
M A N N I N G

Dave Crane
Eric Pascarello

with Darren James

Ajax in Action

Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax in Action
DAVE CRANE

ERIC PASCARELLO
WITH DARREN JAMES

M A N N I N G
Greenwich

(74° w. long.)
Licensed to jonathan zheng <yiyisjun@gmail.com>

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2006 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-61-3

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 09 08 07 06 05
Licensed to jonathan zheng <yiyisjun@gmail.com>

 To Hermes, Apollo, Athena, and my cats, for their wisdom
 —D.C.

 To my wife; I’m surprised you said yes
 —E.P.

 To my red-headed wife
 —D.J.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

brief contents

PART 1 RETHINKING THE WEB APPLICATION 1

1 ■ A new design for the Web 3

2 ■ First steps with Ajax 31

3 ■ Introducing order to Ajax 69

PART 2 CORE TECHNIQUES ... 117

4 ■ The page as an application 119

5 ■ The role of the server 159

PART 3 PROFESSIONAL AJAX ... 209

6 ■ The user experience 211

7 ■ Security and Ajax 246

8 ■ Performance 279
vii

Licensed to jonathan zheng <yiyisjun@gmail.com>

viii BRIEF CONTENTS
PART 4 AJAX BY EXAMPLE .. 325

9 ■ Dynamic double combo 327

10 ■ Type-ahead suggest 361

11 ■ The enhanced Ajax web portal 423

12 ■ Live search using XSLT 466

13 ■ Building stand-alone applications with Ajax 503
Licensed to jonathan zheng <yiyisjun@gmail.com>

contents

preface xix
acknowledgments xxi
about this book xxiv

PART 1 RETHINKING THE WEB APPLICATION 1

1 A new design for the Web 3
1.1 Why Ajax rich clients? 5

Comparing the user experiences 5 ■ Network latency 9
Asynchronous interactions 12 ■ Sovereign and transient usage
patterns 15 ■ Unlearning the Web 16

1.2 The four defining principles of Ajax 17
The browser hosts an application, not content 17 ■ The server
delivers data, not content 19 ■ User interaction with the application
can be fluid and continuous 21 ■ This is real coding and requires
discipline 23

1.3 Ajax rich clients in the real world 24
Surveying the field 24 ■ Google Maps 25

1.4 Alternatives to Ajax 28
Macromedia Flash-based solutions 28 ■ Java Web Start and related
technologies 28
ix

Licensed to jonathan zheng <yiyisjun@gmail.com>

x CONTENTS
1.5 Summary 29
1.6 Resources 30

2 First steps with Ajax 31
2.1 The key elements of Ajax 32
2.2 Orchestrating the user experience with JavaScript 34
2.3 Defining look and feel using CSS 36

CSS selectors 37 ■ CSS style properties 39
A simple CSS example 40

2.4 Organizing the view using the DOM 45
Working with the DOM using JavaScript 47 ■ Finding a DOM
node 49 ■ Creating a DOM node 50 ■ Adding styles to your
document 51 ■ A shortcut: Using the innerHTML property 53

2.5 Loading data asynchronously using
XML technologies 53
IFrames 54 ■ XmlDocument and XMLHttpRequest objects 56
Sending a request to the server 58 ■ Using callback functions to
monitor the request 61 ■ The full lifecycle 62

2.6 What sets Ajax apart 65
2.7 Summary 67
2.8 Resources 68

3 Introducing order to Ajax 69
3.1 Order out of chaos 71

Patterns: Creating a common vocabulary 71
Refactoring and Ajax 72 ■ Keeping a sense of proportion 73
Refactoring in action 73

3.2 Some small refactoring case studies 77
Cross-browser inconsistencies: Façade and Adapter patterns 77
Managing event handlers: Observer pattern 80
Reusing user action handlers: Command pattern 83
Keeping only one reference to a resource: Singleton pattern 87

3.3 Model-View-Controller 91
3.4 Web server MVC 93

The Ajax web server tier without patterns 93 ■ Refactoring the
domain model 96 ■ Separating content from presentation 100
Licensed to jonathan zheng <yiyisjun@gmail.com>

CONTENTS xi
3.5 Third-party libraries and frameworks 103
Cross-browser libraries 104 ■ Widgets and widget suites 108
Application frameworks 111

3.6 Summary 114
3.7 Resources 115

PART 2 CORE TECHNIQUES.. 117

4 The page as an application 119
4.1 A different kind of MVC 120

Repeating the pattern at different scales 120
Applying MVC in the browser 122

4.2 The View in an Ajax application 124
Keeping the logic out of the View 124
Keeping the View out of the logic 130

4.3 The Controller in an Ajax application 134
Classic JavaScript event handlers 134
The W3C event model 137
Implementing a flexible event model in JavaScript 138

4.4 Models in an Ajax application 143
Using JavaScript to model the business domain 144
Interacting with the server 145

4.5 Generating the View from the Model 147
Reflecting on a JavaScript object 147 ■ Dealing with arrays and
objects 151 ■ Adding a Controller 154

4.6 Summary 157
4.7 Resources 158

5 The role of the server 159
5.1 Working with the server side 160
5.2 Coding the server side 161

Popular implementation languages 161
N-tier architectures 162
Maintaining client-side and server-side domain models 163
Licensed to jonathan zheng <yiyisjun@gmail.com>

xii CONTENTS
5.3 The big picture: common server-side designs 164
Naive web server coding without a framework 164
Working with Model2 workflow frameworks 166
Working with component-based frameworks 167
Working with service-oriented architectures 170

5.4 The details: exchanging data 174
Client-only interactions 175
Introducing the planet browser example 175
Thinking like a web page: content-centric interactions 178
Thinking like a plug-in: script-centric interactions 182
Thinking like an application: data-centric interactions 188

5.5 Writing to the server 193
Using HTML forms 193 ■ Using the XMLHttpRequest
object 195 ■ Managing user updates effectively 197

5.6 Summary 206
5.7 Resources 207

PART 3 PROFESSIONAL AJAX.. 209

6 The user experience 211
6.1 Getting it right: building a quality application 212

Responsiveness 213 ■ Robustness 213 ■ Consistency 214
Simplicity 215 ■ Making it work 215

6.2 Keeping the user informed 216
Handling responses to our own requests 216
Handling updates from other users 218

6.3 Designing a notification system for Ajax 222
Modeling notifications 223
Defining user interface requirements 225

6.4 Implementing a notification framework 226
Rendering status bar icons 226 ■ Rendering detailed
notifications 229 ■ Putting the pieces together 230

6.5 Using the framework with network requests 237
6.6 Indicating freshness of data 241

Defining a simple highlighting style 241
Highlighting with the Scriptaculous Effects library 243
Licensed to jonathan zheng <yiyisjun@gmail.com>

CONTENTS xiii
6.7 Summary 244
6.8 Resources 245

7 Security and Ajax 246
7.1 JavaScript and browser security 247

Introducing the “server of origin” policy 248 ■ Considerations for
Ajax 248 ■ Problems with subdomains 249
Cross-browser security 250

7.2 Communicating with remote services 251
Proxying remote services 252
Working with web services 253

7.3 Protecting confidential data 263
The man in the middle 263 ■ Using secure HTTP 264
Encrypting data over plain HTTP using JavaScript 266

7.4 Policing access to Ajax data streams 268
Designing a secure web tier 268
Restricting access to web data 272

7.5 Summary 277
7.6 Resources 278

8 Performance 279
8.1 What is performance? 280
8.2 JavaScript execution speed 281

Timing your application the hard way 282
Using the Venkman profiler 288
Optimizing execution speed for Ajax 289

8.3 JavaScript memory footprint 302
Avoiding memory leaks 302
Special considerations for Ajax 306

8.4 Designing for performance 311
Measuring memory footprint 312 ■ A simple example 316
Results: how to reduce memory footprint 150-fold 321

8.5 Summary 323
8.6 Resources 324
Licensed to jonathan zheng <yiyisjun@gmail.com>

xiv CONTENTS
PART 4 AJAX BY EXAMPLE ... 325

9 Dynamic double combo 327
9.1 A double-combo script 328

Limitations of a client-side solution 328
Limitations of a server-side solution 329
Ajax-based solution 330

9.2 The client-side architecture 331
Designing the form 331
Designing the client/server interactions 333

9.3 Implementing the server: VB .NET 334
Defining the XML response format 335
Writing the server-side code 336

9.4 Presenting the results 339
Navigating the XML document 339
Applying Cascading Style Sheets 342

9.5 Advanced issues 343
Allowing multiple-select queries 343
Moving from a double combo to a triple combo 345

9.6 Refactoring 345
New and improved net.ContentLoader 346
Creating a double-combo component 352

9.7 Summary 359

10 Type-ahead suggest 361
10.1 Examining type-ahead frameworks 362

Type-ahead suggest frameworks 362 ■ Google Suggest 364
The Ajax in Action type-ahead 365

10.2 The server-side framework: C# 366
The server and the database 366
Testing the server-side code 368

10.3 The client-side framework 369
The HTML 369 ■ The JavaScript 370
Accessing the server 380
Licensed to jonathan zheng <yiyisjun@gmail.com>

CONTENTS xv
10.4 Adding functionality: multiple elements
with different queries 392

10.5 Refactoring 392
Day 1: developing the TextSuggest component game plan 394
Day 2: TextSuggest creation—clean and configurable 397
Day 3: Ajax enabled 401 ■ Day 4: handling events 406
Day 5: the suggestions pop-up UI 413
Refactor debriefing 421

10.6 Summary 422

11 The enhanced Ajax web portal 423
11.1 The evolving portal 424

The classic portal 424 ■ The rich user interface portal 426

11.2 The Ajax portal architecture using Java 427
11.3 The Ajax login 429

The user table 429 ■ The server-side login code: Java 430
The client-side login framework 433

11.4 Implementing DHTML windows 439
The portal windows database 439
The portal window’s server-side code 441
Adding the JS external library 445

11.5 Adding Ajax autosave functionality 448
Adapting the library 448
Autosaving the information to the database 450

11.6 Refactoring 453
Defining the constructor 455 ■ Adapting the AjaxWindows.js
library 456 ■ Specifying the portal commands 458
Performing the Ajax processing 462
Refactoring debrief 464

11.7 Summary 464

12 Live search using XSLT 466
12.1 Understanding the search techniques 467

Looking at the classic search 467 ■ The flaws of the frame and pop-
up methods 469 ■ Examining a live search with Ajax and
XSLT 470 ■ Sending the results back to the client 472
Licensed to jonathan zheng <yiyisjun@gmail.com>

xvi CONTENTS
12.2 The client-side code 473
Setting up the client 473
Initiating the process 474

12.3 The server-side code: PHP 476
Building the XML document 476
Building the XSLT document 479

12.4 Combining the XSLT and XML documents 481
Working with Microsoft Internet Explorer 483
Working with Mozilla 484

12.5 Completing the search 485
Applying a Cascading Style Sheet 485 ■ Improving the
search 487 ■ Deciding to use XSLT 489
Overcoming the Ajax bookmark pitfall 490

12.6 Refactoring 491
An XSLTHelper 492 ■ A live search component 496
Refactoring debriefing 501

12.7 Summary 501

13 Building stand-alone applications with Ajax 503
13.1 Reading information from the outside world 504

Discovering XML feeds 505
Examining the RSS structure 506

13.2 Creating the rich user interface 509
The process 510 ■ The table-less HTML framework 511
Compliant CSS formatting 513

13.3 Loading the RSS feeds 518
Global scope 518 ■ Ajax preloading functionality 520

13.4 Adding a rich transition effect 524
Cross-browser opacity rules 524 ■ Implementing the fading
transition 525 ■ Integrating JavaScript timers 527

13.5 Additional functionality 528
Inserting additional feeds 529
Integrating the skipping and pausing functionality 531
Licensed to jonathan zheng <yiyisjun@gmail.com>

CONTENTS xvii
13.6 Avoiding the project’s restrictions 534
Overcoming Mozilla’s security restriction 534
Changing the application scope 537

13.7 Refactoring 537
RSS reader Model 537 ■ RSS reader view 541
RSS reader Controller 545 ■ Refactoring debrief 558

13.8 Summary 559

appendix A The Ajax craftsperson’s toolkit 561
A.1 Working smarter with the right toolset 562
A.2 Editors and IDEs 565
A.3 Debuggers 571
A.4 DOM inspectors 582
A.5 Installing Firefox extensions 585
A.6 Resources 588

appendix B JavaScript for object-oriented programmers 589
B.1 JavaScript is not Java 590
B.2 Objects in JavaScript 592
B.3 Methods and functions 606
B.4 Conclusions 617
B.5 Resources 617

appendix C Ajax frameworks and libraries 619

 index 635
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

preface
Sometimes your destiny will follow you around for years before you notice it.
Amidst the medley of fascinating new technologies that I was playing—I mean
working—with in the early 1990s was a stunted little scripting language called
JavaScript. I soon realized that, despite its name, it didn’t really have anything
to do with my beloved Java, but it persistently dogged my every step.

 By the late 90s, I had decided to cut my hair and get a proper job, and
found myself working with the early adopters of digital set-top box technol-
ogy. The user interface for this substantial piece of software was written
entirely in JavaScript and I found myself the technical lead of a small team of
developers writing window-management code, schedulers, and all kinds of
clever stuff in this language. “How curious,” I thought. “It’ll never catch on.”

 With time I moved on to more demanding work, developing the enter-
prise messaging backbone and various user interface components for an
“intelligent,” talking “House of the Future.” I was hired for my Java skills, but
I was soon writing fancy JavaScript user interfaces again. It was astonishing to
find that some people were now taking this scripting language seriously
enough to write frameworks for it. I quickly picked up the early versions of
Mike Foster’s x library (which you’ll find put into occasional action in this
book). One afternoon, while working on an email and text message bulletin
board, I had the weird, exciting idea of checking for new messages in a hid-
den frame and adding them to the user interface without refreshing the screen.
xix

Licensed to jonathan zheng <yiyisjun@gmail.com>

xx PREFACE
After a few hours of frenzied hacking, I had it working, and I’d even figured out
how to render the new messages in color to make them noticeable to the user.
“What a laugh,” I thought, and turned back to some serious code. Meantime,
unbeknownst to me, Eric Costello, Erik Hatcher, Brent Ashley, and others were
thinking along similar lines, and Microsoft was cooking up the XMLHttpRequest
for its Outlook Web Access.

 Destiny was sniffing at my heels. My next job landed me in a heavy-duty
development role, building software for big Tier 1 banks. We use a mixture of
Java and JavaScript and employ tricks with hidden frames and other things. My
team currently looks after more than 1.5 million bytes of such code—that’s static
JavaScript, in addition to code we generate from JSPs. No, I’m not counting any
image resources in there either. We use it to develop applications for hundreds of
operators managing millions of dollars’ worth of accounts. Your bank account
may well be managed by this software.

 Somewhere along the way, JavaScript had grown up without my quite realiz-
ing it. In February 2005, Jesse James Garrett provided the missing piece of the
jigsaw puzzle. He gave a short, snappy name to the cross-browser-asynchronous-
rich-client-dynamic-HTML-client-server technology that had been sneaking up
on us all for the last few years: Ajax.

 And the rest, as they say, is history. Ajax is generating a lot of interest now,
and a lot of good code is getting written by the people behind Prototype, Rico,
Dojo, qooxdoo, Sarissa, and numerous other frameworks, too plentiful to count.
Actually, we do try to count them, in appendix C. We think we’ve rounded up
most of the suspects. And I’ve never had so much fun playing—I mean working—
with computers.

 We have not arrived yet. The field is still evolving. I was amazed to see just
how much when I did the final edits in September on the first chapter that I
wrote back in May! There’s still a lot of thinking to be done on this subject, and
the next year or two will be exciting. I’ve been very lucky to have Eric and Darren
on the book piece of the journey with me so far.

 We hope you will join us—and enjoy the ride.

DAVE CRANE
Licensed to jonathan zheng <yiyisjun@gmail.com>

acknowledgments
Although there are only three names on the cover of this book, a legion of tal-
ented, hardworking, and just plain crazy people supported us behind the
scenes. We’d like to thank everyone at Manning, especially our publisher, Mar-
jan Bace, and our development editors, Jackie Carter and Doug Bennett, for
their continuous support and help on so many aspects of the manuscript. To
the others at Manning who worked with us in different stages of the project—
Blaise Bace, review editor Karen Tegtmayer, webmaster Iain Shigeoka, publi-
cist Helen Trimes, and not least of all project editor Mary Piergies—thanks for
helping to steer us along so smoothly. Our copyeditors, Linda Recktenwald
and Liz Welch, and proofreaders Barbara Mirecki and Tiffany Taylor, proved
to be indispensable, and design editor Dottie Marsico and typesetter Denis
Dalinnik did a marvelous job of converting our scribbles into pictures and our
text into a real book!

 Many talented coders gave their time unflinchingly to our cause, as techni-
cal proofreaders and reviewers. Leading the charge were Phil McCarthy (who
not only corrected our code, but also our grammar and style, even setting us
straight on the rules of Battleship) and Bear Bibeault, who bravely advised on
server architecture, client-side code, and Mac compatibility, in the face of Hur-
ricane Rita. Joe Mayo, Valentin Crettaz, James Tikalsky, Shane Witbeck, Frank
Zammetti, Joel Webber, Jonathan Esterhazy, Garret Wilson, Joe Walker, and
xxi

Licensed to jonathan zheng <yiyisjun@gmail.com>

xxii ACKNOWLEDGMENTS
J.B. Rainsberger provided first-rate technical support at very short notice. We are
truly grateful to them.

 We also thank the many reviewers of the manuscript, in its various stages, for
their thoughtful feedback: Ernest Friedman-Hill, Craig Walls, Patrick Peak, J. B.
Rainsberger, Jack Herrington, Erik Hatcher, Oliver Zeigermann, Suresh Kumar,
Mark Chaimungkalanont, Doug Warren, Deiveehan Nallazhagappan, Norman
Richards, Mark Eagle, Christophe Avare, Bill Lynch, Wayland Chan, Shane Wit-
beck, Mike Stenhouse, Frank Zammetti, Brendan Murray, Ryan Cox, Valentin
Crettaz, Thomas Baekdal, Peter-Paul Koch, Venkatt Guhesan, Frank Jania, Mike
Foster, Bear Bibeault, Peter George, Joel Webber, Nikhil Narayana, Harshad
Oak, and Bas Vodde.

 Thanks to Paul Hobbs, Bill Gathen, and Charlie Arehart for spotting typos in
the code in the Manning Early Access Program chapters (MEAP). Finally, special
thanks are due to Brian J. Sletten, Ben Galbraith, and Kito Mann for helping to
get the ball rolling in the first place. Our thanks also go to the authors of the
many Ajax frameworks that we have used in the book, and to Jesse James Garrett
for providing us with a short, snappy acronym to grace the cover of our book.
(We feel that “Those Rich Client JavaScript Network Things in Action” wouldn’t
have been quite as effective.)

 We’re standing on the shoulders of a whole group of giants here. The view is
fantastic.

DAVE CRANE

I’d like to thank Chia, Ben, and Sophie for their support, wisdom, and enthusi-
asm, and for putting up with me through all the late nights and early mornings.
I’m finished now and I promise to behave. Thanks too to my parents for listen-
ing to the book-writing saga unfold and for instilling in me the strength and
foolishness to undertake such a project in the first place.

 Eric and Darren have been excellent co-authors to work with, and I’d like to
extend my thanks to them too, for their invaluable contributions to the book.

 My thanks to my colleagues at Smartstream Technologies for exploring the
world of Ajax with me before it was christened—Tony Coombes, John Kellett, Phil
McCarthy, Anthony Warner, Jon Green, Rob Golder, David Higgins, Owen Rees-
Hayward, Greg Nwosu, Hristo Gramatikov, and Stuart Martin, and to my manag-
ers Colin Reid and Andrew Elmore. Thanks too to our colleagues overseas: Bhu-
pendra, Pooja, Rahul, Dhiraj, Josef, Vjeko and Ted, and to the many other
talented people with whom I’ve had the pleasure to work over the years. Special
thanks are due to Rodrigo Barnes for introducing me to this new programming
Licensed to jonathan zheng <yiyisjun@gmail.com>

ACKNOWLEDGMENTS xxiii
language called “Java” ten years ago, and to my brother Mike for figuring out
how to drive our BBC microcomputer.

ERIC PASCARELLO

I would like to thank Shona, my wife, for putting up with the late nights and for
planning our wedding without my help, while I wrote this book. Thanks to my
parents for letting me become a computer nerd. Thanks to my co-workers Fred
Grau, Paul Fuseyamore, Tim Stanton, Tracey Baker, Adrienne Cantler, and Kelly
Singleton for putting up with my early morning grumpiness after the long
nights of writing. Thanks to the people at www.JavaRanch.com for their support
and many great ideas. And I cannot forget to thank the aliens who abducted me
and taught me to program.

DARREN JAMES

I would like to thank my wife, Alana, and my children, Hannah and Paul, for
being my life’s inspiration. Thanks to my parents for encouraging me to do well
in school; to my colleague and friend, Bill Scott, for his ideas and support; to
Richard Cowin and the contributors to Rico; to Butch Clarke for being an
anchor in the storm; and to Gordon, Junior, and Jub-Jub for making me laugh.
Licensed to jonathan zheng <yiyisjun@gmail.com>

about this book
Ajax is a growing new technology at the time of this writing and we’re
delighted to bring you the lowdown on it, in the inimitable style of Manning’s
In Action series. In doing so, though, we faced an interesting problem.
Although Ajax is indisputably hot, it isn’t really new. It isn’t really a technol-
ogy, either.

 Let us explain. Ajax brings together several well-established web technolo-
gies and uses them in new and interesting ways. Learning to use a completely
new technology for the first time is in some ways simpler because you start
with a blank slate. Ajax is different: there is also much to unlearn. Because of
this, our book is organized somewhat differently from most Manning In Action
books. You may notice this when reading and should know that we feel the way
it is organized best suits this subject.

 And, as you will see, although the Ajax technologies themselves are all cli-
ent side, the differences extend all the way down to the server. This book is
mainly about client-side programming, and most of the code examples that
you’ll find in here are JavaScript. The principles of Ajax decouple the client
from the server beautifully, and can be used with any server-side language.
We’ve therefore got a broad audience to address and have opted to present
our server-side code in a mixture of languages: PHP, Java, C#, and Visual
Basic .NET. More importantly, though, we’ve tried to keep the server-side code
relatively simple and implementation-agnostic, so that you can port it to what-
xxiv

Licensed to jonathan zheng <yiyisjun@gmail.com>

ABOUT THIS BOOK xxv
ever environment you choose. Where we do use language-specific features, we
explain them in enough detail for those unfamiliar with that particular environ-
ment to figure out what we’re doing.

Who should read this book?

Ajax is at the crossroads of a number of disciplines; readers will approach it from
a number of directions. On the one hand there are professional enterprise devel-
opers with computer science degrees and several years of hands-on experience
with large software projects, who need to sometimes pop their heads above the
battlements and work with the presentation tier. On the other hand are creative
professionals who have moved from graphic design to web design and “new
media,” and taught themselves how to program using scripting languages such
as PHP, Visual Basic, or JavaScript/ActionScript. In between there are desktop
app developers retraining for the Web and sysadmins called upon to put
together web-based management tools, as well as many others.

 All of these possible readers have a real interest in Ajax. We’ve tried to
address the needs of all of them, at least to some extent, in this book. We provide
pointers to the basic web technologies for the server-side developer used to
treating the web browser as a dumb terminal. We also give a grounding in soft-
ware design and organization for the new media developer who may be more
used to ad hoc coding styles. Wherever you come from, Ajax is a cross-disciplin-
ary technology and will lead you into some unfamiliar areas. We’re going to
stretch you a bit, and ask you to pick up a few new skills along the way. We’ve
done the same in our own use of Ajax, even while writing this book. We have
found it to be a very rewarding and enjoyable experience, with benefits extend-
ing to other aspects of our professional lives.

Roadmap

This book is divided into four parts. Part 1 will tell you what Ajax is, explain why
it is a useful addition to your development toolbox, and introduce the tools that
can make you successful. Part 2 covers the core techniques that make an Ajax
application work, and part 3 builds on these to discuss what is needed to go from
proof of concept to production-ready software. In part 4 we take a direct hands-
on approach, and build five Ajax projects step by step; we then refactor them
into drop-in components that you can use in your own web applications.
Licensed to jonathan zheng <yiyisjun@gmail.com>

xxvi ABOUT THIS BOOK
 As we have said, Ajax is not a technology but a process. We’ve therefore dedi-
cated chapter 1 to reorienting developers familiar with pre-Ajax web develop-
ment. We discuss the fundamental differences between Ajax and the classic web
application, how to think about usability, and other conceptual goodies. If you
want to find out what the buzz around Ajax is, we suggest you start here. If you
just want to eat, drink, and sleep code, then you’d best move on to chapter 2.

 The Ajax technologies are all reasonably well documented in their own right
already. We’ve provided a whistle-stop, example-driven run through these tech-
nologies in chapter 2, but we haven’t aimed at being comprehensive. What we
have done is emphasize where the technology is used differently, or behaves dif-
ferently, as a result of being part of Ajax.

 Chapter 3 introduces the third main theme for this book, managing the Ajax
codebase. Having watched a JavaScript codebase grow to over 1.5 MB of source
code, we can attest to the fact that writing JavaScript for Ajax is a different ball
game. We talk design patterns and refactoring here, not because we think they’re
cool, but because we’ve found them to be invaluable, practical tools in working
with Ajax. And we think you will too as you start to pick up speed.

 In chapters 4 and 5, we turn our sights on the core components of Ajax, and
apply our design pattern knowledge to find the best practices. Chapter 4 looks at
ways of keeping your code clean on the client itself, applying the old web work-
horse, Model-View-Controller, in a new way. Chapter 5 looks at the different ways
of communicating between the client and the server and how various types of
frameworks can be adapted to work with Ajax. By this point, we have covered all
the basic plumbing and you’ll know how Ajax operates end to end.

 Chapters 6 through 8 build on the fundamental knowledge that we’ve
acquired to look at how to add polish to your application and go beyond a proof
of concept to something that’s fun, and safe, to usable in the real world. Chapter
6 addresses the user experience, and takes an in-depth look at ways of keeping
the user informed while asynchronous tasks are executing. There’s a balance to
be struck between keeping out of the user’s way and keeping him in the dark,
and we show you how to find that happy middle ground here.

 Chapter 7 looks at the issue of security in Ajax from a number of angles. Ajax
is a web technology and many of the issues that it faces are no different from any
other web app. We cover the basic ground, concentrating on Ajax-specific issues
here, such as securely importing generated JavaScript from the server, and pro-
tecting your web service entry points from unwanted direct manipulation. Secu-
rity can be a showstopper for serious applications, and we give the basic steps
needed to keep it under control here.
Licensed to jonathan zheng <yiyisjun@gmail.com>

ABOUT THIS BOOK xxvii
 Chapter 8 discusses that other showstopper, performance (or rather, lack of
it!). We show how to monitor the performance of your application and how to
analyze code in order to improve it and keep those improvements consistent
across an application.

 In part 4, which consists of chapters 9 through 13, we switch gears to look at a
number of Ajax projects. In each case, we code the functionality up in a straight-
forward way and then refactor it into something robust that you can drop into
your own projects with no more than a few lines of code. This gives you the bene-
fit of understanding the principles, the benefits of reuse, as well as showing Ajax
refactoring in action.

 In chapter 9, we look at a simple way to give the user a richer experience
by enhancing HTML forms with Ajax: we use data entered in one field to pre-
populate a second drop-down list by making a background request to the
server. We continue the theme of form enhancement in chapter 10 with an
implementation of type-ahead suggest, fetching data from the server in
response to user keystrokes.

 Chapter 11 moves on to the wider possibilities of Ajax user interfaces. We
develop a complete portal application that resembles a workstation desktop
more than a web page, complete with its own draggable, resizable windows. Ajax
processes track window movements in the background, so that the desktop is
always in the same state you left it, even if you log back in on a different machine.

 Chapter 12 develops an Ajax-based search system and demonstrates the
power of client-side XSLT as a way of turning raw XML data into formatted,
styled content.

 In chapter 13, we present an Ajax client without a back-end implementation.
It still talks to server processes, but in this case, does so directly to blog and news
syndication feeds, using the Internet standard RSS protocol.

 Finally, we include three appendices that we hope you’ll find useful. The body
of the book discusses the technology itself. With a new, cross-disciplinary tech-
nology, assembling the tools to use it effectively is more of a challenge than with
a mature technology stack such as J2EE or .NET. The vendors haven’t started
offering Ajax tools yet, but we’re sure that they will! In the meantime, we provide
in appendix A an overview of the tools and tricks that we’ve used to develop our
Ajax projects and to keep our house in order.

 Appendix B is for enterprise programmers who understand software design
principles but aren’t quite sure how to apply them in such a flexible, unstructured,
and well, downright odd language as JavaScript. We walk through what the lan-
guage can do, and point out where the main divergences from Java and C# lie.
Licensed to jonathan zheng <yiyisjun@gmail.com>

xxviii ABOUT THIS BOOK
 If the tool vendors haven’t quite caught up with Ajax yet, neither have the
framework developers. The Ajax framework scene is a hotbed of innovation,
intrigue (and often re-invention) right now. Appendix C rounds up the Ajax
frameworks and toolkits that we know of at the moment, and provides a short
overview and link for each.

Code conventions

All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. We make use of many languages and markups in this
book—JavaScript, HTML, CSS, XML, Java, C#, Visual Basic .NET, and PHP—but
we try to adopt a consistent approach. Method and function names, object prop-
erties, XML elements, and attributes in text are presented using this same font.

 In many cases, the original source code has been reformatted: we’ve added
line breaks and reworked indentation to accommodate the available page space
in the book. In rare cases even this was not enough, and listings include line-con-
tinuation markers. Additionally, many comments have been removed from the
listings. Where appropriate, we’ve also cut implementation details that distract
rather than help tell the story, such as JavaBean setters and getters, import and
include statements, and namespace declarations.

 Code annotations accompany many of the listings, highlighting impor-
tant concepts. In some cases, numbered bullets link to explanations that fol-
low the listing.

Code downloads

Source code for all of the working examples in this book is available for down-
load from http://www.manning.com/crane.

 We realize that not all of you will have a .NET server, J2EE app server, and a
Linux, Apache, MySQL, PHP/Python/Perl (LAMP) setup sitting on your desk, and
that your principal interest in this book is in the client technology. As a result,
we’ve tried to include “mock”-based versions of the example code that can be
run with static dummy data from any web server, including Apache, Tomcat, and
IIS. These are in addition to the full working examples, so that if you do enjoy
wrestling with databases and app servers, you can dig in. Some basic setup docu-
mentation is provided with the download.
Licensed to jonathan zheng <yiyisjun@gmail.com>

http://www.manning.com/crane.We

ABOUT THIS BOOK xxix
Author Online

Purchase of Ajax in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
crane. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the book’s forum remains volun-
tary (and unpaid). We suggest you try asking the authors some challenging ques-
tions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people best remember are things they discover dur-
ing self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that in
order for learning to become permanent it must pass through stages of explora-
tion, play, and, interestingly, retelling of what was learned. People understand
and remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of all In Action guides
is that they are example-driven. This encourages readers to try things out, to
play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them “in action.” The books in this
series are designed for such readers.
Licensed to jonathan zheng <yiyisjun@gmail.com>

xxx ABOUT THIS BOOK
About the cover illustration

The figure on the cover of Ajax in Action is a “Sultana,” a female member of a sul-
tan’s family; both his wife and his mother could be addressed by that name. The
illustration is taken from a collection of costumes of the Ottoman Empire pub-
lished on January 1, 1802, by William Miller of Old Bond Street, London. The
title page is missing from the collection and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both English
and French, and each illustration bears the names of two artists who worked on
it, both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase, and a credit card and check
were both politely turned down. With the seller flying back to Ankara that evening
the situation was getting hopeless. What was the solution? It turned out to be
nothing more than an old-fashioned verbal agreement sealed with a handshake.
The seller simply proposed that the money be transferred to him by wire and the
editor walked out with the bank information on a piece of paper and the portfolio
of images under his arm. Needless to say, we transferred the funds the next day,
and we remain grateful and impressed by this unknown person’s trust in one of us.
It recalls something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of
two centuries ago. They recall the sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago—brought back to life by the pictures from this collection.

Licensed to jonathan zheng <yiyisjun@gmail.com>

Part 1

Rethinking
the web application

This part of the book introduces the main concepts of Ajax. Chapter 1
presents Ajax and reasons to use it. Chapter 2 covers the technical fundamen-
tals, and shows how they fit together. The aim is that, by the end of the book,
you’ll be able to tackle real-world projects bigger than a “hello world.” Chap-
ter 3 introduces the software development tools that we’ve used to manage
large projects, and shows you how to use them with Ajax.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

A new design for the Web
This chapter covers
■ Asynchronous network interactions

and usage patterns
■ The key differences between Ajax

and classic web applications
■ The four fundamental principles of Ajax
■ Ajax in the real world
3

Licensed to jonathan zheng <yiyisjun@gmail.com>

4 CHAPTER 1
A new design for the Web
Ideally, a user interface (UI) will be invisible to users, providing them with the
options they need when they need them but otherwise staying out of their way,
leaving users free to focus on the problem at hand. Unfortunately, this is a very
hard thing to get right, and we become accustomed, or resigned, to working with
suboptimal UIs on a daily basis—until someone shows us a better way, and we
realize how frustrating our current method of doing things can be.

 The Internet is currently undergoing such a realization, as the basic web
browser technologies used to display document content have been pushed
beyond the limits of what they can sanely accomplish.

 Ajax (Asynchronous JavaScript + XML) is a relatively recent name, coined by
Jesse James Garrett of Adaptive Path. Some parts of Ajax have been previously
described as Dynamic HTML and remote scripting. Ajax is a snappier name, evoking
images of cleaning powder, Dutch football teams, and Greek heroes suffering the
throes of madness.

 It’s more than just a name, though. There is plenty of excitement surrounding
Ajax, and quite a lot to get excited about, from both a technological and a busi-
ness perspective. Technologically, Ajax gives expression to a lot of unrealized
potential in the web browser technologies. Google and a few other major players
are using Ajax to raise the expectations of the general public as to what a web
application can do.

 The classical “web application” that we have become used to is beginning to
creak under the strain that increasingly sophisticated web-based services are plac-
ing on it. A variety of technologies are lining up to fill the gap with richer,
smarter, or otherwise improved clients. Ajax is able to deliver this better, smarter
richness using only technologies that are already installed on the majority of
modern computers.

 With Ajax, we are taking a bunch of dusty old technologies and stretching
them well beyond their original scope. We need to be able to manage the com-
plexity that we have introduced. This book will discuss the how-tos of the individ-
ual technologies but will also look at the bigger picture of managing large Ajax
projects. We’ll introduce Ajax design patterns throughout the book as well to help
us get this job done. Design patterns help us to capture our knowledge and expe-
rience with a technology as we acquire it and to communicate it with others. By
introducing regularity to a codebase, they can facilitate creating applications that
are easy to modify and extend as requirements change. Design patterns are even
a joy to work with!
Licensed to jonathan zheng <yiyisjun@gmail.com>

Why Ajax rich clients? 5
1.1 Why Ajax rich clients?

Building a rich client interface is a bit more complicated than designing a web
page. What is the incentive, then, for going this extra mile? What’s the payoff?
What is a rich client, anyway?

 Two key features characterize a rich client: it’s rich, and it’s a client.
 Let me explain a little more. Rich refers here to the interaction model of the

client. A rich user interaction model is one that can support a variety of input
methods and that responds intuitively and in a timely fashion. We could set a
rather unambitious yardstick for this by saying that for user interaction to be rich,
it must be as good as the current generation of desktop applications, such as word
processors and spreadsheets. Let’s take a look at what that would entail.

1.1.1 Comparing the user experiences

Take a few minutes to play with an application of your choice (other than a web
browser), and count the types of user interaction that it offers. Come back here
when you’ve finished. I’m going to discuss a spreadsheet as an example shortly,
but the points I’ll make are sufficiently generic that anything from a text editor up
will do.

 Finished? I am. While typing a few simple equations into my spreadsheet, I
found that I could interact with it in a number of ways, editing data in situ,
navigating the data with keyboard and mouse, and reorganizing data using
drag and drop.

 As I did these things, the program gave me feedback. The cursor changed
shape, buttons lit up as I hovered over them, selected text changed color, high-
lighted windows and dialogs were represented differently, and so on (figure 1.1).
That’s what passes for rich interactivity these days. Arguably there’s still some way
to go, but it’s a start.

 So is the spreadsheet application a rich client? I would say that it isn’t.
 In a spreadsheet or similar desktop application, the logic and the data model

are both executed in a closed environment, in which they can see each other very
clearly but shut the rest of the world out (figure 1.2). My definition of a client is a
program that communicates to a different, independent process, typically run-
ning on a server. Traditionally, the server is bigger, stronger, and better than the
client, and it stores monstrously huge amounts of information. The client allows
end users to view and modify this information, and if several clients are con-
nected to the same server, it allows them to share that data. Figure 1.3 shows a
simple schematic of a client/server architecture.
Licensed to jonathan zheng <yiyisjun@gmail.com>

6 CHAPTER 1
A new design for the Web
Figure 1.1 This desktop spreadsheet application illustrates a variety of possibilities for user
interaction. The headers for the selected rows and columns are highlighted; buttons offer
tooltips on mouseover; toolbars contain a variety of rich widget types; and the cells can be
interactively inspected and edited.

Filesystem

Process 2

Data
model

Logic

Process 1

Data
model

Logic

Figure 1.2 Schematic architectures for a standalone desktop application. The
application runs in a process of its own, within which the data model and the program
logic can “see” one another. A second running instance of the application on the same
computer has no access to the data model of the first, except via the filesystem.
Typically, the entire program state is stored in a single file, which is locked while the
application is running, preventing any simultaneous exchange of information.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Why Ajax rich clients? 7
In a modern n-tier architecture, of course, the server will communicate to further
back-end servers such as databases, giving rise to middleware layers that act as
both client and server. Our Ajax applications typically sit at the end of this chain,
acting as client only, so we can treat the entire n-tier system as a single black box
labeled “server” for the purposes of our current discussion.

 My spreadsheet sits on its own little pile of data, stored locally in memory and
on the local filesystem. If it is well architected, the coupling between data and
presentation may be admirably loose, but I can’t split it across the network or
share it as such. And so, for our present purposes, it isn’t a client.

 Web browsers are clients, of course, contacting the web servers from which
they request pages. The browser has some rich functionality for the purpose of
managing the user’s web browsing, such as back buttons, history lists, and tabs
for storing several documents. But if we consider the web pages for a particular
site as an application, then these generic browser controls are not related to the
application any more than the Windows Start menu or window list are related to
my spreadsheet.

Process 2

Data
model

Logic

Process 1

Data
model

Logic

Server (e.g. database)

Process 2

Data
model

Logic

Process 1

Data
model

Logic

"Server"

Middleware layer(s)

Server farm Internet services

Figure 1.3 Schematic architectures for client/server systems and n-tier architectures. The
server offers a shared data model, with which clients can interact. The clients still maintain
their own partial data models, for rapid access, but these defer to the server model as the
definitive representation of the business domain objects. Several clients can interact with the
same server, with locking of resources handled at a fine-grain level of individual objects or
database rows. The server may be a single process, as in the traditional client/server model of
the early- to mid-1990s, or consist of several middleware tiers, external web services, and so
on. In any case, from the client’s perspective, the server has a single entry point and can be
considered a black box.
Licensed to jonathan zheng <yiyisjun@gmail.com>

8 CHAPTER 1
A new design for the Web
 Let’s have a look at a modern web application. Simply because everyone has
heard of it, we’ll pick on Amazon, the bookseller (figure 1.4). I point my browser
to the Amazon site, and, because it remembers who I am from my last visit, it
shows me a friendly greeting, a list of recommended books, and information
about my purchasing history.

 Clicking on a title from the recommendations list leads me to a separate page
(that is, the screen flickers and I lose sight of all the lists that I was viewing a few
seconds earlier). This, too, is stuffed full of contextual information: reviews, sec-
ond-hand prices for the book, links to similar authors, and titles of other books
that I’ve recently checked out (figure 1.5).

 In short, I’m presented with very rich, tightly interwoven information. And yet
my only way of interacting with this information is through clicking hyperlinks
and filling in text forms. If I fell asleep at the keyboard while browsing the site
and awoke the next day, I wouldn’t know that the new Harry Potter book had been
released until I refreshed the entire page. I can’t take my lists with me from one

Figure 1.4 Amazon.com home page. The system has remembered who I am from a previous
visit, and the navigational links are a mixture of generic boilerplate and personal information.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Why Ajax rich clients? 9
page to another, and I can’t resize portions of the document to see several bits of
content at once.

 This is not to knock Amazon. It’s doing a good job at working within some
very tight bounds. But compared to the spreadsheet, the interaction model it
relies on is unquestionably limiting.

 So why are those limits present in modern web applications? There are sound
technical reasons for the current situation, so let’s take a look at them now.

1.1.2 Network latency

The grand vision of the Internet age is that all computers in the world intercon-
nect as one very large computing resource. Remote and local procedure calls
become indistinguishable, and issuers are no longer even aware of which physical

Figure 1.5 Amazon.com book details page. Again, a dense set of hyperlinks combines generic
and personal information. Nonetheless, a significant amount of detail is identical to that shown
in figure 1.4, which must, owing to the document-based operation of the web browser, be
retransmitted with every page.
Licensed to jonathan zheng <yiyisjun@gmail.com>

10 CHAPTER 1
A new design for the Web
machine (or machines) they are working on, as they happily compute the folds in
their proteins or decode extraterrestrial signals.

 Remote and local procedure calls are not the same thing at all, unfortunately.
Communications over a network are expensive (that is, they are slow and unreli-
able). When a non-networked piece of code is compiled or interpreted, the vari-
ous methods and functions are coded as instructions stored in the same local
memory as the data on which the methods operate (figure 1.6). Thus, passing
data to a method and returning a result is pretty straightforward.

 Under the hood, a lot of computation is going on at both ends of a network
connection in order to send and receive data (figure 1.7). It’s this computation
that slows things down, more than the physical journey along the wire. The vari-
ous stages of encoding and decoding cover aspects of the communication ranging
from physical signals passing along the wire (or airwaves), translation of these sig-
nals as the 1s and 0s of binary data, error checking and re-sending, to the reassem-
bling of the sequence, and ultimately the meaning, of the binary information.

 The calling function’s request must be encoded as an object, which is then
serialized (that is, converted into a linear set of bytes). The serialized data is then
passed to the application protocol (usually HTTP these days) and sent across the
physical transport (a copper or fiber-optic cable, or a wireless connection of
some sort).

 On the remote machine, the application protocol is decoded, and the bytes of
data deserialized, to create a copy of the request object. This object can then be
applied to the data model and a response object generated. To communicate the
response to the calling function, the serialization and transport layers must be
navigated once more, eventually resulting in a response object being returned to
the calling function.

Calling
function

Model Local memory

Figure 1.6 Sequence diagram of a local procedure
call. Very few actors are involved here, as the program
logic and the data model are both stored in local
memory and can see each other directly.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Why Ajax rich clients? 11
These interactions are complex but amenable to automation. Modern program-
ming environments such as Java and the Microsoft .NET Framework offer this
functionality for free. Nonetheless, internally a lot of activity is going on when a
remote procedure call (RPC) is made, and if such calls are made too freely, perfor-
mance will suffer.

 So, making a call over a network will never be as efficient as calling a local
method in memory. Furthermore, the unreliability of the network (and hence the
need to resend lost packets of information) makes this inefficiency variable and
hard to predict. The responsiveness of the memory bus on your local machine is
not only better but also very well defined in comparison.

 But what does that have to do with usability? Quite a lot, as it turns out.
 A successful computer UI does need to mimic our expectations of the real

world at the very basic level. One of the most basic ground rules for interaction is
that when we push, prod, or poke at something, it responds immediately. Slight
delays between prodding something and the response can be disorienting and
distracting, moving the user’s attention from the task at hand to the UI itself.

 Having to do all that extra work to traverse the network is often enough to slow
down a system such that the delay becomes noticeable. In a desktop application,
we need to make bad usability design decisions to make the application feel buggy
or unresponsive, but in a networked application, we can get all that for free!

Calling
function

Physical transportLocal model Serialization App protocol Remote modelSerializationApp protocol

Figure 1.7 Sequence diagram of a remote procedure call. The program logic on one machine
attempts to manipulate a data model on another machine.
Licensed to jonathan zheng <yiyisjun@gmail.com>

12 CHAPTER 1
A new design for the Web
 Because of the unpredictability of network latency, this perceived bugginess
will come and go, and testing the responsiveness of the application can be
harder, too. Hence, network latency is a common cause of poor interactivity in
real-world applications.

1.1.3 Asynchronous interactions

There is only one sane response to the network latency problem available to the
UI developer—assume the worst. In practical terms, we must try to make UI
responses independent of network activity. Fortunately, a holding response is
often sufficient, as long as it is timely. Let’s take a trip to the physical world again.
A key part of my morning routine is to wake my children up for school. I could
stand over them prodding them until they are out of bed and dressed, but this is a
time-consuming approach, leaving a long period of time in which I have very lit-
tle to do (figure 1.8).

Sleeping child Window Hungry cat

1. Wakeup call

3. Notify

4. Stare out of

5. Forget to feed

2. Wake up slowly

Dave

Figure 1.8 Sequence diagram of a synchronous response to user input, during my
morning routine. In a sequence diagram, the passage of time is vertical. The height of
the shaded area indicates the length of time for which I am blocked from further input.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Why Ajax rich clients? 13
I need to wake up my children, stare out the window, and ignore the cat. The chil-
dren will notify me when they are properly awake by asking for breakfast. Like
server-side processes, children are slow to wake. If I follow a synchronous interac-
tion model, I will spend a long time waiting. As long as they are able to mutter a
basic “Yes, I’m awake,” I can happily move on to something else and check up on
them later if need be.

 In computer terms, what I’m doing here is spawning an asynchronous process,
in a separate thread. Once they’re started, my children will wake up by themselves
in their own thread, and I, the parent thread, don’t need to synchronize with
them until they notify me (usually with a request to be fed). While they’re waking
up, I can’t interact with them as if they were already up and dressed, but I can be
confident that it will happen in due course (figure 1.9).

 With any UI, it’s a well-established practice to spawn an asynchronous thread
to handle any lengthy piece of computation and let it run in the background
while the user gets on with other things. The user is necessarily blocked while that
thread is launched, but this can be done in an acceptably short span of time.

Sleeping child Window Hungry cat

1. Wakeup call

2. Quick notify

3. Wake up slowly

4. Stare out of

5. Forget to feed

6. Notify

Dave

Figure 1.9 Sequence diagram of an asynchronous response to user input. If I
follow an asynchronous input model, I can let the children notify me that they are
starting to wake up. I can then continue with my other activities while the wakeup
happens and remain blocked for a much shorter period of time.
Licensed to jonathan zheng <yiyisjun@gmail.com>

14 CHAPTER 1
A new design for the Web
Because of network latency, it is good practice to treat any RPC as potentially
lengthy and handle it asynchronously.

 This problem, and the solution, are both well established. Network latency
was present in the old client/server model, causing poorly designed clients to
freeze up inexplicably as they tried to reach an overloaded server. And now, in
the Internet age, network latency causes your browser to “chug” frustratingly
while moving between web pages. We can’t get rid of latency, but we know how to
deal with it—by processing the remote calls asynchronously, right?

 Unfortunately for us web app developers, there’s a catch. HTTP is a request-
response protocol. That is, the client issues a request for a document, and the
server responds, either by delivering the document, saying that it can’t find it,
offering an alternative location, or telling the client to use its cached copy, and so
on. A request-response protocol is one-way. The client can make contact with the
server, but the server cannot initiate a communication with the client. Indeed, the
server doesn’t remember the client from one request to the next.

 The majority of web developers using modern languages such as Java, PHP,
or .NET will be familiar with the concept of user sessions. These are an after-
thought, bolted onto application servers to provide the missing server-side state
in the HTTP protocol. HTTP does what it was originally designed for very well,
and it has been adapted to reach far beyond that with considerable ingenuity.
However, the key feature of our asynchronous callback solution is that the client
gets notified twice: once when the thread is spawned and again when the thread
is completed. Straightforward HTTP and the classic web application model can’t
do this for us.

 The classic web app model, as used by Amazon, for example, is still built
around the notion of pages. A document is displayed to the user, containing lists
of links and/or form elements that allow them to drill down to further documents.
Complex datasets can be interacted with in this way on a large scale, and as Ama-
zon and others have demonstrated, the experience of doing so can be compelling
enough to build a business on.

 This model of interaction has become quite deeply ingrained in our way of
thinking over the ten years or so of the commercial, everyday Internet. Friendly
WYSIWYG web-authoring tools visualize our site as a collection of pages. Server-
side web frameworks model the transition between pages as state transition dia-
grams. The classic web application is firmly wedded to the unavoidable lack of
responsiveness when the page refreshes, without an easy recourse to the asyn-
chronous handler solution.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Why Ajax rich clients? 15
 But Amazon has built a successful business on top of its website. Surely the
classic web application can’t be that unusable? To understand why the web page
works for Amazon but not for everyone, we ought to consider usage patterns.

1.1.4 Sovereign and transient usage patterns

It’s futile to argue whether a bicycle is better than a sports utility vehicle. Each has
its own advantages and disadvantages—comfort, speed, fuel consumption, vague
psychological notions about what your mode of transport “says” about you as a
person. When we look at particular use patterns, such as getting through the rush
hour of a compact city center, taking a large family on vacation, or seeking shelter
from the rain, we may arrive at a clear winner. The same is true for computer UIs.

 Software usability expert Alan Cooper has written some useful words about
usage patterns and defines two key usage modes: transient and sovereign. A tran-
sient application might be used every day, but only in short bursts and usually as a
secondary activity. A sovereign application, in contrast, must cope with the user’s
full attention for several hours at a time.

 Many applications are inherently transient or sovereign. A writer’s word pro-
cessor is a sovereign application, for example, around which a number of tran-
sient functions will revolve, such as the file manager (often embedded into the
word processor as a file save or open dialog), a dictionary or spellchecker (again,
often embedded), and an email or messenger program for communicating with
colleagues. To a software developer, the text editor or Integrated Development
Environment (IDE) is sovereign, as is the debugger.

 Sovereign applications are also often used more intensely. Remember, a well-
behaved UI should be invisible. A good yardstick for the intensity of work is the
effect on the user’s workflow of the UI stalling, thus reminding the user that it
exists. If I’m simply moving files from one folder to another and hit a two-second
delay, I can cope quite happily. If I encounter the same two-second delay while
composing a visual masterpiece in a paint program, or in the middle of a heavy
debugging session with some tricky code, I might get a bit upset.

 Amazon is a transient application. So are eBay and Google—and most of the
very large, public web-based applications out there. Since the dawn of the Inter-
net, pundits have been predicting the demise of the traditional desktop office
suite under the onslaught of web-based solutions. Ten years later, it hasn’t hap-
pened. Web page–based solutions are good enough for transient use but not for
sovereign use.
Licensed to jonathan zheng <yiyisjun@gmail.com>

16 CHAPTER 1
A new design for the Web
1.1.5 Unlearning the Web

Fortunately, modern web browsers resemble the original ideal of a client for
remote document servers about as closely as a Swiss army knife resembles a
neolithic flint hunting tool. Interactive gizmos, scripting languages, and plug-ins
have been bolted on willy-nilly over the years in a race to create the most compel-
ling browsing experience. (Have a look at www.webhistory.org/www.lists/www-
talk.1993q1/0182.html to get a perspective on how far we’ve come. In 1993, a
pre-Netscape Marc Andreessen tentatively suggested to Tim Berners-Lee and
others that HTML might benefit from an image tag.)

 A few intrepid souls have been looking at JavaScript as a serious programming
language for several years, but on the whole, it is associated with faked-up alert
dialogs and “click the monkey to win” banners.

 Think of Ajax as a rehabilitation center for this misunderstood, ill-behaved
child of the browser wars. By providing some guidance and a framework within
which to operate, we can turn JavaScript into a helpful model citizen of the Inter-
net, capable of enhancing the real usability of a web application—and without
enraging the user or trashing the browser in the process. Mature, well-under-
stood tools are available to help us do this. Design patterns are one such tool that
we make frequent use of in our work and will refer to frequently in this book.

 Introducing a new technology is a technical and social process. Once the tech-
nology is there, people need to figure out what to do with it, and a first step is often
to use it as if it were something older and more familiar. Hence, early bicycles were
referred to as “hobbyhorses” or “dandy horses” and were ridden by pushing one’s
feet along the ground. As the technology was exposed to a wider audience, a sec-
ond wave of innovators would discover new ways of using the technology, adding
improvements such as pedals, brakes, gears, and pneumatic tires. With each incre-
mental improvement, the bicycle became less horse-like (figure 1.10).

Figure 1.10 Development of the modern bicycle
Licensed to jonathan zheng <yiyisjun@gmail.com>

The four defining principles of Ajax 17
 The same processes are at work in web development today. The technologies
behind Ajax have the ability to transform web pages into something radically
new. Early attempts to use the Ajax technologies resembled the traditional web
page document and have that neither-one-thing-nor-the-other flavor of the hob-
byhorse. To grasp the potential of Ajax, we must let go of the concept of the web
page and, in doing so, unlearn a lot of the assumptions that we have been making
for the last few years. In the short few months since Ajax was christened, a lot of
unlearning has been taking place.

1.2 The four defining principles of Ajax

The classic page-based application model is hard-wired into many of the frame-
works that we use, and also into our ways of thinking. Let’s take a few minutes to
discover what these core assumptions are and how we need to rethink them to get
the most out of Ajax.

1.2.1 The browser hosts an application, not content

In the classic page-based web application, the browser is effectively a dumb ter-
minal. It doesn’t know anything about where the user is in the greater workflow.
All of that information is held on the web server, typically in the user’s session.
Server-side user sessions are commonplace these days. If you’re working in Java
or .NET, the server-side session is a part of the standard API, along with requests,
responses, and Multipurpose Internet Mail Extensions (MIME) types. Figure 1.11
illustrates the typical lifecycle of a classic web application.

 When the user logs in or otherwise initializes a session, several server-side
objects are created, representing, say, the shopping basket and the customer cre-
dentials if this is an e-commerce site. At the same time, the home page is dished
up to the browser, in a stream of HTML markup that mixes together standard
boilerplate presentation and user-specific data and content such as a list of
recently viewed items.

 Every time the user interacts with the site, another document is sent to the
browser, containing the same mixture of boilerplate and data. The browser duti-
fully throws the old document away and displays the new one, because it is dumb
and doesn’t know what else to do.

 When the user hits the logout link or closes the browser, the application exits
and the session is destroyed. Any information that the user needs to see the
next time she or he logs on will have been handed to the persistence tier by
Licensed to jonathan zheng <yiyisjun@gmail.com>

18 CHAPTER 1
A new design for the Web
now. An Ajax application moves some of the application logic to the browser, as
figure 1.12 illustrates.

