
STL Distilled
and

Generic Programming

Ira Pohl

This eMatter edition is related to C++ Distilled: A Con-
cise ANSI/ISO Reference and Style Guide, a paperful
book by Addison-Wesley Publishing Company, Inc
1997.

ISBN 0-201-69587-1

About the Author

Ira Pohl, Ph.D., is a professor of Computer Science at the University of Califor-
nia, Santa Cruz. He has over 30 years of experience as a software methodologist. His
teaching and research interests are in the areas of artificial intelligence, program-
ming languages, practical complexity problems, heuristic search methods, deduc-
tive algorithms, and educational and social issues. He originated error analysis in
heuristic search methods and deductive algorithms.

He has lectured at Berkeley, Stanford, the Vrije University in Amsterdam, the
Courant Institute, Edinburgh University in Scotland, and Auckland University in New
Zealand.

When not programming, he enjoys riding bicycles in Aptos, California, with his
wife Debra and daughter Laura.

Ira’s web address is http://www.cse.ucsc.edu/~pohl/. He can be reached via email
at pohl@cse.ucsc.edu.

Other Publications by Ira Pohl

Ira Pohl is the coauthor with Al Kelley of a series of books published by Addison-
Wesley and Benjamin Cummings on the C programming language:

A Book on C: An Introduction to Programming in C
C by Dissection
Turbo C: The Essentials of C Programming

He is also coauthor will Charlie McDowell of the Addison-Wesley publication due
out in Fall of 1999:

Java by Dissection: The Essentials of Java Programming

He is the sole author of Addison-Wesley or Benjamin Cummings publications:

C++ for C Programmers
C++ for Pascal Programmers
C++ for Fortran Programmers
Turbo C++
Object Oriented Programming Using C++
C++ Distilled

His first book, coauthored with Alan Shaw, was a pioneering text on computer sci-
ence (Computer Science Press, 1981):

The Nature of Computation: An Introduction to Computer Science

eMatter publications available through FatBrain:

The C++ Bookshelf: Distilled
Object Oriented Programming Using C++
C++ for Pascal Programmers

Other eMatter books forthcoming.

4 ¨

Contents
1 Generic Programs . 1

2 Iterators and Containers . 5
2.1 A Visitation Example: Accumulate . 5

3 Algorithms . 8

4 Templates . 11
4.1 Template Parameters .12
4.2 Function Template .13
4.3 Friends .15
4.4 Static Members .15
4.5 Specialization .16

5 STL: Basics and the Container vector 21

6 STL: Containers. 26
6.1 Containers .27

6.1.1 Sequence Containers . 30
6.1.2 Associative Containers . 31
6.1.3 Container Adaptors . 34

7 STL: Iterators. 38
7.0.1 Iterator Categories. 39
7.0.2 Istream_iterator . 40
7.0.3 Ostream_iterator . 41
7.0.4 Iterator Adaptors . 42

8 STL: Algorithms . 46
8.0.1 Sorting algorithms . 46
8.0.2 Nonmutating Sequence Algorithms 49
8.0.3 Mutating Sequence Algorithms 51
8.0.4 Numerical Algorithms . 55

9 STL: Function Objects . 60
9.0.1 Function Adaptors. 62

9.1 Allocators .64

vi ¨ Contents
10 String Library . 65
10.1 Constructors . 67
10.2 Member Functions . 68
10.3 Global Operators . 73

11 References . 74

12 Supplemental Programs . 76
12.1 Copy Using Conversion Compatible Types 76
12.2 Generic Stack . 78
12.3 Reverse Iterator . 80

Index . 83

Preface

STL Distilled and Generic Programming is an a eMatter companion volume to C++
Distilled: Addison-Wesley. It updates and adds material on templates, generic pro-
gramming and STL as found in ANSI C++. It supplements and brings up-to-date
existing literature.

This eMatter book is a concise road map and style guide to generic program-
ming in C++. It distills key ideas and practice for the ANSI standard C++ language
and includes many programming tips. It is easily used with any C++ programming
book (see Chapter 11, “References,” on page 74, for a selection), but is especially
suitable when used with one of the author’s books, such as Object-Oriented Pro-
gramming Using C++, 2nd Edition (OPUS 97) or C++ for C Programmers, 3rd edition.
(P 99).

Each section has the syntax, semantics, and examples of the language element.
There are style and programming tips at the end of most sections. Examples have a
consistent professional style to be mimicked by programmers.

This eMatter book in conjunction with C++ Distilled is a distillation of the C++
ANSI standard, which is approximately 700 detailed technically dense pages, and
rather overwhelming. Fortunately most programmers do not need such detail;
indeed, many of the features are highly specialized and little used. Most program-
mers need to be able to quickly review some syntax or semantics they have not
recently used.

C++ has had many recent additions, including STL. These can be used readily by
someone already proficient in basic C++, but most books have yet to treat these top-
ics. This eMatter book can provide a handy guide to this important library.

 Most programming is done in my imitation of existing code and idioms. These
examples use my prescriptions and programming tips (“Dr. P’s Prescriptions”)
which are a distillation of considerable professional practice.

8 ¨ Preface
Hello World Program

In file hello1.cpp

//Traditional first program
#include <iostream.h>

int main()
{

cout << "HELLO WORLD!" << endl;
}

RX Dr. P’s Prescriptions: Style and Rule Tips
¤ Use the style found in this book.

¤ Be consistent with whatever style you choose.

Prescription Discussion

Style emphasizes clarity and community norms. Consistency, while the hobgoblin of
small minds, is well suited to large computer codes.

Acknowledgments

This eMatter was developed as an extension and to C++ Distilled. That book bene-
fited from reviewers Ed Lansinger of General Motors Corporation; Henry A. Etlinger
of Rochester Institute of Technology; Glen Deen of Deen Publications, Inc.; Michael
Keenan of Columbus State University; and David Gregory. Most importantly, I thank
Debra Dolsberry for her invaluable help in the technical editing of this eMatter
book, and her careful testing of the code.

Dedication

To Alexander Stepanov and Donald Knuth, who created generic programming and
the detailed analysis of best algorithms, respectively.

Chapter 1

Generic Programs

A key problem in programming is programmer productivity. An important tech-
nique is code reuse. Generic programming is a critical methodology for enhancing
code reuse. Generic programming is about code that can be used over a wide cate-
gory of types. In C++ there are three different ways to employ generic coding tech-
niques: void* pointers, templates, and inheritance. This chapter will show a simple
use of each of these methods. This eMatter book will largely concern C++ templates
and how they are employed in STL, the C++ standard template library.

We will start with a simple example of code that can benefit from genericity.
This is the everyday application of assigning the contents of one array to a second
array.

Array Transfer Function

In file transferArray.cpp

//Simple array assignment function

int transfer(int from[], int to[], int size)
{

for (int i = 0; i < size; i++)
to[i] = from[i];
return size;

}

This code works for the int array type and depends on an appropriate size array
being allocated. This piece of code can be readily replicated for different types, but
replication has a cost and can introduce errors.

For the following declarations:

2 1 ¨ Generic Programs
int a[10], b[10];
double c[20], d[20];

transfer(a, b, 10); //works fine
transfer(c, d, 20); //syntax error

C++ has a void pointer type that can be used to create generic code. Generic code is
code that can work with different types.

Void Array Transfer Function

In file voidTransferArray.cpp

//void* generic assignment function

int transfer(void* from, void* to, int elementSize, int size)
{

int nBytes = size * elementSize;

for (int i = 0; i < nBytes; i++)
static_cast<char*>(to)[i] = static_cast<char*>(from)[i];

return size;
}

This code works for any array type. Since void* is a universal pointer type any array
type can be passed as a parameter. However, the compiler will not catch type errors.
For the following declarations:

int a[10], b[10];
double c[20], d[20];

transfer(a, b, 10, sizeof(int)); //works fine
transfer(c, d, 20, sizeof(double)); //works fine
transfer(a, c, 10, sizeof(int)); //system dependent

C++ has template functions that can be used to create generic code.

1 ¨ Generic Programs 3
Template Array Transfer Function

In file templateTransferArray.cpp

//template generic assignment function

template< class T>
int transfer(T* from, T* to, int size)
{

for (int i = 0; i < size; i++)
to[i] = from[i];

return size;
}

This code works for the any array type. For the following declarations:

int a[10], b[10];
double c[20], d[20];

transfer(a, b, 10); //works fine
transfer(c, d, 20); //works fine
transfer(a, c, 10); //syntax error

The template function requires that the type be properly instantiated. It does not
allow two distinct types to be used in this form of array transfer. It continues to
provide type safety which is important to program correctness.

RX Dr. P’s Prescriptions: General Rules
¤ Dr. P’s first rule of style is “Have a style.” (P 97)

¤ Kernighan and Plauger’s first rule of style is “Write clearly—don’t be too clever”
(KP 74).

¤ Be consistent in what ever style you choose.

¤ Use templates instead of void* genericity.

¤ First write a archetypal case and test then recode generically and test.

4 1 ¨ Generic Programs
Prescription Discussion

In this eMatter book we follow the traditional C and C++ style pioneered by Bell Lab-
oratories programmers, such as Kernighan, Ritchie and Stroustrup (KR 88, GRAY 91,
ABC 95, P 97).

Several elements of this style can be seen in the our programs. Beginning and
ending braces for function definitions line up under each other and under the first
character of the function definition. Beginning braces after keywords, such as do
and while, follow the keyword with the ending brace under the first character of
that line. This style is in widespread use and makes it easy for others to read your
code. The style allows us to distinguish key elements of the program visually,
enhancing readability. Style should aim for clarity for both ourselves and others
who need to read our code.

Cleverness by its nature is usually obscure. This is the enemy of clarity—hence
Kernighan and Plauger’s maxim “Write clearly—don’t be too clever.” Also, inconsis-
tent style tends to obscure.

While void* genericity has certain advantages, such as smaller executables than
template genericty, it can be more error-prone and less efficient.

It can be difficult to write and test generic code from scratch. Concreteness is a
great aid to the program developer. Pick a type that represents the archetypal case.
In our example this was the int array. Develop the code for this case and test, mak-
ing sure it’s correct. Finally convert this to template code and retest with selected
types.

Chapter 2

Iterators and Containers

A container is a data structure that is used to contain a large number of values. The
prototypical container is the array. Other familiar containers include the list, queue,
stack and map. An iterator is a device for traversing a container. The indexing of an
array is a way to sequence through or randomly visit array elements. The C++
pointer is a prototypical iterator.

2.1 A Visitation Example: Accumulate

A standard and important computation is to sum all the elements of an array.

Array Accumulate Function

In file accumulate.cpp

//accumulate an integer array of values
int accumulate(int* begin, int* end, int start_value = 0)
{

int sum = start_value;

while(begin != end)
sum += *begin++;

return sum;
}

This algorithm uses pointers in two ways. One: the pointer traverses a given con-
tainer range. Two: the pointer is dereferenced to obtain the value at a given location.
This is a model algorithm for traversing a container and accessing but not mutating
or changing their values. Later we will see that STL has very general generic forms of
these algorithms.

We convert the above archetypal accumulate algorithm by converting it to a
template algorithm. The rules for doing this are usually very simple, namely identify

6 2 ¨ Iterators and Containers
any types that need to be generic and substitute the template arguments for the
concrete types. Retest the code using several representative types.

Template Accumulate Function

In file templateAccumulate.cpp

//accumulate an T array of values
#include <iostream>
template <class T>
T accumulate(T* begin, T* end, T start_value = T())
{

T sum = start_value;

while (begin != end)
sum += *begin++;

return sum;
}

int main()
{

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
double x[10] = {1.1, 2.2, 3.3};

cout << " sum is " << accumulate(a, a + 10) << endl;
cout << " sum is " << accumulate(x, x + 10) << endl;

}

This code can be instantiated for any array type that can be summed.

RX Dr. P’s Prescriptions: Containers and Iterators
¤ Use ranges to perform visitation.

¤ Templatize any standard code to enhance reuse.

¤ Avoid a commitment to a particular container type.

¤ Be general where possible.

2.1 ¨ A Visitation Example: Accumulate 7
Prescription Discussion

As in STL, we use a beginning iterator and a sentinel iterator to pass in a range for
the traversal of a container. This is a very flexible scheme and is highly efficient. Its
flexibility comes from the fact that any contiguous subsection of the container can
be specified.

C++ is designed to be template friendly. Code, when designed as a template,
benefits from greater abstraction than corresponding specialized code. What I mean
by this is that programmers are normally overly clever. This leads to hard to main-
tain code with possibly subtle bugs. Generic code must be correct over a wide range
of types and cannot indulge in cleverness.

Iterators avoid the commitment to a particular container type. In contrast using
indices to access arrays does not allow for pointer traversal as used in list and tree
containers. Generalization benefits by avoiding commitments. Generalization is the
heart and brilliance of the STL library.

8 3 ¨ Algorithms
Chapter 3

Algorithms

STL is a library of generic algorithms. These algorithm represent best practice (K
97). Given a particular problem such as internal sorting for a sequence container
supporting random access, such as an array, what is known is that quicksort is an
algorithm with good behavior. The problem for STL is how to capture such an algo-
rithm in its most general form without degrading its performance.

An example of a best practice algorithm is the following code for finding the
minimum and maximum element in a container using fewest number of compari-
sons (P 72). This example was developed when I was trying to understand more
complicated examples of sorting and led to one of the first formal proofs based on
an adversary strategy. It is intuitively obvious, but it is still hard to see why it is
always best in terms of number of comparisons.

We will develop the algorithm in pieces. For its history and influence in the anal-
ysis of algorithms (K 98)

//minimum of an array of values
int min(int* begin, int* end)
{

int minimum = *begin;

while(++begin != end)
if(minimum > *begin)
minimum = *begin;

return minimum;
}

This is our garden variety find the minimum of a sequence algorithm. As with other
STL inspired algorithms we write it in terms of iterator parameters. For n elements
it requires n-1 comparisons.

Symmetrically we can immediately write out the maximum algorithm.

//maximum of an array of values
int max(int* begin, int* end)
{

int maximum = *begin;

while(++begin != end)
if(maximum < *begin)
maximum = *begin;

return maximum;
}

Now we wish to return from our analysis of an unsorted sequence the minimum and
maximum element of a sequence. Do this as a return value requires a new type the
int_pair.

class int_pair{public: int first, second;};

Again this is inspired by type pair<> found in the STL library, where among its uses
are its ability to store map related values (STL 96).

