of the user who spoke.

• The look command (implemented by do_look) tells the user which users are currently in
the room.

• The who command (implemented by do_who) tells the user which users are currently
logged in. In this simple server, look and who are equivalent, but if you extend it to con-
tain more than one room, their functionality will differ.

For the source code, see Listing 24-6 later in this chapter.

The New Server
I’ve now described most of the functionality. The main additions to ChatSession and
ChatServer are as follows:

• ChatSession has a method called enter, which is used to enter a new room.

• The ChatSession constructor uses LoginRoom.

• The handle_close method uses LogoutRoom.

• The ChatServer constructor adds the dictionary users and the ChatRoom called main_room
to its attributes.

Notice also how handle_accept no longer adds the new ChatSession to a list of sessions
because the sessions are now managed by the rooms.

■Note In general, if you simply instantiate an object, like the ChatSession in handle_accept, without
binding a name to it or adding it to a container, it will be lost, and may be garbage-collected (which means
that it will disappear completely). Because all dispatchers are handled (referenced) by asyncore (and
async_chat is a subclass of dispatcher), this is not a problem here.

The final version of the chat server is shown in Listing 24-6. For your convenience, I’ve
listed the available commands in Table 24-1.

Listing 24-6. A Slightly More Complicated Chat Server (chatserver.py)

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005
NAME = 'TestChat'

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 481

class EndSession(Exception): pass

class CommandHandler:
 """
 Simple command handler similar to cmd.Cmd from the standard
 library.
 """

 def unknown(self, session, cmd):
 'Respond to an unknown command'
 session.push('Unknown command: %s\r\n' % cmd)

 def handle(self, session, line):
 'Handle a received line from a given session'
 if not line.strip(): return
 # Split off the command:
 parts = line.split(' ', 1)
 cmd = parts[0]
 try: line = parts[1].strip()
 except IndexError: line = ''
 # Try to find a handler:
 meth = getattr(self, 'do_'+cmd, None)
 try:
 # Assume it's callable:
 meth(session, line)
 except TypeError:
 # If it isn't, respond to the unknown command:
 self.unknown(session, cmd)

class Room(CommandHandler):
 """
 A generic environment that may contain one or more users
 (sessions). It takes care of basic command handling and
 broadcasting.
 """

 def __init__(self, server):
 self.server = server
 self.sessions = []

 def add(self, session):
 'A session (user) has entered the room'
 self.sessions.append(session)

482 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

 def remove(self, session):
 'A session (user) has left the room'
 self.sessions.remove(session)

 def broadcast(self, line):
 'Send a line to all sessions in the room'
 for session in self.sessions:
 session.push(line)

 def do_logout(self, session, line):
 'Respond to the logout command'
 raise EndSession

class LoginRoom(Room):
 """
 A room meant for a single person who has just connected.
 """

 def add(self, session):
 Room.add(self, session)
 # When a user enters, greet him/her:
 self.broadcast('Welcome to %s\r\n' % self.server.name)

 def unknown(self, session, cmd):
 # All unknown commands (anything except login or logout)
 # results in a prodding:
 session.push('Please log in\nUse "login <nick>"\r\n')

 def do_login(self, session, line):
 name = line.strip()
 # Make sure the user has entered a name:
 if not name:
 session.push('Please enter a name\r\n')
 # Make sure that the name isn't in use:
 elif name in self.server.users:
 session.push('The name "%s" is taken.\r\n' % name)
 session.push('Please try again.\r\n')
 else:
 # The name is OK, so it is stored in the session, and
 # the user is moved into the main room.
 session.name = name
 session.enter(self.server.main_room)

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 483

class ChatRoom(Room):
 """
 A room meant for multiple users who can chat with the others in
 the room.
 """

 def add(self, session):
 # Notify everyone that a new user has entered:
 self.broadcast(session.name + ' has entered the room.\r\n')
 self.server.users[session.name] = session
 Room.add(self, session)

 def remove(self, session):
 Room.remove(self, session)
 # Notify everyone that a user has left:
 self.broadcast(session.name + ' has left the room.\r\n')

 def do_say(self, session, line):
 self.broadcast(session.name+': '+line+'\r\n')

 def do_look(self, session, line):
 'Handles the look command, used to see who is in a room'
 session.push('The following are in this room:\r\n')
 for other in self.sessions:
 session.push(other.name + '\r\n')

 def do_who(self, session, line):
 'Handles the who command, used to see who is logged in'
 session.push('The following are logged in:\r\n')
 for name in self.server.users:
 session.push(name + '\r\n')

class LogoutRoom(Room):
 """
 A simple room for a single user. Its sole purpose is to remove
 the user's name from the server.
 """

 def add(self, session):
 # When a session (user) enters the LogoutRoom it is deleted
 try: del self.server.users[session.name]
 except KeyError: pass

484 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

class ChatSession(async_chat):
 """
 A single session, which takes care of the communication with a
 single user.
 """

 def __init__(self, server, sock):
 async_chat.__init__(self, sock)
 self.server = server
 self.set_terminator("\r\n")
 self.data = []
 self.name = None
 # All sessions begin in a separate LoginRoom:
 self.enter(LoginRoom(server))

 def enter(self, room):
 # Remove self from current room and add self to
 # next room...
 try: cur = self.room
 except AttributeError: pass
 else: cur.remove(self)
 self.room = room
 room.add(self)

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 line = ''.join(self.data)
 self.data = []
 try: self.room.handle(self, line)
 except EndSession:
 self.handle_close()

 def handle_close(self):
 async_chat.handle_close(self)
 self.enter(LogoutRoom(self.server))

class ChatServer(dispatcher):
 """
 A chat server with a single room.
 """

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 485

 def __init__(self, port, name):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.name = name
 self.users = {}
 self.main_room = ChatRoom(self)

 def handle_accept(self):
 conn, addr = self.accept()
 ChatSession(self, conn)

if __name__ == '__main__':
 s = ChatServer(PORT, NAME)
 try: asyncore.loop()
 except KeyboardInterrupt: print

Table 24-1. Commands Available in the Chat Server

An example of a chat session is shown in Figure 24-1. The server in that example was
started with the this command:

python chatserver.py

and the user dilbert connected to the server using this command:

telnet localhost 5005

Command Available In Description

login name Login room Used to log into the server

logout All rooms Used to log out of the server

say statement Chat room(s) Used to say something

look Chat room(s) Used to find out who is in the same room

who Chat room(s) Used to find out who is logged on to the server

486 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Figure 24-1. A sample chat session

Further Exploration
You can do a lot to extend and enhance the basic server presented in this chapter:

• You could make a version with multiple chat rooms, and you could extend the command
set to make it behave in any way you want.

• You might want to make the program recognize only certain commands (such as login
or logout) and treat all other text entered as general chatting, thereby avoiding the need
for a say command.

• You could prefix all commands with a special character (for example, a slash, giving
commands like /login and /logout) and treat everything that doesn’t start with the
specified character as general chatting.

• You might want to create your own GUI client, but that’s a bit trickier than it might seem.
The GUI toolkit has one event loop, and the communication with the server may require
another. To make them cooperate, you may need to use threading. (For an example of
how this can be done in simple cases where the various threads don’t directly access
each other’s data, see Chapter 28.)

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 487

What Now?
Now you have your very own chat server. In the next project, you tackle a different type of net-
work programming: CGI, the mechanism underlying most web applications (as discussed in
Chapter 15). The specific application of this technology in the next project is remote editing,
which enables several users to collaborate on developing the same document. You may even
use it to edit your own web pages remotely.

489

■ ■ ■

C H A P T E R 2 5

Project 6: Remote Editing
with CGI

This chapter’s project uses CGI, which is discussed in more detail in Chapter 15. The specific
application is remote editing—editing a document on another machine via the Web. This can
be useful in collaboration systems (groupware), for example, where several people may be
working on the same document. It can also be useful for updating your web pages.

What’s the Problem?
You have a document stored on one machine and want to be able to edit it from another
machine via the Web. This enables you to have a shared document edited by several collabo-
rating authors. You won’t need to use FTP or similar file-transfer technologies, and you won’t
need to worry about synchronizing multiple copies. To edit the file, all you need is a web
browser.

■Note This sort of remote editing is one of the core mechanisms of wikis (see, for example, http://
en.wikipedia.org/wiki/Wiki).

Specifically, the system should meet the following requirements:

• It should be able to display the document as a normal web page.

• It should be able to display the document in a text area in a web form.

• You should be able to save the text from the form.

• The program should protect the document with a password.

• The program should be easily extensible to support editing more than one document.

As you’ll see, all of this is quite easy to do with the standard Python library module cgi and
some plain Python coding. However, the techniques used in this application can be used for
creating web interfaces to all of your Python programs, so it’s pretty useful.

490 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

Useful Tools
The main tool when writing CGI programs is, as discussed in Chapter 15, the cgi module, along
with the cgitb module for debugging. See Chapter 15 for more information.

Preparations
The steps needed for making your CGI script accessible through the Web are described in
detail in Chapter 15 in the section “Dynamic Web Pages with CGI.” Just follow those steps, and
you should be fine.

First Implementation
The first implementation is based on the basic structure of the greeting script shown in Listing
15-7 (Chapter 15). All that’s needed for the first prototype is some file handling.

For the script to be useful, it must store the edited text between invocations. Also, the form
should be made a bit bigger than in the greeting script (simple3.cgi from Listing 15-7 in
Chapter 15), and the text field should be changed into a text area. You should also use the POST
CGI method instead of the default GET method. (Using POST is normally the thing to do if you
are submitting large amounts of data.)

The general logic of the program is as follows:

1. Get the CGI parameter text with the current value of the data file as the default.

2. Save the text to the data file.

3. Print out the form, with the text in the textarea.

In order for the script to be allowed to write to your data file, you must first create such a
file (for example, simple_edit.dat). It can be empty or perhaps contain the initial document
(a plain text file, possibly containing some form of markup such as XML or HTML). Then you
must set the permissions so that it is universally writable, as described in Chapter 15. The
resulting code is shown in Listing 25-1.

Listing 25-1. A Simple Web Editor (simple_edit.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

text = form.getvalue('text', open('simple_edit.dat').read())
f = open('simple_edit.dat', 'w')
f.write(text)
f.close()

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 491

print """Content-type: text/html

<html>
 <head>
 <title>A Simple Editor</title>
 </head>
 <body>
 <form action='simple_edit.cgi' method='POST'>
 <textarea rows='10' cols='20' name='text'>%s</textarea>

 <input type='submit' />
 </form>
 </body>
</html>
""" % text

When accessed through a web server, the CGI script checks for an input value called text.
If such a value is submitted, the text is written to the file simple_edit.dat. The default value
is the file’s current contents. Finally, a web page (containing the field for editing and submit-
ting the text) is displayed, as shown in Figure 25-1.

Figure 25-1. The simple_edit.cgi script in action

Second Implementation
Now that you have the first prototype on the road, what’s missing? The system should be able
to edit more than one file, and it should use password protection. (Because the document can
be viewed by opening it directly in a browser, you won’t be paying much attention to the view-
ing part of the system.)

492 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

The main difference from the first prototype is that you’ll split it into two separate CGI
scripts (one for each “action” your system should be able to perform). The files of the new
prototypes are as follows:

index.html: A plain web page with a form where you can enter a file name. It also has an
Open button, which triggers edit.cgi.

edit.cgi: A script that displays a given file in a text area. It has a text field for password
entry and a Save button, which triggers save.cgi.

save.cgi: A script that saves the text it receives to a given file and displays a simple
message (for example, “The file has been saved”). This script should also take care of
the password checking.

Let’s tackle these one by one.

Creating the File Name Form
index.html is an HTML file that contains the form used to enter a file name:

<html>
 <head>
 <title>File Editor</title>
 </head>
 <body>
 <form action='edit.cgi' method='POST'>
 File name:

 <input type='text' name='filename' />
 <input type='submit' value='Open' />
 </body>
</html>

Notice how the text field is named filename. That ensures its contents will be supplied as
the CGI parameter filename to the edit.cgi script (which is the action attribute of the form
tag). If you open this file in a browser, enter a file name in the text field, and click Open, the
edit.cgi script will be run.

Writing the Editor Script
The page displayed by the edit.cgi script should include a text area containing the current text
of the file you’re editing, and a text field for entering a password. The only input needed is the
file name, which the script receives from the form in index.html. Note, however, that it is pos-
sible to open the edit.cgi script directly, without submitting the form in index.html. In that
case, you have no guarantee that the filename field of cgi.FieldStorage is set. So you need to
add a check to ensure that there is a file name. If there is, the file will be opened from a directory
that contains the files that may be edited. Let’s call the directory data. (You will, of course, have
to create this directory.)

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 493

■Caution Note that by supplying a file name that contains path elements such as .. (two dots), it may be
possible to access files outside this directory. To make sure that the files accessed are within the given direc-
tory, you should perform some extra checking, such as listing all the files in the directory (using the glob
module, for example) and checking that the supplied file name is one of the candidate files (making sure you
use full, absolute path names all around). See the section “Validating File Names” in Chapter 27 for another
approach.

The code, then, becomes something like Listing 25-2.

Listing 25-2. The Editor Script (edit.cgi)

#!/usr/bin/env python

print 'Content-type: text/html\n'

from os.path import join, abspath
import cgi, sys

BASE_DIR = abspath('data')

form = cgi.FieldStorage()
filename = form.getvalue('filename')
if not filename:
 print 'Please enter a file name'
 sys.exit()
text = open(join(BASE_DIR, filename)).read()

print """
<html>
 <head>
 <title>Editing...</title>
 </head>
 <body>
 <form action='save.cgi' method='POST'>
 File: %s

 <input type='hidden' value='%s' name='filename' />
 Password:

 <input name='password' type='password' />

 Text:

 <textarea name='text' cols='40' rows='20'>%s</textarea>

 <input type='submit' value='Save' />
 </form>
 </body>

494 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

</html>
""" % (filename, filename, text)

Note that the abspath function has been used to get the absolute path of the data directory.
Also note that the file name has been stored in a hidden form element so that it will be relayed
to the next script (save.cgi) without giving the user an opportunity to change it. (You have no
guarantees of that, of course, because users may write their own forms, put them on another
machine, and have those forms call your CGI scripts with custom values.)

For password handling, the sample code uses an input element of type password rather
than text, which means that the characters entered will be displayed as asterisks.

■Note This script is based on the assumption that the file name given refers to an existing file. Feel free to
extend it so that it can handle other cases as well.

Writing the Save Script
The script that performs the saving is the last component of this simple system. It receives a file
name, a password, and some text. It checks that the password is correct, and if it is, the pro-
gram stores the text in the file with the given file name. (The file should have its permissions set
properly; see the discussion of setting file permissions in Chapter 15.)

Just for fun, you’ll use the sha module in the password handling. The Secure Hash Algo-
rithm (SHA) is a way of extracting an essentially meaningless string of seemingly random data
(a digest) from an input string. The idea behind the algorithm is that it is almost impossible to
construct a string that has a given digest, so if you know the digest of a password (for example),
there is no (easy) way you can reconstruct the password or invent one that will reproduce
the digest. This means that you can safely compare the digest of a supplied password with a
stored digest (of the correct password) instead of comparing the passwords themselves. By
using this approach, you don’t need to store the password itself in the source code, and some-
one reading the code would be none the wiser about what the password actually was.

■Caution As I said, this “security” feature is mainly for fun. Unless you are using a secure connection with
SSL or some similar technology (which is beyond the scope of this project), it is still possible to pick up the
password being submitted over the network.

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 495

Here is an example of how you can use sha:

>>> from sha import sha
>>> sha('foobar').hexdigest()
'8843d7f92416211de9ebb963ff4ce28125932878'
>>> sha('foobaz').hexdigest()
'21eb6533733a5e4763acacd1d45a60c2e0e404e1'

As you can see, a small change in the password gives you a completely different digest. You
can see the code for save.cgi in Listing 25-3.

Listing 25-3. The Saving Script (save.cgi)

#!/usr/bin/env python

print 'Content-type: text/html\n'

from os.path import join, abspath
import cgi, sha, sys

BASE_DIR = abspath('data')

form = cgi.FieldStorage()

text = form.getvalue('text')
filename = form.getvalue('filename')
password = form.getvalue('password')

if not (filename and text and password):
 print 'Invalid parameters.'
 sys.exit()

if sha.sha(password).hexdigest() != '8843d7f92416211de9ebb963ff4ce28125932878':
 print 'Invalid password'
 sys.exit()

f = open(join(BASE_DIR,filename), 'w')
f.write(text)
f.close()

print 'The file has been saved.'

496 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

Running the Editor
Follow these steps to use the editor:

1. Open the page index.html in a web browser. Be sure to open it through a web server (by
using a URL of the form http://www.someserver.com/index.html) and not as a local file.
The result is shown in Figure 25-2.

2. Enter a file name of a file that your CGI editor is permitted to modify, and then click
Open. Your browser should then contain the output of the edit.cgi script, as shown in
Figure 25-3.

3. Edit the file to taste, enter the password (one you’ve set yourself, or the one used in the
example, which is foobar), and click Save. Your browser should then contain the output
of the save.cgi script, which is simply the message “The file has been saved.”

4. If you want to verify that the file has been modified, repeat the process of opening the
file (steps 1 and 2).

Figure 25-2. The opening page of the CGI editor

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 497

Figure 25-3. The editing page of the CGI editor

Further Exploration
With the techniques shown in this project, you can develop all kinds of web systems. Some
possible additions to the existing system are as follows:

• Add version control. Save old copies of the edited file so you can “undo” your changes.

• Add support for user names so you know who changed what.

• Add file locking (for example, with the fcntl module) so two users can’t edit the file at
the same time.

• Add a view.cgi script that automatically adds markup to the files (like the one in
Chapter 20).

• Make the scripts more robust by checking their input more thoroughly and adding more
user-friendly error messages.

• Avoid printing a confirmation message like “The file has been saved.” You can either add
some more useful output or redirect the user to another page/script. Redirection can be
done with the Location header, which works like Content-type. Just add Location: fol-
lowed by a space and a URL to the header section of the output (before the first empty line).

In addition to expanding the capabilities of this CGI system, you might want to check out
some more complex web environments for Python (as discussed in Chapter 15).

498 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

What Now?
Now you’ve tried your hand at writing CGI scripts. In the next project, you expand on that by
using a SQL database for storage. With that powerful combination, you’ll implement a fully
functional web-based bulletin board.

499

■ ■ ■

C H A P T E R 2 6

Project 7: Your Own Bulletin
Board

Many kinds of software enable you to communicate with other people over the Internet.
You’ve seen a few already (for example, the Usenet groups in Chapter 23 and the chat server
in Chapter 24). In this chapter, you will implement another such system: a web-based discus-
sion forum.

What’s the Problem?
In this project, you create a simple system for posting and responding to messages via the Web.
This has utility in itself, as a discussion forum. One famous example of such a forum is Slashdot
(http://slashdot.org). The system developed in this chapter is quite simple, but the basic
functionality is there, and it should be capable of handling quite a large number of postings.

However, the material covered in this chapter has uses beyond developing stand-alone
discussion forums. It could be used to implement a more general system for collaboration, for
example, or an issue-tracking system, a blog with commenting functionality, or something
completely different. The combination of CGI (or similar technologies) and a solid database (in
this case, a SQL database) is quite powerful and versatile.

■Tip Even though it’s fun and educational to write your own software, in many cases, it’s more cost-
effective to search for existing software. In the case of discussion forums and the like, chances are that you
can find quite a few well-developed systems freely available. Also, most web application frameworks, such
as Django, Zope, and TurboGears (mentioned in Chapter 15), have built-in support for this sort of functionality.

500 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

Specifically, the final system should meet the following requirements:

• It should display the subjects of all current messages.

• It should support message threading (displaying replies indented under the message
they reply to).

• You should be able to view existing messages.

• You should be able to reply to existing messages.

In addition to these functional requirements, it would be nice if the system were reason-
ably stable, could handle a large number of messages, and avoided such problems as two users
writing to the same file at the same time. The desired robustness can be achieved by using a
database server of some sort, instead of writing the file-handling code yourself.

Useful Tools
In addition to the CGI stuff from Chapter 15, you’ll need a SQL database, as discussed in
Chapter 13. You could either use the stand-alone database SQLite, which is used in that chap-
ter, or you could use some other system, such as either of the following two excellent, freely
available databases:

• PostgreSQL (http://www.postgresql.org)

• MySQL (http://www.mysql.org)

In this chapter, I use PostgreSQL for the examples, but the code should work with most
SQL databases (including MySQL or SQLite) with few edits.

Before moving on, you should make sure that you have access to a SQL database server (or
a stand-alone SQL database, such as SQLite) and check its documentation for instructions on
how to manage it.

In addition to the database server itself, you’ll need a Python module that can interface with
the server (and hide the details from you). Most such modules support the Python DB API, which
is discussed in more detail in Chapter 13. In this chapter, I use psycopg (http://initd.org/
Software/psycopg), a robust front end for PostgreSQL. If you’re using MySQL, the MySQLdb mod-
ule (http://sourceforge.net/projects/mysql-python) is a good choice.

After you have installed your database module, you should be able to import it (for exam-
ple, with import psycopg or import MySQLdb) without raising any exceptions.

Preparations
Before your program can start using your database, you must actually create the database. That
is done using SQL (see Chapter 13 for some pointers).

The database structure is intimately linked with the problem and can be a bit tricky to
change once you’ve created it and populated it with data (messages). Let’s keep it simple.

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 501

You’ll have only one table, which will contain one row for each message. Each message will
have a unique ID (an integer), a subject, a sender (or poster), and some text (the body).

In addition, because you want to be able to display the messages hierarchically (thread-
ing), each message should store a reference to the message it is a reply to. The resulting CREATE
TABLE SQL command is shown in Listing 26-1.

Listing 26-1. Creating the Database in PostgreSQL

CREATE TABLE messages (
 id SERIAL PRIMARY KEY,
 subject TEXT NOT NULL,
 sender TEXT NOT NULL,
 reply_to INTEGER REFERENCES messages,
 text TEXT NOT NULL
);

Note that this command uses some PostgreSQL-specific features (SERIAL, which ensures
that each message automatically receives a unique ID; the TEXT data type; and REFERENCES,
which makes sure that reply_to contains a valid message ID). A more MySQL-friendly version
is shown in Listing 26-2.

Listing 26-2. Creating the Database in MySQL

CREATE TABLE messages (
 id INT NOT NULL AUTO_INCREMENT,
 subject VARCHAR(100) NOT NULL,
 sender VARCHAR(15) NOT NULL,
 reply_to INT,
 text MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id)
);

Finally, for those of you using SQLite, there’s a schema in Listing 26-3.

Listing 26-3. Creating the Database in SQLite

create table messages (
 id integer primary key autoincrement,
 subject text not null,
 sender text not null,
 reply_to int,
 text text not null
);

502 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

I’ve kept these code snippets simple (a SQL guru would certainly find ways to improve
them) because the focus of this chapter is, after all, the Python code. The SQL statements create
a new table with the following five fields (columns):

id: Used to identify the individual messages. Each message automatically receives a
unique ID by the database manager, so you don’t need to worry about assigning those
from your Python code.

subject: A string that contains the subject of the message.

sender: A string that contains the sender’s name or email address or something like that.

reply_to: If the message is a reply to another message, this field contains the id of the
other message. (Otherwise, the field won’t contain anything.)

text: A string that contains the body of the message.

When you’ve created this database and set the permissions on it so that your web server is
allowed to read its contents and insert new rows, you’re ready to start coding the CGI.

First Implementation
In this project, the first prototype will be very limited. It will be a single script that uses the
database functionality so that you can get a feel for how it works. Once you have that pegged,
writing the other necessary scripts won’t be very hard. In many ways, this is just a short
reminder of the material covered in Chapter 13.

The CGI part of the code is very similar to that in Chapter 25. If you haven’t read that chap-
ter yet, you might want to take a look at it. You should also be sure to review the section “CGI
Security Risks” in Chapter 15.

■Caution In the CGI scripts in this chapter, I’ve imported and enabled the cgitb module. This is very use-
ful to uncover flaws in your code, but you should probably remove the call to cgitb.enable before deploying
the software—you probably wouldn’t want an ordinary user to face a full cgitb traceback.

The first thing you need to know is how the Python DB API works. If you haven’t read
Chapter 13, you probably should at least skim through it now. If you would rather just press on,
here is the core functionality again (replace db with the name of your database module—for
example, psycopg or MySQLdb):

conn = db.connect('user=foo dbname=bar'): Connects to the database named bar as user
foo and assigns the returned connection object to conn. (Note that the parameter to con-
nect is a string.)

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 503

■Caution In this project, I assume that you have a dedicated machine on which the database and web
server run. The given user (foo) should be allowed to connect only from that machine to avoid unwanted
access. If you have other users on your machine, you should probably protect your database with a password,
which may also be supplied in the parameter string to connect. To find out more about this, consult the doc-
umentation for your database (and your Python database module).

curs = conn.cursor(): Gets a cursor object from the connection object. The cursor is used
to actually execute SQL statements and fetch the results.

conn.commit(): Commits the changes caused by the SQL statements since the last commit.

conn.close(): Closes the connection.

curs.execute(sql_string): Executes a SQL statement.

curs.fetchone(): Fetches one result row as a sequence—for example, a tuple.

curs.dictfetchone(): Fetches one result row as a dictionary. (Not part of the standard,
and therefore not available in all modules.)

curs.fetchall(): Fetches all result rows as a sequence of sequences—for example, a list of
tuples.

curs.dictfetchall(): Fetches all result rows as a sequence (for example, a list) of dictio-
naries. (Not part of the standard, and therefore not available in all modules.)

Here is a simple test (assuming psycopg)—retrieving all the messages in the database
(which is currently empty, so you won’t get any):

>>> import psycopg
>>> conn = psycopg.connect('user=foo dbname=bar')
>>> curs = conn.cursor()
>>> curs.execute('SELECT * FROM messages')
>>> curs.fetchall()
[]

Because you haven’t implemented the web interface yet, you must enter messages manu-
ally if you want to test the database. You can do that either through an administrative tool
(such as mysql for MySQL or psql for PostgreSQL), or you can use the Python interpreter with
your database module.

Here is a useful piece of code you can use for testing purposes:

#!/usr/bin/env python
addmessage.py

504 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

import psycopg
conn = psycopg.connect('user=foo dbname=bar')
curs = conn.cursor()

reply_to = raw_input('Reply to: ')
subject = raw_input('Subject: ')
sender = raw_input('Sender: ')
text = raw_input('Text: ')

if reply_to:
 query = """
 INSERT INTO messages(reply_to, sender, subject, text)
 VALUES(%s, '%s', '%s', '%s')""" % (reply_to, sender, subject, text)
else:
 query = """
 INSERT INTO messages(sender, subject, text)
 VALUES('%s', '%s', '%s')""" % (sender, subject, text)

curs.execute(query)
conn.commit()

Note that this code is a bit crude. It doesn’t keep track of IDs for you (you’ll have to make
sure that what you enter as reply_to, if anything, is a valid ID), and it doesn’t deal properly with
text containing single quotes (this can be problematic because single quotes are used as string
delimiters in SQL). These issues will be dealt with in the final system, of course.

Try to add a few messages and examine the database at the interactive Python prompt. If
everything seems okay, it’s time to write a CGI script that accesses the database.

Now that you have the database-handling code figured out and some ready-made CGI
code you can pinch from Chapter 25, writing a script for viewing the message subjects (a sim-
ple version of the “main page” of the forum) shouldn’t be too hard. You must do the standard
CGI setup (in this case, mainly printing the Content-type string), do the standard database
setup (get a connection and a cursor), execute a simple SQL select command to get all the
messages, and then retrieve the resulting rows with curs.fetchall or curs.dictfetchall.

Listing 26-4 shows a script that does these things. The only really new stuff in the listing is
the formatting code, which is used to get the threaded look where replies are displayed below
and to the right of the messages they are replies to.

It basically works like this:

• For each message, get the reply_to field. If it is None (not a reply), add the message to the
list of top-level messages. Otherwise, append the message to the list of children kept in
children[parent_id].

• For each top-level message, call format. The format function prints the subject of the
message. Also, if the message has any children, it opens a blockquote element (HTML),
calls format (recursively) for each child, and ends the blockquote element.

If you open the script in your web browser (see Chapter 15 for information about how to
run CGI scripts), you should see a threaded view of all the messages you’ve added (or their sub-
jects, anyway).

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 505

For an idea of what the bulletin board looks like, see Figure 26-1 later in this chapter.

■Note If you’re using SQLite, you can’t use dictfetchall, as in Listing 26-4. The line rows =
curs.dictfetchall() can be replaced with the following snippet:

names = [d[0] for d in curs.description]
rows = [dict(zip(names, row)) for row in curs.fetchall()]

Listing 26-4. The Main Bulletin Board (simple_main.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

print """
<html>
 <head>
 <title>The FooBar Bulletin Board</title>
 </head>
 <body>
 <h1>The FooBar Bulletin Board</h1>
 """

curs.execute('SELECT * FROM messages')
rows = curs.dictfetchall()

toplevel = []
children = {}

for row in rows:
 parent_id = row['reply_to']
 if parent_id is None:
 toplevel.append(row)
 else:
 children.setdefault(parent_id,[]).append(row)

506 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

def format(row):
 print row['subject']
 try: kids = children[row['id']]
 except KeyError: pass
 else:
 print '<blockquote>'
 for kid in kids:
 format(kid)
 print '</blockquote>'

print '<p>'

for row in toplevel:
 format(row)

print """
 </p>
 </body>
</html>
"""

■Note If, for some reason, you can’t get the program to work, it may be that you haven’t set up your data-
base properly. Consult the documentation for your database to see what is needed in order to let a given user
connect and to modify the database. You may, for example, need to list the IP address of the connecting
machine explicitly.

Second Implementation
The first implementation was quite limited in that it didn’t even allow users to post messages. In
this section, you expand on the simple system in the first prototype, which contains the basic
structure for the final version. Some measures will be added to check the supplied parameters
(such as checking whether reply_to is really a number and whether the required parameters are
really supplied), but you should note that making a system like this robust and user-friendly is a
tough task. If you intend to use the system (or, I hope, an improved version of your own), you
should be prepared to work quite a bit on these issues.

But before you can even think of improving stability, you need something that works,
right? So, where do you begin? How do you structure the system?

A simple way of structuring web programs (using technologies such as CGI) is to have one
script per action performed by the user. In the case of this system, that would mean the follow-
ing scripts:

main.cgi: Displays the subjects of all messages (threaded) with links to the articles
themselves.

view.cgi: Displays a single article and contains a link that will let you reply to it.

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 507

edit.cgi: Displays a single article in editable form (with text fields and text areas, just as in
Chapter 25). Its Submit button is linked to the save script.

save.cgi: Receives information about an article (from edit.cgi) and saves it by inserting a
new row into the database table.

Let’s deal with these separately.

Writing the Main Script
The main.cgi script is very similar to the simple_main.cgi script from the first prototype.
The main difference is the addition of links. Each subject will be a link to a given message
(to view.cgi), and at the bottom of the page, you’ll add a link that allows the user to post a
new message (a link to edit.cgi).

Take a look at the code in Listing 26-5. The line containing the link to each article (part of
the format function) looks like this:

 print '<p>%(subject)s</p>' % row

Basically, it creates a link to view.cgi?id=someid where someid is the id of the given row.
This syntax (the question mark and key=val) is simply a way of passing parameters to a CGI
script. That means if users click this link, they are taken to view.cgi with the id parameter
properly set. The “Post message” link is just a link to edit.cgi.

Listing 26-5. The Main Bulletin Board (main.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

print """
<html>
 <head>
 <title>The FooBar Bulletin Board</title>
 </head>
 <body>
 <h1>The FooBar Bulletin Board</h1>
 """

curs.execute('SELECT * FROM messages')
rows = curs.dictfetchall()

508 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

toplevel = []
children = {}

for row in rows:
 parent_id = row['reply_to']
 if parent_id is None:
 toplevel.append(row)
 else:
 children.setdefault(parent_id,[]).append(row)

def format(row):
 print '<p>%(subject)s</p>' % row
 try: kids = children[row['id']]
 except KeyError: pass
 else:
 print '<blockquote>'
 for kid in kids:
 format(kid)
 print '</blockquote>'

print '<p>'

for row in toplevel:
 format(row)

print """
 </p>
 <hr />
 <p>Post message</p>
 </body>
</html>
"""

So, let’s see how view.cgi handles the id parameter.

Writing the View Script
The view.cgi script uses the supplied CGI parameter id to retrieve a single message from the
database. It then formats a simple HTML page with the resulting values. This page also con-
tains a link back to the main page (main.cgi) and, perhaps more interestingly, to edit.cgi, but
this time with the reply_to parameter set to id to ensure that the new message will be a reply
to the current one. See Listing 26-6 for the code of view.cgi.

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 509

Listing 26-6. The Message Viewer (view.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()
id = form.getvalue('id')

print """
<html>
 <head>
 <title>View Message</title>
 </head>
 <body>
 <h1>View Message</h1>
 """

try: id = int(id)
except:
 print 'Invalid message ID'
 sys.exit()

curs.execute('SELECT * FROM messages WHERE id = %i' % id)
rows = curs.dictfetchall()

if not rows:
 print 'Unknown message ID'
 sys.exit()

row = rows[0]

print """
 <p>Subject: %(subject)s

 Sender: %(sender)s

 <pre>%(text)s</pre>
 </p>

510 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

 <hr />
 Back to the main page
 | Reply
 </body>
</html>
""" % row

Writing the Edit Script
The edit.cgi script actually performs a dual function: it is used to edit new messages and also
to edit replies. The difference isn’t all that great: if a reply_to is supplied in the CGI request, it
is kept in a hidden input in the edit form. Also, the subject is set to "Re: parentsubject" by
default (unless the subject already begins with "Re:"—you don’t want to keep adding those).
Here is the code snippet that takes care of these details:

subject = ''
if reply_to is not None:
 print '<input type="hidden" name="reply_to" value="%s"/>' % reply_to
 curs.execute('SELECT subject FROM messages WHERE id = %s' % reply_to)
 subject = curs.fetchone()[0]
 if not subject.startswith('Re: '):
 subject = 'Re: ' + subject

■Note Hidden inputs are used to temporarily store information in a web form. They don’t show up to the
user as text areas and the like do, but their value is still passed to the CGI script that is the action of the form.
That way, the script that generates the form can pass information to the script that will eventually process the
same form.

Listing 26-7 shows the source code for the edit.cgi script.

Listing 26-7. The Message Editor (edit.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 511

import cgi, sys
form = cgi.FieldStorage()
reply_to = form.getvalue('reply_to')

print """
<html>
 <head>
 <title>Compose Message</title>
 </head>
 <body>
 <h1>Compose Message</h1>

 <form action='save.cgi' method='POST'>
 """

subject = ''
if reply_to is not None:
 print '<input type="hidden" name="reply_to" value="%s"/>' % reply_to
 curs.execute('SELECT subject FROM messages WHERE id = %s' % reply_to)
 subject = curs.fetchone()[0]
 if not subject.startswith('Re: '):
 subject = 'Re: ' + subject

print """
 Subject:

 <input type='text' size='40' name='subject' value='%s' />

 Sender:

 <input type='text' size='40' name='sender' />

 Message:

 <textarea name='text' cols='40' rows='20'></textarea>

 <input type='submit' value='Save'/>
 </form>
 <hr />
 Back to the main page'
 </body>
</html>
""" % subject

Writing the Save Script
Now let’s move on to the final script. The save.cgi script will receive information about a mes-
sage (from the form generated by edit.cgi) and will store it in the database. That means using
a SQL INSERT command, and because the database has been modified, conn.commit must be
called so the changes aren’t lost when the script terminates.