 When the user logs in, a more complex document is delivered to the browser, a
large proportion of which is JavaScript code. This document will stay with the
user throughout the session, although it will probably alter its appearance consid-
erably while the user is interacting with it. It knows how to respond to user input
and is able to decide whether to handle the user input itself or to pass a request
on to the web server (which has access to the system database and other
resources), or to do a combination of both.

 Because the document persists over the entire user session, it can store state. A
shopping basket’s contents may be stored in the browser, for example, rather
than in the server session.

Business
logic

Web
page

Web
page

Web
page

Exit
page

Web browser Server

Login

User's
data

model

User
session

Logout

Shared
data

model

Figure 1.11 Lifecycle of a classic web application. All the state of
the user’s “conversation” with the application is held on the web
server. The user sees a succession of pages, none of which can
advance the broader conversation without going back to the server.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The four defining principles of Ajax 19
1.2.2 The server delivers data, not content

As we noted, the classic web app serves up the same mixture of boilerplate, con-
tent, and data at every step. When our user adds an item to a shopping basket, all
that we really need to respond with is the updated price of the basket or whether
anything went wrong. As illustrated in figure 1.13, this will be a very small part of
the overall document.

 An Ajax-based shopping cart could behave somewhat smarter than that, by
sending out asynchronous requests to the server. The boilerplate, the navigation
lists, and other features of the page layout are all there already, so the server
needs to send back only the relevant data.

 The Ajax application might do this in a number of ways, such as returning a
fragment of JavaScript, a stream of plain text, or a small XML document. We’ll

Business
logic

Exit
page

Web browser Server

Login

User's
data

model

User
session

Logout

Shared
data

model

Client
application

User's
partial
data

model
(JavaScript)

Frequent
requests
for data

Deliver
client app

Figure 1.12 Lifecycle of an Ajax application. When the user logs
in, a client application is delivered to the browser. This application
can field many user interactions independently, or else send
requests to the server behind the scenes, without interrupting the
user's workflow.
Licensed to jonathan zheng <yiyisjun@gmail.com>

20 CHAPTER 1
A new design for the Web
Login New
page

New
page

New
page

Logout

Time

D
at

a

Data

Branding

Content

(A)

Login Logout

Time

D
at

a

Logic

Data

Presentation

(B)

Login Logout

Time

C
u

m
u

la
ti

ve
 D

at
a

Ajax

Classic

(C)

Figure 1.13 Breakdown of the content delivered (A) to a classic web application and
(B) to an Ajax application. As the application continues to be used, cumulative traffic
(C) increases.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The four defining principles of Ajax 21
look at the pros and cons of each in detail in chapter 5. Suffice it to say for now
that any one of these formats will be much smaller than the mish-mash returned
by the classic web application.

 In an Ajax application, the traffic is heavily front-loaded, with a large and
complex client being delivered in a single burst when the user logs in. Subsequent
communications with the server are far more efficient, however. For a transient
application, the cumulative traffic may be less for a conventional web page appli-
cation, but as the average length of interaction time increases, the bandwidth cost
of the Ajax application becomes less than that of its classic counterpart.

1.2.3 User interaction with the application
can be fluid and continuous

A web browser provides two input mechanisms out of the box: hyperlinks and
HTML forms.

 Hyperlinks can be constructed on the server and preloaded with Common
Gateway Interface (CGI) parameters pointed at dynamic server pages or servlets.
They can be dressed up with images and Cascading Style Sheets (CSS) to provide
rudimentary feedback when the mouse hovers over them. Given a good web
designer, hyperlinks can be made to look like quite fancy UI components.

 Form controls offer a basic subset of the standard desktop UI components:
input textboxes, checkboxes and radio buttons, and drop-down lists. Several
likely candidates are missing, though. There are no out-of-the-box tree controls,
editable grids, or combo-boxes provided. Forms, like hyperlinks, point at server-
side URLs.

 Alternatively, hyperlinks and form controls can be pointed at JavaScript func-
tions. It’s a common technique in web pages to provide rudimentary form valida-
tion in JavaScript, checking for empty fields, out-of-range numbers, and so on,
before submitting data to the server. These JavaScript functions persist only as
long as the page itself and are replaced when the page submits.

 While the page is submitting, the user is effectively in limbo. The old page
may still be visible for a while, and the browser may even allow the user to click on
any visible links, but doing so will produce unpredictable results and may wreak
havoc with the server-side session. The user is generally expected to wait until the
page is refreshed, often with a set of choices similar to those that were snatched
away from them seconds earlier. After all, adding a pair of trousers to the shop-
ping basket is unlikely to modify the top-level categories from “menswear,”
“women’s wear,” “children’s,” and “accessories.”
Licensed to jonathan zheng <yiyisjun@gmail.com>

22 CHAPTER 1
A new design for the Web
 Let’s take the shopping cart example again. Because our Ajax shopping cart
sends data asynchronously, users can drop things into it as fast as they can click. If
the cart’s client-side code is robust, it will handle this load easily, and the users
can get on with what they’re doing.

 There is no cart to drop things into, of course, just an object in session on the
server. Users don’t want to know about session objects while shopping, and the
cart metaphor provides a more comfortable real-world description of what’s tak-
ing place. Switching contexts between the metaphor and direct access to the com-
puter is distracting to users. Waiting for a page to refresh will jerk them back to
the reality of sitting at a computer for a short time (figure 1.14), and our Ajax
implementation avoids doing this. Shopping is a transient activity, but if we con-
sider a different business domain, for example, a high-pressure help desk sce-
nario or a complex engineering task, then the cost of disrupting the workflow
every few seconds with a page refresh is prohibitive.

 The second advantage of Ajax is that we can hook events to a wider range of
user actions. More sophisticated UI concepts such as drag-and-drop become fea-
sible, bringing the UI experience fully up to par with the desktop application
widget sets. From a usability perspective, this freedom is important not so much
because it allows us to exercise our imagination, but because it allows us to blend
the user interaction and server-side requests more fully.

Concepts,
metaphors,
business domain

Customer

Account

Filesystem

File
Web service

Filesystem

File
Web service

Database Database

Boundary (painful to cross)

Data model,
bits and bytes,
machinery

ContractContract

Customer

Case
Account

Case

Figure 1.14 Interrupting the user’s workflow to process events. The user deals with two types of
object: those relating to their business, and those relating to the computer system. Where the user
is forced to switch between the two frequently, disorientation and lack of productivity may occur.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The four defining principles of Ajax 23
 To contact the server in a classic web application, we need to click a hyperlink
or submit a form, and then wait. This interrupts the user’s workflow. In contrast,
contacting the server in response to a mouse movement or drag, or a keystroke,
allows the server to work alongside the user. Google Suggest (www.google.com/
webhp?complete=1) is a very simple but effective example of this: responding to
users keystrokes as they type into the search box and contacting the server to
retrieve and display a list of likely completions for the phrases, based on searches
made by other users of the search engine worldwide. We provide a simple imple-
mentation of a similar service in chapter 8.

1.2.4 This is real coding and requires discipline

Classic web applications have been making use of JavaScript for some time now,
to add bells and whistles around the edge of their pages. The page-based model
prevents any of these enhancements from staying around for too long, which lim-
its the uses to which they can be put. This catch-22 situation has led, unfairly, to
JavaScript getting a reputation as a trivial, hacky sort of language, looked down
upon by the serious developers.

 Coding an Ajax application is a different matter entirely. The code that you
deliver when users launch the application must run until they close it, without
breaking, without slowing down, and without generating memory leaks. If we’re
aiming at the sovereign application market, then this means several hours of
heavy usage. To meet this goal, we must write high-performance, maintainable
code, using the same discipline and understanding that is successfully applied to
the server tiers.

 The codebase will also typically be larger than anything written for a classic
web application. Good practices in structuring the codebase become important.
The code may become the responsibility of a team rather than an individual,
bringing up issues of maintainability, separation of concerns, and common cod-
ing styles and patterns.

 An Ajax application, then, is a complex functional piece of code that com-
municates efficiently with the server while the user gets on with work. It is
clearly a descendent of the classic page-based application, but the similarity is
no stronger than that between the early hobbyhorse and a modern touring
bike. Bearing these differences in mind will help you to create truly compel-
ling web applications.
Licensed to jonathan zheng <yiyisjun@gmail.com>

24 CHAPTER 1
A new design for the Web
1.3 Ajax rich clients in the real world

So much for the theory. Ajax is already being used to create real applications, and
the benefit of the Ajax approach can already be seen. It’s still very much early
days—the bicycles of a few far-sighted individuals have pedals and solid rubber
tires, and some are starting to build disc brakes and gearboxes, so to speak. The
following section surveys the current state of the art and then looks in detail at
one of the prominent early adopters to see where the payoff in using Ajax lies.

1.3.1 Surveying the field

Google has done more than any other company to raise the profile of Ajax appli-
cations (and it, like the majority of adopters, was doing so before the name Ajax
was coined). Its GMail service was launched in beta form in early 2004. Along with
the extremely generous mailbox size, the main buzz around GMail was the UI,
which allowed users to open several mail messages at once and which updated
mailbox lists automatically, even while the user was typing in a message. Com-
pared with the average web mail system offered by most Internet service provid-
ers (ISPs) at the time, this was a major step forward. Compared with the corporate
mail server web interfaces of the likes of Microsoft Outlook and Lotus Notes,
GMail offered most of the functionality without resorting to heavy, troublesome
ActiveX controls or Java applets, making it available across most platforms and
locations, rather than the corporate user’s carefully preinstalled machine.

 Google has followed this up with further interactive features, such as Google
Suggest, which searches the server for likely completions for your query as you
type, and Google Maps, an interactive zoomable map used to perform location-
based searches. At the same time, other companies have begun to experiment with
the technology, such as Flickr’s online photo-sharing system, now part of Yahoo!

 The applications we have discussed so far are testing the water. They are still
transient applications, designed for occasional use. There are signs of an emerg-
ing market for sovereign Ajax applications, most notably the proliferation of
frameworks in recent months. We look at a few of these in detail in chapter 3, and
attempt to summarize the current state of the field in appendix C.

 There are, then, sufficient signals to suggest that Ajax is taking hold of the
market in a significant way. We developers will play with any new technology for
its own sake, but businesses like Google and Yahoo! will join in only if there are
compelling business reasons. We’ve already outlined many of the theoretical
advantages of Ajax. In the following section, we’ll take apart Google Maps, in
order to see how the theory stacks up.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax rich clients in the real world 25
1.3.2 Google Maps

Google Maps is a cross between a map viewer and a search engine. Initially, the
map shows the entire United States (figure 1.15). The map can be queried using
free text, allowing drill-down to specific street addresses or types of amenity such
as hotels and restaurants (figure 1.16).

 The search feature functions as a classic web app, refreshing the entire page,
but the map itself is powered by Ajax. Clicking on individual links from a hotel
search will cause additional pop-ups to be displayed on the fly, possibly even
scrolling the map slightly to accommodate them. The scrolling of the map itself is

Figure 1.15 The Google Maps home page offers a scrolling window on a zoomable map of the
United States, alongside the familiar Google search bar. Note that the zoom control is
positioned on top of the map rather than next to it, allowing the user to zoom without taking his
eyes off the map.
Licensed to jonathan zheng <yiyisjun@gmail.com>

26 CHAPTER 1
A new design for the Web
the most interesting feature of Google Maps. The user can drag the entire map by
using the mouse. The map itself is composed of small tiled images, and if the user
scrolls the map far enough to expose a new tile, it will be asynchronously down-
loaded. There is a noticeable lag at times, with a blank white area showing ini-
tially, which is filled in once the map tile is loaded; however, the user can continue
to scroll, triggering fresh tile requests, while the download takes place. The map
tiles are cached by the browser for the extent of a user’s session, making it much
quicker to return to a part of the map already visited.

 Looking back to our discussions of usability, two important things are appar-
ent. First, the action that triggers the download of new map data is not a specific

Figure 1.16 Google Maps hotel search. Note the traditional use of the DHTML technologies to
create shadows and rich tooltip balloons. Adding Ajax requests makes these far more dynamic
and useful.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax rich clients in the real world 27
click on a link saying “fetch more maps” but something that the user is doing
anyway, namely, moving the map around. The user workflow is uninterrupted by
the need to communicate with the server. Second, the requests themselves are
asynchronous, meaning that the contextual links, zoom control, and other page
features remain accessible while the map is gathering new data.

 Internet-based mapping services are nothing new. If we looked at a typical
pre-Ajax Internet mapping site, we would see a different set of interaction pat-
terns. The map would typically be divided into tiles. A zoom control, and perhaps
sideways navigation links at the map’s edges, might be provided. Clicking on any
of these would invoke a full-screen refresh, resulting in a similar page hosting dif-
ferent map tiles. The user workflow would be interrupted more, and after looking
at Google Maps, the user would find the site slow and frustrating.

 Turning to the server-side, both services are undoubtedly backed by some
powerful mapping solutions. Both serve up map tiles as images. The conven-
tional web server of the pre-Ajax site is continually refreshing boilerplate code
when the user scrolls, whereas Google Maps, once up and running, serves only
the required data, in this case image tiles that aren’t already cached. (Yes, the
browser will cache the images anyway, providing the URL is the same, but
browser caching still results in server traffic when checking for up-to-date data
and provides a less-reliable approach than programmatic caching in memory.)
For a site with the prominent exposure of Google, the bandwidth savings must
be considerable.

 To online services such as Google, ease of use is a key feature in getting users
to visit their service and to come back again. And the number of page impressions
is a crucial part of the bottom line for the business. By introducing a better UI
with the flexibility that Ajax offers, Google has clearly given traditional mapping
services something to worry about. Certainly other factors, such as the quality of
the back-end service, come into play, but other things being equal, Ajax can offer
a strong business advantage.

 We can expect the trend for this to rise as public exposure to richer interfaces
becomes more prevalent. As a marketable technology, Ajax looks to have a bright
future for the next few years. However, other rich client technologies are looking
to move into this space, too. Although they are largely outside the scope of this
book, it’s important that we take a look at them before concluding our overview.
Licensed to jonathan zheng <yiyisjun@gmail.com>

28 CHAPTER 1
A new design for the Web
1.4 Alternatives to Ajax

Ajax meets a need in the marketplace for richer, more responsive web-based cli-
ents that don’t need any local installation. It isn’t the only player in that space,
though, and in some cases, it isn’t even the most appropriate choice. In the fol-
lowing section, we’ll briefly describe the main alternatives.

1.4.1 Macromedia Flash-based solutions

Macromedia’s Flash is a system for playing interactive movies using a compressed
vector graphics format. Flash movies can be streamed, that is, played as they are
downloaded, allowing users to see the first bits of the movie before the last bits
have arrived. Flash movies are interactive and are programmed with Action-
Script, a close cousin of JavaScript. Some support for input form widgets is also
provided, and Flash can be used for anything from interactive games to complex
business UIs. Flash has very good vector graphics support, something entirely
absent from the basic Ajax technology stack.

 Flash has been around for ages and is accessed by a plug-in. As a general rule,
relying on a web browser plug-in is a bad idea, but Flash is the web browser plug-
in, with the majority of browsers bundling it as a part of the installation. It is avail-
able across Windows, Mac OS X, and Linux, although the installation base on
Linux is probably smaller than for the other two platforms.

 For the purposes of creating rich clients with Flash, two very interesting tech-
nologies are Macromedia’s Flex and the open source Laszlo suite, both of which
provide simplified server-side frameworks for generating Flash-based business
UIs. Both frameworks use Java/Java 2 Enterprise Edition (J2EE) on the server
side. For lower-level control over creating Flash movies dynamically, several tool-
kits, such as PHP’s libswf module, provide core functionality.

1.4.2 Java Web Start and related technologies

Java Web Start is a specification for bundling Java-based web applications on a
web server in such a way that a desktop process can find, download, and run
them. These applications can be added as hyperlinks, allowing seamless access
from a Web Start–savvy web browser. Web Start is bundled with the more recent
Java runtimes, and the installation process will automatically enable Web Start on
Internet Explorer and Mozilla-based browsers.

 Once downloaded, Web Start applications are stored in a managed “sandbox”
in the filesystem and automatically updated if a new version is made available.
This allows them to be run while disconnected from the network and reduces
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 29
network traffic on reload, making the deployment of heavy applications weigh-
ing several megabytes a possibility. Applications are digitally signed, and the
user may choose to grant them full access to the filesystem, network ports, and
other resources.

 Traditionally, Web Start UIs are written in the Java Swing widget toolkit, about
which strong opinions are held on both sides. The Standard Widget Toolkit (SWT)
widgets used to power IBM’s Eclipse platform can also be deployed via Web Start,
although this requires a bit more work.

 Microsoft’s .NET platform offers a similar feature called No Touch Deploy-
ment, promising a similar mix of easy deployment, rich UIs, and security.

 The main downside to both technologies is the need to have a runtime prein-
stalled. Of course, any rich client needs a runtime, but Flash and Ajax (which uses
the web browser itself as a runtime) use runtimes that are commonly deployed.
Java and .NET runtimes are both very limited in their distribution at present and
can’t be relied on for a public web service.

1.5 Summary

We’ve discussed the differences between transient and sovereign applications and
the requirements of each. Transient applications need to deliver the goods, but,
when users are using them, they have already stepped out of their regular flow of
work, and so a certain amount of clunkiness is acceptable. Sovereign applications,
in contrast, are designed for long-term intensive use, and a good interface for a
sovereign application must support the users invisibly, without breaking their
concentration on the task at hand.

 The client/server and related n-tier architectures are essential for collaborative
or centrally coordinated applications, but they raise the specter of network
latency, with its ability to break the spell of user productivity. Although a general-
purpose solution to the conflict between the two exists in asynchronous remote
event handling, the traditional request-response model of the classic web appli-
cation is ill suited to benefit from it.

 We’ve set a goal for ourselves, and for Ajax, in this chapter of delivering usable
sovereign applications through a web browser, thereby satisfying the goals of user
productivity, networking, and effortless, centralized maintenance of an applica-
tion all at once. In order for this mission to succeed, we need to start thinking
about our web pages and applications in a fundamentally different way. We’ve
identified the key ideas that we need to learn and those that we need to unlearn:
Licensed to jonathan zheng <yiyisjun@gmail.com>

30 CHAPTER 1
A new design for the Web
■ The browser hosts an application, not content.
■ The server delivers data, not content.
■ The user interacts continuously with the application, and most requests to

the server are implicit rather than explicit.
■ Our codebase is large, complex, and well structured. It is a first-class citi-

zen in our architecture, and we must take good care of it.

The next chapter will unpack the key Ajax technologies and get our hands dirty
with some code. The rest of the book will look at important design principles that
can help us to realize these goals.

1.6 Resources

To check out some of our references in greater depth, here are URLs to several of
the articles that we’ve referred to in this chapter:

■ Jesse James Garrett christened Ajax on February 18, 2005, in this article:
www.adaptivepath.com/publications/essays/archives/000385.php

■ Alan Cooper’s explanation of sovereign and transient applications can be
found here: www.cooper.com/articles/art_your_programs_posture.htm

■ Google Maps can be found here if you live in the United States:
http://maps.google.com

and here if you live in the United Kingdom:
http://maps.google.co.uk

and here if you live on the moon:
http://moon.google.com

The images of the bicycle were taken from the Pedaling History website:
www.pedalinghistory.com
Licensed to jonathan zheng <yiyisjun@gmail.com>

First steps with Ajax
This chapter covers
■ Introducing the technologies behind Ajax
■ Using Cascading Style Sheets to define look

and feel
■ Using the Document Object Model to define the

user interface structure
■ Using XMLHttpRequest to asynchronously

contact the server
■ Putting the pieces together
31

Licensed to jonathan zheng <yiyisjun@gmail.com>

32 CHAPTER 2
First steps with Ajax
In chapter 1 we focused on users and how Ajax can assist them in their daily activ-
ities. Most of us are developers, and so, having convinced ourselves that Ajax is a
Good Thing, we need to know how to work with it. The good news is that, as with
many brand-new, shiny technologies, most of this process will be reasonably
familiar already, particularly if you’ve worked with the Internet.

 In this chapter, we’ll explain the Ajax technology. We’ll discuss the four
technological cornerstones of Ajax and how they relate to one another, using
code examples to demonstrate how each technology works and how everything
fits together.

 You might like to think of this chapter as the “hello world” section of the book,
in which we introduce the core technologies using some simple examples. We’re
more interested here in just getting things to work; we’ll start to look at the bigger
picture in chapter 3. If you’re already familiar with some or all of the Ajax tech-
nologies, you may want to skim these sections. If you’re new to Ajax and to web
client programming, these introductions should be sufficient to orient you for the
rest of the book.

2.1 The key elements of Ajax

Ajax isn’t a single technology. Rather, it’s a collection of four technologies that
complement one another. Table 2.1 summarizes these technologies and the role
that each has to play.

Table 2.1 The key elements of Ajax

JavaScript JavaScript is a general-purpose scripting language designed to be embedded inside
applications. The JavaScript interpreter in a web browser allows programmatic inter-
action with many of the browser’s inbuilt capabilities. Ajax applications are written in
JavaScript.

Cascading Style
Sheets (CSS)

CSS offers a way of defining reusable visual styles for web page elements. It offers a
simple and powerful way of defining and applying visual styling consistently. In an
Ajax application, the styling of a user interface may be modified interactively through
CSS.

Document Object
Model (DOM)

The DOM presents the structure of web pages as a set of programmable objects that
can be manipulated with JavaScript. Scripting the DOM allows an Ajax application to
modify the user interface on the fly, effectively redrawing parts of the page.

XMLHttpRequest
object

The (misnamed) XMLHttpRequest object allows web programmers to retrieve data
from the web server as a background activity. The data format is typically XML, but it
works well with any text-based data. While XMLHttpRequest is the most flexible
general-purpose tool for this job, there are other ways of retrieving data from the
server, too, and we’ll cover them all in this chapter.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The key elements of Ajax 33
We saw in chapter 1 how an Ajax application delivers a complex, functioning
application up front to users, with which they then interact. JavaScript is the glue
that is used to hold this application together, defining the user workflow and
business logic of the application. The user interface is manipulated and refreshed
by using JavaScript to manipulate the Document Object Model (DOM), continu-
ally redrawing and reorganizing the data presented to the users and processing
their mouse- and keyboard-based interactions. Cascading Style Sheets (CSS) pro-
vide a consistent look and feel to the application and a powerful shorthand for
the programmatic DOM manipulation. The XMLHttpRequest object (or a range
of similar mechanisms) is used to talk to the server asynchronously, committing
user requests and fetching up-to-date data while the user works. Figure 2.1 shows
how the technologies fit together in Ajax.

JavaScript
logic

CSS styling

Document
Object
model

Web browser

Define
look and feel

Define
content and

layout

XMLHttpRequest Object

Talk to
web server

Web server

Figure 2.1 The four main components of Ajax: JavaScript defines
business rules and program flow. The Document Object Model and
Cascading Style Sheets allow the application to reorganize its appearance
in response to data fetched in the background from the server by the
XMLHttpRequest object or its close cousins.
Licensed to jonathan zheng <yiyisjun@gmail.com>

34 CHAPTER 2
First steps with Ajax
Three of the four technologies—CSS, DOM, and JavaScript—have been collec-
tively referred to as Dynamic HTML, or DHTML for short. DHTML was the Next
Big Thing around 1997, but not surprisingly in this industry, it never quite lived
up to its initial promise. DHTML offered the ability to create funky, interactive
interfaces for web pages, yet it never overcame the issue of the full-page refresh.
Without going back to talk to the server, there was only so much that we could do.
Ajax makes considerable use of DHTML, but by adding the asynchronous request,
it can extend the longevity of a web page considerably. By going back to the
server while the interface is doing its stuff, without interruption, Ajax makes a
great difference to the end result.

 Rather conveniently, all of these technologies are already preinstalled in most
modern web browsers, including Microsoft’s Internet Explorer; the Mozilla/
Gecko family of browsers, including Firefox, Mozilla Suite, Netscape Navigator,
and Camino; the Opera browser; Apple’s Safari; and its close cousin Konqueror,
from the UNIX KDE desktop. Inconveniently, the implementations of these tech-
nologies are frustratingly different in some of the fine details and will vary from
version to version, but this situation has been improving over the last five years,
and we have ways of coping cleanly with cross-browser incompatibilities.

 Every modern operating system comes with a modern browser preinstalled. So
the vast majority of desktop and laptop computers on the planet are already
primed to run Ajax applications, a situation that most Java or .NET developers
can only dream about. (The browsers present in PDAs and Smartphones generally
offer a greatly cut-down feature list and won’t support the full range of Ajax tech-
nologies, but differences in screen size and input methods would probably be an
issue even if they did. For now, Ajax is principally a technology for desktop and
laptop machines.)

 We’ll begin by reviewing these technologies in isolation and then look at how
they interoperate. If you’re a seasoned web developer, you’ll probably know a lot
of this already, in which case you might like to skip ahead to chapter 3, where we
begin to look at managing the technologies by using design patterns.

 Let’s start off our investigations by looking at JavaScript.

2.2 Orchestrating the user experience with JavaScript

The central player in the Ajax toolkit is undoubtedly JavaScript. An Ajax appli-
cation downloads a complete client into memory, combining data and presenta-
tion and program logic, and JavaScript is the tool used to implement that logic.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Orchestrating the user experience with JavaScript 35
JavaScript is a general-purpose programming language of mixed descent, with a
superficial similarity to the C family of languages.

 JavaScript can be briefly characterized as a loosely typed, interpreted, general-
purpose scripting language. Loosely typed means that variables are not declared
specifically as strings, integers, or objects, and the same variable may be assigned
values of different types. For example, the following is valid code:

 var x=3.1415926;
 x='pi';

The variable x is defined first as a numeric value and reassigned a string value
later.

 Interpreted means that it is not compiled into executable code, but the source
code is executed directly. When deploying a JavaScript application, you place the
source code on the web server, and the source code is transmitted directly across
the Internet to the web browser. It’s even possible to evaluate snippets of code on
the fly:

 var x=eval('7*5');

Here we have defined our calculation as a piece of text, rather than two numbers
and an arithmetic operator. Calling eval()on this text interprets the JavaScript it
contains, and returns the value of the expression. In most cases, this simply slows
the program execution down, but at times the extra flexibility that it brings can
be useful.

 General purpose means that the language is suitable for use with most algo-
rithms and programming tasks. The core JavaScript language contains support
for numbers, strings, dates and times, arrays, regular expressions for text process-
ing, and mathematical functions such as trigonometry and random number gen-
eration. It is possible to define structured objects using JavaScript, bringing
design principles and order to more complex code.

 Within the web browser environment, parts of the browser’s native functional-
ity, including CSS, the DOM, and the XMLHttpRequest objects, are exposed to the
JavaScript engine, allowing page authors to programmatically control the page to
a greater or lesser degree. Although the JavaScript environment that we encoun-
ter in the browser is heavily populated with browser-specific objects, the underly-
ing language is just that, a programming language.

 This isn’t the time or place for a detailed tutorial on JavaScript basics. In
appendix B we take a closer look at the language and outline the fundamental
differences between JavaScript and the C family of languages, including its
Licensed to jonathan zheng <yiyisjun@gmail.com>

36 CHAPTER 2
First steps with Ajax
namesake, Java. JavaScript examples are sprinkled liberally throughout this
book, and several other books already exist that cover the language basics (see
our Resources section at the end of this chapter).

 Within the Ajax technology stack, JavaScript is the glue that binds all the other
components together. Having a basic familiarity with JavaScript is a prerequisite
for writing Ajax applications. Being fluent in JavaScript and understanding its
strengths will allow you to take full advantage of Ajax.

 We’ll move on now to Cascading Style Sheets, which control the visual style of
elements on a web page.

2.3 Defining look and feel using CSS

Cascading Style Sheets are a well-established part of web design, and they find
frequent use in classic web applications as well as in Ajax. A stylesheet offers a
centralized way of defining categories of visual styles, which can then be applied
to individual elements on a page very concisely. In addition to the obvious styling
elements such as color, borders, background images, transparency, and size,
stylesheets can define the way that elements are laid out relative to one another
and simple user interactivity, allowing quite powerful visual effects to be achieved
through stylesheets alone.

 In a classic web application, stylesheets provide a useful way of defining a style
in a single place that can be reused across many web pages. With Ajax, we don’t
think in terms of a rapid succession of pages anymore, but stylesheets still provide
a helpful repository of predefined looks that can be applied to elements dynami-
cally with a minimum of code. We’ll work through a few basic CSS examples in this
section, but first, let’s look at how CSS rules are defined.

 CSS styles a document by defining rules, usually in a separate file that is
referred to by the web page being styled. Style rules can also be defined inside a
web page, but this is generally considered bad practice.

 A style rule consists of two parts: the selector and the style declaration. The selec-
tor specifies which elements are going to be styled, and the style declaration
declares which style properties are going to be applied. Let’s say that we want to
make all our level-1 headings in a document (that is, the <H1> tags) appear red.
We can declare a CSS rule to do this:

 h1 { color: red }

The selector here is very simple, applying to all <H1> tags in the document. The
style declaration is also very simple, modifying a single style property. In practice,
Licensed to jonathan zheng <yiyisjun@gmail.com>

Defining look and feel using CSS 37
both the selector and the style declaration can be considerably more complex.
Let’s look at the variations in each, starting with the selector.

2.3.1 CSS selectors

In addition to defining a type of HTML tag to apply a style to, we can limit the
rule to those within a specific context. There are several ways of specifying the
context: by HTML tag type, by a declared class type, or by an element’s unique ID.

 Let’s look at tag-type selectors first. For example, to apply the above rule
only to <H1> tags that are contained within a <DIV> tag, we would modify our
rule like this:

 div h1 { color: red; }

These are also referred to as element-based selectors, because they decide
whether or not a DOM element is styled based on its element type. We can also
define classes for styling that have nothing to do with the HTML tag type. For
example, if we define a style class called callout, which is to appear in a colored
box, we could write

 .callout { border: solid blue 1px; background-color: cyan }

To assign a style class to an element, we simply declare a class attribute in the
HTML tag, such as

<div>I'll appear as a normal bit of text</div>
<div class='callout'>And I'll appear as a callout!</div>

Elements can be assigned more than one class. Suppose that we define an addi-
tional style class loud as

 .loud { color: orange }

and apply both the styles in a document like so:

 <div class='loud'>I'll be bright orange</div>
 <div class='callout'>I'll appear as a callout</div>
 <div class='callout loud'>
 And I'll appear as an unappealing mixture of both!
 </div>

The third <div> element will appear with orange text in a cyan box with a blue
border. It is also possible to combine CSS styles to create a pleasing and harmoni-
ous design!

 We can combine classes with element-based rules, to define a class that oper-
ates only on particular tag types. For example:
Licensed to jonathan zheng <yiyisjun@gmail.com>

38 CHAPTER 2
First steps with Ajax
 span.highlight { background-color: yellow }

will be applied only to tags with a declared class attribute of highlight.
Other tags, or other types of tag with class='highlight', will be unaffected.

 We can also use these in conjunction with the parent-child selectors to create
very specific rules:

 div.prose span.highlight { background-color: yellow }

This rule will be applied only to tags of class highlight that are nested
within <div> tags of class prose.

 We can specify rules that apply only to an element with a given unique ID, as
specified by the id attribute in the HTML. No more than one element in an
HTML document should have a given ID assigned to it, so these selectors are typ-
ically used to select a single element on a page. To draw attention to a close but-
ton on a page, for example, we might define a style:

 #close { color: red }

CSS also allows us to define styles based on pseudo-selectors. A web browser
defines a limited number of pseudo-selectors. We’ll present a few of the more use-
ful ones here. For example:

 *:first-letter {
 font-size: 500%;
 color: red;
 float: left;
 }

will draw the first letter of any element in a large bold red font. We can tighten up
this rule a little, like this:

 p.illuminated:first-letter {
 font-size: 500%;
 color: red;
 float: left;
 }

The red border effect will now apply only to <p> elements with a declared class of
illuminated. Other useful pseudo-selectors include first-line, and hover, which
modifies the appearance of hyperlinks when the mouse pointer passes over them.
For example, to make a link appear in yellow when under the mouse pointer, we
could write the following rule:

 a:hover{ color:yellow; }

That covers the bases for CSS selectors. We’ve already introduced several style
declarations informally in these examples. Let’s have a closer look at them now.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Defining look and feel using CSS 39
2.3.2 CSS style properties

Every element in an HTML page can be styled in a number of ways. The most
generic elements, such as the <DIV> tag, can have dozens of stylings applied to
them. Let’s look briefly at a few of these.

 The text of an element can be styled in terms of the color, the font size, the
heaviness of the font, and the typeface to use. Multiple options can be specified
for fonts, to allow graceful degradation in situations where a desired font is not
installed on a client machine. To style a paragraph in gray, terminal-style text, we
could define a styling:

 .robotic{
 font-size: 14pt;
 font-family: courier new, courier, monospace;
 font-weight: bold;
 color: gray;
 }

Or, more concisely, we could amalgamate the font elements:

 .robotic{
 font: bold 14pt courier new, courier, monospace;
 color: gray;
 }

In either case, the multiple styling properties are written in a key-value pair nota-
tion, separated by semicolons.

 CSS can define the layout and size (often referred to as the box-model) of an ele-
ment, by specifying margins and padding elements, either for all four sides or for
each side individually:

 .padded{ padding: 4px; }
 .eccentricPadded {
 padding-bottom: 8px;
 padding-top: 2px;
 padding-left: 2px;
 padding-right: 16px;
 margin: 1px;
 }

The dimensions of an element can be specified by the width and height proper-
ties. The position of an element can be specified as either absolute or relative.
Absolutely positioned elements can be positioned on the page by setting the top
and left properties, whereas relatively positioned elements will flow with the rest
of the page.
Licensed to jonathan zheng <yiyisjun@gmail.com>

40 CHAPTER 2
First steps with Ajax
 Background colors can be set to elements using the background-color prop-
erty. In addition, a background image can be set, using the background-image
property:

 .titlebar{ background-image: url(images/topbar.png); }

Elements can be hidden from view by setting either visibility:hidden or
display:none. In the former case, the item will still occupy space on the page, if
relatively positioned, whereas in the latter case, it won’t.

 This covers the basic styling properties required to construct user interfaces
for Ajax applications using CSS. In the following section, we’ll look at an example
of putting CSS into practice.

2.3.3 A simple CSS example

We’ve raced through the core concepts of Cascading Style Sheets. Let’s try put-
ting them into practice now. CSS can be used to create elegant graphic design, but
in an Ajax application, we’re often more concerned with creating user interfaces
that mimic desktop widgets. As a simple example of this type of CSS use,
figure 2.2 shows a folder widget styled using CSS.

 CSS performs two roles in creating the widget that we see on the right in
figure 2.2. Let’s look at each of them in turn.

Using CSS for layout
The first job is the positioning of the elements. The outermost element, repre-
senting the window as a whole, is assigned an absolute position:

Figure 2.2 Using CSS to style a user interface widget. Both screenshots were generated from identical HTML,
with only the stylesheets altered. The stylesheet used on the left retains only the positioning elements,
whereas the stylesheet used to render the right adds in the decorative elements, such as colors and images.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Defining look and feel using CSS 41
div.window{
 position: absolute;
 overflow: auto;
 margin: 8px;
 padding: 0px;
 width: 420px;
 height: 280px;
}

Within the content area, the icons are styled using the float property so as to
flow within the confines of their parent element, wrapping around to a new line
where necessary:

div.item{
 position: relative;
 height: 64px;
 width: 56px;
 float: left;
 padding: 0px;
 margin: 8px;
}

The itemName element, which is nested inside the item element, has the text posi-
tioned below the icon by setting an upper margin as large as the icon graphic:

div.item div.itemName{
 margin-top: 48px;
 font: 10px verdana, arial, helvetica;
 text-align: center;
}

Using CSS for styling
The second job performed by CSS is the visual styling of the elements. The
graphics used by the items in the folder are assigned by class name, for example:

div.folder{
 background:
 transparent url(images/folder.png)
 top left no-repeat;
}
div.file{
 background:
 transparent url(images/file.png)
 top left no-repeat;
}
div.special{
 background:
 transparent url(images/folder_important.png)
 top left no-repeat;
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

42 CHAPTER 2
First steps with Ajax
The background property of the icon styles is set to not repeat itself and be posi-
tioned at the top left of the element, with transparency enabled. (Figure 2.2 is
rendered using Firefox. Transparency of .png images under Internet Explorer is
buggy, with a number of imperfect proposed workarounds available. The forth-
coming Internet Explorer 7 fixes these bugs, apparently. If you need cross-
browser transparent images, we suggest the use of .gif images at present.)

 Individual items declare two style classes: The generic item defines their lay-
out in the container, and a second, more specific one defines the icon to be used.
For example:

<div class='item folder'>
<div class='itemName'>stuff</div>
</div>
<div class='item file'>
<div class='itemName'>shopping list</div>
</div>

All the images in the styling are applied as background images using CSS. The
titlebar is styled using an image as tall as the bar and only 1 pixel wide, repeating
itself horizontally:

div.titlebar{
 background-color: #0066aa;
 background-image: url(images/titlebar_bg.png);
 background-repeat: repeat-x;
 ...
}

The full HTML for this widget is presented in listing 2.1.

<html>
<head>
<link rel='stylesheet' type='text/css'
 href='window.css' />
</head>
<body>
<div class='window'>
 <div class='titlebar'>

 </div>
 <div class='contents'>
 <div class='item folder'>
 <div class='itemName'>Documents</div>
 </div>
 <div class='item folder'>

Listing 2.1 window.html

Link to
stylesheet

Top-level window element

Titlebar
buttons
Licensed to jonathan zheng <yiyisjun@gmail.com>

Defining look and feel using CSS 43
 <div class='itemName'>lost and found</div>
 </div>
 <div class='item folder'>
 <div class='itemName'>stuff</div>
 </div>
 <div class='item file'>
 <div class='itemName'>shopping list</div>
 </div>
 <div class='item file'>
 <div class='itemName'>things.txt</div>
 </div>
 <div class='item special'>
 <div class='itemName'>faves</div>
 </div>
 <div class='item file'>
 <div class='itemName'>chapter 2</div>
 </div>
 </div>
</div>
</body>
</html>

The HTML markup defines the structure of the document, not the look. It also
defines points in the document through which the look can be applied, such as
class names, unique IDs, and even the tag types themselves. Reading the HTML,
we can see how each element relates to the other in terms of containment but not
the eventual visual style. Editing the stylesheet can change the look of this docu-
ment considerably while retaining the structure, as figure 2.2 has demonstrated.
The complete stylesheet for the widget is shown in listing 2.2.

div.window{
 position: absolute;
 overflow: auto;
 background-color: #eeefff;
 border: solid #0066aa 2px;
 margin: 8px;
 padding: 0px;
 width: 420px;
 height: 280px;
}
div.titlebar{
 background-color: #0066aa;
 background-image:
 url(images/titlebar_bg.png);
 background-repeat: repeat-x;

Listing 2.2 window.css

An icon
inside a
window

b Geometry
of element

c Background
texture
Licensed to jonathan zheng <yiyisjun@gmail.com>

44 CHAPTER 2
First steps with Ajax
 color:white;
 border-bottom: solid black 1px;
 width: 100%;
 height: 16px;
 overflow:hidden;
}
span.titleButton{
 position: relative;
 height: 16px;
 width: 16px;
 padding: 0px;
 margin: 0px 1px; 0px 1px;
 float:right;
}
span.titleButton#min{
 background: transparent
 url(images/min.png) top left no-repeat;
}
span.titleButton#max{
 background: transparent
 url(images/max.png) top left no-repeat;
}
span.titleButton#close{
 background: transparent
 url(images/close.png) top left no-repeat;
}
div.contents {
 background-color: #e0e4e8;
 overflow: auto;
 padding: 2px;
 height:240px;
}
div.item{
 position : relative;
 height : 64px;
 width: 56px;
 float: left;
 color : #004488;
 font-size: 18;
 padding: 0px;
 margin: 4px;
}
div.item div.itemName {
 margin-top: 48px;
 font: 10px verdana, arial, helvetica;
 text-align: center;
}
div.folder{
 background: transparent
 url(images/folder.png) top left no-repeat;
}

d Flow layout

e Text placement
Licensed to jonathan zheng <yiyisjun@gmail.com>

Organizing the view using the DOM 45
div.file{
 background: transparent
 url(images/file.png) top left no-repeat;
}
div.special{
 background: transparent
 url(images/folder_important.png)
 top left no-repeat;
}

We’ve already looked at a number of the tricks that we’ve employed in this
stylesheet to tune the look and feel of individual elements. We’ve highlighted a
few more here, to demonstrate the breadth of concerns to which CSS can be
applied: on-screen placement b, texturing elements c, assisting in layout of ele-
ments d, and placing text relative to accompanying graphics e.

 CSS is an important part of the web developer’s basic toolkit. As we’ve dem-
onstrated here, it can be applied just as easily to the types of interfaces that an
Ajax application requires as to the more design-oriented approach of a static
brochure-style site.

2.4 Organizing the view using the DOM

The Document Object Model (DOM) exposes a document (a web page) to the
JavaScript engine. Using the DOM, the document structure, as seen in figure 2.3,
can be manipulated programmatically. This is a particularly useful ability to have
at our disposal when writing an Ajax application. In a classic web application, we
are regularly refreshing the entire page with new streams of HTML from the
server, and we can redefine the interface largely through serving up new HTML.
In an Ajax application, the majority of changes to the user interface will be made
using the DOM. HTML tags in a web page are organized in a tree structure. The
root of the tree is the <HTML> tag, which represents the document. Within this,
the <BODY> tag, which represents the document body, is the root of the visible doc-
ument structure. Inside the body, we find table, paragraph, list, and other tag
types, possibly with other tags inside them.

 A DOM representation of a web page is also structured as a tree, composed of
elements or nodes, which may contain child nodes within them, and so on recur-
sively. The JavaScript engine exposes the root node of the current web page
through the global variable document, which serves as the starting point for all our
DOM manipulations. The DOM element is well defined by the W3C specification.
Licensed to jonathan zheng <yiyisjun@gmail.com>

46 CHAPTER 2
First steps with Ajax
It has a single parent element, zero or more child elements, and any number of
attributes, which are stored as an associative array (that is, by a textual key such as
width or style rather than a numerical index). Figure 2.3 illustrates the abstract
structure of the document shown in listing 2.2, as seen using the Mozilla DOM
Inspector tool (see appendix A for more details).

 The relationship between the elements in the DOM can be seen to mirror that
of the HTML listing. The relationship is two-way. Modifying the DOM will alter
the HTML markup and hence the presentation of the page.

 This provides a top-level view of what the DOM looks like. In the following sec-
tion, we’ll see how the DOM is exposed to the JavaScript interpreter and how to
work with it.

Figure 2.3
The DOM presents an HTML document as a
tree structure, with each element representing a tag
in the HTML markup.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Organizing the view using the DOM 47
2.4.1 Working with the DOM using JavaScript

In any application, we want to modify the user interface as users work, to provide
feedback on their actions and progress. This could range from altering the label
or color of a single element, through popping up a temporary dialog, to replac-
ing large parts of the application screen with an entirely new set of widgets. By far
the most usual is to construct a DOM tree by feeding the browser with declarative
HTML (in other words, writing an HTML web page).

 The document that we showed in listing 2.2 and figure 2.3 is rather large and
complex. Let’s start our DOM manipulating career with a small step. Suppose that
we want to show a friendly greeting to the user. When the page first loads, we
don’t know his name, so we want to be able to modify the structure of the page to
add his name in later, possibly to manipulate the DOM nodes programmatically.
Listing 2.3 shows the initial HTML markup of this simple page.

<html>
<head>
<link rel='stylesheet' type='text/css'
 href='hello.css' />
<script type='text/javascript'
 src='hello.js'></script>
</head>
<body>
<p id='hello'>hello</p>
<div id='empty'></div>
</body>

We have added references to two external resources: a Cascading Style Sheet
b and a file containing some JavaScript code c. We have also declared an
empty <div> element with an ID d, into which we can programmatically add
further elements.

 Let’s look at the resources that we’ve linked to. The stylesheet defines some
simple stylings for differentiating between different categories of item in our list
by modifying the font and color (listing 2.4).

.declared{
 color: red;
 font-family: arial;
 font-weight: normal;

Listing 2.3 Ajax “hello” page

Listing 2.4 hello.css

b Link to stylesheet

c Link to JavaScript

d Empty element
Licensed to jonathan zheng <yiyisjun@gmail.com>

48 CHAPTER 2
First steps with Ajax
 font-size: 16px;
}
.programmed{
 color: blue;
 font-family: helvetica;
 font-weight: bold;
 font-size: 10px;
}

We define two styles, which describe the origin of our DOM nodes. (The names of
the styles are arbitrary. We called them that to keep the example easy to under-
stand, but we could have just as easily called them fred and jim.) Neither of these
style classes is used in the HTML, but we will apply them to elements program-
matically. Listing 2.5 shows the JavaScript to accompany the web page in
listing 2.4. When the document is loaded, we will programmatically style an exist-
ing node and create some more DOM elements programmatically.

window.onload=function(){
 var hello=document.getElementById('hello');
 hello.className='declared';

 var empty=document.getElementById('empty');
 addNode(empty,"reader of");
 addNode(empty,"Ajax in Action!");

 var children=empty.childNodes;
 for (var i=0;i<children.length;i++){
 children[i].className='programmed';
 }

 empty.style.border='solid green 2px';
 empty.style.width="200px";
}
function addNode(el,text){
 var childEl=document.createElement("div");
 el.appendChild(childEl);
 var txtNode=document.createTextNode(text);
 childEl.appendChild(txtNode);
}

The JavaScript code is a bit more involved than the HTML or the stylesheet. The
entry point for the code is the window.onload() function, which will be called pro-
grammatically once the entire page has been loaded. At this point, the DOM tree

Listing 2.5 hello.js

Find element by ID

Style node
directly

Create new element

Create text element
Licensed to jonathan zheng <yiyisjun@gmail.com>

Organizing the view using the DOM 49
has been built, and we can begin to work with it. Listing 2.5 makes use of several
DOM manipulation methods, to alter attributes of the DOM nodes, show and hide
nodes, and even create completely new nodes on the fly. We won’t cover every
DOM manipulation method here—have a look at our resources section for that—
but we’ll walk through some of the more useful ones in the next few sections.

2.4.2 Finding a DOM node

The first thing that we need to do in order to work on a DOM with JavaScript is to
find the elements that we want to change. As mentioned earlier, all that we are
given to start with is a reference to the root node, in the global variable document.
Every node in the DOM is a child, (or grandchild, great-grandchild, and so on) of
document, but crawling down the tree, step by step, could be an arduous process in
a big complicated document. Fortunately, there are some shortcuts. The most
commonly used of these is to tag an element with a unique ID. In the onload()
function in listing 2.5 we want to find two elements: the paragraph element, in
order to style it, and the empty <div> tag, in order to add contents to it. Knowing,
this, we attached unique ID attributes to each in the HTML, thus:

 <p id='hello'>

and

 <div id='empty'></div>

Any DOM node can have an ID assigned to it, and the ID can then be used to
get a programmatic reference to that node in one function call, wherever it is
in the document:

 var hello=document.getElementById('hello');

Note that this is a method of a Document object. In a simple case like this (and
even in many complicated cases), you can reference the current Document object
as document. If you end up using IFrames, which we’ll discuss shortly, then you
have multiple Document objects to keep track of, and you’ll need to be certain
which one you’re querying.

 In some situations, we do want to walk the DOM tree step by step. Since the
DOM nodes are arranged in a tree structure, every DOM node will have no more
than one parent but any number of children. These can be accessed by the
parentNode and childNodes properties. parentNode returns another DOM node
object, whereas childNodes returns a JavaScript array of nodes that can be iter-
ated over; thus:
Licensed to jonathan zheng <yiyisjun@gmail.com>

50 CHAPTER 2
First steps with Ajax
 var children=empty.childNodes;
 for (var i=0;i<children.length;i++){
 ...
 }

A third method worth mentioning allows us to take a shortcut through docu-
ments that we haven’t tagged with unique IDs. DOM nodes can also be
searched for based on their HTML tag type, using getElementsByTagName(). For
example, document.getElementsByTagName("UL") will return an array of all
tags in the document.

 These methods are useful for working with documents over which we have rel-
atively little control. As a general rule, it is safer to use getElementById() than
getElementsByTagName(), as it makes fewer assumptions about the structure and
ordering of the document, which may change independently of the code.

2.4.3 Creating a DOM node

In addition to reorganizing existing DOM nodes, there are cases where we want to
create completely new nodes and add them to the document (say, if we’re creating
a message box on the fly). The JavaScript implementations of the DOM give us
methods for doing that, too.

 Let’s look at our example code (listing 2.5) again. The DOM node with ID
'empty' does indeed start off empty. When the page loads, we created some content
for it dynamically. Our addNode() function uses the standard document.create-
Element() and document.createTextNode() methods. createElement() can be
used to create any HTML element, taking the tag type as an argument, such as

 var childEl=document.createElement("div");

createTextNode() creates a DOM node representing a piece of text, commonly
found nested inside heading, div, paragraph, and list item tags.

 var txtNode=document.createTextNode("some text");

The DOM standard treats text nodes as separate from those representing HTML
elements. They can’t have styles applied to them directly and hence take up much
less memory. The text represented by a text node may, however, be styled by the
DOM element containing it.

 Once the node, of whatever type, has been created, it must be attached to the
document before it is visible in the browser window. The DOM node method
appendChild() is used to accomplish this:

 el.appendChild(childEl);
Licensed to jonathan zheng <yiyisjun@gmail.com>

Organizing the view using the DOM 51
These three methods—createElement(), createTextNode(), and appendChild()—
give us everything that we need to add new structure to a document. Having done
so, however, we will generally want to style it in a suitable way, too. Let’s look at
how we can do this.

2.4.4 Adding styles to your document

So far, we’ve looked at using the DOM to manipulate the structure of a docu-
ment—how one element is contained by another and so on. In effect, it allows us
to reshape the structures declared in the static HTML. The DOM also provides
methods for programmatically modifying the style of elements and reshaping the
structures defined in the stylesheets.

 Each element in a web page can have a variety of visual elements applied to it
through DOM manipulation, such as position, height and width, colors, margins
and borders. Modifying each attribute individually allows for very fine control,
but it can be tedious. Fortunately, the web browser provides us with JavaScript
bindings that allow us to exercise precision where needed through a low-level
interface and to apply styling consistently and easily using CSS classes. Let’s look
at each of these in turn.

The className property
CSS offers a concise way of applying predefined, reusable styles to documents.
When we are styling elements that we have created in code, we can also take advan-
tage of CSS, by using a DOM node’s className property. The following line, for
example, applies the presentation rules defined by the declared class to a node:

 hello.className='declared';

where hello is the reference to the DOM node. This provides an easy and compact
way to assign many CSS rules at once to a node and to manage complex stylings
through stylesheets.

The style property
In other situations, we may want to make a finer-grained change to a particular
element’s style, possibly supplementing styles already applied through CSS.

 DOM nodes also contain an associative array called style, containing all the
fine details of the node’s style. As figure 2.4 illustrates, DOM node styles typically
contain a large number of entries. Under the hood, assigning a className to the
node will modify values in the style array.

 The style array can be manipulated directly. After styling the items in the
empty node, we draw a box around them; thus:
Licensed to jonathan zheng <yiyisjun@gmail.com>

52 CHAPTER 2
First steps with Ajax
 empty.style.border="solid green 2px";
 empty.style.width="200px";

We could just as easily have declared a box class and applied it via the className
property, but this approach can be quicker and simpler in certain circumstances,
and it allows for the programmatic construction of strings. If we want to freely
resize elements to pixel accuracy, for example, doing so by predefining styles for
every width from 1 to 800 pixels would clearly be inefficient and cumbersome.

 Using the above methods, then, we can create new DOM elements and style
them. There’s one more useful tool in our toolbox of content-manipulation tech-
niques that takes a slightly different approach to programmatically writing a web
page. We close this section with a look at the innerHTML property.

Figure 2.4 Inspecting the style attribute of a DOM node in the DOM Inspector. Most values will
not be set explicitly by the user but will be assigned by the rendering engine itself. Note the
scrollbar: we’re seeing only roughly one-quarter of the full list of computed styles.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading data asynchronously using XML technologies 53
2.4.5 A shortcut: Using the innerHTML property

The methods described so far provide low-level control over the DOM API. How-
ever, createElement() and appendChild() provide a verbose API for building a
document and are best suited for situations in which the document being created
follows a regular structure that can be encoded as an algorithm. All popular web
browsers’ DOM elements also support a property named innerHTML, which allows
arbitrary content to be assigned to an element in a very simple way. innerHTML is a
string, representing a node’s children as HTML markup. For example, we can
rewrite our addNode() function to use innerHTML like this:

function addListItemUsingInnerHTML(el,text){
 el.innerHTML+="<div class='programmed'>"+text+"</div>";
}

The <DIV> element and the nested text node can be added in a single statement.
Note also that it is appending to the property using the += operator, not assigning
it directly. Deleting a node using innerHTML would require us to extract and parse
the string. innerHTML is less verbose and suited to relatively simple applications
such as this. If a node is going to be heavily modified by an application, the DOM
nodes presented earlier provide a superior mechanism.

 We’ve now covered JavaScript, CSS, and the DOM. Together, they went under
the name Dynamic HTML when first released. As we mentioned in the introduc-
tion to this chapter, Ajax uses many of the Dynamic HTML techniques, but it is
new and exciting because it throws an added ingredient into the mix. In the next
section, we’ll look at what sets Ajax apart from DHTML—the ability to talk to the
server while the user works.

2.5 Loading data asynchronously
using XML technologies

While working at an application—especially a sovereign one—users will be inter-
acting continuously with the app, as part of the workflow. In chapter 1, we dis-
cussed the importance of keeping the application responsive. If everything locks
up while a lengthy background task executes, the user is interrupted. We dis-
cussed the advantages of asynchronous method calls as a way of improving UI
responsiveness when executing such lengthy tasks, and we noted that, because of
network latency, all calls to the server should be considered as lengthy. We also
noted that under the basic HTTP request-response model, this was a bit of a non-
starter. Classical web applications rely on full-page reloads with every call to the
server leading to frequent interruptions for the user.
Licensed to jonathan zheng <yiyisjun@gmail.com>

54 CHAPTER 2
First steps with Ajax
 Although we have to accept that a document request is blocked until the server
returns its response, we have a number of ways of making a server request look
asynchronous to users so that they can continue working. The earliest attempts at
providing this background communication used IFrames. More recently, the
XMLHttpRequest object has provided a cleaner and more powerful solution. We’ll
look at both technologies here.

2.5.1 IFrames

When DHTML arrived with versions 4 of Netscape Navigator and Microsoft Inter-
net Explorer, it introduced flexible, programmable layout to the web page. A nat-
ural extension of the old HTML Frameset was the IFrame. The I stands for inline,
meaning that it is part of the layout of another document, rather than sitting side
by side as in a frameset. An IFrame is represented as an element in the DOM tree,
meaning that we can move it about, resize it, and even hide it altogether, while
the page is visible. The key breakthrough came when people started to realize
that an IFrame could be styled so as to be completely invisible. This allowed it to
fetch data in the background, while the visible user experience was undisturbed. Sud-
denly, there was a mechanism to contact the server asynchronously, albeit rather a
hacky one. Figure 2.5 illustrates the sequence of events behind this approach.