A first attempt at producing a min-max algorithm would be to use both the min-
imum and maximum algorithms. This would take 2n - 2 comparisons. We can see
that certain comparisons are redundant. in the most elementary case, if we find a
minimum we know it will not be simulataneously the maximum unless it is the sole
value in the sequence. Indeed any comparison that leads to a minimum produces an
element smaller than a maximum, and this element need not be tested for being a
maximum. This insight leads to splitting the original sequence in to 2 sequences
that contain repectively candidate minima and maxima. The code for this is as fol-
lows:

void swap(int* p, int* q){int temp = *p; *p = *q; *q = temp;}

//assume an even number of elements
int_pair min_max(int* begin, int* end, int* middle)
{

int* mbegin = begin;
int* mmiddle = middle;
int_pair ans;
while (mbegin != middle) {
if (*mbegin > *mmiddle)
swap (mbegin, mmiddle);

mbegin++;
mmiddle++;

}

10 3 ¨ Algorithms
ans.first = min(begin, middle);
ans.second = max(middle, end);
return ans;

}

//Test Program
int main()
{

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int_pair mm;
mm = min_max(a, a + 10, a + 5);
cout << " minimum and maximum is "

<< mm.first << " "<< mm.second<< endl;
}

This leads to performance that is 3n-2 comparisons. The original n elements are
compared pair wise and divided into two groups of n/2 elements. This takes n/2
comparisons; the minimum is found in n/2-1 comparison and likewise the maxi-
mum. We leave as an exercise what is needed for an odd number of elements.

Notice this algorithm can be rewritten for any type that allows comparison. Also
the original ordering of elements may be changed by the algorithm. This means the
code is mutating. These categories of mutating and sorting are used by STL. It
remains to templatize the algorithm in order to make it generic. We leave this as an
exercise.

RX Dr. P’s Prescriptions: Algorithms
¤ Read The Art of Computing by Donald Knuth

¤ Use a best algorithm

Prescription Discussion

The study of algorithms is central to good coding. Knuth in his three volume Art
of Computing has exhaustively presented analysis and design of datastructures and
algorithms. Studying these volumes for the modern computer scientist and pro-
grammer is analagous to an ancient geometer studing Euclid’s eements. Without
this study you have no basis to understand what a good algorithm is or how to
develop one.

As fast as computers become, there is no substitute for using a best algorithm
in many instances. Resource use is almost always an issue somewhere in serious
code. To appreciate STL as an achievement requires the understanding of best algo-
rithm for different circumstance.

4 ¨ Templates 11
Chapter 4

Templates

The keyword template is used to implement parameterized types. Rather than
repeatedly recoding for each type, the template feature allows instantiation to gen-
erate code automatically for each type. The following code is a simple implementa-
tion of a generic stack container class.

Template Stack Program

In file stack_p.cpp

template <class T> //parameterize T
class stack {
public:

stack();
explicit stack(int s);
T& pop();
void push(T);
·····

private:
T* item;
int top;
int size;

};

A template declaration has the form:

template < template arguments > declaration

and a template argument can be:

class identifier
argument declaration

12 4 ¨ Templates
The class identifier arguments are instantiated with a type. Other argument decla-
rations are instantiated with constant expressions of a nonfloating type, and can be
a function or address of an object with external linkage as shown in the following
code.

In file array.cpp

template<class T, int n >
class array_n {

·····
private:

T items[n]; //n explicitly instantiated
·····

};

array_n<complex, 1000> w; //w is an array of complex

Member function syntax, when external to the class definition, is as follows.

template <class T>
T& stack<T>::pop()
{

return(item[top--]);
}

The class-name used by the scope resolution operator includes the template argu-
ments, and the member function declaration requires the template declaration as a
preface to the function declaration.

4.1 Template Parameters

The above template can be rewritten with default parameters for both the int argu-
ment and the type. For example:

template<class T = int, int n = 100>
class array_n {

·····
};

4.2 ¨ Function Template 13
The default parameters can be instantiated when declaring variables, or can be
omitted, in which case the defaults will be used.

Templates can use the keyword typename in place of class. For example:

template<typename T = double, double* ptr_dbl>

This allows the template code to use a pointer to double argument. Ordinary float-
ing-point arguments are not allowed, only pointer and reference to floating-point
arguments are allowed.

A template argument can also be a template parameter. For example:

template<typename T1, template<class T2> class T3>

This allows very sophisticated metatemplates—templates instantiated with tem-
plates—to be coded. Libraries such as STL can use such features.

4.2 Function Template

Until 1995 compilers allowed ordinary functions to be parameterized using a
restricted form of template syntax. Only class identifier instantiation is allowed. It
must occur inside the function argument list:

Generic Swap Function

In file swap.cpp

//generic swap
template <class T>
void swap(T& x, T& y)
{

T temp;

temp = x;
x = y;
y = temp;

}

14 4 ¨ Templates
//ANSI C++ but unavailable in many current compilers
template <class T, int n>
T foo()
{

T temp[n];
 ·····
}

foo<char, 20>(); //use char, 20 and call foo

A function template is used to construct an appropriate function for any invocation
that matches its arguments unambiguously:

swap(i, j); //i j int - okay
swap(c1, c2); //c1, c2 complex - okay
swap(i, ch); //i int ch char - illegal

The overloading function selection algorithm is as follows.

Overloaded Function Selection Algorithm

1. Exact match with trivial conversions allowed on a nontemplate function.

2. Exact match using a function template.

3. Ordinary argument resolution on a nontemplate function.

In the previous example, an ordinary function declaration whose prototype was

void swap(char, char);

would have been invoked on swap(i, ch).

4.3 ¨ Friends 15
4.3 Friends

Template classes can contain friends. A friend function that does not use a template
specification is universally a friend of all instantiations of the template class. A
friend function that incorporates template arguments is a friend only of its instanti-
ated class:

template <class T>
class matrix {
public:

friend void foo_bar(); //universal
friend vect<T> product(vect<T> v); //instantiated
·····

};

4.4 Static Members

Static members are not universal, but are specific to each instantiation:

template <class T>
class foo {
public:

static int count;
·····

};

·····
foo<int> a, b;
foo<double> c;

The static variables foo<int>::count and foo<double>::count are distinct. The
variables a.count and b.count reference foo<int>::count, but c.count refer-
ences foo<double>::count. It is preferable to use the form foo<type>::count
since this makes it clear that the variable referenced is the static variable.

16 4 ¨ Templates
4.5 Specialization

When the template code is unsatisfactory for a particular argument type it can be
specialized. A template function overloaded by an ordinary function of the same
type—that is, one whose list of arguments and return type conform to the template
declaration—is a specialization of the template. When the specialization matches
the call, then it, rather than code generated from the template, is called.

void maxelement<char*>(char*a[],char* &max,int size);
//specialized using strcmp() to return max string

This would be a specialization of the previously declared template for tem-
plate<class T>maxelement(). Class specializations are also possible, as in:

class stack<foobar_obj> { /*specialize for foobar_obj */ };

Templates Program

In file vect_it.cpp

//templates for vect with associated iterator class

#include <iostream.h>
#include <assert.h> //for assert

template <class T> class vect_iterator;
template <class T>
class vect {
public:

//constructors and destructor
typedef T* iterator;
explicit vect(int n = 10); //default constructor
vect(const vect& v); //copy constructor
vect(const T a[], int n); //from array
~vect() { delete [] p; }

4.5 ¨ Specialization 17
iterator begin(){ return p; }
iterator end(){ return p + size; }
T& operator[](int i) const;
vect& operator=(const vect& v);
friend vect operator+(const vect& v1, const vect& v2);
friend ostream& operator<<(ostream& out, const vect<T>& v);
friend class vect_iterator<T>;

private:
T* p; //base pointer
int size; //number of elements

};

//default constructor
template <class T>
vect<T>::vect(int n): size(n)
{

assert(n > 0);
p = new T[size];
assert(p != 0);

}

//copy constructor
template<class T>
vect<T>::vect(const vect<T>& v)
{

size = v.size;
p = new T[size];
assert (p != 0);
for (int i = 0; i < size; ++i)
p[i] = v.p[i];

}

//Initializing vect from an array
template<class T>
vect<T>::vect(const T a[], int n) : size (n)
{

assert (n > 0);
p = new T[size];
assert (p != 0);
for (int i = 0; i < size; ++i)
p[i] = a[i];

}

18 4 ¨ Templates
//overloaded subscript operator
template<class T>
T& vect<T>::operator[](int i) const
{

assert (i >= 0 && i < size);
return p[i];

}

//overloaded output operator
template<class T>
ostream& operator<<(ostream& out, const vect<T>& v)
{

for (int i = 0; i <= (v.size-1); ++i)
out << v.p[i] << '\t';

return (out << endl);
}

template<class T>
vect<T>& vect<T>::operator=(const vect<T>& v)
{

assert(v.size == size);
for (int i = 0; i < size; ++i)
p[i] = v.p[i];

return *this;
}

template<class T>
vect<T> operator+(const vect<T>& v1, const vect<T>& v2)
{

assert(v1.size == v2.size) ;
vect<T> sum(v1.s);

for (int i = 0; i < s; ++i)
sum.p[i] = v1.p[i] + v2.p[i];

return sum;
}

4.5 ¨ Specialization 19
template<class T>
void init_vect(vect<T>& v, int start, int incr)
{

for (int i = 0; i <= v.ub(); ++i) {
v[i] = start;
start += incr;

}
}

int main()
{

vect<double> v(5), t(5);
vect<double>::iterator p ;
int i = 0;
for (p = v.begin() ; p != v.end(); ++p)
*p = 1.5 + i++;

do {
--p;
cout << *p << " , ";

} while (p != v.begin());
t = v; //test assignment
v = v + t; //test addition
for (p = v.begin() ; p != v.end(); ++p)
cout << *p << " , ";

cout << endl;
}

RX Dr. P’s Prescriptions: Templates
¤ Use templates for containers, such as stack or tree.

¤ Use template functions in preference to functions acting on void* arguments.

¤ Design templates by first writing a prototype as an ordinary class.

¤ Use templates in preference to inheritance.

20 4 ¨ Templates
Prescription Discussion

Templates are especially good for code that is repeatedly required with different
types. Container class code is usefully generalized by coding with templates. A con-
tainer is an object whose primary purpose is to store values. A classic example of a
container is a stack. Templates allow such code to be reused over arbitrary type
with type-safety that is checked at compile-time.

Before templates were used much generic code in C++ was written using void*
arguments to functions. This generic pointer type can accept any specific pointer
type as an argument. This code can largely be replaced with templates. The code is
again compile-time type-checked. Also, template functions need not manipulate
arguments indirectly with pointers.

Template code is easily developed through generalization of a specific typical
case. Develop code with the specific case first; for example, develop code for a stack
of integers. Only after all of this code is satisfactory and debugged should it be con-
verted to a general template. Then retest this code over a selection of data types
that might represent typical template use.

Templates and inheritance are both techniques for reusing code. When both
techniques are possibilities for developing classes templates are preferred to inher-
itance because they are usually more efficient and lead to simpler class design.
Inheritance couples classes.

5 ¨ STL: Basics and the Container vector 21
Chapter 5

STL: Basics and the Container vector

In this section we wish to give the basic ideas behind STL. We will use as our princi-
ple example the container class vector and its use. Arguably the most used con-
tainer class is the vector. Indeed we recommend along with other authorities (S 97)
that it wherever possible replace raw arrays. The vector class is safer than then a
native array and is more flexible. There might be a slight tradeoff in use of
resources, but in most applications it is the superior data structure.

Vector Program

In file test_vector.cpp

//Simple STL vector program
#include <iostream>
#include <vector>
using namespace std;

int main ()
{

vector<int> v(100); //100 is the vector's size

for (int i = 0; i < 100; i++)
v[i] = i;

for (vector<int>::iterator p = v.begin(); p != v.end(); p++)
cout << *p << '\t';

}

The STL container vector is used in place of an ordinary int array. The first
for-statement is written in exactly the same manner as a C++ loop on ordinary data.
The second for-statement is written using the iterator p. An iterator behaves as a
pointer. STL provides the member functions begin() and end() as initial and
terminal position values for the container. Note that end() returns the iterator
position (or address) one past the last element of the container. Thus, end() is a
guard location, or value signaling that you are finished traversing the container.

22 5 ¨ STL: Basics and the Container vector
The iterator is conceptually a pointer. In some cases the template generates a
pointer. Regardless of what the template generates, the user of a vector can code as
if he had pointer or array indexing as is the case for raw C++ arrays. The vector<>
container type is better than an array in several ways. It has more functionality. In
the previous example we had begin and end locations available. We did not have to
retain array bounds. The vector<> type resizes automatically. We see some of these
properties in the following simple example.

Vector2 Program

In file test_vector2.cpp

#include <iostream>
#include <vector>

using namespace std;
int main()
{

int data[10] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
vector<int> v;
vector<int>::iterator p;

cout << " size of v is " << v.size();
cout << " maximum size of v is " << v.size() << endl;
for (int i = 0; i < 10; i++)
v.push_back(data[i]);

for (p = v.begin(); p != v.end(); p++)
cout << *p << " , " ;

cout << endl;
cout << " size of v is " << v.size();
cout << " maximum size of v is " << v.max_size()<< endl;

}

Notice the vector v is not declared with any parameters. It will start as a size 0 vec-
tor. When we use push_back() we automatically add elements to the end of v and
increase its size as needed. Try this program and see what your system prints for
the initial v.size() and the final v.size() and v.max_size().

The vector is the prototypical sequence container. It can be indexed through.
Indeed its elements can be accessed randomly making it very flexible. as we shall
see the two other main sequence containers, list and deque, share many but not all
of the vector containers properties.

5 ¨ STL: Basics and the Container vector 23
These are typedefs provided for thervector container class. For example, vec-
tor<char>::value_type means a character value is stored in the vector container.
Such a container could be traversed with a vector<char>::iterator.

Vectors allow equality and comparison operators. They also have an extensive
list of standard member functions.