Listing 26-8 shows the source code for the save.cgi script.

512 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

Listing 26-8. The Save Script (save.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

def quote(string):
 if string:
 return string.replace("'", "\\'")
 else:
 return string

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()

sender = quote(form.getvalue('sender'))
subject = quote(form.getvalue('subject'))
text = quote(form.getvalue('text'))
reply_to = form.getvalue('reply_to')

if not (sender and subject and text):
 print 'Please supply sender, subject, and text'
 sys.exit()

if reply_to is not None:
 query = """
 INSERT INTO messages(reply_to, sender, subject, text)
 VALUES(%i, '%s', '%s', '%s')""" % (int(reply_to), sender, subject, text)
else:
 query = """
 INSERT INTO messages(sender, subject, text)
 VALUES('%s', '%s', '%s')""" % (sender, subject, text)

curs.execute(query)
conn.commit()

print """
<html>

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 513

 <head>
 <title>Message Saved</title>
 </head>
 <body>
 <h1>Message Saved</h1>
 <hr />
 Back to the main page
 </body>
</html>s
"""

Trying It Out
To test this system, start by opening main.cgi. From there, click the Post message link. That
should take you to edit.cgi. Enter some values in all the fields and click the Save link.
That should take you to save.cgi, which will display the message Message Saved. Click the
Back to the main page link to get back to main.cgi. The listing should now include your new
message.

To view your message, simply click its subject. You should go to view.cgi with the correct
ID. From there, try to click the Reply link, which should take you to edit.cgi once again, but
this time with reply_to set (in a hidden input tag) and with a default subject. Once again, enter
some text, click Save, and go back to the main page. It should now show your reply, displayed
under the original subject. (If it’s not showing, try to reload the page.)

The main page is shown in Figure 26-1, the message viewer in Figure 26-2, and the mes-
sage composer in Figure 26-3.

Figure 26-1. The main page

514 C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L LE T I N B O A R D

Figure 26-2. The message viewer

Figure 26-3. The message composer

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 515

Further Exploration
Now that you have the power to develop huge and powerful web applications with reliable and
efficient storage, there are many things you can sink your teeth into:

• How about making a web front end to a database of your favorite Monty Python
sketches?

• If you’re interested in improving the system in this chapter, you should think about
abstraction. How about creating a utility module with a function to print a standard
header and another to print a standard footer? That way, you wouldn’t need to write the
same HTML stuff in each script. Also, it might be useful to add a user database with some
password handling or abstract away the code for creating a connection.

• If you would like a storage solution that doesn’t require a dedicated server, you could use
SQLite (which is used in Chapter 13), or you might want to check out Metakit, a really
neat little database package that also lets you store an entire database in a single file
(http://equi4.com/metakit/python.html).

• Yet another alternative is the Berkeley DB (http://www.sleepycat.com), which is quite
simple but can handle astonishing amounts of data very efficiently. (The Berkeley DB is
accessible, when installed, through the standard library modules bsddb, dbhash, and
anydbm.)

What Now?
If you think writing your own discussion forum software is cool, how about writing your own
peer-to-peer file sharing program, like BitTorrent (or, at least, its lobotomized half brother)?
Well, in the next project, that’s exactly what you’ll do. And the good news is that it will be easier
than most of the network programming you’ve done so far, thanks to the wonder of remote
procedure calls.

517

■ ■ ■

C H A P T E R 2 7

Project 8: File Sharing with
XML-RPC

This chapter’s project is a simple file sharing application. You may be familiar with the con-
cept of file sharing from such applications as the (in)famous Napster (no longer downloadable
in its original form), Gnutella (see http://www.gnutellaforums.com for discussions about avail-
able clients), BitTorrent (available from http://www.bittorrent.com), and many others. What
you’ll be writing is in many ways similar to these, although quite a bit simpler.

The main technology you’ll use is XML-RPC. As mentioned in Chapter 15, this is a protocol
for calling procedures (functions) remotely, possibly across a network. If you want, you can
quite easily use plain socket programming (possibly employing some of the techniques
described in Chapters 14 and 24) to implement the functionality of this project. That might
even give you better performance, because the XML-RPC protocol does come with a certain
overhead. However, XML-RPC is very easy to use and will most likely simplify your code
considerably.

What’s the Problem?
You want to create a peer-to-peer file sharing program. File sharing basically means exchang-
ing files (everything from text files to sound or video clips) between programs running on
different machines. Peer-to-peer is a term that describes a type of interaction between com-
puter programs that is somewhat different from the common client-server interaction (where a
client may connect to a server but not vice versa). In a peer-to-peer interaction, any peer may
connect to any other. In such a (virtual) network of peers, there is no central authority (as rep-
resented by the server in a client/server architecture), which makes the network more robust.
It won’t collapse unless you shut down most of the peers.

■Tip If you’re interested in learning more about peer-to-peer systems, try a web search on the phrase
“peer-to-peer.”

Many issues are involved in constructing a peer-to-peer system. In a system such as the
old-school Gnutella, a peer may disseminate a query to all of its neighbors (the other peers it

518 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

knows about), and they may subsequently disseminate the query further. Any peer that
responds to the query can then send a reply back through the chain of peers to the initial one.
The peers work individually and in parallel. More recent systems, such as BitTorrent, use even
more clever techniques, such as requiring that you upload files in order to be allowed to down-
load files. To simplify things, this project’s system will contact each neighbor in turn, waiting
for its response before moving on. This is not quite as efficient as the parallel approach of
Gnutella, but good enough for your purposes.

Also, most peer-to-peer systems have clever ways of organizing their structure—that is,
which peers are “next to” which—and how this structure evolves over time, as peers connect and
disconnect. We’ll keep that very simple in this project, but leave things open for improvements.

The following are the requirements that the file sharing program must satisfy:

• Each node must keep track of a set of known nodes, from which it can ask for help. It
must be possible for a node to introduce itself to another node (and thereby be included
in this set).

• It must be possible to ask a node for a file (by supplying a file name). If the node has the
file in question, it should return it; otherwise, it should ask each of its neighbors in turn
for the same file (and they, in turn, may ask their neighbors). If one of these nodes has
the file, it is returned.

• To avoid loops (A asking B, which in turn asks A) and to avoid overly long chains of
neighbors asking neighbors (A asking B asking C . . . asking Z), it must be possible to
supply a history when querying a node. This history is just a list of which nodes have par-
ticipated in the query up until this point. By not asking nodes already in the history, you
avoid loops, and by limiting the length of the history, you avoid overly long query chains.

• There must be some way of connecting to a node and identifying yourself as a trusted
party. By doing so, you should be given access to functionality that is not available to
untrusted parties (such as other nodes in the peer-to-peer network). This functionality
may include asking the node to download and store a file from the other peers in the net-
work (through a query).

• You must have some user interface that lets you connect to a node (as a trusted party)
and make it download files. It should be easy to extend and, for that matter, replace this
interface.

All of this may seem a bit steep, but as you’ll see, implementing it isn’t all that hard. And
you’ll probably find that once you have this in place, adding functionality won’t be all that dif-
ficult either.

Useful Tools
In this project, you’ll use quite a few standard library modules.

The main modules you’ll be using are xmlrpclib and its close friend SimpleXMLRPCServer. The
use of xmlrpclib is quite straightforward. You simply create a ServerProxy object with a URL to the

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 519

server, and you immediately have access to the remote procedures. Using SimpleXMLRPCServer is a
tad more involved, as you’ll learn as you work through the project in this chapter.

For the interface to the file sharing program, you’ll be using a module from the standard
library called cmd. To get some (very limited) parallelism, you’ll use the threading module,
and to extract the components of a URL, you’ll use the urlparse module. These modules are
explained later in the chapter.

Other modules you might want to brush up on are random, string, time, and os.path. See
Chapter 10, as well as the Python Library Reference, for additional details.

Preparations
The libraries used in this project don’t require much preparation. If you have a fairly recent
version of Python, all of the necessary libraries should be available out of the box.

You don’t strictly have to be connected to a network to use the software in this project, but
it will make things more interesting. If you have access to two (or more) separate machines that
are connected (for example, both connected to the Internet), you can run the software on each
of these machines and have them communicate with each other (although you may need to
make changes to any firewall rules you’re running). For testing purposes, it is also possible
to run multiple file sharing nodes on the same machine.

First Implementation
Before you can write a first prototype of the Node class (a single node or peer in the system), you
need to know a bit about how the SimpleXMLRPCServer class works. It is instantiated with a tuple
of the form (servername, port). The server name is the name of the machine on which the
server will run. (You can use an empty string here to indicate localhost, the machine where
you’re actually executing the program.) The port number can be any port you have access to,
typically 1024 and above.

After you have instantiated the server, you may register an instance that implements its
“remote methods,” with the register_instance method. Alternatively, you can register indi-
vidual functions with the register_function method. When you’re ready to run the server (so
that it can respond to requests from outside), you call its method serve_forever. You can easily
try this out. Start two interactive Python interpreters. In the first one, enter the following code:

>>> from SimpleXMLRPCServer import SimpleXMLRPCServer
>>> s = SimpleXMLRPCServer(("", 4242)) # Localhost at port 4242
>>> def twice(x): # Example function
... return x*2
...
>>> s.register_function(twice) # Add functionality to the server
>>> s.serve_forever() # Start the server

After executing the last statement, the interpreter should seem to “hang.” Actually, it’s
waiting for RPC requests.

520 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

To make such a request, switch to the other interpreter and execute the following:

>>> from xmlrpclib import ServerProxy # ... or simply Server, if you prefer
>>> s = ServerProxy('http://localhost:4242') # Localhost again...
>>> s.twice(2)
4

Pretty impressive, eh? Especially considering that the client part (using xmlrpclib) could
be run on a different machine. (In that case, you would need to use the actual name of the
server machine instead of simply localhost.) As you can see, to access the remote procedures
implemented by the server, all that is required is to instantiate a ServerProxy with the correct
URL. It really couldn’t be much easier.

Implementing a Simple Node
Now that we’ve covered the XML-RPC technicalities, it’s time to get started with the coding.
(The full source code of the first prototype is found in Listing 27-1, at the end of this section.)

To find out where to begin, it might be a good idea to review your requirements from ear-
lier in this chapter. You’re mainly interested in two things: what information must your Node
hold (attributes) and what actions must it be able to perform (methods)?

The Node must have at least the following attributes:

• A directory name, so it knows where to find/store its files.

• A “secret” (or password) that can be used by others to identify themselves (as trusted
parties).

• A set of known peers (URLs).

• A URL, which may be added to the query history or possibly supplied to other Nodes.
(This project won’t implement the latter.)

The Node constructor will simply set these four attributes. In addition, you’ll need a
method for querying the Node, a method for making it fetch and store a file, and a method to
introduce another Node to it. Let’s call these methods query, fetch, and hello. The following
is a sketch of the class, written as pseudocode:

class Node:

 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query):
 Look for a file (possibly asking neighbors), and return it as
 a string

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 521

 def fetch(self, query, secret):
 If the secret is correct, perform a regular query and store
 the file. In other words, make the Node find the file and download it.

 def hello(self, other):
 Add the other Node to the known peers

Assuming that the set of known URLs is called known, the hello method is very simple. It
just adds other to self.known, where other is the only parameter (a URL). However, XML-RPC
requires all methods to return a value; None is not accepted. So, let’s define two result “codes”
that indicate success or failure:

OK = 1
FAIL = 2

Then the hello method can be implemented as follows:

 def hello(self, other):
 self.known.add(other)
 return OK

When the Node is registered with a SimpleXMLRPCServer, it will be possible to call this
method from the “outside.”

The query and fetch methods are a bit more tricky. Let’s begin with fetch because it’s the
simpler of the two. It must take two parameters: the query and the “secret,” which is required
so that your Node can’t be arbitrarily manipulated by anyone. Note that calling fetch causes the
Node to download a file. Access to this method should therefore be more restricted than, for
example, query, which simply passes the file through.

If the supplied secret is not equal to self.secret (the one supplied at startup), fetch sim-
ply returns FAIL. Otherwise, it calls query to get the file corresponding to the given query (a file
name). But what does query return? When you call query, you would like to know whether the
query succeeded, and you would like to have the contents of the relevant file returned if it did.
So, let’s define the return value of query as the pair (tuple) code, data, where code is either OK
or FAIL, and data is the sought-after file (if code equals OK) stored in a string, or an arbitrary
value (for example, an empty string) otherwise.

In fetch, the code and the data are retrieved. If the code is FAIL, then fetch simply returns
FAIL as well. Otherwise, it opens a new file (in write mode) whose name is the same as the query
and which is found in the directory self.dirname (you use os.path.join to join the two). The
data is written to the file, the file is closed, and OK is returned. See Listing 27-1 later in this sec-
tion for the relatively straightforward implementation.

Now, turn your attention to query. It receives a query as a parameter, but it should also
accept a history (which contains URLs that should not be queried because they are already
waiting for a response to the same query). Because this history is empty in the first call to query,
you can use an empty list as a default value.

If you take a look at the code in Listing 27-1, you’ll see that it abstracts away part of the
behavior of query by creating two utility methods called _handle and _broadcast. Note that
their names begin with underscores, which means that they won’t be accessible through

522 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

XML-RPC. (This is part of the behavior of SimpleXMLRPCServer, not a part of XML-RPC itself.)
That is useful because these methods aren’t meant to provide separate functionality to an out-
side party, but are there to structure the code.

For now, let’s just assume that _handle takes care of the internal handling of a query
(checks whether the file exists at this specific Node, fetches the data, and so forth) and that it
returns a code and some data, just as query itself is supposed to. As you can see from the listing,
if code == OK, then code, data is returned immediately—the file was found. However, what
should query do if the code returned from _handle is FAIL? Then it must ask all other known
Nodes for help. The first step in this process is to add self.url to history.

■Note Neither the += operator nor the append list method has been used when updating the history
because both of these modify lists in place, and you don’t want to modify the default value itself.

If the new history is too long, query returns FAIL (along with an empty string). The maxi-
mum length is arbitrarily set to 6 and kept in the global constant MAX_HISTORY_LENGTH.

If history isn’t too long, the next step is to broadcast the query to all known peers, which
is done with the _broadcast method. The _broadcast method isn’t very complicated (see
Listing 27-1). It iterates over a copy of self.known. If a peer is found in history, the loop contin-
ues to the next peer (using the continue statement). Otherwise, a ServerProxy is constructed,
and the query method is called on it. If the query succeeds, its return value is used as the return
value from _broadcast. Exceptions may occur, due to network problems, a faulty URL, or the
fact that the peer doesn’t support the query method. If such an exception occurs, the peer’s
URL is removed from self.known (in the except clause of the try statement enclosing the
query). Finally, if control reaches the end of the function (nothing has been returned yet), FAIL
is returned, along with an empty string.

WHY IS MAX_HISTORY_LENGTH SET TO 6?

The idea is that any peer in the network should be able to reach another in, at most, six steps. This, of course,
depends on the structure of the network (which peers know which), but is supported by the hypothesis of
“six degrees of separation,” which applies to people and who they know. For a description of this hypothesis,
see, for example, Wikipedia’s article on six degrees of separation (http://en.wikipedia.org/wiki/
Six_degrees_of_separation).

Using this number in your program may not be very scientific, but at least it seems like a good guess.
On the other hand, in a large network with many nodes, the sequential nature of your program may lead to bad
performance for large values of MAX_HISTORY_LENGTH, so you might want to reduce it if things get slow.

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 523

■Note You shouldn’t simply iterate over self.known because the set may be modified during the iteration.
Using a copy is safer.

The _start method creates a SimpleXMLRPCServer (using the little utility function getPort,
which extracts the port number from a URL), with logRequests set to false (you don’t want to
keep a log). It then registers self with register_instance and calls the server’s serve_forever
method.

Finally, the main method of the module extracts a URL, a directory, and a secret (password)
from the command line; creates a Node; and calls its _start method.

For the full code of the prototype, see Listing 27-1.

Listing 27-1. A Simple Node Implementation (simple_node.py)

from xmlrpclib import ServerProxy
from os.path import join, isfile
from SimpleXMLRPCServer import SimpleXMLRPCServer
from urlparse import urlparse
import sys

MAX_HISTORY_LENGTH = 6

OK = 1
FAIL = 2
EMPTY = ''

def getPort(url):
 'Extracts the port from a URL'
 name = urlparse(url)[1]
 parts = name.split(':')
 return int(parts[-1])

class Node:
 """
 A node in a peer-to-peer network.
 """
 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

524 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

 def query(self, query, history=[]):
 """
 Performs a query for a file, possibly asking other known Nodes for
 help. Returns the file as a string.
 """
 code, data = self._handle(query)
 if code == OK:
 return code, data
 else:
 history = history + [self.url]
 if len(history) >= MAX_HISTORY_LENGTH:
 return FAIL, EMPTY
 return self._broadcast(query, history)

 def hello(self, other):
 """
 Used to introduce the Node to other Nodes.
 """
 self.known.add(other)
 return OK

 def fetch(self, query, secret):
 """
 Used to make the Node find a file and download it.
 """
 if secret != self.secret: return FAIL
 code, data = self.query(query)
 if code == OK:
 f = open(join(self.dirname, query), 'w')
 f.write(data)
 f.close()
 return OK
 else:
 return FAIL

 def _start(self):
 """
 Used internally to start the XML-RPC server.
 """
 s = SimpleXMLRPCServer(("", getPort(self.url)), logRequests=False)
 s.register_instance(self)
 s.serve_forever()

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 525

 def _handle(self, query):
 """
 Used internally to handle queries.
 """
 dir = self.dirname
 name = join(dir, query)
 if not isfile(name): return FAIL, EMPTY
 return OK, open(name).read()

 def _broadcast(self, query, history):
 """
 Used internally to broadcast a query to all known Nodes.
 """
 for other in self.known.copy():
 if other in history: continue
 try:
 s = ServerProxy(other)
 code, data = s.query(query, history)
 if code == OK:
 return code, data
 except:
 self.known.remove(other)
 return FAIL, EMPTY

def main():
 url, directory, secret = sys.argv[1:]
 n = Node(url, directory, secret)
 n._start()

if __name__ == '__main__': main()

Now let’s take a look at a simple example of how this program may be used.

Trying Out the First Implementation
Make sure you have several terminals (xterm, DOS window, or equivalent) open. Let’s say you
want to run two peers (both on the same machine). Create a directory for each of them, such as
files1 and files2. Put a file (for example, test.txt) into the files2 directory. Then, in one ter-
minal, run the following command:

python simple_node.py http://localhost:4242 files1 secret1

In a real application, you would use the full machine name instead of localhost, and you
would probably use a secret that is a bit more cryptic than secret1.

This is your first peer. Now create another one. In a different terminal, run the following
command:

python simple_node.py http://localhost:4243 files2 secret2

526 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

As you can see, this peer serves files from a different directory, uses another port number
(4243), and has another secret. If you have followed these instructions, you should have two
peers running (each in a separate terminal window). Let’s start up an interactive Python inter-
preter and try to connect to one of them:

>>> from xmlrpclib import *
>>> mypeer = ServerProxy('http://localhost:4242') # The first peer
>>> code, data = mypeer.query('test.txt')
>>> code
2

As you can see, the first peer fails when asked for the file test.txt. (The return code 2
represents failure, remember?) Let’s try the same thing with the second peer:

>>> otherpeer = ServerProxy('http://localhost:4243') # The second peer
>>> code, data = otherpeer.query('test.txt')
>>> code
1

This time, the query succeeds because the file test.txt is found in the second peer’s file
directory. If your test file doesn’t contain too much text, you can display the contents of the
data variable to make sure that the contents of the file have been transferred properly:

>>> data
'This is a test\n'

So far, so good. How about introducing the first peer to the second one?

>>> mypeer.hello('http://localhost:4243') # Introducing mypeer to otherpeer

Now the first peer knows the URL of the second, and thus may ask it for help. Let’s try
querying the first peer again. This time, the query should succeed:

>>> mypeer.query('test.txt')
[1, 'This is a test\n']

Bingo!
Now there is only one thing left to test: can you make the first node actually download and

store the file from the second one?

>>> mypeer.fetch('test.txt', 'secret1')
1

Well, the return value (1) indicates success. And if you look in the files1 directory, you
should see that the file test.txt has miraculously appeared. Cool, eh? Feel free to start several
peers (on different machines, if you want to), and introduce them to each other. When you
grow tired of playing, proceed to the next implementation.

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 527

Second Implementation
The first implementation has plenty of flaws and shortcomings. I won’t address all of them
(some possible improvements are discussed in the section “Further Exploration,” at the end of
this chapter), but here are some of the more important ones:

• If you try to stop a Node and then restart it, you will probably get some error message
about the port being in use already.

• You should have a more user-friendly interface than xmlrpclib in an interactive Python
interpreter.

• The return codes are inconvenient. A more natural and Pythonic solution would be to
use a custom exception if the file can’t be found.

• The Node doesn’t check whether the file it returns is actually inside the file directory. By
using paths such as '../somesecretfile.txt', a sneaky cracker may get unlawful access
to any of your other files.

The first problem is easy to solve. You simply set the allow_reuse_address attribute of the
SimpleXMLRPCServer to true:

SimpleXMLRPCServer.allow_reuse_address = 1

If you don’t want to modify this class directly, you can create your own subclass. The other
changes are a bit more involved, and are discussed in the following sections. The source code
is shown in Listings 27-2 and 27-3 later in this chapter. (You might want to take a quick look at
these listings before reading on.)

Creating the Client Interface
The client interface uses the Cmd class from the cmd module. For details about how this works,
see the Python Library Reference. Simply put, you subclass Cmd to create a command-line inter-
face, and implement a method called do_foo for each command foo you want it to be able to
handle. This method will receive the rest of the command line as its only argument (as a string).
For example, if you type this in the command-line interface:

say hello

the method do_say is called with the string 'hello' as its only argument. The prompt of the
Cmd subclass is determined by the prompt attribute.

The only commands implemented in your interface will be fetch (to download a file) and
exit (to exit the program). The fetch command simply calls the fetch method of the server,
printing an error message if the file could not be found. The exit commands prints an empty
line (for aesthetic reasons only) and calls sys.exit. (The EOF command corresponds to “end of
file,” which occurs when the user presses Ctrl+D in UNIX.)

528 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

But what is all the stuff going on in the constructor? Well, you want each client to be asso-
ciated with a peer of its own. You could simply create a Node object and call its _start method,
but then your Client couldn’t do anything until the _start method returned, which makes the
Client completely useless. To fix this, the Node is started in a separate thread. Normally, using
threads involves a lot of safeguarding and synchronization with locks and the like. However,
because a Client interacts with its Node only through XML-RPC, you don’t need any of this. To
run the _start method in a separate thread, you just need to put the following code into your
program at some suitable place:

from threading import Thread
n = Node(url, dirname, self.secret)
t = Thread(target=n._start)
t.start()

■Caution You should be careful when rewriting the code of this project. The minute your Client
starts interacting directly with the Node object or vice versa, you may easily run into trouble, because of
the threading. Make sure you fully understand threading before you do this.

To make sure that the server is fully started before you start connecting to it with XML-
RPC, you’ll give it a head start, and wait for a moment with time.sleep.

Afterward, you’ll go through all the lines in a file of URLs and introduce your server to them
with the hello method.

You don’t really want to be bothered with coming up with a clever secret password.
Instead, you can use the utility function randomString (in Listing 27-3, shown later in this chap-
ter), which generates a random secret string that is shared between the Client and the Node.

Raising Exceptions
Instead of returning a code indicating success or failure, you’ll just assume success and raise an
exception in the case of failure. In XML-RPC, exceptions (or faults) are identified by numbers.
For this project, I have (arbitrarily) chosen the numbers 100 and 200 for ordinary failure (an
unhandled request) and a request refusal (access denied), respectively.

UNHANDLED = 100
ACCESS_DENIED = 200

class UnhandledQuery(Fault):
 """
 An exception that represents an unhandled query.
 """
 def __init__(self, message="Couldn't handle the query"):
 Fault.__init__(self, UNHANDLED, message)

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 529

class AccessDenied(Fault):
 """
 An exception that is raised if a user tries to access a
 resource for which he or she is not authorized.
 """
 def __init__(self, message="Access denied"):
 Fault.__init__(self, ACCESS_DENIED, message)

The exceptions are subclasses of xmlrpclib.Fault. When they are raised in the server, they are
passed on to the client with the same faultCode. If an ordinary exception (such as IOException)
is raised in the server, an instance of the Fault class is still created, so you can’t simply use
arbitrary exceptions here. (Make sure you have a recent version of SimpleXMLRPCServer, so it
handles exceptions properly.)

As you can see from the source code, the logic is still basically the same, but instead of
using if statements for checking returned codes, the program now uses exceptions. (Because
you can use only Fault objects, you need to check the faultCodes. If you weren’t using XML-
RPC, you would have used different exception classes instead, of course.)

Validating File Names
The last issue to deal with is to check whether a given file name is found within a given direc-
tory. There are several ways to do this, but to keep things platform-independent (so it works in
Windows, in UNIX, and in Mac OS, for example), you should use the module os.path.

The simple approach taken here is to create an absolute path from the directory name and
the file name (so that, for example, '/foo/bar/../baz' is converted to '/foo/baz'), the direc-
tory name is joined with an empty file name (using os.path.join) to ensure that it ends with a
file separator (such as '/'), and then you check that the absolute file name begins with the
absolute directory name. If it does, the file is actually inside the directory.

The full source code for the second implementation is shown Listings 27-2 and 27-3.

Listing 27-2. A New Node Implementation (server.py)

from xmlrpclib import ServerProxy, Fault
from os.path import join, abspath, isfile
from SimpleXMLRPCServer import SimpleXMLRPCServer
from urlparse import urlparse
import sys

SimpleXMLRPCServer.allow_reuse_address = 1

MAX_HISTORY_LENGTH = 6

UNHANDLED = 100
ACCESS_DENIED = 200

530 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

class UnhandledQuery(Fault):
 """
 An exception that represents an unhandled query.
 """
 def __init__(self, message="Couldn't handle the query"):
 Fault.__init__(self, UNHANDLED, message)

class AccessDenied(Fault):
 """
 An exception that is raised if a user tries to access a
 resource for which he or she is not authorized.
 """
 def __init__(self, message="Access denied"):
 Fault.__init__(self, ACCESS_DENIED, message)

def inside(dir, name):
 """
 Checks whether a given file name lies within a given directory.
 """
 dir = abspath(dir)
 name = abspath(name)
 return name.startswith(join(dir, ''))

def getPort(url):
 """
 Extracts the port number from a URL.
 """
 name = urlparse(url)[1]
 parts = name.split(':')
 return int(parts[-1])

class Node:
 """
 A node in a peer-to-peer network.
 """
 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query, history=[]):
 """
 Performs a query for a file, possibly asking other known Nodes for
 help. Returns the file as a string.

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 531

 """
 try:
 return self._handle(query)
 except UnhandledQuery:
 history = history + [self.url]
 if len(history) >= MAX_HISTORY_LENGTH: raise
 return self._broadcast(query, history)

 def hello(self, other):
 """
 Used to introduce the Node to other Nodes.
 """
 self.known.add(other)
 return 0

 def fetch(self, query, secret):
 """
 Used to make the Node find a file and download it.
 """
 if secret != self.secret: raise AccessDenied
 result = self.query(query)
 f = open(join(self.dirname, query), 'w')
 f.write(result)
 f.close()
 return 0

 def _start(self):
 """
 Used internally to start the XML-RPC server.
 """
 s = SimpleXMLRPCServer(("", getPort(self.url)), logRequests=False)
 s.register_instance(self)
 s.serve_forever()

 def _handle(self, query):
 """
 Used internally to handle queries.
 """
 dir = self.dirname
 name = join(dir, query)
 if not isfile(name): raise UnhandledQuery
 if not inside(dir, name): raise AccessDenied
 return open(name).read()

532 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

 def _broadcast(self, query, history):
 """
 Used internally to broadcast a query to all known Nodes.
 """
 for other in self.known.copy():
 if other in history: continue
 try:
 s = ServerProxy(other)
 return s.query(query, history)

 except Fault, f:
 if f.faultCode == UNHANDLED: pass
 else: self.known.remove(other)
 except:
 self.known.remove(other)
 raise UnhandledQuery

def main():
 url, directory, secret = sys.argv[1:]
 n = Node(url, directory, secret)
 n._start()

if __name__ == '__main__': main()

Listing 27-3. A Node Controller Interface (client.py)

from xmlrpclib import ServerProxy, Fault
from cmd import Cmd
from random import choice
from string import lowercase
from server import Node, UNHANDLED
from threading import Thread
from time import sleep
import sys

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

def randomString(length):
 """
 Returns a random string of letters with the given length.
 """
 chars = []
 letters = lowercase[:26]

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 533

 while length > 0:
 length -= 1
 chars.append(choice(letters))
 return ''.join(chars)

class Client(Cmd):
 """
 A simple text-based interface to the Node class.
 """

 prompt = '> '

 def __init__(self, url, dirname, urlfile):
 """
 Sets the url, dirname, and urlfile, and starts the Node
 Server in a separate thread.
 """
 Cmd.__init__(self)
 self.secret = randomString(SECRET_LENGTH)
 n = Node(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

 def do_fetch(self, arg):
 "Call the fetch method of the Server."
 try:
 self.server.fetch(arg, self.secret)
 except Fault, f:
 if f.faultCode != UNHANDLED: raise
 print "Couldn't find the file", arg

 def do_exit(self, arg):
 "Exit the program."
 print
 sys.exit()

 do_EOF = do_exit # End-Of-File is synonymous with 'exit'

534 C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.cmdloop()

if __name__ == '__main__': main()

Trying Out the Second Implementation
Let’s see how the program is used. Start it like this:

python client.py urls.txt directory http://servername.com:4242

The file urls.txt should contain one URL per line—the URLs of all the other peers you
know. The directory given as the second argument should contain the files you want to share
(and will be the location where new files are downloaded). The last argument is the URL to the
peer. When you run this command, you should get a prompt like this:

>

Try fetching a nonexistent file:

> fetch fooo
Couldn't find the file fooo

By starting several nodes (either on the same machine using different ports or on different
machines) that know about each other (just put all the URLs in the URL files), you can try these
out as you did with the first prototype. When you get bored with this, move on to the next
section.

Further Exploration
You can probably think of several ways to improve and extend the system described in this
chapter. Here are some ideas:

• Add caching. If your node relays a file through a call to query, why not store the file at the
same time? That way, you can respond more quickly the next time someone asks for
the same file. You could perhaps set a maximum size for the cache, remove old files, and
so on.

• Use a threaded or asynchronous server (a bit difficult). That way, you can ask several
other nodes for help without waiting for their replies, and they can later give you the
reply by calling a reply method.

• Allow more advanced queries, such as querying on the contents of text files.

• Use the hello method more extensively. When you discover a new peer (through a call
to hello), why not introduce it to all the peers you know? Perhaps you can think of more
clever ways of discovering new peers?

C H A P T E R 2 7 ■ PROJECT 8: FILE SHARING WITH XML-RPC 535

• Read up on the representational state transfer (REST) philosophy of distributed systems.
REST is an emerging alternative to web service technologies such as XML-RPC. (See, for
example, http://en.wikipedia.org/wiki/REST.)

• Use xmlrpclib.Binary to wrap the files, to make the transfer safer for nontext files.

• Read the SimpleXMLRPCServer code. Check out the DocXMLRPCServer class and the multi-
call extension in libxmlrpc.

What Now?
Now that you have a peer-to-peer file sharing system working, how about making it more user
friendly? In the next chapter, you learn how to add a GUI as an alternative to the current cmd-
based interface.

537

■ ■ ■

C H A P T E R 2 8

Project 9: File Sharing II—Now
with GUI!

This is a relatively short project because much of the functionality you need has already been
written—in Chapter 27. In this chapter, you see how easy it can be to add a GUI to an existing
Python program.

What’s the Problem?
In this project, you expand the file sharing system developed in Chapter 27, with a GUI client.
This will make the program much easier to use, which means that more people might choose
to use it (and, of course, multiple users sharing files is the whole point of the program). A sec-
ondary goal of this project is to show that a program that has a sufficiently modular design can
be quite easy to extend (one of the arguments for using object-oriented programming).

The GUI client should satisfy the following requirements:

• It should allow you to enter a file name and submit it to the server’s fetch method.

• It should list the files currently available in the server’s file directory.

That’s it. Because you already have much of the system working, the GUI part is a relatively
simple extension.

Useful Tools
In addition to the tools used in Chapter 27, you will need the wxPython toolkit. For more infor-
mation about (and installation instructions for) wxPython, see Chapter 12. The code in this
chapter was developed using wxPython version 2.6, but will work with the latest version.

If you want to use another GUI toolkit, feel free to do so. The example in this chapter will
give you the general idea of how you can build your own implementation, with your favorite
tools. (Chapter 12 describes several GUI toolkits.)

538 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

Preparations
Before you begin this project, you should have Project 8 (from Chapter 27) in place, and a
usable GUI toolkit installed, as mentioned in the previous section. Beyond that, no significant
preparations are necessary for this project.

First Implementation
If you want to take a peek at the full source code for the first implementation, it can be found in
Listing 28-1 later in this section. Much of the functionality is quite similar to that of the project
in the preceding chapter. The client presents an interface (the fetch method) through which the
user may access the functionality of the server. Let’s review the GUI-specific parts of the code.

The client in Chapter 27 was a subclass of cmd.Cmd; the Client described in this chapter
subclasses wx.App. While you’re not required to subclass wx.App (you could create a completely
separate Client class), it can be a natural way of organizing your code. The GUI-related setup
is placed in a separate method, called OnInit, which is called automatically after the App object
has been created. It performs the following steps:

1. It creates a window with the title “File Sharing Client.”

2. It creates a text field and assigns that text field to the attribute self.input (and, for con-
venience, to the local variable input). It also creates a button with the text “Fetch.” It
sets the size of the button and binds an event handler to it. Both the text field and the
button have the panel bkg as their parent.

3. It adds the text field and button to the window, laying them out using box sizers. (Feel
free to use another layout mechanism.)

4. It shows the window, and returns True, to indicate that OnInit was successful.

The event handler is quite similar to the handler do_fetch from Chapter 27. It retrieves the
query from self.input (the text field). It then calls self.server.fetch inside a try/except
statement. Note that the event handler receives an event object as its only argument.

The source code for the first implementation is shown in Listing 28-1.