 Like other DOM elements, an IFrame can be declared in the HTML for a page
or it can be programmatically generated using document.createElement(). In a
simple case, in which we want only a single nonvisible IFrame for loading data
into, we can declare it as part of the document and get a programmatic handle on
it using document.getElementById(), as in listing 2.6.

<html>
<head>
<script type='text/javascript'>
window.onload=function(){
 var iframe=document.getElementById('dataFeed');
 var src='datafeeds/mydata.xml';
 loadDataAsynchronously(iframe,src);
}
function loadDataAsynchronously(iframe,src){
 //...do something amazing!!
}
</script>
</head>
<body>
<!--
...some visible content here...

Listing 2.6 Using an IFrame
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading data asynchronously using XML technologies 55
-->
<iframe
 id='dataFeed'
 style='height:0px;width:0px;'
>
</iframe>
</body>
</html>

The IFrame has been styled as being invisible by setting its width and height to
zero pixels. We could use a styling of display:none, but certain browsers will opti-
mize based on this and not bother to load the document! Note also that we need
to wait for the document to load before looking for the IFrame, by calling get-
ElementById() in the window.onload handler function. Another approach is to
programmatically generate the IFrames on demand, as in listing 2.7. This has the
added advantage of keeping all the code related to requesting the data in one
place, rather than needing to keep unique DOM node IDs in sync between the
script and the HTML.

Document content Requestor Callback function Server

1. Invoke request

2. Quick notify

2a. HTTP request

3. HTTP response

4. Update user interface

Figure 2.5 Sequence of events in an asynchronous communication in a web page.
User action invokes a request from a hidden requester object (an IFrame or
XMLHttpRequest object), which initiates a call to the server asynchronously. The
method returns very quickly, blocking the user interface for only a short period of
time, represented by the height of the shaded area. The response is parsed by a
callback function, which then updates the user interface accordingly.
Licensed to jonathan zheng <yiyisjun@gmail.com>

56 CHAPTER 2
First steps with Ajax
function fetchData(){
 var iframe=document.createElement('iframe');
 iframe.className='hiddenDataFeed';
 document.body.appendChild(iframe);
 var src='datafeeds/mydata.xml';
 loadDataAsynchronously(iframe,src);
}

The use of createElement() and appendChild() to modify the DOM should be
familiar from earlier examples. If we follow this approach rigidly, we will eventu-
ally create a large number of IFrames as the application continues to run. We
need to either destroy the IFrames when we’ve finished with them or implement a
pooling mechanism of some sort.

 Design patterns, which we introduce in chapter 3, can help us to implement
robust pools, queues, and other mechanisms that make a larger-scale application
run smoothly, so we’ll return to this topic in more depth later. In the meantime,
let’s turn our attention to the next set of technologies for making behind-the-
scenes requests to the server.

2.5.2 XmlDocument and XMLHttpRequest objects

IFrames can be used to request data behind the scenes, as we just saw, but it is
essentially a hack, repurposing something that was originally introduced to
display visible content within a page. Later versions of popular web browsers
introduced purpose-built objects for asynchronous data transfer, which, as we will
see, offer some convenient advantages over IFrames.

 The XmlDocument and XMLHttpRequest objects are nonstandard extensions
to the web browser DOM that happen to be supported by the majority of browsers.
They streamline the business of making asynchronous calls considerably, because
they are explicitly designed for fetching data in the background. Both objects
originated as Microsoft-specific ActiveX components that were available as Java-
Script objects in the Internet Explorer browser. Other browsers have since
implemented native objects with similar functionality and API calls. Both perform
similar functions, but the XMLHttpRequest provides more fine-grained control
over the request. We will use that throughout most of this book, but mention Xml-
Document briefly here in case you come across it and wonder how it differs from
XMLHttpRequest. Listing 2.8 shows a simple function body that creates an Xml-
Document object.

Listing 2.7 Creating an IFrame
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading data asynchronously using XML technologies 57
function getXMLDocument(){
 var xDoc=null;
 if (document.implementation
 && document.implementation.createDocument){
 xDoc=document.implementation
 .createDocument("","",null);
 }else if (typeof ActiveXObject != "undefined"){
 var msXmlAx==null;
 try{
 msXmlAx=new ActiveXObject
 ("Msxml2.DOMDocument");
 }catch (e){
 msXmlAx=new ActiveXObject
 ("Msxml.DOMDocument");

 }
 xDoc=msXmlAx;
 }
 if (xDoc==null || typeof xDoc.load=="undefined"){
 xDoc=null;
 }
 return xDoc;
}

The function will return an XmlDocument object with an identical API under most
modern browsers. The ways of creating the document differ considerably, though.

 The code checks whether the document object supports the implementation
property needed to create a native XmlDocument object (which it will find in
recent Mozilla and Safari browsers). If it fails to find one, it will fall back on
ActiveX objects, testing to see if they are supported or unsupported (which is true
only in Microsoft browsers) and, if so, trying to locate an appropriate object. The
script shows a preference for the more recent MSXML version 2 libraries.

NOTE It is possible to ask the browser for vendor and version number informa-
tion, and it is common practice to use this information to branch the
code based on browser type. Such practice is, in our opinion, prone to
error, as it cannot anticipate future versions or makes of browser and can
exclude browsers that are capable of executing a script. In our getXml-
Document() function, we don’t try to guess the version of the browser
but ask directly whether certain objects are available. This approach,
known as object detection, stands a better chance of working in future ver-
sions of browsers, or in unusual browsers that we haven’t explicitly test-
ed, and is generally more robust.

Listing 2.8 getXmlDocument() function

Mozilla/Safari

Newer Internet Explorer

Older Internet Explorer
Licensed to jonathan zheng <yiyisjun@gmail.com>

58 CHAPTER 2
First steps with Ajax
Listing 2.9 follows a similar but slightly simpler route for the XMLHttp-
Request object.

function getXMLHTTPRequest() {
 var xRequest=null;
 if (window.XMLHttpRequest) {
 xRequest=new XMLHttpRequest();
 }else if (typeof ActiveXObject != "undefined"){
 xRequest=new ActiveXObject
 ("Microsoft.XMLHTTP");
 }
 return xRequest;
}

Again, we use object detection to test for support of the native XMLHttpRequest
object and, failing that, for support for ActiveX. In a browser that supports nei-
ther, we will simply return null for the moment. We’ll look at gracefully handling
failure conditions in more detail in chapter 6.

 So, we can create an object that will send requests to the server for us. What do
we do now that we have it?

2.5.3 Sending a request to the server

Sending a request to the server from an XMLHttpRequest object is pretty
straightforward. All we need to do is pass it the URL of the server page that will
generate the data for us. Here’s how it’s done:

function sendRequest(url,params,HttpMethod){
 if (!HttpMethod){
 HttpMethod="POST";
 }
 var req=getXMLHTTPRequest();
 if (req){
 req.open(HttpMethod,url,true);
 req.setRequestHeader
 ("Content-Type",
 "application/x-www-form-urlencoded");
 req.send(params);
 }
}

XMLHttpRequest supports a broad range of HTTP calling semantics, including
optional querystring parameters for dynamically generated pages. (You may
know these as CGI parameters, Forms arguments, or ServletRequest parameters,

Listing 2.9 getXmlHttpRequest() function

Mozilla/Safari

Internet Explorer
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading data asynchronously using XML technologies 59
depending on your server development background.) Let’s quickly review the
basics of HTTP before seeing how our request object supports it.

HTTP—A quick primer
HTTP is such a ubiquitous feature of the Internet that we commonly ignore it.
When writing classic web applications, the closest that we generally get to the
HTTP protocol is to define a hyperlink and possibly set the method attribute on a
form. Ajax, in contrast, opens up the low-level details of the protocol for us to
play with, allowing us to do a few surprising things.

 An HTTP transaction between a browser and a web server consists of a request
by the browser, followed by a response from the server (with some exceptionally
clever, mind-blowingly cool code written by us web developers happening in
between, of course). Both request and response are essentially streams of text,
which the client and server interpret as a series of headers followed by a body.
Think of the headers as lines of an address written on an envelope and the body
as the letter inside. The headers simply instruct the receiving party what to do
with the letter contents.

 An HTTP request is mostly composed of headers, with the body possibly con-
taining some data or parameters. The response typically contains the HTML
markup for the returning page. A useful utility for Mozilla browsers called Live-
HTTPHeaders (see the Resources section at the end of this chapter and appendix
A) lets us watch the headers from requests and responses as the browser works.
Let’s fetch the Google home page and see what happens under the hood.

 The first request that we send contains the following headers:

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0
 (Windows; U; Windows NT 5.0; en-US; rv:1.7)
 Gecko/20040803 Firefox/0.9.3
Accept: text/xml,application/xml,
 application/xhtml+xml,text/html;q=0.9,
 text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: PREF=ID=cabd38877dc0b6a1:TM=1116601572
 :LM=1116601572:S=GD3SsQk3v0adtSBP

The first line tells us which HTTP method we are using. Most web developers are
familiar with GET, which is used to fetch documents, and POST, used to submit
Licensed to jonathan zheng <yiyisjun@gmail.com>

60 CHAPTER 2
First steps with Ajax
HTML forms. The World Wide Web Consortium (W3C) spec includes a few other
common methods, including HEAD, which fetches the headers only for a file; PUT,
for uploading documents to the server; and DELETE, for removing documents.
Subsequent headers do a lot of negotiation, with the client telling the server what
content types, character sets, and so on it can understand. Because I’ve visited
Google before, it also sends a cookie, a short message telling Google who I am.

 The response headers, shown here, also contain quite a lot of information:

HTTP/1.x 302 Found
Location: http://www.google.co.uk/cxfer?c=PREF%3D:
 TM%3D1116601572:S%3DzFxPsBpXhZzknVMF&prev=/
Set-Cookie: PREF=ID=cabd38877dc0b6a1:CR=1:TM=1116601572:
 LM=1116943140:S=fRfhD-u49xp9UE18;
 expires=Sun, 17-Jan-2038 19:14:07 GMT;
 path=/; domain=.google.com
Content-Type: text/html
Server: GWS/2.1
Transfer-Encoding: chunked
Content-Encoding: gzip
Date: Tue, 24 May 2005 17:59:00 GMT
Cache-Control: private, x-gzip-ok=""

The first line indicates the status of the response. A 302 response indicates a redi-
rection to a different page. In addition, another cookie is passed back for this ses-
sion. The content type of the response (aka MIME type) is also declared. A further
request is made on the strength of the redirect instruction, resulting in a second
response with the following headers:

HTTP/1.x 200 OK
Cache-Control: private
Content-Type: text/html
Content-Encoding: gzip
Server: GWS/2.1
Content-Length: 1196
Date: Tue, 24 May 2005 17:59:00 GMT

Status code 200 indicates success, and the Google home page will be attached to
the body of this response for display. The content-type header tells the browser
that it is html.

 Our sendRequest() method is constructed so that the second and third
parameters, which we probably won’t need most of the time, are optional,
defaulting to using POST to retrieve the resource with no parameters passed in
the request body.

 The code in this listing sets the request in motion and will return control
to us immediately, while the network and the server take their own sweet time.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading data asynchronously using XML technologies 61
This is good for responsiveness, but how do we find out when the request
has completed?

2.5.4 Using callback functions to monitor the request

The second part of the equation for handling asynchronous communications is
setting up a reentry point in your code for picking up the results of the call once it
has finished. This is generally implemented by assigning a callback function, that
is, a piece of code that will be invoked when the results are ready, at some unspec-
ified point in the future. The window.onload function that we saw in listing 2.9 is a
callback function.

 Callback functions fit the event-driven programming approach used in most
modern UI toolkits—keyboard presses, mouse clicks, and so on will occur at
unpredictable points in the future, too, and the programmer anticipates them by
writing a function to handle them when they do occur. When coding UI events in
JavaScript, we assign functions to the onkeypress, onmouseover, and similarly
named properties of an object. When coding server request callbacks, we encoun-
ter similar properties called onload and onreadystatechange.

 Both Internet Explorer and Mozilla support the onreadystatechange callback,
so we’ll use that. (Mozilla also supports onload, which is a bit more straightfor-
ward, but it doesn’t give us any information that onreadystatechange doesn’t.) A
simple callback handler is demonstrated in listing 2.10.

var READY_STATE_UNINITIALIZED=0;
var READY_STATE_LOADING=1;
var READY_STATE_LOADED=2;
var READY_STATE_INTERACTIVE=3;
var READY_STATE_COMPLETE=4;
var req;
function sendRequest(url,params,HttpMethod){
 if (!HttpMethod){
 HttpMethod="GET";
 }
 req=getXMLHTTPRequest();
 if (req){
 req.onreadystatechange=onReadyStateChange;
 req.open(HttpMethod,url,true);
 req.setRequestHeader
 ("Content-Type", "application/x-www-form-urlencoded");
 req.send(params);
 }
}

Listing 2.10 Using a callback handler
Licensed to jonathan zheng <yiyisjun@gmail.com>

62 CHAPTER 2
First steps with Ajax
function onReadyStateChange(){
 var ready=req.readyState;
 var data=null;
 if (ready==READY_STATE_COMPLETE){
 data=req.responseText;
 }else{
 data="loading...["+ready+"]";
 }
 //... do something with the data...
}

First, we alter our sendRequest() function to tell the request object what its call-
back handler is, before we send it off. Second, we define the handler function,
which we have rather unimaginatively called onReadyStateChange().

 readyState can take a range of numerical values. We’ve assigned descriptively
named variables to each here, to make our code easier to read. At the moment,
the code is only interested in checking for the value 4, corresponding to comple-
tion of the request.

 Note that we declare the request object as a global variable. Right now, this
keeps things simple while we address the mechanics of the XMLHttpRequest object,
but it could get us into trouble if we were trying to fire off several requests simul-
taneously. We’ll show you how to get around this issue in section 3.1. Let’s put the
pieces together now, to see how to handle a request end to end.

2.5.5 The full lifecycle

We now have enough information to bring together the complete lifecycle of
loading a document, as illustrated in listing 2.11. We instantiate the XMLHttp-
Request object, tell it to load a document, and then monitor that load process
asynchronously using callback handlers. In the simple example, we define a DOM
node called console, to which we can output status information, in order to get a
written record of the download process.

<html>
<head>
<script type='text/javascript'>
var req=null;
var console=null;
var READY_STATE_UNINITIALIZED=0;
var READY_STATE_LOADING=1;
var READY_STATE_LOADED=2;

Listing 2.11 Full end-to-end example of document loading using XMLHttpRequest
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading data asynchronously using XML technologies 63
var READY_STATE_INTERACTIVE=3;
var READY_STATE_COMPLETE=4;
function sendRequest(url,params,HttpMethod){
 if (!HttpMethod){
 HttpMethod="GET";
 }
 req=initXMLHTTPRequest();
 if (req){
 req.onreadystatechange=onReadyState;
 req.open(HttpMethod,url,true);
 req.setRequestHeader
 ("Content-Type", "application/x-www-form-urlencoded");
 req.send(params);
 }
}
function initXMLHTTPRequest(){
 var xRequest=null;
 if (window.XMLHttpRequest){
 xRequest=new XMLHttpRequest();
 } else if (window.ActiveXObject){
 xRequest=new ActiveXObject
 ("Microsoft.XMLHTTP");
 }
 return xRequest;
}
function onReadyState(){
 var ready=req.readyState;
 var data=null;
 if (ready==READY_STATE_COMPLETE){
 data=req.responseText;
 }else{
 data="loading...["+ready+"]";
 }
 toConsole(data);
}
function toConsole(data){
 if (console!=null){
 var newline=document.createElement("div");
 console.appendChild(newline);
 var txt=document.createTextNode(data);
 newline.appendChild(txt);
 }
}
window.onload=function(){
 console=document.getElementById('console');
 sendRequest("data.txt");
}
</script>
</head>
<body>
<div id='console'></div>

Initialize
request
object

Define callback handler

Check readyState
Read response data
Licensed to jonathan zheng <yiyisjun@gmail.com>

64 CHAPTER 2
First steps with Ajax
</body>
</html>

Let’s look at the output of this program in Microsoft Internet Explorer and
Mozilla Firefox, respectively. Note that the sequence of readyStates is different,
but the end result is the same. The important point is that the fine details of the
readyState shouldn’t be relied on in a cross-browser program (or indeed, one that
is expected to support multiple versions of the same browser). Here is the output
in Microsoft Internet Explorer:

loading...[1]
loading...[1]
loading...[3]
Here is some text from the server!

Each line of output represents a separate invocation of our callback handler. It is
called twice during the loading state, as each chunk of data is loaded up, and then
again in the interactive state, at which point control would be returned to the UI
under a synchronous request. The final callback is in the completed state, and the
text from the response can be displayed.

 Now let’s look at the output in Mozilla Firefox version 1.0:

loading...[1]
loading...[1]
loading...[2]
loading...[3]
Here is some text from the server!

The sequence of callbacks is similar to Internet Explorer, with an additional call-
back in the loaded readyState, with value of 2.

 In this example, we used the responseText property of the XMLHttpRequest
object to retrieve the response as a text string. This is useful for simple data, but if
we require a larger structured collection of data to be returned to us, then we can
use the responseXML property. If the response has been allocated the correct
MIME type of text/xml, then this will return a DOM document that we can inter-
rogate using the DOM properties and functions such as getElementById() and
childNodes that we encountered in section 2.4.1.

 These, then, are the building blocks of Ajax. Each brings something useful to
the party, but a lot of the power of Ajax comes from the way in which the parts
combine into a whole. In the following section, we’ll round out our introduction
to the technologies with a look at this bigger picture.
Licensed to jonathan zheng <yiyisjun@gmail.com>

What sets Ajax apart 65
2.6 What sets Ajax apart

While CSS, DOM, asynchronous requests, and JavaScript are all necessary compo-
nents of Ajax, it is quite possible to use all of them without doing Ajax, at least in
the sense that we are describing it in this book.

 We already discussed the differences between the classic web application and
its Ajax counterpart in chapter 1; let’s recap briefly here. In a classic web applica-
tion, the user workflow is defined by code on the server, and the user moves from
one page to another, punctuated by the reloading of the entire page. During
these reloads, the user cannot continue with his work. In an Ajax application, the
workflow is at least partly defined by the client application, and contact is made
with the server in the background while the user gets on with his work.

 In between these extremes are many shades of gray. A web application may
deliver a series of discrete pages following the classic approach, in which each
page cleverly uses CSS, DOM, JavaScript, and asynchronous request objects to
smooth out the user’s interaction with the page, followed by an abrupt halt in
productivity while the next page loads. A JavaScript application may present the
user with page-like pop-up windows that behave like classic web pages at certain
points in the flow. The web browser is a flexible and forgiving environment, and
Ajax and non-Ajax functionality can be intermingled in the same application.

 What sets Ajax apart is not the technologies that it employs but the interac-
tion model that it enables through the use of those technologies. The web-
based interaction model to which we are accustomed is not suited to sovereign
applications, and new possibilities begin to emerge as we break away from that
interaction model.

 There are at least two levels at which Ajax can be used—and several positions
between these as we let go of the classic page-based approach. The simplest strat-
egy is to develop Ajax-based widgets that are largely self-contained and that can
be added to a web page with a few imports and script statements. Stock tickers,
interactive calendars, and chat windows might be typical of this sort of widget.
Islands of application-like functionality are embedded into a document-like web
page (figure 2.6). Most of Google’s current forays into Ajax (see section 1.3) fit
this model. The drop-down box of Google Suggest and the map widget in Google
Maps are both interactive elements embedded into a page.

 If we want to adopt Ajax more adventurously, we can turn this model inside
out, developing a host application in which application-like and document-like
fragments can reside (figure 2.7). This approach is more analogous to a desktop
application, or even a window manager or desktop environment. Google’s GMail
Licensed to jonathan zheng <yiyisjun@gmail.com>

66 CHAPTER 2
First steps with Ajax
fits this model, with individual messages rendering as documents within an inter-
active, application-like superstructure.

 In some ways, learning the technologies is the easy part. The interesting chal-
lenge in developing with Ajax is in learning how to use them together. We are
accustomed to thinking of web applications as storyboards, and we shunt the
user from one page to another following a predetermined script. With application-
like functionality in our web application, we can provide the user with a more
fine-grained handle on the business domain, which can enable a more free-form
problem-solving approach to his work.

WIdget

Data
model

Logic

Logic Data
model

Ajax application

Blah blah blah blah
blah blah blah
blah blah blah blah blah
blah blah

blah blah blah blah

Content 1

Blah blah blah blah
blah blah blah
blah blah blah blah blah
blah blah

blah blah blah blah

Content 2

Figure 2.6
A simple Ajax application will still
work like a web page, with islands of
interactive functionality embedded
in the page.

Blah blah blah blah
blah blah blah
blah blah blah blah blah
blah blah

blah blah blah blah

WIdget 1

Data
model

Logic

WIdget 2

Data
model

Logic

Web page

Blah blah blah blah
blah blah blah
blah blah blah blah blah
blah blah
blah blah blah blah

Blah
blah
blah
blah

Blah blah blah blah
blah blah blah
blah blah blah blah blah

Figure 2.7
In a more complex Ajax application, the
entire application is an interactive
system, into which islands of document-
like content may be loaded or
programmatically declared.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 67
In order to gain the benefits of this greater flexibility, we have to question a lot of
our coding habits. Is an HTML form the only way for a user to input information?
Should we declare all our user interfaces as HTML? Can we contact the server in
response to user interactions such as key presses and mouse movements, as well as
the conventional mouse click? In the fast-paced world of information technology,
we place a large emphasis on learning new skills, but unlearning old habits can be
at least as important.

2.7 Summary

In this chapter, we’ve introduced the four technical pillars of Ajax.
 JavaScript is a powerful general-purpose programming language with a bad

reputation for generating pop-up windows, back-button hacks, and image roll-
overs. Appendix B contains a more detailed description of some of the features of
the language, but from the examples here, you should be able to get a feel for
how it can be used to genuinely enhance usability.

 CSS and the DOM complement one another in providing a clear program-
matic view of the user interface that we’re working with, while keeping the struc-
ture separate from the visual styling. A clean document structure makes
programmatic manipulation of a document much simpler, and maintaining a
separation of responsibilities is important in developing larger Ajax applications,
as we’ll see in chapters 3 and 4.

 We’ve shown how to work with the XMLHttpRequest object and with the older
XmlDocument and IFrame. A lot of the current hype around Ajax praises
XMLHttpRequest as the fashionable way to talk to the server, but the IFrame
offers a different set of functionality that can be exactly what we need at times.
Knowing about both enriches your toolkit. In this chapter, we introduced these
techniques and provided some examples. In chapter 5, we will discuss client/
server communications in more detail.

 Finally, we looked at the way the technological pillars of Ajax can be combined
to create something greater than the sum of its parts. While Ajax can be used in
small doses to add compelling widgets to otherwise static web pages, it can also be
applied more boldly to create a complete user interface within which islands of
static content can be contained. Making this leap from the sidelines to center stage
will require a lot of JavaScript code, however, and that code will be required to run
without fail for longer periods, too. This will require us to approach our code dif-
ferently and look at such issues as reliability, maintainability, and flexibility. In the
next chapter, we look at ways of introducing order into a large-scale Ajax codebase.
Licensed to jonathan zheng <yiyisjun@gmail.com>

68 CHAPTER 2
First steps with Ajax
2.8 Resources

For a deeper understanding of Cascading Style Sheets, we recommend the CSS
Zen Garden (www.csszengarden.com/), a site that restyles itself in a myriad of ways
using nothing but CSS.

 Eric Meyer has also written extensively on CSS; visit his website at www.meyer-
web.com/eric/css/. Blooberry (www.blooberry.com) is another excellent website for
CSS information.

 Early Ajax solutions using IFrames are described at http://developer.apple.
com/internet/webcontent/iframe.html.

 The LiveHttpHeaders extension for Mozilla can be found at http://livehttp-
headers.mozdev.org/

 Danny Goodman’s books on JavaScript are an essential reference for DOM pro-
gramming, and cover the browser environments in great detail: Dynamic HTML:
The Definitive Reference (O’Reilly 2002) and JavaScript Bible (John Wiley 2004).

 The W3Schools website contains some interactive tutorials on JavaScript, for
those who like to learn by doing (www.w3schools.com/js/js_examples_3. asp).
Licensed to jonathan zheng <yiyisjun@gmail.com>

Introducing order to Ajax
This chapter covers
■ Developing and maintaining large Ajax client

codebases
■ Refactoring Ajax JavaScript code
■ Exploring common design patterns used in Ajax

applications
■ Using Model-View-Controller on the server side

of an Ajax app
■ Overview of third-party Ajax libraries
69

Licensed to jonathan zheng <yiyisjun@gmail.com>

70 CHAPTER 3
Introducing order to Ajax
In chapter 2, we covered all the basic technologies that make up an Ajax applica-
tion. With what we’ve learned so far, it’s possible to build that super-duper Ajax-
powered web application that you’ve always dreamed of. It’s also possible to get
into terrible trouble and end up with a tangle of code, HTML markup, and styl-
ing that is impossible to maintain and that mysteriously stops working one day.
Or worse, you end up with an application that continues to work so long as you
don’t breathe near it or make a sudden loud noise. To be in such a situation on a
personal project can be disheartening. To be in such a situation with an
employer’s or paying customer’s site—someone who wants a few tweaks here and
there—can be positively frightening.

 Fortunately, this problem has been endemic since the dawn of computing—
and probably before that! People have developed ways to manage complexity and
to keep increasingly large codebases in working order. In this chapter, we’ll intro-
duce the core tools for keeping on top of your code, allowing you to write and
rewrite your Ajax application to your customer’s heart’s content, and still go
home from work on time.

 Ajax represents a break from the previous use of DHTML technologies not
only in the way the technologies are put together but also in the scale at which
they are used. We’re dealing with much more JavaScript than a classic web appli-
cation would, and the code will often be resident in the browser for a much longer
time. Consequently, Ajax needs to manage complexity in a way that classic
DHTML doesn’t.

 In this chapter, we’ll give an overview of the tools and techniques that can help
you keep your code clean. These techniques are most useful, in our experience,
when developing large, complex Ajax applications. If you want to write only sim-
ple Ajax applications, then we suggest you skip ahead to the example-driven
chapters, starting with chapter 9. If you already know refactoring and design pat-
terns back to front, then you may wish to skim this chapter and move on to the
application of these techniques to Ajax in chapters 4 through 6. Even so, the
groundwork that we lay here is important in adapting these approaches to Java-
Script, so we expect you’ll return here at some point. We also take the opportunity
at the end of this chapter to review the current state of third-party libraries for
Ajax, so if you’re shopping for frameworks to streamline your project, you may
want to check out section 3.5.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Order out of chaos 71
3.1 Order out of chaos

The main tool that we will apply is refactoring, the process of rewriting code to
introduce greater clarity rather than to add new functionality. Introducing greater
clarity can be a satisfying end in itself, but it also has some compelling advantages
that should appeal to the bottom-line, when-the-chips-are-down mentality.

 It is typically easier to add new functionality to well-factored code, to modify
its existing functionality, and to remove functionality from it. In short, it is under-
standable. In a poorly factored codebase, it is often the case that everything does
what the current requirements specify, but the programming team isn’t fully con-
fident as to why it all works.

 Changing requirements, often with short time frames, are a regular part of
most professional coding work. Refactoring keeps your code clean and main-
tainable and allows you to face—and implement—changes in requirements
without fear.

 We already saw some elementary refactoring at work in our examples in
chapter 2, when we moved the JavaScript, HTML, and stylesheets into separate
files. However, the JavaScript is starting to get rather long at 120 lines or so and
is mixing together low-level functionality (such as making requests to the server)
with code that deals specifically with our list object. As we begin to tackle bigger
projects, this single JavaScript file (and single stylesheet, for that matter) will
suffer. The goal that we’re pursuing—creating small, easily readable, easily
changeable chunks of code that address one particular issue—is often called sep-
aration of responsibilities.

 Refactoring often has a second motive, too, of identifying common solutions
and ways of doing things and moving code toward that particular pattern. Again,
this can be satisfying in its own right, but it has a very practical effect. Let’s con-
sider this issue next.

3.1.1 Patterns: creating a common vocabulary

Code conforming to any well-established pattern stands a good chance of work-
ing satisfactorily, simply because it’s been done before. Many of the issues sur-
rounding it have already been thought about and, we hope, addressed. If we’re
lucky, someone’s even written a reusable framework exemplifying a particular way
of doing things.

 This way of doing things is sometimes known as a design pattern. The concept
of patterns was coined in the 1970s to describe solutions to architectural and
planning problems, but it has been borrowed by software development for the
Licensed to jonathan zheng <yiyisjun@gmail.com>

72 CHAPTER 3
Introducing order to Ajax
last ten years or so. Server-side Java has a strong culture of design patterns, and
Microsoft has recently been pushing them strongly for the .NET Framework. The
term often carries a rather forbidding academic aura and is frequently misused in
an effort to sound impressive. At its root, though, a design pattern is simply a
description of a repeatable way of solving a particular problem in software design.
It’s important to note that design patterns give names to abstract technical solu-
tions, making them easier to talk about and easier to understand.

 Design patterns can be important to refactoring because they allow us to suc-
cinctly describe our intended goal. To say that we “pull out these bits of code into
objects that encapsulate the process of performing a user action, and can then
undo everything if we want” is quite a mouthful—and rather a wordy goal to have
in mind while rewriting the code. If we can say that we are introducing the Com-
mand pattern to our code, we have a goal that is both more precise and easier to
talk about.

 If you’re a hardened Java server developer, or an architect of any hue, then
you’re probably wondering what’s new in what we’ve said. If you’ve come from the
trenches of the web design/new media world, you may be thinking that we’re
those weird sorts of control freaks who prefer drawing diagrams to writing real
code. In either case, you may be wondering what this has to do with Ajax. Our
short answer is “quite a lot.” Let’s explore what the working Ajax programmer
stands to gain from refactoring.

3.1.2 Refactoring and Ajax

We’ve already noted that Ajax applications are likely to use more JavaScript code
and that the code will tend to be longer lived.

 In a classic web app, the complex code lives on the server, and design patterns
are routinely applied to the PHP, Java, or .NET code that runs there. With Ajax, we
can look at using the same techniques with the client code.

 There is even an argument for suggesting that JavaScript needs this organiza-
tion more than its rigidly structured counterparts Java and C#. Despite its C-like
syntax, JavaScript is a closer cousin to languages such as Ruby, Python, and even
Common Lisp than it is to Java or C#. It offers a tremendous amount of flexibility
and scope for developing personal styles and idioms. In the hands of a skilled
developer, this can be wonderful, but it also provides much less of a safety net for
the average programmer. Enterprise languages such as Java and C# are designed
to work well with teams of average programmers and rapid turnover of members.
JavaScript is not.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Order out of chaos 73
 The danger of creating tangled, unfathomable JavaScript code is relatively
high, and as we scale up its use from simple web page tricks to Ajax applications,
the reality of this can begin to bite. For this reason, I advocate the use of refactor-
ing in Ajax more strongly than I do in Java or C#, the “safe” languages within
whose communities design patterns have bloomed.

3.1.3 Keeping a sense of proportion

Before we move on, it’s important to say that refactoring and design patterns are
just tools and should be used only where they are actually going to be useful. If
overused, they can induce a condition known as paralysis by analysis, in which
implementation of an application is forestalled indefinitely by design after rede-
sign, in order to increase the flexibility of the structure or accommodate possible
future requirements that may never be realized.

 Design patterns expert Erich Gamma summed this up nicely in a recent inter-
view (see Resources at end of chapter) in which he described a call for help from a
reader who had managed to implement only 21 of the 23 design patterns
described in the seminal Design Patterns book into his application. Just as a devel-
oper wouldn’t struggle to make use of integers, strings, and arrays in every piece
of code that he writes, a design pattern is useful only in particular situations.

 Gamma recommends refactoring as the best way to introduce patterns. Write
the code first in the simplest way that works, and then introduce patterns to solve
common problems as you encounter them. If you’ve already written a lot of code,
or are charged with maintaining someone else’s tangled mess, you may have been
experiencing a sinking, left-out-of-the-party feeling until now. Fortunately, it’s
possible to apply design patterns retroactively to code of any quality. In the next
section, we’ll take some of the rough-and-ready code that we developed in chap-
ter 2 and see what refactoring can do for it.

3.1.4 Refactoring in action

This refactoring thing might sound like a good idea, but the more practical-
minded among you will want to see it working before you buy in. Let’s take a few
moments now to apply a bit of refactoring to the core Ajax functionality that we
developed in the previous chapter, in listing 2.11. To recap the structure of that
code, we had defined a sendRequest() function that fired off a request to the
server. sendRequest() delegated to an initHttpRequest() function to find the
appropriate XMLHttpRequest object and assigned a hard-coded callback func-
tion, onReadyState(), to process the response. The XMLHttpRequest object was
defined as a global variable, allowing the callback function to pick up a reference
Licensed to jonathan zheng <yiyisjun@gmail.com>

74 CHAPTER 3
Introducing order to Ajax
to it. The callback handler then interrogated the state of the request object and
produced some debug information.

 The code in listing 2.11 does what we needed it to but is somewhat difficult to
reuse. Typically when we make a request to the server, we want to parse the
response and do something quite specific to our application with the results. To
plug custom business logic into the current code, we need to modify sections of
the onReadyState() function.

 The presence of the global variable is also problematic. If we want to make sev-
eral calls to the server simultaneously, then we must be able to assign different
callback handlers to each. If we’re fetching a list of resources to update and
another list of resources to discard, it’s important that we know which is which,
after all!

 In object-oriented (OO) programming, the standard solution to this sort of
issue is to encapsulate the required functionality into an object. JavaScript sup-
ports OO coding styles well enough for us to do that. We’ll call our object
ContentLoader, because it loads content from the server. So what should our
object look like? Ideally, we’d be able to create one, passing in a URL to which the
request will be sent. We should also be able to pass a reference to a custom call-
back handler to be executed if the document loads successfully and another to be
executed in case of errors. A call to the object might look like this:

 var loader=new net.ContentLoader('mydata.xml',parseMyData);

where parseMyData is a callback function to be invoked when the document loads
successfully. Listing 3.1 shows the code required to implement the Content-
Loader object. There are a few new concepts here, which we’ll discuss next.

var net=new Object();
net.READY_STATE_UNINITIALIZED=0;
net.READY_STATE_LOADING=1;
net.READY_STATE_LOADED=2;
net.READY_STATE_INTERACTIVE=3;
net.READY_STATE_COMPLETE=4;
net.ContentLoader=function(url,onload,onerror){
 this.url=url;
 this.req=null;
 this.onload=onload;
 this.onerror=(onerror) ? onerror : this.defaultError;
 this.loadXMLDoc(url);
}
net.ContentLoader.prototype={

Listing 3.1 ContentLoader object

b Namespacing object

c Constructor function
Licensed to jonathan zheng <yiyisjun@gmail.com>

Order out of chaos 75
 loadXMLDoc:function(url){
 if (window.XMLHttpRequest){
 this.req=new XMLHttpRequest();
 } else if (window.ActiveXObject){
 this.req=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if (this.req){
 try{
 var loader=this;
 this.req.onreadystatechange=function(){
 loader.onReadyState.call(loader);
 }
 this.req.open('GET',url,true);
 this.req.send(null);
 }catch (err){
 this.onerror.call(this);
 }
 }
 },
 onReadyState:function(){
 var req=this.req;
 var ready=req.readyState;
 if (ready==net.READY_STATE_COMPLETE){
 var httpStatus=req.status;
 if (httpStatus==200 || httpStatus==0){
 this.onload.call(this);
 }else{
 this.onerror.call(this);
 }
 }
 },
 defaultError:function(){
 alert("error fetching data!"
 +"\n\nreadyState:"+this.req.readyState
 +"\nstatus: "+this.req.status
 +"\nheaders: "+this.req.getAllResponseHeaders());
 }
}

The first thing to notice about the code is that we define a single global variable
net b and attach all our other references to that. This minimizes the risk of
clashes in variable names and keeps all the code related to network requests in a
single place.

 We provide a single constructor function for our object c. It has three
arguments, but only the first two are mandatory. In the case of the error han-
dler, we test for null values and provide a sensible default if necessary. The
ability to pass a varying number of arguments to a function might look odd to

d Renamed initXMLHttpRequest function

e Refactored
loadXML
function

f Refactored
sendRequest
function

g Refactored callback
Licensed to jonathan zheng <yiyisjun@gmail.com>

76 CHAPTER 3
Introducing order to Ajax
OO programmers, as might the ability to pass functions as first-class refer-
ences. These are common features of JavaScript. We discuss these language
features in more detail in appendix B.

 We have moved large parts of our initXMLHttpRequest() e and send-
Request() functions f from listing 2.11 into the object’s internals. We've also
renamed the function to reflect its slightly greater scope here as well. It is now
known as loadXMLDoc. d We still use the same techniques to find an XMLHttp-
Request object and to initiate a request, but the user of the object doesn’t need to
worry about it. The onReadyState callback function g should also look largely
familiar from listing 2.11. We have replaced the calls to the debug console with
calls to the onload and onerror functions. The syntax might look a little odd, so
let’s examine it a bit closer. onload and onerror are Function objects, and Func-
tion.call() is a method of that object. The first argument to Function.call()
becomes the context of the function, that is, it can be referenced within the called
function by the keyword this.

 Writing a callback handler to pass into our ContentLoader is quite simple,
then. If we need to refer to any of the ContentLoader’s properties, such as the
XMLHttpRequest or the url, we can simply use this to do so. For example:

function myCallBack(){
 alert(
 this.url
 +" loaded! Here's the content:\n\n"
 +this.req.responseText
);
}

Setting up the necessary “plumbing” requires some understanding of Java-
Script’s quirks, but once the object is written, the end user doesn’t need to
worry about it.

 This situation is often a sign of good refactoring. We’ve tucked away the diffi-
cult bits of code inside the object while presenting an easy-to-use exterior. The
end user is saved from a lot of unnecessary difficulty, and the expert responsible
for maintaining the difficult code has isolated it into a single place. Fixes need
only be applied once, in order to be rolled out across the codebase.

 We’ve covered the basics of refactoring and shown how it can work to our ben-
efit in practice. In the next section, we’ll look at some more common problems in
Ajax programming and see how we can use refactoring to address them. Along
the way, we will discover some useful tricks that we can reuse in subsequent chap-
ters and that you can apply to your own projects as well.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 77
3.2 Some small refactoring case studies

The following sections address some issues in Ajax development and look at
some common solutions to them. In each case, we’ll show you how to refactor to
ease the pain associated with that issue, and then we’ll identify the elements of
the solution that can be reused elsewhere.

 In keeping with an honorable tradition in design patterns literature, we will
present each issue in terms of a problem, the technical solution, and then a dis-
cussion of the larger issues involved.

3.2.1 Cross-browser inconsistencies:
Façade and Adapter patterns

If you ask any web developers—be they coders, designers, graphics artists, or all-
rounders—for their pet peeves in relation to their work, there’s a good chance
that getting their work to display correctly on different browsers will be on their
list. The Web is full of standards for technology, and most browser vendors imple-
ment most of the standards more or less completely most of the time. Sometimes
the standards are vague and open to different interpretations, sometimes the
browser vendors extended the standards in useful but inconsistent ways, and
sometimes the browsers just have good old-fashioned bugs in them.

 JavaScript coders have resorted since the early days to checking in their code
which browser they’re using or to testing whether or not an object exists. Let’s
take a very simple example.

Working with DOM elements
As we discussed in chapter 2, a web page is exposed to JavaScript through the
Document Object Model (DOM), a tree-like structure whose elements corre-
spond to the tags of an HTML document. When manipulating a DOM tree pro-
grammatically, it is quite common to want to find out an element’s position on
the page. Unfortunately, browser vendors have provided various nonstandard
methods for doing so over the years, making it difficult to write fail-safe cross-
browser code to accomplish the task. Listing 3.2—a simplified version of a func-
tion from Mike Foster’s x library (see section 3.5)—shows a comprehensive way
of discovering the pixel position of the left edge of the DOM element e passed in
as an argument.
Licensed to jonathan zheng <yiyisjun@gmail.com>

78 CHAPTER 3
Introducing order to Ajax
function getLeft(e){
 if(!(e=xGetElementById(e))){
 return 0;
 }
 var css=xDef(e.style);
 if (css && xStr(e.style.left)) {
 iX=parseInt(e.style.left);
 if(isNaN(iX)) iX=0;
 }else if(css && xDef(e.style.pixelLeft)) {
 iX=e.style.pixelLeft;
 }
 return iX;
}

Different browsers offer many ways of determining the position of the node via
the style array that we encountered in chapter 2. The W3C CSS2 standard sup-
ports a property called style.left, defined as a string describing value and units,
such as 100px. Units other than pixels may be supported. style.pixelLeft, in
contrast, is numeric and assumes all values to be measured in pixels. pixelLeft is
supported only in Microsoft Internet Explorer. The getLeft() method discussed
here first checks that CSS is supported and then tests both values, trying the W3C
standard first. If no values are found, then a value of zero is returned by default.
Note that we don’t explicitly check for browser names or versions but use the
more robust object-detection technique that we discussed in chapter 2.

 Writing functions like these to accommodate cross-browser peculiarities is a
tedious business, but once it is done, the developer can get on with developing
the application without having to worry about these issues. And with well-tested
libraries such as x, most of the hard work has already been done for us. Having a
reliable adapter function for discovering the on-page position of a DOM element
can speed up the development of an Ajax user interface considerably.

Making requests to the server
We’ve already come across another similar cross-browser incompatibility in chap-
ter 2. Browser vendors have provided nonstandard mechanisms for obtaining the
XMLHttpRequest object used to make asynchronous requests to the server. When
we wanted to load an XML document from the server, we needed to figure out
which of the possibilities to use.

 Internet Explorer will only deliver the goods if we ask for an ActiveX compo-
nent, whereas Mozilla and Safari will play nice if we ask for a native built-in
object. Only the XML loading code itself knew about those differences. Once the

Listing 3.2 getLeft() function
Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 79
XMLHttpRequest object was returned into the rest of the code, it behaved identi-
cally in both cases. Calling code doesn’t need to understand either the ActiveX
or the native object subsystem; it only needs to understand the net.Content-
Loader() constructor.

The Façade pattern
For both getLeft() and new net.ContentLoader(), the code that does the object
detection is ugly and tedious. By defining a function to hide it from the rest of our
code, we are making the rest of the code easier to read and isolating the object-
detection code in a single place. This is a basic principle in refactoring—don’t
repeat yourself, often abbreviated to DRY. If we discover an edge case that our
object-detection code doesn’t handle properly, then fixing it once rolls that
change out to all calls to discover the left coordinate of a DOM element, create an
XML Request object, or whatever else we are trying to do.

 In the language of design patterns, we are using a pattern known as Façade.
Façade is a pattern used to provide a common access point to different imple-
mentations of a service or piece of functionality. The XMLHttpRequest object, for
example, offers a useful service, and our application doesn’t really care how it is
delivered as long as it works (figure 3.1).

 In many cases, we also want to simplify access to a subsystem. In the case of
getting the left-edge coordinate of a DOM element, for example, the CSS spec
provided us with a plethora of choices, allowing the value to be specified in pixels,
points, ems, and other units. This freedom of expression may be more than we
need. The getLeft() function in listing 3.2 will work as long as we are using pix-
els as the unit throughout our layout system. Simplifying the subsystem in this
way is another feature of the Façade pattern.

The Adapter pattern
A closely related pattern is Adapter. In Adapter, we also work with two subsystems
that perform the same function, such as the Microsoft and Mozilla approaches to
getting an XMLHttpRequest object. Rather than constructing a new Façade for
each to use, as we did earlier, we provide an extra layer over one of the subsystems
that presents the same API as the other subsystem. This layer is known as the
Adapter. The Sarissa XML library for Ajax, which we will discuss in section 3.5.1,
uses the Adapter pattern to make Internet Explorer’s ActiveX control look like
the Mozilla built-in XMLHttpRequest. Both approaches are valid and can help to
integrate legacy or third-party code (including the browsers themselves) into your
Ajax project.
Licensed to jonathan zheng <yiyisjun@gmail.com>

80 CHAPTER 3
Introducing order to Ajax
Let’s move on to the next case study, in which we consider issues with JavaScript’s
event-handling model.

3.2.2 Managing event handlers: Observer pattern

We can’t write very much Ajax code without coming across event-based program-
ming techniques. JavaScript user interfaces are heavily event-driven, and the
introduction of asynchronous requests with Ajax adds a further set of callbacks
and events for our application to deal with. In a relatively simple application, an
event such as a mouse click or the arrival of data from the server can be handled
by a single function. As an application grows in size and complexity, though, we
may want to notify several distinct subsystems and even to expose a mechanism
whereby interested parties can sign themselves up for such notification. Let’s
explore an example to see what the issues are.

Calling code

loadXML() function

Implicit XMLHttpRequest interface Implicit XMLHttpRequest interface

Native XMLHttpRequest ActiveX XMLHttpRequest

Figure 3.1 Schematic of the Façade pattern, as it relates to the
XMLHttpRequest object across browsers. The loadXML() function
requires an XMLHttpRequest object, but doesn't care about its actual
implementation. Underlying implementations may offer considerably
more complex HTTP Request semantics, but both are simplified here
to provide the basic functionality required by the calling function.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 81
Using multiple event handlers
It’s common practice when scripting DOM nodes using JavaScript to define the
script in the window.onload function, which is executed after the page (and there-
fore the DOM tree) is fully loaded. Let’s say that we have a DOM element on our
page that will display dynamically generated data fetched from the server at reg-
ular intervals once the page is loaded. The JavaScript that coordinates the data
fetching and the display needs a reference to the DOM node, so it gets it by defin-
ing a window.onload event:

window.onload=function(){
 displayDiv=document.getElementById('display');
}

All well and good. Let’s say that we now want to add a second visual display that
provides alerts from a news feed, for example (see chapter 13 if you’re interested
in implementing this functionality). The code that controls the news feed display
also needs to grab references to some DOM elements on startup. So it defines a
window.onload event handler, too:

window.onload=function(){
 feedDiv=document.getElementById('feeds');
}

We test both sets of code on separate pages and find them both to work fine.
When we put them together, the second window.onload function overwrites the
first, and the data feed fails to display and starts to generate JavaScript errors.
The problem lies in the fact that the window object allows only a single onload
function to be attached to it.

Limitations of a composite event handler
Our second event handler overrides the first one. We can get around this by writ-
ing a single composite function:

window.onload=function(){
 displayDiv=document.getElementById('display');
 feedDiv=document.getElementById('feeds');
}

This works for our current example, but it tangles together code from the data
display and the news feed viewer, which are otherwise unrelated to each other. If
we were dealing with 10 or 20 systems rather than 2, and each needed to get ref-
erences to several DOM elements, then a composite event handler like this would
become hard to maintain. Swapping individual components in and out would
become difficult and error prone, leading to exactly the sort of situation that we
Licensed to jonathan zheng <yiyisjun@gmail.com>

82 CHAPTER 3
Introducing order to Ajax
described in the introduction, where nobody wants to touch the code in case it
should break. Let’s try to refactor a little further, by defining a loader function for
each subsystem:

window.onload=function(){
 getDisplayElements();
 getFeedElements();
}
function getDisplayElements(){
 displayDiv=document.getElementById('display');
}
function getFeedElements(){
 feedDiv=document.getElementById('feeds');
}

This introduces some clarity, reducing our composite window.onload() to a single
line for each subsystem, but the composite function is still a weak point in the
design and is likely to cause us trouble. In the following section, we’ll examine a
slightly more complex but more scalable solution to the problem.

The Observer pattern
It can be helpful sometimes to ask where the responsibility for an action lies. The
composite function approach places responsibility for getting the references to
DOM elements on the window object, which then has to know which subsystems
are present in the current page. Ideally, each subsystem should be responsible for
acquiring its own references. That way, if it is present on a page, it will get them,
and if it isn’t present, it won’t.

 To set the division of responsibility straight, we can allow systems to register
for notification of the onload event happening by passing a function to call when
the window.onload event is fired. Here’s a simple implementation:

window.onloadListeners=new Array();
window.addOnLoadListener(listener){
 window.onloadListeners[window.onloadListeners.length]=listener;
}

When the window is fully loaded, then the window object need only iterate
through its array of listeners and call each one in turn:

window.onload=function(){
 for(var i=0;i<window.onloadListeners.length;i++){
 var func=window.onlloadListeners[i];
 func.call();
 }
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 83
Provided that every subsystem uses this approach, we can offer a much cleaner
way of setting up all the subsystems without tangling them up in one another. Of
course, it takes only one rogue piece of code to directly override window.onload
and the system will break. But we have to take charge of our codebase at some
point to prevent this from happening.

 It’s worth pointing out here that the newer W3C event model also implements
a multiple event handler system. We’ve chosen to build our own here on top of
the old JavaScript event model because implementations of the W3C model aren’t
consistent across browsers. We discuss this in greater detail in chapter 4.

 The design pattern into which our code here is refactored is called Observer.
Observer defines an Observable object, in our case the built-in window object, and
a set of Observers or Listeners that can register themselves with it (figure 3.2).

 With the Observer pattern, responsibility is apportioned appropriately
between the event source and the event handler. Handlers take responsibility for
registering and unregistering themselves. The event source takes responsibility
for maintaining a list of registered parties and firing notifications when the event
occurs. The pattern has a long history of use in event-driven UI programming,
and we’ll return to Observer when we discuss JavaScript events in more detail in
chapter 4. And, as we’ll see, it can also be used in our own code objects independ-
ently of the browser’s mouse and key event processing.

 For now, let’s move on to the next recurring issue that we can solve
through refactoring.

3.2.3 Reusing user action handlers: Command pattern

It may be obvious to say that in most applications, the user is telling (through
mouse clicks and keyboard presses) the app to do something, and the app then
does it. In a simple program, we might present the user with only one way to

Observable

Register

Unregister

Notify

Maintain list
of registered
Observers

Responsibility of Observer Responsibility of Observable

Observer

Figure 3.2
Division of responsibility in the
Observer pattern. Objects wishing to
be notified of an event, the Observers,
can register and unregister themselves
with the event source, Observable,
which will notify all registered parties
when an event occurs.
Licensed to jonathan zheng <yiyisjun@gmail.com>

84 CHAPTER 3
Introducing order to Ajax
perform an action, but in more complex interfaces, we will often want the user to
be able to trigger the same action from several routes.

Implementing a button widget
Let’s say that we have a DOM element styled to look like a button widget that per-
forms a calculation when pressed and updates an HTML table with the result. We
could define a mouse-click event-handler function for the button element that
looks like this:

function buttonOnclickHandler(event){
 var data=new Array();
 data[0]=6;
 data[1]=data[0]/3;
 data[2]=data[0]*data[1]+7;
 var newRow=createTableRow(dataTable);
 for (var i=0;i<data.length;i++){
 createTableCell(newRow,data[i]);
 }
}

We’re assuming here that the variable dataTable is a reference to an existing table
and that the functions createTableRow() and createTableCell() take care of the
details of DOM manipulation for us. The interesting thing here is the calculation
phase, which could, in a real-world application, run to hundreds of lines of code.
We assign this event handler to the button element like so:

buttonDiv.onclick=buttonOnclickHandler;

Supporting multiple event types
Let’s say that we have now supercharged our application with Ajax. We are poll-
ing the server for updates, and we want to perform this calculation if a particular
value is updated from the server, too, and update a different table with the data.
We don’t need to go into the details of setting up a repeated polling of the server
here. Let’s assume that we have a reference to an object called poller. Internally, it
is using an XMLHttpRequest object and has set its onreadystatechange handler to
call an onload function whenever it has finished loading an update from the
server. We could abstract out the calculation and display phases into helper func-
tions, like this:

function buttonOnclickHandler(event){
 var data=calculate();
 showData(dataTable,data);
}
function ajaxOnloadHandler(){
 var data=calculate();
Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 85
 showData(otherDataTable,data);
}
function calculate(){
 var data=new Array();
 data[0]=6;
 data[1]=data[0]/3;
 data[2]=data[0]*data[1]+7;
 return data;
}
function showData(table,data){
 var newRow=createTableRow(table);
 for (var i=0;i<data.length;i++){
 createTableCell(newRow,data[i]);
 }
}
buttonDiv.onclick=buttonOnclickHandler;
poller.onload=ajaxOnloadHandler;

A lot of the common functionality has been abstracted out into the calculate()
and showData() functions, and we’re only repeating ourselves a little in the
onclick and onload handlers.

 We’ve achieved a much better separation between the business logic and the
UI updates. Once again, we’ve stumbled upon a useful repeatable solution. This
time it is known as the Command pattern. The Command object defines some
activity of arbitrary complexity that can be passed around in code easily and
swapped between UI elements easily. In the classic Command pattern for object-
oriented languages, user interactions are wrapped up as Command objects,
which typically derive from a base class or interface. We’ve solved the same prob-
lem in a slightly different way here. Because JavaScript functions are first-class
objects, we can treat them as Command objects directly and still provide the same
level of abstraction.

 Wrapping up everything that the user does as a Command might seem a little
cumbersome, but it has a hidden payoff. When all our user actions are wrapped
up in Command objects, we can easily associate other standard functionality with
them. The most commonly discussed extension is to add an undo() method.
When this is done, the foundations for a generic undo facility across an applica-
tion are laid. In a more complex example, Commands could be recorded in a
stack as they execute, and the user can use the undo button to work back up the
stack, returning the application to previous states (figure 3.3).

 Each new command is placed on the top of the stack, which may be undone
item by item. The user creates a document by a series of write actions. Then she
selects the entire document and accidentally hits the delete button. When she
invokes the undo function, the topmost item is popped from the stack, and its
Licensed to jonathan zheng <yiyisjun@gmail.com>

86 CHAPTER 3
Introducing order to Ajax
undo() method is called, returning the deleted text. A further undo would dese-
lect the text, and so on.

 Of course, using Command to create an undo stack means some extra work
for the developer, in ensuring that the combination of executing and undoing the
command returns the system to its initial state. A working undo feature can be a
strong differentiator between products, however, particularly for applications
that enjoy heavy or prolonged use. As we discussed in chapter 1, that’s exactly the
territory that Ajax is moving into.

 Command objects can also be useful when we need to pass information across
boundaries between subsystems in an application. The network, of course, is just
such a boundary, and we’ll revisit the Command pattern in chapter 5, when we
discuss client/server interactions.

Command stack

Select all

Write para 2

Write para 1

Delete selected

Command stack

Select all

Write para 1

Write para 2

Delete selected

Document preview

Blah blah
blah blah

Blah blah
blah blah
rhubarb
blah

Document preview

Interactions

Undo

Figure 3.3 Using the Command pattern to implement a generic undo stack in a word
processing application. All user interactions are represented as commands, which can be
undone as well as executed.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 87
3.2.4 Keeping only one reference to a resource:
Singleton pattern

In some situations, it is important to ensure that there is only one point of contact
with a particular resource. Again, this is best explained by working with a specific
example, so let’s look at one now.