STL vector<> Definitions

vector<>::value_type type of value held in the vector<>

vector<>::reference reference type to value

vector<>::const_reference const reference

vector<>::pointer pointer to reference type

vector<>::iterator iterator type

vector<>::const_iterator const iterator

vector<>::reverse_iterator reverse iterator

vector<>::difference_type
represents the difference between
two vector<>::iterator values

vector<>::size_type size of a vector<>

STL Vector<> Members

vector<>::vector<>() default constructor

vector<>::vector<>(c) copy constructor

c.begin() beginning location of vector<> c

c.end() ending location of vector<> c

c.rbegin() beginning for a reverse iterator

c.rend() ending for a reverse iterator

c.size() number of elements in vector<>

c.max_size() largest possible size

c.empty() true if the vector<> is empty

c.swap(d) swap two vector<>s

24 5 ¨ STL: Basics and the Container vector
So far we have the container vector and the traversal scheme based on iterators.
But we also get a variety of algorithms that can be used with the vector container. In
the following example we will show how some of these work.

Vector_Algoprithm Program

In file test_vector_algoritm.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
using namespace std;
int main()
{

vector<int> v(10000); //size 100 int vector
vector<double> w(10000); //size 100 double vector

generate(v.begin(), v.end(), rand);//use rand() to initialize
cout << "min element is = "

 << *min_element(v.begin(), v.end()) << endl;
cout << "min element is = "

 << *max_element(v.begin(), v.end()) << endl;
for(int i = 0; i < v.size(); i++)

 w[i] = v[i] / static_cast<double>(RAND_MAX);
double average = accumulate(w.begin(), w.end(), 0.0)/

w.size();
cout << "average is " << average << endl;
sort(v.begin(), v.end());

}

In this example we can use generic algoritms to find the maximum and minimum
element in a large vector. We can generate values and assign them to the elements in

STL vector<> Operators

== != < > <= >=
equality and comparison operators
using vector<>::value_type

5 ¨ STL: Basics and the Container vector 25
the sequence. In the above example we use the pseudorandom number generator rand()
from the library. We could as well use our own function. While finding the average element
value is not directly in the STL library, accumulate() can readily be used to produce the
sum of the elements and be divided by container.size() to find the average. the sort rou-
tine works only on elements that can be compared. It is O(n ln(n)) and is a version of quick-
sort optimized for STL containers.

Dr. P’s Prescriptions: Basics and the Container vector
¤ Use vectors in place of arrays.

¤ Use STL algorithms in place of idiosyncratic code.

¤ Use sequence ranges as arguments instead of the container.

Prescription Discussion

Vectors are better in almost all regards to arrays. The possible small efficiency or resource
losses in some situations are not worth using arrays for. Using vectors are 90% of the value
of STL. So if you go no further than mastering vector manipulation, you will gain the largest
value for study effort.

One is always tempted to design your own version of an algorithm. There is the psycho-
logical value of authorship. You need to resist this, as STL reuse technology is very effective.
Others can readily maintain or extend such code. You will be more effective. Special cases
may exist where it is desireable to use your own form of a sort or accumulate algorithm, but
these are rare in professional practice.

It is possible to write algorithms that just pass in the vector and process it. These algo-
rithms will be shown in some of our examples, but it is not STL style. STL style is to use iter-
ator ranges. This is efficient and flexible. Its only downside is that it requires an extra
argument over passing in the container and assume that the range is implicitly (begin(),
end()).

26 6 ¨ STL: Containers
Chapter 6

STL: Containers

The standard template library is the C++ standard library providing generic pro-
gramming for many standard data structures and algorithms. The library provides
containers, iterators, and algorithms that support a standard for generic program-
ming. We present a brief description emphasizing these three components.

The library is built using templates and is highly orthogonal in design. Compo-
nents can be used with one another on native and user-provided types through
proper instantiation of the various elements of the STL library (STL 96 and STLP 96).
Different header files are required depending on the system. Our examples conform
to the ANSI standard and are encapsulated in namespace std.

STL List Container

In file stl_cont.cpp

#include <iostream>
#include <list> //list container
#include <numeric> //for accumulate
using namespace std;

void print(const list<double> &lst) //using an iterator
{ //to traverse lst

list<double>::const_iterator p;
for (p = lst.begin(); p !=lst.end(); ++p)
cout << *p << '\t';

cout << endl;
}

6.1 ¨ Containers 27
int main()
{

double w[4] = { 0.9, 0.8, 88, -99.99 };
list<double> z;
for (int i = 0; i < 4; ++i)
z.push_front(w[i]);

print(z);
z.sort();
print(z);
cout << "sum is "

<< accumulate(z.begin(), z.end(), 0.0)
<< endl;

}

Here, a list container is instantiated to hold doubles. An array of doubles is pushed
into the list. The print() function uses an iterator to print each element of the list
in turn. Notice that iterators work like pointers. They have standard interfaces that
include begin() and end() member functions for starting and ending locations of
the container. Also, the list interface includes a stable sorting algorithm, the sort()
member function. The accumulate() function is a generic function in the numeric
package that uses 0.0 as an initial value and computes the sum of the list container
elements by going from the starting location to the ending location; in the above by
going from z.begin() to z.end().

6.1 Containers

Containers come in two major families: sequence and associative. Sequence contain-
ers include vectors, lists, and deques; they are ordered by having a sequence of ele-
ments. Associative containers include sets, multisets, maps, and multimaps; they
have keys for looking up elements. The map container is a basic associative array
and requires that a comparison operation on the stored elements be defined. All
varieties of container share a similar interface.

28 6 ¨ STL: Containers
STL Typical Container Interfaces

¤ Constructors, including default and copy constructors

¤ Element access

¤ Element insertion

¤ Element deletion

¤ Destructor

¤ Iterators

Containers are traversed using iterators. These are pointer-like objects that are
available as templates and optimized for use with STL containers.

Deque Traversal Function

In file stl_deq.cpp

//A typical container algorithm
double sum(const deque<double> &dq)
{

deque<double>::const_iterator p;
double s = 0.0;

for (p = dq.begin(); p != dq.end(); ++p)
s += *p ;

return s;
}

The deque (double ended queue) container is traversed using a const_iterator.
The iterator p is dereferenced to obtain each stored value in turn. This algorithm
will work with sequence containers and with all types that have operator+=()
defined.

Container classes will be designated as CAN in the following description of their
interface.

6.1 ¨ Containers 29
All container classes have these definitions available. For example, if we are using
the vector container class, then vector<char>::value_type means a character
value is stored in the vector container. Such a container could be traversed with a
vector<char>::iterator.

Containers allow equality and comparison operators. They also have an exten-
sive list of standard member functions.

STL Container Definitions

CAN::value_type type of value held in the CAN

CAN::reference reference type to value

CAN::const_reference const reference

CAN::pointer pointer to reference type

CAN::iterator iterator type

CAN::const_iterator const iterator

CAN::reverse_iterator reverse iterator

CAN::const_reverse_iterator const reverse iterator

CAN::difference_type
represents the difference between
two CAN::iterator values

CAN::size_type size of a CAN

STL Container Members

CAN::CAN() default constructor

CAN::CAN(c) copy constructor

c.begin() beginning location of CAN c

c.end() ending location of CAN c

c.rbegin() beginning for a reverse iterator

c.rend() ending for a reverse iterator

c.size() number of elements in CAN

c.max_size() largest possible size

c.empty() true if the CAN is empty

c.swap(d) swap two CANs

30 6 ¨ STL: Containers
6.1.1 Sequence Containers

The sequence containers are vector, list, and deque. They have a sequence of acces-
sible elements. In many cases the C++ array type can also be treated as a sequence
container.

Sequence Container Program

In file stl_vect.cpp

//Sequence Containers - inserting a vector into a deque

#include <iostream>
#include <deque>
#include <vector>
using namespace std;

int main()
{

int data[5] = { 6, 8, 7, 6, 5 };
vector<int> v(5, 6); //5 element vector
deque<int> d(data, data + 5);
deque<int>::iterator p;

cout << "\nDeque values” << endl;
for (p = d.begin(); p != d.end(); ++p)
cout << *p << '\t'; //print:6 8 7 6 5

cout << endl;
d.insert(d.begin(), v.begin(), v.end());
for (p = d.begin(); p != d.end(); p++)
cout << *p << '\t'; //print:6 6 6 6 6 6 8 7 6 5

}

STL Container Operators

== != < > <= >=
equality and comparison operators
using CAN::value_type

6.1 ¨ Containers 31
The five-element vector v is initialized with the value 6. The deque d is initialized
with values taken from the array data. The insert() member function places the v
values in the specified range v.begin() to v.end() at the location d.begin().

Sequence classes will be designated as SEQ in the following description of their
interface; these are in addition to the already described CAN interface.

6.1.2 Associative Containers

The associative containers are set, map, multiset, and multimap. They have key-
based accessible elements. These containers have an ordering relation, Compare,
which is the comparison object for the associative container.

Associative Container Program

In file stl_age.cpp

//Associative Containers - looking up ages
#include <iostream>
#include <map>
#include <string>
using namespace std;

STL Sequence Members

SEQ::SEQ(n, v) n elements of value v

SEQ::SEQ(b_it, e_it) starts at b_it and go to e_it - 1

c.insert(w_it, v) inserts v before w_it

c.insert(w_it, v, n) inserts n copies of v before w_it

c.insert(w_it, b_it, e_it) inserts b_it to e_it before w_it

c.erase(w_it) erases the element at w_it

c.erase(b_it, e_it) erases b_it to e_it

32 6 ¨ STL: Containers
int main()
{

map<string, int, less<string> > name_age;

name_age["Pohl,Laura"] = 7;
name_age["Dolsberry,Betty"] = 39;
name_age["Pohl,Tanya"] = 14;
cout << "Laura is " << name_age["Pohl,Laura"]

<< " years old." << endl;
}

In the above example, the map name_age is an associative array where the key is a
string type. The Compare object is less<string>.

Associative classes will be designated as ASSOC in the following description of
their interface. Keep in mind that these are in addition to the already described CAN
interface.

The associative containers have several standard constructors for initialization.

What distinguishes associative constructors from sequence container constructors
is the use of a comparison object.

STL Associative Definitions

ASSOC::key_type the retrieval key type

ASSOC::key_compare the comparison object type

ASSOC::value_compare the type for comparing ASSOC::value_type

STL Associative Constructors

ASSOC() default constructor using Compare

ASSOC(cmp) constructor using cmp as the comparison object

ASSOC(b_it, e_it) uses element range b_it to e_it using Compare

ASSOC(b_it, e_it, cmp)
uses element range b_it to e_it and cmp as the
comparison object

6.1 ¨ Containers 33
The insertion works when no element of the same key is already present.

The associative containers are set, map, multiset, and multimap. They have key-
based accessible elements. These containers have an ordering relation, Compare,
which is the comparison object for the associative container.

As a further associate container example we will use a multiset to count the
number of times each vegetable enters our diet in the course of 100 meals.

STL Insert and Erase Member Functions

c.insert(t)

inserts t, if no existing element has the same key
as t; returns pair <iterator, bool> with bool
being true if t was not present

c.insert(w_it, t)

inserts t with w_it as a starting position for the
search; fails on sets and maps if key value is
already present; returns position of insertion

c.insert(b_it, e_it) inserts the elements in this range

c.erase(k)
erases elements whose key value is k, returning the
number of erased elements

c.erase(w_it) erases the pointed to element

c.erase(b_it, e_it) erases the range of elements

 STL Member Functions

c.find(k)
returns iterator to element having the
given key k, otherwise ends

c.count(k) returns the number of elements with k

c.lower_bound(k)
returns iterator to first element having
value greater than or equal to k

c.upper_bound(k)
returns iterator to first element having
value greater than k

c.equal_range(k)
returns an iterator pair for lower_bound
and upper_bound

34 6 ¨ STL: Containers
Associative Container Program

In file stl_multiset.cpp

//Associative Containers - checking up on your diet
#include <iostream>
#include <set> //used for both set and multiset
#include <vector>
using namespace std;
enum vegetables { broccoli, tomato, carrot, lettuce, beet,

radish, potato};

int main() {
vector<vegetables> my_diet(100);
vector<vegetables>::iterator pos;
vegetables veg;

 multiset<vegetables, greater<vegetables> > v_food;
multiset<vegetables, greater< vegetables> >::iterator vpos;

 for (pos = my_diet.begin(); pos != my_diet.end(); pos++){
*pos = static_cast<vegetables>(rand() % 7);

 v_food.insert(*pos);
}

for (veg = broccoli; veg <= potato; veg++)
cout << v_food.count(veg) << endl;

}

This program generates into vector a random diet of vegetables. it then uses the
special properties of multiset to perform a count on how often each vegetable is
eaten in our diet.

6.1.3 Container Adaptors

Container adaptor classes are container classes that modify existing containers to
produce different public behaviors based on an existing implementation. Three pro-
vided container adaptors are stack, queue, and priority_queue.

The stack can be adapted from vector, list and deque. It needs an implemen-
tation that supports back, push_back and pop_back operations. This is a last-in,
first-out data structure.

6.1 ¨ Containers 35
The queue can be adapted from list or deque. It needs an implementation that
supports empty, size, front, back, push_back and pop_front operations. This is
a first-in, first-out data structure.

The priority_queue can be adapted from vector or deque. It needs an implemen-
tation that supports empty, size, front, push_back, and pop_back operations. A
priority_queue also needs a comparison object for its instantiation. The top ele-
ment is the largest element as defined by the comparison relationship for the
priority_queue.

STL Adapted stack Functions

void push(const value_type& v) places v on the stack

void pop() removes the top element of the stack

value_type& top() const returns the top element of the stack

bool empty() const returns true if the stack is empty

size_type size() const returns the number of elements in the stack

operator== and operator< equality and lexicographically less than

STL Adapted queue Functions

void push(const value_type& v) places v on the end of the queue

void pop() removes the front element of the queue

value_type& front() const returns the front element of the queue

value_type& back() const returns the back element of the queue

bool empty() const returns true if the queue is empty

size_type size() const returns the number of elements in the queue

operator== and operator< equality and lexicographically less than

STL Adapted priority_queue Functions

void push(const value_type& v) places v in the priority_queue

void pop() removes top element of the priority_queue

value_type& top() const returns top element of the priority_queue

bool empty() const checks for priority_queue empty

size_type size() const
shows number of elements in the
priority_queue

36 6 ¨ STL: Containers
We adapt the stack from an underlying vector implementation.

Container Adaptor Program

In file stl_stak.cpp

//Adapt a stack from a vector
#include <iostream>
#include <stack>
#include <vector>
#include <string>
using namespace std;

int main()
{

stack<string, vector<string> > str_stack;
string quote[3] =
{ "The wheel that squeaks the loudest\n",

“Is the one that gets the grease\n",
"Josh Billings\n" };

for (int i = 0; i < 3; ++i)
str_stack.push(quote[i]);

while (!str_stack.empty()) {
cout << str_stack.top();
str_stack.pop();

}
}

Check your vendor’s product for specific system-dependent implementations.