Listing 28-1. A Simple GUI Client (simple_guiclient.py)

from xmlrpclib import ServerProxy, Fault
from server import Node, UNHANDLED
from client import randomString
from threading import Thread
from time import sleep
from os import listdir
import sys
import wx

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 539

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

class Client(wx.App):
 """
 The main client class, which takes care of setting up the GUI and
 starts a Node for serving files.
 """
 def __init__(self, url, dirname, urlfile):
 """
 Creates a random secret, instantiates a Node with that secret,
 starts a Thread with the Node's _start method (making sure the
 Thread is a daemon so it will quit when the application quits),
 reads all the URLs from the URL file and introduces the Node to
 them.
 """
 super(Client, self).__init__()
 self.secret = randomString(SECRET_LENGTH)
 n = Node(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

 def OnInit(self):
 """
 Sets up the GUI. Creates a window, a text field, and a button, and
 lays them out. Binds the submit button to self.fetchHandler.
 """

 win = wx.Frame(None, title="File Sharing Client", size=(400, 45))

 bkg = wx.Panel(win)

 self.input = input = wx.TextCtrl(bkg);

 submit = wx.Button(bkg, label="Fetch", size=(80, 25))
 submit.Bind(wx.EVT_BUTTON, self.fetchHandler)

 hbox = wx.BoxSizer()

540 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

 hbox.Add(input, proportion=1, flag=wx.ALL | wx.EXPAND, border=10)
 hbox.Add(submit, flag=wx.TOP | wx.BOTTOM | wx.RIGHT, border=10)

 vbox = wx.BoxSizer(wx.VERTICAL)
 vbox.Add(hbox, proportion=0, flag=wx.EXPAND)

 bkg.SetSizer(vbox)

 win.Show()

 return True

 def fetchHandler(self, event):
 """
 Called when the user clicks the 'Fetch' button. Reads the
 query from the text field, and calls the fetch method of the
 server Node. If the query is not handled, an error message is
 printed.
 """

 query = self.input.GetValue()
 try:
 self.server.fetch(query, self.secret)
 except Fault, f:
 if f.faultCode != UNHANDLED: raise
 print "Couldn't find the file", query

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.MainLoop()

if __name__ == "__main__": main()

Except for the relatively simple code explained previously, the GUI client works just like the
text-based client in Chapter 27. You can run it in the same manner, too. To run this program, you
need a URL file, a directory of files to share, and a URL for your Node. Here is a sample run:

$ python simple_guiclient.py urlfile.txt files/ http://localhost:8080

Note that the file urlfile.txt must contain the URLs of some other Nodes for the program
to be of any use. You can either start several programs on the same machine (with different
port numbers) for testing purposes, or run them on different machines. Figure 28-1 shows the
GUI of the client.

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 541

Figure 28-1. The simple GUI client

This implementation works, but it performs only part of its job. It should also list the files
available in the server’s file directory. To do that, the server (Node) itself must be extended.

Second Implementation
The first prototype was very simple. It did its job as a file sharing system, but wasn’t very user
friendly. It would help a lot if users could see which files they had available (either located in
the file directory when the program starts or subsequently downloaded from another Node).
The second implementation will address this file listing issue. The full source code can be
found in Listing 28-2.

To get a listing from a Node, you must add a method. You could protect it with a password
as you have done with fetch, but making it publicly available may be useful, and it doesn’t
represent any real security risk. Extending an object is really easy: you can do it through sub-
classing. You simply construct a subclass of Node called ListableNode, with a single additional
method, list, which uses the method os.listdir, which returns a list of all the files in a
directory:

class ListableNode(Node):

 def list(self):
 return listdir(self.dirname)

To access this server method, the method updateList is added to the client:

 def updateList(self):
 self.files.Set(self.server.list())

The attribute self.files refers to a list box, which has been added in the OnInit method.
The updateList method is called in OnInit at the point where the list box is created, and again
each time fetchHandler is called (because calling fetchHandler may potentially alter the list
of files).

Listing 28-2. The Finished GUI Client (guiclient.py)

from xmlrpclib import ServerProxy, Fault
from server import Node, UNHANDLED
from client import randomString
from threading import Thread

542 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

from time import sleep
from os import listdir
import sys
import wx

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

class ListableNode(Node):
 """
 An extended version of Node, which can list the files
 in its file directory.
 """
 def list(self):
 return listdir(self.dirname)

class Client(wx.App):
 """
 The main client class, which takes care of setting up the GUI and
 starts a Node for serving files.
 """
 def __init__(self, url, dirname, urlfile):
 """
 Creates a random secret, instantiates a ListableNode with that secret,
 starts a Thread with the ListableNode's _start method (making sure the
 Thread is a daemon so it will quit when the application quits),
 reads all the URLs from the URL file and introduces the Node to
 them. Finally, sets up the GUI.
 """
 self.secret = randomString(SECRET_LENGTH)
 n = ListableNode(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)
 # Get the GUI going:
 super(Client, self).__init__()

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 543

 def updateList(self):
 """
 Updates the list box with the names of the files available
 from the server Node.
 """
 self.files.Set(self.server.list())

 def OnInit(self):
 """
 Sets up the GUI. Creates a window, a text field, a button, and
 a list box, and lays them out. Binds the submit button to
 self.fetchHandler.
 """

 win = wx.Frame(None, title="File Sharing Client", size=(400, 300))

 bkg = wx.Panel(win)

 self.input = input = wx.TextCtrl(bkg);

 submit = wx.Button(bkg, label="Fetch", size=(80, 25))
 submit.Bind(wx.EVT_BUTTON, self.fetchHandler)

 hbox = wx.BoxSizer()

 hbox.Add(input, proportion=1, flag=wx.ALL | wx.EXPAND, border=10)
 hbox.Add(submit, flag=wx.TOP | wx.BOTTOM | wx.RIGHT, border=10)

 self.files = files = wx.ListBox(bkg)
 self.updateList()

 vbox = wx.BoxSizer(wx.VERTICAL)
 vbox.Add(hbox, proportion=0, flag=wx.EXPAND)
 vbox.Add(files, proportion=1,
 flag=wx.EXPAND | wx.LEFT | wx.RIGHT | wx.BOTTOM, border=10)

 bkg.SetSizer(vbox)

 win.Show()

 return True

544 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

 def fetchHandler(self, event):
 """
 Called when the user clicks the 'Fetch' button. Reads the
 query from the text field, and calls the fetch method of the
 server Node. After handling the query, updateList is called.
 If the query is not handled, an error message is printed.
 """
 query = self.input.GetValue()
 try:
 self.server.fetch(query, self.secret)
 self.updateList()

 except Fault, f:
 if f.faultCode != UNHANDLED: raise
 print "Couldn't find the file", query

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.MainLoop()

if __name__ == '__main__': main()

And that’s it. You now have a GUI-enabled peer-to-peer file sharing program, which can
be run with this command:

$ python guiclient.py urlfile.txt files/ http://localhost:8080

Figure 28-2 shows the finished GUI client.

Figure 28-2. The finished GUI client

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 545

Of course, there are plenty of ways to expand the program. For some ideas, see the next
section. Beyond that, just let your imagination go wild.

Further Exploration
Some ideas for extending the file sharing system are given in Chapter 27. Here are some more:

• Add a status bar that displays such messages as “Downloading” or “Couldn’t find file
foo.txt.”

• Figure out ways for Nodes to share their “friends.” For example, when one Node is
introduced to another, each of them could introduce the other to the Nodes it already
knows. Also, before a Node shuts down, it might tell all its current neighbors about all
the Nodes it knows.

• Add a list of known Nodes (URLs) to the GUI. Make it possible to add new URLs and save
them in a URL file.

What Now?
You’ve written a full-fledged GUI-enabled peer-to-peer file sharing system. Although that
sounds pretty challenging, it wasn’t all that hard, was it? Now it’s time to face the last and
greatest challenge: writing your own arcade game.

547

■ ■ ■

C H A P T E R 2 9

Project 10: Do-It-Yourself
Arcade Game

Welcome to the final project. Now that you’ve sampled several of Python’s many capabili-
ties, it’s time to go out with a bang. In this chapter, you learn how to use Pygame, an extension
that enables you to write full-fledged, full-screen arcade games in Python. Although easy to
use, Pygame is quite powerful and consists of several components that are thoroughly docu-
mented in the Pygame documentation (available on the Pygame web site, http://pygame.org).
This project introduces you to some of the main Pygame concepts, but because this chapter
is only meant as a starting point, I’ve skipped several interesting features, such as sound
and video handling. I recommend that you investigate the other features yourself, once you’ve
familiarized yourself with the basics. You might also want to take a look at Beginning Game
Development with Python and Pygame by Will McGugan (Apress, 2007).

What’s the Problem?
So, how do you write a computer game? The basic design process is similar to the one you use
when writing any other program, but before you can develop an object model, you need to
design the game itself. What are its characters, its setting, and its objectives?

I’ll keep things reasonably simple here, so as not to clutter the presentation of the basic
Pygame concepts. Feel free to create a much more elaborate game if you like.

The game you’ll create will be based on the well-known Monty Python sketch “Self-
Defense Against Fresh Fruit.” In this sketch, a Sergeant Major (John Cleese) is instructing his
soldiers in self-defense techniques against attackers, wielding fresh fruit such as pomegran-
ates, mangoes in syrup, greengages, and bananas. The defense techniques include using a gun,
unleashing a tiger, and dropping a 16-ton weight on top of the attacker. In this game, you’ll
turn things around—the player controls a banana that desperately tries to survive a course in
self-defense, avoiding a barrage of 16-ton weights dropping from above. I guess a fitting name
for the game might be Squish.

■Note If you would like to try your hand at a game of your own as you follow this chapter, feel free to do
so. If you just want to change the look and feel of the game, simply replace the graphics (a couple of GIF or
PNG images) and some of the descriptive text.

548 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

The specific goals of this project revolve around the game design. The game should behave
as it was designed (the banana should be movable, and the 16-ton weight should drop from
above). In addition, the code should be modular and easily extensible (as always). A useful
requirement might be that game states (such as the game introduction, the various game
levels, and the “game over” state) should be part of the design, and that new states should be
easy to add.

Useful Tools
The only new tool you need in this project is Pygame, which you can download from the
Pygame web site (http://pygame.org). To get Pygame to work in UNIX, you may need to install
some extra software, but it’s all documented in the Pygame installation instructions (also avail-
able from the Pygame web site). The Windows binary installer is very easy to use—simply
execute the installer and follow the instructions.

■Note The Pygame distribution does not include NumPy (http://numpy.scipy.org), which may be use-
ful for manipulating sounds and images. Although it’s not needed for this project, you might want to check it
out. The Pygame documentation thoroughly describes how to use NumPy with Pygame.

The Pygame distribution consists of several modules, most of which you won’t need in this
project. The following sections describe the modules you do need. (Only the specific functions
or classes you’ll need are discussed here.) In addition to the functions described in the follow-
ing sections, the various objects used (such as surfaces, groups, and sprites) have several useful
methods, which I’ll discuss as they are used in the implementation sections.

■Tip You can find a nice introduction to Pygame in the “Line-by-Line Chimp” tutorial on the Pygame web
site (http://pygame.org/docs/tut/chimp/ChimpLineByLine.html). It addresses a few issues not dis-
cussed here, such as playing sound clips.

pygame
The pygame module automatically imports all the other Pygame modules, so if you place import
pygame at the top of your program, you can automatically access the other modules, such
as pygame.display and pygame.font.

The pygame module contains (among other things) the Surface function, which returns a
new surface object. Surface objects are simply blank images of a given size that you can use for

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 549

drawing and blitting. To blit (calling a surface object’s blit method) simply means to transfer
the contents of one surface to another. (The word blit is derived from the technical term block
transfer, which is abbreviated BLT.)

The init function is central to any Pygame game. It must be called before your game
enters its main event loop. This function automatically initializes all the other modules (such
as font and image).

You need the error class when you want to catch Pygame-specific errors.

pygame.locals
The pygame.locals module contains names (variables) you might want in your own module’s
scope. It contains names for event types, keys, video modes, and more. It is designed to be
safe to use when you import everything (from pygame.locals import *), although if you
know what you need, you may want to be more specific (for example, from pygame.locals
import FULLSCREEN).

pygame.display
The pygame.display module contains functions for dealing with the Pygame display, which
either may be contained in a normal window or occupy the entire screen. In this project, you
need the following functions:

flip: Updates the display. In general, when you modify the current screen, you do that in
two steps. First, you perform all the necessary modifications to the surface object returned
from the get_surface function, and then you call pygame.display.flip to update the dis-
play to reflect your changes.

update: Used instead of flip when you want to update only a part of the screen. It can
be used with the list of rectangles returned from the draw method of the RenderUpdates
class (described in the upcoming discussion of the pygame.sprite module) as its only
parameter.

set_mode: Sets the display size and the type of display. Several variations are possible, but
here you’ll restrict yourself to the FULLSCREEN version, and the default “display in a win-
dow” version.

set_caption: Sets a caption for the Pygame program. The set_caption function is prima-
rily useful when you run your game in a window (as opposed to full screen) because the
caption is used as the window title.

get_surface: Returns a surface object on which you can draw your graphics before calling
pygame.display.flip or pygame.display.blit. The only surface method used for drawing
in this project is blit, which transfers the graphics found in one surface object onto
another one, at a given location. (In addition, the draw method of a Group object will be
used to draw Sprite objects onto the display surface.)

550 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

pygame.font
The pygame.font module contains the Font function. Font objects are used to represent differ-
ent typefaces. They can be used to render text as images that may then be used as normal
graphics in Pygame.

pygame.sprite
The pygame.sprite module contains two very important classes: Sprite and Group.

The Sprite class is the base class for all visible game objects—in the case of this project, the
banana and the 16-ton weight. To implement your own game objects, you subclass Sprite, over-
ride its constructor to set its image and rect properties (which determine how the Sprite looks
and where it is placed), and override its update method, which is called whenever the sprite might
need updating.

Instances of the Group class (and its subclasses) are used as containers for Sprites. In gen-
eral, using groups is A Good Thing. In simple games (such as in this project), just create a group
called sprites or allsprites or something similar, and add all your Sprites to it. When you call
the Group object’s update method, the update methods of all your Sprite objects will then be
called automatically. Also, the Group object’s clear method is used to erase all the Sprite
objects it contains (using a callback to do the erasing), and the draw method can be used to
draw all the Sprites.

In this project, you’ll use the RenderUpdates subclass of Group, whose draw method returns a
list of rectangles that have been affected. These may then be passed to pygame.display.update to
update only the parts of the display that need to be updated. This can potentially improve the
performance of the game quite a bit.

pygame.mouse
In Squish, you’ll use the pygame.mouse module for just two things: hiding the mouse cursor and
getting the mouse position. You hide the mouse with pygame.mouse.set_visible(False), and you
get the position with pygame.mouse.get_pos().

pygame.event
The pygame.event module keeps track of various events such as mouse clicks, mouse motion,
keys that are pressed or released, and so on. To get a list of the most recent events, use the func-
tion pygame.event.get.

■Note If you rely only on state information such as the mouse position returned by pygame.mouse.
get_pos, you don’t need to use pygame.event.get. However, you need to keep the Pygame updated (“in
sync”), which you can do by calling the function pygame.event.pump regularly.

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 551

pygame.image
The pygame.image module is used to deal with images such as those stored in GIF, PNG, JPEG,
and several other file formats. In this project, you need only the load function, which reads an
image file and creates a surface object containing the image.

Preparations
Now that you know a bit about what some of the different Pygame modules do, it’s almost time
to start hacking away at the first prototype game. There are, however, a couple of preparations
you need to make before you can get the prototype up and running. First of all, you should make
sure that you have Pygame installed, including the image and font modules. (You might want to
import both of these in an interactive Python interpreter to make sure they are available.)

You also need a couple of images (for example, from a web site like http://www.
openclipart.org or found through Google’s image search). If you want to stick to the theme
of the game as presented in this chapter, you need one image depicting a 16-ton weight and
one depicting a banana, both of which are shown in Figure 29-1. Their exact sizes aren’t all
that important, but you might want to keep them in the range of 100 100 through 200 200
pixels. You should have these two images available in a common image file format such as
GIF, PNG, or JPEG.

■Note You might also want a separate image for the splash screen, the first screen that greets the user of
your game. In this project, I simply used the weight symbol for that as well.

Figure 29-1. The weight and banana graphics used in my version of the game

First Implementation
When you use a new tool such as Pygame, it often pays off to keep the first prototype as simple
as possible and to focus on learning the basics of the new tool, rather than the intricacies of the

552 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

program itself. Let’s restrict the first version of Squish to an animation of 16-ton weights falling
from above. The steps needed for this are as follows:

1. Initialize Pygame, using pygame.init, pygame.display.set_mode, and pygame.mouse.
set_visible. Get the screen surface with pygame.display.get_surface. Fill the screen
surface with a solid white color (with the fill method) and call pygame.display.flip to
display this change.

2. Load the weight image.

3. Create an instance of a custom Weight class (a subclass of Sprite) using the image. Add
this object to a RenderUpdates group called (for example) sprites. (This will be particu-
larly useful when dealing with multiple sprites.)

4. Get all recent events with pygame.event.get. Check all the events in turn. If an event of
type QUIT is found, or if an event of type KEYDOWN representing the escape key (K_ESCAPE)
is found, exit the program. (The event types and keys are kept in the attributes type and
key in the event object. Constants such as QUIT, KEYDOWN, and K_ESCAPE can be imported
from the module pygame.locals.)

5. Call the clear and update methods of the sprites group. The clear method uses the call-
back to clear all the sprites (in this case, the weight), and the update method calls the
update method of the Weight instance. (You must implement the latter method yourself.)

6. Call sprites.draw with the screen surface as the argument to draw the Weight sprite at
its current position. (This position changes each time update is called.)

7. Call pygame.display.update with the rectangle list returned from sprites.draw to
update the display only in the right places. (If you don’t need the performance, you can
use pygame.display.flip here to update the entire display.)

8. Repeat steps 4 through 7.

See Listing 29-1 for code that implements these steps. The QUIT event would occur if the
user quit the game—for example, by closing the window.

Listing 29-1. A Simple “Falling Weights” Animation (weights.py)

import sys, pygame
from pygame.locals import *
from random import randrange

class Weight(pygame.sprite.Sprite):

 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 # image and rect used when drawing sprite:
 self.image = weight_image
 self.rect = self.image.get_rect()
 self.reset()

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 553

 def reset(self):
 """
 Move the weight to a random position at the top of the screen.
 """
 self.rect.top = -self.rect.height
 self.rect.centerx = randrange(screen_size[0])

 def update(self):
 """
 Update the weight for display in the next frame.
 """
 self.rect.top += 1

 if self.rect.top > screen_size[1]:
 self.reset()

Initialize things
pygame.init()
screen_size = 800, 600
pygame.display.set_mode(screen_size, FULLSCREEN)
pygame.mouse.set_visible(0)

Load the weight image
weight_image = pygame.image.load('weight.png')
weight_image = weight_image.convert() # ... to match the display

Create a sprite group and add a Weight
sprites = pygame.sprite.RenderUpdates()
sprites.add(Weight())

Get the screen surface and fill it
screen = pygame.display.get_surface()
bg = (255, 255, 255) # White
screen.fill(bg)
pygame.display.flip()

Used to erase the sprites:
def clear_callback(surf, rect):
 surf.fill(bg, rect)

while True:
 # Check for quit events:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN and event.key == K_ESCAPE:
 sys.exit()

554 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 # Erase previous positions:
 sprites.clear(screen, clear_callback)
 # Update all sprites:
 sprites.update()
 # Draw all sprites:
 updates = sprites.draw(screen)
 # Update the necessary parts of the display:
 pygame.display.update(updates)

You can run this program with the following command:

$ python weights.py

You should make sure that both weights.py and weight.png (the weight image) are in the
current directory when you execute this command.

■Note I have used a PNG image with transparency here, but a GIF image might work just as well. JPEG
images aren’t really well suited for transparency.

Figure 29-2 shows a screenshot of the program created in Listing 29-1.
Most of the code should speak for itself. However, a few points need some explanation:

• All sprite objects should have two attributes called image and rect. The former should
contain a surface object (an image), and the latter should contain a rectangle object (just
use self.image.get_rect() to initialize it). These two attributes will be used when draw-
ing the sprites. By modifying self.rect, you can move the sprite around.

• Surface objects have a method called convert, which can be used to create a copy with
a different color model. You don’t need to worry about the details, but using convert
without any arguments creates a surface that is tailored for the current display, and dis-
playing it will be as fast as possible.

• Colors are specified through RGB triples (red-green-blue, with each value being 0–255),
so the tuple (255, 255, 255) represents white.

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 555

Figure 29-2. A simple animation of falling weights

You modify a rectangle (such as self.rect in this case) by assigning to its attributes (top,
bottom, left, right, topleft, topright, bottomleft, bottomright, size, width, height, center,
centerx, centery, midleft, midright, midtop, and midbottom) or calling methods such as inflate
or move. (These are all described in the Pygame documentation at http://pygame.org/docs/
ref/rect.html.)

Now that the Pygame technicalities are in place, it’s time to extend and refactor your game
logic a bit.

556 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

Second Implementation
In this section, instead of walking you through the design and implementation step by step, I
have added copious comments and docstrings to the source code, shown in Listings 29-2
through 29-4. You can examine the source (“use the source,” remember?) to see how it works,
but here is a short rundown of the essentials (and some not-quite-intuitive particulars):

• The game consists of five files: config.py, which contains various configuration vari-
ables; objects.py, which contains the implementations of the game objects; squish.py,
which contains the main Game class and the various game state classes; and weight.png
and banana.png, the two images used in the game.

• The rectangle method clamp ensures that a rectangle is placed within another rectangle,
moving it if necessary. This is used to ensure that the banana doesn’t move off-screen.

• The rectangle method inflate resizes (inflates) a rectangle by a given number of pixels
in the horizontal and vertical direction. This is used to shrink the banana boundary,
to allow some overlap between the banana and the weight before a hit (or “squish”) is
registered.

• The game itself consists of a game object and various game states. The game object only
has one state at a time, and the state is responsible for handling events and displaying
itself on the screen. A state may also tell the game to switch to another state. (A Level
state may, for example, tell the game to switch to a GameOver state.)

That’s it. You can run the game by executing the squish.py file, as follows:

$ python squish.py

You should make sure that the other files are in the same directory. In Windows, you can
simply double-click the squish.py file.

■Tip If you rename squish.py to squish.pyw, double-clicking it in Windows won’t pop up a gratuitous
terminal window. If you want to put the game on your desktop (or somewhere else) without moving all the
modules and image files along with it, simply create a shortcut to the squish.pyw file. See Chapter 18 for
details on packaging your game.

Listing 29-2. The Squish Configuration File (config.py)

Configuration file for Squish

Feel free to modify the configuration variables below to taste.
If the game is too fast or too slow, try to modify the speed
variables.

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 557

Change these to use other images in the game:
banana_image = 'banana.png'
weight_image = 'weight.png'
splash_image = 'weight.png'

Change these to affect the general appearance:
screen_size = 800, 600
background_color = 255, 255, 255
margin = 30
full_screen = 1
font_size = 48

These affect the behavior of the game:
drop_speed = 5
banana_speed = 10
speed_increase = 1
weights_per_level = 10
banana_pad_top = 40
banana_pad_side = 20

Listing 29-3. The Squish Game Objects (objects.py)

import pygame, config, os
from random import randrange

"This module contains the game objects of the Squish game."

class SquishSprite(pygame.sprite.Sprite):

 """
 Generic superclass for all sprites in Squish. The constructor
 takes care of loading an image, setting up the sprite rect, and
 the area within which it is allowed to move. That area is governed
 by the screen size and the margin.
 """

 def __init__(self, image):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.image.load(image).convert()
 self.rect = self.image.get_rect()
 screen = pygame.display.get_surface()
 shrink = -config.margin * 2
 self.area = screen.get_rect().inflate(shrink, shrink)

558 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

class Weight(SquishSprite):

 """
 A falling weight. It uses the SquishSprite constructor to set up
 its weight image, and will fall with a speed given as a parameter
 to its constructor.
 """

 def __init__(self, speed):
 SquishSprite.__init__(self, config.weight_image)
 self.speed = speed
 self.reset()

 def reset(self):
 """
 Move the weight to the top of the screen (just out of sight)
 and place it at a random horizontal position.
 """
 x = randrange(self.area.left, self.area.right)
 self.rect.midbottom = x, 0

 def update(self):
 """
 Move the weight vertically (downwards) a distance
 corresponding to its speed. Also set the landed attribute
 according to whether it has reached the bottom of the screen.
 """
 self.rect.top += self.speed
 self.landed = self.rect.top >= self.area.bottom

class Banana(SquishSprite):

 """
 A desperate banana. It uses the SquishSprite constructor to set up
 its banana image, and will stay near the bottom of the screen,
 with its horizontal position governed by the current mouse
 position (within certain limits).
 """

 def __init__(self):
 SquishSprite.__init__(self, config.banana_image)
 self.rect.bottom = self.area.bottom

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 559

 # These paddings represent parts of the image where there is
 # no banana. If a weight moves into these areas, it doesn't
 # constitute a hit (or, rather, a squish):
 self.pad_top = config.banana_pad_top
 self.pad_side = config.banana_pad_side

 def update(self):
 """
 Set the Banana's center x-coordinate to the current mouse
 x-coordinate, and then use the rect method clamp to ensure
 that the Banana stays within its allowed range of motion.
 """
 self.rect.centerx = pygame.mouse.get_pos()[0]
 self.rect = self.rect.clamp(self.area)

 def touches(self, other):
 """
 Determines whether the banana touches another sprite (e.g., a
 Weight). Instead of just using the rect method colliderect, a
 new rectangle is first calculated (using the rect method
 inflate with the side and top paddings) that does not include
 the 'empty' areas on the top and sides of the banana.
 """
 # Deflate the bounds with the proper padding:
 bounds = self.rect.inflate(-self.pad_side, -self.pad_top)
 # Move the bounds so they are placed at the bottom of the Banana:
 bounds.bottom = self.rect.bottom
 # Check whether the bounds intersect with the other object's rect:
 return bounds.colliderect(other.rect)

Listing 29-4. The Main Game Module (squish.py)

import os, sys, pygame
from pygame.locals import *
import objects, config

"This module contains the main game logic of the Squish game."

class State:

 """
 A generic game state class that can handle events and display
 itself on a given surface.
 """

560 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 def handle(self, event):
 """
 Default event handling only deals with quitting.
 """
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN and event.key == K_ESCAPE:
 sys.exit()

 def firstDisplay(self, screen):
 """
 Used to display the State for the first time. Fills the screen
 with the background color.
 """
 screen.fill(config.background_color)
 # Remember to call flip, to make the changes visible:
 pygame.display.flip()

 def display(self, screen):
 """
 Used to display the State after it has already been displayed
 once. The default behavior is to do nothing.
 """
 pass

class Level(State):

 """
 A game level. Takes care of counting how many weights have been
 dropped, moving the sprites around, and other tasks relating to
 game logic.
 """

 def __init__(self, number=1):
 self.number = number
 # How many weights remain to dodge in this level?
 self.remaining = config.weights_per_level

 speed = config.drop_speed
 # One speed_increase added for each level above 1:
 speed += (self.number-1) * config.speed_increase

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 561

 # Create the weight and banana:
 self.weight = objects.Weight(speed)
 self.banana = objects.Banana()
 both = self.weight, self.banana # This could contain more sprites...
 self.sprites = pygame.sprite.RenderUpdates(both)

 def update(self, game):
 "Updates the game state from the previous frame."
 # Update all sprites:
 self.sprites.update()
 # If the banana touches the weight, tell the game to switch to
 # a GameOver state:
 if self.banana.touches(self.weight):
 game.nextState = GameOver()
 # Otherwise, if the weight has landed, reset it. If all the
 # weights of this level have been dodged, tell the game to
 # switch to a LevelCleared state:
 elif self.weight.landed:
 self.weight.reset()
 self.remaining -= 1
 if self.remaining == 0:
 game.nextState = LevelCleared(self.number)

 def display(self, screen):
 """
 Displays the state after the first display (which simply wipes
 the screen). As opposed to firstDisplay, this method uses
 pygame.display.update with a list of rectangles that need to
 be updated, supplied from self.sprites.draw.
 """
 screen.fill(config.background_color)
 updates = self.sprites.draw(screen)
 pygame.display.update(updates)

class Paused(State):

 """
 A simple, paused game state, which may be broken out of by pressing
 either a keyboard key or the mouse button.
 """

 finished = 0 # Has the user ended the pause?
 image = None # Set this to a file name if you want an image
 text = '' # Set this to some informative text

562 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 def handle(self, event):
 """
 Handles events by delegating to State (which handles quitting
 in general) and by reacting to key presses and mouse
 clicks. If a key is pressed or the mouse is clicked,
 self.finished is set to true.
 """
 State.handle(self, event)
 if event.type in [MOUSEBUTTONDOWN, KEYDOWN]:
 self.finished = 1

 def update(self, game):
 """
 Update the level. If a key has been pressed or the mouse has
 been clicked (i.e., self.finished is true), tell the game to
 move to the state represented by self.nextState() (should be
 implemented by subclasses).
 """
 if self.finished:
 game.nextState = self.nextState()

 def firstDisplay(self, screen):
 """
 The first time the Paused state is displayed, draw the image
 (if any) and render the text.
 """
 # First, clear the screen by filling it with the background color:
 screen.fill(config.background_color)

 # Create a Font object with the default appearance, and specified size:
 font = pygame.font.Font(None, config.font_size)

 # Get the lines of text in self.text, ignoring empty lines at
 # the top or bottom:
 lines = self.text.strip().splitlines()

 # Calculate the height of the text (using font.get_linesize()
 # to get the height of each line of text):
 height = len(lines) * font.get_linesize()

 # Calculate the placement of the text (centered on the screen):
 center, top = screen.get_rect().center
 top -= height // 2

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 563

 # If there is an image to display...
 if self.image:
 # load it:
 image = pygame.image.load(self.image).convert()
 # get its rect:
 r = image.get_rect()
 # move the text down by half the image height:
 top += r.height // 2
 # place the image 20 pixels above the text:
 r.midbottom = center, top - 20
 # blit the image to the screen:
 screen.blit(image, r)

 antialias = 1 # Smooth the text
 black = 0, 0, 0 # Render it as black

 # Render all the lines, starting at the calculated top, and
 # move down font.get_linesize() pixels for each line:
 for line in lines:
 text = font.render(line.strip(), antialias, black)
 r = text.get_rect()
 r.midtop = center, top
 screen.blit(text, r)
 top += font.get_linesize()

 # Display all the changes:
 pygame.display.flip()

class Info(Paused):

 """
 A simple paused state that displays some information about the
 game. It is followed by a Level state (the first level).
 """

 nextState = Level
 text = '''
 In this game you are a banana,
 trying to survive a course in
 self-defense against fruit, where the
 participants will "defend" themselves
 against you with a 16 ton weight.'''

564 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

class StartUp(Paused):

 """
 A paused state that displays a splash image and a welcome
 message. It is followed by an Info state.
 """

 nextState = Info
 image = config.splash_image
 text = '''
 Welcome to Squish,
 the game of Fruit Self-Defense'''

class LevelCleared(Paused):

 """
 A paused state that informs the user that he or she has cleared a
 given level. It is followed by the next level state.
 """

 def __init__(self, number):
 self.number = number
 self.text = '''Level %i cleared
 Click to start next level''' % self.number

 def nextState(self):
 return Level(self.number+1)

class GameOver(Paused):

 """
 A state that informs the user that he or she has lost the
 game. It is followed by the first level.
 """

 nextState = Level
 text = '''
 Game Over
 Click to Restart, Esc to Quit'''

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 565

class Game:

 """
 A game object that takes care of the main event loop, including
 changing between the different game states.
 """

 def __init__(self, *args):
 # Get the directory where the game and the images are located:
 path = os.path.abspath(args[0])
 dir = os.path.split(path)[0]
 # Move to that directory (so that the image files may be
 # opened later on):
 os.chdir(dir)
 # Start with no state:
 self.state = None
 # Move to StartUp in the first event loop iteration:
 self.nextState = StartUp()

 def run(self):
 """
 This method sets things in motion. It performs some vital
 initialization tasks, and enters the main event loop.
 """
 pygame.init() # This is needed to initialize all the pygame modules

 # Decide whether to display the game in a window or to use the
 # full screen:
 flag = 0 # Default (window) mode

 if config.full_screen:
 flag = FULLSCREEN # Full screen mode
 screen_size = config.screen_size
 screen = pygame.display.set_mode(screen_size, flag)

 pygame.display.set_caption('Fruit Self Defense')
 pygame.mouse.set_visible(False)

 # The main loop:
 while True:
 # (1) If nextState has been changed, move to the new state, and
 # display it (for the first time):
 if self.state != self.nextState:
 self.state = self.nextState
 self.state.firstDisplay(screen)

566 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 # (2) Delegate the event handling to the current state:
 for event in pygame.event.get():
 self.state.handle(event)
 # (3) Update the current state:
 self.state.update(self)
 # (4) Display the current state:
 self.state.display(screen)

if __name__ == '__main__':
 game = Game(*sys.argv)
 game.run()

Some screenshots of the game are shown in Figures 29-3 through 29-6.

Figure 29-3. The Squish opening screen Figure 29-4. A banana about to be squished

Figure 29-5. The “level cleared” screen Figure 29-6. The “game over” screen

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 567

Further Exploration
Here are some ideas for how you can improve the game:

• Add sounds to it.

• Keep track of the score. Each weight dodged could be worth 16 points, for example. How
about keeping a high-score file? Or even an online high-score server (using asyncore or
XML-RPC, as discussed in Chapters 24 and 27, respectively)?

• Make more objects fall simultaneously.

• Give the player more than one “life.”

• Create a stand-alone executable of your game (using py2exe, for example) and package
it with an installer. (See Chapter 18 for details.)

For a much more elaborate (and extremely entertaining) example of Pygame programming,
check out the SolarWolf game by Pete Shinners, the Pygame maintainer (http://www.pygame.org/
shredwheat/solarwolf). You can find plenty of information and several other games at the Pygame
web site. If playing with Pygame gets you hooked on game development, you might want to check
out web sites like http://www.gamedev.net and http://www.flipcode.com. A web search should give
you plenty of other similar sites.

What Now?
Well, this is it. You have finished the last project. If you take stock of what you have accom-
plished (assuming that you have followed all the projects), you should be rightfully impressed
with yourself. The breadth of the topics presented has given you a taste of the possibilities that
await you in the world of Python programming. I hope you have enjoyed the trip this far, and I
wish you good luck on your continued journey as a Python programmer.

569

■ ■ ■

A P P E N D I X A

The Short Version

This is a minimal introduction to Python, based on my popular web tutorial, “Instant Python”
(http://hetland.org/writing/instant-python.html). It targets programmers who already
know a language or two, but who want to get up to speed with Python. For information on
downloading and executing the Python interpreter, see Chapter 1.