A simple trading example
Let’s say that our Ajax application manipulates stock market data, allowing us to
trade on the real markets, perform what-if calculations, and run simulation
games over a network against other users. We define three modes for our appli-
cation, named after traffic lights. In real-time mode (green mode), we can buy
and sell stocks on live markets, when they are open, and perform what-if calcula-
tions against stored datasets. When the markets are closed, we revert to analysis-
only mode (red mode) and can still perform the what-if analyses, but we can’t buy
or sell. In simulation mode (amber mode), we can perform all the actions availa-
ble to green mode, but we do so against a dummy dataset rather than interacting
with real stock markets.

 Our client code represents these permutations as a JavaScript object, as
defined here:

var MODE_RED=1;
var MODE_AMBER=2;
var MODE_GREEN=2;
function TradingMode(){
 this.mode=MODE_RED;
}

We can query and set the mode represented in this object and will do so in our
code in many places. We could provide getMode() and setMode() functions that
would check conditions such as whether or not the real markets were open, but
for now let’s keep it simple.

 Let’s say that two of the options open to the user are to buy and sell stocks and
to calculate potential gains and losses from a transaction before undertaking it.
The buy and sell actions will point to different web services depending on the
mode of operation—internal ones in amber mode, our broker’s server in green
mode—and will be switched off in red mode. Similarly, the analyses will be based
on retrieving data feeds on current and recent prices—simulated in amber mode
and live market data in green mode. To know which feeds to point to, both will
refer to a TradingMode object as defined here (figure 3.4).
Licensed to jonathan zheng <yiyisjun@gmail.com>

88 CHAPTER 3
Introducing order to Ajax
It is imperative that both activities point to the same TradingMode object. If our
user is buying and selling in a simulated market but basing her decisions on anal-
ysis of live market data, she will probably lose the game. If she’s buying and sell-
ing real stocks based on analysis of a simulation, she’s apt to lose her job!

 An object of which there is only one instance is sometimes described as a sin-
gleton. We’ll look at how singletons are handled in an object-oriented language
first and then work out a strategy for using them in JavaScript.

Singletons in Java
Singletons are typically implemented in Java-like languages by hiding the object
constructor and providing a getter method, as illustrated in listing 3.3.

public class TradingMode{
 private static TradingMode instance=null;
 public int mode;

Listing 3.3 Singleton TradingMode object in Java

Live trading
server

Simulation
server

Simulation
server

Live trading
server

Live trading
server

Simulation
server

Client

Mode = GREEN

Client

Mode =AMBER

Mode = GREEN

Mode = AMBER

Client

buyOrSell()

analyzeData()

buyOrSell()

analyzeData()

analyzeData()

buyOrSell()

Figure 3.4 In our example Ajax trading application, both buy/sell and analysis functions
determine whether to use real or simulated data based on a TradingMode object’s status,
talking to the simulation server if it is in amber mode and to the live trading server in green
mode. If more than one TradingMode object is present in the system, the system can end up in
an inconsistent state.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Some small refactoring case studies 89
 private TradingMode(){
 mode=MODE_RED;
 }
 public static TradingMode getInstance(){
 if (instance==null){
 instance=new TradingMode();
 }
 return instance;
 }
 public void setMode(int mode){
 ...
 }
}

The Java-based solution makes use of the private and public access modifiers to
enforce singleton behavior. The code

 new TradingMode().setMode(MODE_AMBER);

won’t compile because the constructor is not publicly accessible, whereas the fol-
lowing will:

 TradingMode.getInstance().setMode(MODE_AMBER);

This code ensures that every call is routed to the same TradingMode object. We’ve
used several language features here that aren’t available in JavaScript, so let’s see
how we can get around this.

Singletons in JavaScript
In JavaScript, we don’t have built-in support for access modifiers, but we can
“hide” the constructor by not providing one. JavaScript is prototype-based, with
constructors being ordinary Function objects (see appendix B if you don’t under-
stand what this means). We could write a TradingMode object in the ordinary way:

function TradingMode(){
 this.mode=MODE_RED;
}
TradingMode.prototype.setMode=function(){
}

and provide a global variable as a pseudo-Singleton:

 TradingMode.instance=new TradingMode();

But this wouldn’t prevent rogue code from calling the constructor. On the other
hand, we can construct the entire object manually, without a prototype:

var TradingMode=new Object();
Licensed to jonathan zheng <yiyisjun@gmail.com>

90 CHAPTER 3
Introducing order to Ajax
TradingMode.mode=MODE_RED;
TradingMode.setMode=function(){
 ...
}

We can also define it more concisely like this:

var TradingMode={
 mode:MODE_RED,
 setMode:function(){
 ...
 }
};

Both of these examples will generate an identical object. The first way of writing
it is probably more familiar to Java or C# programmers. We’ve shown the latter
approach as well, because it is often used in the Prototype library and in frame-
works derived from it.

 This solution works within the confines of a single scripting context. If the
script is loaded into a separate IFrame, it will launch its own copy of the singleton.
We can modify this by explicitly specifying that the singleton object be accessed
from the topmost document (in JavaScript, top is always a reference to this docu-
ment), as illustrated in listing 3.4.

Function getTradingMode(){
 if (!top.TradingMode){
 top.TradingMode=new Object();
 top.TradingMode.mode=MODE_RED;
 top.TradingMode.setMode=function(){
 ...
 }
 }
 return top.TradingMode;
}

This allows the script to be safely included in multiple IFrames, while preserving
the uniqueness of the Singleton object. (If you’re planning on supporting a Sin-
gleton across multiple top-level windows, you'll need to investigate top.opener.
Due to constraints of space, we leave that as an exercise for the reader.)

 You’re not likely to have a strong need for singletons when writing UI code, but
they can be extremely useful when modeling business logic in JavaScript. In a tra-
ditional web app, business logic is typically modeled only on the server, but doing
things the Ajax way changes that, and Singleton can be useful to know about.

Listing 3.4 Singleton TradingMode object in JavaScript
Licensed to jonathan zheng <yiyisjun@gmail.com>

Model-View-Controller 91
 This provides a first taste of what refactoring can do for us at a practical level.
The cases that we’ve looked at so far have all been fairly simple, but even so, using
refactoring to clarify the code has helped to remove several weak points that
could otherwise come back to haunt us as the applications grow.

 Along the way, we encountered a few design patterns. In the following section,
we’ll look at a large-scale server-side pattern and see how we can refactor some
initially tangled code toward a cleaner, more flexible state.

3.3 Model-View-Controller

The small patterns that we’ve looked at so far can usefully be applied to specific
coding tasks. Patterns have also been developed for the organization of entire
applications, sometimes referred to as architectural patterns. In this section,
we’re going to look at an architectural pattern that can help us to organize our
Ajax projects in several ways, making them easier to code and easier to maintain.

 Model-View-Controller (MVC) is a way of describing a good separation between
the part of a program that interacts with a user and the part that does the heavy
lifting, number crunching, or other “business end” of the application.

 MVC is typically applied at a large scale, covering entire layers of an applica-
tion or even stretching between the layers. In this chapter, we introduce the pat-
tern and show how to apply it to the web server when serving data to an Ajax
application. In chapter 4, we’ll look at the rather more involved case of applying
it to the JavaScript client application.

 The MVC pattern identifies three roles that a component in the system can ful-
fill. The Model is the representation of the application’s problem domain, the
thing that it is there to work with. A word processor would model a document; a
mapping application would model points on a grid, contour lines, and so on.

 The View is the part of the program that presents things to the user—input
forms, pictures, text, or widgets. The View need not be graphical. In a voice-
driven program, for example, the spoken prompts are the View.

 The golden rule of MVC is that the View and the Model shouldn’t talk to each
other. Taken at face value, that might sound like a pretty dysfunctional program,
but this is where the Controller comes in. When the user presses a button or fills
in a form, the View tells the Controller. The Controller then manipulates the
Model and decides whether the changes in the Model require an update of the
View. If so, it tells the View how to change itself (see figure 3.5).

 The advantage of this is that the Model and View remain loosely coupled,
that is, neither has a deep understanding of the other. Obviously they need to
Licensed to jonathan zheng <yiyisjun@gmail.com>

92 CHAPTER 3
Introducing order to Ajax
know enough to get the job done, but the View knows about the Model only in
very general terms.

 Let’s consider a program for managing inventories. The Controller might
provide the View with a function that returns a list of all product lines matching a
given category ID, but the View knows nothing about how that list was derived. It
may be that version 1 of this program stored the data used to generate the list in
an array in memory or read it from a flat text file. With the second version of the
program, there was a requirement to handle much larger datasets, and a rela-
tional database server was added to the architecture. The implications of this
change on the Model would be significant, and a lot of code would need to be
rewritten. Provided that the Controller could still deliver a list of product lines
matching a category, the impact on the View code would be nil.

 Similarly, the engineers working on the View should be free to improve the
usability of the application without worrying about breaking hidden assumptions
in the Model, so long as they stick to a basic agreement on the interfaces with
which the Controller provides them. By dividing the system into subsystems, MVC
provides an insurance policy against minor changes rippling right across a code-
base and allows the team behind each subsystem to respond quickly without
treading on one another’s toes.

 The MVC pattern is commonly applied to classic web application frameworks
in a particular way, in order to serve up the succession of static pages that compose
the interface. When an Ajax application is up and running and requesting data
from the server, the mechanics of serving up the data are similar to those of a clas-
sic web app. Web server–style MVC can also benefit Ajax applications, and because
it’s well understood, we’ll start here and move on to other more Ajax-specific ways
of working with MVC later.

 If you’re new to web frameworks, this section should provide you with the infor-
mation you need to understand how they can make an Ajax application more

1. Interaction

2. Modify
3. Notify changes

4. Update View

Controller

Model

View

Figure 3.5
The main components of the Model-View-
Controller pattern. The View and Model do
not interact directly but always through the
Controller. The Controller can be thought of
as a thin boundary layer that allows the
Model and View to communicate but
enforces clear separation of the codebase,
improving flexibility and maintainability of
the code over time.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Web server MVC 93
scalable and robust. If, on the other hand, you’re familiar with web-tier tools such
as template engines and Object-Relational Mapping (ORM) tools or with frame-
works such as Struts, Spring, or Tapestry, you’ll probably already know most of what
we’re going to say here. In this case, you might like to skim over this section and
pick up the MVC trail in chapter 4, where we discuss its use in a very different way.

3.4 Web server MVC

Web applications are no stranger to MVC, even the classic page-based variety that
we spend so much time bashing in this book! The very nature of a web application
enforces some degree of separation between the View and the Model, because
they are on different machines. Does a web application inherently follow the MVC
pattern then? Or, put another way, is it possible to write a web application that
tangles the View and the Model together?

 Unfortunately, it is. It’s very easy, and most web developers have probably
done it at some point, the authors included.

 Most proponents of MVC on the Web treat the generated HTML page, and the
code that generates it, as the View, rather than what the user actually sees when
that page renders. In the case of an Ajax application serving data to a JavaScript
client, the View from this perspective is the XML document being returned to the
client in the HTTP response. Separating the generated document from the busi-
ness logic does require a little discipline, then.

3.4.1 The Ajax web server tier without patterns

To illustrate our discussion, let’s develop an example web server tier for an Ajax
application. We’ve already seen the fundamentals of the client-side Ajax code in
chapter 2 and section 3.1.4, and we’ll return to them in chapter 4. Right now,
we’ll concentrate on what goes on in the web server. We’ll begin by coding it in the
simplest way possible and gradually refactor toward the MVC pattern to see how it
benefits our application in terms of its ability to respond to change. First, let’s
introduce the application.

 We have a list of clothes in a clothing store, which are stored in a database, and
we want to query this database and present the list of items to the user, showing an
image, a title, a short description, and a price. Where the item is available in sev-
eral colors or sizes, we want to provide a picker for that, too. Figure 3.6 shows the
main components of this system, namely the database, a data structure represent-
ing a single product, and an XML document to be transmitted to our Ajax client,
listing all the products that match a query.
Licensed to jonathan zheng <yiyisjun@gmail.com>

94 CHAPTER 3
Introducing order to Ajax
Let’s say that the user has just entered the store and is offered a choice between
Menswear, Womenswear, and Children’s clothing. Each product is assigned to
one of these categories by the Category column of the database table named Gar-
ments. A simple piece of SQL to retrieve all relevant items for a search under
Menswear might be

 SELECT * FROM garments WHERE CATEGORY = 'Menswear';

We need to fetch the results of this query and then send them to the Ajax appli-
cation as XML. Let’s see how we can do that.

Generating XML data for the client
Listing 3.5 shows a quick-and-dirty solution to this particular requirement. This
example uses PHP with a MySQL database, but the important thing to note is
the general structure. An ASP or JSP page, or a Ruby script, could be con-
structed similarly.

<?php
header("Content-type: application/xml");
echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n";
$db=mysql_connect("my_db_server","mysql_user");
mysql_select_db("mydb",$db);
$sql="SELECT id,title,description,price,colors,sizes"
 ."FROM garments WHERE category=\"{$cat}\"";
$result=mysql_query($sql,$db);
echo "<garments>\n";
while ($myrow = mysql_fetch_row($result)) {
 printf("<garment id=\"%s\" title=\"%s\">\n"

Listing 3.5 Quick-and-dirty generation of an XML stream from a database query

ORM Template engine Client-side parser

<?xml
version="1.0"?>

1. Database tables
2. Object model 3. XML stream

4. Web browser

Figure 3.6 Main components used to generate an XML feed of product data in
our online shop example. In the process of generating the view, we extract a set
of results from the database, use it to populate data structures representing
individual garments, and then transmit that data to the client as an XML stream.

Tell client we are returning XML

Fetch the
results from
the database

Iterate through resultset
Licensed to jonathan zheng <yiyisjun@gmail.com>

Web server MVC 95
 ."<description>%s</description>\n<price>%s</price>\n",
 $myrow["id"],
 $myrow["title"],
 $myrow["description"],
 $myrow["price"]);
 if (!is_null($myrow["colors"])){
 echo "<colors>{$myrow['colors']}</colors>\n";
 }
 if (!is_null($myrow["sizes"])){
 echo "<sizes>{$myrow['sizes']}</sizes>\n";
 }
 echo "</garment>\n";
}
echo "</garments>\n";
?>

The PHP page in listing 3.5 will generate an XML page for us, looking something
like listing 3.6, in the case where we have two matching products in our database.
Indentation has been added for readability. We’ve chosen XML as the communi-
cation medium between client and server because it is commonly used for this
purpose and because we saw in chapter 2 how to consume an XML document gen-
erated by the server using the XMLHttpRequest object. In chapter 5, we’ll explore
the various other options in more detail.

<garments>
 <garment id="SCK001" title="Golfers' Socks">
 <description>Garish diamond patterned socks. Real wool.
 Real itchy.</description>
 <price>$5.99</price>
 <colors>heather combo,hawaiian medley,wild turkey</colors>
 </garment>
 <garment id="HAT056" title="Deerstalker Cap">
 <description>Complete with big flappy bits.
 As worn by the great detective Sherlock Holmes.
 Pipe is model's own.</description>
 <price>$79.99</price>
 <sizes>S, M, L, XL, egghead</sizes>
 </garment>
</garments>

So, we have a web server application of sorts, assuming that there’s a nice Ajax
front end to consume our XML. Let’s look to the future. Suppose that as our prod-
uct range expands, we want to add subcategories (Smart, Casual, Outdoor, for

Listing 3.6 Sample XML output from listing 3.5
Licensed to jonathan zheng <yiyisjun@gmail.com>

96 CHAPTER 3
Introducing order to Ajax
example) and also a “search by season” function, maybe keyword searching, and a
link to clearance items. All of these features could reasonably be served by a sim-
ilar XML stream. Let’s look at how we might reuse our current code for these pur-
poses and what the barriers might be.

Problems with reusability
There are several barriers to reusing our script as it stands. First, we have hard-
wired the SQL query into the page. If we wanted to search again by category or
keyword, we would need to modify the SQL generation. We could end up with an
ugly set of if statements accumulating over time as we add more search options,
and a growing list of optional search parameters.

 There is an even worse alternative: simply accepting a free-form WHERE clause
in the CGI parameters, that is,

 $sql="SELECT id,title,description,price,colors,sizes"
 ."FROM garments
WHERE ".$sqlWhere;

which we can then call directly from the URL, for example:
 garments.php?sqlWhere=CATEGORY="Menswear"

This solution confuses the Model and the View even further, exposing raw SQL in
the presentation code. It also opens the door to malicious SQL injection attacks,
and, although modern versions of PHP have some built-in defenses against these,
it’s foolish to rely on them.

 Second, we’ve hardwired the XML data format into the page—it’s been buried
in there among the printf and echo statements somewhere. There are several
reasons why we might want to change the data format. Maybe we want to show an
original price alongside the sale price, to try to persuade some poor sap to buy all
those itchy golfing socks that we ordered!

 Third, the database result set itself is used to generate the XML. This may look
like an efficient way to do things initially, but it has two potential problems. We’re
keeping a database connection open all the time that we are generating the XML.
In this case, we’re not doing anything very difficult during that while() loop, so
the connection won’t be too lengthy, but eventually it may prove to be a bottle-
neck. Also, it works only if we treat our database as a flat data structure.

3.4.2 Refactoring the domain model

We’re handling our lists of colors and sizes in a fairly inefficient manner at
present, by storing comma-separated lists in fields in the Garments table. If we
normalize our data in keeping with a good relational model, we ought to have a
Licensed to jonathan zheng <yiyisjun@gmail.com>

Web server MVC 97
separate table of all available colors, and a bridging table linking garments to col-
ors (what the database wonks call a many-to-many relationship). Figure 3.7 illus-
trates the use of a many-to-many relationship of this sort.

 To determine the available colors for our deerstalker hat, we look up the
Garments_to_Colors table on the foreign key garment_id. Relating the color_id
column back to the primary key in the Colors table, we can see that the hat is
available in shocking pink and blueberry but not battleship gray. By running the
query in reverse, we could also use the Garments_to_Colors table to list all gar-
ments that match a given color.

 We’re making better use of our database now, but the SQL required to fetch all
the information begins to get a little hairy. Rather than having to construct elab-
orate join queries by hand, it would be nice to be able to treat our garments as
objects, containing an array of colors and sizes.

Object-relational Mapping tools
Fortunately, there are tools and libraries that can do that for us, known as Object-
Relational Mapping (ORM) tools. An ORM automatically translates between data-
base data and in-memory objects, taking the burden of writing raw SQL off the
developer. PHP programmers might like to take a look at PEAR DB_DataObject,
Easy PHP Data Objects (EZPDO), or Metastorage. Java developers are relatively
spoiled for choice, with Hibernate (also ported to .NET) currently a popular
choice. ORM tools are a big topic, one that we’ll have to put aside for now.

 Looking at our application in MVC terms, we can see that adopting an ORM
has had a happy side effect, in that we have the beginnings of a genuine Model on

Garments_to_Colors

003

003

009

017

175

178

178

183

Garments

deerstalker

fez

beret

003

004

005

Colors

battleship gray

shocking pink

lemon

blueberry

175

176

177

178

Figure 3.7 A many-to-many relationship in a database model. The table
Colors lists all available colors for all garments, and the table Garments
no longer lists any color information.
Licensed to jonathan zheng <yiyisjun@gmail.com>

98 CHAPTER 3
Introducing order to Ajax
our hands. We now can write our XML-generator routine to talk to the Garment
object and leave the ORM to mess around with the database. We’re no longer
bound to a particular database’s API (or its quirks). Listing 3.7 shows the change
in our code after switching to an ORM.

 In this case, we define the business objects (that is, the Model) for our store
example in PHP, using the Pear::DB_DataObject, which requires our classes to
extend a base DB_DataObject class. Different ORMs do it differently, but the point
is that we’re creating a set of objects that we can talk to like regular code, abstract-
ing away the complexities of SQL statements.

require_once "DB/DataObject.php";
class GarmentColor extends DB_DataObject {
 var $id;
 var $garment_id;
 var $color_id;
}
class Color extends DB_DataObject {
 var $id;
 var $name;
}
class Garment extends DB_DataObject {
 var $id;
 var $title;
 var $description;
 var $price;
 var $colors;
 var $category;
 function getColors(){
 if (!isset($this->colors)){
 $linkObject=new GarmentColor();
 $linkObject->garment_id = $this->id;
 $linkObject->find();
 $colors=array();
 while ($linkObject->fetch()){
 $colorObject=new Color();
 $colorObject->id=$linkObject->color_id;
 $colorObject->find();
 while ($colorObject->fetch()){
 $colors[] = clone($colorObject);
 }
 }
 }
 return $colors;
 }
}

Listing 3.7 Object model for our garment store
Licensed to jonathan zheng <yiyisjun@gmail.com>

Web server MVC 99
As well as the central Garment object, we’ve defined a Color object and a method
of the Garment for fetching all Colors that it is available in. Sizes could be imple-
mented similarly but are omitted here for brevity. Because this library doesn’t
directly support many-to-many relationships, we need to define an object type for
the link table and iterate through these in the getColors() method. Nonetheless,
it represents a fairly complete and readable object model. Let’s see how to make
use of that model in our page.

Using the revised model
We’ve generated a data model from our cleaner database structure. Now we need
to use it inside our PHP script. Listing 3.8 revises our main page to use the ORM-
based objects.

<?php
header("Content-type: application/xml");
echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n";
include "garment_business_objects.inc"
$garment=new Garment;
$garment->category = $_GET["cat"];
$number_of_rows = $garment->find();
echo "<garments>\n";
while ($garment->fetch()) {
 printf("<garment id=\"%s\" title=\"%s\">\n"
 ."<description>%s</description>\n<price>%s</price>\n",
 $garment->id,
 $garment->title,
 $garment->description,
 $garment->price);
 $colors=$garment->getColors();
 if (count($colors)>0){
 echo "<colors>\n";
 for($i=0;$i<count($colors);$i++){
 echo "<color>{$colors[$i]}</color>\n";
 }
 echo "</colors>\n";
 }
 echo "</garment>\n";
}
echo "</garments>\n";
?>

We include the object model definitions and then talk in terms of the object
model. Rather than constructing some ad hoc SQL, we create an empty Garment

Listing 3.8 Revised page using ORM to talk to the database
Licensed to jonathan zheng <yiyisjun@gmail.com>

100 CHAPTER 3
Introducing order to Ajax
object and partly populate it with our search criteria. Because the object model is
included from a separate file, we can reuse it for other searches, too. The XML
View is generated against the object model now as well. Our next refactoring step
is to separate the format of the XML from the process of generating it.

3.4.3 Separating content from presentation

Our View code is still rather tangled up with the object, inasmuch as the XML for-
mat is tied up in the object-parsing code. If we’re maintaining several pages, then
we want to be able to change the XML format in only one place and have that
apply everywhere. In the more complex case where we want to maintain more
than one format, say one for short and detailed listings for display to customers
and another for the stock-taking application, then we want to define each format
only once and provide a centralized mapping for them.

Template-based systems
One common approach to this is a template language, that is, a system that
accepts a text document containing some special markup notation that acts as a
placeholder for real variables during execution. PHP, ASP, and JSP are themselves
templating languages of sorts, written as web page content with embedded code,
rather than the code with embedded content seen in a Java servlet or traditional
CGI script. However, they expose the full power of the scripting language to the
page, making it easy to tangle up business logic and presentation.

 In contrast, purpose-built template languages, such as PHP Smarty and
Apache Velocity (a Java-based system, ported to .NET as NVelocity), offer a more
limited ability to code, usually limiting control flow to simple branching (for
example, if) and looping (for example, for, while) constructs. Listing 3.9 shows a
PHP Smarty template for generating our XML.

<?xml version="1.0" encoding="UTF-8" ?>
<garments>
{section name=garment loop=$garments}
 <garment id="{$garment.id}" title="{$garment.title}">
 <description>{$garment.description}</description>
 <price>{$garment.price}</price>
{if count($garment.getColors())>0}
 <colors>
{section name=color loop=$garment.getColors()}
 <color>$color->name</color>
{/section}
 </colors>

Listing 3.9 PHP Smarty template for our XML output
Licensed to jonathan zheng <yiyisjun@gmail.com>

Web server MVC 101
{/if}
 </garment>
{/section}
</garments>

The template expects to see an array variable garments, containing Garment
objects, as input. Most of the template is emitted from the engine verbatim, but
sections inside the curly braces are interpreted as instructions and are either sub-
stituted for variable names or treated as simple branch and loop statements. The
structure of the output XML document is more clearly readable in the template
than when tangled up with the code, as in the body of listing 3.7. Let’s see how to
use the template from our page.

Using the revised view
We’ve moved the definition of our XML format out of our main page into the
Smarty template. As a result, now the main page needs only to set up the tem-
plate engine and pass in the appropriate data. Listing 3.10 shows the changes
needed to do this.

<?php
header("Content-type: application/xml");
include "garment_business_objects.inc";
include "smarty.class.php";
$garment=new DataObjects_Garment;
$garment->category = $_GET["cat"];
$number_of_rows = $garment->find();
$smarty=new Smarty;
$smarty->assign('garments',$garments);
$smarty->display('garments_xml.tpl');
?>

Smarty is very concise to use, following a three-stage process. First, we create a
Smarty engine. Then, we populate it with variables. In this case, there is only one,
but we can add as many as we like—if the user details were stored in session, we
could pass them in, for example, to present a personalized greeting through the
template. Finally, we call display(), passing in the name of the template file.

 We’ve now achieved the happy state of separating out the View from our
search results page. The XML format is defined once and can be invoked in a
few lines of code. The search results page is tightly focused, containing only the

Listing 3.10 Using Smarty to generate the XML
Licensed to jonathan zheng <yiyisjun@gmail.com>

102 CHAPTER 3
Introducing order to Ajax
information that is specific to itself, namely, populating the search parameters
and defining an output format. Remember that we dreamed up a requirement
earlier to be able to swap in alternative XML formats on the fly? That’s easy
with Smarty; we simply define an extra format. It even supports including tem-
plates within other templates if we want to be very structured about creating
minor variations.

 Looking back to the opening discussion about the Model-View-Controller pat-
tern, we can see that we’re now implementing it quite nicely. Figure 3.8 provides a
visual summary of where we are.

 The Model is our collection of domain objects, persisted to the database auto-
matically using our ORM. The View is the template defining the XML format. The
Controller is the “search by category” page, and any other pages that we care to
define, that glue the Model and the View together.

 This is the classic mapping of MVC onto the web application. We’ve worked
through it here in the web server tier of an Ajax application that serves XML doc-
uments, but it’s easy to see how it could also apply to a classic web application
serving HTML pages.

 Depending on the technologies you work with, you’ll encounter variations on
this pattern, but the principle is the same. J2EE enterprise beans abstract the
Model and Controller to the point where they can reside on different servers.
.NET “code-behind” classes delegate the Controller role to page-specific objects,
whereas frameworks such as Struts define a “front controller” that intercepts and
routes all requests to the application. Frameworks such as Apache Struts have
worked this down to a fine art, refining the role of the Controller to route the
user between pages, as well as applying at the single-page level. (In an Ajax
application, we might do this in the JavaScript.) But in all cases, the mapping is

Server

Web browser

PHP
Controller

Smarty

View Model

Figure 3.8
MVC as it is commonly applied in the
web application. The web page/servlet
acts as the Controller and first queries
the Model to get the relevant data. It
then passes this data to the template
file (the View), which generates the
content to be forwarded to the user.
Note that this is a read-only situation.
If we were modifying the Model, the
flow of events would differ slightly, but
the roles would remain the same.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Third-party libraries and frameworks 103
basically the same, and this is how MVC is generally understood in the web appli-
cation world.

 Describing our web architecture using MVC is a useful approach, and it will
continue to serve us well as we move from classic to Ajax-style applications. But it
isn’t the only use to which we can put MVC in Ajax. In chapter 4, we will examine
a variation on the pattern that allows us to reap the advantages of structured
design throughout our application. Before we do that, though, let’s look at
another way of introducing order to our Ajax applications.

 As well as refactoring our own code, we can often rationalize a body of code by
making use of third-party frameworks and libraries. With the growing interest in
Ajax, a number of useful frameworks are emerging, and we conclude this chapter
with a brief review of some of the more popular ones.

3.5 Third-party libraries and frameworks

A goal of most refactoring is reducing the amount of repetition in the codebase,
by factoring details out to a common function or object. If we take this to its log-
ical conclusion, we can wrap up common functionality into libraries, or frame-
works, that can be reused across projects. This reduces the amount of custom
coding needed for a project and increases productivity. Further, because the
library code has already been tested in previous projects, the quality can be
expected to be high.

 We’ll develop a few small JavaScript frameworks in this book that you can reuse
in your own projects. There’s the ObjectBrowser in chapters 4 and 5, the Com-
mandQueue in chapter 5, the notifications frameworks in chapter 6, the Stop-
Watch profiling tools in chapter 8, and the debugging console in appendix A.
We’ll also be refactoring the teaching examples in chapters 9 through 13 at the
end of each chapter, to provide reusable components.

 Of course, we aren’t the only people playing this game, and plenty of Java-
Script and Ajax frameworks are available on the Internet, too. The more estab-
lished of these have the advantage of some very thorough testing by a large pool
of developers.

 In this section, we’ll look at some of the third-party libraries and frameworks
available to the Ajax community. There’s a lot of activity in the Ajax framework
space at the moment, so we can’t cover all the contenders in detail, but we’ll try to
provide you with a taste of what sort of frameworks exist and how you can intro-
duce order into your own projects by using them.
Licensed to jonathan zheng <yiyisjun@gmail.com>

104 CHAPTER 3
Introducing order to Ajax
3.5.1 Cross-browser libraries

As we noted in section 3.2.1, cross-browser inconsistencies are never far away
when writing Ajax applications. A number of libraries fulfill the very useful func-
tion of papering over cross-browser inconsistencies by providing a common
façade against which the developer can code. Some focus on specific pieces of
functionality, and others attempt to provide a more comprehensive program-
ming environment. We list below the libraries of this type that we have found to
be helpful when writing Ajax code.

x library
The x library is a mature, general-purpose library for writing DHTML applica-
tions. First released in 2001, it superseded the author’s previous CBE (Cross-
Browser Extensions) library, using a much simpler programming style. It pro-
vides cross-browser functions for manipulating and styling DOM elements, work-
ing with the browser event model, and includes out-of-the-box support libraries
for animation and drag and drop. It supports Internet Explorer version 4
upward, as well as recent versions of Opera and the Mozilla browsers.

 x uses a simple function-based coding style, taking advantage of JavaScript’s
variable argument lists and loose typing. For example, it wraps the common doc-
ument.getElementById() method, which accepts only strings as input, with a func-
tion that accepts either strings or DOM elements, resolving the element ID if a
string is passed in but returning a DOM element unmodified if that is passed in as
argument. Hence, xGetElementById() can be called to ensure that an argument
has been resolved from ID to DOM node, without having to test whether it’s
already been resolved. Being able to substitute a DOM element for its text ID is
particularly useful when creating dynamically generated code, such as when pass-
ing a string to the setTimeout() method or to a callback handler.

 A similarly concise style is used in the methods for manipulating DOM ele-
ment styling, with the same function acting as both getter and setter. For exam-
ple, the statement

xWidth(myElement)

will return the width of the DOM element myElement, where myElement is either a
DOM element or the ID of a DOM element. By adding an extra argument, like so

xWidth(myElement,420)

we set the width of the element. Hence, to set the width of one element equal to
another, we can write
Licensed to jonathan zheng <yiyisjun@gmail.com>

Third-party libraries and frameworks 105
xWidth(secondElement,xWidth(firstElement))

x does not contain any code for creating network requests, but it is nonetheless a
useful library for constructing the user interfaces for Ajax applications, written in
a clear, understandable style.

Sarissa
Sarissa is a more targeted library than x, and is concerned chiefly with XML
manipulation in JavaScript. It supports Internet Explorer’s MSXML ActiveX com-
ponents (version 3 and up), Mozilla, Opera, Konqueror, and Safari for basic func-
tionality, although some of the more advanced features such as XPath and XSLT
are supported by a smaller range of browsers.

 The most important piece of functionality for Ajax developers is cross-browser
support for the XMLHttpRequest object. Rather than creating a Façade object of
its own, Sarissa uses the Adapter pattern to create a JavaScript-based XML-
HttpRequest object on browsers that don’t offer a native object by that name
(chiefly Internet Explorer). Internally, this object will make use of the ActiveX
objects that we described in chapter 2, but as far as the developer is concerned,
the following code will work on any browser once Sarissa has been imported:

var xhr = new XMLHttpRequest();
xhr.open("GET", "myData.xml");
xhr.onreadystatechange = function(){
 if(xhr.readyState == 4){
 alert(xhr.responseXML);
 }
}
xhr.send(null);

Compare this code with listing 2.11 and note that the API calls are identical to those
of the native XMLHttpRequest object provided by Mozilla and Safari browsers.

 As noted already, Sarissa also provides a number of generic support mecha-
nisms for working with XML documents, such as the ability to serialize arbitrary
JavaScript objects to XML. These mechanisms can be useful in processing the
XML documents returned from an Ajax request to the server, if your project uses
XML as the markup for response data. (We discuss this issue, and the alternatives,
in chapter 5.)

Prototype
Prototype is a general-purpose helper library for JavaScript programming, with
an emphasis on extending the JavaScript language itself to support a more
object-oriented programming style. Prototype has a distinctive style of JavaScript
Licensed to jonathan zheng <yiyisjun@gmail.com>

106 CHAPTER 3
Introducing order to Ajax
coding, based on these added language features. Although the Prototype code
itself can be difficult to read, being far removed from the Java/C# style, using Pro-
totype, and libraries built on top of it, is straightforward. Prototype can be
thought of a library for library developers. Ajax application writers are more
likely to use libraries built on top of Prototype than to use Prototype itself. We’ll
look at some of these libraries in the following sections. In the meantime, a brief
discussion of Prototype’s core features will help introduce its style of coding and
will be useful when we discuss Scriptaculous, Rico, and Ruby on Rails.

 Prototype allows one object to “extend” another by copying all of the parent
object’s properties and methods to the child. This feature is best illustrated by an
example. Let’s say that we define a parent class Vehicle

function Vehicle(numWheels,maxSpeed){
 this.numWheels=numWheels;
 this.maxSpeed=maxSpeed;
}

for which we want to define a specific instance that represents a passenger train.
In our child class we also want to represent the number of carriages and pro-
vide a mechanism for adding and removing them. In ordinary JavaScript, we
could write

var passTrain=new Vehicle(24,100);
passTrain.carriageCount=12;
passTrain.addCarriage=function(){
 this.carriageCount++;
}
passTrain.removeCarriage=function(){
 this.carriageCount--;
}

This provides the required functionality for our passTrain object. Looking at the
code from a design perspective, though, it does little to wrap up the extended
functionality into a coherent unit. Prototype can help us here, by allowing us to
define the extended behavior as an object and then extend the base object with it.
First, we define the extended functionality as an object:

function CarriagePuller(carriageCount){
 this.carriageCount=carriageCount;
 this.addCarriage=function(){
 this.carriageCount++;
 }
 this.removeCarriage=function(){
 this.carriageCount--;
 }
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

Third-party libraries and frameworks 107
Then we merge the two to provide a single object containing all of the required
behavior:

var parent=new Vehicle(24,100);
var extension=new CarriagePuller(12);
var passTrain=Object.extend(parent,extension);

Note that we define the parent and extension objects separately at first and then
mix them together. The parent-child relationship exists between these instances,
not between the Vehicle and CarriagePuller classes. While it isn’t exactly classic
object orientation, it allows us to keep all the code related to a specific function, in
this case pulling carriages, in one place, from which it can easily be reused. While
doing so in a small example like this may seem unnecessary, in larger projects,
encapsulating functionality in such a way is extremely helpful.

 Prototype also provides Ajax support in the form of an Ajax object that can
resolve a cross-browser XMLHttpRequest object. Ajax is extended by the
Ajax.Request type, which can make requests to the server using XMLHttp-
Request, like so:

var req=new Ajax.Request('myData.xml');

The constructor uses a style that we’ll also see in many of the Prototype-based
libraries. It takes an associative array as an optional argument, allowing a wide
range of options to be configured as needed. Sensible default values are provided
for each option, so we need only pass in those objects that we want to override. In
the case of the Ajax.Request constructor, the options array allows post data,
request parameters, HTTP methods, and callback handlers to be defined. A more
customized invocation of Ajax.Request might look like this:

var req=new Ajax.Request(
 'myData.xml',
 {
 method: 'get',
 parameters: { name:'dave',likes:'chocolate,rhubarb' },
 onLoaded: function(){ alert('loaded!'); },
 onComplete: function(){
 alert('done!\n\n'+req.transport.responseText);
 }
 }
);

The options array here has passed in four parameters. The HTTP method is set
to get, because Prototype will default to the HTTP post method. The parameters
array will be passed down on the querystring, because we are using HTTP get. If
we used POST, it would be passed in the request body. onLoaded and onComplete are
Licensed to jonathan zheng <yiyisjun@gmail.com>

108 CHAPTER 3
Introducing order to Ajax
callback event handlers that will be fired when the readyState of the underlying
XMLHttpRequest object changes. The variable req.transport in the onComplete
function is a reference to the underlying XMLHttpRequest object.

 On top of Ajax.Request, Prototype further defines an Ajax.Updater type of
object that fetches script fragments generated on the server and evaluates them.
This follows what we describe as a “script-centric” pattern in chapter 5 and is
beyond the scope of our discussion here.

 This concludes our brief review of cross-browser libraries. Our choice of librar-
ies has been somewhat arbitrary and incomplete. As we have noted, there is a lot
of activity in this space at the moment, and we’ve had to limit ourselves to some of
the more popular or well-established offerings. In the next section, we’ll look at
some of the widget frameworks built on top of these and other libraries.

3.5.2 Widgets and widget suites

The libraries that we’ve discussed so far have provided cross-browser support for
some fairly low-level functionality, such as manipulating DOM elements and fetch-
ing resources from the server. With these tools at our disposal, constructing func-
tional UIs and application logic is certainly simplified, but we still need to do a lot
more work than our counterparts working with Swing, MFC, or Qt, for example.

 Prebuilt widgets, and even complete widget sets for Ajax developers, are start-
ing to emerge. In this section, we’ll look at a few of these—again, more to give a
flavor of what’s out there than to provide a comprehensive overview.

Scriptaculous
The Scriptaculous libraries are UI components built on top of Prototype (see the
previous section). In its current form, Scriptaculous provides two major pieces
of functionality, although it is being actively developed, with several other fea-
tures planned.

 The Effects library defines a range of animated visual effects that can be
applied to DOM elements, to make them change size, position, and transparency.
Effects can be easily combined, and a number of predefined secondary effects are
provided, such as Puff(), which makes an element grow larger and more trans-
parent until it fades away completely. Another useful core effect, called Paral-
lel(), is provided to enable simultaneous execution of multiple effects. Effects
can be a useful way of quickly adding visual feedback to an Ajax user interface, as
we’ll see in chapter 6.

 Invoking a predetermined effect is as simple as calling its constructor, passing
in the target DOM element or its ID as an argument, for example:
Licensed to jonathan zheng <yiyisjun@gmail.com>

Third-party libraries and frameworks 109
new Effect.SlideDown(myDOMElement);

Underlying the effects is the concept of a transition object, which can be param-
eterized in terms of duration and event handlers to be invoked when the transi-
tion ends. Several base transition types, such as linear, sinusoidal, wobble, and
pulse, are provided. Creating a custom effect is simply a matter of combining core
effects and passing in suitable parameters. A detailed discussion of building cus-
tom effects is beyond the scope of this brief overview. We’ll see Scriptaculous
effects in use again in chapter 6, when we develop a notifications system.

 The second feature that Scriptaculous provides is a drag-and-drop library,
through the Sortable class. This class takes a parent DOM element as an argu-
ment and enables drag-and-drop functionality for all its children. Options
passed in to the constructor can specify callback handlers for when the item is
dragged and dropped, types of child elements to be made draggable, and a list
of valid drop targets (that is, elements that will accept the dragged item if the
user lets go of it while mousing over them). Effect objects may also be passed in
as options, to be executed when the item is first dragged, while it is in transit,
and when it is dropped.

Rico
Rico, like Scriptaculous, is based on the Prototype library, and it also provides
some highly customizable effects and drag-and-drop functionality. In addition, it
provides a concept of a Behavior object, a piece of code that can be applied to part
of a DOM tree to add interactive functionality to it. A few example Behaviors are
provided, such as an Accordion widget, which nests a set of DOM elements within
a given space, expanding one at a time. (This style of widget is often referred to as
outlook bar, having been popularized by its use in Microsoft Outlook.)

 Let’s build a simple Rico Accordion widget. Initially, we require a parent DOM
element; each child of the parent will become a pane in the accordion. We define
a DIV element for each panel, with two further DIVs inside that, representing the
header and the body of each panel:

<div id='myAccordion'>
 <div>
 <div>Dictionary Definition</div>
 <div>

 n.A portable wind instrument with a small
 keyboard and free metal reeds that sound when air is
 forced past them by pleated bellows operated by the
 player.
 adj.Having folds or bends like the bellows
Licensed to jonathan zheng <yiyisjun@gmail.com>

110 CHAPTER 3
Introducing order to Ajax
 of an accordion: accordion pleats; accordion blinds.

 </div>
 </div>
 <div>
 <div>A picture</div>
 <div>

 </div>
 </div>
</div>

The first panel provides a dictionary definition for the word accordion and the sec-
ond panel a picture of a monkey playing an accordion (see figure 3.9). Rendered
as it is, this will simply display these two elements one above the other. However,
we have assigned an ID attribute to the top-level DIV element, allowing us to pass
a reference to it to the Accordion object, which we construct like this:

 var outer=$('myAccordion');
 outer.style.width='320px';
 new Rico.Accordion(
 outer,
 { panelHeight:400,
 expandedBg:'#909090',
 collapsedBg:'#404040',
 }
);

The first line looks rather curious. $ is actually a valid JavaScript variable name
and simply refers to a function in the core Prototype library. $() resolves DOM nodes
in a way similar to the x library’s xGetElementById() function that we discussed in
the previous section. We pass a reference to the resolved DOM element to the
Accordion object constructor, along with an array of options, in the standard idiom
for Prototype-derived libraries. In this case, the options simply provide some styl-
ing of the Accordion widget’s visual elements, although callback handler functions
to be triggered when panels are opened or closed can also be passed in here. Fig-
ure 3.9 shows the effect of styling the DOM elements using the Accordion object.
Rico’s Behaviors provide a simple way of creating reusable widgets from common
markup and also separate the content from the interactivity. We’ll explore the
topic of applying good design principles to the JavaScript UI in chapter 4.

 The final feature of the Rico framework to mention is that it provides very
good support for Ajax-style requests to the server, through a global Rico Ajax-
Engine object. The AjaxEngine provides more than just a cross-browser wrapper
around the XMLHttpRequest object. It defines an XML response format that
Licensed to jonathan zheng <yiyisjun@gmail.com>

Third-party libraries and frameworks 111
consists of a number of <response> elements. The engine will automatically
decode these, and it has built-in support for two types of response: those that
directly update DOM elements and those that update JavaScript objects. We’ll
look at a similar mechanism in greater detail in section 5.5.3, when we discuss
client/server interactions in depth. For now, let’s move on to the next type of
framework: one that spans both client and server.

3.5.3 Application frameworks

The frameworks that we have looked at so far are executed exclusively in the browser
and can be served up as static JavaScript files from any web server. The final cat-
egory of frameworks that we will review here are those that reside on the server and
generate at least some of the JavaScript code or HTML markup dynamically.

 These are the most complex of the frameworks that we are discussing here,
and we won’t be able to discuss them in great detail but will give a brief overview
of their features. We will return to the topic of server-side frameworks in
chapter 5.

Figure 3.9 The Rico framework Behaviors allow plain DOM nodes to be styled as interactive
widgets, simply by passing a reference to the top-level node to the Behavior object’s
constructor. In this case, the Accordion object has been applied to a set of DIV elements (left)
to create an interactive menu widget (right), in which mouse clicks open and close the
individual panels.
Licensed to jonathan zheng <yiyisjun@gmail.com>

112 CHAPTER 3
Introducing order to Ajax
DWR, JSON-RPC, and SAJAX
We’ll begin by looking at three small server-side frameworks together, because
they share a common approach, although they are written for different server-
side languages. SAJAX works with a variety of server-side languages, including
PHP, Python, Perl, and Ruby. DWR (which stands for Direct Web Remoting) is a
Java-based framework with a similar approach, exposing methods of objects
rather than standalone functions. JSON-RPC (JavaScript Object Notation-based
Remote Procedure Calls) is also similar in design. It offers support for server-side
JavaScript, Python, Ruby, Perl, and Java.

 All three allow objects defined on the server to expose their methods directly
as Ajax requests. We will frequently have a server-side function that returns a use-
ful result that has to be calculated on the server, say, because it looks up a value
from a database. These frameworks provide a convenient way to access those
functions or methods from the web browser and can be a good way of exposing
the server-side domain model to the web browser code.

 Let’s look at an example using SAJAX, exposing functions defined on the
server in PHP. We’ll use a straightforward example function that simply returns a
string of text, as follows:

<?php
function sayHello(name){
 return("Hello! {$name} Ajax in Action!!!!");
?>

To export this function to the JavaScript tier, we simply import the SAJAX engine
into our PHP and call the sajax_export function:

<?php
require('Sajax.php');
sajax_init();
sajax_export("sayHello");
?>

When we write our dynamic web page, then, we use SAJAX to generate some Java-
Script wrappers for the exported functions. The generated code creates a local
JavaScript function with identical signatures to the server-side function:

<script type='text/javascript'>
<?
 sajax_show_javascript();
?>
...
alert(sayHello("Dave"));
...
</script>
Licensed to jonathan zheng <yiyisjun@gmail.com>

Third-party libraries and frameworks 113
When we call sayHello("Dave") in the browser, the generated JavaScript code will
make an Ajax request to the server, execute the server-side function, and return
the result in the HTTP response. The response will be parsed and the return value
extracted to the JavaScript. The developer need not touch any of the Ajax tech-
nologies; everything is handled behind the scenes by the SAJAX libraries.

 These three frameworks offer a fairly low-level mapping of server-side func-
tions and objects to client-side Ajax calls. They automate what could otherwise be
a tedious task, but they do present a danger of exposing too much server-side
logic to the Internet. We discuss these issues in greater detail in chapter 5.

 The remaining frameworks that we’ll look at in this section take a more sophis-
ticated approach, generating entire UI layers from models declared on the server.
Although they use standard Ajax technologies internally, these frameworks essen-
tially provide their own programming model. As a result, working with these
frameworks is quite different from writing generic Ajax, and we will be able to
provide only a broad overview here.

Backbase
The Backbase Presentation Server provides a rich widget set that binds at run-
time to XML tags embedded in the HTML documents generated by the server.
The principle here is similar to the Rico behavior components, except that Back-
base uses a custom set of XHTML tags to mark up the UI components, rather than
standard HTML tags.

 Backbase provides server-side implementations for both Java and .NET. It is a
commercial product but offers a free community edition.

Echo2
NextApp’s Echo2 framework is a Java-based server engine that generates rich UI
components from a model of the user interface that is declared on the server.
Once launched in the browser, the widgets are fairly autonomous and will handle
user interactions locally using JavaScript or otherwise send requests back to the
server in batches using a request queue similar to the one employed by Rico.

 Echo2 promotes itself as an Ajax-based solution that requires no knowledge of
HTML, JavaScript, or CSS, unless you want to extend the set of components that
are available. In most cases, the development of the client application is done
using only Java. Echo2 is open source, licensed under a Mozilla-style license,
allowing its use in commercial applications.
Licensed to jonathan zheng <yiyisjun@gmail.com>

114 CHAPTER 3
Introducing order to Ajax
Ruby on Rails
Ruby on Rails is a web development framework written in the Ruby program-
ming language. It bundles together solutions for mapping server-side objects to a
database and presenting content using templates, very much in the style of the
server-side MVC that we discussed in section 3.4. Ruby on Rails claims very fast
development of simple to medium websites, since it uses code-generation tech-
niques to generate a lot of common code. It also seeks to minimize the amount of
configuration required to get a live application running.

 In recent versions, Rails has provided strong Ajax support through the Proto-
type library. Prototype and Rails are a natural fit, since the JavaScript code for
Prototype is generated from a Ruby program, and the programming styles are
similar. As with Echo2, using Ajax with Rails does not require a strong knowledge
of Ajax technologies such as JavaScript, but a developer who does understand
JavaScript can extend the Ajax support in new ways.

 This concludes our overview of third-party frameworks for Ajax. As we’ve
already noted, this is currently a fast-moving area, and most of the frameworks
that we have discussed are under active development.

 Many of the libraries and frameworks have their own coding idioms and styles,
too. In writing the code examples for this book, we have sought to provide a feel
for the breadth of Ajax technologies and techniques and have avoided leaning
too heavily on any particular framework. Nonetheless, you will encounter some of
the products that we have discussed here, sprinkled lightly throughout the rest of
the book.

3.6 Summary

In this chapter, we’ve introduced the concept of refactoring as a way of improv-
ing code quality and flexibility. Our first taste of refactoring was to roll up the
XMLHttpRequest object—the very core of the Ajax stack—into a simple, reus-
able object.

 We’ve looked at a number of design patterns that we can apply to solve com-
monly encountered problems when working with Ajax. Design patterns provide a
semiformal way of capturing the knowledge of the programmers who have gone
before us and can help us to refactor toward a concrete goal.

 Façade and Adapter provide useful ways of smoothing over the differences
between varying implementations. In Ajax, these patterns are especially useful in
providing an insulating layer from cross-browser incompatibilities, a major and
longstanding source of worry for JavaScript developers.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Resources 115
 Observer is a flexible pattern for dealing with event-driven systems. We’ll
return to it in chapter 4 when looking at the UI layers of our application. Used
together with Command, which offers a good way of encapsulating user interac-
tions, it is possible to develop a robust framework for handling user input and
providing an undo facility. Command also has its uses in organizing client/server
interactions, as we will see in chapter 5.

 Singleton offers a straightforward way of controlling access to specific
resources. In Ajax, we may usefully use Singleton to control access to the network,
as we will see in chapter 5.

 Finally, we introduced the Model-View-Controller pattern, an architectural
pattern that has a long history (in Internet time, at least!) of use in web applica-
tions. We discussed how the use of MVC can improve the flexibility of a server-side
application through use of an abstracted data layer and a template system.

 Our garment store example also demonstrated the way in which design pat-
terns and refactoring go hand in hand. Creating a perfectly designed piece of
code the first time round is difficult, but refactoring an ugly-but-functional bit of
code such as listing 3.4 to gradually bring in the benefits of design patterns is
possible, and the end results are every bit as good.

 Finally, we looked at third-party libraries and frameworks as another way of
introducing order to an Ajax project. A number of libraries and frameworks are
springing up at present, from simple cross-browser wrappers to complete widget
sets to end-to-end solutions encompassing both client and server. We reviewed
several of the more popular frameworks briefly, and we will return to some of
them in later chapters.

 In the following two chapters, we’ll apply our understanding of refactoring
and design patterns to the Ajax client and then to the client/server communica-
tion system. This will help us to develop a vocabulary and a set of practices that
will make it easier to develop robust and multifeatured web applications.

3.7 Resources

Martin Fowler (with coauthors Kent Beck, John Brant, William Opdyke, and Don
Roberts) wrote the seminal guide to refactoring: Refactoring: Improving the Design
of Existing Code (Addison-Wesley Professional, 1999).

 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known
as “The Gang of Four”) wrote the influential Design Patterns (Addison-Wesley Pro-
fessional, 1995).
Licensed to jonathan zheng <yiyisjun@gmail.com>

116 CHAPTER 3
Introducing order to Ajax
 Gamma later went on to become architect for the Eclipse IDE/platform (see
appendix A), and discusses both Eclipse and design patterns in this recent inter-
view: www.artima.com/lejava/articles/gammadp.html.

 Michael Mahemoff has recently set up a website devoted to cataloging Ajax
design patterns: www.ajaxpatterns.org.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Part 2

Core techniques

Now that you know what Ajax is all about, we’ll cover the core techniques
for designing an application. Our goals are to design code that is flexible,
maintainable, and fun to work with. Chapter 4 looks at ways of getting the cli-
ent code in shape, and keeping the CSS, HTML, and JavaScript out of each
other’s hair. Chapter 5 looks at ways of interacting with the server, and how to
manage communication between the client and server tiers.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

The page as
an application
This chapter covers
■ Organizing complex user interface code
■ Using the Model-View-Controller pattern

with JavaScript
■ Separating presentation from logic for

maintainable code
■ Creating a flexible event-handling mode
■ Generating the user interface directly from

your business objects
119

Licensed to jonathan zheng <yiyisjun@gmail.com>

120 CHAPTER 4
The page as an application
In chapters 1 and 2 we covered the basic principles of Ajax, from both a usability
and a technology perspective. In chapter 3 we touched on the notion of creating
maintainable code through refactoring and design patterns. In the examples that
we’ve looked at so far, this may have seemed like overkill, but as we explore the
subject of Ajax programming in more depth, they will prove themselves to be
indispensable tools.

 In this chapter and the next, we discuss the details of building a larger, scal-
able Ajax client, and the architectural principles needed to make it work. This
chapter looks at the coding of the client itself, drawing heavily on the Model-
View-Controller (MVC) pattern that we discussed in chapter 3. We’ll also encoun-
ter the Observer and other smaller patterns along the way. Chapter 5 will look at
the relationship between the client and the server.

4.1 A different kind of MVC

In chapter 3, we presented an example of refactoring a simple garment store
application to conform to the MVC pattern. This is the context in which most web
developers will have come across MVC before, with the Model being the domain
model on the server, the View the generated content sent to the client, and the
Controller a servlet or set of pages defining the workflow of the application.

 However, MVC had its origins in desktop application development, and there
are several other places in an Ajax application where it can serve us well too. Let’s
have a look at them now.

4.1.1 Repeating the pattern at different scales

The classic web MVC model describes the entire application in coarse-grained
detail. The entire generated data stream is the View. The entire CGI or servlet
layer is the Controller, and so on.

 In desktop application development, MVC patterns are often applied at a
much finer scale, too. Something as simple as a pushbutton widget can use MVC:

■ The internal representation of states—pressed, unpressed, inactive, for
example—is the Model. An Ajax widget would typically implement this as
a JavaScript object.

■ The painted-on-screen widget—composed of Document Object Model
(DOM) nodes, in the case of an Ajax UI—with modifications for different
states, highlights, and tooltips, is the View.
Licensed to jonathan zheng <yiyisjun@gmail.com>

A different kind of MVC 121
■ The internal code for relating the two is the Controller. The event-handler
code (that is, what happens in the larger application when the user presses
the button) is also a Controller, but not the Controller for this View and
Model. We’ll get to that shortly.

A pushbutton in isolation will have very little behavior, state, or visible variation,
so the payback for using MVC here is relatively small. If we look at a more compli-
cated widget component, such as a tree or a table, however, the overall system is
complicated enough to benefit from a clean MVC-based design more thoroughly.