RX Dr. P’s Prescriptions: STL Containers
¤ For sequence containers, think vector, first, deque, second and list last.

¤ Use the most efficient container for a computation.

¤ When adapting remember the underlying structure determines efficiency.

6.1 ¨ Containers 37
Prescription Discussion

The vector is generally the easiest container to use. It is a simple generalization of
the array and as such is most familar to programmers. It is also often the most effi-
cient over a large class of operations. It should be your default container choice. The
deque is the next most useful. Its ability to add to both ends of the data structure in
constant time is its greatest strength .It is also supports random access access. The
list in many ways is the most expensive container class. Its chief benefit is to give
you insertion and deletion of internal elements in constant time without destroying
existing iterator values. Again be guided by the most frequent operations required
by your problem in making these choices.

There is relative ease in switching among container. One container can be con-
structed by passing an iterator range from another container. Do not be afraid of
using multiple representations for some problems that dictate a combination of
space-operation cost tradeoffs. The point of STL is to use a most efficient algorithm.
Usually this involves selecting the appropriate container.

Container adaption results in a supported interface, such as a stack or priority
queue that hides the underlying container implementation. Nevertheless the differ-
ent implementations dictate the efficiency of the resulting data structure. Your
choice should be sensative to what operations and space constraints are important
to your problem. When in doubt profile your program.

38 7 ¨ STL: Iterators
Chapter 7

STL: Iterators

Navigation over containers is by iterator. Iterators can be thought of as an enhanced
pointer type. They are templates that are instantiated as to the container class type
they iterate over. There are five iterator types: input, output, forward, bidirectional,
and random access (see Section 7.0.1, “Iterator Categories,” on page 39). Not all iter-
ator types may be available for a given container class. For example, random access
iterators are available for vectors but not maps.

The input and output iterators have the fewest requirements. They can be used
for input and output and have special implementations called istream_iterator
and ostream_iterator for these purposes . (See Sect ion 7 .0 .2 ,
“Istream_iterator,” on page 40, and Section 7.0.3, “Ostream_iterator,” on page
41.) A forward iterator can do everything an input and output iterator can do and
can additionally save a position within a container. A bidirectional iterator can go
both forward and backward. A random access iterator is the most powerful and can
access any element in a suitable container, such as a vector in constant time.

Container Iterator Program

In file stl_iter.cpp

//Use of an output iterator
#include <iostream>
#include <set>
using namespace std;

7 ¨ STL: Iterators 39
int main()
{

int primes[4] ={ 2, 3, 5, 7 }, *ptr = primes;
set<int, greater<int> > s;
set<int, greater<int> > :: const_iterator const_s_it;

while (ptr != primes + 4)
s.insert(*ptr++);

cout << "The primes below 10 : " << endl;
for (const_s_it = s.begin();

const_s_it != s.end(); ++const_s_it)
cout << *const_s_it << '\t';

}

The above program uses an iterator for a set container to output one-digit primes.
Such an iterator needs to have the ability to autoincrement and to be dereferenced.

7.0.1 Iterator Categories

Input iterators support equality operations, dereferencing, and autoincrement. An
iterator that satisfies these conditions can be used for one-pass algorithms that
read values of a data structure in one direction. A special case of the input iterator
is the istream_iterator.

Output iterators support dereferencing restricted to the left-hand side of
assignment and autoincrement. An iterator that satisfies these conditions can be
used for one-pass algorithms that write values to a data structure in one direction.
A special case of the output iterator is the ostream_iterator.

Forward iterators support all input/output iterator operations and additionally
support unrestricted use of assignment. This allows position within a data structure
to be retained from pass to pass. Therefore, general one-directional multipass algo-
rithms can be written with forward iterators.

Bidirectional iterators support all forward iterator operations as well as both
autoincrement and autodecrement. Therefore general bidirectional multipass algo-
rithms can be written with bidirectional iterators.

Random access iterators support all bidirectional iterator operations as well as
address arithmetic operations such as indexing. In addition, random access itera-
tors support comparison operations. Therefore, algorithms such as quicksort that
require efficient random access in linear time can be written with these iterators.

Container classes and algorithms dictate the category of iterator available or
needed, so vector containers allow random access iterators, but lists do not.
Sorting generally requires a random access iterator, but finding requires only an
input iterator.

40 7 ¨ STL: Iterators
7.0.2 Istream_iterator

An istream_iterator is derived from an input_iterator to work specifically
with reading from streams. The template for istream_iterator is instantiated
with a <type, distance>. This distance is usually specified by ptrdiff_t. As
defined in cstddef or stddef.h, it is an integer type representing the difference
between two pointer values.

Iterators for Streams Program

In file stl_io.cpp

//Use of istream_iterator and ostream_iterator

#include <iterator>
#include <iostream>
#include <vector>
using namespace std;

int main()
{
 vector<int> d(5);
 int i, sum ;
 istream_iterator<int, ptrdiff_t> in(cin);
 ostream_iterator<int> out(cout, "\t");

 cout << "enter 5 numbers" << endl;
 sum = d[0] = *in; //input first value
 for (i = 1; i < 5; ++i) {
 d[i] = *++in; //input consecutive values
 sum += d[i];

}
 for (i = 0; i < 5; ++i)

*out = d[i] ; //output consecutive values
 cout << " sum = " << sum << endl;
}

The istream_iterator in is instantiated with type int and parameter ptrdiff_t.
The ptrdiff_t is a distance type that the iterator uses to advance in getting the
next element. In the above declaration in is constructed with the input stream cin.
The first element is read and cached. The autoincrement operator advances in and

7 ¨ STL: Iterators 41
reads and caches a next value of type int from the designated input stream. The
ostream_iterator out is constructed with the output stream cout and the char*
delimiter “\t”. Thus the tab character will be issued to the stream cout after each
int value is written. In this program the iterator out, when it is dereferenced, writes
the assigned int value to cout.

7.0.3 Ostream_iterator

An ostream_iterator is derived from an output_iterator to work specifically
with writing to streams.

ostream_iterator Program

In file stl_oitr.cpp

//Use of as ostream_iterator iterator
#include <iostream>
#include <iterator>
using namespace std;

int main()
{

int d[5] = { 2, 3, 5, 7, 11 }; //primes
ostream_iterator<int> out(cout, "\t");

for (int i = 0; i < 5; ++i)
*out = d[i] ;

}

The ostream_iterator can be constructed with a char* delimiter, in this case
“\t”. Thus the tab character will be issued to the stream cout after each int value
is written. In this program the iterator out, when it is dereferenced, writes the
assigned int value to cout.

The output stream iterator is isomorphic to the input stream iterator. When a
value is assigned to the iterator, it is written to the instantiated output stream,
using operator >>. As seen in the above example the output stream iterator must
specify as a parameter to the constructor, the associated output stream. An optional
second parameter to the constructor is a string that will be used as a separator
between values.

Simple file manipulations can be coded by using input and output stream itera-
tors and various algorithms in the standard library. The following example reads a

42 7 ¨ STL: Iterators
file of integers, removes all occurrences of the value 0, and copies the remaining val-
ues separating each value with a comma:

istream_iterator Program

In file stl_ioitr.cpp

//Use of both istream_iterator and ostream_iterator iterator
#include <iostream>
#include <iterator>
using namespace std;

void main()
{

istream_iterator<int, ptrdiff_t> input (cin), eof;
ostream_iterator<int> output (cout, ",");

//remove 0 from file redirected to cin
//print file to cout
remove_copy (input, eof, output, 0);

}

7.0.4 Iterator Adaptors

Iterators can be adapted to provide backward traversal and provide traversal with
insertion.

STL Iterator Adaptors

¤ Reverse iterators—reverse the order of iteration

¤ Insert iterators—insertion takes place instead of the normal overwriting
mode

In the following example we use a reverse iterator to traverse a sequence.

7 ¨ STL: Iterators 43
Iterator Adaptor Program

In file stl_iadp.cpp

//Use of the reverse iterator

#include <iostream>
#include <vector>
using namespace std;

template <class ForwIter>
void print(ForwIter first, ForwIter last, const char* title)
{

cout << title << endl;
while (first != last)
cout << *first++ << '\t';
cout << endl;

}

int main()
{

int data[3] = { 9, 10, 11};
vector<int> d(data, data + 3);
vector<int>::reverse_iterator p = d.rbegin();

print(d.begin(), d.end(), "Original");
print(p, d.rend(), "Reverse");

}

This program uses a reverse iterator to change the direction in which the print()
function prints the elements of vector d.

We will briefly list adaptors and their purpose as found in this library.

¤ template<class BidiIter,
class T, class Ref = T&,
class Distance = ptrdiff_t>

class reverse_bidirectional_iterator;

This reverses the normal direction of iteration. Use rbegin() and rend() for
range.

44 7 ¨ STL: Iterators
¤ template<class RandAccIter,
class T, class Ref = T&,
class Distance = ptrdiff_t>

class reverse_iterator;

This reverses the normal direction of iteration. Use rbegin() and rend() for
range.

¤ template <class Can>
class insert_iterator;

template <class Can, class Iter>
insert_iterator<Can>

inserter(Can& c, Iter p);

Insert iterator inserts instead of overwrites. The insertion into c is at position p.

¤ template <class Can>
class front_insert_iterator;

template <class Can>
front_insert_iterator<Can>

front_inserter(Can& c);

Front insertion occurs at the front of the container and requires a
push_front() member.

¤ template <class Can>
class back_insert_iterator;

template <class Can>
back_insert_iterator<Can>

back_inserter(Can& c);

Back insertion occurs at the back of the container and requires a push_back()
member.

Check your vendor’s product for specific system-dependent implementations.

RX Dr. P’s Prescriptions: STL: Iterators
¤ Use iterator parameters rather than container variables.

¤ Use the weakest iterator category compatible with the function.

7 ¨ STL: Iterators 45
Prescription Discussion

Iterator sequences are not tied to a particular type of container. Container types are
a narrower style of representation than iterator ranges. Ergo using iterator
sequences leaves algorithms more general and hence the more reusable.

Our modus operandi in generic programming is to make the program as general
as possible without degrading efficiency. This leads to rule two, namely use the
weakest iterator type compatible with an efficient implementation of a computa-
tion.

46 8 ¨ STL: Algorithms
Chapter 8

STL: Algorithms

The STL algorithms library contains the following four categories.

STL Categories of Algorithms Library

¤ Sorting algorithms

¤ Nonmutating sequence algorithms

¤ Mutating sequence algorithms

¤ Numerical algorithms

These algorithms generally use iterators to access containers instantiated on a given
type. The resulting code can be competitive in efficiency with special-purpose
codes.

8.0.1 Sorting algorithms

Sorting algorithms include general sorting, merges, lexicographic comparison, per-
mutation, binary search, and selected similar operations. These algorithms have ver-
sions that use either operator<() or a Compare object. They often require random
access iterators.

The following program uses the quicksort function sort() from STL.

Sorting Algorithm Program

In file stl_sort.cpp

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 5;

8 ¨ STL: Algorithms 47
int main()
{

int d[N], i, *e = d + N;

for (i = 0; i < N; ++i)
d[i] = rand();

sort(d, e);
for (i = 0; i < N; ++i)
cout << d[i] << '\t';

}

This is a straightforward use of the library sort algorithm operating on the built-in
array d[]. Notice how ordinary pointer values can be used as iterators.

We present the library prototypes for sorting algorithms.

¤ template<class RandAcc>
void sort(RandAcc b, RandAcc e);

This is a quicksort algorithm over the elements in the range b to e. The iterator
type RandAcc must be a random access iterator.

¤ template<class RandAcc>
void stable_sort(RandAcc b, RandAcc e);

This is a stable sorting algorithm over the elements in the range b to e. In a sta-
ble sort equal elements remain in their relative same position.

¤ template<class RandAcc>
void partial_sort(RandAcc b, RandAcc m, RandAcc e);

This is a partial sorting algorithm over the elements in the range b to e. The
range b to m is filled with elements sorted up to position m.

¤ template<class InputIter, class RandAcc>
void partial_sort_copy(InputIter b, InputIter e,

RandAcc result_b, RandAcc result_e);

This is a partial sorting algorithm over the elements in the range b to e. Ele-
ments sorted are taken from the input iterator range and copied to the random
access iterator range. The smaller of the two ranges is used.

48 8 ¨ STL: Algorithms
¤ template<class RandAcc>
void nth_element(RandAcc b, RandAcc nth, RandAcc e);

The nth element is placed in sorted order, with the rest of the elements parti-
tioned by it. For example, if the fifth position is chosen, the four smallest ele-
ments are placed to the left of it. The remaining elements are placed to the right
of it and will be greater than it.

¤ template<class InputIter1, class InputIter2, class OutputIter>
OutputIter merge(InputIter1 b1, InputIter1 e1, InputIter2 b2,

InputIter2 e2, OutputIter result_b);

The elements in the range b1 to e1, and b2 to e2 are merged to the starting posi-
tion result_b.

¤ template<class BidiIter>
void inplace_merge(BidiIter b, BidiIter m, BidiIter e);

The elements in the range b to m and m to e are merged in place.

We will use a table to briefly list other algorithms and their purpose as found in this
library.

STL Sort Related Library Functions

binary_search(b, e, t) true if t is found in b to e

lower_bound(b, e, t)
the first position for placing t while
maintaining sorted order

upper_bound(b, e, t)
the last position for placing t while
maintaining sorted order

equal_range(b, e, t)

returns an iterator pair for the range
where t can be placed maintaining
sorted order

push_heap(b, e)
places the location’s e element into an
already existing heap

pop_heap(b, e)
swaps the location’s e element with the b
location’s element and reheaps

sort_heap(b, e) performs a sort on the heap

make_heap(b, e) creates a heap

next_permutation(b, e) produces the next permutation

prev_permutation(b, e) produces the previous permutation

8 ¨ STL: Algorithms 49
These algorithms have a form that uses a Compare object replacing operator<(),
for example:

¤ template<class RandAcc, class Compare>
void sort(RandAcc b, RandAcc e, Compare comp);

This is a quicksort algorithm over the elements in the range b to e using comp
for ordering.

8.0.2 Nonmutating Sequence Algorithms

Nonmutating algorithms do not modify the contents of the containers they work on.
A typical operation is searching a container for a particular element and returning
its position.