The Basics
To get a basic feel for the Python language, think of it as pseudocode, because that’s pretty
close to the truth. Variables don’t have types, so you don’t need to declare them. They appear
when you assign to them, and disappear when you don’t use them anymore. Assignment is
done with the = operator, like this:

x = 42

Note that equality is tested by the == operator.
You can assign several variables at once, like this:

x,y,z = 1,2,3
first, second = second, first
a = b = 123

Blocks are indicated through indentation, and only through indentation. (No begin/end or
braces.) The following are some common control structures:

if x < 5 or (x > 10 and x < 20):
 print "The value is OK."

if x < 5 or 10 < x < 20:
 print "The value is OK."

for i in [1,2,3,4,5]:
 print "This is iteration number", i

x = 10
while x >= 0:
 print "x is still not negative."
 x = x-1

570 A P P E N D I X A ■ T H E S H O R T V E R S I O N

The first two examples are equivalent.
The index variable given in the for loop iterates through the elements of a list1 (written

with brackets, as in the example). To make an “ordinary” for loop (that is, a counting loop), use
the built-in function range:

Print out the values from 0 to 99, inclusive
for value in range(100):
 print value

The line beginning with # is a comment and is ignored by the interpreter.
Now you know enough (in theory) to implement any algorithm in Python. Let’s add

some basic user interaction. To get input from the user (from a text prompt), use the built-in
function input:

x = input("Please enter a number: ")
print "The square of that number is", x*x

The input function displays the (optional) prompt given and lets the user enter any valid
Python value. In this case, we were expecting a number. If something else (such as a string) is
entered, the program would halt with an error message. To avoid that, you would need to add
some error checking. I won’t go into that here; suffice it to say that if you want the user input
returned verbatim as a string (so that anything can be entered), use the function raw_input
instead. If you wanted to convert an input string s to an integer, you could then use int(s).

■Note If you want to input a string with input, the user must write the quotes explicitly. In Python, strings can
be enclosed in either single or double quotes. In Python 3.0, the original input disappears, and raw_input is
renamed input. See Appendix D for more on Python 3.0.

So, you have control structures, input, and output covered—now you need some snazzy
data structures. The most important ones are lists and dictionaries. Lists are written with
brackets, and can (naturally) be nested:

name = ["Cleese", "John"]
x = [[1,2,3],[y,z],[[[]]]]

One of the nice things about lists is that you can access their elements separately or in
groups, through indexing and slicing. Indexing is done (as in many other languages) by writing
the index in brackets after the list. (Note that the first element has index 0.)

print name[1], name[0] # Prints "John Cleese"
name[0] = "Smith"

1. Or any other iterable object, actually.

A P P E N D I X A ■ T H E S H O R T V E R S I O N 571

Slicing is almost like indexing, except that you indicate both the start and stop index of the
result, with a colon (:) separating them:

x = ["SPAM","SPAM","SPAM","SPAM","SPAM","eggs","and","SPAM"]
print x[5:7] # Prints the list ["eggs","and"]

Notice that the end is noninclusive. If one of the indices is dropped, it is assumed that you
want everything in that direction. In other words, the slice x[:3] means “every element from
the beginning of x up to element 3, noninclusive” (well, element 3 is actually the fourth ele-
ment, because the counting starts at 0). The slice x[3:] would, on the other hand, mean “every
element in x, starting at element 3 (inclusive) up to, and including, the last one.” For really
interesting results, you can use negative numbers, too: x[-3] is the third element from the end
of the list.

Now then, what about dictionaries? To put it simply, they are like lists, except that their
contents aren’t ordered. How do you index them then? Well, every element has a key, or a
name, which is used to look up the element, just as in a real dictionary. The following example
demonstrates the syntax used to create dictionaries:

phone = { "Alice" : 23452532, "Boris" : 252336,
 "Clarice" : 2352525, "Doris" : 23624643 }

person = { 'first name': "Robin", 'last name': "Hood",
 'occupation': "Scoundrel" }

Now, to get person’s occupation, you use the expression person["occupation"]. If you
wanted to change the person’s last name, you could write this:

person['last name'] = "of Locksley"

Simple, isn’t it? Like lists, dictionaries can hold other dictionaries, or lists, for that matter.
And naturally, lists can hold dictionaries, too. That way, you can easily make some quite
advanced data structures.

Functions
Our next step is abstraction. You want to give a name to a piece of code and call it with a couple
of parameters. In other words, you want to define a function (also called a procedure). That’s
easy. Use the keyword def, as follows:

def square(x):
 return x*x

print square(2) # Prints out 4

572 A P P E N D I X A ■ T H E S H O R T V E R S I O N

The return statement is used to return a value from the function.
When you pass a parameter to a function, you bind the parameter to the value, thus creating

a new reference. This means that you can modify the original value directly inside the function,
but if you make the parameter name refer to something else (rebind it), that change won’t affect
the original. This works just like in Java, for example. Let’s take a look at an example:

def change(x):
 x[1] = 4

y = [1,2,3]
change(y)
print y # Prints out [1,4,3]

As you can see, the original list is passed in, and if the function modifies it, these modifica-
tions carry over to the place where the function was called. Note the behavior in the following
example, however, where the function body rebinds the parameter:

def nochange(x):
 x = 0

y = 1
nochange(y)
print y # Prints out 1

Why doesn’t y change now? Because you don’t change the value! The value that is passed
in is the number 1, and you can’t change a number in the same way that you change a list. The
number 1 is (and will always be) the number 1. What the example does change is what the
parameter x refers to, and this does not carry over to the calling environment.

Python has all kinds of nifty things such as named arguments and default arguments, and
can handle a variable number of arguments to a single function. For more information about
this, see Chapter 6.

If you know how to use functions in general, what I’ve told you so far is basically what you
need to know about them in Python.

It might be useful to know, however, that functions are values in Python. So if you have a
function such as square, you could do something like the following:

queeble = square
print queeble(2) # Prints out 4

To call a function without arguments, you must remember to write doit() and not doit.
The latter, as shown, only returns the function itself, as a value. This goes for methods in
objects, too. Methods are described in the next section.

Objects and Stuff . . .
I assume you know how object-oriented programming works. Otherwise, this section might
not make much sense. No problem—start playing without the objects, or check out Chapter 7.

A P P E N D I X A ■ T H E S H O R T V E R S I O N 573

In Python, you define classes with the (surprise!) class keyword, as follows:

class Basket:

 # Always remember the *self* argument
 def __init__(self, contents=None):
 self.contents = contents or []

 def add(self, element):
 self.contents.append(element)

 def print_me(self):
 result = ""
 for element in self.contents:
 result = result + " " + repr(element)
 print "Contains:" + result

Several things are worth noting in this example:

• Methods are called like this: object.method(arg1, arg2).

• Some arguments can be optional and given a default value (as mentioned in the previ-
ous section on functions). This is done by writing the definition like this:

def spam(age=32): ...

• Here, spam can be called with one or zero parameters. If it’s called without any parame-
ters, age will have the default value of 32.

• repr converts an object to its string representation. (So if element contains the number
1, then repr(element) is the same as "1", whereas 'element' is a literal string.)

No methods or member variables (attributes) are protected (or private or the like) in
Python. Encapsulation is pretty much a matter of programming style. (If you really need it,
there are naming conventions that will allow some privacy, such as prefixing a name with a
single or double underscore.)

Now, about that short-circuit logic . . .
All values in Python can be used as logic values. Some of the more empty ones (such as

False, [], 0, "", and None) represent logical falsity; most other values (such as True, [0], 1, and
"Hello, world") represent logical truth.

Logical expressions such as a and b are evaluated like this:

• Check if a is true.

• If it is not, then simply return it.

• If it is, then simply return b (which will represent the truth value of the expression).

The corresponding logic for a or b is this:

• If a is true, then return it.

• If it isn’t, then return b.

574 A P P E N D I X A ■ T H E S H O R T V E R S I O N

This short-circuit mechanism enables you to use and and or like the Boolean operators
they are supposed to implement, but it also enables you to write short and sweet little condi-
tional expressions. For example, this statement:

if a:
 print a
else:
 print b

could instead be written like this:

print a or b

Actually, this is somewhat of a Python idiom, so you might as well get used to it.

■Note In Python 2.5, actual conditional expressions were introduced, so you could, in fact, write this:

print a if a else b

The Basket constructor (Basket.__init__) in the previous example uses this strategy in
handling default parameters. The argument contents has a default value of None (which is,
among other things, false); therefore, to check if it had a value, you could write this:

if contents:
 self.contents = contents
else:
 self.contents = []

Instead, the constructor uses this simple statement:

self.contents = contents or []

Why don’t you give it the default value of [] in the first place? Because of the way Python
works, this would give all the Basket instances the same empty list as default contents. As soon
as one of them started to fill up, they all would contain the same elements, and the default
would not be empty anymore. To learn more about this, see the discussion about the differ-
ence between identity and equality in Chapter 5.

■Note When using None as a placeholder as done in the Basket.__init__ method, using contents is
None as the condition is safer than simply checking the argument’s Boolean value. This will allow you to pass
in a false value such as an empty list of your own (to which you could keep a reference outside the object).

A P P E N D I X A ■ T H E S H O R T V E R S I O N 575

If you would like to use an empty list as the default value, you can avoid the problem of
sharing this among instances by doing the following:

def __init__(self, contents=[]):
 self.contents = contents[:]

Can you guess how this works? Instead of using the same empty list everywhere, you use
the expression contents[:] to make a copy. (You simply slice the entire thing.)

So, to actually make a Basket and to use it (to call some methods on it), you would do
something like this:

b = Basket(['apple','orange'])
b.add("lemon")
b.print_me()

This would print out the contents of the Basket: an apple, an orange, and a lemon.
There are magic methods other than __init__. One such method is __str__, which defines

how the object wants to look if it is treated like a string. You could use this in the basket instead
of print_me:

def __str__(self):
 result = ""
 for element in self.contents:
 result = result + " " + repr(element)
 return "Contains:" + result

Now, if you wanted to print the basket b, you could just use this:

print b

Cool, huh?
Subclassing works like this:

class SpamBasket(Basket):
 # ...

Python allows multiple inheritance, so you can have several superclasses in the
parentheses, separated by commas. Classes are instantiated like this: x = Basket().
Constructors are, as I said, made by defining the special member function __init__.
Let’s say that SpamBasket had a constructor __init__(self, type). Then you could make
a spam basket like this: y = SpamBasket("apples").

If in the constructor of SpamBasket, you needed to call the constructor of one or more
superclasses, you could call it like this: Basket.__init__(self). Note that in addition to
supplying the ordinary parameters, you must explicitly supply self, because the superclass
__init__ doesn’t know which instance it is dealing with.

For more about the wonders of object-oriented programming in Python, see Chapter 7.

576 A P P E N D I X A ■ T H E S H O R T V E R S I O N

Some Loose Ends
Here, I’ll quickly review a few other useful things before ending this appendix. Most useful
functions and classes are put in modules, which are really text files with the file name extension
.py that contain Python code. You can import these and use them in your own programs. For
example, to use the function sqrt from the standard module math, you can do either this:

import math
x = math.sqrt(y)

or this:

from math import sqrt
x = sqrt(y)

For more information on the standard library modules, see Chapter 10.
All the code in the module/script is run when it is imported. If you want your program to

be both an importable module and a runnable program, you might want to add something like
this at the end of it:

if __name__ == "__main__": main()

This is a magic way of saying that if this module is run as an executable script (that is, it is
not being imported into another script), then the function main should be called. Of course, you
could do anything after the colon there.

And for those of you who want to make an executable script in UNIX, use the following first
line to make it run by itself:

#!/usr/bin/env python

Finally, a brief mention of an important concept: exceptions. Some operations (such as
dividing something by zero or reading from a nonexistent file) produce an error condition or
exception. You can even make your own exceptions and raise them at the appropriate times.

If nothing is done about the exception, your program ends and prints out an error mes-
sage. You can avoid this with a try/except statement, as in this example:

def safe_division(a, b):
 try:
 return a/b
 except ZeroDivisionError: pass

ZeroDivisionError is a standard exception. In this case, you could have checked if b
was zero, but in many cases, that strategy is not feasible. And besides, if you removed the
try/except statement in safe_division, thereby making it a risky function to call (called
something like unsafe_division), you could still do the following:

try:
 unsafe_division(a, b)
except ZeroDivisionError:
 print "Something was divided by zero in unsafe_division"

A P P E N D I X A ■ T H E S H O R T V E R S I O N 577

In cases in which you typically would not have a specific problem, but it might occur, using
exceptions enables you to avoid costly testing and so forth.

Well, that’s it. Hope you learned something. Now go and play. And remember the Python
motto of learning: use the source (which basically means read all the code you can get your
hands on).

579

■ ■ ■

A P P E N D I X B

Python Reference

This is not a full Python reference by far—you can find that in the standard Python documen-
tation (http://python.org/doc/ref). Rather, this is a handy “cheat sheet” that can be useful for
refreshing your memory as you start out programming in Python. See Appendix D for changes
in the language that are introduced in version 3.0.

Expressions
This section summarizes Python expressions. Table B-1 lists the most important basic (literal)
values in Python; Table B-2 lists the Python operators, along with their precedence (those with
high precedence are evaluated before those with low precedence); Table B-3 describes some of
the most important built-in functions; Tables B-4 through B-6 describe the list methods, dic-
tionary methods, and string methods, respectively.

Table B-1. Basic (Literal) Values

Table B-2. Operators

Type Description Syntax Samples

Integer Numbers without a fractional part 42

Long integer Large integer numbers 42L

Float Numbers with a fractional part 42.5, 42.5e-2

Complex Sum of a real (integer or float) and imaginary
number

38 + 4j, 42j

String An immutable sequence of characters 'foo', "bar", """baz""", r'\n'

Unicode An immutable sequence of Unicode characters u'foo', u"bar", u"""baz"""

Operator Description Precedence

lambda Lambda expression 1

or Logical or 2

and Logical and 3

Continued

580 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Table B-2. Continued

Operator Description Precedence

not Logical negation 4

in Membership test 5

not in Negative membership test 5

is Identity test 6

is not Negative identity test 6

< Less than 7

> Greater than 7

<= Less than or equal to 7

>= Greater than or equal to 7

== Equal to 7

!= Not equal to 7

| Bitwise or 8

^ Bitwise exclusive or 9

& Bitwise and 10

<< Left shift 11

>> Right shift 11

+ Addition 12

- Subtraction 12

* Multiplication 13

/ Division 13

% Remainder 13

+ Unary identity 14

- Unary negation 14

~ Bitwise complement 15

** Exponentiation 16

x.attribute Attribute reference 17

x[index] Item access 18

x[index1:index2[:index3]] Slicing 19

f(args...) Function call 20

(...) Parenthesized expression or tuple display 21

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 581

Table B-3. Some Important Built-in Functions

[...] List display 22

{key:value, ...} Dictionary display 23

`expressions...` String conversion 24

Function Description

abs(number) Returns the absolute value of a number.

apply(function[, args[, kwds]]) Calls a given function, optionally with
parameters.

all(iterable) Returns True if all the elements of iterable are
true; otherwise, it returns False.

any(iterable) Returns True if any of the elements of iterable
are true; otherwise, it returns False.

basestring() An abstract superclass for str and unicode,
usable for type checking.

bool(object) Returns True or False, depending on the Bool-
ean value of object.

callable(object) Checks whether an object is callable.

chr(number) Returns a character whose ASCII code is the
given number.

classmethod(func) Creates a class method from an instance
method (see Chapter 7).

cmp(x, y) Compares x and y. If x < y, it returns a negative
number; if x > y, it returns a positive number;
and if x == y, it returns zero.

complex(real[, imag]) Returns a complex number with the given real
(and, optionally, imaginary) component.

delattr(object, name) Deletes the given attribute from the given
object.

dict([mapping-or-sequence]) Constructs a dictionary, optionally from
another mapping or a list of (key, value) pairs.
May also be called with keyword arguments.

dir([object]) Lists (most of) the names in the currently visi-
ble scopes, or optionally (most of) the attributes
of the given object.

divmod(a, b) Returns (a//b, a%b) (with some special rules
for floats).

Continued

Operator Description Precedence

582 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Table B-3. Continued

Function Description

enumerate(iterable) Iterates over (index, item) pairs, for all items
in iterable.

eval(string[, globals[, locals]]) Evaluates a string containing an expression,
optionally in a given global and local scope.

execfile(file[, globals[, locals]]) Executes a Python file, optionally in a given
global and local scope.

file(filename[, mode[, bufsize]]) Creates a file object with a given file name,
optionally with a given mode and buffer size.

filter(function, sequence) Returns a list of the elements from the given
sequence for which function returns true.

float(object) Converts a string or number to a float.

frozenset([iterable]) Creates a set that is immutable, which means it
can be added to other sets.

getattr(object, name[, default]) Returns the value of the named attribute of the
given object, optionally with a given default
value.

globals() Returns a dictionary representing the current
global scope.

hasattr(object, name) Checks whether the given object has the named
attribute.

help([object]) Invokes the built-in help system, or prints a
help message about the given object.

hex(number) Converts a number to a hexadecimal string.

id(object) Returns the unique ID for the given object.

input([prompt]) Equivalent to eval(raw_input(prompt)).

int(object[, radix]) Converts a string or number (optionally with a
given radix) or number to an integer.

isinstance(object, classinfo) Checks whether the given object is an instance
of the given classinfo value, which may be a
class object, a type object, or a tuple of class
and type objects.

issubclass(class1, class2) Checks whether class1 is a subclass of class2
(every class is a subclass of itself).

iter(object[, sentinel]) Returns an iterator object, which is object.
__iter__(), an iterator constructed for iterating
a sequence (if object supports __getitem__), or,
if sentinel is supplied, an iterator that keeps
calling object in each iteration until sentinel is
returned.

len(object) Returns the length (number of items) of the
given object.

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 583

list([sequence]) Constructs a list, optionally with the same items
as the supplied sequence.

locals() Returns a dictionary representing the current
local scope (do not modify this dictionary).

long(object[, radix]) Converts a string (optionally with a given radix)
or number to a long integer.

map(function, sequence, ...) Creates a list consisting of the values returned
by the given function when applying it to the
items of the supplied sequence(s).

max(object1, [object2, ...]) If object1 is a nonempty sequence, the largest
element is returned; otherwise, the largest of
the supplied arguments (object1, object2, . . .)
is returned.

min(object1, [object2, ...]) If object1 is a nonempty sequence, the smallest
element is returned; otherwise, the smallest of
the supplied arguments (object1, object2, . . .)
is returned.

object() Returns an instance of object, the base class for
all new style classes.

oct(number) Converts an integer number to an octal string.

open(filename[, mode[, bufsize]]) An alias for file (use open, not file, when
opening files).

ord(char) Returns the ASCII value of a single character (a
string or Unicode string of length 1).

pow(x, y[, z]) Returns x to the power of y, optionally modulo z.

property([fget[, fset[, fdel[, doc]]]]) Creates a property from a set of accessors (see
Chapter 9).

range([start,]stop[, step]) Returns a numeric range (as a list) with the
given start (inclusive, default 0), stop (exclu-
sive), and step (default 1).

raw_input([prompt]) Returns data input by the user as a string,
optionally using a given prompt.

reduce(function, sequence[, initializer]) Applies the given function cumulatively to the
items of the sequence, using the cumulative
result as the first argument and the items as the
second argument, optionally with a start value
(initializer).

reload(module) Reloads an already loaded module and returns it.

repr(object) Returns a string representation of the object,
often usable as an argument to eval.

reversed(sequence) Returns a reverse iterator over the sequence.

Continued

Function Description

584 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Table B-3. Continued

Function Description

round(float[, n]) Rounds off the given float to n digits after the
decimal point (default zero).

set([iterable]) Returns a set whose elements are taken from
iterable (if given).

setattr(object, name, value) Sets the named attribute of the given object to
the given value.

sorted(iterable[, cmp][, key][, reverse]) Returns a new sorted list from the items in
iterable. Optional parameters are the same as
for the list method sort.

staticmethod(func) Creates a static (class) method from an instance
method (see Chapter 7).

str(object) Returns a nicely formatted string representa-
tion of the given object.

sum(seq[, start]) Returns the sum of a sequence of numbers, added
to the optional parameter start (default 0).

super(type[, obj/type]) Returns the superclass of the given type
(optionally instantiated).

tuple([sequence]) Constructs a tuple, optionally with the same
items as the supplied sequence.

type(object) Returns the type of the given object.

type(name, bases, dict) Returns a new type object with the given name,
bases, and scope.

unichr(number) The Unicode version of chr.

unicode(object[, encoding[, errors]]) Returns a Unicode encoding of the given object,
possibly with a given encoding, and a given
mode for handling errors ('strict', 'replace',
or 'ignore'; 'strict' is the default).

vars([object]) Returns a dictionary representing the local
scope, or a dictionary corresponding to the
attributes of the given object (do not modify
the returned dictionary, as the result of such a
modification is not defined by the language
reference).

xrange([start,]stop[, step]) Similar to range, but the returned object uses
less memory, and should be used only for
iteration.

zip(sequence1, ...) Returns a list of tuples, where each tuple
contains an item from each of the supplied
sequences. The returned list has the same
length as the shortest of the supplied
sequences.

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 585

Table B-4. List Methods

Table B-5. Dictionary Methods

Method Description

aList.append(obj) Equivalent to aList[len(aList):len(aList)] = [obj].

aList.count(obj) Returns the number of indices i for which alist[i] ==
obj.

aList.extend(sequence) Equivalent to aList[len(aList):len(aList)] =
sequence.

aList.index(obj) Returns the smallest i for which aList[i] == obj (or
raises a ValueError if no such i exists).

aList.insert(index, obj) Equivalent to aList[index:index] = [obj] if index >=
0; if index < 0, object is prepended to the list.

aList.pop([index]) Removes and returns the item with the given index
(default –1).

aList.remove(obj) Equivalent to del aList[aList.index(obj)].

aList.reverse() Reverses the items of aList in place.

aList.sort([cmp][, key][, reverse]) Sorts the items of aList in place (stable sorting). Can
be customized by supplying a comparison function,
cmp; a key function, key, which will create the keys for
the sorting); and a reverse flag (a Boolean value).

Method Description

aDict.clear() Removes all the items of aDict.

aDict.copy() Returns a copy of aDict.

aDict.fromkeys(seq[, val]) Returns a dictionary with keys from seq and values set to
val (default None). May be called directly on the dictio-
nary type, dict, as a class method.

aDict.get(key[, default]) Returns aDict[key] if it exists; otherwise, it returns the
given default value (default None).

aDict.has_key(key) Checks whether aDict has the given key.

aDict.items() Returns a list of (key, value) pairs representing the items
of aDict.

aDict.iteritems() Returns an iterable object over the same (key, value)
pairs as returned by aDict.items.

aDict.iterkeys() Returns an iterable object over the keys of aDict.

aDict.itervalues() Returns an iterable object over the values of aDict.

aDict.keys() Returns a list of the keys of aDict.

Continued

586 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Table B-5. Continued

Table B-6. String Methods

Method Description

aDict.pop(key[, d]) Removes and returns the value corresponding to the given
key, or the given default, d.

aDict.popitem() Removes an arbitrary item from aDict and returns it as a
(key, value) pair.

aDict.setdefault(key[,
default])

Returns aDict[key] if it exists; otherwise, it returns the
given default value (default None) and binds aDict[key] to
it.

aDict.update(other) For each item in other, adds the item to aDict (possibly
overwriting existing items). Can also be called with argu-
ments similar to the dictionary constructor, aDict.

aDict.values() Returns a list of the values in aDict (possibly containing
duplicates).

Method Description

string.capitalize() Returns a copy of the string in which the first
character is capitalized.

string.center(width[, fillchar]) Returns a string of length max(len(string),
width) in which a copy of string is centered,
padded with fillchar (the default is space
characters).

string.count(sub[, start[, end]]) Counts the occurrences of the substring
sub, optionally restricting the search to
string[start:end].

string.decode([encoding[, errors]]) Returns decoded version of the string using the
given encoding, handling errors as specified by
errors ('strict', 'ignore', or 'replace').

string.encode([encoding[, errors]]) Returns the encoded version of the string using
the given encoding, handling errors as specified
by errors ('strict', 'ignore', or 'replace').

string.endswith(suffix[, start[, end]]) Checks whether string ends with suffix,
optionally restricting the matching with the
given indices start and end.

string.expandtabs([tabsize]) Returns a copy of the string in which tab char-
acters have been expanded using spaces,
optionally using the given tabsize (default 8).

string.find(sub[, start[, end]]) Returns the first index where the substring sub
is found, or –1 if no such index exists, option-
ally restricting the search to string[start:end].

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 587

string.index(sub[, start[, end]]) Returns the first index where the substring sub
is found, or raises a ValueError if no such index
exists, optionally restricting the search to
string[start:end].

string.isalnum() Checks whether the string consists of alpha-
numeric characters.

string.isalpha() Checks whether the string consists of alpha-
betic characters.

string.isdigit() Checks whether the string consists of digits.

string.islower() Checks whether all the case-based characters
(letters) of the string are lowercase.

string.isspace() Checks whether the string consists of whitespace.

string.istitle() Checks whether all the case-based characters in
the string following non-case–based letters are
uppercase and all other case-based characters
are lowercase.

string.isupper() Checks whether all the case-based characters of
the string are uppercase.

string.join(sequence) Returns a string in which the string elements of
sequence have been joined by string.

string.ljust(width[, fillchar]) Returns a string of length max(len(string),
width) in which a copy of string is left-justified,
padded with fillchar (the default is space
characters).

string.lower() Returns a copy of the string in which all case-
based characters have been lowercased.

string.lstrip([chars]) Returns a copy of the string in which all chars
have been stripped from the beginning of the
string (the default is all whitespace characters,
such as spaces, tabs, and newlines).

string.partition(sep) Searches for sep in the string and returns (head,
sep, tail).

string.replace(old, new[, max]) Returns a copy of the string in which the occur-
rences of old have been replaced with new,
optionally restricting the number of replace-
ments to max.

string.rfind(sub[, start[, end]]) Returns the last index where the substring sub is
found, or –1 if no such index exists, optionally
restricting the search to string[start:end].

string.rindex(sub[, start[, end]]) Returns the last index where the substring sub
is found, or raises a ValueError if no such index
exists, optionally restricting the search to
string[start:end].

Continued

Method Description

588 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Table B-6. Continued

Method Description

string.rjust(width[, fillchar]) Returns a string of length max(len(string),
width) in which a copy of string is right-
justified, padded with fillchar (the default is
space characters).

string.rpartition(sep) Same as partition, but searches from the right.

string.rstrip([chars]) Returns a copy of the string in which all chars
have been stripped from the end of the string
(the default is all whitespace characters, such as
spaces, tabs, and newlines).

string.rsplit([sep[, maxsplit]]) Same as split, but when using maxsplit, counts
from right to left.

string.split([sep[, maxsplit]]) Returns a list of all the words in the string, using
sep as the separator (splits on all whitespace if
left unspecified), optionally limiting the num-
ber of splits to maxsplit.

string.splitlines([keepends]) Returns a list with all the lines in string,
optionally including the line breaks (if keepends
is supplied and is true).

string.startswith(prefix[, start[, end]]) Checks whether string starts with prefix,
optionally restricting the matching with the
given indices start and end.

string.strip([chars]) Returns a copy of the string in which all chars
have been stripped from the beginning and the
end of the string (the default is all whitespace
characters, such as spaces, tabs, and newlines).

string.swapcase() Returns a copy of the string in which all the
case-based characters have had their case
swapped.

string.title() Returns a copy of the string in which all the
words are capitalized.

string.translate(table[, deletechars]) Returns a copy of the string in which all
characters have been translated using table
(constructed with the maketrans function in
the string module), optionally deleting all
characters found in the string deletechars.

string.upper() Returns a copy of the string in which all the
case-based characters have been uppercased.

string.zfill(width) Pads string on the left with zeros to fill width.

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 589

Statements
This section gives you a quick summary of each of the statement types in Python.

Simple Statements
Simple statements consist of a single (logical) line.

Expression Statements

Expressions can be statements on their own. This is especially useful if the expression is a func-
tion call or a documentation string.

Example:

"This module contains SPAM-related functions."

Assert Statements

Assert statements check whether a condition is true and raise an AssertionError (optionally
with a supplied error message) if it isn’t.

Example:

assert age >= 12, 'Children under the age of 12 are not allowed'

Assignment Statements

Assignment statements bind variables to values. Multiple variables may be assigned to simul-
taneously (through sequence unpacking) and assignments may be chained.

Examples:

x = 42 # Simple assignment
name, age = 'Gumby', 60 # Sequence unpacking
x = y = z = 10 # Chained assignments

Augmented Assignment Statements

Assignments may be augmented by operators. The operator will then be applied to the existing
value of the variable and the new value, and the variable will be rebound to the result. If the orig-
inal value is mutable, it may be modified instead (with the variable staying bound to the original).

Examples:

x *= 2 # Doubles x
x += 5 # Adds 5 to x

590 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

The pass Statement

The pass statement is a “no-op,” which does nothing. It is useful as a placeholder, or as the only
statement in syntactically required blocks where you want no action to be performed.

Example:

try: x.name
except AttributeError: pass
else: print 'Hello', x.name

The del Statement

The del statement unbinds variables and attributes, and removes parts (positions, slices, or
slots) from data structures (mappings or sequences). It cannot be used to delete values directly,
because values are only deleted through garbage collection.

Examples:

del x # Unbinds a variable
del seq[42] # Deletes a sequence element
del seq[42:] # Deletes a sequence slice
del map['foo'] # Deletes a mapping item

The print Statement

The print statement writes one or more values (automatically formatted with str, separated by
single spaces) to a given stream, with sys.stdout being the default. It adds a line break to the
end of the written string unless the print statement ends with a comma.

Examples:

print 'Hello, world!' # Writes 'Hello, world\n' to sys.stdout
print 1, 2, 3 # Writes '1 2 3\n' to sys.stdout
print >> somefile, 'xyz' # Writes 'xyz' to somefile
print 42, # Writes '42 ' to sys.stdout

The return Statement

The return statement halts the execution of a function and returns a value. If no value is
supplied, None is returned.

Examples:

return # Returns None from the current function
return 42 # Returns 42 from the current function
return 1, 2, 3 # Returns (1, 2, 3) from the current function

The yield Statement

The yield statement temporarily halts the execution of a generator and yields a value. A gener-
ator is a form of iterator and can be used in for loops, among other things.

Example:

yield 42 # Returns 42 from the current function

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 591

The raise Statement

The raise statement raises an exception. It may be used without any arguments (inside an
except clause, to re-raise the currently caught exception), with a subclass of Exception and an
optional argument (in which case, an instance is constructed), or with an instance of a subclass
of Exception.

Examples:

raise # May only be used inside except clauses
raise IndexError
raise IndexError, 'index out of bounds'
raise IndexError('index out of bounds')

The break Statement

The break statement ends the immediately enclosing loop statement (for or while) and contin-
ues execution immediately after that loop statement.

Example:

while True:
 line = file.readline()
 if not line: break
 print line

The continue Statement

The continue statement is similar to the break statement in that it halts the current iteration of
the immediately enclosing loop, but instead of ending the loop completely, it continues execu-
tion at the beginning of the next iteration.

Example:

while True:
 line = file.readline()
 if not line: break
 if line.isspace(): continue
 print line

The import Statement

The import statement is used to import names (variables bound to functions, classes, or other
values) from an external module. This also covers from __future__ import ... statements for
features that will become standard in future versions of Python.

Examples:

import math
from math import sqrt
from math import sqrt as squareroot
from math import *

592 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

The global Statement

The global statement is used to mark a variable as global. It is used in functions to allow state-
ments in the function body to rebind global variables. Using the global statement is generally
considered poor style and should be avoided whenever possible.

Example:

count = 1
def inc():
 global count
 count += 1

The exec Statement

The exec statement is used to execute strings containing Python statements, optionally with a
given global and local namespace (dictionaries).

Examples:

exec 'print "Hello, world!"'
exec 'x = 2' in myglobals, mylocals # ... where myglobals and mylocals are dicts

Compound Statements
Compound statements contain groups (blocks) of other statements.

The if Statement

The if statement is used for conditional execution, and it may include elif and else clauses.
Example:

if x < 10:
 print 'Less than ten'
elif 10 <= x < 20:
 print 'Less than twenty'
else:
 print 'Twenty or more'

The while Statement

The while statement is used for repeated execution (looping) while a given condition is true. It
may include an else clause (which is executed if the loop finishes normally, without any break
or return statements, for instance).

Example:

x = 1
while x < 100:
 x *= 2
print x

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 593

The for Statement

The for statement is used for repeated execution (looping) over the elements of sequences
or other iterable objects (objects having an __iter__ method that returns an iterator). It may
include an else clause (which is executed if the loop finishes normally, without any break or
return statements, for instance).

Example:

for i in range(10, 0, -1):
 print i
print 'Ignition!'

The try Statement

The try statement is used to enclose pieces of code where one or more known exceptions may
occur, and enables your program to trap these exceptions and perform exception-handling
code if an exception is trapped. The try statement can combine several except clauses (han-
dling exceptional circumstances) and finally clauses (executed no matter what; useful for
cleanup).

Example:

try:
 1/0
except ZeroDivisionError:
 print "Can't divide anything by zero."
finally:
 print "Done trying to calculate 1/0"

The with Statement

The with statement is used to wrap a block of code using a so-called context manager, allowing
the context manager to perform some setup and cleanup actions. For example, files can be
used as context managers, and they will close themselves as part of the cleanup.

■Note In Python 2.5, you need from __future__ import with_statement for the with statement to
work as described.

Example:

with open("somefile.txt") as myfile:
 dosomething(myfile)
The file will have been closed here

594 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Function Definitions

Function definitions are used to create function objects and to bind global or local variables to
these function objects.

Example:

def double(x):
 return x*2

Class Definitions

Class definitions are used to create class objects and to bind global or local variables to these
class objects.

Example:

class Doubler:
 def __init__(self, value):
 self.value = value
 def double(self):
 self.value *= 2

595

■ ■ ■

A P P E N D I X C

Online Resources

As you learn Python, the Internet will serve as an invaluable resource. This appendix describes
some of the web sites that may be of interest to you as you are starting out. If you are looking for
something Python-related that isn’t described here, I suggest that you first check the official
Python web site (http://python.org), and then use your favorite web search engine, or the other
way around. There is a lot of information about Python online; chances are you’ll find something.
If you don’t, you can always try comp.lang.python (described in this appendix). If you’re an IRC
user (see http://irchelp.org for information), you might want to check out the #python channel
on irc.freenode.net.

Python Distributions
Several Python distributions are available. Here are some of the more prominent ones:

Official Python distribution (http://python.org/download): This comes with a default
integrated development environment called IDLE (for more information, see http://
docs.python.org/lib/idle.html).

ActivePython (http://activestate.com): This is ActiveState’s Python distribution, which
includes several nonstandard packages in addition to the official distribution. This is also
the home of Visual Python, a Python plug-in for Visual Studio .NET.

Jython (http://www.jython.org): Jython is the Java implementation of Python.

IronPython (http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython):
IronPython is the C# implementation of Python.

MacPython (http://homepages.cwi.nl/~jack/macpython/index.html): MacPython is the
Macintosh port of Python for older versions of Mac OS. The new Mac version can be found
on the main Python site (http://python.org). You can also get Python through MacPorts
(http://macports.org).

pywin32 (http://sf.net/projects/pywin32/): These are the Python for Windows exten-
sions. If you have ActivePython installed, you already have all these extensions.