 Figure 4.1 illustrates MVC applied to a tree widget. The Model consists of tree
nodes, each with a list of child nodes, an open/closed status, and a reference to
some business object, representing files and directories in a file explorer, say. The
View consists of the icons and lines painted onto the widget canvas. The Control-
ler handles user events, such as opening and closing nodes and displaying pop-
up menus, and also triggering graphical update calls for particular nodes, to
allow the View to refresh itself incrementally.

 That’s one way of applying MVC outside of the more familiar web server sce-
nario. But we’re not finished yet. Let’s turn our attention to the web browser next.

Figure 4.1
Model-View-Controller applied
to the internal functioning of a
tree widget. The view consists of
a series of painted-on-screen
elements composed of DOM
elements. Behind the scenes,
the tree structure is modeled as
a series of JavaScript objects.
Controller code mediates
between the two.
Licensed to jonathan zheng <yiyisjun@gmail.com>

http://ripcord.co.nz/behaviour/
http://ripcord.co.nz/behaviour/

122 CHAPTER 4
The page as an application
4.1.2 Applying MVC in the browser

We’ve focused on the small details of our application. We can also zoom out our
perspective, to consider the entire JavaScript application that is delivered to the
browser on startup. This, too, can be structured to follow the MVC pattern, and it
will benefit from clear separation of concerns if it is.

 At this level, the Model consists of the business domain objects, the View is the
programmatically manipulated page as a whole, and the Controller is a combina-
tion of all the event handlers in the code that link the UI to the domain objects.
Figure 4.2 illustrates the MVC operating at this level. This is perhaps the most
important use of MVC for an Ajax developer, because it is a natural fit to the Ajax
rich client application. We’ll examine the details of such use of the pattern, and
what it buys us, in the remainder of the chapter.

 If you think back to the conventional web MVC that we discussed in chapter 3
as well, you’ll remember that we have at least three layers of MVC within a typical
Ajax application, each performing different roles within the lifecycle of the appli-
cation and each contributing to clean, well-organized code. Figure 4.3 illustrates

Figure 4.2 Model-View-Controller applied to the Ajax client application as a
whole. The Controller at this level is the code that links the UI to the business
objects in the JavaScript.
Licensed to jonathan zheng <yiyisjun@gmail.com>

A different kind of MVC 123
how these MVC patterns at different scales are nested within each other in the
application architecture.

 So, what does this mean to us when we’re working on the code? In the follow-
ing sections, we’ll take a more practical look at using MVC to define the structure
of our JavaScript application, how it will affect the way we write code, and what
the benefits will be. Let’s start with a look at the View.

Figure 4.3 Nested MVC architecture, in which the pattern repeats
itself at different scales. At the outermost level, we can see the
pattern defining the workflow of the application as a whole, with the
model residing on the web server. At a smaller scale, the pattern is
replicated within the client application and, at a smaller scale than
that, within individual widgets in the client application.
Licensed to jonathan zheng <yiyisjun@gmail.com>

124 CHAPTER 4
The page as an application
4.2 The View in an Ajax application

From the position of the JavaScript application delivered to the browser when the
application starts up, the View is the visible page, consisting of the DOM elements
that are rendered by HTML markup or through programmatic manipulation.
We’ve already shown how to manipulate the DOM programmatically in chapter 2.

 According to MVC, our View has two main responsibilities. It has to provide a
visible interface for the user to trigger events from, that is, to talk to the Control-
ler. It also needs to update itself in response to changes in the Model, usually
communicated through the Controller again.

 If the application is being developed by a team, the View will probably be the
area subject to the most contention. Designers and graphic artists will be involved,
as will programmers, particularly as we explore the scope for interactivity in an
Ajax interface. Asking designers to write code, or programmers to get involved in
the aesthetics of an application, is often a bad idea. Even if you’re providing both
roles, it can be helpful to separate them, in order to focus on one at a time.

 We showed in our overview of server MVC how code and presentation could
become intertwined, and we separated them out using a template system. What
are the options available to us here on the browser?

 In chapter 3, we demonstrated how to structure our web pages so that the CSS,
HTML, and JavaScript are defined in separate files. In terms of the page itself,
this split follows MVC, with the stylesheet being the View and the HTML/DOM
being the model (a Document Object Model). From our current perspective,
though, the page rendering is a black box, and the HTML and CSS together
should be treated as the View. Keeping them separate is still a good idea, and sim-
ply by moving the JavaScript out into a separate file we have started to keep the
designers and the programmers off each other’s backs. This is just a start, how-
ever, as you’ll see.

4.2.1 Keeping the logic out of the View

Writing all our JavaScript in a separate file is a good start for enforcing separation
of the View, but even with this in place, we can entangle the View with the logic
roles (that is, Model and Controller) without having to try too hard. If we write
JavaScript event handlers inline, such as

 <div class='importButton'
 onclick='importData("datafeed3.xml", mytextbox.value);'/>
Licensed to jonathan zheng <yiyisjun@gmail.com>

The View in an Ajax application 125
then we are hard-coding business logic into the View. What is datafeed3? What
does the value of mytextbox have to do with it? Why does importData() take two
arguments, and what do they mean? The designer shouldn’t need to know
these things.

 importData() is a business logic function. The View and the Model shouldn’t
talk to one another directly, according to the MVC canon, so one solution is to
separate them out with an extra layer of indirection. If we rewrite our DIV tag as

 <div class='importButton' onclick='importFeedData()'/>

and define an event handler like this

 function importFeedData(event){
 importData("datafeed3.xml", mytextbox.value);
 }

then the arguments are encapsulated within the importFeedData() function,
rather than an anonymous event handler. This allows us to reuse that functional-
ity elsewhere, keeping the concerns separate and the code DRY (at the risk of
repeating myself, DRY means “don’t repeat yourself ”).

 The Controller is still embedded in the HTML, however, which might make it
hard to find in a large application.

 To keep the Controller and the View separate, we can attach the event pro-
grammatically. Rather than declare an event handler inline, we can specify a
marker of some sort that will later be picked up by the code. We have several
options for this marker. We can attach a unique ID to the element and specify
event handlers on a per-element basis. The HTML would be rewritten as

 <div class='importButton' id='dataFeedBtn'>

and the following code executed as part of the window.onload callback, for example:

 var dfBtn=document.getElementById('dataFeedBtn');
 dfBtn.onclick=importFeedData;

If we want to perform the same action on multiple event handlers, we need to
apply a non-unique marker of some sort. One simple approach is to define an
extra CSS class.

Adding events indirectly using CSS
Let’s look at a simple example, in which we bind mouse events to keys on a virtual
musical keyboard. In listing 4.1, we define a simple page containing an unstyled
document structure.
Licensed to jonathan zheng <yiyisjun@gmail.com>

126 CHAPTER 4
The page as an application
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Keyboard</title>
<link rel='stylesheet' type='text/css' href='musical.css'/>
<script type='text/javascript' src='musical.js'></script>
<script type='text/javascript'>
window.onload=assignKeys;
</script>
</head>
<body>
<div id='keyboard' class='musicalKeys'>
 <div class='do musicalButton'></div>
 <div class='re musicalButton'></div>
 <div class='mi musicalButton'></div>
 <div class='fa musicalButton'></div>
 <div class='so musicalButton'></div>
 <div class='la musicalButton'></div>
 <div class='ti musicalButton'></div>
 <div class='do musicalButton'></div>
</div>
<div id='console' class='console'>
</div>
</body>
</html>

We declare the page to conform to XHTML strict definition, just to show that it
can be done. The keyboard element is assigned a unique ID, but the keys are not.
Note that the keys designated b are each defined as having two styles. musical-
Button is common to all keys, and a separate style differentiates them by note.
These styles are defined separately in the stylesheet (listing 4.2).

.body{
 background-color: white;
}
.musicalKeys{
 background-color: #ffe0d0;
 border: solid maroon 2px;
 width: 536px;
 height: 68px;
 top: 24px;
 left: 24px;

Listing 4.1 musical.html

Listing 4.2 musical.css

b Keys on our
"keyboard"
Licensed to jonathan zheng <yiyisjun@gmail.com>

The View in an Ajax application 127
 margin: 4px;
 position: absolute;
 overflow: auto;
}
.musicalButton{
 border: solid navy 1px;
 width: 60px;
 height: 60px;
 position: relative;
 margin: 2px;
 float: left;
}
.do{ background-color: red; }
.re{ background-color: orange; }
.mi{ background-color: yellow; }
.fa{ background-color: green; }
.so{ background-color: blue; }
.la{ background-color: indigo; }
.ti{ background-color: violet; }
div.console{
 font-family: arial, helvetica;
 font-size: 16px;
 color: navy;
 background-color: white;
 border: solid navy 2px;
 width: 536px;
 height: 320px;
 top: 106px;
 left: 24px;
 margin: 4px;
 position: absolute;
 overflow: auto;
}

The style musicalButton defines the common properties of each key. The note-
specific styles simply define a color for each key. Note that whereas top-level
document elements are positioned with explicit pixel precision, we use the float
style attribute to lay the keys out in a horizontal line using the browser’s built-in
layout engine.

Binding the event-handler code
The JavaScript file (listing 4.3) binds the events to these keys programmatically.

function assignKeys(){
 var keyboard=document.getElementById("keyboard");

Listing 4.3 musical.js

Find parent DIV
Licensed to jonathan zheng <yiyisjun@gmail.com>

128 CHAPTER 4
The page as an application
 var keys=keyboard.getElementsByTagName("div");
 if (keys){
 for(var i=0;i<keys.length;i++){
 var key=keys[i];
 var classes=(key.className).split(" ");
 if (classes && classes.length>=2
 && classes[1]=="musicalButton"){
 var note=classes[0];
 key.note=note;
 key.onmouseover=playNote;
 }
 }
 }
}
function playNote(event){
 var note=this.note;
 var console=document.getElementById("console");
 if (note && console){
 console.innerHTML+=note+" . ";
 }
}

The assignKeys() function is called by window.onload. (We could have defined
window.onload directly in this file, but that limits its portability). We find the key-
board element by its unique ID and then use getElementsByTagName() to iterate
through all the DIV elements inside it. This requires some knowledge of the page
structure, but it allows the designer the freedom to move the keyboard DIV
around the page in any way that she wants.

 The DOM elements representing the keys return a single string as className
property. We use the inbuilt String.split function to convert it into an array,
and check that the element is of class musicalButton. We then read the other
part of the styling—which represents the note that this key plays—and attach it
to the DOM node as an extra property, where it can be picked up again in the
event handler.

 Playing music through a web browser is rather tricky, so in this case, we simply
write the note out to the “console” underneath the keyboard. innerHTML is ade-
quate for this purpose. Figure 4.4 shows our musical keyboard in action. We’ve
achieved good separation of roles here. Provided the designer drops the key-
board and console DIV tags somewhere on the page and includes the stylesheet
and JavaScript, the application will work, and the risk of accidentally breaking
the event logic is small. Effectively, the HTML page has become a template into
which we inject variables and logic. This provides us with a good way of keeping

Enumerate children

Add custom attribute

Retrieve custom attribute
Licensed to jonathan zheng <yiyisjun@gmail.com>

The View in an Ajax application 129
logic out of the View. We’ve worked through this example manually, to demon-
strate the details of how it’s done. In production, you might like to make use of a
couple of third-party libraries that address the same issue.

 The Rico framework (www.openrico.org/) has a concept of Behavior objects
that target specific sections of a DOM tree and add interactivity to them. We
looked at the Rico Accordion behavior briefly in section 3.5.2.

 A similar separation between HTML markup and interactivity can be achieved
with Ben Nolan’s Behaviour library (see the Resources section at end of chapter).
This library allows event-handler code to be assigned to DOM elements based on
CSS selector rules (see chapter 2). In our previous example, the assignKeys()
function programmatically selects the document element with the id keyboard,
and then gets all DIV elements directly contained by it, using DOM manipulation
methods. We can express this using a CSS selector as

 #keyboard div

Using CSS, we could style all our keyboard elements using this selector. Using the
Behaviour.js library, we can also apply event handlers in the same way as follows:

Figure 4.4 Musical keyboard application running in a browser. The
colored areas along the top are mapped to music notes, which are printed
out in the lower console area when the mouse moves over them.
Licensed to jonathan zheng <yiyisjun@gmail.com>

130 CHAPTER 4
The page as an application
var myrules={
 '#keyboard div' : function(key){
 var classes=(key.className).split(" ");
 if (classes && classes.length>=2
 && classes[1]=='musicalButton'){
 var note=classes[0];
 key.note=note;
 key.onmouseover=playNote;
 }
 }
};
Behaviour.register(myrules);

Most of the logic is the same as in our previous example, but the use of CSS selec-
tors offers a concise alternative to programmatically locating DOM elements, par-
ticularly if we’re adding several behaviors at once.

 That keeps the logic out of the view for us, but it’s also possible to tangle the
View up in the logic, as we will see.

4.2.2 Keeping the View out of the logic

We’ve reached the point now where the designers can develop the look of the
page without having to touch the code. However, as it stands, some of the func-
tionality of the application is still embedded in the HTML, namely, the ordering
of the keys. Each key is defined as a separate DIV tag, and the designers could
unwittingly delete some of them.

 If the ordering of the keys is a business domain function rather than a design
issue—and we can argue that it is—then it makes sense to generate some of the
DOM for the component programmatically, rather than declare it in the HTML.
Further, we may want to have multiple components of the same type on a page. If
we don’t want the designer to modify the order of the keys on our keyboard, for
example, we could simply stipulate that they assign a DIV tag with the class key-
board and have our initialization code find it and add the keys programmatically.
Listing 4.4 shows the modified JavaScript required to do this.

var notes=new Array("do","re","mi","fa","so","la","ti","do");
function assignKeys(){
 var candidates=document.getElementsByTagName("div");
 if (candidates){
 for(var i=0;i<candidates.length;i++){
 var candidate=candidates[i];
 if (candidate.className.indexOf('musicalKeys')>=0){
 makeKeyboard(candidate);

Listing 4.4 musical_dyn_keys.js
Licensed to jonathan zheng <yiyisjun@gmail.com>

The View in an Ajax application 131
 }
 }
 }
}
function makeKeyboard(el){
 for(var i=0;i<notes.length;i++){
 var key=document.createElement("div");
 key.className=notes[i]+" musicalButton";
 key.note=notes[i];
 key.onmouseover=playNote;
 el.appendChild(key);
 }
}
function playNote(event){
 var note=this.note;
 var console=document.getElementById('console');
 if (note && console){
 console.innerHTML+=note+" . ";
 }
}

Previously, we had defined our key sequence in the HTML. Now it is defined as a
global JavaScript array. The assignKeys() method examines all the top-level
DIV tags in the document, to see if the className contains the value musical-
Keys. If it does, then it tries to populate that DIV with a working keyboard, using
the makeKeyboard() function. makeKeyboard() simply creates new DOM nodes
and then manipulates them in the same way as listing 4.4 did for the declared
DOM nodes that it encountered. The playNote() callback handler operates
exactly as before.

 Because we are populating empty DIVs with our keyboard controls, adding a
second set of keys is simple, as listing 4.5 illustrates.

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<title>Two Keyboards</title>
<head>
<link rel='stylesheet' type='text/css'
 href='musical_dyn_keys.css'/>
<script type='text/javascript'
 src='musical_dyn_keys.js'>
</script>
<script type='text/javascript'>

Listing 4.5 musical_dyn_keys.html
Licensed to jonathan zheng <yiyisjun@gmail.com>

132 CHAPTER 4
The page as an application
window.onload=assignKeys;
</script>
</head>
<body>
<div id='keyboard-top' class='toplong musicalKeys'></div>
<div id='keyboard-side' class='sidebar musicalKeys'></div>
<div id='console' class='console'>
</div>
</body>
</html>

Adding a second keyboard is a single-line operation. Because we don’t want them
sitting one on top of the other, we move the placement styling out of the musical-
Keys style class and into separate classes. The stylesheet modifications are shown
in listing 4.6.

.musicalKeys{
 background-color: #ffe0d0;
 border: solid maroon 2px;
 position: absolute;
 overflow: auto;
 margin: 4px;
}
.toplong{
 width: 536px;
 height: 68px;
 top: 24px;
 left: 24px;
}
.sidebar{
 width: 48px;
 height: 400px;
 top: 24px;
 left: 570px;
}

The musicalKeys class defines the visual style common to all keyboards. toplong
and sidebar simply define the geometry of each keyboard.

 By refactoring our keyboard example in this way, we have made it possible to
reuse the code easily. However, the design of the keyboard is partly defined in the
JavaScript, in the makeKeyboard() function in listing 4.4, and yet, as figure 4.5
shows, one keyboard has a vertical layout and the other a horizontal one. How did
we achieve this?

Listing 4.6 Changes to musical_dyn_keys.css

Common keyboard styling

Geometry of keyboard 1

Geometry of keyboard 2
Licensed to jonathan zheng <yiyisjun@gmail.com>

The View in an Ajax application 133
makeKeyboard() could easily have computed the size of the DIV that it was target-
ing and placed each button programmatically. In that case, we would need to get
quite fussy about deciding whether the DIV was vertical or horizontal and write
our own layout code. To a Java GUI programmer familiar with the internals of
LayoutManager objects, this may seem all too obvious a route to take. If we took
it, our programmers would wrest control of the widget’s look from the designers,
and trouble would ensue!

 As it is, makeKeyboard()modifies only the structure of the document. The keys
are laid out by the browser’s own layout engine, which is controlled by style-
sheets—by the float style attribute in this case. It is important that the layout be
controlled by the designer. Logic and View remain separate, and peace reigns.

 The keyboard was a relatively simple widget. In a larger, more complex wid-
get such as a tree table, it may be harder to see how the browser’s own render
engine can be coerced into doing the layout, and in some cases, programmatic
styling is inevitable. However, it’s always worth asking this question, in the inter-
ests of keeping View and Logic separate. The browser render engine is also a

Figure 4.5 Our revised musical keyboard program allows the designer to specify
multiple keyboards. Using CSS-based styling and the native render engine, we can
accommodate both vertical and horizontal layouts without writing explicit layout
code in our JavaScript.
Licensed to jonathan zheng <yiyisjun@gmail.com>

134 CHAPTER 4
The page as an application
high-performing, fast, and well-tested piece of native code, and it is likely to beat
any JavaScript algorithms that we cook up.

 That about wraps it up for the View for the moment. In the next section, we’ll
explore the role of the Controller in MVC and how that relates to JavaScript event
handlers in an Ajax application.

4.3 The Controller in an Ajax application

The role of the Controller in MVC is to serve as an intermediary between the
Model and the View, decoupling them from one another. In a GUI application
such as our Ajax client application, the Controller layer is composed of event
handlers. As is often the case with web browsers, techniques have evolved over
time, and modern browsers support two different event models. The classic
model is relatively simple and is in the process of being superseded by the newer
W3C specifications for event handling. At the time of writing, however, imple-
mentations of the new event-handling model vary between browsers and are
somewhat problematic. Both event models are discussed here.

4.3.1 Classic JavaScript event handlers

The JavaScript implementation in web browsers allows us to define code that will
be executed in response to a user event, typically either the mouse or keyboard.
In the modern browsers that support Ajax, these event handlers can be assigned
to most visual elements. We can use the event handlers to connect our visible user
interface, that is, the View, to the business object Model.

 The classic event model has been around since the early days of JavaScript,
and is relatively simple and straightforward. DOM elements have a small number
of predefined properties to which callback functions can be assigned. For exam-
ple, to attach a function that will be called when the mouse is clicked on an ele-
ment myDomElement, we could write

 myDomElement.onclick=showAnimatedMonkey

myDomElement is any DOM element that we have a programmatic handle on. show-
AnimatedMonkey is a function, defined as

 function showAnimatedMonkey(){
 //some skillfully executed code to display
 //an engaging cartoon character here
 }
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Controller in an Ajax application 135
that is, as an ordinary JavaScript function. Note that when we assign the event
handler, we pass the Function object, not a call to that object, so it doesn’t have
parentheses after the function name. This is a common mistake:

 myDomElement.onclick=showAnimatedMonkey();

This looks more natural to programmers unaccustomed to treating functions as
first-class objects, but it will not do what we think. The function will be called
when we make the assignment, not when the DOM element is clicked. The
onclick property will be set to whatever is returned by the function. Unless you’re
doing something extremely clever involving functions that return references to
other functions, this is probably not desirable. Here’s the right way to do it:

 myDomElement.onclick=showAnimatedMonkey;

This passes a reference to our callback function to the DOM element, telling it
that this is the function to invoke when the node is clicked on. DOM elements
have many such properties to which event-handler functions can be attached.
Common event-handler callbacks for GUI work are listed in table 4.1. Similar
properties can be found elsewhere in web browser JavaScript, too. The XML-
HttpRequest.onreadystate and window.onload, which we have encountered
already, are also event handler functions that can be assigned by the programmer.

There is an unusual feature of the event handler functions worth mentioning
here, as it trips people up most frequently when writing object-oriented Java-
Script, a feature that we will lean on heavily in developing Ajax clients.

Table 4.1 Common GUI event handler properties in the DOM

Property Description

onmouseover Triggered when the mouse first passes into an element’s region.

onmouseout Triggered when the mouse passes out of an element’s region.

onmousemove Triggered whenever the mouse moves while within an element’s region
(i.e., frequently!).

onclick Triggered when the mouse is clicked within an element’s region.

onkeypress Triggered when a key is pressed while this element has input focus. Global key
handlers can be attached to the document’s body.

onfocus A visible element receives input focus.

onblur A visible element loses input focus.
Licensed to jonathan zheng <yiyisjun@gmail.com>

136 CHAPTER 4
The page as an application
 We’ve got a handle on a DOM element, and assigned a callback function to the
onclick property. When the DOM element receives a mouse click, the callback is
invoked. However, the function context (that is, the value that variable this
resolves to—see appendix B for a fuller discussion of JavaScript Function objects)
is assigned to the DOM node that received the event. Depending on where and
how the function was originally declared, this can be very confusing.

 Let's explore the problem with an example. We define a class to represent a
button object, which has a reference to a DOM node, a callback handler, and a
value that is displayed when the button is clicked. Any instance of the button will
respond in the same way to a mouse click event, and so we define the callback
handler as a method of the button class. That’s a sufficient spec for starters, so
let’s look at the code. Here’s the constructor for our button:

function Button(value,domEl){
 this.domEl=domEl;
 this.value=value;
 this.domEl.onclick=this.clickHandler;
}

We go on to define an event handler as part of the Button class:

Button.prototype.clickHandler=function(){
 alert(this.value);
}

It looks straightforward enough, but it doesn’t do what we want it to. The alert
box will generally return a message undefined, not the value property that we
passed to the constructor. Let’s see why. The function clickHandler gets invoked
by the browser when the DOM element is clicked, and it sets the function context
to the DOM element, not the Button JavaScript object. So, this.value refers to
the value property of the DOM element, not the Button object. You’d never tell by
looking at the declaration of the event-handler function, would you?

 We can fix things up by passing a reference to the Button object to the DOM
element, that is, by modifying our constructor like this:

function Button(value,domEl){
 this.domEl=domEl;
 this.value=value;
 this.domEl.buttonObj=this;
 this.domEl.onclick=this.clickHandler;
}

The DOM element still doesn’t have a value property, but it has a reference to the
Button object, which it can use to get the value. We finish up by altering the event
handler like this:
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Controller in an Ajax application 137
Button.prototype.clickHandler=function(){
 var buttonObj=this.buttonObj;
 var value=(buttonObj && buttonObj.value) ?
 buttonObj.value : "unknown value";
 alert(value);
}

The DOM node refers to the Button, which refers to its value property, and our
event handler does what we want it to. We could have attached the value directly
to the DOM node, but attaching a reference to the entire backing object allows
this pattern to work easily with arbitrarily complex objects. In passing, it’s worth
noting that we’ve implemented a mini-MVC pattern here, with the DOM element
View fronting a backing object Model.

 That’s the classic event model, then. The main shortcoming of this event
model is that it allows only one event-handler function per element. In the
Observer pattern that we presented in chapter 3, we noted that an observable ele-
ment could have any number of observers attached to it at a given time. When
writing a simple script for a web page, this is unlikely to be a serious shortcoming,
but as we move toward the more complex Ajax clients, we start to feel the con-
straint more. We will take a closer look at this in section 4.3.3, but first, let’s look
at the more recent event model.

4.3.2 The W3C event model

The more flexible event model proposed by the W3C is complex. An arbitrary
number of listeners can be attached to a DOM element. Further, if an action takes
place in a region of the document in which several elements overlap, the event
handlers of each are given an opportunity to fire and to veto further calls in the
event stack, known as “swallowing” the event. The specification proposes that the
event stack be traversed twice in total, first propagating from outermost to inner-
most (from the document element down) and then bubbling up again from the
inside to the outside. In practice, different browsers implement different subsets
of this behavior.

 In Mozilla-based browsers and Safari, event callbacks are attached using
addEventListener() and removed by a corresponding removeEventListener().
Internet Explorer offers similar functions: attachEvent() and detachEvent().
Mike Foster’s xEvent object (part of the x library—see the Resources section at the
end of this chapter) makes a brave attempt at creating a Façade (see chapter 3)
across these implementations in order to provide a rich cross-browser event model.

 There is a further cross-browser annoyance here, as the callback handler func-
tions defined by the user are called slightly differently. Under Mozilla browsers,
Licensed to jonathan zheng <yiyisjun@gmail.com>

138 CHAPTER 4
The page as an application
the function is invoked with the DOM element receiving the event as a context
object, as for the classic event model. Under Internet Explorer, the function
context is always the Window object, making it impossible to work out which
DOM element is currently calling the event handler! Even with a layer such as
xEvent in place, developers need to account for these variations when writing
their callback handlers.

 The final issue to mention here is that neither implementation provides a sat-
isfactory way of returning a list of all currently attached listeners.

 At this point, I advise you not to use the newer event model. The main short-
coming of the classic model—lack of multiple listeners—can be addressed by the
use of design patterns, as we will see next.

4.3.3 Implementing a flexible event model in JavaScript

Because of the incompatibilities of the newer W3C event model, the promise of a
flexible event listener framework remains just out of reach. We described the
Observer pattern in chapter 3, and that seems to fit the bill nicely, allowing us to
add and remove observers from the event source in a flexible fashion. Clearly, the
W3C felt the same way, as the revised event model implements Observer, but the
browser vendors delivered inconsistent and just plain broken implementations.
The classic event model falls far short of the Observer pattern, but perhaps we
can enhance it a little with some code of our own.

Managing multiple event callbacks
Before going on to implement our own solution, let’s come to grips with the prob-
lem through a simple example. Listing 4.7 shows a simple web page, in which a
large DIV area responds to mouse move events in two ways.

<html>
<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<script type='text/javascript'>
var cursor=null;
window.onload=function(){
 var mat=document.getElementById('mousemat');
 mat.onmousemove=mouseObserver;
 cursor=document.getElementById('cursor');
}
function mouseObserver(event){
 var e=event || window.event;
 writeStatus(e);

Listing 4.7 mousemat.html
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Controller in an Ajax application 139
 drawThumbnail(e);
}
function writeStatus(e){
 window.status=e.clientX+","+e.clientY;
}
function drawThumbnail(e){
 cursor.style.left=((e.clientX/5)-2)+"px";
 cursor.style.top=((e.clientY/5)-2)+"px";
}
</script>
</head>
<body>
<div class='mousemat' id='mousemat'></div>
<div class='thumbnail' id='thumbnail'>
 <div class='cursor' id='cursor'/>
</div>
</body>
</html>

First, it updates the browser status bar, in the writeStatus() function. Second, it
updates a smaller thumbnail image of itself, by repositioning a dot in the thumb-
nail area, to copy the mouse pointer’s movements, in the drawThumbnail() func-
tion. Figure 4.6 shows the page in action.

 These two actions are independent of each other, and we would like to be able
to swap these and other responses to the mouse movement in and out at will, even
while the program is running.

 The mouseObserver() function is our event listener. (The first line is perform-
ing some simple cross-browser magic, by the way. Unlike Mozilla, Opera, or
Safari, Internet Explorer doesn’t pass any arguments to the callback handler
function, but stores the Event object in window.event.) In this example, we have
hardwired the two activities in the event handler, calling writeStatus() and draw-
Thumbnail() in turn. The program does exactly what we want it to do, and,
because it is a small program, the code for mouseObserver() is reasonably clear.
Ideally, though, we would like a cleaner way to wire the event listeners together,
allowing the approach to scale to more complex or dynamic situations.

Implementing Observer in JavaScript
The proposed solution is to define a generic event router object, which attaches a
standard function to the target element as an event callback and maintains a list
of listener functions. This would allow us to rewrite our mousemat initialization
code in this way:
Licensed to jonathan zheng <yiyisjun@gmail.com>

140 CHAPTER 4
The page as an application
window.onload=function(){
 var mat=document.getElementById('mousemat');
 ...
 var mouseRouter=new jsEvent.EventRouter(mat,"onmousemove");
 mouseRouter.addListener(writeStatus);
 mouseRouter.addListener(drawThumbnail);
}

We define an EventRouter object, passing in the DOM element and the type of
event that we would like to register as arguments. We then add listener functions
to the router object, which also supports a removeListener() method that we
don’t need here. It looks straightforward, but how do we implement it?

Figure 4.6 The Mousemat program tracks mouse movement events on the main “virtual
mousemat” area in two ways: by updating the browser status bar with the mouse coordinates and
by moving the dot on the thumbnail view in sync with the mouse pointer.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Controller in an Ajax application 141
 First, we write a constructor for the object, which in JavaScript is simply a func-
tion. (Appendix B contains a primer on the syntax of JavaScript objects. Take a
look if any of the following code looks strange or confusing.)

jsEvent.EventRouter=function(el,eventType){
 this.lsnrs=new Array();
 this.el=el;
 el.eventRouter=this;
 el[eventType]=jsEvent.EventRouter.callback;
}

 We define the array of listener functions, which is initially empty, take a refer-
ence to the DOM element, and give it a reference to this object, using the pattern
we described in section 3.5.1. We then assign a static method of the EventRouter
class, simply called callback, as the event handler. Remember that in JavaScript,
the square bracket and dot notations are equivalent, which means

 el.onmouseover

 is the same as

 el['onmouseover']

We use this to our advantage here, passing in the name of a property as an argu-
ment. This is similar to reflection in Java or the .NET languages.

 Let’s have a look at the callback then:

jsEvent.EventRouter.callback=function(event){
 var e=event || window.event;
 var router=this.eventRouter;
 router.notify(e)
}

Because this is a callback, the function context is the DOM node that fired the
event, not the router object. We retrieve the EventRouter reference that we had
attached to the DOM node, using the backing object pattern that we saw earlier.
We then call the notify() method of the router, passing the event object in as
an argument.

 The full code for the Event Router object is shown in listing 4.8.

var jsEvent=new Array();
jsEvent.EventRouter=function(el,eventType){
 this.lsnrs=new Array();
 this.el=el;
 el.eventRouter=this;

Listing 4.8 EventRouter.js
Licensed to jonathan zheng <yiyisjun@gmail.com>

142 CHAPTER 4
The page as an application
 el[eventType]=jsEvent.EventRouter.callback;
}
jsEvent.EventRouter.prototype.addListener=function(lsnr){
 this.lsnrs.append(lsnr,true);
}
jsEvent.EventRouter.prototype.removeListener=function(lsnr){
 this.lsnrs.remove(lsnr);
}
jsEvent.EventRouter.prototype.notify=function(e){
 var lsnrs=this.lsnrs;
 for(var i=0;i<lsnrs.length;i++){
 var lsnr=lsnrs[i];
 lsnr.call(this,e);
 }
}
jsEvent.EventRouter.callback=function(event){
 var e=event || window.event;
 var router=this.eventRouter;
 router.notify(e)
}

Note that some of the methods of the array are not standard JavaScript but have
been defined by our extended array definition, which is discussed in appendix
B. Notably, addListener() and removeListener() are simple to implement using
the append() and remove() methods. Listener functions are invoked using the
Function.call() method, whose first argument is the function context, and sub-
sequent arguments (in this case the event) are passed through to the callee.

 The revised mousemat example is shown in listing 4.9.

<html>
<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<script type='text/javascript' src='extras-array.js'></script>
<script type='text/javascript' src='eventRouter.js'></script>
<script type='text/javascript'>
var cursor=null;
window.onload=function(){
 var mat=document.getElementById('mousemat');
 cursor=document.getElementById('cursor');
 var mouseRouter=new jsEvent.EventRouter(mat,"onmousemove");
 mouseRouter.addListener(writeStatus);
 mouseRouter.addListener(drawThumbnail);
}
function writeStatus(e){
 window.status=e.clientX+","+e.clientY

Listing 4.9 Revised mousemat.html, using EventRouter
Licensed to jonathan zheng <yiyisjun@gmail.com>

Models in an Ajax application 143
}
function drawThumbnail(e){
 cursor.style.left=((e.clientX/5)-2)+"px";
 cursor.style.top=((e.clientY/5)-2)+"px";
}
</script>
</head>
<body>
<div class='mousemat' id='mousemat'></div>
<div class='thumbnail' id='thumbnail'>
 <div class='cursor' id='cursor'/>
</div>
</body>
</html>

The inline JavaScript is greatly simplified. All we need to do is create the Event-
Router, pass in the listener functions, and provide implementations for the listen-
ers. We leave it as an exercise for the reader to include checkboxes to add and
remove each listener dynamically.

 This rounds out our discussion of the Controller layer in an Ajax application
and the role that design patterns—Observer in particular—can play in keeping it
clean and easy to work with. In the following section, we’ll look at the final part of
the MVC pattern, the Model.

4.4 Models in an Ajax application

The Model is responsible for representing the business domain of our applica-
tion, that is, the real-world subject that the application is all about, whether that is
a garment store, a musical instrument, or a set of points in space. As we’ve noted
already, the Document Object Model is not the model at the scale at which we’re
looking at the application now. Rather, the model is a collection of code that we
have written in JavaScript. Like most design patterns, MVC is heavily based on
object-oriented thinking.

 JavaScript is not designed as an OO language, although it can be persuaded
into something resembling object orientation without too much struggle. It does
support the definition of something very similar to object classes through its pro-
totype mechanism, and some developers have gone as far as implementing
inheritance systems for JavaScript. We discuss these issues further in appendix B.
When implementing MVC in JavaScript so far, we’ve adapted it to the JavaScript
style of coding, for example, passing Function objects directly as event listeners.
When it comes to defining the model, however, using JavaScript objects, and as
Licensed to jonathan zheng <yiyisjun@gmail.com>

144 CHAPTER 4
The page as an application
much of an OO approach as we’re comfortable with for the language, makes good
sense. In the following section, we’ll show how that is done.

4.4.1 Using JavaScript to model the business domain

When discussing the View, we are very much tied to the DOM. When we talk about
the Controller, we are constrained by the browser event models. When writing the
Model, however, we are dealing almost purely with JavaScript and have very little
to do with browser-specific functionality. Those who have struggled with browser
incompatibilities and bugs will recognize this as a comfortable situation in which
to be.

 Let’s look at a simple example. In chapter 3 we discussed our garment store
application, from the point of view of generating a data feed from the server. The
data described a list of garment types, in terms of a unique ID, a name, and a
description, along with price, color, and size information. Let’s return to that
example now and consider what happens when the data arrives at the client.
Over the course of its lifetime, the application will receive many such streams of
data and have a need to store data in memory. Think of this as a cache if you
like—data stored on the client can be redisplayed very quickly, without needing to
go back to the server at the time at which the user requests the data. This benefits
the user’s workflow, as discussed in chapter 1.

 We can define a simple JavaScript object that corresponds to the garment
object defined on the server. Listing 4.10 shows a typical example.

var garments=new Array();
function Garment(id,title,description,price){
 this.id=id;
 garments[id]=this;
 this.title=title;
 this.description=description;
 this.price=price;
 this.colors=new Object();
 this.sizes=new Object();
}
Garment.prototype.addColor(color){
 this.colors.append(color,true);
}
Garment.prototype.addSize(size){
 this.sizes.append(size,true);
}

Listing 4.10 Garment.js
Licensed to jonathan zheng <yiyisjun@gmail.com>

Models in an Ajax application 145
We define a global array first of all, to hold all our garments. (Yes, global variables
are evil. In production, we’d use a namespacing object, but we’ve omitted that for
clarity here.) This is an associative array, keyed by the garment’s unique ID,
ensuring that we have only one reference to each garment type at a time. In the
constructor function, we set all the simple properties, that is, those that aren’t
arrays. We define the arrays as empty and provide simple adder methods, which
uses our enhanced array code (see appendix B) to prevent duplicates.

 We don’t provide getter or setter methods by default and don’t support the full
access control—private, protected, and public variables and methods—that a full
OO language does. There are ways of providing this feature, which are discussed
in appendix B, but my own preference is to keep the Model simple.

 When parsing the XML stream, it would be nice to initially build an empty
Garment object and then populate it field by field. The astute reader may be won-
dering why we haven’t provided a simpler constructor. In fact, we have. JavaScript
function arguments are mutable, and any missing values from a call to a function
will simply initialize that value to null. So the call

 var garment=new Garment(123);

will be treated as identical to

 var garment=new Garment(123,null,null,null);

We need to pass in the ID, because we use that in the constructor to place the new
object in the global list of garments.

4.4.2 Interacting with the server

We could parse the XML feed of the type shown in listing 4.10 in order to gener-
ate Garment objects in the client application. We’ve already seen this in action in
chapter 2, and we’ll see a number of variations in chapter 5, so we won’t go into
all the details here. The XML document contains a mixture of attributes and tag
content. We read attribute data using the attributes property and getNamed-
Item() function and read the body text of tags using the firstChild and data
properties, for example:

 garment.description=descrTag.firstChild.data;

to parse an XML fragment such as

 <description>Large tweedy hat looking
 like an unappealing strawberry
 </description>
Licensed to jonathan zheng <yiyisjun@gmail.com>

146 CHAPTER 4
The page as an application
Note that garments are automatically added to our array of all garments as they
are created, simply by invoking the constructor. Removing a garment from the
array is also relatively straightforward:

 function unregisterGarment(id){
 garments[id]=null;
 }

This removes the garment type from the global registry, but won’t cascade to
destroy any instances of Garment that we have already created. We can add a sim-
ple validation test to the Garment object, however:

 Garment.prototype.isValid=function(){
 return garments[this.id]!=null;
 }

We’ve now defined a clear path for propagating data all the way from the data-
base to the client, with nice, easy-to-handle objects at each step. Let’s recap the
steps. First, we generate a server-side object model from the database. In
section 3.4.2, we saw how to do this using an Object-Relational Mapping (ORM)
tool, which gave us out-of-the-box two-way interactions between object model
and database. We can read data into objects, modify it, and save the data.

 Second, we used a template system to generate an XML stream from our object
model, and third, we parsed this stream in order to create an object model on the
JavaScript tier. We must do this parsing by hand for now. We may see ORM-like
mapping libraries appearing in the near future.

 In an administrative application, of course, we might want to edit our data too,
that is, modify the JavaScript model, and then communicate these changes back
to the server model. This forces us to confront the issue that we now have two cop-
ies of our domain model and that they may get out of sync with each other.

 In a classic web application, all the intelligence is located on the server, so our
model is located there, in whatever language we’re using. In an Ajax application,
we want to distribute the intelligence between the client and the server, so that the
client code can make some decisions for itself before calling back to the server. If
the client makes only very simple decisions, we can code these in an ad hoc way,
but then we won’t get much of the benefit of an intelligent client, and the system
will tend to still be unresponsive in places. If we empower the client to make more
important decisions for itself, then it needs to know something about our busi-
ness domain, at which point it really needs to have a model of the domain.

 We can’t do away with the domain model on the server, because some resources
are available only on the server, such as database connections for persistence,
Licensed to jonathan zheng <yiyisjun@gmail.com>

Generating the View from the Model 147
access to legacy systems, and so on. The client-side domain model has to work
with the one on the server. So, what does that entail? In chapter 5 we will develop
a fuller understanding of the client/server interactions and how to work cleanly
with a domain model split across both tiers.

 So far we’ve looked at Model, View, and Controller in isolation. The final topic
for this chapter brings the Model and View together again.

4.5 Generating the View from the Model

By introducing MVC into the browser, we’ve given ourselves three distinct sub-
systems to worry about. Separating concerns may result in cleaner code, but it can
also result in a lot of code, and a common critique of design patterns is that they
can turn even the simplest task into quite an involved process (as Enterprise Java-
Beans [EJB] developers know only too well!).

 Many-layered application designs often end up repeating information across
several layers. We know the importance of DRY code, and a common way of tack-
ling this repetition is to define the necessary information once, and generate the
various layers automatically from that definition. In this section, we’ll do just that,
and present a technique that simplifies the MVC implementation and brings
together all three tiers in a simple way. Specifically, we’ll target the View layer.

 So far, we’ve looked at the View as a hand-coded representation of the under-
lying Model. This gives us considerable flexibility in determining what the user
sees, but at times, we won’t need this flexibility, and hand-coding the UI can
become tedious and repetitive. An alternative approach is to automatically gener-
ate the user interface, or at least portions of it, from the underlying Model. There
are precedents for doing this, such as the Smalltalk language environments and
the Java/.NET Naked Objects framework (see the Resources section), and Java-
Script is well suited to this sort of task. Let’s have a look at what JavaScript reflec-
tion can do for us in this regard, and develop a generic “Object Browser”
component, that can be used as a View for any JavaScript object that we throw at it.

4.5.1 Reflecting on a JavaScript object

Most of the time when we write code to manipulate an object, we already have a
fairly good idea of what the object is and what it can do. Sometimes, however,
we need to code blindly, as it were, and examine the object without any prior
knowledge. Generating a user interface for our domain model objects is just
such a case. Ideally, we would like to develop a reusable solution that can be
equally applied to any domain—finance, e-commerce, scientific visualization,
Licensed to jonathan zheng <yiyisjun@gmail.com>

148 CHAPTER 4
The page as an application
and so on. This section presents just such a JavaScript library, the ObjectViewer,
that can be used in your own applications. To give you a taste of the Object-
Viewer in action, figure 4.7 shows the ObjectViewer displaying several layers of a
complex object graph.

 The object being viewed, representing the planet Mercury, is quite sophisti-
cated, with properties including an image URL, an array of facts, as well as simple
strings and numbers. Our ObjectViewer can handle all of these intelligently with-
out knowing anything specific about the type of object in advance.

 The process of examining an object and querying its properties and capabili-
ties is known as reflection. Readers with a familiarity to Java or .NET should already
be familiar with this term. We discuss JavaScript’s reflection capabilities in more
detail in appendix B. To summarize briefly here, a JavaScript object can be iter-
ated over as if it were an associative array. To print out all the properties of an
object, we can simply write

var description="";
for (var i in MyObj){
 var property=MyObj[i];
 description+=i+" = "+property+"\n";
}
alert(description);

Presenting data as an alert is fairly primitive and doesn’t integrate with the rest of
a UI very well. Listing 4.11 presents the core code for the ObjectViewer object.

objviewer.ObjectViewer=function(obj,div,isInline,addNew){
 styling.removeAllChildren(div);
 this.object=obj;
 this.mainDiv=div;
 this.mainDiv.viewer=this;

Listing 4.11 ObjectViewer object

Figure 4.7
Here the ObjectViewer is used
to display a hierarchical system
of planets, each of which
contains a number of
informational properties, plus a
list of facts stored as an array.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Generating the View from the Model 149
 this.isInline=isInline;
 this.addNew=addNew;
 var table=document.createElement("table");
 this.tbod=document.createElement("tbody");
 table.appendChild(this.tbod);
 this.fields=new Array();
 this.children=new Array();
 for (var i in this.object){
 this.fields[i]=new objviewer.PropertyViewer(
 this, i
);
 }
objviewer.PropertyViewer=function(objectViewer,name){
 this.objectViewer=objectViewer;
 this.name=name;
 this.value=objectViewer.object[this.name];
 this.rowTr=document.createElement("tr");
 this.rowTr.className='objViewRow';
 this.valTd=document.createElement("td");
 this.valTd.className='objViewValue';
 this.valTd.viewer=this;
 this.rowTr.appendChild(this.valTd);
 var valDiv=this.renderSimple();
 this.valTd.appendChild(valDiv);
 viewer.tbod.appendChild(this.rowTr);
}
objviewer.PropertyViewer.prototype.renderSimple=function(){
 var valDiv=document.createElement("div");
 var valTxt=document.createTextNode(this.value);
 valDiv.appendChild(valTxt);
 if (this.spec.editable){
 valDiv.className+=" editable";
 valDiv.viewer=this;
 valDiv.onclick=objviewer.PropertyViewer.editSimpleProperty;
 }
 return valDiv;
}

Our library contains two objects: an ObjectViewer, which iterates over the mem-
bers of an object and assembles an HTML table in which to display the data, and
a PropertyViewer, which renders an individual property name and value as a
table row.

 This gets the basic job done, but it suffers from several problems. First, it will
iterate over every property. If we have added helper functions to the Object pro-
totype, we will see them. If we do it to a DOM node, we see all the built-in prop-
erties and appreciate how heavyweight a DOM element really is. In general, we
Licensed to jonathan zheng <yiyisjun@gmail.com>

150 CHAPTER 4
The page as an application
want to be selective about which properties of our object we show to the user. We
can specify which properties we want to display for a given object by attaching a
special property, an Array, to the object before passing it to the object renderer.
Listing 4.12 illustrates this.

objviewer.ObjectViewer=function(obj,div,isInline,addNew){
 styling.removeAllChildren(div);
 this.object=obj;
 this.spec=objviewer.getSpec(obj);
 this.mainDiv=div;
 this.mainDiv.viewer=this;
 this.isInline=isInline;
 this.addNew=addNew;
 var table=document.createElement("table");
 this.tbod=document.createElement("tbody");
 table.appendChild(this.tbod);
 this.fields=new Array();
 this.children=new Array();
 for (var i=0;i<this.spec.length;i++){
 this.fields[i]=new objviewer.PropertyViewer(
 this,this.spec[i]
);
 }
objviewer.getSpec=function (obj){
 return (obj.objViewSpec) ?
 obj.objViewSpec :
 objviewer.autoSpec(obj);
}
objviewer.autoSpec=function(obj){
 var members=new Array();
 for (var propName in obj){
 var spec={name:propName};
 members.append(spec);
 }
 return members;
}
objviewer.PropertyViewer=function(objectViewer,memberSpec){
 this.objectViewer=objectViewer;
 this.spec=memberSpec;
 this.name=this.spec.name;
 ...
}

We define a property objViewSpec, which the ObjectViewer constructor looks for
in each object. If it can’t find such a property, it then resorts to creating one by

Listing 4.12 Using the objViewSpec property
Licensed to jonathan zheng <yiyisjun@gmail.com>

Generating the View from the Model 151
iterating over the object in the autoSpec() function. The objViewSpec property is
a numerical array, with each element being a lookup table of properties. For now,
we’re only concerned with generating the name property. The PropertyViewer is
passed the spec for this property in its constructor and can take hints from the
spec as to how it should render itself.

 If we provide a specification property to an object that we want to inspect in
the ObjectViewer, then we can limit the properties being displayed to those that
we think are relevant.

 A second problem with our ObjectViewer is that it doesn’t handle complex
properties very well. When objects, arrays, and functions are appended to a
string, the toString() method is called. In the case of an object, this generally
returns something nondescriptive such as [Object object]. In the case of a
Function object, the entire source code for the function is returned. We need to
discriminate between the different types of properties, which we can do using
the instanceof operator. With that in place, let’s see how we can improve on
our viewer.

4.5.2 Dealing with arrays and objects

One way of handling arrays and objects is to allow the user to drill down into
them using separate ObjectViewer objects for each property. There are several
ways of representing this. We have chosen here to represent child objects as pop-
out windows, somewhat like a hierarchical menu.

 To achieve this, we need to do two things. First, we need to add a type property
to the object specification and define the types that we support:

objviewer.TYPE_SIMPLE="simple";
objviewer.TYPE_ARRAY="array";
objviewer.TYPE_FUNCTION="function";
objviewer.TYPE_IMAGE_URL="image url";
objviewer.TYPE_OBJECT="object";

We modify the function that generates specs for objects that don’t come with their
own to take account of the type, as shown in listing 4.13.

objviewer.autoSpec=function(obj){
 var members=new Array();
 for (var propName in obj){
 var propValue=obj[name];
 var propType=objviewer.autoType(value);
 var spec={name:propName,type:propType};

Listing 4.13 Modified autoSpec() function
Licensed to jonathan zheng <yiyisjun@gmail.com>

152 CHAPTER 4
The page as an application
 members.append(spec);
 }
 if (obj && obj.length>0){
 for(var i=0;i<obj.length;i++){
 var propName="array ["+i+"]";
 var propValue=obj[i];
 var propType=objviewer.ObjectViewer.autoType(value);
 var spec={name:propName,type:propType};
 members.append(spec);
 }
 }
 return members;
}
objviewer.autoType=function(value){
 var type=objviewer.TYPE_SIMPLE;
 if ((value instanceof Array)){
 type=objviewer.TYPE_ARRAY;
 }else if (value instanceof Function){
 type=objviewer.TYPE_FUNCTION;
 }else if (value instanceof Object){
 type=objviewer.TYPE_OBJECT;
 }
 return type;
}

Note that we also add support for numerically indexed arrays, whose elements
wouldn’t be discovered by the for...in style of loop.

 The second thing that we need to do is to modify the PropertyViewer to take
account of the different types and render them accordingly, as shown in
listing 4.14.

objviewer.PropertyViewer=function
 (objectViewer,memberSpec,appendAtTop){
 this.objectViewer=objectViewer;
 this.spec=memberSpec;
 this.name=this.spec.name;
 this.type=this.spec.type;
 this.value=objectViewer.object[this.name];
 this.rowTr=document.createElement("tr");
 this.rowTr.className='objViewRow';
 var isComplexType=(this.type==objviewer.TYPE_ARRAY
 ||this.type==objviewer.TYPE_OBJECT);
 if (!(isComplexType && this.objectViewer.isInline
)
){
 this.nameTd=this.renderSideHeader();

Listing 4.14 Modified PropertyViewer constructor
Licensed to jonathan zheng <yiyisjun@gmail.com>

Generating the View from the Model 153
 this.rowTr.appendChild(this.nameTd);
 }
 this.valTd=document.createElement("td");
 this.valTd.className='objViewValue';
 this.valTd.viewer=this;
 this.rowTr.appendChild(this.valTd);
 if (isComplexType){
 if (this.viewer.isInline){
 this.valTd.colSpan=2;
 var nameDiv=this.renderTopHeader();
 this.valTd.appendChild(nameDiv);
 var valDiv=this.renderInlineObject();
 this.valTd.appendChild(valDiv);
 }else{
 var valDiv=this.renderPopoutObject();
 this.valTd.appendChild(valDiv);
 }
 }else if (this.type==objviewer.TYPE_IMAGE_URL){
 var valImg=this.renderImage();
 this.valTd.appendChild(valImg);
 }else if (this.type==objviewer.TYPE_SIMPLE){
 var valTxt=this.renderSimple();
 this.valTd.appendChild(valTxt);
 }
 if (appendAtTop){
 styling.insertAtTop(viewer.tbod,this.rowTr);
 }else{
 viewer.tbod.appendChild(this.rowTr);
 }
}

To accommodate the various types of properties, we have defined a number of
rendering methods, the implementation of which is too detailed to reproduce in
full here. Source code for the entire ObjectViewer can be downloaded from the
website that accompanies this book.

 We now have a fairly complete way of viewing our domain model automati-
cally. To make the domain model objects visible, all that we need to do is to assign
objViewSpec properties to their prototypes. The Planet object backing the view
shown in figure 4.7, for example, has the following statement in the constructor:

this.objViewSpec=[
 {name:"name", type:"simple"},
 {name:"distance", type:"simple", editable:true},
 {name:"diameter", type:"simple", editable:true},
 {name:"image", type:"image url"},
 {name:"facts", type:"array", addNew:this.newFact, inline:true }
];
Licensed to jonathan zheng <yiyisjun@gmail.com>

154 CHAPTER 4
The page as an application
The notation for this specification is the JavaScript object notation, known as
JSON. Square braces indicate a numerical array, and curly braces an associative
array or object (the two are really the same). We discuss JSON more fully in
appendix B.

 There are a few unexplained entries here. What do addNew, inline, and edit-
able mean? Their purpose is to notify the View that these parts of the domain
model can not only be inspected but also modified by the user, bringing in the
Controller aspects of our system, too. We’ll look at this in the next section.

4.5.3 Adding a Controller

It’s nice to be able to look at a domain model, but many everyday applications
require us to modify them too—download the tune, edit the document, add items
to the shopping basket, and so on. Mediating between user interactions and the
domain model is the responsibility of the Controller, and we’ll now add that func-
tionality to our ObjectViewer.

 The first thing that we’d like to do is to be able to edit simple text values when
we click on them, if our specification object flags them as being editable.
Listing 4.15 shows the code used to render a simple text property.

objviewer.PropertyViewer.prototype.renderSimple=function(){
 var valDiv=document.createElement("div");
 var valTxt=document
 .createTextNode(this.value);
 valDiv.appendChild(valTxt);
 if (this.spec.editable){
 valDiv.className+=" editable";
 valDiv.viewer=this;
 valDiv.onclick=objviewer.PropertyViewer.editSimpleProperty;
 }
 return valDiv;
}
objviewer.PropertyViewer.editSimpleProperty=function(e){
 var viewer=this.viewer;
 if (viewer){
 viewer.edit();
 }
}
objviewer.PropertyViewer.prototype.edit=function(){
 if (this.type=objviewer.TYPE_SIMPLE){
 var editor=document.createElement("input");
 editor.value=this.value;
 document.body.appendChild(editor);

Listing 4.15 renderSimple() function

Show read-only value

b Add interactivity if editable

c Begin editing
Licensed to jonathan zheng <yiyisjun@gmail.com>

Generating the View from the Model 155
 var td=this.valTd;
 xLeft(editor,xLeft(td));
 xTop(editor,xTop(td));
 xWidth(editor,xWidth(td));
 xHeight(editor,xHeight(td));
 td.replaceChild(editor,td.firstChild);
 editor.onblur=objviewer.
 PropertyViewer.editBlur;
 editor.viewer=this;
 editor.focus();
 }
}
objviewer.PropertyViewer
 .editBlur=function(e){
 var viewer=this.viewer;
 if (viewer){
 viewer.commitEdit(this.value);
 }
}
objviewer.PropertyViewer.prototype.commitEdit=function(value){
 if (this.type==objviewer.TYPE_SIMPLE){
 this.value=value;
 var valDiv=this.renderSimple();
 var td=this.valTd;
 td.replaceChild(valDiv,td.firstChild);
 this.objectViewer
 .notifyChange(this);
 }
}

Editing a property involves several steps. First, we want to assign an onclick han-
dler to the DOM element displaying the value, if the field is editable b. We also
assign a specific CSS classname to editable fields, which will make them change
color when the mouse hovers over them. We need the user to be able to realize
that she can edit the field, after all.

 editSimpleProperty() c is a simple event handler that retrieves the reference
to the PropertyViewer from the clicked DOM node and calls the edit() method.
This way of connecting the View and Controller should be familiar from
section 4.3.1. We check that the property type is correct and then replace the
read-only label with an equivalent-sized HTML form text input, containing the
value d. We also attach an onblur handler to this text area e, which replaces the
editable area with a read-only label f and updates the domain model.