In the following program the nonmutating library function find() is used to
locate the element t.

lexicographical_compare

(b1, e1, b2, e2)

returns true if sequence 1 is lexico-
graphically less than sequence 2

min(t1, t2)
return the minimum of t1 and t2 that
are call-by-reference arguments

max(t1, t2) return the maximum

min_element(b, e) return the position of the minimum

max_element(b, e) return the position of the maximum

includes(b1, e1, b2, e2)
returns true if the second sequence is a
subset of the first sequence

set_union (b1, e1, b2,

e2, r)
returns the union as an output iterator r

set_intersection (b1, e1,

b2, e2, r)

returns the set intersection as an output
iterator r

set_difference (b1, e1, b2,

e2, r)

returns the set difference as an output
iterator r

set_symmetric_difference

(b1, e1, b2, e2, r)

returns the set symmetric difference as
an output iterator r

STL Sort Related Library Functions

50 8 ¨ STL: Algorithms
Nonmutating Sequence Program

In file stl_find.cpp

#include <iostream>
#include <algorithm>
#include <string>
using namespace std;

int main()
{

string words[5] = { "my", "hop", "mop", “hope", "cope"};
string* where;

where = find(words, words + 5, "hop");
cout << *++where << endl; //mop
sort(words, words + 5);
where = find(words, words + 5, "hop");
cout << *++where << endl; //hope

}

This uses find() to look for the position of the word “hop.” We print the word fol-
lowing “hop” before and after sorting the array words[].

We present the library prototypes for nonmutating algorithms.

¤ template<class InputIter, class T>
InputIter find(InputIter b, InputIter e, const T& t));

This finds the position of t in the range b to e.

¤ template<class InputIter, class Predicate>
InputIter find(InputIter b, InputIter e, Predicate p));

This finds the position of the first element that makes the predicate true in the
range b to e; otherwise the position e is returned.

¤ template<class InputIter, class Function>
void for_each(InputIter b, InputIter e, Function f));

This applies the function f to each value found in the range b to e.

8 ¨ STL: Algorithms 51
We will use a table to briefly list other algorithms and their purpose as found in this
library.

8.0.3 Mutating Sequence Algorithms

Mutating algorithms can modify the contents of the containers they work on. A typ-
ical operation is reversing the contents of a container.

In the following program the mutating library functions reverse() and copy()
are used.

STL Nonmutating Sequence Library Functions

next_permutation(b, e) produces next permutation

prev_permutation(b, e) produces previous permutation

count(b, e, t, n) returns to n the count of elements equal to t

count_if(b, e, p, n)
returns to n the count of elements that make
predicate p true

adjacent_find(b, e)
returns the first position of adjacent elements
that are equal; otherwise returns e

adjacent_find(b, e, binp)

returns the first position of adjacent elements
satisfying the binary predicate binp; otherwise
returns e

mismatch(b1, e1, b2)

returns an iterator pair indicating the positions
where elements do not match from the given
sequences starting with b1 and b2

mismatch (b1, e1, b2, binp)
as above, with a binary predicate binp used
instead of equality

equal(b1, e1, b2)
returns true if the indicated sequences match;
otherwise returns false

equal(b1, e1, b2, binp)
as above, with a binary predicate binp used
instead of equality

search(b1, e1, b2, e2)
returns an iterator where the second sequence
is contained in the first, if it is not e1

search (b1, e1, b2, e2, binp)
as above, with a binary predicate binp used
instead of equality

52 8 ¨ STL: Algorithms
Mutating Sequence Algorithm Program

In file stl_revr.cpp

//Use of mutating copy and reverse
#include <string>
#include <algorithm>
#include <vector>
using namespace std;

int main()
{

string first_names[5] = { "laura", "ira", "buzz", "debra",
 "twinkle" };

string last_names[5] = { "pohl", "pohl", "dolsberry",
"dolsberry", "star" };

vector<string> names(first_names, first_names + 5);
vector<string> names2(10);
vector<string>::iterator p;

copy(last_names, last_names + 5, names2.begin());
copy(names.begin(), names.end(), names2.begin() + 5);
reverse(names2.begin(), names2.end());
for (p = names2.begin(); p != names2.end(); ++p)
cout << *p <<'\t';

}

The first invocation of the mutating function copy() places last_names in the con-
tainer vector names2. The second call to copy() copies in the first_names, which
had been used in the construction of the vector names. The function reverse()
reverses all the elements that are then printed out.

We present the library prototypes for mutating algorithms.

¤ template<class InputIter, class OutputIter>
OutputIter copy(InputIter b1, InputIter e1, OutputIter b2);

This is a copying algorithm over the elements b1 to e1. The copy is placed start-
ing at b2. The position returned is the end of the copy.

8 ¨ STL: Algorithms 53
¤ template<class BidiIter1, class BidiIter2>
BidiIter2 copy_backward(BidiIter1 b1, BidiIter1 e1,

BidiIter2 b2);

This is a copying algorithm over the elements b1 to e1. The copy is placed start-
ing at b2. The copying runs backward from e1 into b2, which are also going
backward. The position returned is b2 - (e1 - b1).

¤ template<class BidiIter>
void reverse(BidiIter b, BidiIter e);

This reverses in place the elements b to e.

¤ template<class BidiIter, class OutputIter>
OutputIter reverse_copy(BidiIter b1, BidiIter e1,

OutputIter b2);

This is a reverse copying algorithm over the elements b1 to e1. The copy in
reverse is placed starting at b2. The copying runs backward from e1 into b2,
which are also going backward. The position returned is b2 + (e1 - b1).

¤ template<class ForwIter>
ForwardIter unique(ForwIter b, ForwIter e);

The adjacent elements in the range b to e are erased. The position returned is
the end of the resulting range.

¤ template<class ForwIter, class BinaryPred>
ForwardIter unique(ForwIter b, ForwIter e, BinaryPred bp);

The adjacent elements in the range b to e with binary predicate bp satisfied are
erased. The position returned is the end of the resulting range.

¤ template<class InputIter, class OutputIter>
OutputIter unique_copy(InputIter b1, InputIter e1,

OutputIter b2);

template<class InputIter, class OutputIter, class BinaryPred>
OutputIter unique_copy(InputIter b1, InputIter e1,

OutputIter b2, BinaryPred bp);

The results are copied to b2 with the original range unchanged.

The remaining library functions are described in the following tables.

54 8 ¨ STL: Algorithms
STL Mutating Sequence Library Functions

swap(t1, t2) swaps t1 and t2

iter_swap(b1, b2) swaps pointed to locations

swap_range(b1, e1, b2)

swaps elements from b1 to e1 with
those starting at b2; returns
b2 + (e1 - b1)

transform(b1, e1, b2, op)

using the unary operator op trans-
forms the sequence b1 to e1, placing it
at b2; returns the end of the output
location

transform(b1, e1, b2, b3, bop)

uses the binary operator bop on the
two sequences starting with b1 and b2
to produce the sequence b3; returns
the end of the output location

replace(b, e, t1, t2)
replaces in the range b to e the value t1
by t2

replace_if(b, e, p, t2)
replaces in the range b to e, the ele-
ments satisfying the predicate p by t2

replace_copy(b1, e1, b2, t1, t2)
copies and replaces into b2 the range
b1 to e1 with the value t1 replacing t2

replace_copy_if(b1, e1, b2, p, t2)

copies and replace into b2 the range b1
to e1 with the elements satisfying the
predicate p replacing t2

remove(b, e, t) removes elements of value t

remove_if, remove_copy,

remove_copy_if

similar to replace family except that
values are removed

fill(b, e, t) assigns t to the range b to e

fill_n(b, n, t) assigns n ts starting at b

generate(b, e, gen)
assigns to the range b to e by calling
generator gen

generate_n(b, n, gen) assigns n values starting at b using gen

8 ¨ STL: Algorithms 55
8.0.4 Numerical Algorithms

Numerical algorithms include sums, inner product, and adjacent difference.
In the following program the numerical function accumulate() performs a

vector summation, and inner_product() performs a vector inner product.

Numerical Algorithm Program

In file stl_numr.cpp

//Vector accumulation and innerproduct
#include <iostream>
#include <numeric>
using namespace std;

rotate(b, m, e)

rotates leftward the elements of the
range b to e; element in position i ends
up in position (i + n - m) % n, where n is
the size of the range, m is the midposi-
tion, and b is the first position

rotate_copy(b1, m, e1, b2)
as above, but copied to b2 with the
original unchanged

random_shuffle(b, e) shuffles the elements

random_shuffle(b, e, rand)
shuffles the elements using the sup-
plied random number generator rand

partition(b, e, p)

the range b to e is partitioned to have
all elements satisfying predicate p
placed before those that do not satisfy
p

stable_partition(b, e, p) as above, but preserving relative order

STL Mutating Sequence Library Functions

56 8 ¨ STL: Algorithms
int main()
{

double v1[3] = { 1.0, 2.5, 4.6 },
v2[3] = { 1.0, 2.0, -3.5 };

double sum, inner_p;
sum = accumulate(v1, v1 + 3, 0.0);
inner_p = inner_product(v1, v1 + 3, v2, 0.0);
cout << "sum = " << sum

<< ", product = " << inner_p << endl;
}

These functions behave as expected on numerical types where + and * are defined.
The library prototypes for numerical algorithms are as follows.

¤ template<class InputIter, class T>
T accumulate(InputIter b, InputIter e, T t);

This is a standard accumulation algorithm whose sum is initially t. The succes-
sive elements from the range b to e are added to this sum.

¤ template<class InputIter, class T, class BinOp>
T accumulate(InputIter b, InputIter e, T t, BinOp bop);

This is an accumulation algorithm whose sum is initially t. The successive ele-
ments from the range b to e are summed with sum = bop(sum, element).

We will use a table to briefly list other algorithms and their purpose as found in this
library.

8 ¨ STL: Algorithms 57
STL provides the basic computations for many more sophisticated algorithms. By
using STL, programmers can easily implement them. We will use numerical integra-
tion as an example. The idea is to generate a series of points, using a generator. A
generator is a class that defines the function by overloading operator(), the func-
tion call operator. The STL algorithm

generate(iterator b, iterator e, generator g)

is used to produce a vector of values in the range (0, 1) for the function. The algo-
rithm, numeric, and vector libraries are all required.

STL Numerical Library Functions

inner_product(b1, e1, b2, t)

returns the inner product from the
two ranges starting with b1 and b2;
this product is initialized to t,
which is usually zero

inner_product(b1,e1,b2,t,bop1,bop2)

returns a generalized inner product
using bop1 to sum and bop2 to
multiply

partial_sum(b1, e1, b2)

produces a sequence starting at b2,
that is the partial sum of terms
from the range b1 to e1

partial_sum(b1, e1, b2, bop) as above, using bop for summation

adjacent_difference(b1, e1, b2)

produces a sequence starting at b2,
that is the adjacent difference of
terms from the range b1 to e1

adjacent_difference(b1, e1, b2, bop) as above, using bop for difference

58 8 ¨ STL: Algorithms
Numerical Integration Program

In file stl_int1.cpp

//Simple integration routine for x*x over (0, 1)
//The function is represented in class gen

class gen { //generator for function to be integrated
public:

gen(double x_zero, double increment) : x(x_zero),
incr(increment) { }
double operator()() { x += incr; return x*x; }

private:
double x, incr;

};

double integrate(gen g, int n) //integrate on (0,1)
{

vector<double> fx(n);

generate(fx.begin(),fx.end(), g);
return(accumulate(fx.begin(), fx.end(), 0.0) / n);

}

int main()
{

const int n = 10000;

gen g(0.0, 1.0/n);
cout << "integration program x**2" << endl;
cout << integrate(g, n) << endl;

}

We approximate the area under the curve by a sequence of rectangles whose
height is the value of the function and whose width is the increment. An increment
gives us two choices for a height. We could improve the numerical accuracy of inte-
gration by bounding the area between rectangles based on the smaller heights and
one based on the larger heights.

8 ¨ STL: Algorithms 59
Integration Function

In file stl_int2.cpp

double integrate(gen g, int n, double& diff)
{

vector<double> fx(n), sm(n), lg(n);
double s, l;
generate(fx.begin(),fx.end(), g);
for (int i = 0; i < n - 1; ++i)

if (fx[i] > fx[i + 1]) {
sm[i] = fx[i + 1]; lg[i] = fx[i];

}
else {

sm[i] = fx[i]; lg[i] = fx[i + 1];
}

s = accumulate(sm.begin(), sm.end(), 0.0)/n ;
l = accumulate(lg.begin(), lg.end(), 0.0)/n ;
diff = l - s;
return (s + l) / 2;

}

The preceding code produces a more reliable estimate, with an error estimate calcu-
lated in diff.

RX Dr. P’s Prescriptions: STL: Algorithms
¤ Use the most efficient algorithm for a computation.

¤ Modify or adapt existing STL algorithms.

Prescription Discussion

The STL algorithms are expected to be efficient. The generalized sort is an efficient
adaptation of quicksort and compares favorably in most cases to running qsort()
as found in the C standard library.

As in the above example of numerical integration, STL routines can be readily
employed and adapted to perform significant computations without resort to spe-
cial codes. The use of various function adaptors as discussed in the next chapter
will vastlyexpand the applicability of STL.

60 9 ¨ STL: Function Objects
Chapter 9

STL: Function Objects

It is useful to have function objects to further leverage the STL library. For example,
many of the previous numerical functions had a built-in meaning using + or *, but
also had a form in which user-provided binary operators could be passed in as argu-
ments. Defined function objects can be found in function or built. Function objects
are classes that have operator() defined. These are inlined and are compiled to
produce efficient object code.

Function Object Program

In file stl_fucn.cpp

//Using a function object minus<int>
#include <iostream>
#include <numeric>
using namespace std;

int main()
{

double v1[3] = { 1.0, 2.5, 4.6 }, sum;

sum = accumulate(v1, v1 + 3, 0.0, minus<int>());
cout << "sum = " << sum << endl; //sum = -7

}

Accumulation is done using integer minus for the binary operation over the array
v1[]. Therefore the double values are truncated, with the result being -7.

There are three defined function object classes.

9 ¨ STL: Function Objects 61
STL Defined Function Object Classes

¤ Arithmetic objects

¤ Comparison objects

¤ Logical objects

We will use tables to briefly list algorithms and their purpose as found in this
library.

Arithmetic objects are often used in numerical algorithms, such as accumulate().

The comparison objects are frequently used with sorting algorithms, such as
merge().