596 A P P E N D I X C ■ O N L I N E R E S O U R C E S

Python Documentation
Answers to most of your Python questions are most likely somewhere on the python.org web site.
The documentation can be found at http://python.org/doc, with the following subdivisions:

Python Tutorial (http://python.org/doc/tut): This is a relatively simple introduction to
the language.

Python Reference Manual (http://python.org/doc/ref): This document contains a
precise definition of the Python language. It may not be the place to start when learning
Python, but it contains precise answers to most questions you might have about the
language.

Python Library Reference (http://python.org/doc/lib): This is probably the most useful
piece of Python documentation you’ll ever find. It describes all (or most) of the modules in
the standard Python library. If you are wondering how to solve a problem in Python, this
should be the first place you look—perhaps the solution already exists in the libraries.

Extending and Embedding the Python Interpreter (http://python.org/doc/ext): This is a
document that describes how to write Python extension modules in the C language, and
how to use the Python interpreter as a part of larger C programs. (Python itself is imple-
mented in C.)

Macintosh Library Modules (http://python.org/doc/mac): This document describes
functionality specific to the Macintosh port of Python.

Python/C API Reference Manual (http://python.org/doc/api): This is a rather technical
document describing the details of the Python/C application programming interface
(API), which enables C programs to interface with the Python interpreter.

Two other useful documentation resources are Python Documentation Online (http://
pydoc.org) and pyhelp.cgi (http://starship.python.net/crew/theller/pyhelp.cgi), which
allow you to search the standard Python documentation. If you want some “recipes” and solu-
tions provided by the Python community, the Python Cookbook (http://aspn.activestate.com/
ASPN/Python/Cookbook) is a good place to look.

The future of Python is decided by the language’s Benevolent Dictator For Life (BDFL),
Guido van Rossum, but his decisions are guided and informed by so-called Python Enhance-
ment Proposals, which may be accessed at http://python.org/dev/peps. Various HOWTO
documents (relatively specific tutorials) can be found at http://python.org/doc/howto.

Useful Toolkits and Modules
One source for finding software implemented in Python (including useful toolkits and modules
you can use in your own programs) is the Vaults of Parnassus (http://www.vex.net/parnassus);
another is the Python Package Index (http://pypi.python.org/pypi). If you can’t find what
you’re looking for on either of these sites, try a standard web search, or perhaps take a look at
freshmeat (http://freshmeat.net) or SourceForge (http://sf.net).

A P P E N D I X C ■ O N L I N E R E S O U R C E S 597

Table C-1 lists the URLs of some of the most well-known GUI toolkits available for Python.
For a more thorough description, see Chapter 12. Table C-2 lists the URLs of the third-party
packages used in the ten projects (Chapters 20–29).

Table C-1. Some Well-Known GUI Toolkits for Python

Table C-2. The Third-Party Modules Used in This Book’s Ten Projects

Newsgroups, Mailing Lists, and Blogs
An important forum for Python discussion is the Usenet group comp.lang.python. If you’re
serious about Python, skimming this group regularly can be quite useful. Its companion group,
comp.lang.python.announce, contains announcements about new Python software (including
new Python distributions, Python extensions, and software written using Python).

Several official mailing lists are available. For instance, the comp.lang.python group is mirrored
in the python-list@python.org mailing list. If you have a Python problem and need help, simply
send an email to help@python.org (assuming that you’ve exhausted all other options, of course).
For learning about programming in Python, the tutor list (tutor@python.org) may be useful.
For information about how to join these (and other) mailing lists, see http://mail.python.org/
mailman/listinfo.

A couple of useful blogs are Unofficial Planet Python (http://planetpython.org) and The
Daily Python-URL (http://pythonware.com/daily).

Toolkit URL

Tkinter http://python.org/topics/tkinter/doc.html

wxPython http://www.wxpython.org

PythonWin http://sf.net/projects/pywin32/

Java Swing http://java.sun.com/docs/books/tutorial/uiswing

PyGTK http://www.pygtk.org

PyQt http://www.thekompany.com/projects/pykde

Package URL

Psycopg http://initd.org/pub/software/psycopg/

MySQLdb http://sourceforge.net/projects/mysql-python

Pygame http://www.pygame.org

PyXML http://sourceforge.net/projects/pyxml

ReportLab http://www.reportlab.org

599

■ ■ ■

A P P E N D I X D

Python 3.0

This book describes mainly the language defined by Python version 2.5. Python version 3.0 (and
its companion “transition” release, 2.6) isn’t all that different. Most things work just as they did
before, but the language cleanups introduced mean that some existing code will break.

If you’re transitioning from older code to Python 3.0, a couple of tools can come in quite
handy. First, Python 2.6 comes with optional warnings about 3.0 incompatibilities (run Python
with the -3 flag). If you first make sure your code runs without errors in 2.6 (which is largely
backward-compatible), you can refactor away any incompatibility warnings. (Needless to say,
you should have solid unit tests in place before you do this; see Chapter 16 for more advice on
testing.) Second, Python 3.0 ships with an automatic refactoring tool called 2to3, which can
automatically upgrade your source files. (Be sure to back up or check in your files before per-
forming any large-scale transformations.) If you wish to have both 2.6 and 3.0 code available,
you could keep working on the 2.6 code (with the proper warnings turned on), and generate 3.0
code when it’s time for releasing.

Throughout the book, you’ll find notes about things that change in Python 3.0. This
appendix gives a more comprehensive set of pointers for moving to the world of 3.0. I’ll
describe some of the more noticeable changes, but not everything that is new in Python 3.0.
There are many changes, both major and minor. Table D-1 (which is based on the document
What’s New in Python 3.0?, by Guido van Rossum), at the end of this appendix, lists quite a few
more changes and also refers to relevant PEP documents, when applicable (available from
http://python.org/dev/peps). Table D-2 lists some other sources of further information.

Strings and I/O
The following sections deal with new features related to text. Strings are no longer simply byte
sequences (although such sequences are still available), the input/print pair has been revamped
slightly, and string formatting has had a major facelift.

Strings, Bytes, and Encodings
The distinction between text and byte sequences is significantly cleaned up in Python 3.0.
Strings in previous versions were based on the somewhat outmoded (yet still prevalent) notion
that text characters can easily be represented as single bytes. While this is true for English and
most western languages, it fails to account for ideographic scripts, such as Chinese.

600 A P P E N D I X D ■ P Y T H O N 3 . 0

The Unicode standard was created to encompass all written languages, and it admits
about 100,000 different characters, each of which has a unique numeric code. In Python 3.0,
str is, in fact, the unicode type from earlier versions, which is a sequence of Unicode charac-
ters. As there is no unique way of encoding these into byte sequences (which you need to do in
order to perform disk I/O, for example), you must supply an encoding (with UTF-8 as the
default in most cases). So, text files are now assumed to be encoded versions of Unicode, rather
than simply arbitrary sequences of bytes. (Binary files are still just byte sequences, though.) As
a consequence of this, constants such as string.letters have been given the prefix ascii_ (for
example, string.ascii_letters) to make the link to a specific encoding clear.

To avoid losing the old functionality of the previous str class, there is a new class called
bytes, which represents immutable sequences of bytes (as well as bytearray, which is its
mutable sibling).

Console I/O
There is little reason to single out console printing to the degree that it has its own statement.
Therefore, the print statement is changed into a function. It still works in a manner very simi-
lar to the original statement (for example, you can print several arguments by separating them
with commas), but the stream redirection functionality is now a keyword argument. In other
words, instead of writing this:

print >> sys.stderr, "fatal error:", error

you would write this:

print("fatal error:", error, file=sys.stderr)

Also, the behavior of the original input no longer has its own function. The name input is
now used for what used to be raw_input, and you need to explicitly say eval(input()) to get the
old functionality.

New String Formatting
Strings now have a new method, called format, which allows you to perform rather advanced
string formatting. The fields in the string where values are to be spliced in are enclosed in
braces, rather than prefaced with a % (and braces are escaped by using double braces). The
replacement fields refer to the arguments of the format method, either by numbers (for posi-
tional arguments) or names (for keyword arguments):

>>> "{0}, {1}, {x}".format("a", 1, x=42)
'a 1 42'

In addition, the replacement fields can access attributes and elements of the values to
be replaced, such as in "{foo.bar}" or "{foo[bar]}", and can be modified by format specifiers
similar to those in the current system. This new mechanism is quite flexible, and because it
allows classes to specify their own format string behavior (through the magic __format__
method), you will be able to write much more elegant output formatting code.

A P P EN D I X D ■ P Y T H O N 3 . 0 601

Classes and Functions
Although none of the changes are quite as fundamental as the introduction of new-style
classes, Python 3 has some goodies in store in the abstraction department: functions can now
be annotated with information about parameters and return values, there is a framework for
abstract base classes, metaclasses have a more convenient syntax, and you can have keyword-
only parameters and nonlocal (but not global) variables.

Function Annotation
The new function annotation system is something of a wildcard. It allows you to annotate the
arguments and the return type of a function (or method) with the values of arbitrary expres-
sions, and then to retrieve these values later. However, what this system is to be used for is not
specified. It is motivated by several practical applications (such as more fine-grained docstring
functionality, type specifications and checking, generic functions, and more), but you can
basically use it for anything you like.

A function is annotated as follows:

def frozzbozz(x: foo, y: bar = 42) -> baz:
 pass

Here, foo, bar, and baz are annotations for the positional argument x, the keyword
argument y, and the return value of frozzbozz, respectively. These can be retrieved from
the dictionary frozzbozz.func_annotations, with the parameter names (or "return" for the
return value) as keys.

Abstract Base Classes
Sometimes you might want to implement only parts of a class. For example, you may have
functionality that is to be shared among several classes, so you put it in a superclass. However,
the superclass isn’t really complete and shouldn’t be instantiated by itself—it’s only there for
others to inherit. This is called an abstract base class (or simply an abstract class). It’s quite
common for such abstract classes to define nonfunctional methods that the subclasses need to
override. In this way, the base class also acts as an interface definition, in a way.

You can certainly simulate this with older Python versions (for example, by raising
NotImplementedError), but now there is a more complete framework for abstract base classes.
This framework includes a new metaclass (ABCMeta), and the decorators @abstractmethod and
@abstractproperty for defining abstract (that is, unimplemented) methods and properties,
respectively. There’s also a separate module (abc) that serves as a “support framework” for
abstract base classes.

Class Decorators and New Metaclass Syntax
Class decorators work in a manner similar to function decorators. Simply put, instead of the
following:

class A:
 pass
A = foo(A)

602 A P P E N D I X D ■ P Y T H O N 3 . 0

you could write this:

@foo
class A:
 pass

In other words, this lets you do some processing on the newly created class object. In fact,
it may let you do many of the things you might have used a metaclass for in the past. But in case
you need a metaclass, there is even a new syntax for those. Instead of this:

class A:
 __metaclass__ = foo

you can now write this:

class A(metaclass=foo):
 pass

For more information about class decorators, see PEP 3129 (http://python.org/dev/peps/
pep-3129), and for more on the new metaclass syntax, see PEP 3115 (http://python.org/dev/
peps/pep-3115).

Keyword-Only Parameters
It’s now possible to define parameters that must be supplied as keywords (if at all). In previous
versions, any keyword parameter could also be supplied as a positional parameter, unless you
used a function definition such as def foo(**kwds): and processed the kwds dictionary your-
self. If a keyword argument was required, you needed to raise an exception explicitly when it
was missing.

The new functionality is simple, logical, and elegant. You can now put parameters after a
varargs argument:

def foo(*args, my_param=42): ...

The parameter my_param will never be filled by a positional argument, as they are all eaten
by args. If it is to be supplied, it must be supplied as a keyword argument. Interestingly, you
do not even need to give these keyword-only parameters a default. If you don’t, they become
required keyword-only parameters (that is, not supplying them would be an error). If you don’t
want the varargs argument (args), you could use the new syntactical form, where the varargs
operator (*) is used without a variable:

def foo(x, y, *, z): ...

Here, x and y are required positional parameters, and z is a required keyword parameter.

Nonlocal Variables
When nested (static) scopes were introduced in Python, they were read-only, and they have
been ever since; that is, you can access the local variables of outer scopes, but you can’t rebind
them. There’s a special case for the global scope, of course. If you declare a variable to be global

A P P EN D I X D ■ P Y T H O N 3 . 0 603

(with the global keyword), you can rebind it globally. Now you can do the same for outer, non-
global scopes, using the nonlocal keyword.

Iterables, Comprehensions, and Views
Some other new features include being able to collect excess elements when unpacking
iterables, constructing dictionaries and sets in a manner similar to list comprehension,
and creating dynamically updatable views of a dictionary. The use of iterable objects has
also extended to the return values of several built-in functions.

Extended Iterable Unpacking
Iterable unpacking (such as x, y, z = iterable) has previously required that you know the
exact number of items in the iterable object to be unpacked. Now you can use the * operator,
just for parameters, to gather up extra items as a list. This operator can be used on any one of
the variables on the left-hand side of the assignment, and that variable will gather up any items
that are left over when the other variables have received their items:

>>> a, *b, c, d = [1, 2, 3, 4, 5]
>>> a, b, c, d
(1, [2, 3], 4, 5)

Dictionary and Set Comprehension
It is now possible to construct dictionaries and sets using virtually the same comprehension
syntax as for list comprehensions and generator expressions:

>>> {i:i for i in range(5)}
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> {i for i in range(10)}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The last result also demonstrates the new syntax for sets (see the section “Some Minor
Issues,” later in this appendix).

Dictionary Views
You can now access different views on dictionaries. These views are collection-like objects
that change automatically to reflect updates to the dictionary itself. The views returned by
dict.keys and dict.items are set-like, and cannot include duplicates, while the views returned
by dict.values can. The set-like views permit set operations.

Iterator Return Values
Several functions and methods that used to return lists now return more lazy iterable objects
instead. Examples include range, zip, map, and filter.

604 A P P E N D I X D ■ P Y T H O N 3 . 0

Things That Have Gone
Some functions will simply disappear in Python 3.0. For example, you can no longer use apply.
Then again, with the * and ** operators for argument splicing, you don’t really need it. Another
notable example is callable. With it gone, you now have two main options for finding out
whether an object is callable: you can check whether it has the magic method __callable__,
or you can simply try to call it (using try/except). Other examples include execfile (use exec
instead), reload (use exec here, too), reduce (it’s now in the functools module), coerce (not
needed with the new numeric type hierarchy), and file (use open to open files).

Some Minor Issues
The following are some minor issues that might trip you up:

• The old (and deprecated) form of the inequality operator, <>, is no longer allowed. You
should write != instead (which is common practice already).

• Backquotes won’t work anymore. You should use repr instead.

• Comparison operators (<, <=, and the like) won’t allow you to compare incompatible
types. For example, you can no longer check whether 4 is greater than "5" (this is consis-
tent with the existing rules for addition).

• There is a new syntax for sets: {1, 2, 3} is the same as set([1, 2, 3]). However, {} is
still an empty dictionary. Use set() to get an empty set.

• Division is now real division! In other words, 1/2 will give you 0.5, not 0. For integer divi-
sion, use 1//2. Because this is a “silent error” (you won’t get any error messages if you try
to use / for integer division), it can be insidious.

The Standard Library
The standard library is reorganized quite a bit in Python 3.0. A thorough discussion can be
found in PEP 3108 (http://www.python.org/dev/peps/pep-3108). Here are some examples:

• Several modules are removed. This includes previously deprecated modules (such as
mimetools and md5), platform-specific ones (for IRIX, Mac OS, and Solaris), and some
that are hardly used (such as mutex) or obsolete (such as bsddb185). Important function-
ality is generally preserved through other modules.

• Several modules are renamed, to conform to PEP 8: Style Guide for Python Code
(http://www.python.org/dev/peps/pep-0008), among other things. For example,
copy_reg is now copyreg, ConfigParser is configparser, cStringIO is dropped, and
StringIO is added to the io module.

• Several modules have been grouped into packages. For example, the various HTTP-
related modules (such as httplib, BaseHTTPServer, and Cookie) are now collected in the
new http packages (as http.client, http.server, and http.cookies).

The idea behind these changes is, of course, to tidy things up a bit.

A P P EN D I X D ■ P Y T H O N 3 . 0 605

Other Stuff
As I mentioned at the beginning of this appendix, Python 3.0 has a lot of new features. Table D-1
lists many of them, including some I haven’t discussed in this appendix. If there’s something
specific that’s tripping you up, you might want to take a look at the official documentation or play
around with the help function. See also Table D-2 for some sources of further information.

Table D-1. Important New Features in Python 3.0

Feature Related PEP

print is a function. PEP 3105

Text files enforce an encoding.

zip, map, and filter return iterators.

dict.keys(), dict.values(), and dict.items() return views, not lists.

The cmp argument is gone from sorted and list.sort. Use key instead. PEP 3100

Division is now true division: 1/2 == 0.5. PEP 238

There is only one string type, str, and it’s equivalent to the Python 2.x unicode type.

The basestring class is removed.

The new bytes type is used for representing binary data and encoded text. PEP 3137

bytes literals are written as b"abc". PEP 3137

UTF-8 is the default Python source encoding. Non-ASCII identifiers are
permitted.

PEP 3120

StringIO and cStringIO are superseded by io.StringIO and io.BytesIO. PEP 0364

New built-in string formatting replaces the % operator. PEP 3101

Functions can have their parameters and return type annotated. PEP 3107

Use raise Exception(args), not raise Exception, args. PEP 3109

Use except MyException as identifier:, not except MyException, identifier:. PEP 3110

Classic/old-style classes are gone.

Set metaclass with class Foo(Base, metaclass=Meta):. PEP 3115

Abstract classes, @abstractmethod, and @abstractproperty are added. PEP 3119

Class decorators, similar to function decorators, are added. PEP 3129

Backquotes are gone. Use repr.

<> is gone. Use !=.

True, False, None, as, and with are keywords (they can’t be used as names).

long is renamed to int, and is now the only integer type, but without the L. PEP 237

sys.maxint is gone, as there is no longer a maximum. PEP 237

Continued

606 A P P E N D I X D ■ P Y T H O N 3 . 0

Table D-1. Continued

Table D-2. Sources of Information for Python 2.6 and 3.0

Feature Related PEP

x < y is now an error if x and y are of incompatible types.

__getslice__ and friends are gone. Instead, __getitem__ is called with a slice.

Parameters can be specified as keyword-only. PEP 3102

After nonlocal x, you can assign to x in an outer (nonglobal) scope. PEP 3104

raw_input is renamed to input. For the old input behavior, use eval(input()). PEP 3111

xrange is renamed to range.

Tuple parameter unpacking is removed. def foo(a, (b, c)): won’t work. PEP 3113

next in iterators is renamed x.__next__. next(x) calls x.__next__. PEP 3114

There are new octal literals. Instead of 0666, write 0o666. PEP 3127

There are new binary literals. 0b1010 == 10. bin() is the binary equivalent to
hex() and oct().

PEP 3127

Starred iterable unpacking is added, as for parameters: a, b, *rest = seq or
*rest, a = seq.

PEP 3132

super may now be invoked without arguments, and will do the right thing. PEP 3135

string.letters and friends are gone. Use string.ascii_letters.

apply is gone. Replace apply(f, x) with f(*x).

callable is gone. Replace callable(f) with hasattr(f, "__call__").

coerce is gone.

execfile is gone. Use exec instead.

file is gone.

reduce is moved to the functools module.

reload is gone. Use exec instead.

dict.has_key is gone. Replace d.has_key(k) with k in d.

exec is now a function.

Name URL

Python v3.0 Documentation http://docs.python.org/dev/3.0

What’s New in Python 3.0? http://docs.python.org/dev/3.0/whatsnew/3.0.html

PEP 3000: Python 3000 http://www.python.org/dev/peps/pep-3000

Python 3000 and You http://www.artima.com/weblogs/viewpost.jsp?thread=227041

607

Index

■Symbols and Numerics
!= (not equal to) operator, 580

sign, comments, 116

#! character sequence, 21, 22

adding pound bang line, 329

% character, string formatting, 53, 54, 56

changes in Python 3.0, 600, 605

% (remainder) operator, 580

& (bitwise and) operator, 580

* (multiplication) operator, 580

* (parameter splicing) operator, 126, 127, 129

Python 3.0, 602, 603, 604, 606

** (exponential) operator, 580

** (keyword splicing) operator, 128, 129, 604

+ (unary plus) operator, 580

+= operator, 522

- (unary minus) operator, 580

/ (division) operator, 580

== (equality) operator, 15, 93, 569, 580

^ (bitwise exclusive or) operator, 580

__(double underscores), 151

| (bitwise or) operator, 580

~ (bitwise negation) operator, 580

<, <= (less than) operators, 580

<< (left shift) operator, 580

>, >= (greater than) operators, 580

>> (right shift) operator, 580

2to3 (automatic refactoring tool), 599

■A
ABBREV.txt file, 300, 301, 302

ABCMeta metaclass, 601

abs function, 16, 30, 581

abspath function, 494

abstract classes, Python 3.0, 601, 605

abstraction, 139, 571

see also OOP (object-oriented programming)

changes in Python 3.0, 601

classes, 147–156

creating functions, 115–117

documenting functions, 116

encapsulation, 145–147

Fibonacci numbers program, 113–114

inheritance, 147

interfaces, 156–157

making code reusable, 212

parameters, 117–130

polymorphism, 142–145

program structure, 114

recursion, 133–139

scoping, 131–133

value of abstraction, 121

accept method, socket class, 306

access attribute

publisher handler, mod_python, 342, 343

accessor methods, 187

as attributes of property function, 188

private attributes, 151

Acrobat Reader, getting, 425

action method, rule objects

instant markup project, 412, 414

ActivePython, 6, 595

actual parameters see arguments

add function, operator module, 144

add method

chat server project, 479

set type, 229

wx.BoxSizer class, 285

addDestination method, NewsAgent class, 459

addFilter method, Parser class, 414, 415

adding, sequences, 37

addition operator (+), 37

address family, stream socket, 306

addRule method, Parser class, 414, 415

addSource method, NewsAgent class, 459

Adobe Acrobat Reader, getting, 425

Albatross, 344

algorithms, 9, 29

alignment, string formatting, 56, 58

all function, 581

608 ■I N D E X

all variable, 219

allow_reuse_address attribute

SimpleXMLRPCServer class, 527

altsep variable, os module, 224

and operator

Boolean operators, 96

short-circuit logic, 574

operator precedence, 579

Anjuta environment, 6

announcements

comp.lang.python.announce group, 597

any function, 581

Apache web server

configuring to use, 338

conflicting configuration definitions, 339

dynamic web pages with CGI, 328

mod_python, 336–343

apilevel property, Python DB API, 294

APIs

Python Database API, 294–298

Python/C API, 375–380, 596

App class, wx module see wx.App class

append method, lists, 43, 522, 585

append mode, open function (files), 262

appending to dictionaries, 71, 79

appendleft method, deque type, 232

application frameworks

web application frameworks, 343

apply function, 140, 581

changes in Python 3.0, 604, 606

Arachno Python environment, 6

arcade game project, 547–567

banana about to be squished, 566

Banana class, 558

banana.png file, 556

config.py file, 556

further exploration, 567

Game class, 565

game states, 556

GameOver class, 564

goals, 548

Info class, 563

implementations, 551–556

Level class, 560

LevelCleared class, 564

objects.py file, 556, 557

Paused class, 561

preparations, 551

pygame module, 548

Pygame, 548–551

pygame.display module, 549

pygame.event module, 550

pygame.font module, 550

pygame.image module, 551

pygame.locals module, 549

pygame.mouse module, 550

pygame.sprite module, 550

Squish opening screen, 566

squish.py file, 556, 559

SquishSprite class, 557

StartUp class, 564

State class, 559

tools, 548–551

Weight class, 558

weight.png file, 554, 556

weight.pny file, 554

archive files

wrapping modules as, 386–387

args parameter/object, 377, 378

argument splicing, Python 3.0, 604

arguments

calling functions without, 572

command-line arguments, 223

levels of configuration, 398

default arguments, 572

function parameters and, 118

methods, 573

named arguments, 572

printing arguments, using in reverse order, 223

argv variable, sys module, 222, 223

levels of configuration, 398

arithmetic operators, 9

precedence, 580

arithmetic sequence, 184

arraysize attribute, cursors, 297

as clause

changes in Python 3.0, 605

import statement, 85

ascii constants, string module, 60

ASCII encoding error

handling special characters, 451

asctime function, time module, 233

assert method, TestCase class, 356

assert statements, 97, 118, 589

609■I N D E X

assertAlmostEqual method, TestCase class, 356

assertEqual method, TestCase class, 356

using instead of failUnless, 360

AssertionError class, 589

assertions, 97, 111

assertNotAlmostEqual method, TestCase class, 356

assertNotEqual method, TestCase class, 356

assertRaises method, TestCase class, 356

assignment (=) operator, 569

assignments, 15, 85–88, 589

augmented assignments, 87, 589

chained assignments, 87

changing lists, 41

description, 13, 111

sequence unpacking, 85–87

slice assignments, lists, 42

asterisk width specifier, 59

async_chat class

chat server project, 473

collect_incoming_data method, 473, 475

found_terminator method, 473, 475

handle_close method, 475

push method, 475

set_terminator method, 473, 475

asynchat module, 310

async_chat class, 473

chat server project, 470, 473

asynchronous I/O

multiple connections, 312

Twisted framework, 316–319

with select and poll, 313–316

asyncore module, 310

chat server project, 470

dispatcher class, 471

loop method, 472

tools for chat server project, 470

Atom, 345

Atox, 424

attribute methods, 191–192

see individual method names

attribute reference precedence, 580

AttributeError class, 162

checking if object has specific attribute, 172

__getattr__ method, 192

attributes, 146, 573

accessing attributes of objects, 150–152

accessor methods defining, 187–188

binding to functions, 150

checking if object has specific attribute, 172

double underscores in attribute name, 116

encapsulation, 146

magic attributes, 116

object-oriented design, 157

private attributes, 151

screen scraping using HTMLParser, 326

special attributes, 116

attrs argument, handle_starttag, 326

atx, 424

augmented assignments, 87, 589

auth/auth_realm attributes

publisher handler, mod_python, 342, 343

autoexec.bat file, 98, 216

automated tests, 351

automatic checkers

limits to capabilities of, 361

PyChecker/PyLint tools, 359–362, 364

automatic refactoring tool (2to3), 599

AWT (Abstract Window Toolkit), 290

■B
backquotes, Python 3.0, 604, 605

backslash character (\)

escaping quotes, 23

escaping, regular expressions, 243

raw strings, 27, 28

backticks

representing strings, 25

backtracking, generators

solving Eight Queens problem, 200–201

backup parameter, input function, 226

BaseRequestHandler class

SocketServer module, 311

bases attribute, 155

issubclass method, 154

basestring class, Python 3.0, 605

basestring function, 581

BasicTextParser class, 422

“batteries included” phrase, 221

BBCode, 424

bdist command, Distutils, 387

formats switch, 387

rpm format, 387

wininst format, 387, 388

Beautiful Soup module, 327–328

Berkeley DB, 515

610 ■I N D E X

Binary constructor, Python DB API, 298

binary literals, Python 3.0, 606

binary mode, open function (files), 262

binary search

recursive function for, 136–138

BINARY value, Python DB API, 298

bind method, socket class, 306

chat server project, 471, 472

Bind method, widgets, 286, 291

binding parameters, 572

BitTorrent, 517, 518

bitwise operators, 580

BlackAdder environment, 6

blit function, 549

blitting, 549

blocking, 306

blockquote element, bulletin board project, 504

blocks, 88, 111, 569

finding blocks of text, 406–407

blocks generator

instant markup project, 406

blogs, 597

Boa Constructor environment, 6

body method, NNTP class, 455, 457

bool function, 581

Boole, George, 89

Boolean operators, 38, 95–96

short-circuit logic, 96

Boolean values, 89–90

Boost.Python, 371

bottlenecks

extending Python, 365, 380

bound methods, 150

calling unbound superclass constructor, 180

BoxSizer class, wx module see wx.BoxSizer class

break statements, 102, 591

else clause, try/except statement, 168

extracting subject of an article, 457

infinite recursion, 134

using with for and while loops, 105

while True/break idiom, 104–105, 271

broadcast method, Node class

chat server project, 479

XML-RPC file sharing project, 521, 522, 525, 532

browsers

open function, webbrowser module, 225

buffering argument, open function (files), 263

buffers

closing files after writing, 267

updating files after writing, 268

bugs see debugging

build command, Distutils, 384, 385

build subdirectory, Distutils, 385

build_ext command, Distutils, 389

built-in functions, 16, 581–584

built-in string formatting, Python 3.0, 605

bulletin board project, 499–515

creating database, 501

cursor object, 503–504

database password, 503

edit.cgi script, 507, 510–511

further exploration, 515

hidden inputs, 510

implementations, 502–514

main page, 513

main.cgi script, 506, 507–508

message composer, 514

message viewer, 514

preparations, 500–502

requirements, 500

save.cgi script, 507, 511–513

simple.main.cgi script, 505

testing, 513

tools, 500

view.cgi script, 506, 508–510

Button class, wx module see wx.Button class

buttons

adding button to frame, 281

Bind method, widgets, 286

event handling, 286

setting button label, 282

setting button size/position, 283

wx.EVT_BUTTON symbolic constant, 286

bytearray class, Python 3.0, 600

bytes class, Python 3.0, 600

bytes literals, Python 3.0, 605

bytes type, Python 3.0, 599, 605

BytesIO, Python 3.0, 605

■C
c (%c) conversion specifier, 57

C extensions, 371

extending Python, 369–380

C programming

deallocating objects, 376

611■I N D E X

extending Python for improved speed, 365–366

importing existing (shared) C libraries, 370

including C/C++ directly in Python code, 370

Python/C API, 375

reference manual, 596

C# class

IronPython extending Python, 368

C++

enabling interoperability Python/C++, 371

including C/C++ directly in Python code, 370

caching

XML-RPC file sharing project, 534

callable function, 115, 157, 159, 581

Python 3.0, 604, 606

callback method, Handler class, 411

callback methods, HTMLParser, 325

callproc method, cursors, 297

Canvas class, pdfgen module, 427

capitalize method, strings, 586

capwords function, string module, 63, 66

cat command, files, 265

catching exceptions, 163–170

catching all exceptions, 167, 169

catching exception object, 166

catching many exceptions in one block, 166

description, 173

raising exceptions again, 164–165

try/except statement, 163–169

using more than one except clause, 165–166

ceil function, 17, 30

cElementTree, 437

center method, strings, 586

CGI (Common Gateway Interface)