 We can manipulate the domain model in this way, but in general, we would often
like to take some other action when the model is updated. The notifyChange()

d Replace with read/write view

e Add commit callback

f Finish editing

g Notify observers
Licensed to jonathan zheng <yiyisjun@gmail.com>

156 CHAPTER 4
The page as an application
method of the ObjectViewer g, invoked in the commitEdit() function, comes into
play here. Listing 4.16 shows this function in full.

objviewer.ObjectViewer.prototype
 .notifyChange=function(propViewer){
 if (this.onchangeRouter){
 this.onchangeRouter.notify(propViewer);
 }
 if (this.parentObjViewer){
 this.parentObjViewer.notifyChange(propViewer);
 }
}
objviewer.ObjectViewer.prototype
 .addChangeListener=function(lsnr){
 if (!this.onchangeRouter){
 this.onchangeRouter=new jsEvent.EventRouter(this,"onchange");
 }
 this.onchangeRouter.addListener(lsnr);
}
objviewer.ObjectViewer.prototype
 .removeChangeListener=function(lsnr){
 if (this.onchangeRouter){
 this.onchangeRouter.removeListener(lsnr);
 }
}

The problem we are facing—notifying arbitrary processes of a change in our
domain model—is ideally solved by the Observer pattern and the EventRouter
object that we defined in section 4.3.3. We could attach an EventRouter to the
onblur event of the editable fields, but a complex model may contain many of
these, and our code shouldn’t have visibility of such fine details in the Object-
Viewer implementation.

 Instead, we define our own event type on the ObjectViewer itself, an onchange
event, and attach an EventRouter to that. Because our ObjectViewers are
arranged in a tree structure when drilling down on object and array properties,
we pass onchange events to the parent, recursively. Thus, in general, we can attach
listeners to the root ObjectViewer, the one that we create in our application code,
and changes to model properties several layers down the object graph will prop-
agate back up to us.

 A simple example of an event handler would be to write a message to the
browser status bar. The top-level object in a model of planets is the solar system,
so we can write

Listing 4.16 ObjectViewer.notifyChange()
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 157
var topview=new objviewer.ObjectViewer
 (planets.solarSystem,mainDiv);
topview.addChangeListener(testListener);

where testListener is an event-handler function that looks like this:

function testListener(propviewer){
 window.status=propviewer.name+" ["+propviewer.type+"] =

"+propviewer.value;
}

Of course, in reality, we would want to do more exciting things when the domain
model changes, such as contacting the server. In the next chapter, we’ll look at
ways of contacting the server and put our ObjectViewer to further use.

4.6 Summary

The Model-View-Controller pattern is an architectural pattern that has been
applied to the server code of classic web applications. We showed how to reuse
this pattern on the server in an Ajax application, in order to generate data feeds
for the client. We also applied the pattern to the design of the client itself and
developed a range of useful insights through doing so.

 Looking at the View subsystem, we demonstrated how to effectively separate
presentation from logic, with the very practical benefit of allowing designer and
programmer roles to be kept separate. Maintaining clear lines of responsibilities
in the codebase that reflect your team’s organizational structure and skill sets can
be a great productivity booster.

 In the Controller code, we looked at the different event models available to
Ajax and erred on the side of caution toward the older event model. Although it is
limited to a single callback function for each event type, we saw how to implement
the Observer pattern to develop a flexible, reconfigurable event-handler layer on
top of the standard JavaScript event model.

 Regarding the Model, we began to address the larger issues of distributed
multiuser applications, which we will explore further in chapter 5.

 Looking after a Model, a View, and a Controller can seem like a lot of work. In
our discussion of the ObjectViewer example, we looked at ways of simplifying the
interactions between these using automation, and we created a simple system
capable of presenting an object model to the user and allowing interaction with it.

 We’ll continue to draw upon design patterns as we move on to explore client/
server interactions in the next chapter.
Licensed to jonathan zheng <yiyisjun@gmail.com>

158 CHAPTER 4
The page as an application
4.7 Resources

The Behaviours library used in this chapter can be found at http://ripcord.co.nz/
behaviour/. Mike Foster’s x library can be found at www.cross-browser.com.

 Autogeneration of the View from the Model is a technique inspired by the
Naked Objects project (http://www.nakedobjects.org/). The book Naked Objects
(John Wiley & Sons, 2002), by Richard Pawson and Robert Matthews, is somewhat
out of date as far as the code goes, but provides an incisive critique of hand-coded
MVC in the opening sections.

 The images of the planets used in the ObjectViewer are provided by Jim’s
Cool Icons (http://snaught.com/JimsCoolIcons/), and are modeled using the POV-
Ray modeler and textured with real images from NASA (according to the website)!
Licensed to jonathan zheng <yiyisjun@gmail.com>

The role of the server

This chapter covers
■ Using current web framework types with Ajax
■ Exchanging data with the server as content,

script, or data
■ Communicating updates to the server
■ Bundling multiple requests and replies into a

single HTTP call
159

Licensed to jonathan zheng <yiyisjun@gmail.com>

160 CHAPTER 5
The role of the server
This chapter concludes the work that we started in chapter 4: making our applica-
tions robust and scalable. We’ve moved from the proof-of-concept stage to some-
thing that you can use in the real world. Chapter 4 examined ways of structuring the
client code to achieve our goal; in this chapter, we look at the server and, more spe-
cifically, at the communication between the client and the server.

 We’ll begin by looking at the big picture and discuss what functions the server
performs. We’ll then move on to describe the types of architectures commonly
employed in server-side frameworks. Many, many web frameworks are in use
today, particularly in the Java world, and we won’t try to cover them all, but
rather we’ll identify common approaches and ways of addressing web application
development. Most frameworks were designed to generate classic web applica-
tions, so we’re particularly interested to see how they adapt to Ajax and where
the challenges lie.

 Having considered the large-scale patterns, we’ll look at the finer details of
communicating between client and server. In chapter 2 we covered the basics of
the XMLHttpRequest object and hidden IFrames. We’ll return to these basics here
as we examine the various patterns for updating the client from the server and
discuss the alternatives to parsing XML documents using DOM methods. In the
final section, we’ll present a system for managing client/server traffic over the life-
time of the application, by providing a client-side queue for requests and server-
side processes for managing them.

 Let’s start off, then, by looking at the role of the server in Ajax.

5.1 Working with the server side

In the lifecycle of an Ajax application, the server has two roles to fulfill, and these
are fairly distinct. First, it has to deliver the application to the browser. So far,
we’ve assumed that the initial delivery of content is fairly static, that is, we write
the application itself as a series of .html, .css, and .js files that even a very basic
web server would be able to deliver. Nothing is wrong with this approach—in fact,
a lot can be said for it—but it isn’t the only option available to us. We’ll look at the
alternatives later, when we discuss server-side frameworks in section 5.3.

 The second role of the server is to talk to the client, fielding queries and sup-
plying data on request. Because HTTP is the only transport mechanism available
to us, we’re limited to the client starting off any conversation. The server can only
respond. In chapter 4, we discussed the need for an Ajax application to maintain
a domain model on both the client (for fast responses) and the server (for access
to resources such as the database). Keeping the models in sync with one another
Licensed to jonathan zheng <yiyisjun@gmail.com>

Coding the server side 161
represents a major challenge, and one that the client can’t solve on its own. We’ll
look at ways of writing data to the server in section 5.5 and present a solution to
this problem based on one of the patterns that we encountered in chapter 3.

 We can deliver the client application—and talk to the client—in several ways,
as you will see in this chapter. Is one way better than the others? Do any particular
combinations support each other? Can they be mixed and matched? How do the
different solutions work with legacy server frameworks and architectures? To
answer these questions, a vocabulary for describing our various options will be
useful. And that’s exactly what we’re going to develop in this chapter. First, let’s
look at the way the server is set up in a web application, and how Ajax affects that.

5.2 Coding the server side

In a conventional web application, the server side tends to be a rather complex
place, controlling and monitoring the user’s workflow through the application
and maintaining conversational state. The application is designed for a particu-
lar language, and set of conventions, that will determine what it can and can’t do.
Languages may in themselves be tied to specific architectures, operating systems,
or hardware. Picking a programming environment is a big choice to make, so let’s
discuss the options available to us.

5.2.1 Popular implementation languages

Server-side programming is dominated by a handful of languages. Over the very
brief course of Internet history, fashions in server-side languages have changed
remarkably. The current kings of the hill are PHP, Java, and classic ASP, with
ASP.NET and Ruby growing in popularity too. These names are undoubtedly
familiar to most readers, so I won’t try to explain what they are here. Ajax is pri-
marily a client-side technology and can interoperate with any of these languages.
Indeed, some ways of working with Ajax downplay the importance of the server-
side language considerably, making it easy to port Ajax applications from one
server platform to another.

 Web frameworks are in many ways more important to Ajax than the imple-
mentation language. Web frameworks carry assumptions with them, about how
the application is structured and where key responsibilities lie. Most frameworks
have been designed for building classic web applications, and assumptions about
the lifecycles of these—which are very different from those of an Ajax app—may
be problematic in places. We’ll look at server-side designs and frameworks in the
Licensed to jonathan zheng <yiyisjun@gmail.com>

162 CHAPTER 5
The role of the server
following section, but first, let’s review the basic principles of web-based architec-
tures, in order to lay the groundwork for that discussion.

5.2.2 N-tier architectures

A core concept in distributed applications is that of the tier. A tier often represents
a particular set of responsibilities for an application, but it also describes a sub-
system that can be physically isolated on a particular machine or process. This
distinguishes it from the roles in MVC, for example. Model, View, and Controller
aren’t tiers because they typically sit in the same process.

 Early distributed systems consisted of a client tier and a server tier. The client
tier was a desktop program using a network socket library to communicate to the
server. The server tier was typically a database server.

 Similarly, early web systems consisted of a browser talking to a web server, a
monolithic system on the network sending files from the filesystem.

 As web-based applications became more complex and began to require access
to databases, the two-tier model of client/server was applied to the web server to
create a three-tier model, with the web server mediating between the web browser
client and the database. Later refinements on the model saw a further separation
of the middle tier into presentation and business roles, either as distinct processes
or as a more modular software design within a single process.

 Modern web applications typically have two principal tiers. The business tier
models the business domain, and talks directly to the database. The presentation
tier takes data from the business tier and presents it to the user. The browser acts
as a dumb client in this setup.

 The introduction of Ajax can be considered to be the development of a further
client tier, separating the presentation tier’s traditional responsibilities of work-
flow and session management between the web server and the client (figure 5.1).

Database serverWeb server

Presentation tier

Business tier

Web browser

Client tier

Figure 5.1 An Ajax application moves some of the responsibilities of the
presentation tier from the server up to the browser, in a new entity that we
call the client tier.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Coding the server side 163
The role of the server-side presentation tier can be much reduced and workflow
control partly or completely handed over to the new client tier, written in Java-
Script and hosted on the browser.

 This new tier in our application brings with it new possibilities, as we’ve
already discussed. It also brings the potential for greater complexity and confu-
sion. Clearly, we need a way to manage this.

5.2.3 Maintaining client-side and server-side domain models

In an Ajax application, we still need to model the business domain on the server,
close to the database and other vital centralized resources. However, to give the
client code sufficient responsiveness and intelligence, we typically will want to
maintain at least a partial model in the browser. This presents the interesting
problem of keeping the two models in sync with one another.

 Adding an extra tier always adds complexity and communications overheads.
Fortunately, the problem isn’t entirely new, and similar issues are commonly
encountered in J2EE web development, for example, in which there is a strict sep-
aration between the business tier and the presentation tier. The domain model
sits on the business tier and is queried by the presentation tier, which then gener-
ates web content to send to the browser. The problem is solved in J2EE by the use
of “transfer objects,” which are simple Java objects designed to pass data between
the tiers, presenting limited views of the domain model to the presentation tier.

 Ajax provides us with new challenges, though. In J2EE, both tiers are written in
a common language with a remote procedure mechanism provided, which is typ-
ically not the case with Ajax. We could use JavaScript on the server tier, through
Mozilla’s Rhino or Microsoft’s JScript .NET, for example, but it is currently rather
unorthodox to do so, and we’d still need to communicate between the two Java-
Script engines.

 The two basic requirements for communicating between the tiers are reading
data from the server and writing data to the server. We’ll look at the details of
these in section 5.3 through 5.5. Before we conclude our overview of architectural
issues, though, we will look at the main categories of server architecture currently
in use. In particular, we’ll be interested to see how they represent the domain
model to the presentation tier and what restrictions this might place on an Ajax-
based design.

 A recent informal survey (see the Resources at the end of this chapter) listed
over 60 presentation frameworks for Java alone (to be fair, Java probably suffers
from this framework-itis more than any other server language). Most of these
differ in the details, fortunately, and we can characterize the presentation tier
Licensed to jonathan zheng <yiyisjun@gmail.com>

164 CHAPTER 5
The role of the server
(in whatever server language) as following one of several architectural patterns.
Let’s have a look at these now.

5.3 The big picture: common server-side designs

Server-side frameworks matter to all Ajax applications. If we choose to generate
the client code from a sever-side model, it matters a great deal. If we hand-code
the client code and serve it as static HTML and JavaScript pages, then the frame-
work isn’t involved in delivering the app, but the data that the application will
consume still has to be dynamically generated. Also, as we noted in the previous
section, the server-side framework typically contains a domain model of some
sort, and the presentation tier framework stands between that model and our
Ajax application. We need to be able to work with the framework in order for our
application to function smoothly.

 Web application servers can be unkindly characterized as developers’ play-
grounds. The problem of presenting a coherent workflow to a user through a
series of web pages, while interfacing to back-end systems such as database serv-
ers, has never been adequately solved. The Web is littered with undernourished,
ill-maintained frameworks and utilities, with new projects popping up on a
monthly, if not weekly, basis.

 Fortunately, we can recognize discrete families within this chaotic mixture.
Reducing this framework soup to its essentials, there are possibly four main ways
to get the job done. Let’s examine each in turn and see how it can be adapted to
the Ajax model.

5.3.1 Naive web server coding without a framework

The simplest kind of framework is no framework at all. Writing a web applica-
tion without a framework defining the key workflow elements, or mediating
access to the back-end systems, doesn’t imply a complete lack of order. Many
web sites are still developed this way, with each page generating its own views
and performing its own back-end housekeeping, probably with the assistance of
some shared library of helper functions or objects. Figure 5.2 illustrates this pat-
tern of programming.

 Modifying this approach for Ajax is relatively straightforward, if we assume
that the client is hand-coded. Generating client code from the server is a big
topic that’s beyond the scope of this book. To deliver the client, we need to
define a master page that will include any necessary JavaScript files, stylesheets,
and other resources. For supplying data feeds, we simply need to replace the
Licensed to jonathan zheng <yiyisjun@gmail.com>

https://bpcatalog.dev.java.net/nonav/ajax/jsf-ajax/frames.html
https://bpcatalog.dev.java.net/nonav/ajax/jsf-ajax/frames.html
https://bpcatalog.dev.java.net/nonav/ajax/jsf-ajax/frames.html

The big picture: common server-side designs 165
generated HTML pages with XML or the other data stream of our choice (more
on this topic later).

 The key shortcoming of this approach in a classic web app is that the links
between documents are scattered throughout the documents themselves. That is,
the Controller role is not clearly defined in one place. If a developer needs to
rework the user flow between screens, then hyperlinks must be modified in sev-
eral places. This could be partly ameliorated by putting link-heavy content such
as navigation bars inside include files or generating them programmatically
using helper functions, but maintenance costs will still rise steeply as the app
becomes more complicated.

 In an Ajax application, this may be less of a problem, since hyperlinks and
other cross-references will typically not be embedded in data feeds as densely as
in a web page, but includes and forwarding instructions between pages will still
pose a problem. Includes and forwards won’t be required in a simple XML docu-
ment, but larger applications may be sending complex structured documents
assembled by several subprocesses, as we will see in section 5.5. The early gener-
ation of web frameworks used MVC as a cure for these ills, and many of these
frameworks are still in use today, so let’s look at them next.

Web browser

Web server

Helpers

Database server

Views/pages

Figure 5.2 Web programming without a framework. Each page, servlet, or CGI
script maintains its own logic and presentation details. Helper functions and/or
objects may encapsulate common low-level functionality, such as database access.
Licensed to jonathan zheng <yiyisjun@gmail.com>

166 CHAPTER 5
The role of the server
5.3.2 Working with Model2 workflow frameworks

The Model2 design pattern is a variation of MVC, in which the Controller has a
single point of entry and a single definition of the users’ possible workflows.
Applied to a web application, this means that a single Controller page or servlet
is responsible for routing most requests, passing the request through to various
back-end services and then out to a particular View. Apache Struts is probably
the best-known Model2 framework, although a number of other Java and PHP
frameworks follow this pattern. Figure 5.3 illustrates the structure of a Model2
web framework.

 How can we apply this design to a server application talking to an Ajax client,
then? Model2 has relatively little to say about the delivery of the client applica-
tion, which will typically occur at startup as a single payload, identical for all
authenticated users. The centralized controller may be involved in the authenti-
cation process itself, but there is little merit in expressing the delivery of the
application itself through anything other than a single endpoint of the controller.

 It provides a workable solution for delivery of data feeds, though. The Views
returned by Model2 are essentially independent of the framework, and we may

Web browser

Web server

Action
Handlers

Views/pages

Controller

Database server

Business tier

Figure 5.3 Model2 web framework. A single controller page or servlet accepts all
requests and is configured with a complete graph of user workflows and interactions.
The request will be handed to one of a number of ancillary classes or functions for
more specialized processing and finally routed out to a View component (for example,
a JSP or PHP page) before being sent to the browser.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The big picture: common server-side designs 167
easily swap HTML for XML or other data formats. Part of the Controller respon-
sibility will be passed to the client tier, but some Controller functions may still be
usefully expressed through server-side mappings.

 Model2 for classic web apps provides a good way of expressing much of the
Controller responsibility at a high level of abstraction, but it leaves the implemen-
tation of the View as a hand-coding task. Later developments in web frameworks
attempted to provide a higher-level abstraction for the View, too. Let’s examine
them next.

5.3.3 Working with component-based frameworks

When writing an HTML page for a classic web application, the page author has a
very limited set of predefined GUI components at hand, namely the HTML form
elements. Their feature set has remained largely unchanged for nearly 10 years,
and compared to modern GUI toolkits, they are very basic and uninspiring. If a
page author wishes to introduce anything like a tree control or editable grid, a
calendar control or an animated hierarchical menu, he needs to resort to low-
level programming of basic document elements. Compared with the level of
abstraction available to a developer building a desktop GUI using component
toolkits such as MFC, GTK+, Cocoa, Swing, or Qt, this seems like a poor option.

Widgets for the web
Component-based frameworks aim to raise the level of abstraction for web UI
programming, by providing a toolkit of server-side components whose API
resembles that of a desktop GUI widget set. When desktop widgets render them-
selves, they typically paint onto a graphics context using low-level calls to gener-
ate geometric primitives, bitmaps, and the like. When web-based widgets render
themselves, they automatically generate a stream of HTML and JavaScript that
provides equivalent functionality in the browser, relieving the poor coder from a
lot of low-level drudgery. Figure 5.4 illustrates the structure of a component-
based web framework.

 Many component-based frameworks describe user interaction using a desk-
top-style metaphor. That is, a Button component may have a click event handler,
a text field component may have a valueChange handler, and so on. In most
frameworks, event processing is largely delegated to the server, with a request
being fired for each user interaction. Smarter frameworks manage to do this
behind the scenes, but some will refresh the entire page with each user event.
This leads to a decidedly clunky user experience, as an application designed as a
Licensed to jonathan zheng <yiyisjun@gmail.com>

168 CHAPTER 5
The role of the server
widget set will typically have lots of fine-grained interactions compared to one
designed as a set of pages, using Model2, say.

 A significant design goal of these frameworks is to be able to render different
types of user interface from a single widget model description. Some frameworks,
such as Windows Forms for .NET and JavaServer Faces (JSF), are already able to
do this.

Interoperating with Ajax
So how do Component-based frameworks fare with Ajax, then? On the surface,
both are moving away from a document-like interface toward a widget-based one,

Controller

Widget/component model

Web server

Business tier

Database server

Web browser

Controller

Action handlers

Views/pages

Figure 5.4 Architecture of a component-based web framework. The application is
described as a collection of widgets that render themselves by emitting a stream of
HTML and JavaScript into the browser. Each component contains its own small-scale
Model, View, and Controller, in addition to the larger Controller that fields browser
requests to individual components and the larger domain model.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The big picture: common server-side designs 169
so the overlap ought to be good. This type of framework may have strong possi-
bilities as far as generating the client application goes, if pluggable renderers that
understand Ajax can be developed. There is a considerable appeal to doing so,
since it avoids the need to retrain developers in the intricacies of JavaScript, and
it leaves an easy route for providing an alternative to older browsers through a
plain-old HTML rendering system.

 Such a solution will work well for applications that require only standard wid-
get types. A certain degree of flexibility, however, will be lacking. Google Maps,
for example (see chapter 1), is successful largely because it defines its own set of
widgets, from the scrollable map to the zoom slider and the pop-up balloons and
map pins. Trying to build this using a standard set of desktop widgets would be
difficult and probably less satisfactory in the end.

 That said, many applications do fit more easily within the conventional
range of widget types and would be better served by these types of framework.
This trade-off between flexibility and convenience is common to many code
generation–based solutions and is well understood.

 To fully serve an Ajax application, the framework must also be able to supply
the necessary data feeds. Here, the situation may be somewhat more problem-
atic, as the Controller is heavily tied to the server tiers and is tightly defined
through the desktop metaphor. A responsive Ajax application requires more
freedom in determining its own event handlers than the server event model
seems to allow. Nonetheless, there is considerable momentum behind some of
these frameworks, and solutions will undoubtedly emerge as Ajax rises in popu-
larity. The CommandQueue approach that we will introduce in section 5.5.3 may
be one way forward for JSF and its cousins, although it wasn’t designed as such.
For now, though, these frameworks tie the client a little too closely to their apron
strings for my liking.

 It will be interesting to see how these frameworks adapt to Ajax in the future.
There is already significant interest in providing Ajax-enabled toolkits from
within Sun and from several of the JSF vendors, and .NET Forms already support
some Ajax-like functionality, with more being promised in the forthcoming Atlas
toolkit (see the Resource section at the end of this chapter for URLs to all these).

 This raises the question of what a web framework would look like if designed
specifically for Ajax. No such beast exists today, but our final step on the tour of
web frameworks may one day be recognized as an early ancestor.
Licensed to jonathan zheng <yiyisjun@gmail.com>

170 CHAPTER 5
The role of the server
5.3.4 Working with service-oriented architectures

The final kind of framework that we’ll look at here is the service-oriented archi-
tecture (SOA). A service in an SOA is something that can be called from the net-
work and that will return a structured document as a reply. The emphasis here is
on data, not content, which is a good fit with Ajax. Web services are the most com-
mon type of service currently, and their use of XML as a lingua franca also works
well with Ajax.

NOTE The term Web Services, with capital letters, generally refer to systems
using SOAP as transport. The broader term web services (in lower case),
encompasses any remote data exchange system that runs over HTTP,
with no constraints on using SOAP or even XML. XML-RPC, JSON-RPC
and any custom system that you develop using the XMLHttpRequest
object are web services, but not Web Services. We are talking about the
broader category of web services in this section.

When consuming a web service as its data feed, an Ajax client achieves a high
degree of independence, similar to that of a desktop email client communicating
to a mail server, for example. This is a different kind of reuse from that offered by
the component-based toolkits. There, the client is defined once and can be
exported to multiple interfaces. Here, the service is defined once and can be used
by numerous unrelated clients. Clearly, a combination of SOA and Ajax could be
powerful, and we may see separate frameworks evolving to generate, and to
serve, Ajax applications.

Exposing server-side objects to Ajax
Many SOA and web service toolkits have appeared that make it possible to expose
a plain-old server-side object written in Java, C#, or PHP directly as a web service,
with a one-to-one mapping between the object’s methods and the web service
interface. Microsoft Visual Studio tools support this, as does Apache Axis for Java.
A number of Ajax toolkits, such as DWR (for Java) and SAJAX (for PHP, .NET,
Python, and several other languages) enhance these capabilities with JavaScript-
specific client code.

 These toolkits can be very useful. They can also be misused if not applied with
caution. Let’s look at a simple example using the Java DWR toolkit, in order to
work out the right way to use these tools. We will define a server-side object to
represent a person.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The big picture: common server-side designs 171
package com.manning.ajaxinaction;

public class Person{
 private String name=null;
 public Person(){
 }
 public String getName(){
 return name;
 }
 public void setName(String name){
 this.name=name;
 }
}

The object must conform to the basic JavaBeans specification. That is, it must
provide a public no-argument constructor, and expose any fields that we want to
read or write with getter and setter methods respectively. We then tell DWR to
expose this object to the JavaScript tier, by editing the dwr.xml file:

<dwr>
 <init>
 <convert id="person" converter="bean"
 match="com.manning.ajaxinaction.Person"/>
 </init>
 <allow>
 <create creator="new" javascript="person">
 <param name="class" value="com.manning.ajaxinaction.Person">
 </create>
 </allow>
</dwr>

In the <init> section, we define a converter for our class of type bean, and in the
<allow> section, we then define a creator that will expose instances of that object
to JavaScript as a variable called person. Our Person object only has one public
method, getName(), so we will be able to write in our Ajax client code

var name=person.getName();

and retrieve the value asynchronously from the server.
 Our Person only has one method, so that’s all we’ve exposed, right? Unfortu-

nately, that’s a false assumption. Our Java Person class is descended from
java.lang.Object and inherits a few public methods from there, such as hash-
Code() and toString(), which we can also invoke from the server. This hidden
feature is not peculiar to DWR. The JSONRPCBridge.registerObject() method
will do the same, for example. To its credit, DWR does provide a mechanism for
restricting access to specific methods within its XML config file. However, the
default behavior is to expose everything. This problem is inherent in most
Licensed to jonathan zheng <yiyisjun@gmail.com>

172 CHAPTER 5
The role of the server
reflection-based solutions. We ran across it in chapter 4 in our early versions of
the ObjectViewer utility using JavaScript reflection. Let’s see what we can do
about it.

Limiting exposure
We’ve accidentally exposed our hashcodes to the Web, but have we really done
any damage? In this case, probably not, because the superclass is java.lang.
Object, which is unlikely to change. In a more complex domain model, though,
we might be exposing implementation details of our own superclasses, which we
might want to refactor later. By the time we get around to it, some bright spark is
bound to have discovered our unwittingly exposed methods and used them in his
client code, so that when we deploy the refactored object model, his client sud-
denly breaks. In other words, we’ve failed to separate our concerns adequately. If
we’re using a toolkit such as DWR or JSON-RPC, then we should take great care to
decide which objects we are going to publish as our Ajax interface and preferably
create a Façade object of some sort (figure 5.5).

 Using a Façade in this situation offers several advantages. First, as already
noted, it allows us to refactor our server-side model without fear. Second, it sim-
plifies the publicly published interface that client code will use. In comparison to
code written for internal consumption, interfaces published to other parties are
expensive. Either we document them in detail up front or we don’t document
them—and become inundated with support calls from people writing to our pub-
lished interfaces.

 Another advantage of Façade is that it allows us to define the level of granu-
larity of our services separately from the design of our domain model. A good
domain model may contain lots of small, precise methods, because we require
that precision and control within our server-side code. The requirements of a web
service interface for an Ajax client are quite different, however, because of net-
work latency. Many small method calls will kill the usability of the client, and, if
deployed in sufficient number, may kill the server and even the network.

 Think of it as the difference between a face-to-face conversation and a written
correspondence (or an IM conversation and an email correspondence, for those
too young and hip to remember what pen and paper are). When I talk directly to
you, there are many small interchanges, possibly several just to establish that we
are both “fine” today. When writing a letter, I may send a single exchange
describing the state of my health, a recent vacation, what the family is doing, and
a joke that I heard the other day, all in a single document.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The big picture: common server-side designs 173
By bundling calls across the network into larger documents, service-oriented
architectures are making better use of available network resources. Bandwidth is
typically less of a problem than latency. They are also causing problems for them-
selves by standardizing on a bulky XML data format over a verbose transmission
protocol (our familiar and well-loved HTTP), but that’s a story for another day. If
we look at the options available with Ajax, we can see that we are provided with
good native support for HTTP and XML technologies in the browser, and so a
document-centric approach to our distributed domain models makes sense.

 A conventional document, such as this book, is composed of paragraphs, head-
ings, tables, and figures. Likewise, a document in a call to a service may contain a
variety of elements, such as queries, updates, and notifications. The Command
pattern, discussed in chapter 3, can provide a good foundation for structuring our

Fine-grained
web services

Coarse-grained
web services

Web client

Web client

Web service
facade

Domain
model

Web server

Web
service

Domain
model

Web server

Figure 5.5 Comparison of a system in which all objects are fully
exposed as Internet services to an Ajax client and one is using a
Façade to expose only a few carefully chosen pieces of
functionality. By reducing the number of publicly published
methods, we can refactor our domain model without fear of
breaking client code over which we have no control.
Licensed to jonathan zheng <yiyisjun@gmail.com>

174 CHAPTER 5
The role of the server
documents as a series of undoable actions to be passed between client and server.
We’ll look at an implementation of this later in the chapter.

 This concludes our discussion of the server-side architectures of the day. None
provides a perfect fit for Ajax yet, which is not surprising given that they were
designed to serve a considerably different kind of web application. A lot of good
work is underway to build Ajax into existing frameworks and the next year or so
should prove interesting. Nonetheless, many web developers will be faced with
the task of making Ajax work with these legacy systems, and this overview of the
strengths and weaknesses for each ought to provide a starting point.

 Let’s assume for the moment that we have decided upon one architecture or
another and begun the work of developing an Ajax application. We have already
discussed the architecture of the client application itself in detail in chapter 4,
and we provided examples of retrieving XML data from the server in chapter 2.
XML is popular but not the only way of exchanging data between client and
server. In the following section, we review the full spectrum of options for com-
municating between client and server.

5.4 The details: exchanging data

We’ve looked at the big architectural patterns that describe how our web applica-
tion might behave and shown that there are many options. We’ve stressed the
importance of communication between the client and the server’s domain mod-
els, and we might naively assume that once we’ve settled on a framework, our
design choices are made for us. In this and the following section, we’ll see that
this is far from true. If we focus on a single exchange of data, we have many
options. We’ll catalog the options here, with the aim of developing a pattern lan-
guage for Ajax data exchange. With this in hand, we can make more informed
decisions about what techniques to use in particular circumstances.

 Exchanging pure data has no real analog in the classical web application, and
so the pattern language is less well developed in this area. I’ll attempt to fill that
void by defining a few phrases of my own. As a first cut, I suggest that we break
user interactions into four categories: client-only, content-centric, script-centric, and
data-centric. Client-only interactions are simple, so we’ll deal with them quickly in
the next section, and then introduce an example that can see us through the
other three.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 175
5.4.1 Client-only interactions

A client-only interaction is one in which a user interaction is processed by a
script that has already been loaded into the browser. No recourse to the web
server (the old presentation tier) is necessary, which is good for responsiveness
and for server load. Such an interaction is suitable for relatively trivial calcula-
tions, such as adding a sales tax or shipping charge to a customer’s order. In gen-
eral, for this approach to be effective, the client-side logic that processes the
interaction needs to be small and unchanging during the lifetime of the cus-
tomer interaction. In the case of shipping options, we are on safe ground
because the number of options will be of the order of two to five, not several
thousands (unlike, say, the full catalog of an online retailer), and the shipping
costs are unlikely to change from one minute to the next (unlike, say, a stock
ticker or first-come-first-served ticket-reservation system). This type of interac-
tion has already been explored in chapter 4’s discussion of the client-side Con-
troller, so we’ll say no more about it here.

 The remaining three categories all involve a trip back to the server and differ
primarily in what is fetched. The key differences are summarized in the following
sections, along with the pros and cons of each.

5.4.2 Introducing the planet browser example

Before we dive in to the different data exchange mechanisms, let’s introduce a
simple example, to serve as a hook on which to hang our arguments. The appli-
cation will present a range of facts about the planets of our solar system. Our
main screen shows an idealized view of the solar system, with an icon for each
planet. On the server, we have recorded various facts about these planets, which
can be brought up in pop-up windows by clicking on the planet’s icon (figure 5.6).
We aren’t using the ObjectViewer from chapter 4 here, but we will get back to it
later in this chapter.

 The part of the puzzle that interests us now is delivering the data shown in the
pop-up from the server to the browser. We’ll look at the format of data that the
server sends us in each variation, but we won’t go into the details of generating
that data, as we’ve already covered the principles in our discussion of MVC in
chapter 3. Listing 5.1 shows the skeleton of our client-side application, around
which we can explore the various content-delivery mechanisms.
Licensed to jonathan zheng <yiyisjun@gmail.com>

176 CHAPTER 5
The role of the server
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Planet Browser</title>
<link rel=stylesheet type="text/css"
 href="main.css"/>
<link rel=stylesheet type="text/css"
 href="windows.css"/>
<link rel=stylesheet type="text/css"
 href="planets.css"/>

<script type="text/javascript"
 src="x/x_core.js"></script>
<script type="text/javascript"
 src="x/x_event.js"></script>
<script type="text/javascript"
 src="x/x_drag.js"></script>
<script type="text/javascript"
 src="windows.js"></script>
<script type="text/javascript"
 src="net.js"></script>

Listing 5.1 popups.html

Figure 5.6
Screenshot of planetary info application, in which pop-up windows
describing each planet can be brought up by clicking on the icons.

b Include
JavaScript
libraries
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 177
<script type="text/javascript">

window.onload=function(){
 var pbar=document.getElementById("planets");
 var children=pbar.getElementsByTagName("div");
 for(var i=0;i<children.length;i++){
 children[i].onclick=showInfo;
 }
}

</script>

</head>
<body>

<div class="planetbar" id="planets">
<div class="planetbutton" id="mercury">

</div>
<div class="planetbutton" id="venus">

</div>
<div class="planetbutton" id="earth">

</div>
<div class="planetbutton" id="mars">

</div>
<div class="planetbutton" id="jupiter">

</div>
<div class="planetbutton" id="saturn">

</div>
<div class="planetbutton" id="uranus">

</div>
<div class="planetbutton" id="neptune">

</div>
<div class="planetbutton" id="pluto">

</div>
</div>

</body>
</html>

c Assign event handler to icons

d Add hard-coded icons of planets
Licensed to jonathan zheng <yiyisjun@gmail.com>

178 CHAPTER 5
The role of the server
 We have included a few JavaScript libraries b in our file. net.js handles the
low-level HTTP request mechanics for us, using the XMLHttpRequest object that
we described in chapter 2. windows.js defines a draggable window object that we
can use as our pop-up window. The details of the implementation of the window
needn’t concern us here, beyond the signature of the constructor:

 var MyWindow=new Window(bodyDiv,title,x,y,w,h);

where bodyDiv is a DOM element that will be added into the window body, title is
a display string to show in the window titlebar, and x,y,w,h describes the initial
window geometry. By specifying a DOM element as the argument, we give our-
selves considerable flexibility as to how the content is supplied to the window. The
downloadable source code accompanying the book contains the full listing for the
Window object.

 In the HTML, we simply define a div element for each planet d, to which we
assign an onclick handler in the window.onload function c, using the standard
DOM tree navigation methods. The onclick handler, showInfo(), isn’t defined
here, as we’ll provide several implementations in this chapter. Let’s start by look-
ing at the various actions that we can take when we come to loading the content.

5.4.3 Thinking like a web page: content-centric interactions

The first steps that we take toward Ajax will resemble the classic web application
that we are moving away from, as noted in chapter 1 when discussing horses and
bicycles. Content-centric patterns of interaction still follow the classic web para-
digm but may have a role to play in an Ajax application.

Overview
In a content-centric pattern of interaction, HTML content is still being gener-
ated by the server and sent to an IFrame embedded in the main web page.
We discussed IFrames in chapter 2 and showed how to define them in the
HTML markup of the page or generate them programmatically. In the latter
case, we can still be looking at a fairly radically dynamic style of interface more
akin to a window manager than a desktop. Figure 5.7 outlines the content-
centric architecture.

 Listing 5.2 shows an implementation of the event handler for our planetary
info application, using a content-centric approach.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 179
var offset=8;

function showInfo(event){
 var planet=this.id;
 var infoWin=new ContentPopup(
 "info_"+planet+".html",
 planet+"Popup",
 planet,offset,offset,320,320
);
 offset+=32;
}

function ContentPopup(url,winEl,displayStr,x,y,w,h){

 var bod=document.createElement("div");
 document.body.appendChild(bod);

 this.iframe=document.createElement("iframe");
 this.iframe.className="winContents";
 this.iframe.src=url;
 bod.appendChild(this.iframe);

 this.win=new windows.Window(bod,displayStr,x,y,w,h);
}

Listing 5.2 ContentPopup.js

Client

Inner frame 1. Request

2. Response

3. Display <h1>ABC</h1>

1
2
3

Server

Figure 5.7 Content-centric architecture in an Ajax application. The
client creates an IFrame and launches a request to the server for
content. The content is generated from a Model, View, and Controller on
the server presentation tier and returned to the IFrame. There is no
requirement for a business domain model on the client tier.
Licensed to jonathan zheng <yiyisjun@gmail.com>

180 CHAPTER 5
The role of the server
showInfo() is the event-handler function for the DOM element representing the
planet. Within the event handler, this refers to the DOM element, and we use that
element’s id to determine for which planet we display information.

 We define a ContentPopup object that composes one of the generic Window
objects, creates an IFrame to use as the main content in the window body, and
loads the given URL into it. In this case, we have simply constructed the name of
a static HTML file as the URL. In a more sophisticated system with dynamically
generated data, we would probably add querystring parameters to the URL
instead. The simple file that we load into the IFrame in this example, shown in
listing 5.3, is generated by the server.

<html>
<head>
<link rel=stylesheet type="text/css" href="../style.css"/>
</head>
<body class="info">
<div class="framedInfo" id="info">
<div class="title" id="infotitle">earth</div>
<div class="content" id="infocontent">
A small blue planet near the outer rim of the galaxy,
third planet out from a middle-sized sun.
</div>
</div>
</body>
</html>

Nothing remarkable there—we can just use plain HTML markup as we would for
a classic web application.

 In a content-centric pattern, the client-tier code needs only a limited under-
standing of the business logic of the application, being responsible for placing the
IFrame and constructing the URL needed to invoke the content. Coupling
between the client and presentation tiers is quite loose, with most responsibility
still loaded onto the server. The benefit of this style of interaction is that there is
plenty of HTML floating around on the Web, ready to use. Two scenarios in which
it could be useful are incorporating content from external sites—possibly business
partners or public services—and displaying legacy content from an application.
HTML markup can be very effective, and there is little point in converting some
types of content into application-style content. Help pages are a prime example.
In many cases where a classic web application would use a pop-up window, an Ajax

Listing 5.3 info_earth.html
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 181
application might prefer a content-centric piece of code, particularly in light of
the pop-up blocker features in many recent browsers.

 This pattern is useful in a limited set of situations, then. Let’s briefly review its
limitations before moving on.

Problems and limitations
Because they resemble conventional web pages so much, content-centric inter-
actions have many of the limitations of the old way of doing things. The con-
tent document is isolated within the IFrame from the page in which it is
embedded. This partitions the screen real estate to some extent. In terms of lay-
out, the IFrame imposes a single rectangular window for the child document,
although it may be assigned a transparent background to help blend it into the
parent document.

 It may be tempting to use this mechanism to deliver highly dynamic subpages
within the highly dynamic application, but the introduction of IFrames in this way
can be problematic. Each IFrame maintains its own scripting context, and the
amount of “plumbing” code required for scripts in the IFrame and parent to talk
to one another can be considerable. For communication with scripts in other
frames, the problem worsens. We’ll return to this issue shortly when we look at
script-centric patterns.

 We also suffer many of the usability problems of traditional web applications.
First, if the layout of the IFrame involves nontrivial boilerplate markup, we are
still resending static content with each request for content. Second, although the
main document won’t suffer from “blinking” when data is refreshed, the IFrame
might, if the same frame is reused for multiple fetches of content. This latter issue
could be avoided with a bit of extra coding to present a loading message over the
top of the frame, for example.

 So, “content-centric” is the first new term for our vocabulary of Ajax server
request techniques. Content-centric approaches are limited in usefulness, but it’s
good to have a name for them. There are many scenarios that can’t be easily
addressed by a content-centric approach, such as updating a small part of a wid-
get’s surface, for example, a single icon or a single row in a table. One way to per-
form such modifications is to send JavaScript code. Let’s look at that option now.

Variations
The content-centric style that we’ve applied so far has used an IFrame to
receive the server-generated content. An alternative approach that might be
considered content-centric is to generate a fragment of HTML in response to
Licensed to jonathan zheng <yiyisjun@gmail.com>

182 CHAPTER 5
The role of the server
an asynchronous request, and assign the response to the innerHTML of a DOM
element in the current document. We use that approach in chapter 12 in our
XSLT-driven phonebook, so we won’t reproduce a full example here.

5.4.4 Thinking like a plug-in: script-centric interactions

When we send a JavaScript file from our web server to a browser, and it executes
in that browser for us, we are actually doing something quite advanced. If we gen-
erate the JavaScript that we are sending from a program, we are setting up an
even more complex system. Traditionally, client/server programs communicate
data to one another. Communicating executable, mobile code across the network
opens up a lot of flexibility. Enterprise-grade network languages such as Java and
the .NET stack are only just catching on to the possibilities of mobile code,
through technologies such as RMI, Jini, and the .NET Remoting Framework. We
lightweight web developers have been doing it for years! As usual, Ajax lets us do
a few new interesting things with this capability, so let’s see what they are.

Overview
In a classic web application, a piece of JavaScript and its associated HTML are
delivered in a single bundle, and the script is typically authored to work with that
particular page. Using Ajax, we can load scripts and pages independently of one
another, giving us the possibility of modifying a particular page in a number of
different ways, depending on the script that we load. The code that constitutes
our client-tier application can effectively be extended at runtime. This introduces
both problems and opportunities, as we will see. Figure 5.8 illustrates the basic
architecture of a script-centric application.

 The first advantage of this approach over a content-centric solution is that the
network activity is relegated to the background, eliminating visual blinking.

 The exact nature of the script that we generate will depend on the hooks that
we expose in the client tier itself. As with much code generation, success hinges
on keeping the generated portion simple and making use of nongenerated
library code where possible, either transmitted alongside the generated code or
resident in the client application.

 Either way, this pattern results in relatively tight coupling between the tiers.
That is, the code generated by the server requires intimate knowledge of API calls
on the client. Two problems emerge. First, changes to the server and client code
can unintentionally break them. Good modular design principles can offset this
to some extent, by providing a well-defined, well-documented API—implement-
ing the Façade pattern. The second issue is that the stream of JavaScript is very
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 183
specifically designed for this client, and it is unlikely to be as reusable in other
contexts in comparison to, say, a stream of XML. Reusability isn’t important in all
cases, however.

 Let’s have a look at our planetary info example again. Listing 5.4 shows a sim-
ple API for displaying our information windows.

var offset=8;

function showPopup(name,description){
 var win=new ScriptIframePopup
 (name,description,offset,offset,320,320);
 offset+=32;
}

function ScriptIframePopup(name,description,x,y,w,h){

 var bod=document.createElement("div");
 document.body.appendChild(bod);

 this.contentDiv=document.createElement("div");
 this.contentDiv.className="winContents";
 this.contentDiv.innerHTML=description;
 bod.appendChild(this.contentDiv);

 this.win=new windows.Window(bod,name,x,y,w,h);
}

Listing 5.4 showPopup() function and supporting code

Client

Hidden inner
frame 1. Request

2. Response3. Interpret
var title="ABC";
var items={
 "1",
 "2",
 "3"
}
show(title,items);

4. Update visible elements

Title

Item

Item

Item

Server

Figure 5.8 Script-centric architecture in an Ajax application. The client
application makes a request to the server for a fragment of JavaScript, which
it then interprets. The client app exposes several entry points for generated
scripts to hook into, allowing manipulation of the client by the script.
Licensed to jonathan zheng <yiyisjun@gmail.com>

184 CHAPTER 5
The role of the server
We define a function showPopup that takes a name and description as argument
and constructs a window object for us. Listing 5.5 shows an example script that
invokes this function.

var name='earth';
var description="A small blue planet near the outer rim of the galaxy,"
 +"third planet out from a middle-sized sun.";

showPopup (name,description);

We simply define the arguments and make a call against the API. Behind the
scenes, though, we need to load this script from the server and persuade the
browser to execute it. There are two quite different routes that we can take. Let’s
examine each in turn.

Loading scripts into IFrames
If we load a JavaScript using an HTML document <script> tag, the script will
automatically be executed by the interpreter when it loads. IFrames are the same
as any other document in this respect. We can define a showInfo() method to cre-
ate an IFrame for us, and load the script into it:

function showInfo(event){
 var planet=this.id;
 var scriptUrl="script_"+planet+".html";
 var dataframe=document.getElementById('dataframe');
 if (!dataframe){
 dataframe=document.createElement("iframe");
 dataframe.className='dataframe';
 dataframe.id='dataframe';
 dataframe.src=scriptUrl;
 document.body.appendChild(dataframe);
 }else{
 dataframe.src=scriptUrl;
 }
}

The DOM manipulation methods that we’re using should be familiar by now. If we
use an invisible IFrame to load our script, we need only concentrate on generat-
ing the script itself, since all other interactions are generated for us. So let’s stitch
our sample script into an HTML document, as shown in listing 5.6.

Listing 5.5 script_earth.js
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 185
<html>
<head>
<script type='text/javascript' src='script_earth.js'>
</script>
</head>
<body>
</body>
</html>

When we try to load this code, it doesn’t work, because the IFrame creates its own
JavaScript context and can’t directly see the API that we defined in the main doc-
ument. When our script states

 showPopup(name,description);

the browser looks for a function showPopup() defined inside the IFrame’s context.
In a simple two-context situation such as this, we can preface API calls with top,
that is,

 top.showPopup(name,description);

in order to refer to the top-level document. If we were nesting IFrames inside
IFrames, or wanted to be able to run our application inside a frameset, things
could get much more complicated.

 The script that we load uses a functional approach. If we choose to instantiate
an object in our IFrame script, we will encounter further complications. Let’s say
that we have a file PlanetInfo.js that defines a PlanetInfo type of object that we
invoke in our script as

 var pinfo=new PlanetInfo(name,description);

To use this type in our script, we could import PlanetInfo.js into the IFrame con-
text, by adding an extra script tag:

<script type='text/javascript' src='PlanetInfo.js'></script>
<script type='text/javascript'>
 var pinfo=new PlanetInfo(name,description);
</script>

The PlanetInfo object created within the IFrame would have identical behavior to
one created in the top-level frame, but the two wouldn’t have the same prototype.
If the IFrame were later destroyed, but the top-level document kept a reference to
an object created by that IFrame, subsequent calls to the object’s methods would
fail. Further, the instanceof operator would have counterintuitive behavior, as
outlined in table 5.1.

Listing 5.6 script_earth.html
Licensed to jonathan zheng <yiyisjun@gmail.com>

186 CHAPTER 5
The role of the server
Importing the same object definition into multiple scripting contexts is not as
simple as it first looks. We can avoid it by providing a factory method as part of
our top-level document’s API, for example:

 function createPlanetInfo(name,description){
 return new PlanetInfo(name,description);
 }

which our script can then call without needing to refer to its own version of the
PlanetInfo type, thus:

<script type='text/javascript'>
 var pinfo=createPlanetInfo(name,description);
</script>

The showPopup() function in listing 5.4 is essentially a factory for the Script-
IframePopup object.

 This approach works and does what we want it to. We need to send a small
amount of HTML boilerplate with each page, but much less than with the content-
centric solution. The biggest drawback of this approach appears to be the creation
of a separate JavaScript context. There is a way to avoid that altogether, which we
will look at now.

Loading scripts using XMLHttpRequest and eval()
JavaScript, like many scripting languages, has an eval() function, which allows
any arbitrary text to be passed directly to the JavaScript interpreter. Using eval()
is often discouraged, or noted as being slow, and this is indeed the case when it is
called regularly on lots of small scripts. However, it has its uses, and we can
exploit it here to evaluate scripts loaded from the server using the XMLHttp-
Request object. eval() performs with reasonable efficiency when working on
fewer, larger scripts.

Table 5.1 Behavior of instanceof operator across frames

Object Created In instanceof Invoked In Obj instanceof Object Evaluates To

Top-level document Top-level document true

Top-level document IFrame false

IFrame Top-level document false

IFrame IFrame true
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 187
Our planetary info example is rewritten to use eval() in the following code:

function showInfo(event){
 var planet=this.id;
 var scriptUrl="script_"+planet+".js";
 new net.ContentLoader(scriptUrl,evalScript);
}

function evalScript(){
 var script=this.req.responseText;
 eval(script);
}

The showInfo() method now uses the XMLHttpRequest object (wrapped in our
ContentLoader class) to fetch the script from the server, without needing to wrap it
in an HTML page. The second function, evalScript(), is passed to the Content-
Loader as a callback, at which point we can read the responseText property from
the XMLHttpRequest object. The entire script is evaluated in the current page
context, rather than in a separate context within an IFrame.

 We can add the term script-centric to our pattern language now and make a
note that there are two implementations of it, using IFrames and eval(). Let’s
step back then, and see how script-based approaches compare with the content-
based style.

Problems and limitations
When we load a script directly from the server, we are generally transmitting a
simpler message, reducing bandwidth to some extent. We also decouple the logic
from the presentation to a great degree, with the immediate practical conse-
quence that visual changes aren’t confined to a fixed rectangular portion of the
screen as they are with the content-centric approach.

 On the downside, however, we introduce a tight coupling between client
and server code. The JavaScript emitted by the server is unlikely to be reus-
able in other contexts and will need to be specifically written for the Ajax cli-
ent. Further, once published, the API provided by the client will be relatively
difficult to change.

 It’s a step in the right direction, though. The Ajax application is starting to
behave more like an application and less like a document. In the next style of
client-server communication that we cover, we can release the tight coupling
between client and server that was introduced here.
Licensed to jonathan zheng <yiyisjun@gmail.com>

188 CHAPTER 5
The role of the server
5.4.5 Thinking like an application: data-centric interactions

With the script-centric approach just described, we have started to behave more
like a traditional thick client, with data requests to the server taking place in the
background, decoupled from the user interface. The script content remained
highly specific to the browser-based client, though.

Overview
In some situations, we may want to share the data feeds to our Ajax client with
other front ends, such as Java or .NET smart clients or cell phone/PDA client soft-
ware. In such cases, we would probably prefer a more neutral data format than a
set of JavaScript instructions.

 In a data-centric solution, the server serves up streams of pure data, which our
own client code, rather than the JavaScript engine, parses. Figure 5.9 illustrates
the features of a data-centric solution.

 Most of the examples in this book follow a data-centric approach. The most
obvious format for data is XML, but other formats are possible, too, as we’ll
see next.

Using XML data
XML is a near-ubiquitous data format in modern computing. The web browser
environment in which our Ajax application sits, and the XMLHttpRequest object

Client

Request object 1. Request

2. Response

3. Parse <data title="title">
 <item>1</item>
 <item>2</item>
 <item>3</item>
</data>

4. Update visible elements

Title

Item

Item

Item

Server

Figure 5.9 In a data-centric system, the server returns streams of raw
data (XML in this case), which are parsed on the client tier and used to
update the client tier model and/or user interface.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 189
in particular, provides good native support for processing XML. If the XML-
HttpRequest receives a response with an XML Content type such as application/
xml or text/xml, it can present the response as a Document Object Model, as we
have already seen. Listing 5.7 shows how our planetary data application adapts to
using XML data feeds.

var offset=8;
function showPopup(name,description){
 var win=new DataPopup(name,description,offset,offset,320,320);
 offset+=32;
}

function DataPopup(name,description,x,y,w,h){

 var bod=document.createElement("div");
 document.body.appendChild(bod);

 this.contentDiv=document.createElement("div");
 this.contentDiv.className="winContents";
 this.contentDiv.innerHTML=description;
 bod.appendChild(this.contentDiv);

 this.win=new windows.Window(bod,name,x,y,w,h);
}

function showInfo(event){
 var planet=this.id;
 var scriptUrl=planet+".xml";
 new net.ContentLoader(scriptUrl,parseXML);
}

function parseXML(){
 var name="";
 var descrip="";
 var xmlDoc=this.req.responseXML;
 var elDocRoot=xmlDoc.getElementsByTagName("planet")[0];
 if (elDocRoot){
 attrs=elDocRoot.attributes;
 name=attrs.getNamedItem("name").value;
 var ptype=attrs.getNamedItem("type").value;
 if (ptype){
 descrip+="<h2>"+ptype+"</h2>";
 }

 descrip+="";
 for(var i=0;i<elDocRoot.childNodes.length;i++){
 elChild=elDocRoot.childNodes[i];

Listing 5.7 DataXMLPopup.js
Licensed to jonathan zheng <yiyisjun@gmail.com>

190 CHAPTER 5
The role of the server
 if (elChild.nodeName=="info"){
 descrip+=""+elChild.firstChild.data+"\n";
 }
 }
 descrip+="";
 }else{
 alert("no document");
 }
 top.showPopup(name,descrip);
}

The showInfo() function simply opens up an XMLHttpRequest object, wrapped
up in a ContentLoader object, providing the parseXML() function as a callback.
The callback here is slightly more involved than the evalScript() method that we
encountered in section 5.6.3, as we have to navigate the response DOM, pull out
the data, and then manually invoke the showPopup() method. Listing 5.8 shows
an example XML response generated by the server, which our XML data-centric
app might consume.

<planet name="earth" type="small">
 <info id="a" author="dave" date="26/05/04">
 Earth is a small planet, third from the sun
 </info>
 <info id="b" author="dave" date="27/02/05">
 Surface coverage of water is roughly two-thirds
 </info>
 <info id="c" author="dave" date="03/05/05">
 Exhibits a remarkable diversity of climates and landscapes
 </info>
</planet>

A big advantage of XML is that it lends itself to structuring information. We have
taken advantage of this here to provide a number of <info> tags, which we trans-
late into an HTML unordered list in the parseXML() code.

 We’ve achieved better separation of the server and client tiers by using XML.
Provided that both sides understand the document format, client and server code
can be changed independently of one another. However, getting the JavaScript
interpreter to do all the work for us in the script-centric solutions of the previous
section was nice. The following example, using JSON, gives us something of the
best of both worlds. Let’s look at it now.