STL Arithmetic Objects

template <class T> struct plus<T> adds two operands of type T

template <class T> struct minus<T> subtracts two operands of type T

template <class T> struct times<T> multiplies two operands of type T

template <class T> struct divides<T> divides two operands of type T

template <class T> struct modulus<T> modulus for two operands of type T

template <class T> struct negate<T>
unary minus for one argument of type
T

STL Comparison Objects

template <class T>

struct equal_to<T>
equality of two operands of type T

template <class T>

struct not_equal_to<T>
inequality of two operands of type T

template <class T>

struct greater<T>

comparison by the greater (>) of two
operands of type T

template <class T>

struct less<T>

comparison by the less (<) of two oper-
ands of type T

template <class T>

struct greater_equal<T>

comparison by the greater or equal (>=)
of two operands of type T

template <class T>

struct less_equal<T>

comparison by the lesser or equal (<=) of
two operands of type T

62 9 ¨ STL: Function Objects
9.0.1 Function Adaptors

Function adaptors allow for the creation of function objects using adaption.

STL Function Adaptors

¤ Negators for negating predicate objects

¤ Binders for binding a function argument

¤ Adaptors for pointer to a function

In the following example we use a binder function bind2nd to transform an initial
sequence of values to these values doubled.

Function Adaptor Program

In file stl_adap.cpp

//Use of the function adaptor bind2nd
#include <iostream>
#include <algorithm>
#include <functional>
#include <string>
using namespace std;

STL Logical Objects

template <class T> struct

logical_and<T>

performs logical and (&&) on two oper-
ands of type T

template <class T>

struct logical_or<T>

performs logical or (||) on two operands
of type T

template <class T>

struct logical_not<T>

performs logical negation (!) on a single
argument of type T

9 ¨ STL: Function Objects 63
template <class ForwIter>
void print(ForwIter first, ForwIter last, const char* title)
{

cout << title << endl;
while (first != last)
cout << *first++ << '\t';

cout << endl;
}

int main()
{

int data[3] = { 9, 10, 11 };

print(data, data + 3, "Original values");
transform(data, data + 3, data, bind2nd(times<int>(), 2));
print(data, data + 3, "New values");

}

We will use a table to briefly list algorithms and their purpose as found in this
library.

STL Function Adaptors

template<class Pred>

unary_negate<Pred>

not1(const Pred& p)

returns !p where p is a unary predicate

template<class Pred>

binary_negate<Pred>

not2(const Pred& p)

returns !p where p is a binary predicate

template<class Op, class T>

binder1st<Op>bind1st

(const Op& op,const T& t)

the binary op has a first argument bound
to t; a function object is returned

template<class Op, class T>

binder2nd<Op>bind2nd

(const Op& op,const T& t)

the binary op has a second argument
bound to t; a function object is returned

template<class Arg,class T>

ptr_fun(T (*f)(Arg))

constructs a
pointer_to_unary_function<Arg, T>

template<class Arg1,

class Arg2, class T>

ptr_fun(T (*f)(Arg1, Arg2))

constructs a
pointer_to_binary_function<Arg,T>

64 9 ¨ STL: Function Objects
9.1 Allocators

Allocator objects manage memory for containers. They allow implementations to be
tailored to local system conditions while maintaining a portable interface for the
container class. Allocator definitions include: value_type, reference, size_type,
pointer, and difference_type.

We will use a table to briefly list allocator member functions and their purpose
as found in this library.

Check your vendor’s product for specific system-dependent implementations.

RX Dr. P’s Prescriptions: Function Objects
¤ Understand function composition.

Prescription Discussion

In many cases a lack of understanding of the mathematical concept of function
composition prevents a programmer from fully mastering the notion and tech-
niques of adaptation. Many of these concepts are routinely used in functional lan-
guages or logic-based languages such as Lisp, ML, Scheme and Prolog. It can be
useful to look at examples written in those languages to better understand how
these ideas can apply to STL.

STL Allocator Members

allocator();

~allocator();

constructor and destructor for
allocators

pointer address(reference r); returns the address of r

pointer allocate(size_type n);
allocates memory for n objects
of size_type from free store

void deallocate(pointer p);
deallocates memory associated
with p

size_type max_size();

returns the largest value for
difference_type; in effect, the
largest number of element allo-
catable to a container

10 ¨ String Library 65
Chapter 10

String Library

C++ provides a string type by including the standard header file string. It is the
instantiation of a template class basic_string<T> with char. The string type pro-
vides member functions and operators that perform string manipulations, such as
concatenation, assignment, or replacement. An example of a program using the
string type for simple string manipulation follows.

String Library Program

In file stringt.cpp

//String class to rewrite a sentence
#include <iostream>
#include <string>
using namespace std;

int main()
{

string sentence, words[10];
int pos = 0, old_pos = 0, nwords, i = 0;

sentence = "Eskimos have 23 ways to ";
sentence += "describe snow";

66 10 ¨ String Library
while (pos < sentence.size()) {
pos = sentence.find(' ', old_pos);
words[i++].assign(sentence, old_pos, pos - old_pos);
cout << words[i - 1] << endl; //print words
old_pos = pos + 1;

}
nwords = i;
sentence = "C++ programmers ";
for (i = 1; i < nwords -1; ++i)
sentence += words[i] + ' ';
sentence += "windows";
cout << sentence << endl;

}

The string type is used to capture each word from an initial sentence where the
words are separated by the space character. The position of the space characters is
computed by the find() member function. Then the assign() member function is
used to select a substring from sentence. Finally, a new sentence is constructed
using the overloaded assignment, operator+=(), and operator+() functions to
perform assignments and concatenations.

We will describe the representation for a string of characters. It is also usual to
have the instantiation basic_string<wchar_t> for a wide string type wstring.
Other instantiations are possible as well.

This implementation provides an explicit variable to track the string length, thus
string length can be looked up in constant time, which is efficient for many string
computations.

 String Private Data Members

char* ptr for pointing at the initial character

size_t len for the length of the string

size_t res

for the currently allocated size, or for
an unallocated string its maximum
size

10.1 ¨ Constructors 67
10.1 Constructors

Strings have six public constructors, which makes it easy to declare and initialize
strings from a wide range of parameters.

These constructors make it quite easy to use the string type initialized from char*
pointers, which was the traditional C method for working with strings. Also, many
computations are readily handled as a vector of characters. This is also facilitated
by the string interface.

String Constructor Members

string() default, creates an empty string.

string(const char* p)
conversion constructor from a
pointer to char

string(InputIterator b,

InputIterator e)

constructor from the InputItera-
tor range from b to e

string(const string& str,

size_t pos = 0, size_t n = npos)

copy constructor; npos is usually
-1 and indicates no memory was
allocated

string(const char* p, size_t n)
copy n characters where p is the
base address

string(size_t n, char c1) construct a string of n cs

68 10 ¨ String Library
10.2 Member Functions

Strings have some members that overload operators, as briefly described in the next
table.

There is an extensive set of public member functions that let you manipulate
strings. In many cases these are overloaded to work with string, char*, and char.
We will start by describing append().

¤ string& append(const string& s, size_t pos = 0, size_t n=npos);

Appends n characters starting at pos from s to the implicit string object.

//example s1 "I am " s2 "7 years old"
s1.append(s2); // s1 " I am 7 years old"
s2.append(s1,0,4); //s2 "7 years old I am"

¤ string& append(const char* p, size_t n);
string& append(const char* p);
string& append(size_t n, char c);

In each case a string object is constructed using the constructor of the same
signature and appended to the implicit string object.

¤ string& assign(const string& s, size_t pos = 0, size_t n=npos);

Assigns n characters starting at pos from s to the implicit string object.

String Overloaded Operator Members

string& operator=(const string& s) assignment operator

string& operator=(const char* p) assigns a char* to a string

string& operator=(const char c) assigns a char c to a string

string& operator+=(const string&s) appends string s

string& operator+=(const char* p) appends a char* to a string

string& operator+=(const char c) appends a char c to a string

char operator[](size_t pos) const returns the character at pos

char& operator[](size_t pos)
returns the reference to the
character at pos

10.2 ¨ Member Functions 69
//example s1 " I am " s2 "7 years old"
s1.assign(s2); // s1 "7 years old"

The following signatures with the expected semantics are also overloaded:

string& assign(const char* p, size_t n);
string& assign(const char* p);
string& assign(size_t n, char c);
string& assign(InputIterator b, InputIterator e);

¤ string& insert(size_t pos1, const string& str, size_t pos2 = 0,
size_t n = npos);

The insert() function is an overloaded set of definitions that insert a string of
characters at a specified position. It inserts n characters taken from str, start-
ing with pos2, into the implicit string at position pos1.

//example s1 " I am " s2 " 7 years old"
s1.insert(2,s2); // s1"I 7 years old am"

The following signatures with the expected semantics are also overloaded:

string& insert(size_t pos,const char* p, size_t n);
string& insert(size_t pos, const char* p);
sstring& insert(size_t pos, size_t n, char c);
iterator insert(iterator p, char c);
iterator insert(iterator p, size_t n, char c);
void insert(iterator p, InputIterator b, InputIterator e);

The inverse function is remove().

¤ string& remove(size_t pos = 0, size_t n = npos);

n characters are removed from the implicit string at position pos.

In the following table, we briefly describe further public string member functions.

70 10 ¨ String Library
You can lexicographically compare two strings using a family of overloaded mem-
ber functions compare().

¤ int compare(const string& str, size_t pos = 0,
size_t n = npos) const;

Compares the implicit string starting at pos for n characters with str. Returns
zero if the strings are equal; otherwise returns a positive or negative integer
value indicating that the implicit string is greater or less than str lexicographi-
cally. The following signatures with the expected semantics are also overloaded:

int compare(const char* p,size_t pos, size_t n) const;
int compare(const char* p, size_t pos = 0) const;

String Members

string& replace(pos1, n1, str,

pos2 = 0, n2 = npos)

replaces at pos1 for n1 characters,
the substring in str at pos2 of n2
characters

string& replace(pos,n,p,n2);

string& replace(pos,n,p);

string& replace(pos,n,c);

replaces n characters at pos, using a
char* p of n2 characters, or a
char* p until null, or a character c

size_t length() const; returns the string length

const char* c_str() const;
converts string to traditional char*
representation

const char* data() const;
returns base address of the string
representation

void resize(n, c);

void resize(n);

resizes the string to length n; the
padding character c is used in the
first function and the eos() charac-
ter is used in the second

void reserve(size_t res_arg);

size_t reserve() const;

allocates memory for string; returns
the size of the allocation

size_t copy(p, n, pos=0) const;

the implicit string starting at pos is
copied into the char* p for n char-
acters

string substr(pos=0, n=npos)const;
a substring of n characters of the
implicit string is returned

10.2 ¨ Member Functions 71
Each signature specifies how the explicit string is constructed and then com-
pared to the implicit string.

The final set of member functions perform a find operation. We will discuss one
group and then summarize in a table the rest of this group of member functions.

¤ size_t find(const string& str, size_t pos=0) const;

The string str is searched for in the implicit string starting at pos. If it is found
the position it is found at is returned; otherwise npos is returned, indicating
failure.

The following signatures with the expected semantics are also overloaded:

size_t find(const char* p, size_t pos, size_t n)const;
size_t find(const char* p, size_t pos= 0) const;
size_t find(char c, size_t pos = 0) const;

Each signature specifies how the explicit string is constructed and then
searched for in the implicit string. Further functions for finding strings and
characters are briefly described in the following table.

String Find Members

size_t rfind(str, pos=npos) const;

size_t rfind(p, pos, n) const;

size_t rfind(p, pos=npos) const;

size_t rfind(c, pos=npos) const;

like find(), but scans the string
backward for a first match

size_t find_first_of

(str, pos = 0) const;

size_t find_first_of

(p, pos, n) const;

size_t find_first_of

(p, pos=0) const;

size_t find_first_of

(c,pos = 0) const;

searches for the first character
of any character in the specified
pattern, either str, char* p, or
char c

72 10 ¨ String Library
size_t find_last_of

(str, pos = npos) const;

size_t find_last_of

(p, pos, n) const;

size_t find_last_of

(p, pos= npos) const;

size_t find_last_of

(c,pos = npos) const;

searches backward for the first
character of any character in the
specified pattern, either str,
char* p, or char c

size_t find_first_not_of

(str, pos = 0) const;

size_t find_first_not_of

(p, pos, n) const;

size_t find_first_not_of

(p, pos=0) const;

size_t find_first_not_of

(c,pos = 0) const;

searches for the first character
that does not match any charac-
ter in the specified pattern,
either str, char* p, or char c

size_t find_last_not_of

(str, pos = npos) const;

size_t find_last_not_of

(p, pos, n) const;

size_t find_last_not_of

(p, pos= npos) const;

size_t find_last_not_of

(c,pos = npos) const;

searches backward for the first
character that does not match
any character in the specified
pattern, either str, char* p, or
char c

String Find Members

10.3 ¨ Global Operators 73
10.3 Global Operators

The string package contains operator overloadings that provide input/output, con-
catenation, and comparison operators. These are intuitively understandable and are
briefly described in the following table.

The comparison operators and the concatenation operator+() are also overloaded
with the following four signatures:

bool operator==(const char* p, const string& s);
bool operator==(char c, const string& s);
bool operator==(const string& s, const char* p);
bool operator==(const string& s, char c);

In effect, a comparison or concatenation of any kind can occur between string and a
second argument that is either a string, a character, or a character pointer.

RX Dr. P’s Prescriptions: String Library
¤ Prefer the C++ standard library replacements to the C library.

¤ type is distinct from both signed char and unsigned char. Functions may
be overloaded based on the distinctions, and pointers to the three types are
not compatible.

String Overloaded Global Operators

ostream& operator<<(ostream& o,

const string& s);
output operator

istream& operator>>(istream& in,

string& s);
input operator

string operator+(const string& s1,

const string& s2);
concatenate s1 and s2

bool operator==(const string& s1,

const string& s2);

true if string s1 and s2
are lexicographically equal

< <= > >= != as expected

74 11 ¨ References
Chapter 11

References

¤ ABC 95
Kelley, A., and Pohl, I., A Book on C, Third Edition. 1995. Reading, MA: Addi-
son-Wesley.

¤ ARM 90
Ellis, M., and Stroustrup, B., The Annotated C++ Reference Manual. 1990.
Reading, MA: Addison-Wesley.

¤ C4C 94
Pohl, I., C++ for C Programmers, Second Edition. 1994. Reading, MA: Addison-
Wesley.