bulletin board project, 502, 506

edit.cgi script, 507, 510–511

main.cgi script, 506, 507

save.cgi script, 507, 511–513

simple_main.cgi script, 505

view.cgi script, 506, 508–510

CGI handler, mod_python, 336, 338–339

CGI script, 331

debugging with cgitb, 331–332

description, 347

dynamic web pages with, 328–336

adding the pound bang (#!) line, 329

preparing web server, 328–329

setting file permissions, 329–330

getting information from CGI script, 335

HTML form, 334–336

input to CGI script, 333

invoking CGI scripts without forms, 334

performance using CGI handler, 339

remote editing with CGI project, 489–498

running CGI script, 339

security risks, 330

using cgi module, 333

cgi file name extension, 329, 339

cgi module

description, 310

dynamic web pages with CGI, 328, 333

FieldStorage class, 333

remote editing with CGI project, 489, 490

cgi-bin subdirectory, 329

cgitb module

debugging with, 331–332

enable function, 331, 347

remote editing with CGI project, 490

tracebacks, 502

chained assignments, 87

chained comparison operators, 93

character sets, 243

characters event handler

XML parsing project, 440, 441

chat server project, 469–487

advantages of writing, 469

asynchat module, 473

asyncore module, 471

ChatServer class, 471–473

ChatSession class, 473–475

collecting data (text) coming from client, 473

command interpretation, 477–478

further enhancement, 486

implementations, 471–485

listening on port for incoming connections, 471

new server, 480–485

preparations, 470–471

requirements, 469

rooms, 478–480

tools, 470

chat services, 469

ChatRoom class, 479, 483

look command, 480, 485

say command, 480, 485

who command, 480, 485

612 ■I N D E X

ChatServer class, 480, 484, 471–473

ChatSession class, 480, 484, 473–475

enter method, 480

checkIndex function, 185

CherryPy, 344

chmod command, UNIX, 330

choice function, random module, 144, 159, 235

chr function, 95, 112, 581

chunks attribute

screen scraping using HTMLParser, 326

clamp method, rectangles, 556

class attribute

finding out class of an object, 155

class decorators, Python 3.0, 601, 605

class definition statement, 594

class keyword, 573

class methods, 189–191

cls parameter, 190

self parameter, 189

class namespace, 152–153

class scope variable, 153

class statement, 149

self parameter, 149

superclasses, 153

classes, 147–148, 158, 573

abstract classes, 601

accessing attributes of objects, 150–152

accessor methods, 151

built-in exception classes, 162

changes in Python 3.0, 605

class decorators, 601

class namespace, 152–153

class statement, 149

classes and types, 147

creating, 148–149

new-style classes, 206

custom exception classes, 163

defining, 573

distinguishing methods from functions, 150

exception classes, 162, 163

inheritance, 141, 147–155, 159

instances, 147

isinstance method, 155

interfaces, 156–157

metaclasses, 176

method definitions, 149

mix-in classes, 444–446

naming conventions, 148

new-style/old-style classes, 149, 175, 206

implementing properties with old-style
classes, 191

Python version, 3.0, 176

object-oriented design, 157, 158

objects and, 147, 155

OOP, 147–156

overriding methods, 206

property function, 189

specifying superclasses, 153–154

subclasses, 147, 148

subclassing built-in classes, 175

superclasses, 147

multiple superclasses, 155–156

classmethod function, 581

clear method, dictionaries, 74–75, 585

clear method, Group class

arcade game project, 550, 552

Clearsilver, 341

Client class

GUI client project, 539, 542

fetchHandler, 538, 540, 541, 544

OnInit method, 538, 539, 541, 543

XML-RPC file sharing project, 528, 533

clients

chat server project, 470, 471

GUI client project, 537–545

XML-RPC file sharing project, 527–528

close function, fileinput module, 226

finding sender of e-mail, 253

close method, connections, 296, 300

bulletin board project, 503

close method, cursors, 297

close method, files, 264, 267

close method, generators, 199

closeHandler, Java Swing, 290

closing files, 267–268

clpa_server variable, 458

cls parameter, class methods, 190

cmath module, 18

Cmd class, cmd module, 527

modeling command interpretation on, 477

cmd module, 259

Cmd class, 477, 527

XML-RPC file sharing project, 519

cmp argument, sort method, 605

613■I N D E X

cmp function, 52, 581

making comparisons, 93

code

making code reusable, 212

reading source code to explore modules, 221

source code checking, 359

code coverage, testing, 351

Code Crusader environment, 6

code fatigue, 395

Code Forge environment, 6

code reuse, 212

coerce function, Python 3.0, 604, 606

collect_incoming_data method

chat server project, 473, 475

collections

see also mappings; sequences

collections module, 231

combine function, 132

command interpretation

chat server project, 477–478

modeling on Cmd class, 477

command prompt

running scripts from, 20

CommandHandler class

chat server project, 478, 481

command-line arguments, 223

levels of configuration, 398

command-line switches, 398

command-line tools

using with subprocess module, 360

commands

cat command, 265

import command, 17

pipe characters linking, 265

python command, 265

sort command, 265

commas

separating print statements with, 83–84

comments, 22, 570

documenting functions, 116

commit method, connections, 296, 300

bulletin board project, 503

save.cgi script, 511

Common Gateway Interface see CGI

comp.lang.python group, 597

comparison operators, 92–95

chaining, 93

comparing incompatible types, 92

comparing sequences, 95

comparing strings, 94

equality operator, 93

identity operator, 93–94

in operator, 94

is operator, 93–94

membership operator, 94

Python 3.0, 604, 606

compile function, re module, 245

compiling extensions, Distutils, 388–389, 390

complex function, 581

complex numbers, 18

Complex type, 579

components see widgets

comprehensions, 603

computer games

arcade game project, 547–567

concatenating strings, 24

condition method, rule objects, 412, 413, 414

conditional operator, 96

conditional statements, 88–97

assertions, 97

Boolean operators, 95–96

comparison operators, 92–95

conditional execution, 90

conditions, 92–96

description, 111

elif clauses, 91

else clauses, 90

if statements, 90

nesting blocks, 91

short-circuit logic, Boolean operators, 574

config.py file, 397

arcade game project, 556

configparser module, 397, 398

renamed modules in Python 3.0, 604

configuration, 396–398

description, 394, 401

levels of, 398

configuration files, 396–398

dividing into sections, 397

conflict function, Eight Queens problem, 202

connect function, Python DB API, 300, 304

parameters, 296

connect method, socket class, 306

614 ■I N D E X

connection object, 296, 303

bulletin board project, 503, 511

connectionLost event handler, 317

connectionMade event handler, 317

connections

bulletin board project, 502

chat server project, 471, 472

network programming, 311–316

Python DB API, 296, 303

console I/O, Python 3.0, 600

constants, 396

string module, 60

symbolic constants, 396

constructors, 176–181, 575

creating, 177

default parameters, 574

description, 206

init method, 177, 575

overriding, 177–179

using super function, 180, 181

Python DB API, 297

unbound superclass constructor, 179–180

containers, 32

content handlers

creating, 439, 441

dispatcher mix-in classes, 446

ContentHandler class

XML parsing project, 451

xml.sax.handler module, 439

Content-type header

dynamic web pages with CGI, 331

context managers, 268

continual rewriting syndrome, 395

continue statements, 103, 591

using with for and while loops, 105

control structures, 569

conversion flags, 56

conversion specifiers, 56

% character, 56

dictionaries, 73

field width, 56, 59

minimum field width, 57

precision, 54, 56, 57

string formatting, 54–59

tuples, 56

types, 56, 57

conversion types, string formatting, 56, 57

conversions

between numbers and strings, SQLite, 303

convert function, 301

convert method, surface objects, 554

Cookie module, 310

cookie-cutter code

automating, 377

cookielib module, 310

copy function, copy module, 220

copy method, dictionaries, 75, 585

count method, lists, 43, 585

count method, strings, 586

CounterList class, 186, 187

coverage

code coverage, 351

test coverage, 351, 352

CPython, extending, 367, 369–371

cracking, vs. hacking , 1

CREATE TABLE command

bulletin board project, 501

create_socket method

chat server project, 471, 472

cStringIO, Python 3.0, 605

csv module, 258

ctypes library, 370

cursor method, connections, 296, 300

cursor objects, 296

in bulletin board project, 503—505

cursors, Python DB API, 296–297, 303

attributes, 297

bulletin board project, 503

methods, 296

custom exception classes, 163, 173

CXX see PyCXX

cyclic garbage, 377

■D
%d conversion specifier, 56

Daily Python-URL blog, 597

Dalke, Andrew

Sorting Mini-HOWTO, 49

data

analyzing many forms of numeric data, 370

fetching data from Internet, 432

data structures, 31, 570

containers, 32

deques, 231–232

heaps, 230–231

615■I N D E X

lists, 40–49

mappings and dictionary type, 69

sequences, 31–40

sets, 228–229

stacks, 45

tuples, 49–51

Database API see Python Database API

database parameter

connect function, Python DB API, 296

DatabaseError exception, Python DB API, 295

databases

compact table-based databases, 293

food database application, 300–303

importing data into, 301

key-value databases, 293

object databases, 293

popular commercial choices, 293

Python Database API, 294–298

relational databases, 293

supported by Python packages, 293

DataError exception, Python DB API, 295

datagram socket, 306

dataReceived event handler, 317

Date constructor, Python DB API, 298

DateFromTicks constructor, Python DB API, 298

dates

fields of Python date tuples, 233

datetime module, 234, 258, 456

DATETIME value, Python DB API, 298

DB API see Python Database API

deallocating objects, 376

Debian Linux, installing Python, 4

debugging

anticipating code changes, 351

cgitb module, 331–332

PythonDebug directive, 339, 340

remote editing with CGI project, 490

decode method, strings, 586

decorators

abstract classes, Python 3.0, 601

changes in Python 3.0, 605

class decorators, Python 3.0, 601

description, 190

deep copy, dictionaries, 76

deepcopy function, copy module, 76, 220

def statements, 115, 571

class namespace, 152

documenting functions, 116

generator-function component, 198

default arguments, 572

default values, parameters, 124

using empty lists as, 575

defaultdict dictionary, 232

defaultStart/defaultEnd methods

XML parsing project, 445, 447

deferred execution, Twisted, 317

definitions

class definitions, 594

function definitions, 594

del method, 177

del operation, dictionaries, 71

del statements, 107–108, 590

deleting elements from lists, 41

description, 112

using for cleanup operation, 170

delattr function, 581

__delattr__ method, 191

delitem method, 182, 184

deque module, 259

deque type, 231–232

collections module, 231

deques, 231–232

description attribute, cursors, 297

descriptor protocol, 189

design

object-oriented design, 157–158

destructors

__del__ method, 177

__dict__ attribute

avoiding endless looping, 192

__getattribute__ method trap, 192

seeing all values stored in objects, 157

dict function, 71, 81, 581

dictfetchall method, cursor object

bulletin board project, 503, 504

SQLite alternative, 505

dictfetchone method, cursor object

bulletin board project, 503

dictionaries, 571

** operator, 127, 128

accessing dictionary items, 76

adding items to, 71, 72

assigning value to new key, 71

checking if key exists, 78

616 ■I N D E X

dictionaries (continued)

constructing from other mappings, 71

conversion specifiers, 73

creating, 70

creating with values of None, 76

deep copy of, 76

defaultdict, 232

empty dictionary, 604

globals function, 132

iterating over, 100

keys, 121

keys and values, 70

locals function, 132

membership, 71, 72

modules mapping, 222

overwriting same key items from another, 80

precedence, 581

removing all items from, 74

removing arbitrary value from, 79

returning all items of, 78

returning list of keys, 78

returning list of values, 80

returning value of specified key, 79

shallow copy of, 75

string formatting with, 73, 81

subclassing dict type, 185–187

uses, 69

dictionary comprehension, Python 3.0, 603

dictionary methods, 74–80, 585–586

clear, 74–75, 585

copy, 75, 585

fromkeys, 76, 585

get, 76–78, 585

has_key, 78, 585, 606

items, 78, 585

iteritems, 78, 585

iterkeys, 78, 585

itervalues, 80, 585

keys, 78, 585

pop, 79, 586

popitem, 79, 586

setdefault, 79, 106, 586

update, 80, 586

values, 80, 586

dictionary type

deepcopy function, 76

in operation, 71

key related operators, 71

mappings and, 69

operations, 71–73

purpose of, 69–70

syntax, 70

types for keys, 72

uniqueness of values, 70

using, 70

dictionary views, Python 3.0, 603

difflib library, 258

digests, passwords, 494

digits constant, string module, 60

dir function, 260, 581

exploring modules, 218

directory element

XML parsing project, 437

directory list

XML parsing project, 448

discussion forum

bulletin board project, 499–515

dispatch method

XML parsing project, 445

Dispatcher class

bind method, 471, 472

chat server project, 471

create_socket method, 471

garbage collection, 480

handle_accept method, 471, 472, 475, 480

listen method, 471, 472

set_reuse_addr method, 473

XML parsing project, 445, 448

display method, Level class, 561

display method, State class, 560

display module, pygame, 549

dist subdirectory, Distutils, 387

distribute method, NewsAgent class, 459, 462

distributing operators, 128–129, 604

distribution formats, 387

distributions

ActivePython, 595

alternative Python distributions, 5–7

distributing Python packages, 383

IronPython, 595

Jython, 595

MacPython, 595

Official Python Distribution, 595

617■I N D E X

Python distributions, 595

pywin32, 595

Distutils toolkit, 383–386

bdist command, 387

build command, 384, 385

build subdirectory, 385

build_ext command, 389

compiling extensions, 388–389

description, 383, 390

dist subdirectory, 387

install command, 385

installing, 384

lib subdirectory, 385

py_modules directive, 386

py2exe extension, 389–390

register command, 390

sdist command, 386, 387

setup function, 384, 391

setup.py script, 383, 384, 385, 387, 390

setuptools project, 384

SWIG, 375, 389

uninstall command, 385, 388

wrapping modules as archive file, 386–387

division, 9, 10

division (/) operator, 580

double slash (//) operator, 10

integer division, Python 3.0, 604, 605

rounding, 16

divmod function, 581

Django, 343, 344

do_exit method, Client class

XML-RPC file sharing project, 533

do_fetch method, Client class

GUI client project, 538

XML-RPC file sharing project, 533

do_logout method, chat server project, 479

do_look method, chat server project, 480

do_say method

chat server project, 480

XML-RPC file sharing project, 527

do_who method, chat server project, 480

doc attribute

exploring modules, 220

function attributes, 116

doc parameter, property function, 189

docstrings, 116, 220

exploring modules, 220

doctest module, 352, 353–355, 364

testmod function, 353, 354, 364

Document Object Model (DOM), 439

documentation

creating graphics and documents in PDF, 425

exploring modules, 220–221

Macintosh library modules, 596

Python, 596

DOM (Document Object Model), 439

DOS, handling whitespace for, 225

double slash operator, 10

double underscores (__)