Listing 5.8 earth.xml
Licensed to jonathan zheng <yiyisjun@gmail.com>

The details: exchanging data 191
Using JSON data
The XMLHttpRequest object is arguably misnamed, as it can receive any text-
based information. A useful format for transmitting data to the Ajax client is the
JavaScript Object Notation (JSON), a compact way of representing generic Java-
Script object graphs. Listing 5.9 shows how we adapt our planetary info example
to use JSON.

function showInfo(event){
 var planet=this.id;
 var scriptUrl=planet+".json";
 new net.ContentLoader(scriptUrl,parseJSON);
}

function parseJSON(){
 var name="";
 var descrip="";
 var jsonTxt=net.req.responseText;
 var jsonObj=eval("("+jsonTxt+")");
 name=jsonObj.planet.name
 var ptype=jsonObj.planet.type;
 if (ptype){
 descrip+="<h2>"+ptype+"</h2>";
 }

 var infos=jsonObj.planet.info;
 descrip+="";
 for(var i in infos){
 descrip+=""+infos[i]+"\n";
 }
 descrip+="";

 top.showPopup(name,descrip);
}

Once again, we fetch the data using a ContentLoader and assign a callback func-
tion, here parseJSON(). The entire response text is a valid JavaScript statement,
so we can create an object graph in one line by simply calling eval():

 var jsonObj=eval("("+jsonTxt+")");

Note that we need to wrap the entire expression in parentheses before we evalu-
ate it. We can then query the object properties directly by name, leading to
somewhat more terse and readable code than the DOM manipulation methods

Listing 5.9 DataJSONPopup.js
Licensed to jonathan zheng <yiyisjun@gmail.com>

192 CHAPTER 5
The role of the server
that we used for the XML. The showPopup() method is omitted, as it is identical
to that in listing 5.7.

 So what does JSON actually look like? Listing 5.10 shows our data for planet
Earth as a JSON string.

{"planet": {
 "name": "earth",
 "type": "small",
 "info": [
 "Earth is a small planet, third from the sun",
 "Surface coverage of water is roughly two-thirds",
 "Exhibits a remarkable diversity of climates and landscapes"
]
}}

Curly braces denote associative arrays, and square braces numerical arrays.
Either kind of brace can nest the other. Here, we define an object called planet
that contains three properties. The name and type properties are simple strings,
and the info property is an array.

 JSON is less common than XML, although it can be consumed by any Java-
Script engine, including the Java-based Mozilla Rhino and Microsoft’s JScript
.NET. The JSON-RPC libraries contain JSON parsers for a number of program-
ming languages (see the Resources section at the end of this chapter), as well as a
JavaScript “Stringifier” for converting JavaScript objects to JSON strings, for two-
way communications using JSON as the medium. If a JavaScript interpreter is
available at both the server and client end, JSON is definitely a viable option. The
JSON-RPC project has also been developing libraries for parsing and generating
JSON for a number of common server-side languages.

 We can add data-centric to our vocabulary now and note the potential for a wide
range of text-based data formats other than the ever-popular XML.

Using XSLT
Another alternative to manually manipulating the DOM tree to create HTML, as
we have done in section 5.7.3, is to use XSLT transformations to automatically
convert the XML into XHTML. This is a hybrid between the data-centric and
content-centric approaches. From the server’s perspective, it is data-centric,
whereas from the client’s, it looks more content-centric. This is quicker and eas-
ier but suffers the same limits as a content-centric approach, namely, the

Listing 5.10 earth.json
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 193
response is interpreted purely as visual markup typically affecting a single rect-
angular region of the visible UI. XSLT is discussed in more detail in chapter 11.

Problems and limitations
The main limitation of a data-centric approach is that it places the burden of
parsing the data squarely on the client. Hence the client-tier code will tend to be
more complicated, but, where this approach is adopted wholesale in a larger
application, the costs can be offset by reusing parser code or abstracting some of
the functionality into a library.

 The three approaches that we have presented here arguably form a spectrum
between the traditional web-app model and the desktop-style thick client. Fortu-
nately, the three patterns are not mutually exclusive and may all be used in the
same application.

 Client/server communications run both ways, of course. We’ll wrap up this
chapter with a look at how the client can send data to the server.

5.5 Writing to the server

So far, we’ve concentrated on one side of the conversation, namely, the server tell-
ing the client what is going on. In most applications, the user will want to manip-
ulate the domain model as well as look at it. In a multiuser environment, we also
want to receive updates on changes that other users have made.

 Let’s consider the case of updating changes that we have made first. Techni-
cally, there are two main mechanisms for submitting data: HTML forms and the
XMLHttpRequest object. Let’s run through each briefly in turn.

5.5.1 Using HTML forms

In a classic web application, HTML form elements are the standard mechanism
for user input of data. Form elements can be declared in the HTML markup for
a page:

<form method="POST" action="myFormHandlerURL.php">
 <input type="text" name="username"/>
 <input type="password" name="password"/>
 <input type="submit" value="login"/>
</form>

This will render itself as a couple of blank text boxes. If I enter values of dave
and letmein on the form, then an HTTP POST request is sent to myForm-
HandlerURL.php, with body text of username=dave&password=letmein. In most
modern web programming systems, we don’t directly see this encoded form
Licensed to jonathan zheng <yiyisjun@gmail.com>

194 CHAPTER 5
The role of the server
data but have the name-value pairs decoded for us as an associative array or
“magic” variables.

 It’s fairly common practice these days to add a little JavaScript to validate
the form contents locally before submitting. We can modify our simple form to
do this:

<form id="myForm" method="POST" action=""
 onsubmit="validateForm(); return false;">
 <input type="text" name="username"/>
 <input type="password" name="password"/>
 <input type="submit" value="login"/>
</form>

And we can define a validation routine in the JavaScript for the page:

function validateForm(){
 var form=document.getElementById('myForm');
 var user=form.elements[0].value;
 var pwd=form.elements[1].value;
 if (user && user.length>0 && pwd && pwd.length>0){
 form.action='myFormHandlerURL.php';
 form.submit();
 }else{
 alert("please fill in your credentials before logging in");
 }

}

The form is initially defined with no action attribute. The real URL is substituted
only when the values in the form have been validated correctly. JavaScript can
also be used to enhance forms by disabling the Submit button to prevent multiple
submissions, encrypting passwords before sending them over the network, and so
on. These techniques are well documented elsewhere, and we won’t go into them
in depth here. Chapters 9 and 10 contain more detailed working examples of
Ajax-enhanced HTML forms.

 We can also construct a form element programmatically and submit it behind
the scenes. If we style it to not be displayed, we can do so without it ever being
seen by the user, as illustrated in listing 5.11.

function addParam(form,key,value){
 var input=document.createElement("input");
 input.name=key;
 input.value=value;
 form.appendChild(input);
}

Listing 5.11 submitData() function
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 195
function submitData(url,data){
 var form=document.createElement("form");
 form.action=url;
 form.method="POST";
 for (var i in data){
 addParam(form,i,data[i]);
 }
 form.style.display="none";
 document.body.appendChild(form);
 form.submit();
}

submitData() creates the form element and iterates over the data, adding to the
form using the addParam() function. We can invoke it like this:

 submitData(
 "myFormHandlerURL.php",
 {username:"dave",password:"letmein"}
);

This technique is concise but has a significant drawback in that there is no easy
way of capturing a server response. We could point the form at an invisible
IFrame and then parse the result, but this is rather cumbersome at best. Fortu-
nately, we can achieve the same effect by using the XMLHttpRequest object.

5.5.2 Using the XMLHttpRequest object

We’ve already seen the XMLHttpRequest object in action in chapter 2 and earlier
in this chapter. The differences between reading and updating are minor from
the client code’s point of view. We simply need to specify the POST method and
pass in our form parameters.

 Listing 5.12 shows the main code for our ContentLoader object developed in
section 3.1. We have refactored it to allow parameters to be passed to the request,
and any HTTP method to be specified.

net.ContentLoader=function
 (url,onload,onerror,method,params,contentType){

 this.onload=onload;
 this.onerror=(onerror) ? onerror : this.defaultError;
 this.loadXMLDoc(url,method,params,contentType);
}

net.ContentLoader.prototype.loadXMLDoc

Listing 5.12 ContentLoader object

b Extra arguments
Licensed to jonathan zheng <yiyisjun@gmail.com>

196 CHAPTER 5
The role of the server
 =function(url,method,params,contentType){
 if (!method){
 method="GET";
 }
 if (!contentType && method=="POST"){
 contentType="application/x-www-form-urlencoded";
 }
 if (window.XMLHttpRequest){
 this.req=new XMLHttpRequest();
 } else if (window.ActiveXObject){
 this.req=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if (this.req){
 try{
 this.req.onreadystatechange=net.ContentLoader.onReadyState;
 this.req.open(method,url,true);
 if (contentType){
 this.req.setRequestHeader("Content-Type", contentType);
 }
 this.req.send(params);
 }catch (err){
 this.onerror.call(this);
 }
 }
}

We pass in several new arguments to the constructor b. Only the URL (corre-
sponding to the form action) and the onload handler are required, but the HTTP
method, request parameters, and content type may be specified, too. Note that if
we’re submitting key-value pairs of data by POST, then the content type must be
set to application/x-www-form-urlencoded. We handle this automatically if no
content type is specified. The HTTP method is specified in the open() method of
XMLHttpRequest, and the params in the send() method. Thus, a call like this

 var loader=net.ContentLoader(
 'myFormHandlerURL.php',
 showResponse,
 null,
 'POST',
 'username=dave&password=letmein'
);

will perform the same request as the forms-based submitData() method in
listing 5.11. Note that the parameters are passed as a string object using the
form-encoded style seen in URL querystrings, for example:

 name=dave&job=book&work=Ajax_In+Action

HTTP method
Content type

Request parameters
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 197
This covers the basic mechanics of submitting data to the server, whether based
on textual input from a form or other activity such as drag and drop or mouse
movements. In the following section, we’ll pick up our ObjectViewer example
from chapter 4 and learn how to manage updates to the domain model in an
orderly fashion.

5.5.3 Managing user updates effectively

In chapter 4, we introduced the ObjectViewer, a generic piece of code for brows-
ing complex domain models, and provided a simple example for viewing plane-
tary data. The objects representing the planets in the solar system each contained
several parameters, and we marked a couple of simple textual properties—the
diameter and distance from the sun—as editable. Changes made to any proper-
ties in the system were captured by a central event listener function, which we
used to write some debug information to the browser status bar. (The ability to
write to the status bar is being restricted in recent builds of Mozilla Firefox. In
appendix A, we present a pure JavaScript logging console that could be used to
provide status messages to the user in the absence of a native status bar.) This
event listener mechanism also provides an ideal way of capturing updates in
order to send them to the server.

 Let’s suppose that we have a script updateDomainModel.jsp running on our
server that captures the following information:

■ The unique ID of the planet being updated
■ The name of the property being updated
■ The value being assigned to the property

We can write an event handler to fire all changes to the server like so:

function updateServer(propviewer){
 var planetObj=propviewer.viewer.object;
 var planetId=planetObj.id;
 var propName=propviewer.name;
 var val=propviewer.value;
 net.ContentLoader(
 'updateDomainModel.jsp',
 someResponseHandler,
 null,
 'POST',
 'planetId='+encodeURI(planetId)
 +'&propertyName='+encodeURI(propName)
 +'&value='+encodeURI(val)
);
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

198 CHAPTER 5
The role of the server
And we can attach it to our ObjectViewer:

myObjectViewer.addChangeListener(updateServer);

This is easy to code but can result in a lot of very small bits of traffic to the server,
which is inefficient and potentially confusing. If we want to control our traffic, we
can capture these updates and queue them locally and then send them to the
server in batches at our leisure. A simple update queue implemented in Java-
Script is shown in listing 5.13.

net.CommandQueue=function(id,url,freq){
 this.id=id;
 net.cmdQueues[id]=this;
 this.url=url;
 this.queued=new Array();
 this.sent=new Array();
 if (freq){
 this.repeat(freq);
 }
}

net.CommandQueue.prototype.addCommand=function(command){
 if (this.isCommand(command)){
 this.queue.append(command,true);
 }
}

net.CommandQueue.prototype.fireRequest=function(){
 if (this.queued.length==0){
 return;
 }
 var data="data=";
 for(var i=0;i<this.queued.length;i++){
 var cmd=this.queued[i];
 if (this.isCommand(cmd)){
 data+=cmd.toRequestString();
 this.sent[cmd.id]=cmd;
 }
 }
 this.queued=new Array();
 this.loader=new net.ContentLoader(
 this.url,
 net.CommandQueue.onload,net.CommandQueue.onerror,
 "POST",data
);
}

Listing 5.13 CommandQueue object

b Create a queue object

c Send request to server
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 199
net.CommandQueue.prototype.isCommand=function(obj){
 return (
 obj.implementsProp("id")
 && obj.implementsFunc("toRequestString")
 && obj.implementsFunc("parseResponse")
);
}

net.CommandQueue.onload=function(loader){
 var xmlDoc=net.req.responseXML;
 var elDocRoot=xmlDoc.getElementsByTagName("commands")[0];
 if (elDocRoot){
 for(i=0;i<elDocRoot.childNodes.length;i++){
 elChild=elDocRoot.childNodes[i];
 if (elChild.nodeName=="command"){
 var attrs=elChild.attributes;
 var id=attrs.getNamedItem("id").value;
 var command=net.commandQueue.sent[id];
 if (command){
 command.parseResponse(elChild);
 }
 }
 }
 }

}
net.CommandQueue.onerror=function(loader){
 alert("problem sending the data to the server");
}

net.CommandQueue.prototype.repeat=function(freq){
 this.unrepeat();
 if (freq>0){
 this.freq=freq;
 var cmd="net.cmdQueues["+this.id+"].fireRequest()";
 this.repeater=setInterval(cmd,freq*1000);
 }
}
net.CommandQueue.prototype.unrepeat=function(){
 if (this.repeater){
 clearInterval(this.repeater);
 }
 this.repeater=null;
}

The CommandQueue object (so called because it queues Command objects—
we’ll get to that in a minute) is initialized b with a unique ID, the URL of a server-
side script, and, optionally, a flag indicating whether to poll repeatedly. If it

d Test object type

e Parse server response

f Poll the server

g Switch polling off
Licensed to jonathan zheng <yiyisjun@gmail.com>

200 CHAPTER 5
The role of the server
doesn’t, then we’ll need to fire it manually every so often. Both modes of opera-
tion may be useful, so both are included here. When the queue fires a request to
the server, it converts all commands in the queue to strings and sends them with
the request c.

 The queue maintains two arrays. queued is a numerically indexed array, to
which new updates are appended. sent is an associative array, containing those
updates that have been sent to the server but that are awaiting a reply. The objects
in both queues are Command objects, obeying an interface enforced by the
isCommand() function d. That is:

■ It can provide a unique ID for itself.
■ It can serialize itself for inclusion in the POST data sent to the server (see c).
■ It can parse a response from the server (see e) in order to determine

whether it was successful or not, and what further action, if any, it
should take.

We use a function implementsFunc() to check that this contract is being obeyed.
Being a method on the base class Object, you might think it is standard Java-
Script, but we actually defined it ourselves in a helper library like this:

Object.prototype.implementsFunc=function(funcName){
 return this[funcName] && this[funcName] instanceof Function;
}

Appendix B explains the JavaScript prototype in greater detail. Now let’s get
back to our queue object. The onload method of the queue e expects the server
to return with an XML document consisting of <command> tags inside a central
<commands> tag.

 Finally, the repeat() f and unrepeat() g methods are used to manage the
repeating timer object that will poll the server periodically with updates.

 The Command object for updating the planet properties is presented in list-
ing 5.14.

planets.commands.UpdatePropertyCommand=function(owner,field,value){
 this.id=this.owner.id+"_"+field;
 this.obj=owner;
 this.field=field;
 this.value=value;
}

planets.commands.UpdatePropertyCommand.toRequestString=function(){

Listing 5.14 UpdatePropertyCommand object
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 201
 return {
 type:"updateProperty",
 id:this.id,
 planetId:this.owner.id,
 field:this.field,
 value:this.value
 }.simpleXmlify("command");
}

planets.commands.UpdatePropertyCommand.parseResponse=function(docEl){
 var attrs=docEl.attributes;
 var status=attrs.getNamedItem("status").value;
 if (status!="ok"){
 var reason=attrs.getNamedItem("message").value;
 alert("failed to update "
 +this.field+" to "+this.value
 +"\n\n"+reason);
 }
}

The command simply provides a unique ID for the command and encapsulates
the parameters needed on the server. The toRequestString() function writes
itself as a piece of XML, using a custom function that we have attached to the
Object prototype:

Object.prototype.simpleXmlify=function(tagname){
 var xml="<"+tagname;
 for (i in this){
 if (!this[i] instanceof Function){
 xml+=" "+i+"=\""+this[i]+"\"";
 }
 }
 xml+="/>";
 return xml;
}

This will create a simple XML tag like this (formatted by hand for clarity):

<command type='updateProperty'
 id='001_diameter'
 planetId='mercury'
 field='diameter'
 value='3'/>

Note that the unique ID consists only of the planet ID and the property name. We
can’t send multiple edits of the same value to the server. If we do edit a property
several times before the queue fires, each later value will overwrite earlier ones.
Licensed to jonathan zheng <yiyisjun@gmail.com>

202 CHAPTER 5
The role of the server
 The POST data sent to the server will contain one or more of these tags,
depending on the polling frequency and how busy the user is. The server process
needs to process each command and store the results in a similar response. Our
CommandQueue’s onload will match each tag in the response to the Command
object in the sent queue and then invoke that Command’s parseResponse
method. In this case, we are simply looking for a status attribute, so the response
might look like this:

<commands>
 <command id='001_diameter' status='ok'/>
 <command id='003_albedo' status='failed' message='value out of range'/>
 <command id='004_hairColor' status='failed' message='invalid property

name'/>
</commands>

Mercury’s diameter has been updated, but two other updates have failed, and a
reason has been given in each case. Our user has been informed of the prob-
lems (in a rather basic fashion using the alert() function) and can take reme-
dial action.

 The server-side component that handles these requests needs to be able to
break the request data into commands and assign each command to an appropri-
ate handler object for processing. As each command is processed, the result will
be written back to the HTTP response. A simple implementation of a Java servlet
for handling this task is given in listing 5.15.

public class CommandServlet extends HttpServlet {

 private Map commandTypes=null;

 public void init() throws ServletException {
 ServletConfig config=getServletConfig();
 commandTypes=new HashMap();
 boolean more=true;
 for(int counter=1;more;counter++){
 String typeName=config.getInitParameter("type"+counter);
 String typeImpl=config.getInitParameter("impl"+counter);
 if (typeName==null || typeImpl==null){
 more=false;
 }else{
 try{
 Class cls=Class.forName(typeImpl);
 commandTypes.put(typeName,cls);
 }catch (ClassNotFoundException clanfex){
 this.log(

Listing 5.15 CommandServlet.java

b Configure handlers on startup
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 203
 "couldn't resolve handler class name "
 +typeImpl);
 }
 }
 }
 }

 protected void doPost(
 HttpServletRequest req,
 HttpServletResponse resp
) throws IOException{
 resp.setContentType("text/xml");
 Reader reader=req.getReader();
 Writer writer=resp.getWriter();
 try{
 SAXBuilder builder=new SAXBuilder(false);
 Document doc=builder.build(reader);
 Element root=doc.getRootElement();
 if ("commands".equals(root.getName())){
 for(Iterator iter=root.getChildren("command").iterator();
 iter.hasNext();){
 Element el=(Element)(iter.next());
 String type=el.getAttributeValue("type");
 XMLCommandProcessor command=getCommand(type,writer);
 if (command!=null){
 Element result=command.processXML(el);
 writer.write(result.toString());
 }
 }
 }else{
 sendError(writer,
 "incorrect document format - "
 +"expected top-level command tag");
 }
 }catch (JDOMException jdomex){
 sendError(writer,"unable to parse request document");
 }
 }

private XMLCommandProcessor getCommand
 (String type,Writer writer)
 throws IOException{
 XMLCommandProcessor cmd=null;
 Class cls=(Class)(commandTypes.get(type));
 if (cls!=null){
 try{
 cmd=(XMLCommandProcessor)(cls.newInstance());
 }catch (ClassCastException castex){
 sendError(writer,
 "class "+cls.getName()
 +" is not a command");

c Process a request

d Process XML data

e Delegate to handler

f Match handler to command
Licensed to jonathan zheng <yiyisjun@gmail.com>

204 CHAPTER 5
The role of the server
 } catch (InstantiationException instex) {
 sendError(writer,
 "not able to create class "+cls.getName());
 } catch (IllegalAccessException illex) {
 sendError(writer,
 "not allowed to create class "+cls.getName());
 }
 }else{
 sendError(writer,"no command type registered for "+type);
 }
 return cmd;
 }`

 private void sendError
 (Writer writer,String message) throws IOException{
 writer.write("<error msg='"+message+"'/>");
 writer.flush();
 }
}

The servlet maintains a map of XMLCommandProcessor objects that are config-
ured here through the ServletConfig interface b. A more mature framework
might provide its own XML config file. When processing an incoming POST
request c, we use JDOM to parse the XML data d and then iterate through the
<command> tags matching type attributes to XMLCommandProcessors e. The
map holds class definitions, from which we create live instances using reflection in
the getCommand() method f.

 The XMLCommandProcessor interface consists of a single method:

public interface XMLCommandProcessor {
 Element processXML(Element el);
}

The interface depends upon the JDOM libraries for a convenient object-based
representation of XML, using Element objects as both argument and return type.
A simple implementation of this interface for updating planetary data is given in
listing 5.16.

public class PlanetUpdateCommandProcessor
 implements XMLCommandProcessor {

 public Element processXML(Element el) {
 Element result=new Element("command");
 String id=el.getAttributeValue("id");

Listing 5.16 PlanetUpdateCommandProcessor.java

b Create XML result node
Licensed to jonathan zheng <yiyisjun@gmail.com>

Writing to the server 205
 result.setAttribute("id",id);
 String status=null;
 String reason=null;
 String planetId=el.getAttributeValue("planetId");
 String field=el.getAttributeValue("field");
 String value=el.getAttributeValue("value");
 Planet planet=findPlanet(planetId);
 if (planet==null){
 status="failed";
 reason="no planet found for id "+planetId;
 }else{
 Double numValue=new Double(value);
 Object[] args=new Object[]{ numValue };
 String method = "set"+field.substring(0,1).toUpperCase()
 +field.substring(1);
 Statement statement=new Statement(planet,method,args);
 try {
 statement.execute();
 status="ok";
 } catch (Exception e) {
 status="failed";
 reason="unable to set value "+value+" for field "+field;
 }
 }
 result.setAttribute("status",status);
 if (reason!=null){
 result.setAttribute("reason",reason);
 }
 return result;
 }

 private Planet findPlanet(String planetId) {
 // TODO use hibernate
 return null;
 }

}

As well as using JDOM to parse the incoming XML, we use it here to generate
XML, building up a root node b and its children programmatically in the pro-
cessXML() method. We access the server-side domain model using the find-
Planet() method c, once we have a unique ID to work with. findPlanet() isn’t
implemented here, for the sake of brevity—typically an ORM such as Hibernate
would be used to talk to the database behind the scenes e. We use reflection to
update the domain model d and then return the JDOM object that we have con-
structed, where it will be serialized by the servlet.

c Access domain model

d Update domain model

e Use ORM for domain model
Licensed to jonathan zheng <yiyisjun@gmail.com>

206 CHAPTER 5
The role of the server
 This provides a sketch of the complete lifecycle of our queue-based architec-
ture for combining many small domain model updates into a single HTTP trans-
action. It combines the ability to execute fine-grained synchronization between
the client and server domain models with the need to manage server traffic effec-
tively. As we noted in section 5.3, it may provide a solution for JSF and similar
frameworks, in which the structure of the user interface and interaction model is
held tightly by the server. In our case, though, it simply provides an efficient way
of updating the domain models across the tiers.

 This concludes our tour of client/server communication techniques for this
chapter and our overview of key design issues for Ajax applications. Along the
way, we’ve developed the start of a pattern language for Ajax server requests
and a better understanding of the technical options available to us for imple-
menting these.

5.6 Summary

We began this chapter by looking at the key roles of the application server in Ajax,
of delivering the client code to the browser, and supplying the client with data
once it is running. We looked at the common implementation languages on the
server side and took a tour of the common types of server-side frameworks of the
day. These are largely designed to serve classic web applications, and we consid-
ered how they can adapt to Ajax. The server-side framework space is crowded and
fast moving, and rather than looking at particular products, we categorized in
terms of generic architectures. This reduced the field to three main approaches:
the Model2 frameworks, component-based frameworks, and service-oriented
architectures. SOA seems to provide the most natural fit for Ajax, although the
others can be adapted with varying degrees of success. We looked at how to
enforce good separation of concerns in an SOA by introducing Façades.

 Moving down to the fine-grained details, we contrasted three approaches to
fetching data from the server, which we labeled as content-centric, script-centric,
and data-centric. These form a continuum, with classic web applications tending
heavily toward the content-centric style and Ajax toward a data-centric style. In
discussing data-centric approaches, we discovered that there is life beyond XML,
and we took a look at JSON as a means of transmitting data to the client.

 Finally, we described ways of sending updates to the server, using HTML
forms and the XMLHttpRequest object. We also considered bandwidth manage-
ment using a client-side queue of Command objects. This sort of technique can
give a significant performance boost by reducing both server load and network
Licensed to jonathan zheng <yiyisjun@gmail.com>

Resources 207
traffic, and it is in keeping with what we have observed about best practice in
SOA, moving from an RPC-style approach toward a document-based communica-
tion strategy.

 This chapter concludes our coverage of the core techniques of Ajax. We’ve
now covered all the basics and touched on quite a few advanced topics along the
way. In the following three chapters we return to the theme of usability and add
some polish to the technical wizardry that we’ve accomplished here, in order to
highlight key issues that can differentiate a clever hack from something that the
lay user will actually want to use.

5.7 Resources

Several web frameworks were discussed in this chapter. Here are the URLs:

■ Struts (http://struts.apache.org)
■ Tapestry (http://jakarta.apache.org/tapestry/)
■ JSF (http://java.sun.com/j2ee/javaserverfaces/faq.html)
■ PHP-MVC (www.phpmvc.net)

There are over 60 web frameworks for Java alone listed by the Wicket developers:
(http://wicket.sourceforge.net/Introduction.html).

 JSF is a broad category covering many individual frameworks and products.
Kito Mann, author of JavaServer Faces in Action (Manning, 2004), maintains the
definitive portal site for all things JSF at www.jsfcentral.com/. Greg Murray and
colleagues of Sun’s Blueprints catalog discuss Ajax and JSF at https://bpcata-
log.dev.java.net/nonav/ajax/jsf-ajax/frames.html. AjaxFaces is a commercial Ajax-
enabled JSF implementation (www.ajaxfaces.com), and Apache’s Open Source
MyFaces is looking at Ajax, too (http://myfaces.apache.org/sandbox/inputSug-
gestAjax.html).

 Microsoft’s Atlas is still under development at the time of writing, but early
releases are expected later this year (2005). Scott Guthrie is Project Manager of
Atlas. His blog can be found at http://weblogs.asp.net/scottgu/archive/2005/06/28/
416185.aspx.

 You can find JSON-RPC libraries for a range of programming languages at
www.json-rpc.org/impl.xhtml.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

Part 3

Professional Ajax

Your Ajax application works end-to-end now and can read from the
server and update data on the server. There’s still some way to go though, if
you want to deploy a professional-quality application to real users. We’ll show
you in this part how to make your application easier to use, safer to use, and
fast enough to use.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

The user experience

This chapter covers
■ Key features of usable code
■ Common notification features
■ A reusable framework for notifications
■ Highlighting updated data in situ
211

Licensed to jonathan zheng <yiyisjun@gmail.com>

212 CHAPTER 6
The user experience
In chapter 1, we discussed usability, the keystone to any software application. No
matter how well organized your codebase and how clever the technical merits of
your application, if the usability stinks, you leave a bad association in the user’s
mind. This can be grossly unfair, but it’s a fact of life. More people recognize
Albert Einstein for his hangdog looks and wild hair than understand what he was
trying to say about the nature of space-time. First impressions—and attention to
detail—matters.

 In chapters 2 to 5, we introduced a lot of cool technology and did some clever
things with Ajax. The focus on organization throughout the latter part of this
journey has enabled us to be flexible and highly adaptive about how we do these
things. However, our examples have been rather rough around the edges, and
rightly so while we focused on the cleverness at hand, but now we need to step
back and assess what we have done in terms of creating something that people
will actually want to use, possibly for several hours a day. The topics presented in
this chapter will go a long way toward helping you get your Ajax application
ready and presentable for the real world.

 One of the biggest things that you can do to make your users feel comfortable
with your application is to keep them informed about background events in a dis-
crete and consistent fashion. They aren’t the be-all and end-all of usability, but we
will focus on them in this chapter in order to show how an in-depth, consistent
treatment benefits the application as a whole. Most Ajax applications will want to
notify the user at some point too, so we hope you’ll find the finished components
useful in your own projects as well.

 We develop several solutions in this chapter for letting the users know what is
going on, without getting in the way of their workflow. Before we go into these
specifics, though, let’s take a quick look at what we mean by quality and how to
get there.

6.1 Getting it right: building a quality application

Usability is an especially hot topic for Ajax because web app users can be an
extremely fickle bunch. The downside of being able to download and run your
app with zero effort is that the users have invested no time and effort in it when
they start to use the application and will be willing to throw it away and move on
to the next of the 8 billion web pages that Google can point them to. To compli-
cate matters further, with Ajax we are seeing the convergence of two different
usability traditions, namely the desktop application and the web page. Getting
Licensed to jonathan zheng <yiyisjun@gmail.com>

Getting it right: building a quality application 213
the mixture right can be quite a challenge, and failing to get it right can consign
your hard work to obscurity.

 In chapter 1, we looked at usability from the users’ point of view. What do they
want in an application? And what are they willing to put up with? Let’s turn the
question around now and ask what qualities we need in our code to meet the goal
of usability. With this as a starting point, we can figure out what we can do in prac-
tical terms to make our application work. The following sections detail a number
of key features that add quality to your application.

6.1.1 Responsiveness

The most basic frustration that a computer user can suffer from is to have work-
flow interrupted while the computer struggles to catch up with him. Basic design
mistakes, such as locking up the entire user interface while writing some lengthy
configuration file to disk, can cause the user to lose track of what he is doing and
force him to make the mental leap between the domain model in which he is
engaged to the harsh reality of computer hardware.

 When looking at responsiveness, it can be important to understand your target
audience and its typical system setups. In the case of writing a configuration file,
the speed may be acceptable on the developer’s high-speed 7200-RPM SATA disk
drive on the local workstation, but the customer writing the file to a congested
network share or a USB thumb drive may have a different experience. In the spe-
cific case of web app development, a similar mistake is often made in only testing
the application running over the loopback interface, that is, the web server run-
ning on the same development machine as the web browser. This doesn’t give a
useful evaluation of network latency issues, and all web apps ought to be either
tested over a real LAN or WAN or simulated using a traffic-shaping tool.

 Beyond network issues, the performance of the client code can make a huge
difference to responsiveness. Performance is a big issue, so we’ll defer a closer
look at it to chapter 7.

6.1.2 Robustness

An application is robust if it can withstand the usual conditions encountered at a
busy workstation. How does it cope with a temporary network outage? If a badly
behaved program hogs the CPU for five minutes, will your application still work
afterwards? At one recent project that I was involved in, we would test our appli-
cation’s robustness by pounding randomly on the keyboard for 10 seconds or so,
and by “scribbling” the mouse across the page while clicking it. A crude sort of
test—but effective—and quite good fun!
Licensed to jonathan zheng <yiyisjun@gmail.com>

214 CHAPTER 6
The user experience
 What can such a test reveal? For one thing, it can highlight inefficiencies in
event-handler code. Keypresses, mouse moves, and the like need to return
quickly, since they are apt to be called very frequently. Further, they can reveal
unintentional dependencies between components. A particular condition may
arise in a GUI, for example, where a modal dialog is blocking access to the main
application, but an open menu item is blocking access to the modal dialog. If
such a situation depends on precise timing in the opening of the dialog and the
menu, it might take a single user two months of daily work to discover it. Once
released to an audience of several thousand, however, it might start showing up
within hours and be extremely hard to reproduce from field reports. Identify-
ing the problem up front, and correcting it, increases the overall robustness of
the application.

 There is more to robustness than randomly thumping the keyboard. Just as
valuable is the process of watching someone other than the developer trying to use
the application. In the case of a complete newcomer, this can provide helpful
information on the overall usability design, but it is also useful to let someone
closely acquainted with the domain knowledge, even the product, test-drive a new
bit of functionality. When the person who wrote the code runs the program, she
can “see” the code behind it and may subconsciously avoid specific combinations
of actions or particular actions in specific contexts. The end user won’t have this
insider knowledge, of course, and neither will the developer sitting next to you
(unless you do pair programming). Getting someone else to informally run
through your app workflow can help to build up robustness early on.

6.1.3 Consistency

As we already noted, the usability patterns of Ajax are still evolving from a mish-
mash of desktop application and web browser conventions. Some Ajax toolkits,
such as Bindows, qooxdoo, and Backbase, even present widget sets deliberately
styled to look like desktop application buttons, trees, and tables.

 The right answer to this conundrum is still being worked out by webmasters,
usability gurus, and everyday users of the Web as it continues to evolve. In the
meantime, the best advice available is to keep things consistent. If one part of
your application uses web-style single clicks to launch pop-up windows, and
another part requires double-clicks on similar-looking icons, your user will
quickly become confused. And if you must have a talking pig that guides your
users around the site, make sure that it doesn’t suddenly change its accent, cos-
tume, or hairstyle halfway through!
Licensed to jonathan zheng <yiyisjun@gmail.com>

Getting it right: building a quality application 215
 From the point of view of your codebase, consistency and reuse go hand in
hand. If you cut and paste functionality from one location to another, and then
respond to a change request in three copies of the button-rendering code but
miss a fourth, the consistency of your interface will erode over time. If there is
only one copy of the button-rendering code that everyone uses, then the consis-
tency of your application is likely to remain high. This applies not only to visual
UI behavior but also to less-visible parts of the interface, such as network timeouts
and responses to bad data.

6.1.4 Simplicity

Finally, we need to stress the importance of simplicity. Ajax allows you to do a
number of wild and creative things, the likes of which have never been seen in a
web page before. Some of these things have never been seen because the neces-
sary technology is only just arriving on the scene. In other cases, there are good
reasons for not implementing a feature. Spring-loaded menus that bounce onto
the screen and gradually dampen their oscillations may be great fun to code and
great fun for a short-term user dropping by for five minutes to let off steam. If the
user is going to use the application for several hours a day, though, she is less
likely to appreciate the fun by the day’s end.

 It is always worth asking whether a new feature will actually improve the end
experience. In many cases with Ajax, the answer will be yes, and the developer
can concentrate on coding features that will be genuinely beneficial.

6.1.5 Making it work

It’s probably the case that your code doesn’t exhibit all the features we just men-
tioned. Mine certainly doesn’t. These are merely ideals that we’ve presented.
Making the effort to move toward these ideals can pay big dividends when it
comes to maintaining your codebase in the future, and refactoring existing code
can introduce these qualities as you go along. Choosing where to concentrate the
effort is something of a black art, and the only way to get good at it is by practic-
ing. If you’re new to refactoring, start with something small and gradually work
outward. Remember, refactoring is an incremental process, and you can add
quality to your code without pulling it apart and leaving bits on the floor for
weeks on end.

 In the remainder of this chapter, we’ll look at some specific features that you
can build into Ajax applications. A large part of the chapter focuses on notification
frameworks, which are ways of keeping the user informed while background pro-
cesses such as calculations or network requests take place. By providing the user
Licensed to jonathan zheng <yiyisjun@gmail.com>

216 CHAPTER 6
The user experience
with a visual cue that the process is under way, we improve the responsiveness of
the application. By running all such notifications through a common framework,
we ensure that presentation is consistent and make it simple for the user to work
with the notifications because everything works in the same way.

 Let’s start off by looking at the various ways in which we can notify the user of
events taking place within the application.

6.2 Keeping the user informed

In an Ajax application, we may often need to run off across the network and fetch
some resources from the server and then pick up the results in a callback function
and do something with them. If we were handling server requests synchronously,
we would have a relatively easy time working out how to handle this in user inter-
face terms. The request would be initiated, the entire user interface would lock up
and stop responding, and when the results come back from the server, the inter-
face would update itself and then start responding to input. What’s good for the
developer here is lousy for the user, of course, so we make use of an asynchronous
request mechanism. This makes the business of communicating server updates
through the user interface that much more complicated.

6.2.1 Handling responses to our own requests

Let’s pick up a concrete example to work with. The planetary information viewer
that we developed in chapter 5 allowed the user to update a couple of editable
properties for planets: the diameter and the distance from the sun (see
section 5.5). These updates are submitted to the server, which then responds, say-
ing whether it has accepted or rejected them. With the introduction of the com-
mand queue concept in section 5.5.3, we allowed each server response to carry
acknowledgments to several updates from a given user. A sample XML response
document follows, showing one successful and one unsuccessful command:

<commands>
 <command id='001_diameter' status='ok'/>
 <command id='003_albedo' status='failed'
 message='value out of range'/>
</commands>

From the user’s perspective, she edits the property and then moves on to some
other task, such as editing the list of facts associated with that planet or even star-
ing out of the window. Her attention is no longer on the diameter of the planet
Mercury. Meanwhile, in the background, the updated value has been wrapped in
Licensed to jonathan zheng <yiyisjun@gmail.com>

Keeping the user informed 217
a JavaScript Command object, which has entered the queue of outgoing messages
and will be sent to the server shortly thereafter. The Command object is then
transferred to the “sent” queue and is retrieved when the response returns, pos-
sibly along with a number of other updates. The Command object is then respon-
sible for processing the update and taking appropriate action.

 Let’s recap where we had left this code before we start refactoring. Here is our
implementation of the Command object’s parseResponse() method, as presented
in chapter 5:

planets.commands.UpdatePropertyCommand
 .parseResponse=function(docEl){
 var attrs=docEl.attributes;
 var status=attrs.getNamedItem("status").value;
 if (status!="ok"){
 var reason=attrs.getNamedItem("message").value;
 alert("failed to update "+this.field
 +" to "+this.value+"\n\n"+reason);
 }
}

This is good proof-of-concept code, ripe for refactoring into something more
polished. As it stands, if the update is successful, nothing happens at all. The local
domain model was already updated before the data was sent to the server, so
everything is assumed to be in sync with the server’s domain model. If the update
fails, then we generate an alert message. The alert message is simple for the
developer but makes for poor usability, as we will see.

 Let’s return to our user, who is probably no longer thinking about the albedo
of the planet Mercury. She is suddenly confronted with a message in an alert box
saying, “Failed to update albedo to 180 value out of range,” or something similar.
Taken out of context, this doesn’t mean very much. We could upgrade our error
message to say “Failed to update albedo of Mercury...,” but we would still be inter-
rupting the user’s workflow, which was the reason that we switched to asynchro-
nous message processing in the first place.

 We would, in this particular case, also be creating a more serious problem. Our
editable fields implementation uses the onblur event to initiate the process of
submitting data to the server. The onblur() method is triggered whenever the
text input field loses focus, including when it is taken away by an alert box.
Hence, if our user has moved on to editing another property and is midway
through typing into the second textbox, our alert will result in the submission of
partial data and either mess up the domain model on the server or generate an
error—and a further alert box if our validation code catches it!
Licensed to jonathan zheng <yiyisjun@gmail.com>

218 CHAPTER 6
The user experience
 A more elegant solution than the alert box is needed. We’ll develop one
shortly, but first let’s further complicate the picture by considering what other
users are up to while we make our requests to the server.

6.2.2 Handling updates from other users

Our planetary viewer application allows more than one user to log in at once, so
presumably other users may be editing data while we are. Each user would pre-
sumably like to be informed of changes made by other users more or less as they
happen. Most Ajax applications will involve more than one browser sharing a
domain model, so this is again a fairly common requirement.

 We can modify our XML response, and the Command queue object, to cope
with this situation in the following way. For each update to the server-side model,
we generate a timestamp. We modify the server-side process that handles updates
to also check the domain model for recent updates by other users, and attach
them to the response document, which might now look like this:

<responses updateTime='1120512761877'>
 <command id='001_diameter' status='ok'/>
 <command id='003_albedo' status='failed' message='value out of range'/>
 <update planetId='002' fieldName='distance' value='0.76' user='jim'/>
</responses>

Alongside the <command> tags, which are identified by the ID of the Command
object in the sent queue, there is an <update> tag, which in this case denotes that
the distance from the sun of Venus has been set to a value of 0.76 by another user
called Jim. We have also added an attribute to the top-level tag, the purpose of
which we explain shortly.

 Previously, our command queue sent requests to the server only if there were
commands queued up. We would need to modify it now to poll the server even if
the queue were empty, in order to receive updates. Implementing this touches
upon the code in several places. Listing 6.1 shows the revised CommandQueue
object, with the changes in bold.

net.cmdQueues=new Array();

net.CommandQueue=function(id,url,onUpdate,freq){
 this.id=id;
 net.cmdQueues[id]=this;
 this.url=url;
 this.queued=new Array();
 this.sent=new Array();

Listing 6.1 CommandQueue object

b Global lookup

c Extra parameters
Licensed to jonathan zheng <yiyisjun@gmail.com>

Keeping the user informed 219
 this.onUpdate=onUpdate;
 if (freq){
 this.repeat(freq);
 }
 this.lastUpdateTime=0;
}

net.CommandQueue.prototype.fireRequest=function(){
 if (!this.onUpdate && this.queued.length==0){
 return;
 }
 var data="lastUpdate="+this.lastUpdateTime+"&data=";
 for(var i=0;i<this.queued.length;i++){
 var cmd=this.queued[i];
 if (this.isCommand(cmd)){
 data+=cmd.toRequestString();
 this.sent[cmd.id]=cmd;
 }
 }
 this.queued=new Array();
 this.loader=new net.ContentLoader(
 this.url,
 net.CommandQueue.onload,net.CommandQueue.onerror,
 "POST",data
);
}

net.CommandQueue.onload=function(loader){
 var xmlDoc=net.req.responseXML;
 var elDocRoot=xmlDoc.getElementsByTagName("responses")[0];
 var lastUpdate=elDocRoot.attributes.getNamedItem("updateTime");
 if (parseInt(lastUpdate)>this.lastUpdateTime){
 this.lastUpdateTime=lastUpdate;
 }
 if (elDocRoot){
 for(i=0;i<elDocRoot.childNodes.length;i++){
 elChild=elDocRoot.childNodes[i];

 if (elChild.nodeName=="command"){
 var attrs=elChild.attributes;
 var id=attrs.getNamedItem("id").value;
 var command=net.commandQueue.sent[id];
 if (command){
 command.parseResponse(elChild);
 }
 }else if (elChild.nodeName=="update"){
 if (this.implementsFunc("onUpdate")){
 this.onUpdate.call(this,elChild);
 }
 }

d Polling initializer

Timestamp requests

e Updated timestamp

f Updated handler
Licensed to jonathan zheng <yiyisjun@gmail.com>

220 CHAPTER 6
The user experience
 }
 }

}
net.CommandQueue.prototype.repeat=function(freq){
 this.unrepeat();
 if (freq>0){
 this.freq=freq;
 var cmd="net.cmdQueues["+this.id+"].fireRequest()";
 this.repeater=setInterval(cmd,freq*1000);
 }
}
net.CommandQueue.prototype.unrepeat=function(){
 if (this.repeater){
 clearInterval(this.repeater);
 }
 this.repeater=null;
}

We’ve added quite a bit of new functionality here. Let’s step through it.
 First, we’ve introduced a global lookup of command queue objects b. This is a

necessary evil given the limitations of the setInterval() method, which we’ll dis-
cuss shortly. The constructor takes a unique ID as an argument and registers itself
with this lookup under this key.

 The CommandQueue constructor now takes two other new arguments c.
onUpdate is a Function object that is used to handle the <update> tags that we
introduced into our response XML. freq is a numerical value indicating the num-
ber of seconds between polling the server for updates. If it is set, then the con-
structor initializes a call to the repeat() function g, which uses JavaScript’s built-
in setInterval() method to regularly execute a piece of code. setInterval() and
its cousin setTimeout()accept only strings as arguments under Internet Explorer,
so passing variable references directly into the code to be executed is not possible.
We use the global lookup variable and the unique ID of this queue to develop a
workaround to this problem in the repeat() method. We also keep a reference to
the repeating interval, so that we can stop it using clearInterval() in our unre-
peat() method h.

 In the fireRequest() method, we previously exited directly if the queue of
commands to send was empty. That test has been modified now so that if an onUp-
date handler is set, we will proceed anyway and send an empty queue in order to
fetch any <update> tags waiting for us. Alongside our own edited data, we send a
timestamp telling the server the date that we last received updates d, so that it

g Server poller

h Polling switch
Licensed to jonathan zheng <yiyisjun@gmail.com>

Keeping the user informed 221
can work out to send us relevant updates. This is stored as a property of the com-
mand queue and set to 0 initially.

 We pass these timestamps as UNIX-style dates, that is, the number of millisec-
onds elapsed since January 1, 1970. The choice of timestamp is based on porta-
bility. If we chose a date format that was easier to read, we would run into issues
with localization, differences in default formats across platforms and languages,
and so on. Getting localization right is an important topic for Ajax applications,
since the application will be exposed to users worldwide if it is on the public
Internet or the WAN of a large organization.

 In the onload() function, we add the code required to update the last updated
timestamp when a response comes in e and to parse <update> tags f. The onUp-
date handler function is called with the command queue as its context object and
the <update> tag DOM element as the sole argument.

 In the case of our domain model of the solar system, the update handler func-
tion is shown in listing 6.2.

function updatePlanets(updateTag){
 var attribs=updateTag.attributes;
 var planetId=attribs.getNamedItem("planetId").value;
 var planet=solarSystem.planets[planetId];
 if (planet){
 var fld=attribs.getNamedItem("fieldName").value;
 var val=attribs.getNamedItem("value").value;
 if (planet.fld){
 planet[fld]=val;
 }else{
 alert('unknown planet attribute '+fld);
 }
 }else{
 alert('unknown planet id '+planetId);
 }
}

The attributes in the <update> tag give us all the information that we need to
update the domain model on the JavaScript tier. Of course, the data coming from
the server may not be correct, and we need to take some action if it isn’t. In this
case, we have fallen back on an alert() statement compounding the problems
that were discussed in section 6.2.1.

 We’ve added quite a bit more clever code to our command queue object in the
process of handling updates from other users, including passing timestamps

Listing 6.2 updatePlanets() function
Licensed to jonathan zheng <yiyisjun@gmail.com>

222 CHAPTER 6
The user experience
between the client and web tiers, and adding a pluggable update handler func-
tion. Eventually we come full circle to the issue of informing the user of changes
and asynchronous updates as they take place. In the next section, we look at our
options for presenting this information to the user in a more workable fashion,
and we’ll factor out that pesky alert() function.

6.3 Designing a notification system for Ajax

The alert() function that we’ve been relying on up to now is a primitive throw-
back to the earlier, much simpler days of JavaScript, when web pages were largely
static and the amount of background activity was minimal. We can’t control its
appearance in any way through CSS, and for production-grade notification, we’re
much better off developing our own notification mechanisms using the tech-
niques employed to build the rest of our Ajax user interface. This also provides a
much greater degree of flexibility.

 If we look across the full spectrum of computer systems, we see that notifica-
tions come in many shapes and sizes, varying considerably in their impact on the
user. At the low end of the scale regarding obtrusiveness are changes to the mouse
cursor (such as the Windows hourglass or the Mac “spinning beach ball”) or the
addition of secondary icons or emblems to an image denoting the status of the
files or other items in a folder. These simple indicators offer relatively little infor-
mation. A status bar can provide a bit more detail on background events, and
finally the full-blown dialog can show a greater degree of detail than either. Fig-
ure 6.1 illustrates a range of notification conventions being used in the KDE desk-
top for UNIX.

 The folder called lost+found is not accessible to the current user, so a second-
ary image of a padlock has been superimposed over that folder. The status bar at
the bottom of the main window gives further information on the contents of the
folder being viewed, without interrupting the user. Finally, the error window that
is presented when the user tries to open the locked folder presents a stronger
notification requiring immediate action by the user.

 Compared to these notifications, the use of alert() is essentially ad hoc, as
well as being simplistic and ugly. In our quest for robustness, consistency, and
simplicity, it makes sense to develop a framework for presenting notifications to
the user that we can reuse throughout our application. In the following sections
we’ll do just that.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing a notification system for Ajax 223
6.3.1 Modeling notifications

As a first step, let’s define what a notification message looks like. It contains a text
description for the user and optionally an icon to display alongside the message.

 When we notify the user of background activity, some messages are going to be
more urgent than others. Rather than working out each time whether or not to
show a particular message, let’s define some generic priority levels, which we can
then assign to each message.

 In general, we want to tell the user something, which they can acknowledge
and dismiss. Some messages might be important enough to stay around indefi-
nitely until the user does dismiss them, whereas others will be relevant only for a
limited time. Where a message does remove itself without user intervention, it
may be in response to a callback, if it is telling the user that some background pro-
cess such as a network download is under way and the process finishes before the
user dismisses the notification. In other cases, such as a news feed, we may simply
wish to assign a given lifetime to a message, after which it will tidy itself away.

 With these requirements in mind, listing 6.3 presents a Message object, which
provides a generic behind-the-scenes representation of a notification that is to be
presented to the user. Once we’ve established this model of notification messages,
we can dress them up in various ways, as we will see later.

Figure 6.1 Various conventions for providing status information in a user interface: modifying
the icons to reflect particular characteristics (here access permissions), a status bar providing
summary information, and a modal dialog. The interface shown here is the KDE desktop for UNIX
workstations, but similar conventions are found in most popular graphical interfaces.
Licensed to jonathan zheng <yiyisjun@gmail.com>

224 CHAPTER 6
The user experience
var msg=new Object();

msg.PRIORITY_LOW= { id:1, lifetime:30, icon:"img/msg_lo.png" };
msg.PRIORITY_DEFAULT={ id:2, lifetime:60, icon:"img/msg_def.png" };
msg.PRIORITY_HIGH= { id:3, lifetime:-1, icon:"img/msg_hi.png" };

msg.messages=new Array();

msg.Message=function(id,message,priority,lifetime,icon){
 this.id=id;
 msg.messages[id]=this;
 this.message=message;
 this.priority=(priority) ? priority : msg.PRIORITY_DEFAULT.id;
 this.lifetime=(lifetime) ? lifetime : this.defaultLifetime();
 this.icon=(icon) ? icon : this.defaultIcon();
 if (this.lifetime>0){
 this.fader=setTimeout(
 "msg.messages['"+this.id+"'].clear()",
 this.lifetime*1000
);
 }
}
msg.Message.prototype.clear=function(){
 msg.messages[this.id]=null;
}

msg.Message.prototype.defaultLifetime=function(){
 if (this.priority<=msg.PRIORITY_LOW.id){
 return msg.PRIORITY_LOW.lifetime;
 }else if (this.priority==msg.PRIORITY_DEFAULT.id){
 return msg.PRIORITY_DEFAULT.lifetime;
 }else if (this.priority>=msg.PRIORITY_HIGH.id){
 return msg.PRIORITY_HIGH.lifetime;
 }
}

msg.Message.prototype.defaultIcon=function(){
 if (this.priority<=msg.PRIORITY_LOW.id){
 return msg.PRIORITY_LOW.icon;
 }else if (this.priority==msg.PRIORITY_DEFAULT.id){
 return msg.PRIORITY_DEFAULT.icon;
 }else if (this.priority>=msg.PRIORITY_HIGH.id){
 return msg.PRIORITY_HIGH.icon;
 }
}

Listing 6.3 Message object
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing a notification system for Ajax 225
 We define a global namespace object msg for our notification system, and
within that an associative array from which any message can be looked up by a
unique ID. The ID generation scheme will depend on the application using the
framework.

 We define three constants defining the three priority levels—low, default, and
high—to which a message can be assigned. Each priority defines a default icon
and lifetime (in seconds), both of which may be overridden by optional argu-
ments in the constructor function. A lifetime value of -1, assigned to high-priority
messages, indicates that the message will not expire automatically but will need to
be dismissed explicitly, either by the user or by a callback function.

6.3.2 Defining user interface requirements

In MVC terms, we have provided a Model for our notification system here. To
make it useful, we need to define a View. There are many possible ways of visually
representing notifications. For this example, we have chosen to provide a status
bar of sorts, upon which notifications are represented as icons, as illustrated in
figure 6.2.

The red X icon is a standard icon provided for low-level notifications by our sys-
tem. The third message object on the status bar has provided its own icon, a blue,
shaded sphere, which overrides the default X. Each notification that is added to
this status bar can be inspected as a tooltip device, as shown in figure 6.3.

This mechanism is designed to be unobtrusive. The status bar occupies relatively
little screen space, but it is apparent to the user when a new notification has
arrived by the presence of an additional icon. For more urgent messages, we may

Figure 6.2 Status bar user interface for our notification
system. Individual messages are represented by their icons.

Figure 6.3 Messages on the status bar can be inspected by
rolling the mouse over the icon, causing a tooltip to appear.
Licensed to jonathan zheng <yiyisjun@gmail.com>

226 CHAPTER 6
The user experience
wish for something more immediate. To this end, we will initially display only low-
priority messages in the status bar; default and high-priority messages will first
appear in a pop-up dialog, as illustrated in figure 6.4, before being dismissed.

 The dialog can be modal or nonmodal. In the case of modal dialogs, we use a
semitransparent layer to block off the rest of the user interface until the user dis-
misses the dialog. When dismissed, the dialog is represented by an icon on the
right side of the status bar. In the following two sections, we’ll look at implemen-
tations of these features.

6.4 Implementing a notification framework

We’ve defined two main parts to our user interface: the status bar and the pop-up
dialog. Let’s have a look at implementing this functionality now. The full notifi-
cation system is quite complicated, so we’ll break it down into stages. First, we’ll
enhance our Message object so that it knows how to render a user interface for
itself, both for when it is sitting in the status bar as an icon and when it is showing
its full details, either in a tooltip or within the pop-up dialog. Let’s begin with the
implementation of the status bar component.