¤ C4P 95
Pohl, I., C++ for Pascal Programmers, Second Edition. 1995. Reading, MA: Add-
ison-Wesley.

¤ DE 94
Stroustrup, B., The Design and Evolution of C++. 1994. Reading, MA:
Addison-Wesley.

¤ DP 95
Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements
of Reusable Object-Oriented Software. 1995. Reading, MA: Addison-Wesley.

¤ EC 92
Meyers, S., Effective C++: 50 Specific Ways to Improve your Programs and
Designs. 1992. Reading, MA: Addison-Wesley.

¤ GRAY 91
Stroustrup, B., The C++ Programming Language, Second Edition. 1991.
Reading, MA: Addison-Wesley.

¤ IOS 93
Teale, S., C++ IO Streams Handbook. 1993. Reading, MA: Addison-Wesley.

¤ K 97
Knuth, Donald E., The Art of Computer Programming: Volume 1 Fundamental
Algorithms: 3rd edition. 1997. Reading, MA: Addison-Wesley

11 ¨ References 75
¤ K 98
Knuth, Donald E., The Art of Computer Programming: Volume 3 Sorting and
Searching: 2nd edition. 1998. Reading, MA: Addison-Wesley

¤ KR 88
Kernighan, B., and Ritchie, D., The C Programming Language, Second Edition.
1988. Englewood Cliffs, NJ: Prentice Hall.

¤ KP 74
Kernighan, B., and Plauger, P., The Elements of Programming Style. 1974. New
York, NY: McGraw-Hill.

¤ LIP 91
Lippman, S., The C++ Primer, Second Edition. 1991. Reading, MA: Addison-
Wesley.

¤ OOAD 94
Booch, G., Object-Oriented Analysis and Design, Second Edition. 1995.
Reading, MA: Addison-Wesley.

¤ OPUS 97
Pohl, I., Object-Oriented Programming Using C++, Second Edition. 1997.
Reading, MA: Addison-Wesley.OPUS 97

¤ P 72
Pohl, I., 1972. "A Sorting Problem and Its Complexity," CACM, v. 15, no. 6,
June 1972, pp. 462-464.

¤ P 97
Pohl, I., C++ Distilled. 1997. Reading, MA: Addison-Wesley.

¤ P 99
Pohl, I., C++ for C Programmers. 1999. Reading, MA: Addison-Wesley.

¤ S 97
Stroustrup, B., The C++ Programming Language, 3rd Edition. 1997. Reading,
MA: Addison-Wesley

¤ STL 96
Musser, D. and Saini, A., STL Tutorial and Reference Guide: C++ Programming
with the Standard Template Library. 1996. Reading, MA: Addison-Wesley.

¤ STLP 96
Glass, G. and Schuchert, B., The STL <Primer>. 1996. Upper Saddle River, NJ:
Prentice Hall.

¤ TG 94
Taligent Inc., Taligent’s Guide to Designing Programs: Well-Mannered Object-
Orietned Design in C++. 1994. Reading, MA: Addison-Wesley.

76 12 ¨ Supplemental Programs
Chapter 12

Supplemental Programs

We will use this section to give added examples of programs that use ideas in this
book. To the extent that this section and the eMatter book prompt further reader
queries material will be added to this and other sections.

12.1 Copy Using Conversion Compatible Types

In this first example, we use template variables. The copy routine will work for
conversion compatible types.

Generic Copy

In file copy2.cpp

/*Filename: copy2.cpp
 Supplement: Generic Programming and STL
 Compiler: Borland C++ Version 5.01
 Copyright By Ira Pohl
*/
#include <iostream>
#include <assert>
//using namespace std;
template<class T1, class T2>
void copy(T1 a[], T2 b[], int n)
{
 for (int i = 0; i < n; ++i)
 a[i] = b[i];
}

12.1 ¨ Copy Using Conversion Compatible Types 77
template<class TYPE>
void print(TYPE a[], int n)
{
 cout << "\nNEW PRINT =";
 for (int i = 0; i < n; ++i)
 cout << a[i] << " ";
}

int main()
{

double f1[50], f2[50];
 char c1[25], c2[50];
 int i1[75], i2[75];
 char* ptr1, *ptr2;

int i;

for (i = 0; i < 50; ++i) {
 f1[i] = 1.1 + i;
 f2[i] = 2.2 * i;
 c2[i] = 'A' + i/5;
 }

for (i = 0; i < 25; ++i)
c1[i] = 'a' + i/8;

for (i = 0; i < 75; ++i) {
 i1[i] = 2 * i;
 i2[i] = i * i;
 }

print(f1, 20); //print initial values
 print(f2, 20);
 print(i1, 20);
 print(i2, 20);
 print(c1, 20);
 print(c2, 20);

78 12 ¨ Supplemental Programs
copy(f1, f2, 50);
 copy(c1, c2, 10);
 copy(i1, i2, 40);
 copy(ptr1, ptr2, 100);
 // copy(i1, f2, 50); //no match on compile
 // copy(ptr1, f2, 50); //no match on compile

print(f1, 20); //print initial values
 print(f2, 20);
 print(i1, 20);
 print(i2, 20);
 print(c1, 20);
 print(c2, 20);
}

12.2 Generic Stack

The next example program implements a simple version of a generic stack. This is a
non-STL implementation showing the use of template to develop a simple container.
The following code uses this type.

Generic Stack Program

In file stack_t1.cpp

/*Filename: stack_t1.cpp
 Supplement: Generic Programming and STL
 Compiler: Borland C++ Version 5.01
 Copyright By Ira Pohl
*/

#include <iostream>
#include <assert>

12.2 ¨ Generic Stack 79
//template stack implementation
template <class TYPE>
class stack {
public:
 explicit stack(int size = 100)
 : max_len(size), top(EMPTY),s(new TYPE[size])
 { assert(s != 0); }
 ~stack() { delete []s; }
 void reset() { top = EMPTY; }
 void push(TYPE c) { s[++top] = c; }
 TYPE pop() { return s[top--]; }
 TYPE top_of()const { return s[top]; }
 bool empty()const { return top == EMPTY;}
 bool full()const { return top == max_len - 1;}
private:

enum { EMPTY = -1 };
TYPE* s;
int max_len;
int top;

};

//Reversing an array of char* represented strings
void reverse(char* str[], int n)
{

stack<char*> stk(n);
int i;

for (i = 0; i < n; ++i)
stk.push(str[i]);

for (i = 0; i < n; ++i)
str[i] = stk.pop();

}

template <class T1>
void print_and_pop(T1& a, char* comment)
{
 cout << “Printing “ << comment << endl;
 while (!a.empty())
 cout << a.pop() << ‘\t’;
 cout << endl;
}

80 12 ¨ Supplemental Programs
//Initializing stack of complex numbers from an array
int main()
{

stack<char> stk_ch; // 1000 char stack
stack<char*> stk_str(200); // 200 char* stack
char* str[3] = {“Reverse”, “these”, “three”};

stk_ch.push(‘A’);
stk_ch.push(‘B’);
print_and_pop(stk_ch, “char”);

 stk_str.push(“ABCD”);
 stk_str.push(“EFGH”);
 print_and_pop(stk_str, “char*”);
 reverse(str, 2);
 cout << “Reversed 2” << endl << str[0] << str[1]

<< str[2] << endl;
}

12.3 Reverse Iterator

The following program uses a reverse iterator. This lets you move backward
through the container.

#include <iostream>
#include <vector>
using namespace std;

//Use of the reverse iterator
template <class ForwIter>
void print(ForwIter first, ForwIter last, const char* title)
{
 cout << title << endl;
 while (first != last)
 cout << *first++ << '\t';
 cout << endl;
}

12.3 ¨ Reverse Iterator 81
int main()
{
 int data[3] = { 9, 10, 11};
 vector<int> d(data, data + 3);
 vector<int>::reverse_iterator p = d.rbegin();

print(d.begin(), d.end(), "Original");
 print(p, d.rend(), "Reverse");
}

82 12 ¨ Supplemental Programs

Index
Symbols
{} braces, 4

A
accumulate, 27, 55, 56
accumulate program, 5
address, 64
adjacent_difference,

57
adjacent_find, 51
algorithm, 26
algorithm library, 46, 50,

52, 57
algorithms, 46
allocate, 64
allocator object, 64
append(), 68
argument

template, 11
array program, 12
assign(), 68, 69
associative container, 27,

31

B
back, 35
back_inserter, 44
begin, 23, 27, 29
bidirectional iterator, 38–

39
binary_search(), 48
bind1st, 63
bind2nd, 63
Booch, G., 75
braces {}, 4

C
c_str(), 70
class, 12
compare object, 46

compare(), 70
comparison object, 31, 33,

35, 61
comparison operator, 23,

29
container, 5, 26–27

adaptor, 34
class, 39

copy, 51, 52
copy program, 76
copy(), 70, 76
copy_backward, 53
count, 33, 51
count_if, 51
cstddef library, 40

D
data(), 70
deallocate, 64
declaration

template, 11
deque, 27–28, 30, 34–35
deque library, 30

E
Ellis, M., 74
empty, 23, 29, 35
end, 23, 27, 29
equal, 51
equal_range, 33, 48
equality operator, 23, 29
erase, 31, 33

F
fill, 54
find, 33, 49, 50
find(), 66, 71
find_first_not_of(),

72
find_first_of(), 71

find_last_not_of(), 72
find_last_of(), 72
for_each, 50
forward iterator, 38–39
friend, 15
front, 35
front_inserter, 44
function

adaptor, 62
friend, 15
object, 60
overloading, 73
template, 13

function library, 60, 62
function object, 60
functions

accumulate(), 27, 55,
56

address(), 64
adjacent_difference

(), 57
adjacent_find(), 51
allocate(), 64
append(), 68
assign(), 68, 69
back(), 35
back_inserter(), 44
begin(), 23, 27, 29
binary_search(), 48
bind1st(), 63
bind2nd(), 63
c_str(), 70
compare(), 70
copy(), 51, 52, 70, 76
copy_backward(), 53
count(), 33, 51
count_if(), 51
data(), 70
deallocate(), 64
empty(), 23, 29, 35
end(), 23, 27, 29

84 ¨ Index
equal(), 51
equal_range(), 33,

48
erase(), 31, 33
fill(), 54
find(), 33, 49, 50,

66, 71
find_first_not_of()

, 72
find_first_of(), 71
find_last_not_of(),

72
find_last_of(), 72
for_each(), 50
front(), 35
front_inserter(), 44
generate(), 54
generate_n(), 54
includes(), 49
inner_product(), 55,

57
inplace_merge(), 48
insert(), 31, 33, 69
inserter(), 44
iter_swap(), 54
length(), 70
lexicographical_com

pare(), 49
lower_bound(), 33,

48
make_heap(), 48
max(), 49
max_element(), 49
max_size(), 23, 29,

64
maxelement(), 16
merge(), 48
min(), 49
min_element(), 49
mismatch(), 51
next_permutation(),

48, 51
not1(), 63
not2(), 63
nth_element(), 48
operator+(), 66
operator+=(), 66

partial_sort(), 47
partial_sort_copy()

, 47
partial_sum(), 57
partition(), 55
pop(), 35
pop_heap(), 48
prev_permutation(),

48, 51
print(), 26, 43, 63
ptr_fun(), 63
push(), 35
push_heap(), 48
random_shuffle(), 55
rbegin(), 23, 29
remove(), 54
remove_copy(), 54
remove_copy_if(), 54
remove_if(), 54
rend(), 23, 29
replace(), 54, 70
replace_copy(), 54
replace_copy_if(),

54
replace_if(), 54
reserve(), 70
resize(), 70
reverse(), 51, 53
reverse_copy(), 53
rfind(), 71
rotate(), 55
rotate_copy(), 55
search(), 51
set_difference(), 49
set_intersection(),

49
set_symmetric_diffe

rence(), 49
set_union(), 49
size(), 23, 29, 35
sort(), 27, 46, 47, 49
sort_heap(), 48
stable_partition(),

55
stable_sort(), 47
substr(), 70
sum(), 28

swap(), 13, 23, 29, 54
swap_range(), 54
top(), 35
transfer(), 1, 2
transform(), 54
unique(), 53
unique_copy(), 53
upper_bound(), 33,

48

G
Gamma, E, 74
generate, 54
generate_n, 54
generic, 1, 20
Glass, G., 75

H
hello program, 8
Helm, R, 74

I
includes, 49
inner_product, 55, 57
inplace_merge(), 48
input

iterator, 38–39
insert, 31, 33
insert(), 69
inserter, 44
instantiation, 15
Istream_iterator, 40
iter_swap, 54
iterator, 26, 38–39
iterator adaptor, 42
iterator library, 40, 41, 42

J
Johnson, R, 74

K
Kelley, A, 74
Kernighan, B., 4, 75
keywords

class, 12
friend, 15

 ¨ Index 85
signed char, 73
static, 15
template, 11

Knuth, D., 10, 74

L
length(), 70
lexicographical_compa

re, 49
libraries

algorithm, 46, 50, 52,
57

cstddef, 40
deque, 30
function, 60, 62
iterator, 40, 41, 42
list, 26
map, 31
numeric, 26, 55, 57,

60
set, 38
stack, 36
stddef, 40
vector, 30, 36, 40, 43,

52, 57
Lippman, S., 75
list, 27, 30, 34–35
list library, 26
lists

Overloaded Function Se-
lection Algorithm, 14

STL Categories of Algo-
rithms Library, 46

STL Defined Function
Object Classes, 61

STL Function Adaptors,
62

STL Iterator Adaptors,
42

STL Typical Container
Interfaces, 28

lower_bound, 33
lower_bound(), 48

M
make_heap, 48
map, 27, 31, 33

map library, 31
max, 49
max_element, 49
max_size, 23, 29, 64
maxelement(), 16
merge(), 48
Meyers, S., 74
min, 49
min_element, 49
mismatch, 51
multimap, 27, 31, 33
multiset, 27, 31, 33
Musser, D., 75