making method or attribute private, 151

double-clicking, 21

double-ended queues (deques), 231–232

draw method, 549, 550, 552

drawToFile method, renderPDF class, 428

dsn parameter

connect function, Python DB API, 296

duck typing, 145

dynamic web pages

screen scraping, 321

dynamic web pages with CGI, 328–336

■E
%E, %e conversion specifiers, 57

Eclipse environment, 6

edit.cgi script

bulletin board project, 510, 511

description, 507

link from main.cgi, 507

link from view.cgi, 508

testing, 513

remote editing with CGI project, 492–494, 496

editing

remote editing with CGI project, 489–498

eggs, Python, 384

Eight Queens problem, 200–206

ElementTree, 437

dealing with XML in Python, 439

elif clauses, if statements, 91, 592

else clauses

if statements, 90, 592

try/except statement, 168–169

combining try/except/finally/else, 170

description, 173

using in loops, 105

email, finding sender of, 251–253

618 ■I N D E X

email addresses filter

instant markup project, 418

email module, 310

EmailDestination class

news gathering project, 468

empty dictionary, 604

empty lists, 37

using as default value, 575

empty set, 604

enable function, cgitb module, 331, 347

encapsulation, 145–147, 573

accessing attributes of objects, 150–152

accessor methods, 187

attributes, 146

description, 141, 158

extending Python, 366

state, 147

encode method, strings, 586

encoding, Python 3.0, 599, 605

end method

MatchObjects, re module, 248

end method, Handler class

instant markup project, 410, 411

endElement event handler

XML parsing project, 440, 441, 445

endless loop trap

setattr method, 192

EndSession exception

chat server project, 479

endswith method, strings, 586

ensureDirectory method

XML parsing project, 447, 448

enter method

context managers, 268

enter method, ChatSession class, 480

enumerate function, 102, 112, 582

environ mapping, os module, 223, 224

environment variables

description, 216

environ mapping, os module, 224

levels of configuration, 398

PYTHONPATH, 215

setting in UNIX and Mac OS X, 216

setting in Windows, 216

EOF command, 527

Epytext

markup systems and web sites, 424

equality (==) operator, 15, 93, 569, 580

eric environment, 6

Error exception, Python DB API, 295

error handling

exceptions, Python DB API, 295

error messages see tracebacks

errors

see also exceptions

AttributeError class, 162

catching Pygame-specific errors, 549

distinguishing from failures in unittest, 357

inappropriate type used, 183

index outside range, 183

IndexError class, 162

IOError class, 162

KeyError class, 162

NameError class, 162

NotImplementedError exception, 224

stderr stream, sys module, 222

SyntaxError class, 163, 254

TypeError class, 163

ValueError class, 163

ZeroDivisionError class, 161, 163

escape function, re module, 245, 247

escaping quotes, 23–24

escaping special characters

regular expressions, 242

EtText, 424

eval function, 112, 582

sample template system, 254

eval statements, 110

description, 112

scope, 111

event handling

Bind method, widgets, 286

button events, 286

chat server project, 471

closeHandler, Java Swing, 290

connectionLost event handler, 317

connectionMade event handler, 317

dataReceived event handler, 317

description, 291

HTMLParser callback methods, 325

load function, 286

rawDataReceived event handler, 318

save function, 286

screen scraping using HTMLParser, 326

619■I N D E X

when event handler is called, 286

writing Twisted server, 317

wx.EVT_BUTTON symbolic constant, 286

wxPython GUI toolkit, 286

XML parsing project, 439–441, 448–450

event module, pygame, 550

event-driven networking framework, 316

writing Twisted server, 317

events, 286

polling event constants in select module, 315

XML parsing project, 439–441

except block

Python 3.0, 605

Python DB API, 295

except clause, try statement, 593

see also try/except statements

catching all exceptions, 167

catching exception object, 166

catching many exceptions in one block, 166

description, 173

trapping KeyError exception, 172

using more than one except clause, 165–166

Exception class, 162

catching all exceptions, 169

raise statement, 162

exception objects, 161, 173

catching, 166

exceptions, 161, 576

see also errors

built-in exception classes, 162, 163

catching exceptions, 163–170

catching all exceptions, 167, 169

catching exception object, 166

catching many exceptions in one block, 166

danger of catching all exceptions, 167

description, 173

raising exceptions again, 164–165

try/except statement, 163–169

connecting to NNTP servers, 455

custom exception classes, 163, 173

doing something after exceptions, 169–170

EndSession exception, 479

exception hierarchy, 295

exception objects, 161, 173

functions and, 164, 170–171, 173

GeneratorExit exception, 199

indicating everything worked, 168–169

NotImplementedError exception, 224

Python DB API, 295

raise statement, 162–163

raising exceptions, 161–163, 173

StopIteration exception, 192

SyntaxError exception, 254

try/except statement, 163–169

using more than one except clause, 165–166

warnings, 173

XML-RPC file sharing project, 528–529

Zen of, 171–173

exec statements, 109–110, 592

changes in Python 3.0, 606

description, 112

replacing reload function functionality using, 211

sample template system, 254

scope, 111

execfile function, 582

Python 3.0, 604, 606

executable binaries, 390

executable Windows programs

creating with py2exe, 389–390

execute method, cursors, 297, 301, 302

bulletin board project, 503

executemany method, cursors, 297, 301

executing programs, 19–20

execv function, 224

exit command

XML-RPC file sharing project, 527

exit function, sys module, 222

exit method

context managers, 268

expandtabs method, strings, 586

exponentiation operator (**), 11

compared to pow function, 16

precedence, 580

expression statements, 589

expressions, 9–12, 579–588

compared to statements, 13

description, 29

evaluating expression strings, 254

logical expressions, 573

precedence, 580

extend method

deque type, 232

lists, 44, 585

620 ■I N D E X

extending Python, 365–366

architecture, 366

CPython, 367

encapsulation, 366

extending CPython, 369–371

extension approaches, 380

identifying bottlenecks, 365

IronPython, 367–369

Jython, 367–369

Python extensions, 380

SWIG, 371–375

using Python/C API, 380, 375–380

framework for extensions, 377–378

hand-coded palindrome module, 379–380

reference counting, 376–377

wrapping legacy code, 366

writing C extensions, 369–380

extendleft method

deque type, 232

extensions

compiling extensions, 388–389, 390

framework for, 377–378

py2exe extension, Distutils, 389–390

Extreme Programming, 349, 393

■F
%F conversion specifier, 57

%f conversion specifier, 54, 57

factorial function, 135

factorials

recursive function to calculate, 134

Factory class

twisted.internet.protocol module, 317

fail method, TestCase class, 357

failIf method, TestCase class, 357

failIfAlmostEqual method, TestCase class, 356

failIfEqual method, TestCase class, 356

failUnless method, TestCase class, 356

using assertEqual instead of, 360

failUnlessAlmostEqual method, TestCase class, 356

failUnlessEqual method, TestCase class, 356

failUnlessRaises method, TestCase class, 357

failures

distinguishing from errors in unittest, 357

False value (Boolean), 89

changes in Python 3.0, 605

Fault class, xmlrpclib module, 528, 529

feed method

instant markup project, 410

feeds see RSS feeds

fetch command

XML-RPC file sharing project, 527

fetch method, Node class

XML-RPC file sharing project, 520, 521, 524,
526, 527, 531

fetchall method, cursors, 297, 302

bulletin board project, 503, 504

fetchHandler, Client class

GUI client project, 538, 540, 541, 544

fetchmany method, cursors, 297

fetchone method, cursors, 297

bulletin board project, 503

fget/fset/fdel parameters, property function, 189

Fibonacci numbers program, 113

field width, string formatting, 56, 57, 59

FieldStorage class, cgi module, 333

file function, 275, 582

Python 3.0, 604, 606

file iterators, 272–274

file locking

remote editing with CGI project, 497

file methods, 263–270

close method, 264, 267

examples using, 268–270

flush method, 268

read method, 264

readline method, 266

readlines method, 266

seek method, 266

tell method, 266

write method, 264

writelines method, 267

xreadlines method, 272

file permissions

dynamic web pages with CGI, 329–330

file property, modules

exploring modules via source code, 221

file sharing, 517

adding GUI client to Python program, 537–545

XML-RPC file sharing project, 517–535

filecmp module

news gathering project, 468

fileinput module, 225–227

description, 259

621■I N D E X

finding sender of e-mail, 252

functions, 225

lazy line iteration with fileinput, 272

sample template system, 255, 256

filelineno function, fileinput module, 226

filename function, fileinput module, 226

files

closing files, 267–268, 274

file types, 274

file-like objects, 263, 274

finding file name, wxPython, 286

iterating over file contents, 270–274

byte by byte, 270–271

description, 274

file iterators, 272–274

iterating over lines in very large file, 272

lazy line iteration with fileinput, 272

one line at a time, 271

reading everything first, 271

without storing file object in variable, 273

modes, 261–263, 274

opening files, 261–263

buffering, 263

changes to file in text mode, 262

description, 274

piping output, 264–265

random access, 266

read/write/append/binary modes, 261

reading and writing, 264

closing files after, 267

reading files, 274

reading lines, 266, 274

streams, 274

universal newline support mode, 263

using as context managers, 268

validating file names, XML-RPC, 529–534

writing files, 274

updating files after writing, 268

writing lines, 266, 274

Filter class, 154

filter function, 138, 139, 140, 582

changes in Python 3.0, 605

instant markup project, 414

filters

fetching data from Internet, 432

instant markup project, 409, 413, 418

filterwarnings function, 174

finally clause, try statement, 169–170, 173, 593

combining try/except/finally/else, 170

find method, strings, 60, 586

findall function, re module, 245, 246

finding sender of e-mail, 252

findall method, regular expressions

news gathering project, 462

firewalls, network programming and, 305

firstDisplay method

arcade game project, 560, 562

flag argument, wx.BoxSizer class, 285

flags

conversion specifiers, 56

flags parameter, 247

flip function, arcade game project, 549, 552

float function, 30, 582

food database application, 300

Float type, 579

floating-point numbers, 10

floats, 10

floor function, 16, 30

flush method, files, 268

Font function, arcade game project, 550

font module, pygame, 550

food database application, 300–303

creating and populating tables, 301–302

food_query.py, 303

importdata.py, 301

searching and dealing with results, 302–303

footers

writeFooter method, 446

for loops, 99, 570

Fibonacci numbers program, 113

generators

iter method, 193

iterable files, 272

list comprehension, 105–106

recursive generators, 196

for statements, 593

forking, 312

chat server project, options for, 469

multiple connections, 312

SocketServer module, 313

form tag, action attribute, 492

formal parameters, 118

format function, bulletin board project, 504, 507

622 ■I N D E X

format method, strings

changes in Python 3.0, 600

format strings, Python/C API, 378

formats switch

bdist/sdist commands, Distutils, 387

formatting strings

changes in Python 3.0, 600

conversion specifiers, 54–59

string formatting operator, 53

forms

invoking CGI scripts without, 334

writing HTML forms, 334–336

forums, online Python resources, 597

found_terminator method

chat server project, 473, 475, 479

Frame class, wx module see wx.Frame class

frames

adding button to frame, 281

setting frame size, 283

setting frame title, 282

wx.Frame class, 281

wxPython GUI toolkit creating, 281

frameworks

event-driven networking framework, 316

framework for extensions, 377–378

SocketServer framework, 310–311, 319

Twisted framework, 316–319, 320

web application frameworks, 343

freshmeat.net, 596

from module import statement, 17

reasons not to use, 18

fromkeys method, dictionaries, 76, 585

frozenset function, 582

frozenset type

immutability, 229

ftplib module, 310

function annotation, Python 3.0, 601

function attributes

doc attribute, 116

function call precedence, 580

function definition statement, 115, 594

functional programming, 138–139, 140

functional requirements

requirement specification, 350

functions, 29, 571–572

see individual function names

as values in Python, 572

binding attributes to, 150

built-in functions, 16, 581–584

calling functions without arguments, 572

containing yield statement, 195

creating, 115–117

defining functions in modules, 212

testing modules, 212–214

distinguishing methods from, 150

documenting, 116

ending functions, 117

exceptions and, 164, 170–171, 173

extinct functions in Python 3.0, 604

flags parameter, 247

formal parameters, 118

from module import statement, 17

function definition, 139

functions without return values, 117

generator-function, 198, 207

local naming, 120

methods compared, 43

nested scopes, 133

number of scopes/namespaces, 131

object-oriented design, 157

parameter/return type annotation, 601, 605

parameters, 16, 117–130, 139

changing, 118–120

collecting parameters, 125–128

distributing operators, 128–129, 604

examples using, 129–130

gathering operators, 125–128, 602, 603, 604,
606

immutability, 123

keyword parameters, 123–125

keyword-only parameters, 602, 606

passing parameters to functions, 572

reasons for changing, 120–122

values, 118

parts of recursive function, 134

recursion, 133–139, 140

recursive functions, 134

return value, 16

caution using if statements, 117

return value is None, 117

type objects, 17

functools module, 258

future module, 10, 19

623■I N D E X

■G
%G, %g conversion specifiers, 57

games, arcade game project, 547–567

Game class, 565

game states, 556

GameOver class, 564

garbage collection

cyclic garbage, 377

del method, 177

gc module, 377

reference counting, 377

unbound objects, 480

gathering operators, 125–128, 602, 603, 604, 606

gc module, 377

generator comprehension, 196

GeneratorExit exception

close method, generators, 199

generators, 194–200

backtracking and, 200–201

close method, 199

components of, 198

description, 207

generator-function, 198, 207

generator-iterator, 198

making generators, 195

methods, 198–199

recursive generators, 196–197

return statement, 195, 198

send method, 198

simulating, 199

solving Eight Queens problem, 200–206

throw method, 199

yield expression, 198, 199

yield statement, 195, 198

Gentoo Linux

installing Python, 4

get function, arcade game project, 550, 552

GET method

getting information from CGI script, 335

get method, dictionaries, 76–78, 585

get_surface function, arcade game project, 549, 552

__getattr method__, 191, 192

raising AttributeError, 192

getattr function, 157, 159, 582

chat server project, 478

checking whether object has specific attribute,
173

working with getattr method, 192

__getattribute__ method, 191

accessing dict attribute, 192

getdefaultencoding function, sys module, 451

gethostname function, socket class, 306, 307

getitem method, 182

changes in Python 3.0, 606

overriding, 186

simulating slicing, sequences, 185

subclassing list type, 186

getItems method, NewsAgent class

news gathering project, 459, 461, 462

getName accessor method

private attributes, 151

getopt module, 259

news gathering project, 468

getPort function

XML-RPC file sharing project, 523, 530

getrandbits function, random module, 235

getslice method, Python 3.0, 606

GetValue method

load event, wxPython, 286

save event, wxPython, 286

getvalue method, FieldStorage class

input to CGI script, 333

global keyword, 133, 603

global scope, 131

exceptions and functions, 170

rebinding variables in outer scopes, 133

global statements, 592

global variables

avoiding, 240

bugs when referencing, 132

constants, 396

object-oriented design, 157

Python DB API, 294–295

rebinding, 132

shadowing, 132

treating objects as abstract, 146

globals function, 132, 582

gmtime function, time module, 234

Gnutella, 517

gopherlib module, 310

Graphical User Interfaces see GUIs

graphics

creating graphics in PDF/Python, 425

624 ■I N D E X

graphics creation project, 425–434

constructing PolyLine objects, 429–430

drawing with ReportLab, 427–429

fetching data from Internet, 432

further exploration, 434

implementations, 427–434

preparations, 426

prototype for sunspots_proto.py, 430–431

ReportLab package, 425

tools, 426

using LinePlot Class, 432–434

graphics package, reportlab module, 427

graphics-generating package

graphics creation project, 426

graphs

definitions and further information, 201

greater than operators, 580

greedy patterns, 250

finding sender of e-mail, 252

grokking, 218

Group class, arcade game project, 550

clear method, 552

update method, 552

group method

connecting to NNTP servers, 455

MatchObjects, re module, 248

group numbers, regular expressions

using in substitution string, 249

groups

re module, 247–249

Usenet groups, 597

Grutatxt, 424

GTK platform

PyGTK GUI toolkit, 278

GUI client project, 537–545

Client class, 539, 542

further exploration, 545

implementations, 538–545

ListableNode class, 541

preparations, 538

requirements, 537

tools, 537

GUI platforms, 291, 277

GUI toolkits

chat server project, 486

choosing between, 278

description, 277

for Jython, 290

list of GUI toolkits for Python, 597

popular GUI Toolkits for Python, 277

Swing, 290

Tk/Tkinter, 289

wxPython, building text editor, 278–288

GUIs (Graphical User Interfaces), 291

■H
hacking

cracking compared, 1

halting theorem, 361

halts module, 362

handle method

arcade game project, 560, 562

forking and threading, 313

handle method, Node class

XML-RPC file sharing project, 521, 522, 525, 531

handle_accept method

chat server project, 471, 472, 475, 480

handle_charref method, HTMLParser, 325

handle_close method

chat server project, 475, 480

handle_comment method, HTMLParser, 325

handle_data method, HTMLParser, 325, 326

handle_decl method, HTMLParser, 325

handle_endtag method, HTMLParser, 325, 327

handle_entityref method, HTMLParser, 325

handle_pi method, HTMLParser, 325

handle_startendtag method, HTMLParser, 325

handle_starttag method, HTMLParser, 325, 326

Handler class, instant markup project, 410–411,
418

callback/start/end/sub methods, 410, 411

handler module, xml.sax, 439

handlers

CGI handler, mod_python, 336, 338–339

creating content handler, 439–441

instant markup project, 409–411

mod_python handler framework, 336

PSP handler, mod_python, 336, 339–341

publisher handler, mod_python, 336, 341–343

handlers.py, instant markup project, 418

has_key method, dictionaries, 78, 585, 606

hasattr function, 157, 159, 582

replacing callable function, 115

working with getattr method, 192

hashlib module, 258

625■I N D E X

head method, NNTP class, 455, 457

header file

framework for extensions, 377

SWIG, 372, 373

headers

writeHeader method, 446

heading rules

instant markup project, 415

HeadingRule class

instant markup project, 416, 420

HeadlineHandler class

XML parsing project, 441

heapify function, 230, 231

heappop function, 230, 231

heappush function, 230

heapq module, 230–231, 259

heapreplace function, 230, 231

heaps, 230–231

hello method, Node class

XML-RPC file sharing project, 520, 521, 524,
526, 528, 531, 534

help function, 116, 582

description, 30, 260

exploring modules, 219–220

help switch, Distutils, 384

hex function, 582

hexadecimal numbers, 12

hidden form elements

remote editing with CGI project, 494

hidden inputs, 510

bulletin board project, 513

host parameter, connect function, 296

hotshot module, 363

htaccess file, 338, 339, 341

HTML

automatically marking up plain-text file, 403

creating HTML pages, 442–444

fixing ill-formed HTML, 322

index.html file, 492

introduction to, 403

parsing, 322

writing HTML forms, 334–336

XHTML advantages over, 325

HTMLDestination class

news gathering project, 460, 462

htmllib module

parsing HTML, 322

HTMLParser class, 325–327

callback methods, 325

event-handling methods, 325

screen scraping using, 326

HTMLRenderer class

instant markup project, 409, 411, 419

httplib module, 310

■I
%i conversion specifier, 56

id column, messages table

bulletin board project, 502

view.cgi script, 508

id function, 582

identity operator, 93–94

IDEs for Python, 6

IDLE interactive Python shell, 2

IDEs for Python, 6

saving and executing programs, 19

if statements, 15, 90, 569, 592

catching exceptions, 164

caution when return value is None, 117

try/except statement compared, 171, 173

I/O, Python 3.0, 600, 605

image attribute, Sprite class, 554

image module, pygame, 551

imaginary numbers, 18

imaplib module, 310

immutability

frozenset type, 229

lists, 119

parameters, 123

set type, 229

strings/numbers/tuples, 119

using is operator with immutable values, 94

implementation of projects

structure of projects in this book, 402

import command, 17

from module import statement, 17

import statements, 591

as clause, 85

description, 111

fetching functions from external modules, 209

importing something as something else, 84–85

open function, 85

importdata.py, 301

importing modules, 259

import-only-once behavior, modules, 211

626 ■I N D E X

in operation, 71

in operator, 38, 39, 94

operator precedence, 580

include_dirs variable, 299

incompatibility warnings

transitioning to Python 3.0, 599

indentation, 569

blocks, 88

index method, lists, 44, 138, 585

index method, strings, 587

index, sequences

checkIndex function, 185

description, 31

illegal type of index used, 184

index.html file

remote editing with CGI project, 492, 496

IndexError class, 162

index outside range, 183, 184

indexing, lists, 570

indexing, sequences, 32–34

inequality operator

Python 3.0, 604, 605

infinite recursion, 134

inflate method, rectangles, 555, 556

Info class, arcade game project, 563

information-gathering agent

news gathering project, 453

inheritance, 147–155

description, 141, 159

multiple inheritance, 156, 575

multiple superclasses, 155–156

object-oriented design, 157

overriding methods and constructors, 177, 178

specifying superclasses, 153–154

subclassing list/dict/str types, 185

init file

making Python recognize packages, 217

init function, pygame module, 549, 552

__init__ method, 575

calling unbound superclass constructor, 180

making init magic, 177

using super function, 180

initialization functions

naming conventions, 380

initializing methods see constructors

inner scope see local scope

Inno Setup installer, 388

inplace parameter, input function, 226, 227

input

compared to raw_input, 26

fileinput module, 225–227

getting input from users, 14–15

hidden inputs, 510

stdin stream, sys module, 222

input function, 14, 30, 570, 582

changes in Python 3.0, 600

input function, fileinput module, 226

backup parameter, 226

inplace parameter, 226, 227

insert method, lists, 45, 585

inside attribute, ListRule class

instant markup project, 417

inside function

XML-RPC file sharing project, 530

inspect module

publisher handler, mod_python, 342

seeing all values stored in objects, 157

install command, Distutils, 385

compiling extensions, 388

installations, Python, 1–7

on Linux/UNIX, 3–5

on Macintosh, 5

on Windows, 1–3

installers

alternative installers, 388

creating Windows installer, 387

Inno Setup, 388

introduction, 390

McMillan installer, 388

Windows installer technology, 388

writing install scripts with Distutils, 383–386

instances of classes, 147

isinstance method, 155

instant markup project, 403–424

adding markup, 407–408

components, 409

filters, 413, 418

final program, 418–422

finding blocks of text, 406–407

further exploration, 423–424

goals, 404

Handler class, 410–411

handlers, 409–411

implementations, 406–422

627■I N D E X

Parser class, 413–415

parsers, 413–415

preparations, 405–406

Rule class, 413

rules, 412–413, 415–418

tools, 404

int function, 30, 113, 570, 582

integer type, 579

integers

integer division, 9

large integers, 11–12

long integers, 11–12

numbers containing leading zeros, 70

IntegrityError exception, Python DB API, 295

interactive interpreter, 7–9

saving programs, 19

interface file, SWIG, 372, 373

InterfaceError exception, 295

interfaces, 156–157, 159

InternalError exception, 295

interoperability

enabling, Python/C++, 371

interpreter, interactive, 7–9

I/O, asynchronous I/O with select and poll,
313–316

IOError class, 162

IRC, 595

IronPython, 595

alternative Python distributions, 6, 7

description, 380

extending Python, 367–369

is not operator, 580

is operator, 93–94

operator precedence, 580

isalnum method, strings, 587

isalpha method, strings, 587

isdigit method, strings, 587

isdir function, os.path module

XML parsing project, 447

isfirstline function, fileinput module, 226

isinstance function, 142, 159, 582

using in checkIndex function, 185

isinstance method, 155

islower method, strings, 587

isspace method, strings, 587

isstdin function, fileinput module, 226

issubclass function, 159, 582

issubclass method, 154

istitle method, strings, 587

isupper method, strings, 587

item access, 182–187

sequence and mapping protocol, 182–185

subclassing list/dict/str types, 185–187

item access precedence, 580

items method, dictionaries, 78, 100, 585

changes in Python 3.0, 605

__iter__ method, 192–194, 207

for loops, 193

iter function, 194, 207, 582

iterable unpacking, Python 3.0, 603, 606

iteration

definition, 192

for loops, 99

iterable object, 99

iterating over dictionaries, 100

iterating over file contents, 270–274

byte by byte, 270–271

file iterators, 272–274

iterating over lines in large file, 272

lazy line iteration with fileinput, 272

one line at a time, 271

reading everything first, 271

without storing file object in variable, 273

iterating over sequences, 32

iterating over string-like objects, 197

looping, 99

numbered iteration, 101

parallel iteration, 100–101

reversed iteration, 102

sorted iteration, 102

StopIteration exception, 192

utilities, 100–102

while loops, 98

iterator protocol, 192–194

iterator return values, Python 3.0, 603

iterators, 192–194

changes in Python 3.0, 605

description, 207

file iterators, 272–274

generators and, 195

introduction, 175

iterator protocol, 192–194

making sequences from, 194

returning, 197

628 ■I N D E X

iteritems method, dictionaries, 78, 585

iterkeys method, dictionaries, 78, 585

itertools module, 258

itervalues method, dictionaries, 80, 585

■J
Java class, Jython extending Python, 367

Java Swing see Swing GUI toolkit

JavaBean properties

Jython extending Python, 368

JavaScript Object Notation (JSON), 346

join function, os.path module

XML parsing project, 447

join method, strings, 61, 587

example using, 223

performance, 255

JSON (JavaScript Object Notation), 346

just-in-time compiler for Python, 370

Jython, 595

alternative Python distributions, 6, 7

description, 380

extending Python, 367–369

GUI toolkits for, 290

JavaBean properties, 368

jythonc command, 367

■K
KDevelop environment, 6

key argument of sort method, lists, 48

changes in Python 3.0, 605

key related operations, dictionaries, 71

key types, dictionaries, 71

KeyError exception, 162

trapping with except clause, 172

keys

inappropriate type used, 183

sequence key is negative integer, 183

keys method, dictionaries, 78, 100, 585

changes in Python 3.0, 605

keys, dictionaries, 121

checking if key exists, 78

types for keys, 72

keyword arguments/parameters, 123–125

** (keyword splicing) operator, 126

combining with positional parameters, 124

keyword-only parameters, 602, 606

sort method, lists, 48

using with wx constructors, 282

Komodo environment, 6

■L
label argument, wx.Button constructor, 282

lambda expressions, 139

lambda operator, 579

languages

object-oriented languages, 141

large integers, 11–12

LaTeX

markup system, 404

typesetting system, 434

layout mechanisms, 291

lazy evaluation, Boolean operators, 96

lazy line iteration, 272

left shift operator, 580

len function, 40, 52, 582

__len__ method, 182, 184

len operation, dictionaries, 71

less command, UNIX, 457

less than operators, 580

letters constant, string module, 60

changes in Python 3.0, 606

Level class, arcade game project, 560

LevelCleared class, arcade game project, 564

lib subdirectory, Distutils, 385

libraries

ctypes library, 370

difflib library, 258

importing existing (shared) C libraries, 370

Macintosh library modules, 596

Python library reference, 596

standard library modules, 259

Tidylib, 324

library_dirs variable, 299

line method, Canvas class, 427

line numbers

adding to Python script, 227

line separators see newline character

lineno function, fileinput module, 226

LinePlot Class

graphics creation project, 432–434

LineReceiver class, Twisted framework

chat server project, options for, 469

629■I N D E X

LineReceiver protocol

twisted.protocols.basic module, 318

lines

constructing PolyLine objects, 429–430

lines generator

instant markup project, 406

linesep variable, os module, 224

Linux

installing Python on Linux/UNIX, 3–5

list comprehension, 105–106, 112

exploring modules, 218

generator comprehension and, 196

using, 139

list constructor

making lists from iterators, 194

list function, 40, 52, 583

list item rules

instant markup project, 415

list method, ListableNode class

GUI client project, 541, 542

list methods, 43–49, 585

append method, 43, 585

count method, 43, 585

extend method, 44, 585

index method, 44, 585

insert method, 45, 585

pop method, 45–46, 585

remove method, 46, 585

reverse method, 46, 585

sort method, 47–49, 585

list rules

instant markup project, 415

ListableNode class, GUI client project, 541

list method, 541, 542

listen method

chat server project, 471, 472

socket class, 306

listenTCP function, reactor module, 318, 320

ListItemRule class

instant markup project, 416, 420

ListRule class

instant markup project, 417, 420

lists, 40–49, 570

adding items compared to dictionaries, 72

appending object to end of, 43

appending values to end of, 44

assigning to slices, 42

assigning values to, 41

changing lists, 41

copying entire list, 47

counting occurrences of elements in, 43

deleting elements from, 41

deleting slices, 42

empty lists, 37

finding first occurrence of a value, 44

immutability, 119

indexing, 570

initialization, 37

inserting elements, 42

inserting object into, 45

making lists from iterators, 194

making lists from other lists, 105

multiple references to same list, 47

operations on, 41–42

precedence, 581

removing an element from, 45

removing first occurrence of value, 46

reversed function, 47

reversing elements in, 46

selecting all elements, 35

selecting elements from start/end, 35

slicing, 119, 571

sorted function, 48

sorting into new list, 47

sorting original list, 47

subclassing list type, 185–187

tuples compared, 31

literal values, 579

ljust method, strings, 587

load function

arcade game project, 551

event handler, 286

local scope, 131

parameters, 118

locals function, 132, 583

locals module, pygame, 549, 552

localtime function, 233, 234, 455

logging, 399, 400, 401

logging module, 258, 399–400

logical expressions, 573

short-circuit logic, 574

logical operators see Boolean operators

login command, chat server project, 479, 485, 486

LoginRoom class, chat server project, 479, 480, 482

630 ■I N D E X

logout command, chat server project, 479, 485, 486

LogoutRoom class, chat server project, 479, 480, 483

logRequests value

XML-RPC file sharing project, 523

long function, 30, 583

long integer type, 579

long integers, 11–12

changes in Python 3.0, 605

long strings, 26–27

look command, chat server project, 480, 485

lookup function, 121

loop method, chat server project, 472

loops, 97–105

breaking out of, 102–105

while True/break idiom, 104, 105

description, 112

__dict__ attribute avoiding endless looping, 192

for loops, 99

iterating over dictionaries, 100

iteration utilities, 100–102

numbered iteration, 101

parallel iteration, 100, 101

reversed iteration, 102

sorted iteration, 102

list comprehension, 105–106

using else clauses in, 105

while loops, 98

lower method, strings, 62, 95, 241, 457, 587

lowercase constant, string module, 60

lstrip method, strings, 587

■M
-m switch

making programs available as modules, 212

Mac OS X

setting environment variables, 216

Macintosh

installing Python on, 5

Macintosh library modules, 596

MacPython, 595

magic attributes

__dict attribute__, 192

magic methods, 575

advanced use of, 187

constructors, 176–181

__del__ method, 177

__delattr__ method, 191

__delitem__ method, 182, 184

__getattr__ method, 191, 192

__getattribute__ method, 191, 192

__getitem__ method, 182

__init__ method, 177

introduction, 175, 206

item access, 182–187

__iter__ method, 192–194

iterator protocol, 192–194

__len__ method, 182, 184

modules, 576

__next__ method, 192

__nonzero__ method, 182

overriding methods and constructors, 177–179

calling unbound superclass constructor,
179–180

using super function, 180–181

property function, 189

sequence and mapping protocol, 182–185

__setattr__ method, 191, 192

__setitem__ method, 182

subclassing list/dict/str types, 185–187

mailbox module, 310

mailcap module, 310

mailing lists, 597

main chat room, chat server project, 479

main function

calling from another function, 240

unittest module, 356, 364

main page, bulletin board project, 513

main value

testing modules, 213

main.cgi script, bulletin board project, 506, 507–508

link to edit.cgi, 507

link to view.cgi, 507, 508

testing, 513

MainLoop method, wx.App class, 281

makedirs function, os module

XML parsing project, 447

maketrans function, string module, 60, 65, 66

MANIFEST.in file, 387

map function, 138, 140, 583

changes in Python 3.0, 605

mappings

constructing dictionaries from, 71

deleting element associated with key, 182

description, 32, 81, 182, 206

dictionaries and, 69

631■I N D E X

environ mapping, 223, 224

modules mapping, 222

returning number of key-value pairs contained
in, 182

returning value of key, 182

sequence and mapping protocol, 182–185

storing value for key, 182

Markdown

markup systems and web sites, 424

markup

instant markup project, 403–424

markup systems, 424

markup.py program, instant markup project, 421

Martelli, Alex, 106

Python Cookbook, 96

match function, re module, 245, 246

MatchObjects class, re module, 247–249

methods, 248

Matplotlib/pylab, 434

max function, 40, 52, 583

MAX_HISTORY_LENGTH constant

peer-to-peer file sharing, 522

maxint value, sys

changes in Python 3.0, 605

maxsplit argument

split function, re module, 246

McMillan installer, 388

membership, 51

checking membership with sets, 228

dictionaries, 71, 72

sequences, 38–39

membership operator, 94

memory leaks, 376

message composer, bulletin board project, 514

Message object, email module

news gathering project, 461

message viewer, bulletin board project, 514

message_from_string function

news gathering project, 461

messages table, bulletin board project

columns described, 502

creating, 501

__metaclass__ attribute

creating new-style classes, 206

finding out class of an object, 155

new-style/old-style classes, 175

old-style and new-style classes, 149

property function, 188

metaclass syntax, Python 3.0, 602, 605

metaclasses, 176

Metakit, 515

method resolution order (MRO), 156

methods, 51, 573

see individual method names

accessor methods, 151, 187

arguments, 573

bound methods, 150

calling, 43, 573

calling overridden version, 206

class methods, 189–191

constructors, 176–181

dictionaries, 585–586

distinguishing methods from functions, 150

functions compared, 43

generator methods, 198–199

list methods, 43–49

lists, 585

magic methods see magic methods

making method or attribute private, 151

MatchObjects, re module, 248

method definitions, 149

object-oriented design, 157, 158

overriding, 177–179

overriding in subclasses, 148, 156

polymorphism and, 143

static methods, 189–191

string methods, 60–66

strings, 586–588

methods, files, 263–270

mhlib module, 310

microthreads, 312

min function, 40, 52, 583

minimum field width, string formatting, 56, 57, 59

mix-in classes, 159

dispatcher mix-in classes, 444–446

mktime function, time module, 233, 234

mod_python framework, 336–343, 347

CGI handler, 336, 338–339

configuring Apache, 338

installing, 337

PSP handler, 336, 339–341

publisher handler, 336, 341–343

mode argument, open function (files), 261–263

modes, files, 261–263, 274

632 ■I N D E X

modulator tool, 371

modules, 29, 209–221, 259, 576

see individual module names

__all__ variable, 219

“batteries included” phrase, 221

checking if module exists, 218

creating and locating, 209–210

defining functions in, 212–214

dir function, 218

documentation, 220, 221

exploring, 218–221

extinct modules in Python 3.0, 604

help function, 219–220

import statement, 209

importing, 17, 209, 210, 259

import-only-once behavior, 211

magic methods, 576

main purpose of, 210

making code reusable, 212

making modules available, 214–216

making programs available as, 212

mapping, sys module, 222

modifying sys.path to specify location, 210, 214

naming file containing module code, 217

networking, 305–310

newly released third-party modules, 7

packages, 259

packaging in packages, 217

packaging in Python 3.0, 604

permissions affecting save location, 214

programming, 17–19

putting modules in existing sys.path, 214–215

reasons for not doing, 215

py_modules directive, Distutils, 386

pyc file extension, 210

pygame modules, 548–551

reading source code, 221

reloading, 211

renamed modules in Python 3.0, 604

specifying module location in PYTHONPATH,
215–216

standard library modules, 221–259

switching between database modules, 294

test code contained in, 259

testing, 212–214

third-party modules, 597

twisted modules, 317, 318

wrapping modules as archive file, 386–387

writing extension modules for Python, 370

modulo operator

list comprehension, 105

string formatting, 66

modulus operator, 11

mouse cursor

pygame.mouse module, 550

mouse module, pygame, 550

move method, rectangles, 555

MRO (method resolution order), 156

TidyLib, 324

multiple connections

network programming, 311–316

multiple inheritance, 156, 575

multiple superclasses, 155–156

multiplication operator, 37, 580

multiplying, sequences, 37–38

mutable objects see immutability

mxTidy, 324

MySQL database

bulletin board project, 500, 501

MySQLdb module, 597

bulletin board project, 500

■N
name variable, testing modules, 213

name argument, open function (files), 261

named arguments, 572

named value, Python DB API, 295

NameError class, 162

namespaces

see also scopes

class namespace, 152–153

class statement, 149

number of namespaces, 131

using exec and eval, 109, 111

naming conventions

classes, 148

making method or attribute private, 152

initialization functions, 380

object-oriented design, 158

symbolic constants, 396

variables, 13

wx module methods, 281

nan value, 18

negative numbers

sqrt function, 18

633■I N D E X

nested scopes, 133

instant markup project, 410

nesting blocks, if statements, 91

Network News Transfer Protocol see NNTP

network programming

asynchronous I/O with select and poll, 313–316

chat server project, 469

event-driven networking framework, 316

firewalls, 305

forking and threading with SocketServer, 313

introduction, 305

multiple connections, 311–316

opening remote files, 308

port numbers, 307

retrieving remote files, 309

sockets, 470

synchronous network programming, 306

Twisted framework, 316–319

networking modules, 305–310

newline character

changes on opening in text mode, 262

platforms using other line separators, 267

NEWNEWS command

NNTP server supporting, 454, 456

newnews method, NNTP class, 455, 456

news gathering project, 453–468

automatically generated news page, 461

downloading messages from newsgroups, 455

flexible news-gathering agent, 463

further exploration, 467

goals, 454

implementations, 455–467

NewsAgent class, 459

news page with more than one source, 463

preparations, 454–455

tools, 454

newsgroups

downloading messages from, 455

online resources, 597

NewsItem class

news gathering project, 459

newsreaders see NNTP clients

__next__ method, 192

changes in Python 3.0, 606

iter method returning iterator, 192, 207

object implementing, 193

nextfile function, fileinput module, 226

finding sender of e-mail, 253

nextset method, cursors, 297

nextState method, LevelCleared class

arcade game project, 564

nlargest function, heapq module, 230, 231

NNTP (Network News Transfer Protocol), 453

NNTP class

body method, 455, 457

head method, 455, 457

instantiating, 455

newnews method, 455, 456

NNTP clients, 453

NNTP constructor

connecting to servers, 454

NNTP servers

'211' string beginning, 455

'411' string beginning, 455

connecting to servers, 454

description, 453

downloading messages from newsgroups, 455

main network of, 453

news gathering project, 454

nntplib library

news gathering project, 453, 454, 455

nntplib module, 310

NNTPSource class

news gathering project, 461, 462

Node class, GUI client project, 541

updateList method, 541, 543

Node class, XML-RPC file sharing project, 520, 530

broadcast method, 521, 522, 525, 532

constructor, 520

fetch method, 520, 521, 524, 531

handle method, 521, 522, 525, 531

hello method, 520, 521, 524, 531

implementing, 520–525

query method, 520, 521, 522, 524, 530

start method, 523, 524, 531

stopping and restarting node, 527

None value, 37

changes in Python 3.0, 605

return value, functions, 117

using None as placeholder, 574

None value, Boolean values, 89

nongreedy patterns see greedy patterns

634 ■I N D E X

nonlocal keyword, 133

Python 3.0, 602, 606

nonzero method, 182

nose

alternatives to unit test tools, 355

not equal to operator, 580

not in operator, 580

not operator, 96, 580

NotImplementedError exception, 224

NotSupportedError exception, 295

nsmallest function, heapq module, 230, 231

NUMBER value, Python DB API, 298

numbered iteration, 101

numbers, 9–12

complex numbers, 18

floating-point numbers, 10

hexadecimal numbers, 12

imaginary numbers, 18

immutability, 119

nan value, 18

numbers containing leading zeros, 70

octal numbers, 12

numeric arrays

analyzing many forms of numeric data, 370

numeric value, Python DB API, 295

NumPy, 370, 548

■O
%o conversion specifier, 56

object function, 583

object-oriented design, 157–158, 159

object-oriented languages, 141

Smalltalk, 151

object-oriented programming see OOP

objects, 572–575

accessing attributes of objects, 150–152

checking if object has specific attribute, 172

classes, 147–156

classes and objects, 147

deleting, 107

description, 141, 158

encapsulation, 573, 145–147

exception objects, 161

finding out class of an object, 155

file-like objects, 263, 274

inheritance, 575, 147–154, 155

MatchObjects, re module, 247

methods, 573

object-oriented design, 157

polymorphism, 142–145

forms of, 144

methods and, 143

private attributes, 151

referencing not owning, 376

referring to the object itself, 149

seeing all values stored in objects, 157

treating objects as abstract, 146

objects.py file, arcade game project, 556, 557

oct function, 583

octal literals, Python 3.0, 606

octal numbers, 12

Official Python Distribution, 595

offset parameter

seek method, files, 266

OnInit method, Client class

GUI client project, 538, 539, 541, 543

online chatting see chat server project

online resources, 595–597

OOP (object-oriented programming)

classes, 147–156, 158

distinction between types and classes, 148

encapsulation, 141, 145–147, 158

inheritance, 141, 147–154, 155, 159

interfaces, 156–157, 159

objects, 141, 158

polymorphism, 141, 142–145, 158

forms of, 144

summary of key concepts, 158–159

open function, files, 261–263, 275

binary mode, 262

buffering argument, 263

mode argument, 261–263

name argument, 261

open function, import statement, 85

open function, shelve module, 238

open function, webbrowser module, 225

opening files, 261–263

opent function, 583

operating systems

os module, 223–225

OperationalError exception, 295

operations

dictionaries, 71–73

lists, 41–42

635■I N D E X

sequences, 32–40

adding, 37

checking membership, 38–39

indexing, 32–34

multiplying, 37–38

slicing, 34–37

strings, 53

tuples, 50

operator module

add function, 144

operators

* (parameter splicing) operator, 126, 127

** (keyword splicing) operator, 128

+= operator, 522

adding sequences, 37

arithmetic operators, 9

assignment operator, 13, 15

Boolean operators, 38, 95–96

comparison operators, 92–95

conditional operator, 96

distributing operators, 128–129, 604

double slash operator, 10

equality operator, 15, 93

exponentiation operator (**), 11

gathering operators, 125–128, 602, 603, 604, 606

identity operator, 93–94

in operator, 38, 39, 94

is operator, 93–94

logical operators, 96

membership operator, 94

modulo operator, 66

modulus operator, 11

multiplying sequences, 37

parameter operators, 125–129

precedence, 579–581

repetition operators, 250

splicing operators, 129

string formatting operator, 53

ternary operator, 96

optimization

extending Python for speed, 365–366

profiling, 362–363

optparse module, 259

levels of configuration, 398

news gathering project, 468

or operator

Boolean operators, 96

short-circuit logic, 574

operator precedence, 579

finding union of two sets, 228

ord function, 95, 112, 583

os module, 223–225, 259

functions and variables, 223

makedirs function, 447

os.path module, XML parsing project, 447

outer scope see global scope

output

piping output, 264–265

stdout stream, sys module, 222

overriding

description, 206

getitem method, 186

methods and constructors, 177–179

calling unbound superclass constructor,
179–180

using super function, 180–181

methods in subclasses, 148, 156

■P
package manager

installing Python on Linux/UNIX, 4

packages, Python, 217–218

announcing/publishing, 390

centralized index of, 390

description, 259

distributing, 383

files and directories layout, 217

graphics-generating package, 426

grouping modules in, 217

making Python recognize, 217

module packaging in Python 3.0, 604

Python Package Index, 384

packaging programs

creating Linux RPM packages, 387

creating Windows installer, 387

distribution formats, 387

Distutils, 383–386

introduction, 383

wrapping modules as archive file, 386–387

page element, XML parsing project, 437, 442

painting pretty picture project see graphics
creation project

636 ■I N D E X

palindrome module

hand-coded using Python/C API, 379–380

palindromes, 372

program to recognize, 372–375

Panel class, wx module see wx.Panel class

ParagraphRule class

instant markup project, 417, 421

parallel iteration, 100–101

parameter operators, 125–129

Python 3.0, 602, 603, 604, 606

parameters, functions, 16, 117–130

actual parameters, 118

annotation, 601, 605

arguments, 118

changing, 118–120

collecting parameters, 125–128

combining positional/keyword parameters, 124

default values, 124

description, 139

distributing operators, 128–129, 604

examples using parameters, 129–130

formal parameters, 118

gathering operators, 125–128, 602, 603, 604, 606

immutability, 123

keyword parameters, 123–125, 602, 606

keyword-only parameters, 602, 606

local naming, 120

local scope, 118

modifying parameters, 123

parameter operators, 125–128

passing parameters to functions, 572

positional parameters, 123

default values, 124

reasons for changing, 120–122

rebinding parameters, 123, 572

self parameter, 150

values, 118

paramstyle property, Python DB API, 294, 295

parent argument, wx constructors, 281

parse function, xml.sax module, 439

parse method, instant markup project, 414

Parser class, instant markup project, 413–415, 421

addFilter method, 414, 415

addRule method, 414, 415

parse method, 414

parsers, instant markup project, 409, 413–415

parsing XML project see XML parsing project

parsing, HTML, 322

HTMLParser class/module, 325–327

partition method, strings, 587

pass statements, 107, 112, 590

passthrough variable

XML parsing project, 448

password handling, 494

password parameter

connect function, Python DB API, 296

passwords

bulletin board project, 503

path configuration files, 216

path submodule, os module, 223, 447

path variable, sys module, 222

modifying to specify module location, 210, 214

putting modules in existing sys.path, 214–215

reasons for not doing, 215

search path (list of directories), 214

using PYTHONPATH alongside, 216

pathsep variable, os module, 223, 224

patterns

greedy patterns, 250

re module functions, 245

Paused class, arcade game project, 561

PDF (Portable Document Format) files

editing, 425

getting PDF reader, 425

graphics creation project, 425

pdfgen module, ReportLab package, 427

PDFs, drawing with ReportLab, 427

peer-to-peer file sharing

GUI client project, 544

MAX_HISTORY_LENGTH constant, 522

XML-RPC file sharing project, 517–535

peer-to-peer systems, 517

performance

join method, strings, 255

using CGI handler, 339

period (dot) character

regular expression wildcards, 242

permissions

dynamic web pages with CGI, 329–330

saving modules, 214

Pilgrim, Mark, 345

pipe characters, 265

piping output, files, 264–265

637■I N D E X

placeholders

using None as placeholder, 574

PlainDestination class

news gathering project, 460, 462

plain-text markup, 403

markup systems, 424

platform variable, sys module, 222

platforms, GUI, 277

Platypus, ReportLab package, 434

playful programming, 393

Plone, 344

poll function, select module, 320

asynchronous I/O with, 315–316

poll object

register/unregister methods, 315

POLLXYZ events

polling event constants in select module, 315

PolyLine class

constructing PolyLine objects, 429

polymorphism, 142–145

description, 141, 158, 182

duck typing, 145

forms of, 144

interfaces, 156

isinstance function or, 155

methods and, 143

repr function, 145

subclassing list/dict/str types, 185

types, 145

use of isinstance function, 185

pop functions

heappop function, 230, 231

pop method, dictionaries, 79, 586

pop method, lists, 45–46, 585

popen function, 224

running Tidy, 324

popitem method, 79, 586

sequence unpacking, 86

poplib module, 310

port numbers

chat server project, 470, 471, 473

network programming, 307

numbers requiring administrator privileges,
470

pos argument, wx.Button constructor, 283

positional parameters

combining with keyword parameters, 124

default values, 124

description, 123

gathering operators, 125–128, 602, 603, 604, 606

keyword-only parameters, 602, 606

POST method

getting information from CGI script, 335

remote editing with CGI project, 490

PostgreSQL database

bulletin board project, 500, 501

pound bang (#!), 21, 22

dynamic web pages with CGI, 329

pow function, 16, 30, 583

power (exponential) operator, 11

power function, 135

powers

recursive function to calculate, 135

pprint function, 215

precedence, operators, 579–581

precision, string formatting, 54, 56, 57

preparations for projects

structure of projects in this book, 402

print function, Python 3.0, 605

print statement

changes in Python 3.0, 600

print statements, 14, 111, 590

separating with commas, 83–84

printable constant, string module, 60

printing

pretty-printing function, 215

using arguments in reverse order, 223

priority queues

heaps, 230–231

private attributes, 151

problem descriptions for projects

structure of projects in this book, 401

procedures

functions without return values, 117

remote procedure calls

REST and RPC, 346

SOAP, 346

with Pyro, 346

XML-RPC, 345

profile module, 258, 363

run method, 363, 364

profiling, 359, 362–363, 364

hotshot/profile/timeit modules, 363

638 ■I N D E X

programming

see also OOP (object-oriented programming)

algorithms, 9

books about programming, 400–401

built-in functions, 16, 581–584

comments, 22

configuration, 394, 396–398, 401

configuration files, 396–398

dictionary methods, 74–80, 585–586

expressions, 9–12, 579–588

flexibility in, 393–394, 401

functional programming, 138–139, 140

functions, 16

input, 14–15

list methods, 43–49, 585

literal values, 579

logging, 399–400, 401

making scripts behave like programs, 20–22

minimum requirements, 400

modules, 17–19

operator precedence, 579–581

playful programming, 393

prototyping, 394–395, 401

pseudocode, 136

Python reference, 579–594

Python tutorial, 569–577

requirement specification, 350–351

saving and executing programs, 19–20

statements, 13–14, 589–594

string methods, 60–66, 586–588

strings, 22–29

symbolic constants, 396

test-driven programming, 349–352, 364

testing, 394

text editor, 19

variables, 13

ProgrammingError exception, Python DB API, 295

programs

abstraction and program structure, 114

building Windows executable programs, 383

creating executables with py2exe, 389–390

description, 29

importing programs as modules, 209

making programs available as modules, 212

packaging, 383

Distutils, 383–386

projects

arcade game project, 547–567

bulletin board project, 499–515

chat server project, 469–487

graphics creation project, 425–434

GUI client project, 537–545

instant markup project, 403–424

news gathering project, 453–468

remote editing with CGI project, 489–498

structure of projects in this book, 401

XML parsing project, 435–452

XML-RPC file sharing project, 517–535

properties

accessor methods defining attributes, 187–188

creating properties, 188

__getattr__/__setattr__ methods, 191–192

property function, 188–189

implementing with old-style classes, 191

introduction, 175

new-style/old-style classes, 175

property function, 188–189, 207, 583

calling with arguments, 189

descriptor protocol, 189

__get__/__set__ methods as attributes of, 188

magic methods, 189

new-style/old-style classes, 206

proportion argument

Add method, wx.BoxSizer class, 285

protocol attribute, Factory class

writing Twisted server, 317

protocol module, 317

protocols, 182

descriptor protocol, 189

iterator protocol, 192–194

sequence and mapping protocol, 182–185

prototyping, 394–395, 401

case against rewriting, 395

extending Python for improved speed, 365

pseudocode, 136, 569

PSP (Python Server Pages), 339

PSP tags, 340

psp file name extension, 340

PSP handler, mod_python, 336, 339–341

Psyco, 370

psycopg module, 597

bulletin board project, 500

pth file extension, 216

639■I N D E X

publisher handler, mod_python, 336, 341–343

pump function, arcade game project, 550

punctuation constant, string module, 60

push functions

heappush function, 230

push method, chat server project, 475, 479

PuTTY software, 471

py file extension, 576

naming file containing module code, 217

running CGI script, 339

py.test

alternatives to unit test tools, 355

Py_BuildValue function, 378, 381

Py_DECREF macro, 376, 381

Py_INCREF macro, 376, 378, 381

py_modules directive, Distutils, 386

Py_None object, 378

py2exe extension

building Windows executable programs, 383

Distutils, 389–390

Inno Setup installer, 388

PyArg_ParseTuple function, 378, 381

PyArg_ParseTupleAndKeywords function, 378, 381

pyc file extension, 210

pychecker/pylint commands, 360

PyChecker/PyLint tools, 359–362, 364

PyCXX, 371

pyformat value, Python DB API, 295

Pygame documentation, 547

pygame module, 548, 597

pygame modules, functions of

blit, 549

flip, 549, 552

Font, 550

get, 550, 552

get_surface, 549, 552

init, 549, 552

load, 551

pump, 550

set_caption, 549

set_mode, 549, 552

set_visible, 552

Surface, 548

update, 549, 552

Pygame tool, arcade game project, 548–551

catching Pygame-specific errors, 549

pygame.display module, 549, 552

pygame.event module, 550, 552

pygame.font module, 550

pygame.image module, 551

pygame.locals module, 549

importing constants from, 552

pygame.mouse module, 550, 552

pygame.sprite module, 550

PyGTK GUI toolkit, 278, 597

pylab, Matplotlib, 434

Pylons, 343, 344

PyObject type, 377

PyPI (Python Package Index), 384, 390, 596

PyPy, 370

PyQt GUI toolkit, 278, 597

SIP tool, 371

Pyrex, 370

Pyro

remote procedure calls with, 346

pyRXP

dealing with XML in Python, 439

PySimpleApp class, wx module see
wx.PySimpleApp class

PySQLite, 298, 304

downloading and installing, 299

Python

see also programming

adding line numbers to script, 227

alternative distributions, 5–7

built-in functions, 16, 581–584

cmath module, 18

comments, 22

compiling from sources, 4–5

converting values to strings, 24

creator of, 19

dictionary methods, 74–80, 585–586

distinction between types and classes, 148

enabling interoperability Python/C++, 371

expressions, 9–12, 579–588

extending, 365–366

extension approaches, 380

IronPython, 367–369, 380

Jython, 367–369, 380

Python/C API, 375–380

SWIG, 371–375, 380

writing C extensions, 369–380

functional programming, 140

functions, 117

640 ■I N D E X

Python (continued)

GUI platforms for, 291

GUI toolkits, 597

IDEs for Python, 6

IDLE interactive Python shell, 2

including C/C++ directly in Python code, 370

installing on Windows, 1–3

installing Python on Linux/UNIX, 3–5

installing Python on Macintosh, 5

interactive interpreter, 7–9

interpreter, 9

just-in-time compiler for, 370

large integers, 12

list methods, 43–49, 585

literal values, 579

making scripts behave like normal programs,
20–22

mod_python, 336–343

modules, 17–19

operator precedence, 579–581

popular GUI Toolkits for, 277

private attributes, 151

release information, 7

RPython, 370

running scripts from command prompt, 20

Stackless Python, 312

statements, 13–14, 589–594

string methods, 60–66, 586–588

strings, 22–29

third-party modules, 597

web application frameworks, 343

web tutorial, 569

writing extension modules for, 370

Python 3.0, 599–606

abstract classes, 601

argument splicing, 604

automatic refactoring tool (2to3), 599

class decorators, 601

comparing incompatible types, 604

console I/O, 600

dictionary comprehension, 603

dictionary views, 603

extinct functions, 604

extinct modules in, 604

function annotation, 601

inequality operator, 604

integer division, 604

iterable unpacking, 603

iterator return values, 603

keyword-only parameters, 602, 606

metaclass syntax, 602

module packaging in, 604

new features in, 605

nonlocal variables, 602

renamed modules in, 604

set comprehension, 603

set syntax, 604

sources of information for, 606

standard library, 604

string formatting, 600

strings/bytes/encodings, 599

transitioning from older code to, 599

Python/C API

creating built-in types and classes, 378

deallocating objects, 376

extending Python using, 375–380

format strings, 378

framework for extensions, 377–378

hand-coded palindrome module, 379–380

reference counting, 376–377

writing extension modules for Python, 370

python command, 3, 265

Python Cookbook, 596

Alex Martelli, 96

Python Database API (Python DB API), 294–298

apilevel property, 294

bulletin board project, 502, 503

connections, 296, 502

constructors and special values, 297

cursors, 296–297, 503

description, 293, 303

exceptions, 295

global variables, 294–295

paramstyle property, 294, 295

switching between database modules, 294

threadsafety property, 294

types, 297–298

Python distributions online, 595

Python documentation online, 596

Python eggs, 384

Python Enhancement Proposals, 596

Python extensions, 380

Python help (pyhelp.cgi), 596

“Python Imaging Library not available” warning, 429

641■I N D E X

Python interpreter

extending and embedding, 596

Python library reference, 596

Python Package Index see PyPI

Python reference, 579–594

Python reference manual, 596

Python Server Pages see PSP

Python web site, 595

PythonDebug directive, 339, 340

Python/C API reference manual, 596

PYTHONPATH environment variable, 215–216,
224, 225

Pythonwin environment, 6

PythonWin GUI toolkit, 278, 597

pyw file extension, 217, 288

pywin32, 595

PyX package, 426, 434

PyXML module, 597

installing, 437

■Q
qmark value, Python DB API, 295

importing data into databases, 302

-Qnew command-line switch, 10

Qt platform, PyQt GUI toolkit, 278

query method, Node class

XML-RPC file sharing project, 520, 521, 522,
524, 526, 530

queues

deques, 231–232

heaps, 230–231

QUIT event

arcade game project, 552

quit function, servers, 457

Quixote, 344

quote/quote_plus functions, urllib module, 309, 320

quotes

escaping quotes, 23–24

single-quoted strings, 23–24

■R
%r conversion specifier, 57

raise statement, exceptions, 162–163, 173, 591

changes in Python 3.0, 605

raising exceptions, 161–163, 173

raising exceptions again, 164–165

random access, files, 266

random data

urandom function, 224

random function, random module, 235

random library

choice function, 144

random module, 234–238, 260

choice function, 159

randomString function

XML-RPC file sharing project, 528, 532

randrange function, random module, 235, 236

range function, 99, 100, 101, 112, 583

raw strings, 27–28

raw_input

compared to input, 26

raw_input function, 30, 570, 583

changes in Python 3.0, 600, 606

ignoring return value, 238

reading strings, 113

rawDataReceived event handler, 318

RDF (Resource Description Framework), 345

RDF Site Summary, 345

re module, 242–257, 260

see also regular expressions

compile function, 245

escape function, 245, 247

findall function, 245, 246, 252

finding sender of e-mail, 251–253

flags parameter, 247

functions, 245

VERBOSE flag, 249

groups, 247–249

match function, 245, 246

MatchObjects, 247–249

sample template system, 253–257

screen scraping, 321

search function, 245

split function, 245, 246

sub function, 245, 247, 249, 250

using group numbers in substitution string, 249

reactor module

listenTCP function, 318

read method, files, 264

examples using file methods, 268

iterating over file contents with, 270

reading entire file before iterating, 271

read mode, open function (files), 262

642 ■I N D E X

reading files, 264, 274

closing files after reading, 267

reading lines, files, 266, 274

readline method, files, 266

examples using file methods, 269

iterating over file contents with, 271

readlines method, files, 266

examples using file methods, 269

reading entire file before iterating, 271

xreadlines method and, 272

rebinding

global variables, 132

local and global scopes, 131, 132

variables in outer scopes, 133

receiveItems method, NewsAgent class, 459

rect attribute, Sprite class, 554

rectangle objects

clamp method, 556

inflate method, 555, 556

move method, 555

recursion, 133–139

infinite recursion, 134

parts of recursive function, 134

recursive definitions, 134

recursive functions, 134, 140

binary search example, 136–138

calculating factorials example, 134

calculating powers example, 135

value of, 136

recursive generators, 196, 197

recv method, socket class, 307

reduce function, 139, 140, 583

Python 3.0, 604, 606

reduce method, set type, 229

refactoring

2to3 (automatic refactoring tool), 599

news gathering project, 453

reference counting

borrowed references, 376, 377

deallocating objects, 376

decrementing reference count, 376

extending Python using Python/C API, 376–377

garbage collection, 377

incrementing reference count, 376

references

Python library reference, 596

Python reference, 579–594

Python reference manual, 596

Python/C API reference manual, 596

REFERENCES keyword, PostgreSQL

CREATE TABLE command, 501

register command, Distutils, 390

register method, poll object, 315

register_function method

SimpleXMLRPCServer class, 519

register_instance method

SimpleXMLRPCServer class, 519, 523

regular expressions

see also re module

character sets, 243

denoting beginning/end of string, 244

description, 242

escaping special characters, 242

findall method, news gathering project, 462

finding sender of e-mail, 252

instant markup project, 409, 411

making readable, 249

re module, 242–257, 260

repeating patterns, 244

sample template system, 253–257

screen scraping, 322

specifying alternative matches, 243

subpatterns, 243–244

transforming into pattern object, 245

wildcards, 242

relational databases

tutorial/reading on, 293

release information, 7

reload function, 260, 583

modules, 211

Python 3.0, 604, 606

replacing functionality using exec, 211

remainder operator, 580

remote editing with CGI project, 489–498

controlling file access, 493

debugging, 490

edit.cgi script, 492–494, 496

further exploration, 497

index.html file, 492, 496

implementations, 490–496

preparations, 490

requirements, 489

running the editor, 496

save.cgi script, 492, 494–495, 496

643■I N D E X

tools, 490

view.cgi script, 497

remote procedure calls see RPC

remove method, chat server project, 479

remove method, lists, 46, 585

remove method, set type, 229

renderPDF class

drawToFile method, 428

RenderUpdates class

draw method, 549, 550

repetition operators, 250

replace method, strings, 63, 587

reply_to column, messages table

bulletin board project, 502, 504, 506

edit.cgi script, 510

testing, 513

view.cgi script, 508

reportlab module, 597

graphics package, 427

importing, 426

ReportLab package

constructing PolyLine objects, 429–430

description, 425

documentation for, 426

downloading, 426

drawing with, 427–429

first prototype for sunspots_proto.py, 430–431

LinePlot class, 432–434

pdfgen module, 427

Platypus, 434

reasons for choosing, 426

repr function, 25, 30, 573, 583

polymorphism, 145

representational state transfer (REST), 346

requirement specification

functional requirements, 350

test-driven programming, 350–351

reset method, Weight class

arcade game project, 558

Resource Description Framework (RDF), 345

resources

online resources, 595

Python 3.0, 606

REST (representational state transfer), 346, 535

reStructuredText, 424

return statement, 116, 572, 590

ending functions, 117

generators, 195, 198

infinite recursion, 134

return value, functions, 16

annotation, 601, 605

functions without return values, 117

iterator return values, Python 3.0, 603

return value is None, 117

caution using if statements, 117

reverse argument of sort method, lists, 49

reverse function, 223

reverse method, lists, 46, 585

reversed function, 47, 52, 102, 112, 223, 583

reversed iteration, 102

rewriting

case against rewriting, 395

rfind method, strings, 587

Rich Site Summary, 345

right shift operator, 580

rindex method, strings, 587

rjust method, strings, 588

robotparser module, 310

rollback method, connections, 296

Room class, chat server project, 481

rooms, chat server project, 478–480

LoginRoom class, 479

LogoutRoom class, 479

main chat room, 479

Rossum, Guido van, 278

round function, 16, 30, 584

rounding, division, 16

rowcount attribute, cursors, 297

ROWID value, Python DB API, 298

rpartition method, strings, 588

RPC (remote procedure calls)

REST and RPC, 346

SOAP, 346

XML-RPC, 345

rpm format

bdist command, Distutils, 387

RPMs

creating Linux RPM packages, 387

XML parsing project, 437

RPython, 370

rsplit method, strings, 588

RSS (Really Simple Syndication), 345

RSS feeds, 345

client program handling feeds, 345

644 ■I N D E X

RSS feeds (continued)

Scrape ’N’ Feed, 328

Universal Feed Parser, 345

rstrip method, strings, 227, 588

Rule class/object, instant markup project, 413, 419

condition/action methods, 412, 414

rules, instant markup project, 409, 412–413, 415–418

run function, reactor module, 318, 320

run method, Game class

arcade game project, 565

run method, profile module, 363, 364

runDefaultSetup function

news gathering project, 462

■S
%s conversion specifier, 54

safe_substitute method, 55

sample function, random module, 235

save function, event handler, 286

save.cgi script

bulletin board project, 507, 511–513

remote editing with CGI project, 492, 494–495, 496

saving programs, 19–20

SAX (Simple API for XML), 435

dealing with XML in Python, 439

XML parsing project, 435, 438, 442

sax module, xml

parse function, 439

SAX parser

XML parsing project, 436

say command, chat server project, 480, 485

scope, 131–133

see also namespaces

class scope variable, 153

description, 140

global scope, 131

local scope, 131

parameters, 118

nested scopes, 133

instant markup project, 410

number of scopes, 131

rebinding global variables, 132

using exec and eval, 109, 111

Scrape ’N’ Feed, 328

scraping see screen scraping

screen scraping, 321–328, 346

Beautiful Soup module, 327–328

HTMLParser callback methods, 325

Tidy, 322–324

using HTMLParser module, 325–327

web services, 344–346

XHTML, 325

scripts

adding line numbers to, 227

behaving like normal programs, 20–22

running from command prompt, 20

saving and executing programs, 19–20

scroll bars, text controls, 284

sdist command, Distutils, 386, 387

formats switch, 387

search function, re module, 245

second implementations of projects

structure of projects in this book, 402

second system syndrome

case against rewriting, 395

security

CGI security risks, 330

password digests, 494

PythonDebug directive, 340

using exec and eval, 109

seek method, files, 266

select function, select module

asynchronous I/O, 312, 314–315

avoiding forking and threading, 312

description, 320

select module, poll function

asynchronous I/O, 315–316

polling event constants in select module, 315

self parameter

calling unbound superclass constructor, 180

class methods, 189

class statement, 149

distinguishing methods from functions, 150

framework for extensions, 377, 378

static methods, 189

send method, generators, 198

send method, socket class, 307

sender column, messages table

bulletin board project, 502

sep variable, os module, 223, 224

separators

altsep variable, 224

linesep variable, 224

pathsep variable, 223, 224

sep variable, 223, 224

645■I N D E X

sequence unpacking

assignment statements, 85–87

file iterators, 274

popitem method, 86

sequences, 31–40, 51, 182, 206

accessing individual elements, 32

accessing ranges/slices of elements, 34

adding, 37

arithmetic sequence, 184

built-in sequence types, 31

checking membership, 38–39

close function, 226

comparing, 95

concatenating, 37

creating infinite sequence, 183

deleting element associated with key, 182

empty lists, 37

finding number of elements in, 40

finding smallest/largest elements in, 40

immutable sequences, 49

indexing, 31, 32–34

illegal type of index used, 184

initialization, 37

iterating over, 32

key is negative integer, 183

lists, 40–49

making from iterators, 194

mapping protocol and, 182–185

multiplying, 37–38

operations, 32–40

returning number of elements contained in,
182

returning value of key, 182

slicing, 34–37, 119

simulating, 185

specifying step length between elements, 36

storing value for key, 182

tuples, 49–51

SERIAL keyword, PostgreSQL

CREATE TABLE command, 501

serve_forever method

SimpleXMLRPCServer class, 519, 523

server sockets, 319

ServerProxy class

XML-RPC file sharing project, 520

servers

connecting to, 454

forking server, 313

SocketServer module, 310–311

SocketServer-based servers, 317

threading server, 313

writing Twisted server, 317–319

service provider, web services, 344

service requester, web services, 344

set attr method, 191, 192

Set class instances, 228

set comprehension, Python 3.0, 603

set function, 584

set methods, 187, 188

set type

add method, 229

frozenset type and, 229

immutability, 229

reduce method, 229

remove method, 229

sets module and, 228

union method, 228, 229

set_caption function, arcade game project, 549

set_mode function, arcade game project, 549, 552

set_reuse_addr method, chat server project, 473

set_terminator method, chat server project, 473,
475

set_visible function, arcade game project, 552

__setattr__ method, 191, 192

setattr function, 157, 159, 584

setdefault method, dictionaries, 79, 106, 586

setdefaultencoding function, sys module, 451

Setext, 424

setinputsizes method, cursors, 297

__setitem__ method, 182

setName method, private attributes, 151

setoutputsize method, cursors, 297

sets, 228–229

empty set, 604

new syntax in Python 3.0, 604

sets module, 228–229, 259

SetSizer method, wx.Panel class, 284

setup function, Distutils, 384, 391

setup script, Distutils, 383, 384

setup.py script, Distutils, 384, 385, 387

commands to run setup.py, 390

setuptools project, 384

SetValue method

load event, wxPython, 286

646 ■I N D E X

sgmllib module, 322

sha module, 343

remote editing with CGI project, 494

shadowing

locals function, 132

shallow copy, dictionaries, 75

shebang, 21

shelve module, 238–241, 260

modifying objects, 239

open function, 238

shift operator precedence, 580

short-circuit logic, Boolean operators, 96, 574

Show method, wx.Frame class, 281

shuffle function, random module, 235

signs (+/-), string formatting, 58

Simple API for XML see SAX

simple generators see generators

Simple Wrapper and Interface Generator see SWIG

simple_main.cgi script

bulletin board project, 505

SimpleWebSource class

news gathering project, 462

SimpleXMLRPCServer class, 519

allow_reuse_address attribute, 527

register_function method, 519

register_instance method, 519, 523

registering Node with, 521

serve_forever method, 519, 523

SimpleXMLRPCServer module, 310, 518

single-quoted strings, 23–24

SIP tool, 371

site-packages directory

executing path configuration files, 216

putting modules in existing sys.path, 215

size argument, setting button positions using, 283

sizers, 284–285

BoxSizer class, 284

layout mechanisms, 291

using relative coordinates, 284

Slashdot, 499

sleep function, time module, 233, 234

slice function, sequences, 185

slicing

lists, 42, 571

precedence, 580

sequences, 34–37

simulating, 185

Smalltalk, 151

SmartASCII, 424

smtpd/smtplib modules, 310

SOAP/SOAPy, 346

socket class, socket module, 306

accept method, 306

bind method, 306

connect method, 306

gethostname function, 306, 307

listen method, 306

recv method, 307

send method, 307

socket module, 306–308, 319

socket class, 306

tools for chat server project, 470

socket server

connecting to, 470

sockets

chat server project

bind method, 471

create_socket method, 471, 472

datagram socket, 306

description, 319

network programming, 470

stream socket, 306

types of, 306

SocketServer framework, 319

SocketServer module, 310–311

BaseRequestHandler class, 311

classes, 311

forking and threading with, 313

SocketServer-based servers, 317

StreamRequestHandler class, 311

sort command, files, 265

sort method, lists, 47–49, 585

cmp built-in function, 48

key argument, 48

keyword arguments, 48

reverse argument, 49

sorted function, 48, 52, 102, 112, 584

keyword arguments, 49

sorted iteration, 102

Sorting Mini-HOWTO, 49

Andrew Dalke, 49

647■I N D E X

source code

encoding in Python 3.0, 605

exploring modules, 221

source code checking, 359

PyChecker/PyLint tools, 359–362, 364

SourceForge, 596

span method

MatchObjects, re module, 248

special attributes see magic attributes

special characters

character sets, regular expressions, 243

escaping, regular expressions, 242

special methods see magic methods

special values, Python DB API, 297, 304

speed

extending Python to improve, 365–366

splicing operators, 129

argument splicing, Python 3.0, 604

split function, re module, 245, 246

split method, strings, 63, 588

food database application, 300

splitlines method, strings, 588

Sprite class, pygame.sprite module

arcade game project, 550

image attribute, 554

rect attribute, 554

sprite module, pygame, 550

Spyce, 341, 344

SQL

tutorial/reading on, 293

SQLite, 298, 304

bulletin board project, 500

creating database in, 501

conversions between numbers and strings, 303

sqrt function, 18, 30

stack trace

catching exceptions, 167

exceptions and functions, 170

Stackless Python, 312

alternative Python distributions, 6, 7

stacks, 45

standard library modules, 221–259

see individual modules

opening/closing standard library files, 221

Python 3.0, 604

StandardError exception, Python DB API, 295

starred iterable unpacking, 603, 606

start method

MatchObjects class, 248

Handler class, 410, 411

Node class, 523, 524, 528, 531

startElement event handler

XML parsing project, 440, 441, 445

startfile function, os module, 225

startPage method

XML parsing project, 448

startswith method, strings, 588

StartUp class, arcade game project, 564

startUp method, test fixture, 356

state, encapsulation, 147

State class, arcade game project, 559

state variables

screen scraping using HTMLParser, 326

statements, 13–14, 589–594

assert statements, 97, 589

assertions, 111

assignment statements, 85–88, 111, 589

blocks, 88, 111

break statement, 102, 591

class statement, 149, 594

compared to expressions, 13

conditional statements, 88–97, 111

assertions, 97

Boolean operators, 95–96

comparison operators, 92–95

elif clause, 91

else clause, 90

if statement, 90

nesting blocks, 91

continue statement, 103, 591

def statement, 115, 116

del statement, 41, 107–108, 112, 590

deleting objects, 107

description, 29

doing nothing, 107

eval statement, 110, 112

exec statement, 109–110, 112, 592

expression statements, 589

for statement, 593

function definition statement, 115, 594

global statements, 592

if statement, 15, 592

import statements, 84–85, 111, 591

648 ■I N D E X

statements (continued)

loops, 97–105, 112

breaking out of, 102–105

for loop, 99

iteration, 100–102

using else clause in, 105

while loop, 98

pass statement, 107, 112, 590

print statement, 111, 590

separating with commas, 83–84

raise statement, 162–163, 591

return statement, 116, 590

try statements, 593

while statement, 592

while True/break idiom, 104–105

with statement, 267, 593

yield statement, 590

static methods, 189–191

self parameter, 189

staticmethod function, 584

stderr stream, sys module, 222, 263

stdin stream, sys module, 222, 263

file iterators, 273

script counting words in, 265

stdout class

write method, 318

stdout stream, sys module, 222, 263

StopIteration exception, 192

store function, 122

str function, 25, 30, 584

str type, Python 3.0, 600, 605

stream redirection functionality

changes in Python 3.0, 600

stream socket, 306

StreamRequestHandler class, 311

streams, chat server project, 477

streams, files, 263, 274

strftime function, time module, 233, 455, 456

String constructor

drawing with ReportLab, 428

string formatting

% character, 53, 54, 56

changes in Python 3.0, 600, 605

dictionaries, 73, 81

string methods, 60–66, 586–588

capitalize, 586

center, 586

count, 586

decode, 586

encode, 586

endswith, 586

expandtabs, 586

find, 60, 586

index, 587

isalnum/isalpha/isdigit, 587

islower/isspace, 587

join, 61, 223, 255, 587

ljust, 587

lower, 62, 95, 241, 457, 587

lstrip, 587

partition, 587

replace, 63, 587

rfind, 587

rindex, 587

rjust, 588

rpartition, 588

rsplit, 588

rstrip, 227, 588

safe_substitute, 55

split, 63, 300, 588

splitlines, 588

startswith, 588

strip, 64, 241, 300, 588

substitute, 55

swapcase, 588

title, 63, 588

translate, 60, 64–66, 588

upper, 95, 588

zfill, 588

string module, 55

capwords function, 63, 66

constants, 60

letters constant, 60, 606

maketrans function, 65, 66

String type, 579

STRING value, Python DB API, 298

StringIO, Python 3.0, 605

strings, 22–29

changing to lowercase, 62

comparing, 94

concatenating, 24

converting values to, 24

escaping quotes, 23–24

evaluating expression strings, 254

649■I N D E X

executing/evaluating on the fly, 108

finding substrings, 60

formatting, 53–59

conversion specifiers, 54–59

conversion types, 56, 57

precision specifiers, 54

Python 3.0, 600

signs/alignment/zero-padding, 58

string formatting operator, 53

width and precision, 57

immutability, 53, 119

input compared to raw_input, 26

long strings, 26–27

modulo operator, 66

non-english strings, 66

numbers containing leading zeros, 70

operations, 53

precedence, 581

Python 3.0, 599

raw strings, 27–28

removing whitespace, 64

repr function, 25

representing, 24–25

single-quoted strings, 23–24

subclassing str type, 185–187

template strings, 55

Unicode strings, 28–29

using group numbers in substitution string, 249

strip method, strings, 64, 241, 588

food database application, 300

strptime function, time module, 233, 234

style parameter

wx.BoxSizer constructor, 285

wx.TextCtrl constructor, 283

sub function, re module, 245, 247

instant markup project, 407, 408, 409, 411

sample template system, 254

using group numbers in substitution string,
249, 250

sub method, Handler class

instant markup project, 410, 411

subclasses, 147, 148

inheritance, 154–155

issubclass method, 154

overriding methods, 148, 156, 177

subclassing

list/dict/str types, 185–187

subject column, messages table

bulletin board project, 502

subpatterns

finding sender of e-mail, 252

groups, re module, 247

subpatterns, regular expressions, 243–244

subprocess module, 224, 371

running Tidy, 324

using command-line tools, 360

substitute method, 55

substitutions

using group numbers in substitution string, 249

sum function, 140, 584

sunspots example

fetching data from Internet, 432

final sunspot program (sunspots.py), 433

first implementation, 431

first prototype, 430

implementations, 427–434

introduction, 425

preparations, 426

second implementation, 434

using LinePlot class, 432, 434

super function, 180–181, 207, 584

changes in Python 3.0, 606

new-style/old-style classes, 175, 176, 206

subclassing list type, 186

using when multiple superclasses, 181

superclasses

calling unbound superclass constructor,
179–180

description, 147

multiple inheritance, 156

multiple superclasses, 155–156

overriding methods and constructors, 177

overriding methods in subclasses, 156

specifying, 153–154

Surface function, arcade game project, 548

surface objects, 548

convert method, 554

swapcase method, strings, 588

SWIG (Simple Wrapper and Interface Generator),
371–375, 380

automating compilation, 375

-c++ option, 373

compiling, 373

Distutils using, 389

header file, 373

650 ■I N D E X

SWIG (Simple Wrapper and Interface Generator)
(continued)

installing, 371

interface file, 373

linking, 374

program to recognize palindromes, 372–375

-python option, 373

running, 373

using Distutils, 375

using SWIG, 372

wrapping code, 375

Swing GUI toolkit, 278, 597

example illustrating, 288

Jython and, 290

switches

command-line switches, 398

symbolic constants, 396

synchronous network programming, 306

SyntaxError exception, 163

sample template system, 254

sys module, 222–223, 259

functions and variables, 222

getdefaultencoding function, 451

path variable

modifying to specify module location, 210, 214

putting modules in existing sys.path, 214–215

search path (list of directories), 214

using PYTHONPATH alongside, 216

setdefaultencoding function, 451

sys.maxint, Python 3.0, 605

system function, os module, 223, 224

SystemRandom class, 234

■T
tab characters, indenting with, 88

tables

CREATE TABLE command, 501

tags

HTMLParser callback methods, 325

tar command

compiling Python from sources, 4

tar files

sdist command, Distutils, 387

TCPServer class, SocketServer module, 311

tearDown method, test fixture, 356

tell method, files, 266

telnet command, chat server project, 470

telnetlib module, 310

Template class, string module, 55, 74

template strings, 55

templates, 253–257

terminator, chat server project, 473

ternary operator, 96

test code, modules, 259

test coverage, 351, 352

test fixture, 356

TestCase class, unittest module, 355

instantiating all subclasses of, 356

methods, 356–357

test-driven programming, 349–352, 364

anticipating code changes, 351

automated tests, 351

key steps in process, 352

making code fail test, 352

requirement specification, 350–351

simple test program, 350

unittest module, 353

testing

alternatives to unit test tools, 355

anticipating code changes, 351

automated testing, 394

beyond unit testing, 358–363

bulletin board project, 513

code coverage, 351

doctest module, 352, 353–355, 364

minimum requirements, 400

modules, 212–214

profiling, 359, 362–363, 364

PyChecker/PyLint tools, 359–362, 364

requirement specification, 350–351

source code checking, 359

test-driven programming, 349–352, 364

tools for testing, 352–358

unit testing, 349

unittest module, 352, 355–358, 364

testmod function, doctest module, 353, 354, 364

TeX typesetting program, 404, 426

text

finding blocks of, 406–407

text column, messages table

bulletin board project, 502

text controls

creating, 283

creating text area, 283

651■I N D E X

horizontal scroll bar, 284

multiline text area, 284

text editor

selecting for programming, 19

wxPython GUI toolkit building, 279–288

creating application object, 280

creating frames (windows), 281

creating widgets (components), 281

event handling, 286

finding file name, 286

importing wx module, 280

improving layout, 284–285

interface elements, 280

minimal requirements for text editor, 279

positions and sizes, 283

putting text into text area, 286

titles and labels, 282

text files

changes in Python 3.0, 600

changes on opening in text mode, 262

text parameter, CGI, 490

textAnchor argument, String constructor, 428

TextCtrl class, wx module see wx.TextCtrl class

Textile, 424

threading, 312

chat server project, options for, 469

microthreads, 312

multiple connections, 312

SocketServer module, 313

XML-RPC file sharing project, 528, 534

threading module

XML-RPC file sharing project, 519

threading server, 313

threadsafety property, Python DB API, 294

throw method, generators, 199

Tidy, 322–324

getting Tidy library, 324

TidyLib, 324

mxTidy, 324

using command-line Tidy, 324

using HTMLParser, 325

Tidylib, 324

Time constructor, Python DB API, 298

time function, time module, 233, 234, 455

time module, 232–234, 259, 454

functions, 233, 455

TimeFromTicks constructor, Python DB API, 298

timeit module, 234, 258, 363

Timestamp constructor, Python DB API, 298

TimestampFromTicks constructor, Python DB
API, 298

TinyFugue, chat server project, 471

title argument, wx.Frame constructor, 282

title method, strings, 63, 588

title rules, instant markup project, 415

TitleRule class, instant markup project, 416, 420

Tk GUI toolkit, 289

Tk platform, Tkinter GUI toolkit, 277

Tkinter GUI toolkit, 277, 289, 597

choosing between GUI toolkits, 278

example illustrating, 288

toolkits see GUI toolkits

tools for projects

Pygame tool, 548–551

structure of projects in this book, 401

trace module, 258

trace.py program, 351

tracebacks, 161

cgitb module, 502

transactions, 296

translate method, strings, 60, 64–66, 588

translation tables, 65

trapping exceptions see catching exceptions

trees, 201

True value

Boolean values, 89

changes in Python 3.0, 605

while True/break idiom, 104–105

truth, Boolean values, 89

try statements, 593

try/except statements, 163–169, 576

catching all exceptions, 169

danger of, 167

catching exception object, 166

catching many exceptions in one block, 166

checking whether object has specific attribute,
172

combining try/except/finally/else, 170

else clause, 168–169, 173

finally clause, 170

if/else compared, 171, 173

trapping KeyError exception, 172

using more than one except clause, 165–166

652 ■I N D E X

try/finally statement, 169, 173

calling exit function in, 222

closing database, 241

closing files, 267

tuple function, 50, 52, 584

tuple parameter unpacking, Python 3.0, 606

tuples, 49–51

conversion specifiers, 56

distributing operator, 128, 604

empty tuple, 49

fields of Python date tuples, 233

finding out if object is tuple, 142

gathering operator, 126, 604

immutability, 119

lists compared, 31

tuple operations, 50

uses of, 51

writing tuple with single value, 50

TurboGears, 343, 344

tutorial, Python, 569–577, 596

Twisted framework, 316–319, 320

chat server project, options for, 469

deferred execution, 317

downloading and installing, 317

remote procedure calls with, 346

SOAP toolkit, 346

web application frameworks, 344

writing Twisted server, 317–319

twisted.internet.protocol module

Factory class, 317

twisted.protocols.basic module

LineReceiver protocol, 318

txt2html, 424

type function, 159, 584

type objects, 17

TypeError class, 163

inappropriate key type used, 183, 184

recursive generators, 196, 197

types, 569

see also classes

bool type, 90

classes and, 147, 148

conversion specifiers, 57

deque type, 231–232

dictionary type, 69

duck typing, 145

polymorphism, 145

Python DB API, 297–298, 304

string formatting, 56, 57

■U
%u conversion specifier, 56

UDPServer class, SocketServer module, 311

unary operators, 580

unbound methods

calling unbound superclass constructor, 180

underscores

magic methods, 575

making method or attribute private, 151, 573

UnhandledQuery class

XML-RPC file sharing project, 528, 530

unichr function, 584

unicode function, 584

Unicode strings, 28–29

Unicode type, 579

changes in Python 3.0, 600, 605

uniform function, random module, 235

uninstall command, Distutils, 385, 388

union method, set type, 228, 229

unit testing, 349

alternatives to unit test tools, 355

unittest module, 352, 355–358, 364

distinguishing errors and failures, 357

main function, 356, 364

TestCase class, 355, 356

test-first, code-later programming, 353

Universal Feed Parser, 345

universal newline support mode, files, 263

UNIX

installing mod_python on, 337

installing Python on, 3–5

levels of configuration, 398

making executable script in, 576

setting environment variables, 216

UnixDatagramServer class, 311

UnixStreamServer class, 311

unknown method, chat server project, 479

Unofficial Planet Python blog, 597

unpacking

iterable unpacking, Python 3.0, 603

sequence unpacking, 85–87

starred iterable unpacking, 603, 606

tuple parameter unpacking, 606

unquote function, urllib module, 309, 320

unquote_plus function, urllib module, 309, 320

653■I N D E X

unregister method, poll object, 315

update method, dictionaries, 80, 586

upper method, strings, 95, 588

uppercase constant, string module, 60

urandom function, os module, 224

urlcleanup function, urllib module, 309

urlencode function, urllib module, 309, 320, 334

urlfile.txt file, GUI client project, 540

urllib module, 308–309, 319

news gathering project, 453

quote function, 309

quote_plus function, 309

screen scraping, 321

invoking CGI scripts without forms, 334

unquote function, 309

unquote_plus function, 309

urlcleanup function, 309

urlencode function, 309

urlopen function, 308, 309, 432

urlretrieve function, 309

urllib2 module, 308–309, 319

urlopen function, urllib module, 308, 309, 320

graphics creation project, 432

urlparse module, 310

XML-RPC file sharing project, 519

urlretrieve function, urllib module, 309, 320

URLs filter

instant markup project, 418

urls.txt file

XML-RPC file sharing project, 534

Usenet, 453

Usenet groups, 597

user parameter

connect function, Python DB API, 296

UserList/UserDict/UserString

subclassing list/dict/str types, 185

users

getting input from users, 14–15

users dictionary, 479

UTF-8, Python 3.0, 600, 605

util.py block generator

instant markup project, 406

■V
ValueError class, 163

values

literal values, 579

None, 37

seeing all values stored in objects, 157

special values, Python DB API, 297, 304

values method, dictionaries, 80, 100, 586

changes in Python 3.0, 605

van Rossum, Guido, 278

variables, 13, 29, 131, 569

all variable, 219

altsep variable, 224

argv variable, 222, 223

environ mapping, 223, 224

environment variables, 216

global variables, Python DB API, 294–295

linesep variable, 224

modules mapping, 222

naming conventions, 13

nonlocal variables, Python 3.0, 602

path variable, 222

pathsep variable, 223, 224

platform variable, 222

rebinding variables in outer scopes, 133

scopes, 140

scoping, 131–133

sep variable, 223, 224

stderr stream, 222

stdin stream, 222

stdout stream, 222

vars function, 131, 584

VERBOSE flag, re module functions, 249

version control

remote editing with CGI project, 497

versions, Python DB API, 294

view.cgi script

bulletin board project, 506, 508–510

link from main.cgi, 507, 508

link to edit.cgi, 508

testing, 513

remote editing with CGI project, 497

views

dictionary views, Python 3.0, 603

virtual tea party see chat server project

VisualWx environment, 6

■W
Warning exception, Python DB API, 295

warnings, 173

Weave, 370

654 ■I N D E X

web application frameworks, 343, 347

web development

mod_python, 336–343

web forms see forms

web pages

dynamic web pages with CGI, 328–336

adding pound bang (#!) line, 329

CGI script, 331

CGI security risks, 330

debugging with cgitb, 331–332

HTML form, 334–336

invoking CGI scripts without forms, 334

preparing web server, 328–329

setting file permissions, 329–330

using cgi module, 333

screen scraping, 321–328

Beautiful Soup module, 327–328

Tidy, 322

using HTMLParser, 325–327

using web services, 344–346

XHTML, 325

web programming

dynamic web pages with CGI, 328–336

mod_python, 336–343

screen scraping, 321–328

Beautiful Soup module, 327–328

Tidy, 322–324

using web services, 344–346

web server

dynamic web pages with CGI, 328–329

Web Service Description Language (WSDL), 345

web services, 344–346, 347

remote procedure calls with XML-RPC, 345

RSS, 345

service provider, 344

service requester, 344

SOAP, 346

web sites

generating from single XML file, 435

XML parsing project, 437

web tutorial, Python, 569

web.py, 344

web-based bulletin board see bulletin board
project

webbrowser module, 225

website element, XML parsing project, 437

website.py file, XML parsing project, 448

website.xml file, XML parsing project, 438

WebsiteConstructor class, 449, 451

Webware, 341, 344

Weight class, arcade game project, 558

weight.png file, arcade game project, 554, 556

weight.pny file, arcade game project, 554

whence parameter

seek method, files, 266

while loops, 98, 569

ignoring return value of raw_input function,
238

iterating over file contents with read(), 270

iterating over file contents with readline(), 271

while statements, 592

while True/break idiom, 104–105

iterating over file contents with read(), 271

whitespace

handling for DOS, 225

VERBOSE flag, re module functions, 249

who command, chat server project, 480, 485

widgets

wxPython GUI toolkit creating, 281

widgets, text editor

Bind method, 286

width of field, string formatting, 56, 57, 59

WikiCreole, 424

WikiMarkupStandard, 424

wikis

remote editing with CGI project, 489

wiki-style markup systems, 424

Wikitext, 424

wildcards, regular expressions, 242

Windows

installing mod_python on, 337

installing Python on, 1–3

setting environment variables, 216

windows see frames

Windows Installer file, 3

Wingware environment, 6

wininst format

bdist command, Distutils, 387, 388

with statement, 267

changes in Python 3.0, 605

closing files, 267, 274

context managers, 268

655■I N D E X

with statements, 593

wrapper code

SWIG, 372, 375, 380

wrapping legacy code, 366

wrapping modules as archive file, 386, 387

write method

save event, wxPython, 286

write method, files, 264, 269

write method, stdout class

writing Twisted server, 318

write mode, open function (files), 262

writeback parameter, shelve.open function, 239

writeFooter method

XML parsing project, 446, 448, 451

writeHeader method

XML parsing project, 446, 448

writelines method, files, 267, 269

XML parsing project, 451

writing files, 264, 274

closing files after writing, 267

updating files after writing, 268

writing lines, files, 266, 274

WSDL (Web Service Description Language), 345

wx module

importing, 280

method naming conventions, 281

style facets, 284

using keyword arguments with wx constructors,
282

wx.ALL flag, 285

wx.App class

creating application object, 280

GUI client project, 538

MainLoop method, 281

wx.BoxSizer class

Add method, 285

building text editor, 284

horizontal or vertical style, 285

style argument, 285

using relative coordinates, 284

wx.Button class

adding button to frame, 281

label argument, 282

parent argument, 281

pos (position) argument, 283

size argument, 283

wx.EVT_BUTTON symbolic constant, 286

wx.EXPAND flag, 285

wx.Frame class

building text editor, 281

parent argument, 281

Show method, 281

size argument, 283

title argument, 282

windows as instances of, 281

wx.HORIZONTAL/wx.VERTICAL values, 285

wx.HSCROLL value, 284

wx.LEFT/wx.RIGHT flags, 285

wx.Panel class

building text editor, 284

SetSizer method, 284

wx.PySimpleApp class

creating application object, 281

wx.TE_MULTILINE value, 284

wx.TextCtrl class

building text editor, 283

style parameter, 283

wx.TOP/wx.BOTTOM flags, 285

wxDesigner environment, 6

wxGlade environment, 6

wxPython GUI toolkit, 277, 291, 597

building text editor, 279–288

creating application object, 280

creating frames (windows), 281

creating widgets (components), 281

event handling, 286

importing wx module, 280

improving layout, 284–285

interface elements, 280

minimal requirements for, 279

positions and sizes, 283

titles and labels, 282

using relative coordinates, 284

choosing between GUI toolkits, 278

demo distribution, 279

downloading, 278

example illustrating, 289

GUI client project, 537

installing, 279

wxWindows platform

wxPython GUI toolkit, 277

656 ■I N D E X

■X
%X, %x conversion specifiers, 57

XHTML

advantages over HTML, 325

XML, 435

uses of, 436

XML parsing project, 435–452

creating content handler, 439

creating HTML pages, 442–444

creating simple content handler, 441

dispatcher mix-in classes, 444, 446

events/event handlers, 439–441, 448–450

factoring out header/footer/default handling,
446

further exploration, 451

goals, 436

handling special characters, 450

implementations, 438–451

installing, PyXML, 437

parsing XML file, 439

preparations, 437–438

SAX parser, 436

Simple API for XML (SAX), 435, 438

support for directories, 447

tools, 436–437

xml.sax module

parse function, 439

xml.sax.handler module

ContentHandler class, 439

XMLDestination class

news gathering project, 468

XML-RPC

remote procedure calls with, 345

XML-RPC file sharing project, 517–535

adding GUI client, 537–545

avoiding loops, 518

connecting to nodes, 518

creating client interface, 527–528

exceptions, 528–529

further exploration, 534

implementations, 519–534

Node class, 520–525

node communication, 518

preparations, 519

requirements, 518

tools, 518

validating file names, 529–534

XML-RPC server

SimpleXMLRPCServer module, 310

xmlrpclib module, 310, 518

XML-RPC file sharing project, 520, 527

Fault class, 528, 529

XPath, 325

xrange function, 100, 101, 112, 584

changes in Python 3.0, 606

xreadlines method, files

lazy line iteration with, 272

■Y
YAML

markup systems and web sites, 424

yield expression, generators, 198, 199

yield statement, generators, 195, 198

generator-function, 198, 207

yield statements, 590

■Z
Zawinski, Jamie, 242

ZeroDivisionError class, 161, 163, 576

catching with more than one except clause, 165

muffling, 164, 165

zero-padding, string formatting, 58

zeros

numbers containing leading zeros, 70

zfill method, strings, 588

zip files

sdist command, Distutils, 387

zip function, 101, 112, 584

changes in Python 3.0, 605

constructing PolyLine objects, 430

“zlib not available” warning, 429

Zope, 341, 343, 344

ZSI, SOAP toolkit, 346

	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	fulltext_018.pdf
	fulltext_019.pdf
	fulltext_020.pdf
	fulltext_021.pdf
	fulltext_022.pdf
	fulltext_023.pdf
	fulltext_024.pdf
	fulltext_025.pdf
	fulltext_026.pdf
	fulltext_027.pdf
	fulltext_028.pdf
	back-matter.pdf