N
next_permutation, 48,

51
nonmutating algorithm,

49
not1, 63
not2, 63
nth_element(), 48
numeric library, 26, 55,

57, 60
numerical algorithm, 55

O
operator+(), 66
operator+=(), 66
ostream_iterator, 41
output

iterator, 38–39
overloading

function, 73
template function, 16

P
parametric polymorphism,

11
partial_sort(), 47
partial_sort_copy(),

47
partial_sum, 57
partition, 55
Plauger, P., 75
Pohl, I., 74–75
pop, 35

pop_heap(), 48
prescriptions

Algorithms, 10
Basics and the Contain-

er vector, 25
Containers and Itera-

tors, 6
Function Objects, 64
General Rules, 3
Iterators, 44
STL Containers, 36
String Library, 73
Style and Rule, 8
Templates, 19

prev_permutation, 48,
51

print, 63
print(), 26, 43
priority_queue, 34–35
programs

accumulate, 5
array, 12
copy, 76
hello, 8
stack, 11
stl_adap, 62
stl_age, 31, 34
stl_cont, 26
stl_deq, 28
stl_find, 50
stl_fucn, 60
stl_iadp, 43
stl_io, 40
stl_iter, 38
stl_numr, 55
stl_oitr, 41, 42
stl_revr, 52
stl_sort, 46
stl_stak, 36
stl_vect, 30
string, 65
swap, 13
template, 6
transferArray, 1, 2, 3
vector, 16, 21, 22, 24

ptr_fun, 63
push, 35

86 ¨ Index
push_heap(), 48

Q
queue, 34–35

R
random access iterator,

38–39
random_shuffle, 55
ranges, 6
rbegin, 23, 29
references, 74
remove, 54
remove_copy, 54
remove_copy_if, 54
remove_if, 54
rend, 23, 29
replace, 54
replace(), 70
replace_copy, 54
replace_copy_if, 54
replace_if, 54
reserve(), 70
resize(), 70
reverse, 51, 53
reverse_copy, 53
rfind(), 71
Ritchie, D., 4, 75
rotate, 55
rotate_copy, 55

S
Saini, A., 75
Schuchert, B., 75
search, 51
sequence algorithm, 51
sequence container, 27, 30
set, 27, 31, 33
set library, 38
set_difference, 49
set_intersection, 49
set_symmetric_differe

nce, 49
set_union, 49
signed char, 73
size, 23, 29, 35
sort, 27, 49

sort(), 46, 47
sort_heap, 48
sorting algorithm, 46
stable_partition, 55
stable_sort(), 47
stack, 34
stack library, 36
stack program, 11
static, 15
stddef library, 40
STL

reverse_bidirectional_it
erator, 43

reverse_iterator, 44
stl_adap program, 62
stl_age program, 31, 34
stl_cont program, 26
stl_deq program, 28
stl_find program, 50
stl_fucn program, 60
stl_iadp program, 43
stl_io program, 40
stl_iter program, 38
stl_numr program, 55
stl_oitr program, 41, 42
stl_revr program, 52
stl_sort program, 46
stl_stak program, 36
stl_vect program, 30
storage types

static, 15
string, 65

constructor, 67
data member, 66
find member, 71
function member, 70
global operator, 73
member function, 68
overloaded operator, 68

string program, 65
Stroustrup, B., 4, 74–75
style, 3–4
substr(), 70
sum(), 28
swap, 23, 29, 54
swap program, 13
swap(), 13

swap_range, 54

T
tables

Container Operators,
24, 30

STL Adapted
priority_queue Func-
tions, 35

STL Adapted queue
Functions, 35

STL Adpated stack
Functions, 35

STL Allocator Members,
64

STL Arithmetic Objects,
61

STL Associative Con-
structors, 32

STL Associative Defini-
tions, 32

STL Comparison Ob-
jects, 61

STL Container Defini-
tions, 23, 29

STL Container Mem-
bers, 23, 29

STL Function Adaptors,
63

STL Insert and Erase
Member Functions,
33

STL Logical Objects, 62
STL Member Functions,

33
STL Mutating Sequence

Library Functions, 54
STL Non-mutating Se-

quence Library Func-
tions, 51

STL Numerical Library
Functions, 57

STL Sequence Members,
31

STL Sort Related Library
Functions, 48

 ¨ Index 87
String Constructor
Members, 67

String Find Members,
71

String Members, 70
String Overloaded Glo-

bal Operators, 73
String Overloaded Oper-

ator Members, 68
String Private Data

Members, 66
Taligent, 75
Teale, S., 74
template, 7, 19–20

argument, 11
container, 19
declaration, 11
function, 13
specialization, 16

template, 11
template program, 6
top, 35
transfer(), 1, 2
transferArray program, 1,

2, 3
transform, 54
type

safety, 20
string, 65

types
class, 12
signed char, 73
template, 11

U
unique, 53
unique_copy, 53
upper_bound, 33
upper_bound(), 48

V
vector, 27, 30, 34–35
vector library, 30, 36, 40,

43, 52, 57
vector program, 16, 21,

22, 24
Vlissedes, J., 74

	About the Author
	Other Publications by Ira Pohl
	Contents
	1 Generic Programs 1
	2 Iterators and Containers 5
	3 Algorithms 8
	4 Templates 11
	5 STL: Basics and the Container vector 21
	6 STL: Containers 26
	7 STL: Iterators 38
	8 STL: Algorithms 46
	9 STL: Function Objects 60
	10 String Library 65
	11 References 74
	12 Supplemental Programs 76
	Index 83

	Preface
	Hello World Program
	In file hello1.cpp

	Dr. P’s Prescriptions: Style and Rule Tips
	Prescription Discussion
	Acknowledgments
	Dedication
	To Alexander Stepanov and Donald Knuth, who created generic programming and the detailed analysis...

	Chapter 1 �
	Generic Programs
	Array Transfer Function
	In file transferArray.cpp

	Void Array Transfer Function
	In file voidTransferArray.cpp

	Template Array Transfer Function
	In file templateTransferArray.cpp

	Dr. P’s Prescriptions: General Rules

	Prescription Discussion
	In this eMatter book we follow the traditional C and C++ style pioneered by Bell Laboratories pro...

	Chapter 2
	Iterators and Containers
	A container is a data structure that is used to contain a large number of values. The prototypica...

	2.1 A Visitation Example: Accumulate
	A standard and important computation is to sum all the elements of an array.
	Array Accumulate Function
	In file accumulate.cpp

	Template Accumulate Function
	In file templateAccumulate.cpp

	Dr. P’s Prescriptions: Containers and Iterators
	Prescription Discussion

	Chapter 3
	Algorithms
	Dr. P’s Prescriptions: Algorithms

	Prescription Discussion

	Chapter 4
	Templates
	The keyword template is used to implement parameterized types. Rather than repeatedly recoding fo...
	Template Stack Program
	In file stack_p.cpp
	In file array.cpp

	4.1 Template Parameters
	4.2 Function Template
	Until 1995 compilers allowed ordinary functions to be parameterized using a restricted form of te...
	Generic Swap Function
	In file swap.cpp
	Overloaded Function Selection Algorithm

	1. Exact match with trivial conversions allowed on a nontemplate function.
	2. Exact match using a function template.
	3. Ordinary argument resolution on a nontemplate function.

	4.3 Friends
	Template classes can contain friends. A friend function that does not use a template specificatio...

	4.4 Static Members
	Static members are not universal, but are specific to each instantiation:

	4.5 Specialization
	Templates Program
	In file vect_it.cpp

	Dr. P’s Prescriptions: Templates
	Prescription Discussion
	Templates are especially good for code that is repeatedly required with different types. Containe...

	Chapter 5
	STL: Basics and the Container vector
	Vector Program
	In file test_vector.cpp

	Vector2 Program
	In file test_vector2.cpp
	Notice the vector v is not declared with any parameters. It will start as a size 0 vector. When w...

	Vector_Algoprithm Program
	In file test_vector_algoritm.cpp

	Dr. P’s Prescriptions: Basics and the Container vector

	Prescription Discussion
	Vectors are better in almost all regards to arrays. The possible small efficiency or resource los...

	Chapter 6
	STL: Containers
	STL List Container
	In file stl_cont.cpp

	6.1 Containers
	STL Typical Container Interfaces
	Deque Traversal Function
	In file stl_deq.cpp

	6.1.1 Sequence Containers
	The sequence containers are vector, list, and deque. They have a sequence of accessible elements....
	Sequence Container Program
	In file stl_vect.cpp

	6.1.2 Associative Containers
	Associative Container Program
	In file stl_age.cpp

	Associative Container Program
	In file stl_multiset.cpp

	6.1.3 Container Adaptors
	Container adaptor classes are container classes that modify existing containers to produce differ...
	Container Adaptor Program
	In file stl_stak.cpp

	Dr. P’s Prescriptions: STL Containers

	Prescription Discussion

	Chapter 7
	STL: Iterators
	Container Iterator Program
	In file stl_iter.cpp

	7.0.1 Iterator Categories
	Input iterators support equality operations, dereferencing, and autoincrement. An iterator that s...

	7.0.2 Istream_iterator
	Iterators for Streams Program
	In file stl_io.cpp

	7.0.3 Ostream_iterator
	An ostream_iterator is derived from an output_iterator to work specifically with writing to streams.
	ostream_iterator Program
	In file stl_oitr.cpp

	istream_iterator Program
	In file stl_ioitr.cpp

	7.0.4 Iterator Adaptors
	STL Iterator Adaptors
	Iterator Adaptor Program
	In file stl_iadp.cpp
	template<class BidiIter, ��class T, class Ref = T&, ��class Distance = ptrdiff_t> class reverse_b...
	template<class RandAccIter, ��class T, class Ref = T&, ��class Distance = ptrdiff_t> class revers...
	template <class Can> ��class insert_iterator; template <class Can, class Iter> insert_iterator<Ca...
	template <class Can> ��class front_insert_iterator; template <class Can> front_insert_iterator<Ca...
	template <class Can> ��class back_insert_iterator; template <class Can> back_insert_iterator<Can>...

	Dr. P’s Prescriptions: STL: Iterators

	Prescription Discussion

	Chapter 8
	STL: Algorithms
	The STL algorithms library contains the following four categories.
	STL Categories of Algorithms Library

	8.0.1 Sorting algorithms
	Sorting Algorithm Program
	In file stl_sort.cpp
	template<class RandAcc> void sort(RandAcc b, RandAcc e);
	template<class RandAcc> void stable_sort(RandAcc b, RandAcc e);
	template<class RandAcc> void partial_sort(RandAcc b, RandAcc m, RandAcc e);
	template<class InputIter, class RandAcc> void partial_sort_copy(InputIter b, InputIter e, �������...
	template<class RandAcc> void nth_element(RandAcc b, RandAcc nth, RandAcc e);
	template<class InputIter1, class InputIter2, class OutputIter> OutputIter merge(InputIter1 b1, In...
	template<class BidiIter> void inplace_merge(BidiIter b, BidiIter m, BidiIter e);
	template<class RandAcc, class Compare> void sort(RandAcc b, RandAcc e, Compare comp);

	8.0.2 Nonmutating Sequence Algorithms
	Nonmutating algorithms do not modify the contents of the containers they work on. A typical opera...
	Nonmutating Sequence Program
	In file stl_find.cpp
	template<class InputIter, class T> InputIter find(InputIter b, InputIter e, const T& t));
	template<class InputIter, class Predicate> InputIter find(InputIter b, InputIter e,�Predicate p));
	template<class InputIter, class Function> void for_each(InputIter b, InputIter e, Function f));

	8.0.3 Mutating Sequence Algorithms
	Mutating algorithms can modify the contents of the containers they work on. A typical operation i...
	Mutating Sequence Algorithm Program
	In file stl_revr.cpp
	template<class InputIter, class OutputIter> OutputIter copy(InputIter b1, InputIter e1,�OutputIte...
	template<class BidiIter1, class BidiIter2> BidiIter2 copy_backward(BidiIter1 b1, BidiIter1 e1, ��...
	template<class BidiIter> void reverse(BidiIter b,�BidiIter e);
	template<class BidiIter, class OutputIter> OutputIter reverse_copy(BidiIter b1, BidiIter e1, ����...
	template<class ForwIter> ForwardIter unique(ForwIter b, ForwIter e);
	template<class ForwIter, class BinaryPred> ForwardIter unique(ForwIter b, ForwIter e, BinaryPred ...
	template<class InputIter, class OutputIter> OutputIter unique_copy(InputIter b1, InputIter e1, ��...

	8.0.4 Numerical Algorithms
	Numerical algorithms include sums, inner product, and adjacent difference.
	Numerical Algorithm Program
	In file stl_numr.cpp
	template<class InputIter, class T> T accumulate(InputIter b, InputIter e, T t);
	template<class InputIter, class T, class BinOp> T accumulate(InputIter b, InputIter e,�T t, BinOp...
	STL provides the basic computations for many more sophisticated algorithms. By using STL, program...

	Numerical Integration Program
	In file stl_int1.cpp

	Integration Function
	In file stl_int2.cpp

	Dr. P’s Prescriptions: STL: Algorithms

	Prescription Discussion

	Chapter 9
	STL: Function Objects
	Function Object Program
	In file stl_fucn.cpp
	STL Defined Function Object Classes

	9.0.1 Function Adaptors
	Function adaptors allow for the creation of function objects using adaption.
	STL Function Adaptors

	Function Adaptor Program
	In file stl_adap.cpp

	9.1 Allocators
	Allocator objects manage memory for containers. They allow implementations to be tailored to loca...
	Dr. P’s Prescriptions: Function Objects
	Prescription Discussion

	Chapter 10
	String Library
	C++ provides a string type by including the standard header file string. It is the instantiation ...
	String Library Program
	In file stringt.cpp

	10.1 Constructors
	Strings have six public constructors, which makes it easy to declare and initialize strings from ...

	10.2 Member Functions
	Strings have some members that overload operators, as briefly described in the next table.
	string& append(const string& s, size_t pos = 0, size_t n=npos);
	string& append(const char* p, size_t n); string& append(const char* p); string& append(size_t n, ...
	string& assign(const string& s, size_t pos = 0, size_t n=npos);
	string& insert(size_t pos1, const string& str, size_t pos2 = 0, ���������������size_t n = npos);
	string& remove(size_t pos = 0, size_t n = npos);
	int compare(const string& str, size_t pos = 0, ������������size_t n = npos) const;
	size_t find(const string& str, size_t pos=0) const;

	10.3 Global Operators
	The string package contains operator overloadings that provide input/output, concatenation, and c...
	Dr. P’s Prescriptions: String Library

	Chapter 11
	References

	Chapter 12
	Supplemental Programs
	12.1 Copy Using Conversion Compatible Types
	Generic Copy
	In file copy2.cpp

	12.2 Generic Stack
	Generic Stack Program
	In file stack_t1.cpp

	12.3 Reverse Iterator
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Index