6.4.1 Rendering status bar icons

The status bar needs to render itself on the screen and contain the icons repre-
senting active messages. We delegate rendering of the individual icons to the

Figure 6.4 Higher-priority messages are shown in a pop-up
dialog, in which messages are listed in order of priority.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing a notification framework 227
Message objects themselves. The Message will effectively implement a small-scale
MVC pattern, with the rendering ability delivering a View, whose interactive fea-
tures fulfill the role of Controller. Designing it this way could be problematic if we
wished to add arbitrary alternative rendering mechanisms to our notifications
framework. We don’t want to do that, however, because we want the notifications
to be uniform across our application, for consistency’s sake. Listing 6.4 shows a
rendering method for the Message object.

msg.Message.prototype.render=function(el){
 if (this.priority<=msg.PRIORITY_LOW.id){
 this.renderSmall(el);
 }else if (this.priority>=msg.PRIORITY_DEFAULT.id){
 this.renderFull(el);
 }
}

msg.Message.prototype.renderSmall=function(el){
 this.icoTd=document.createElement("div");
 var ico=document.createElement("img");
 ico.src=this.icon;
 ico.className="msg_small_icon";
 this.icoTd.appendChild(ico);
 this.icoTd.messageObj=this;
 this.icoTd.onmouseover=msg.moverIconTooltip;
 this.icoTd.onmouseout=msg.moutIconTooltip;
 this.icoTd.onclick=msg.clickIconTooltip;

 el.appendChild(this.icoTd);
}

msg.moverIconTooltip=function(e){
 var event=e || window.event;
 var message=this.messageObj;
 var popped=message.popped;
 if (!popped){
 message.showPopup(event,false);
 }
}
msg.moutIconTooltip=function(e){
 var message=this.messageObj;
 var popped=message.popped;
 var pinned=message.pinned;
 if (popped && !pinned){
 message.hidePopup();
 }
}

Listing 6.4 Message framework with user interface

b Render message

c Render as icon with tooltip

d Handle mouse-over events

e Handle mouse-out events
Licensed to jonathan zheng <yiyisjun@gmail.com>

228 CHAPTER 6
The user experience
msg.clickIconTooltip=function(e){
 var event=e || window.event;
 var message=this.messageObj;
 var popped=message.popped;
 var pinned=message.pinned;
 var expired=message.expired;
 if (popped && pinned){
 message.hidePopup();
 if (expired){
 message.unrender();
 }
 }else{
 message.showPopup(event,true);
 }
}
msg.Message.prototype.showPopup=function(event,pinned){
 this.pinned=pinned;
 if (!this.popup){
 this.popup=document.createElement("div");
 this.popup.className='popup';
 this.renderFull(this.popup);
 document.body.appendChild(this.popup);
 }
 this.popup.style.display='block';
 var popX=event.clientX;
 var popY=event.clientY-xHeight(this.popup)-12;
 xMoveTo(this.popup,popX,popY);
 if (msg.popper && msg.popper!=this){
 msg.popper.hidePopup();
 }
 this.popped=true;
 msg.popper=this;
}
msg.Message.prototype.hidePopup=function(){
 if (this.popped){
 if (this.popup){
 this.popup.style.display='none';
 }
 this.popped=false;
 }
}

We’ve introduced the top-level rendering code for our Message object, and the
specific details for the representation used in the status bar here. Let’s address
the top-level code first. We provide a render() method b, which takes a DOM ele-
ment as an argument. This delegates to either a renderSmall() c or render-
Full() d method, based on the priority of the message. Messages being shown in

f Handle mouse-click events

g Display tooltip

Hide tooltip
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing a notification framework 229
the status bar are always low priority, and will be displayed as an icon that pre-
sents a tooltip on mouseover (see figures 6.2 and 6.3).

 renderSmall() renders the icon inside the DOM element and provides event
handlers for displaying the pop-up tooltip.

 Because this chapter is about adding professional polish to Ajax applications,
the tooltip that we create for the icon has been implemented in a complete fash-
ion, with three event handlers. It will appear when the mouse rolls over the icon
e and disappear when the mouse moves off the icon f. If the icon is clicked,
however, the tooltip becomes “pinned” g and will stay in place until either the
icon is clicked again, the message expires, or another tooltip is selected (only one
tooltip will be visible at any given time).

6.4.2 Rendering detailed notifications

Messages in the dialog are either default or high priority, and will display an icon
and a message alongside (see figure 6.4). We also need this type of display for the
status-bar icons’ tooltips. When the tooltip is invoked in showPopup(), it calls the
renderFull() method to present the full details of the message. The same
method is reused to render messages in the dialog. This reuse saves us from
duplicating unnecessary code and also ensures a high degree of visual consistency
in the user interface. The renderFull() method is presented in listing 6.5.

msg.Message.prototype.renderFull=function(el){
 var inTable=(el.tagName=="TBODY");
 var topEl=null;
 this.row=document.createElement("tr");
 if (!inTable){
 topEl=document.createElement("table");
 var bod=document.createElement("tbody");
 topEl.appendChild(bod);
 bod.appendChild(this.row);
 }else{
 topEl=this.row;
 }

 var icoTd=document.createElement("td");
 icoTd.valign='center';
 this.row.appendChild(icoTd);
 var ico=document.createElement("img");
 ico.src=this.icon;
 icoTd.className="msg_large_icon";
 icoTd.appendChild(ico);

Listing 6.5 renderFull() method
Licensed to jonathan zheng <yiyisjun@gmail.com>

230 CHAPTER 6
The user experience
 var txtTd=document.createElement("td");
 txtTd.valign='top';
 txtTd.className="msg_text";
 this.row.appendChild(txtTd);
 txtTd.innerHTML=this.message;

 el.appendChild(topEl);
}

The renderFull() method generates a table row for the message. It checks the
DOM element that it is being appended to, and it will append itself directly if it is
a <tbody> tag or generate the necessary <table> and <tbody> tags if not. This
allows multiple messages to be presented in the same table in the main dialog
and the tooltip <div> tag to be correctly populated.

 Note that the message text is attached to the user interface using innerHTML
rather than the W3C DOM methods that we usually use. This allows notifications
to use HTML markup to present themselves in a richer fashion than if we were
simply generating a text node.

6.4.3 Putting the pieces together

Having provided mechanisms for iconized and full-size display of messages,
we’ve provided a comprehensive render() method for individual messages. The
dialog and status bar themselves are generated by a top-level render() method,
as shown in listing 6.6.

msg.render=function(msgbar){
 if (!msgbar){
 msgbar='msgbar';
 }
 msg.msgbarDiv=xGetElementById(msgbar);
 if (!msg.msgbarDiv){
 msg.msgbarDiv=msg.createBar(msgbar);
 }
 styling.removeAllChildren(msg.msgbarDiv);
 var lows=new Array();
 var meds=new Array();
 var highs=new Array();
 for (var i in msg.messages){
 var message=msg.messages[i];
 if (message){
 if (message.priority<=msg.PRIORITY_LOW.id){
 lows.append (message);

Listing 6.6 msg.render() function

b Ensure status
bar exists

c Sort messages by priority
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing a notification framework 231
 }else if (message.priority==msg.PRIORITY_DEFAULT.id){
 meds.append(message);
 }else if (message.priority>=msg.PRIORITY_HIGH.id){
 highs.append(message);
 }
 }
 }
 for (var i=0;i<lows.length;i++){
 lows[i].render(msg.msgbarDiv);
 }
 if (meds.length+highs.length>0){
 msg.dialog=xGetElementById(msgbar+"_dialog");
 if (!msg.dialog){
 msg.dialog=msg.createDialog(
 msgbar+"_dialog",
 msg.msgbarDiv,
 (highs.length>0));

 }
 styling.removeAllChildren(msg.dialog.tbod);
 for (var i=0;i<highs.length;i++){
 highs[i].render(msg.dialog.tbod);
 }
 for (var i=0;i<meds.length;i++){
 meds[i].render(msg.dialog.tbod);
 }
 if (highs.length>0){
 msg.dialog.ico.src=msg.PRIORITY_HIGH.icon;
 }else{
 msg.dialog.ico.src=msg.PRIORITY_DEFAULT.icon;
 }
 }
}

msg.createBar=function(id){
 var msgbar=document.createElement("div");
 msgbar.className='msgbar';
 msgbar.id=id;
 var parentEl=document.body;
 parentEl.append(msgbar);
 return msgbar;
}

msg.createDialog=function(id,bar,isModal){
 var dialog=document.createElement("div");
 dialog.className='dialog';
 dialog.id=id;
 var tbl=document.createElement("table");
 dialog.appendChild(tbl);
 dialog.tbod=document.createElement("tbody");
 tbl.appendChild(dialog.tbod);

d Render low-priority messages

e Render higher-priority messages

f Ensure dialog exists

g Create a status bar

h Create a pop-up dialog
Licensed to jonathan zheng <yiyisjun@gmail.com>

232 CHAPTER 6
The user experience
 var closeButton=document.createElement("div");
 closeButton.dialog=dialog;
 closeButton.onclick=msg.hideDialog;
 var closeTxt=document.createTextNode("x");
 closeButton.appendChild(closeTxt);
 dialog.appendChild(closeButton);

 if (isModal){
 dialog.modalLayer=document.createElement("div");
 dialog.modalLayer.className='modal';
 dialog.modalLayer.appendChild(dialog);
 document.body.appendChild(dialog.modalLayer);
 }else{
 dialog.className+=' non-modal';
 document.body.appendChild(dialog);
 }

 dialog.ico=document.createElement("img");
 dialog.ico.className="msg_dialog_icon";
 dialog.ico.dialog=dialog;
 dialog.ico.onclick=msg.showDialog;
 bar.appendChild(dialog.ico);

 return dialog;
}

msg.hideDialog=function(e){
 var dialog=(this.dialog) ? this.dialog : msg.dialog;
 if (dialog){
 if (dialog.modalLayer){
 dialog.modalLayer.style.display='none';
 }else{
 dialog.style.display='none';
 }
 }
}

msg.showDialog=function(e){
 var dialog=(this.dialog) ? this.dialog : msg.dialog;
 if (dialog){
 if (dialog.modalLayer){
 dialog.modalLayer.style.display='block';
 }else{
 dialog.style.display='block';
 }
 }
}

i Add modal layer if need be

Hide the dialog

Show the dialog
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing a notification framework 233
render() can be called more than once. It will check for the presence of the com-
mon UI components b, f and create them if necessary, using the createDia-
log() h and createBar() g functions. These assemble the UI components using
standard DOM manipulation methods and event handlers, such as those used to
show and hide the dialog.

 To render all notifications, the system first sorts them by priority into three
temporary arrays c. Low-priority messages are then rendered to the status bar
d and other messages to the dialog, higher-priority messages first e.

 To implement a modal dialog, we simply nest the visible dialog within another
DIV element that occupies the entire screen, blocking any mouse events from get-
ting through to the main user interface i. This modal DIV has a background pat-
tern of alternating white and transparent pixels to gray out the interface, giving a
clear indication that the dialog is modal. We use this rather than CSS transpar-
ency settings because the latter will make any nested elements, such as the dialog
itself, transparent, too. This is implemented in the CSS file for our notification
framework, presented in listing 6.7.

.msg_small_icon{
 height: 32px;
 width: 32px;
 position:relative;
 float:left;
}

.msg_dialog_icon{
 height: 32px;
 width: 32px;
 position:relative;
 float:right;
}

.msg_large_icon{
 height: 64px;
 width: 64px;
}

.msg_text{
 font-family: arial;
 font-weight: light;
 font-size: 14pt;
 color: blue;
}

Listing 6.7 msg.css
Licensed to jonathan zheng <yiyisjun@gmail.com>

234 CHAPTER 6
The user experience
.msgbar{
 position:relative;
 background-color: white;
 border: solid blue 1px;
 width: 100%;
 height: 38px;
 padding: 2px;
}

.dialog{
 position: absolute;
 background-color: white;
 border: solid blue 1px;
 width: 420px;
 top: 64px;
 left: 64px;
 padding: 4px;
}

.popup{
 position: absolute;
 background-color: white;
 border: solid blue 1px;
 padding: 4px;
}

.non-modal{
}

.modal{
 position: absolute;
 top: 0px;
 left: 0px;
 width: 100%;
 height: 100%;
 background-image:url(img/modal_overlay.gif);
}

It’s worth noting the use of the CSS float attribute in the msg_small_icon and
msg_dialog_icon classes, which are used to render the icons in the status bar.
msg_small_icon, which renders the icons for low-priority messages that present
the tooltips, uses a left float to align them to the left edge, and msg_dialog_icon
uses a right float to align the icon that launches the dialog to the right edge. The
framework allows the status bar to be rendered in any shape or size of DIV ele-
ment. Floating elements will align themselves in a sensible fashion, wrapping into
vertically aligned bars, if needed (figure 6.5).
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing a notification framework 235
Finally, we need to modify our Message object now that we have a user interface
for it. As individual messages are created, they have the ability to add themselves
to the user interface and will remove themselves when the message expires. List-
ing 6.8 presents the changes needed to implement this functionality.

var msg=new Object();

msg.PRIORITY_LOW= { id:1, lifetime:30, icon:"img/msg_lo.png" };
msg.PRIORITY_DEFAULT={ id:2, lifetime:60, icon:"img/msg_def.png" };
msg.PRIORITY_HIGH= { id:3, lifetime:-1, icon:"img/msg_hi.png" };

msg.messages=new Array();
msg.dialog=null;
msg.msgBarDiv=null;
msg.suppressRender=false;
msg.Message=function(id,message,priority,lifetime,icon){
 this.id=id;
 msg.messages[id]=this;
 this.message=message;
 this.priority=(priority) ? priority : msg.PRIORITY_DEFAULT.id;
 this.lifetime=(lifetime) ? lifetime : this.defaultLifetime();
 this.icon=(icon) ? icon : this.defaultIcon();
 if (this.lifetime>0){
 this.fader=setTimeout(
 "msg.messages['"+this.id+"'].clear()",
 this.lifetime*1000
);
 }
 if (!msg.suppressRender){
 this.attachToBar();
 }
}

msg.Message.prototype.attachToBar=function(){
 if (!msg.msgbarDiv){
 msg.render();

Listing 6.8 Modified Message object

Figure 6.5
Using CSS float attributes allows a list of icons to fit into a
variety of shapes of container. Here we have changed the
status bar to a square, and the cross and blue sphere icons
on the left wrap themselves into the new area automatically,
while the launcher for the dialog floats to the right.

b Extra arguments

c Extra arguments
Licensed to jonathan zheng <yiyisjun@gmail.com>

236 CHAPTER 6
The user experience
 }else if (this.priority==msg.PRIORITY_LOW.id){
 this.render(msg.msgbarDiv);
 }else{
 if (!msg.dialog){
 msg.dialog=msg.createDialog(
 msg.msgbarDiv.id+"_dialog",
 msg.msgbarDiv,
 (this.priority==msg.PRIORITY_HIGH.id)
);
 }
 this.render(msg.dialog.tbod);
 msg.showDialog();
 }
}

msg.Message.prototype.clear=function(){
 msg.messages[this.id]=null;
 if (this.row){
 this.row.style.display='none';
 this.row.messageObj=null;
 this.row=null;
 }
 if (this.icoTd){
 this.icoTd.style.display='none';
 this.icoTd.messageObj=null;
 this.icoTd=null;
 }
}

We want the framework to be easy for developers to work with, so when a message
is created, we automatically attach it to the user interface b. Simply invoking the
constructor will cause the new message to render itself. Depending on the mes-
sage priority, it will attach itself to the status bar or dialog as appropriate c. For
cases where we don’t want the overhead of rendering for each message—such as
when adding several messages at once—we provide a flag to suppress automatic
rendering. In such cases, we can manually call msg.render() after creating a large
number of messages.

 Likewise, when removing a message in the clear() function, we automatically
remove any user interface elements, so that the message goes away d.

 We now have a useful framework for presenting notifications to the user. We
can trigger it manually but also make use of it in our other reusable code compo-
nents. In the following section, we demonstrate how to hook it up to our Content-
Loader object to report on the progress of network downloads.

d Extra arguments
Licensed to jonathan zheng <yiyisjun@gmail.com>

Using the framework with network requests 237
6.5 Using the framework with network requests

In chapter 5 we introduced the ContentLoader object as a common encapsula-
tion for network traffic. We can make use of our notification framework to pro-
vide status reports on any data request that we make automatically. Let’s scope
out the requirements first.

 When a request is made to the server, we would like to indicate that it is in
progress, with a low-priority notification. To differentiate network requests from
other low-level notifications, we would like to use a different icon. We have the
image of the earth from our planetary viewer example in chapters 4 and 5, so let’s
use that.

 When the network request completes, we would like the notification to be
cleared and replaced by a low-level notification if everything went okay or by a
medium-level notification if there was an error.

 To implement this, we simply need to create Message objects at appropriate
points in the lifecycle of the request, such as when the request is fired, when it
completes or errors, and so on. The modified code for our ContentLoader object
is given in listing 6.9.

net.ContentLoader=function(...){ ... };
net.ContentLoader.msgId=1;
net.ContentLoader.prototype={
 loadXMLDoc:function(url,method,params,contentType){
 if (!method){
 method="GET";
 }
 if (!contentType && method=="POST"){
 contentType='application/x-www-form-urlencoded';
 }
 if (window.XMLHttpRequest){
 this.req=new XMLHttpRequest();
 } else if (window.ActiveXObject){
 this.req=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if (this.req){
 try{
 var loader=this;
 this.req.onreadystatechange=function(){
 loader.onReadyState.call(loader);
 }
 this.req.open(method,url,true);
 if (contentType){
 this.req.setRequestHeader('Content-Type', contentType);

Listing 6.9 ContentLoader with notifications
Licensed to jonathan zheng <yiyisjun@gmail.com>

238 CHAPTER 6
The user experience
 }
 this.notification=new msg.Message(
 "net00"+net.ContentLoader.msgId,
 "loading "+url,
 msg.PRIORITY_LOW.id,
 -1,
 "img/ball-earth.gif"
);
 net.ContentLoader.msgId++;
 this.req.send(params);
 }catch (err){
 this.onerror.call(this);
 }
 }
 },

 onReadyState:function(){
 var req=this.req;
 var ready=req.readyState;
 if (ready==net.READY_STATE_COMPLETE){
 var httpStatus=req.status;
 if (httpStatus==200 || httpStatus==0){
 this.onload.call(this);
 this.notification.clear();
 }else{
 this.onerror.call(this);
 }
 }
 },

 defaultError:function(){
 var msgTxt="error fetching data!"
 +"readyState:"+this.req.readyState
 +"status: "+this.req.status
 +"headers: "+this.req.getAllResponseHeaders()
 +"";
 if (this.notification){
 this.notification.clear();
 }
 this.notification=new msg.Message(
 "net_err00"+net.ContentLoader.msgId,
 msgTxt,msg.PRIORITY_DEFAULT.id
);
 net.ContentLoader.msgId++;
 }
};

b Notify request has started

c Clear initial notification

d Notify on error
Licensed to jonathan zheng <yiyisjun@gmail.com>

Using the framework with network requests 239
When we make a network request using loadXMLDoc(), we create a low-level noti-
fication b and attach a reference to it to the ContentLoader object. Note that we
set the lifetime to -1, so that the notification won’t expire by itself.

 In the onReadyState() method, we clear the notification if everything has gone
well c. In the case of an error, we call the defaultError() method, which now
generates a notification of its own d. The message for this notification uses
HTML markup to create a richer report than plain text could.

 Listing 6.10 demonstrates an example page using this modified Content-
Loader.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Notifications test</title>
<link rel=stylesheet type="text/css" href="msg.css"/>

<script type="text/javascript" src="x/x_core.js"></script>
<script type="text/javascript" src="extras-array.js"></script>
<script type="text/javascript" src="styling.js"></script>
<script type="text/javascript" src="msg.js"></script>
<script type="text/javascript" src="net_notify.js"></script>
<script type="text/javascript">

window.onload=function(){
 msg.render('msgbar');
}
var msgId=1;

function submitUrl(){
 var url=document.getElementById('urlbar').value;
 var loader=new net.ContentLoader(url,notifyLoaded);
}

function notifyLoaded(){
 var doneMsg=new msg.Message(
 "done00"+msgId,
 "loaded that resource you asked for: "+this.url,
 msg.PRIORITY_LOW.id
);
 msgId++;
 msg.render('msgbar');
}

</script>
</head>

Listing 6.10 Notifications sample page

b Make request
to server

c Notify that resource is loaded
Licensed to jonathan zheng <yiyisjun@gmail.com>

240 CHAPTER 6
The user experience
<body>
<div class='content'>
<p>here is some content. This is what the web
application is up to when not being bugged silly
by all these messages and notifications and stuff.
<p>Type in a URL in the box below (from the
same domain, see Chapter 7), and hit 'submit'.
A souped-up contentloader that understands the
notification system will be invoked.
<input id='urlbar' type='text'/>
submit
</div>
<div id='msgbar' class='msgbar'></div>
</body>
</html>

The page (as seen in figures 6.6 and 6.7) renders a simple HTML form into which
the user can type URLs. Clicking the submit link will attempt to load that URL b
and fire the notifyLoaded() callback function if successful. notifyLoaded()
doesn’t actually do anything with the resource, other than report that it has
fetched it by creating another Message object c.

 Note that the behavior on a successful request is not written into the frame-
work but provided by a custom onload handler function. This allows the frame-
work to be adapted to differing requirements. In the example in listing 6.9, we
have hard-coded the default behavior in case of error. In a real application, every
network failure may not be sufficiently important to warrant a big in-your-face
dialog. We leave it as an exercise for the reader to add a parameter to the
ContentLoader to denote the urgency of the notification required on failure (or
else provide an overridden onError handler with a gentler notification policy).

Figure 6.6
A successfully loaded resource
will be displayed as a tooltip on
the status bar.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Indicating freshness of data 241
We’ve taken this framework as far as we need to for now and demonstrated how it
can play nicely with our existing code. In the following section, we’ll look at an
alternative graphical convention for notifications that can also serve us well.

6.6 Indicating freshness of data

The notifications framework that we developed in the previous section provides a
series of new top-level components that display information about system activity.
In some circumstances, we may want to display a more contextual form of notifi-
cation, indicating a change to a piece of data in situ. In this section, we augment
our ObjectViewer developed through chapters 4 and 5 to provide extra visual
cues on recently changed data.

6.6.1 Defining a simple highlighting style

Let’s start off with a simple way of highlighting the data by using a reverse video
effect. The Object Viewer user interface is mostly quite pale, and uses blue/gray
tones, so a deep red color will stand out nicely. The first thing that we need to do
is to define an additional CSS class to represent newly changed data:

.new{
 background-color: #f0e0d0;
}

We have chosen a very simple styling here. In a more polished application, you
may want to be a little more adventurous. Listing 6.11 shows the changes to the
ObjectViewer code required to style recently edited properties as new and to
remove the styling automatically after a given length of time.

objviewer.PropertyViewer.prototype.commitEdit=function(value){
 if (this.type=objviewer.TYPE_SIMPLE){
 this.value=value;

Figure 6.7
An unsuccessful network request will
result in the notification dialog being
shown. (There are two messages shown
here, the second of which is a network
error notification.)

Listing 6.11 ObjectViewer with styling of recent edits
Licensed to jonathan zheng <yiyisjun@gmail.com>

242 CHAPTER 6
The user experience
 var valDiv=this.renderSimple();
 var td=this.valTd;
 td.replaceChild(valDiv,td.firstChild);

 this.viewer.notifyChange(this);
 this.setStatus(objviewer.STATUS_NEW);
 }
}

objviewer.STATUS_NORMAL=1;
objviewer.STATUS_NEW=2;

objviewer.PropertyViewer.prototype.setStatus=function(status){
 this.status=status;
 if (this.fader){
 clearTimeout(this.fader);
 }
 if (status==objviewer.STATUS_NORMAL){
 this.valTd.className='objViewValue';
 }else if (status==objviewer.STATUS_NEW){
 this.valTd.className='objViewValue new';
 var rnd="fade_"+new Date().getTime();
 this.valTd.id=rnd;
 this.valTd.fadee=this;
 this.fader=setTimeout("objviewer.age('"+rnd+"')",5000);
 }
}

objviewer.age=function(id){
 var el=document.getElementById(id);
 var viewer=el.fadee;
 viewer.setStatus(objviewer.STATUS_NORMAL);
 el.id="";
 el.fadee=null;
}

We define two statuses, normal and new. We could have set a boolean term isNew
instead, but we chose this approach to allow for future expansion, say to style
items whose updates are being submitted to the server. We call the setStatus()
method when committing an edited value b. This sets the CSS class appropri-
ately, and, in the case of the “new” status, it also sets up a timer that will reset the
status to normal after five seconds c. (In real life, we’d probably want it to last
longer, but five seconds is good for testing and demonstration purposes.) The
object retains a reference to the timer, which it can cancel if another change of
status takes place before it has expired.

b Set status as new

c Set timeout

d Reset status when
timer expires
Licensed to jonathan zheng <yiyisjun@gmail.com>

Indicating freshness of data 243
Because of the limitations of the JavaScript setTimeout() method, we assign a
unique ID to the DOM node being styled, to allow us to find it again when the
timer calls the age() function d. age() also tidies up the ID and other temporary
references. Figure 6.8 shows the ObjectViewer with a recently edited value.

 The user’s eye will be drawn toward the recently edited value because of the
change in color. Another way of drawing the user’s attention is to use animation,
and we’ll see how simple that can be in the next section.

6.6.2 Highlighting with the Scriptaculous Effects library

We’ve created a simple styling effect by hand here, in part because it’s easy to
display in the static medium of a printed book with screen shots. For production,
we recommend the Scriptaculous library’s Effect objects as a simple way of add-
ing sparkle to your inline notifications. We briefly introduced this library in
section 3.5.2, where we noted that it provides one-line calls for styling DOM ele-
ments with a variety of animated effects and transitions.

 We can easily rewrite our setStatus() method from listing 6.11 to make use of
Scriptaculous Effects. Let’s say that we want to make recently edited entries pul-
sate using the Effects.Pulsate object. This will make them fade in and out repeat-
edly, in a way that certainly catches the eye, but unfortunately can’t be captured in
a screen shot. Listing 6.12 shows the changes necessary to make this work.

objviewer.PropertyViewer.prototype.setStatus=function(status){
 this.status=status;
 if (this.effect){
 this.effect.cancel();
 this.effect=null;
 }
 if (status==objviewer.STATUS_NEW){
 this.effect=new Effect.Pulsate(
 this.valTd,

Figure 6.8
The modified ObjectViewer displaying a recently edited value
for the diameter property, which is styled to have a colored
background. The styling will disappear after a short period of
time, when the edit is no longer new and noteworthy.

Listing 6.12 Styling recent edits with Scriptaculous
Licensed to jonathan zheng <yiyisjun@gmail.com>

244 CHAPTER 6
The user experience
 {duration: 5.0}
);
 }
}

The Effect object takes care of some of the plumbing work for us, and we no
longer need to manage our own timeouts. The age() function can be removed
altogether. We simply invoke the constructor of the Pulsate effect, passing in a ref-
erence to the DOM element to operate on, and an associative array of any options
whose defaults we wish to override. By default, the Pulsate effect runs for 3 sec-
onds. We have modified it here to 5 seconds, in keeping with our previous exam-
ple, by passing a duration parameter into the options array.

 The same styling techniques could be applied to other events affecting the
data, such as updates originating from the server. To prevent any clashes between
effects, we check first for any effect that is already in progress, and cancel it. (As of
version 1.1, all Scriptaculous effects respect a standard cancel() function.)

 This kind of styling provides instant feedback to the user at the point at which
his attention is already focused, unlike the status bar and dialog notifications,
which are better suited to more general information. Taken together, these visual
feedbacks can do a lot to improve the user experience.

6.7 Summary

In this chapter, we’ve looked at a number of topics that add a professional feel to
an Ajax application. At the outset, we defined responsiveness, robustness, consist-
ency, and simplicity as key factors in providing that sense of quality.

 The majority of the chapter has been dedicated to looking at ways of provid-
ing the user with feedback while she works. Along the way, we developed several
implementations of visual feedback mechanisms, including a status bar, a pop-up
dialog, and inline highlighting of data. Going the extra distance to add these fea-
tures can enrich the user experience considerably, and wrapping the functionality
up as a reusable framework as we have done here removes a lot of burden from
the developer. Having developed the frameworks, we showed how to easily inte-
grate them with some of our previous code examples. We added status bar notifi-
cations to provide feedback on the progress of our server requests and inline
highlighting of recently updated data in the ObjectBrowser that we use to view
data about planets in the solar system.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Resources 245
 That’s enough glamour for now, though. The next two chapters look at topics
that help the usability of an application from behind the scenes, namely security
and performance.

6.8 Resources

The Scriptaculous Effects library can be found at http://wiki.script.aculo.us/scrip-
taculous/list?category=Effects.

 Additional icons for the notifications examples were taken from the Nuvola
icon set developed by David Vignoni (www.icon-king.com/).
Licensed to jonathan zheng <yiyisjun@gmail.com>

Security and Ajax

This chapter covers
■ The JavaScript security model
■ Remote web services
■ Protecting users’ data on the Internet
■ Protecting your Ajax data streams
246

Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript and browser security 247
Security is an increasingly important concern for Internet services. The Web is
inherently nonsecure, and adding proper security measures to an Ajax application
can be a strong differentiator for a product. Clearly, if a user’s money is involved in
any way, such as online shopping or providing a service that he has paid for, giving
due consideration to security is essential.

 Security is a big topic and deserves its own book. Many of the security issues
that an Ajax application faces are the same as for a classical web application. For
these reasons, we’ll limit our discussion to security-related concerns that have
particular implications for Ajax. First, we’ll look at the security implications of
shunting executable scripts around the network, and the steps that the browser
vendors have taken to make this a safe experience. We’ll also see the steps that
may be taken to relax these safeguards, with the user’s compliance. Second, we’ll
look at protecting a user’s data when it is submitted to the server, allowing a user
to work with our Ajax services confidently. Finally, we’ll describe ways to secure
the data services that our Ajax clients use to prevent them from being used ille-
gitimately by external entities on the network. Let’s kick off now with a look at the
security implications of sending our client across the network.

7.1 JavaScript and browser security

When an Ajax application is launched, the web server sends a set of JavaScript
instructions to a web browser running on a different machine, about which it
knows very little. The browser proceeds to execute these instructions. In letting
their web browser do this, the user of an Ajax application is placing a significant
amount of trust in the application and its authors. The browser vendors and stan-
dards bodies recognized that this trust was not always appropriate, and have put
safeguards in place to prevent it from being abused. In this section, we’ll look at
the safeguards and how to work with them. We’ll then discuss situations where the
constraints aren’t appropriate and can thus be relaxed. The ability to talk directly
to third-party web services is one such situation that should be of particular inter-
est to Ajax developers.

 Before diving any further into this topic, let us define what we mean by
“mobile code.” Everything on the hard disk of a computer is just a clump of
binary data. We can distinguish, however, between data that is purely descriptive
and data that represents machine instructions that can be executed. Descriptive
data can do nothing until some executing process picks it up. In the early client/
server applications, the client was installed on the user’s machine just like any
other desktop application, and all traffic over the network was purely descriptive
Licensed to jonathan zheng <yiyisjun@gmail.com>

248 CHAPTER 7
Security and Ajax
data. The JavaScript code of an Ajax application, however, is executable code. As
such, it offers the potential to do many more exciting things than “dead” data
can. It can also be more dangerous. We describe code as mobile if it is stored on
one machine and can transmit itself across the network to execute on another.
The computer receiving the mobile code needs to consider whether it should
trust the sender of the code, particularly over the public Internet. To what system
resources should it grant access?

7.1.1 Introducing the “server of origin” policy

We noted that, when executing JavaScript in a web browser, a user is letting code
written by somebody they don’t know run on their own machine. Mobile code,
capable of running automatically over a network in this fashion, is a potential
security risk. In response to the potential dangers of mobile code, browser ven-
dors execute JavaScript code in a sandbox, a sealed environment with little or no
access to the computer’s resources. An Ajax application can’t read or write to the
local filesystem. Nor can it establish network connections to any web domain
other than the one from which it originated, in most cases. A programmatically
generated IFrame can load pages from other domains and execute code, but the
scripts from the two domains cannot interact with each other. This is sometimes
referred to as the “server of origin” policy.

 Let’s take a (very) simple example. In our first script file, we define a variable:

 x=3;

In the second script file, we make use of that variable:

 alert(top.x+4);

The first script is included into our top-level document, which opens up an
IFrame and loads a page that includes the second script into it (figure 7.1).

 If both scripts are hosted on the same domain, then the alert fires successfully.
If not, a JavaScript error is thrown instead, and the second script fails.

7.1.2 Considerations for Ajax

In the script-centric interaction that we discussed in chapter 5, JavaScript code is
retrieved from the server and evaluated on the fly. In most cases, the client is con-
suming code from its own server, but let’s consider the case where it is running
code from a different domain, often referred to as “cross-scripting.” Allowing the
user to download scripts from arbitrary sites would open up the potential for a lot
of mischief, effectively letting third parties re-author or deface websites by using
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript and browser security 249
DOM manipulation, for example. The limitations imposed by the JavaScript secu-
rity model offer real protection from this kind of exploit. The model also pre-
vents malicious sites from downloading your Ajax client code directly from your
website and pointing it at a different server without your users knowing that they
were talking to a different back-end.

 In a data-centric interaction, the risk is slightly less, as the server is delivering
data rather than live code. Nonetheless, if delivered from a third-party server the
data might contain information crafted to do harm when parsed. For example, it
might overwrite or delete vital information, or cause resources to be consumed
on the server.

7.1.3 Problems with subdomains

Finally, note that web browsers have a fairly limited notion of what constitutes the
same domain and can err frustratingly on the side of caution. The domain is
identified solely by the first portion of the URL, with no attempt to determine
whether the same IP address backs the two domains. Table 7.1 illustrates a few
examples of how the browser security model “thinks.”

Web browser

Frame 1 Frame 2

var x=3; alert(top.x);

Figure 7.1
The JavaScript security model prevents
scripts from different domains from
interacting with one another.

Table 7.1 Examples of cross-browser security policy

URLs
Cross-Scripting

Allowed?
Comments

http://www.mysite.com/script1.js Yes As expected!

http://www.mysite.com/script2.js

continued on next page
Licensed to jonathan zheng <yiyisjun@gmail.com>

250 CHAPTER 7
Security and Ajax
In the case of subdomains, it is possible to truncate the part of the domain being
matched by setting the document.domain property. Thus, for example, in a script
served from http://www.myisp.com/dave, we can add a line to the script stating

 document.domain='myisp.com';

which would allow interaction with a script served from the subdomain http://
dave.myisp.com/, provided that it too sets the document.domain value. It isn’t
possible to set my document.domain to an arbitrary value such as www.goo-
gle.com, however.

7.1.4 Cross-browser security

Our discussion wouldn’t be complete without pointing out a glaring cross-
browser inconsistency. Internet Explorer security operates on a series of “zones,”
with more or less restrictive security permissions. By default (for Internet
Explorer 6, at least), files executing on the local filesystem are given permission
to contact websites on the Internet without the user being prompted, with the

http://www.mysite.com:8080/script1.js No The port numbers don’t match (script
1 is served from port 8080).

http://www.mysite.com/script2.js

http://www.mysite.com/script1.js No The protocols don’t match (script 2
uses a secure HTTP protocol).

https://www.mysite.com/script2.js

http://www.mysite.com/script1.js No ww.mysite.com resolves to IP address
192.168.0.1, but the browser doesn’t
try to work this out.http://192.168.0.1/script2.js

http://www.mysite.com/script1.js No Subdomains are treated as separate
domains.

http://scripts.mysite.com/script2.js

http://www.myisp.com/dave/script1.js Yes Although the scripts come from sites
owned by different people, the domain
is the same.http://www.myisp.com/eric/script2.js

http://www.myisp.com/dave/script1.js No www.mysite.com points to
www.myisp.com/dave, but the browser
won’t check this.http://www.mysite.com/script2.js

Table 7.1 Examples of cross-browser security policy (continued)

URLs
Cross-Scripting

Allowed?
Comments
Licensed to jonathan zheng <yiyisjun@gmail.com>

Communicating with remote services 251
local filesystem assumed to be a safe zone. The same code will trigger a security
dialog if run from a local web server (figure 7.2).

 It is possible to write sophisticated Ajax applications and test large parts of the
functionality against dummy data served directly from the filesystem. Taking the
web server out of the equation does simplify a development setup during intense
coding sessions. However, we urge developers testing any code that is accessing
Internet web services to test it on a local web server in addition to the filesystem.
Under Mozilla, there is no concept of zones, and web applications served off the
local filesystem are as restricted as any delivered from a web server. Under Inter-
net Explorer, however, the code runs in different security zones under the two sit-
uations, making for a big difference in behavior.

 This summarizes the key constraints within which our Ajax scripts must oper-
ate. The JavaScript security model has a few annoyances but generally works to
our advantage. Without it, public confidence in rich Internet services such as
those offered by Ajax would be so low that Ajax wouldn’t be a viable technology
for any but the most trivial of uses.

 There are, however, legitimate reasons for invoking scripts from domains
other than your own, such as when dealing with a publisher of web services. We’ll
see in the next section how to relax the security considerations for situations such
as these.

7.2 Communicating with remote services

Building security into the web browser is a sensible move, but it can also be frus-
trating. Security systems have to distrust everyone in order to be effective, but
there are situations where you will want to access a resource on a third-party
server for legitimate reasons, having thought through the security implications
for yourself. Now that we understand how the browsers apply their security policy,
let’s discuss ways of relaxing it. The first method that we’ll look at requires addi-
tional server-side code, and the second one works on the client only.

Figure 7.2
A security warning dialog is shown in Internet
Explorer if the code tries to contact a web service
not originating from its own server. If the user
agrees to this interaction, subsequent
interactions won’t be interrupted.
Licensed to jonathan zheng <yiyisjun@gmail.com>

252 CHAPTER 7
Security and Ajax
7.2.1 Proxying remote services

Because of the “server of origin” policy, an Ajax application is limited to retriev-
ing all its data from its own web domain. If we want our Ajax application to access
information from a third-party site, one solution is to make a call to the remote
server from our own server rather than from the client, and then forward it on to
the client (figure 7.3).

 Under this setup, the data appears to the browser to be coming from the local
server, and so the server of origin policy is not violated. In addition, all data is
subject to the scrutiny of the server, giving an opportunity to check for malicious
data or code before forwarding it to the client.

Server of origin

Remote web service

The Internet

Web browser

Proxy servlet

Other server

Figure 7.3 If an Ajax application needs to access resources from
other domains, the server of origin can proxy the resources on the Ajax
client’s behalf.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Communicating with remote services 253
 On the downside, this approach does increase the load on the server. The
second solution that we’ll examine goes directly from the browser to the third-
party server.

7.2.2 Working with web services

Many organizations these days provide web services that are intended to be used
by external entities, including JavaScript clients. An Ajax client will want to con-
tact a web service directly. The server of origin security policy is a problem here,
but it can be overcome by programmatically requesting privileges to perform net-
work activities. This request may be passed on to the user, or remembered by the
browser and applied automatically, if the user has so instructed.

 In this section, you’ll learn how to call a third-party web service directly from
an Ajax client application. Internet Explorer and Mozilla Firefox each handle
these requests in their own ways, and we’ll see how to keep them both happy.

 Our example program will contact one of Google’s web services using the Sim-
ple Object Access Protocol (SOAP). SOAP is an XML-based protocol built on top of
HTTP. The basic principle of SOAP is that the request sends an XML document to
the server, describing parameters to the service, and the server responds with an
XML document describing the results. The XML sent by SOAP is rather bulky,
itself consisting of headers and content wrapped up in an “envelope.” Because of
its use of XML, it is ideal for use with the XMLHttpRequest object.

 Google offers a SOAP interface to its search engine, in which the user can trans-
mit a search phrase in the request and get back an XML document that lists a page
of results. The XML response is very similar to the data presented visually in a
Google search results page, with each entry listing a title, snippet, summary, and
URL. The document also lists the total estimated number of results for the phrase.

 Our application is a guessing game for the Internet age. It is the estimated
number of results that we are interested in. We’re going to present the user with a
simple form and a randomly generated large number (figure 7.4). The user must
enter a phrase that they think will return a number of results within 1,000 of the
number indicated when sent to Google.

Figure 7.4
Using the Google SOAP API in a simple
Ajax application to entirely frivolous
ends. The user can try to enter a phrase
that will return an estimated number of
results from Google within the
specified range.
Licensed to jonathan zheng <yiyisjun@gmail.com>

254 CHAPTER 7
Security and Ajax
 We are going to contact the Google SOAP service using the XMLHttpRequest
object, wrapped up in the ContentLoader object that we developed in chapter 3.
We last revised this object in chapter 6, when we added some notification capabil-
ities to it. If we use that version of the ContentLoader to talk to Google, we will
succeed in Internet Explorer but not in Mozilla. Let’s quickly run through the
behavior for each browser.

Internet Explorer and web services
As we already noted, Internet Explorer’s security system is based on the concept
of zones. If we are serving our guessing game application from a web server, even
one running on the localhost port, then we are by default considered to be some-
what nonsecure. When we contact Google the first time using our ContentLoader,
we receive a notification message like the one depicted in figure 7.2. If the user
clicks Yes, our request, as well as any subsequent requests to that server, will go
ahead. If the user clicks No, our request is canceled, and the ContentLoader’s
error handler is invoked. The user is not greatly inconvenienced, and a moderate
level of security is attained.

 Remember, if you’re testing your Ajax client off the local filesystem, Internet
Explorer will treat you as secure, and you won’t see the dialog box.

 Mozilla browsers, including Firefox, take a rather stricter approach to security,
and are consequently more difficult to get right. Let’s look at them next.

Mozilla’s PrivilegeManager
The Mozilla browser security model is based on a concept of privileges. Various
activities, such as talking to third-party web servers and reading and writing local
files, are considered to be potentially unsafe. Application code seeking to under-
take these activities must request the privilege of doing so. Privileges are handed
out by the netscape.security.PrivilegeManager object. If we want our Ajax client
to talk to Google, it’ll have to talk nicely to the PrivilegeManager first. Unfortu-
nately, Firefox can be configured so that the PrivilegeManager won’t even listen
to your code, and this setting is the default for content served from a web server
rather than the local filesystem. Thus, the following technique is mainly suitable
for use in intranets. If you are in such a situation, or just curious about how Fire-
fox works, then read on.

 To request a privilege, we can call the enablePrivilege method. The script will
then be halted, and a dialog will be shown to the user (figure 7.5).

 The dialog explains that the script is about to do something that might be
unsafe. The user has the opportunity to grant or withhold the privilege. In either
Licensed to jonathan zheng <yiyisjun@gmail.com>

Communicating with remote services 255
case, the script then resumes running. If the privilege has been granted, then all
is well. If it hasn’t, then trying to execute the action requiring the privilege will
usually result in a scripting error.

 We saw that Internet Explorer will automatically remember a user’s first deci-
sion and stop bothering them after the first warning. Mozilla will only grant a
privilege for the duration of the function in which it was requested, and unless the
user clicks the “Remember my decision” checkbox, they will be interrupted by the
dialog every time the privilege is required (which is twice per network request, as
we will see). Security and usability seem to be at loggerheads here.

 The other difference between Internet Explorer and Mozilla is that Mozilla
will insist on being asked explicitly in the code before it will even show the user a
dialog. Let’s look at our ContentLoader object again (see chapters 3, 5, and 6),
and see what we need to do to it to make the request to Google. The modified
code contains requests to the PrivilegeManager object, as shown in listing 7.1.
(We’ve also added the ability to write custom HTTP headers, which we’ll need to
create the SOAP message, as we’ll see next.)

net.ContentLoader=function(
 url,onload,onerror,method,params,contentType,headers,secure
){
 this.req=null;
 this.onload=onload;
 this.onerror=(onerror) ? onerror : this.defaultError;
 this.secure=secure;
 this.loadXMLDoc(url,method,params,contentType,headers);
}

Listing 7.1 Security-aware ContentLoader object

Figure 7.5 Requesting additional security privileges in the Firefox browser will result in a dialog
being displayed, with a standardized warning message.
Licensed to jonathan zheng <yiyisjun@gmail.com>

256 CHAPTER 7
Security and Ajax
net.ContentLoader.prototype={
 loadXMLDoc:function(url,method,params,contentType,headers){
 if (!method){
 method="GET";
 }
 if (!contentType && method=="POST"){
 contentType='application/x-www-form-urlencoded';
 }
 if (window.XMLHttpRequest){
 this.req=new XMLHttpRequest();
 } else if (window.ActiveXObject){
 this.req=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if (this.req){
 try{
 try{
 if (this.secure && netscape
 && netscape.security.PrivilegeManager.enablePrivilege) {
 netscape.security.PrivilegeManager
 .enablePrivilege('UniversalBrowserRead');
 }
 }catch (err){}
 this.req.open(method,url,true);
 if (contentType){
 this.req.setRequestHeader('Content-Type', contentType);
 }
 if (headers){
 for (var h in headers){
 this.req.setRequestHeader(h,headers[h]);
 }
 }
 var loader=this;
 this.req.onreadystatechange=function(){
 loader.onReadyState.call(loader);
 }
 this.req.send(params);
 }catch (err){
 this.onerror.call(this);
 }
 }
 },

 onReadyState:function(){
 var req=this.req;
 var ready=req.readyState;
 if (ready==net.READY_STATE_COMPLETE){
 var httpStatus=req.status;
 if (httpStatus==200 || httpStatus==0){
 try{
 if (this.secure && netscape
 && netscape.security.PrivilegeManager.enablePrivilege) {

b Ask for privilege
to make request

c Add custom HTTP headers
Licensed to jonathan zheng <yiyisjun@gmail.com>

Communicating with remote services 257
 netscape.security.PrivilegeManager
 .enablePrivilege('UniversalBrowserRead');
 }
 }catch (err){}
 this.onload.call(this);
 }else{
 this.onerror.call(this);
 }
 }
 },

 defaultError:function(){
 alert("error fetching data!"
 +"\n\nreadyState:"+this.req.readyState
 +"\nstatus: "+this.req.status
 +"\nheaders: "+this.req.getAllResponseHeaders());
 }
}

We have added two new arguments to our constructor. The first is an array of
additional HTTP headers c, because we will need to pass these in during the
construction of the SOAP request. The second is a boolean flag indicating
whether the loader should request privileges at key points.

 When we request privileges from the netscape.PrivilegeManager object, we
are granted them only for the scope of the current function. Therefore, we
request them at two points: when the request to the remote server is made b, and
when we try to read the response that is returned c. We call the custom onload
handler function within the scope of the onReadyState function, so the privilege
will persist through any custom logic that we pass in there.

 Internet Explorer doesn’t understand the PrivilegeManager, and will throw an
exception when it is referred to. For this reason, we simply wrap the references to
it in try...catch blocks, allowing the exception to be caught and swallowed
silently. When the previous code runs in Internet Explorer, it will fail silently
within the try...catch block, pick itself up again, and keep going with no ill
results. Under Mozilla, the PrivilegeManager will be communicated with and no
exception will be thrown.

 Let’s make use of our modified ContentLoader, then, to send a request off to
Google. Listing 7.2 shows the HTML required for our simple guessing game
application.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

Listing 7.2 googleSoap.html

Ask for privilege to
parse response
Licensed to jonathan zheng <yiyisjun@gmail.com>

258 CHAPTER 7
Security and Ajax
<head>
<title>Google Guessing</title>
 <script type="text/javascript" src='net_secure.js'></script>
 <script type="text/javascript" src='googleSoap.js'></script>
 <script type='text/javascript'>

 var googleKey=null;

 var guessRange = 1000;
 var intNum = Math.round(Math.random()
 * Math.pow(10,Math.round(Math.random()*8)));

 window.onload = function(){
 document.getElementById("spanNumber")
 .innerHTML = intNum + " and "
 + (intNum + guessRange);
 }

 </script>
</head>
<body>
 <form name="Form1" onsubmit="submitGuess();return false;">
 Obtain a search that returns between
 results!

 <input type="text" name="yourGuess" value="Ajax">
 <input type="submit" name="b1" value="Guess"/>

 </form>
 <hr/>
 <textarea rows='24' cols='100' id='details'></textarea>
</body>
</html>

We set up the form elements in HTML, and calculate a suitably large random
number here. We also declare a variable, googleKey. This is a license key allowing
us to use the Google SOAP APIs. We haven’t included a valid key here, because we
aren’t allowed to by the license terms. Keys are free, and offer a limited number of
searches per day. They can be obtained from Google online through a simple
process (see the URL in the Resources section at the end of this chapter).

Submitting the request
The bulk of the work is done by the submitGuess() function, which is invoked
when the form is submitted. This is defined in the included JavaScript file, so let’s
have a look at that next. Listing 7.3 illustrates the first bit of JavaScript, which
calls the Google API.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Communicating with remote services 259
function submitGuess(){

 if (!googleKey){
 alert("You will need to get a license key "
 +"from Google,\n and insert it into "
 +"the script tag in the html file\n "
 +"before this example will run.");
 return null;
 }
 var myGuess=document.Form1.yourGuess.value;

 var strSoap='<?xml version="1.0" encoding="UTF-8"?>'
 +'\n\n<SOAP-ENV:Envelope'
 +' xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"'
 +' xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"'
 +' xmlns:xsd="http://www.w3.org/1999/XMLSchema">'
 +'<SOAP-ENV:Body><ns1:doGoogleSearch'
 +' xmlns:ns1="urn:GoogleSearch"'
 +' SOAP-ENV:encodingStyle='
 +'"http://schemas.xmlsoap.org/soap/encoding/">'
 +'<key xsi:type="xsd:string">' + googleKey + '</key>'
 +'<q xsi:type="xsd:string">'+myGuess+'</q>'
 +'<start xsi:type="xsd:int">0</start>'
 +'<maxResults xsi:type="xsd:int">1</maxResults>'
 +'<filter xsi:type="xsd:boolean">true</filter>'
 +'<restrict xsi:type="xsd:string"></restrict>'
 +'<safeSearch xsi:type="xsd:boolean">false</safeSearch>'
 +'<lr xsi:type="xsd:string"></lr>'
 +'<ie xsi:type="xsd:string">latin1</ie>'
 +'<oe xsi:type="xsd:string">latin1</oe>'
 +'</ns1:doGoogleSearch>'
 +'</SOAP-ENV:Body>'
 +'</SOAP-ENV:Envelope>';

 var loader=new net.ContentLoader(
 "http://api.google.com/search/beta2",
 parseGoogleResponse,
 googleErrorHandler,
 "POST",
 strSoap,
 "text/xml",
 {
 Man:"POST http://api.google.com/search/beta2 HTTP/1.1",
 MessageType:"CALL"
 },
 true
);
}

Listing 7.3 submitGuess() function

b Check license key

c Build SOAP message

d Create ContentLoader

e Provide URL to Google API

fPass custom
HTTP headers
Licensed to jonathan zheng <yiyisjun@gmail.com>

260 CHAPTER 7
Security and Ajax
The first thing that we do in the submitGuess() function is check that we have a
license key, and remind the user if we don’t b. When you download the code for
this example, the license key will be set to null, so you’ll need to get your own key
from Google if you want to play with it.

 Our second task is to construct a monstrously huge SOAP message c, contain-
ing the phrase we’re submitting and the license key value. SOAP is designed with
automation in mind, and it is unusual to build the XML by hand as we have done
here. Both Internet Explorer and Mozilla provide browser-specific objects for
interacting with SOAP in a simpler fashion. Nonetheless, we thought it instructive
to do it manually and look at the SOAP request and response data.

 Having created the request XML text, we construct a ContentLoader object d,
passing in the SOAP XML as the HTTP body content, along with the URL of the
Google API e and the custom HTTP headers f. We set the content-type to text/
xml. Note that this represents the MIME type of the body of the request, not the
MIME type we expect to receive in the response, although in this case the two are
the same. The final parameter, set to a value of true, indicates that we should
seek permission from the PrivilegeManager object.

Parsing the response
The ContentLoader will then make the request and, if the user grants permis-
sion, will receive an equally large chunk of XML in return. Here is a small sample
of the response to a search on the term “Ajax”:

<?xml version='1.0' encoding='utf-8'?>
<soap-env:envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/xmlschema-instance"
 xmlns:xsd="http://www.w3.org/1999/xmlschema">
<soap-env:body>
 <ns1:dogooglesearchresponse xmlns:ns1="urn:googlesearch"
 soap-env:encodingstyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="ns1:googlesearchresult">
<directorycategories
 xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns2:array"
 ns2:arraytype="ns1:directorycategory[1]">

...

<estimateisexact xsi:type="xsd:boolean">false</estimateisexact>
<estimatedtotalresultscount
xsi:type="xsd:int">741000</estimatedtotalresultscount>

...
Licensed to jonathan zheng <yiyisjun@gmail.com>

Communicating with remote services 261
<hostname xsi:type="xsd:string"></hostname>
<relatedinformationpresent xsi:type="xsd:boolean">true</

relatedinformationpresent>
<snippet xsi:type="xsd:string">de officiële site van afc ajax</

b>.</snippet>
<summary xsi:type="xsd:string">official club site, including roster,

history, wallpapers, and video clips.
 [english/dutch]</summary>
<title xsi:type="xsd:string">
ajax.nl – splashpagina
</title>

...

The full SOAP response is too lengthy to include here, we’ve presented three snip-
pets. The first part defines some of the transport headers, saying where the
response comes from, and so on. Within the body, we find a couple of elements
describing the estimated results count—the phrase returned 741,000 results,
which is not considered to be an exact figure. Finally, we can see part of the first
result returned, describing the link to the Dutch football team Ajax’s home page.
Listing 7.4 shows our callback handler, in which we parse the response.

function parseGoogleResponse(){
 var doc=this.req.responseText.toLowerCase();
 document.getElementById('details').value=doc;
 var startTag='<estimatedtotalresultscount xsi:type="xsd:int">';
 var endTag='</estimatedtotalresultscount>';
 var spot1=doc.indexOf(startTag);
 var spot2=doc.indexOf(endTag);
 var strTotal1=doc.substring(spot1+startTag.length,spot2);
 var total1=parseInt(strTotal1);
 var strOut="";
 if(total1>=intNum && total1<=intNum+guessRange){
 strOut+="You guessed right!";
 }else{
 strOut+="WRONG! Try again!";
 }
 strOut+="
Your search for "
 +document.Form1.yourGuess.value
 +" returned " + strTotal1 + " results!";
 document.getElementById("spanResults").innerHTML = strOut;
}

For the moment, we aren’t concerned with the structure of the SOAP message but
only with the estimated number of results returned. The response is valid XML,

Listing 7.4 parseGoogleResponse() function
Licensed to jonathan zheng <yiyisjun@gmail.com>

262 CHAPTER 7
Security and Ajax
and we could parse it using the XMLHttpRequest object’s responseXML property.
However, we take the path of least resistance here, and simply extract the esti-
mated result count using string manipulation. We then use a few of our DOM
manipulation techniques to present the verdict to the user (how good their guess
was). For educational purposes, we also dump the entire XML response into a
textarea element, for those who want to look at SOAP data in more detail.

Enabling the PrivilegeManager in Firefox
As we noted earlier, the PrivilegeManager can be configured not to respond to
our programmatic pleas. To find out whether a Firefox browser is configured this
way, type “about:config” into the address bar to reveal the preferences list. Use
the filter textbox to find the entry signed.applets.codebase_principal_support.
If the value is true, then our code above will work. If not, we won’t be able to con-
tact Google.

 Earlier versions of Mozilla required that the configuration be edited by hand,
followed by a complete browser restart. In Firefox, double-clicking the relevant
row in the preferences list will toggle the preference value between true and false.
Changes made in this way will take place immediately, without needing to restart the
browser, or even refresh the page, if the preferences are opened in a separate tab.

Signing Mozilla client code
Because Internet Explorer bypasses the PrivilegeManager, the application func-
tions smoothly enough in that browser. However, in Mozilla the user is confronted
with the scary-looking dialog twice (assuming that the browser is configured to
use the PrivilegeManager), making this sort of web service approach rather prob-
lematic for Mozilla users. They can prevent it from reappearing by selecting the
“Remember my decision” checkbox (see figure 7.5), but we developers have no
control over that (and quite rightly so!).

 There is a solution, but it requires the application to be packaged in a way that
is very specific to Mozilla. Web applications may be signed by digital certificates.
To be signed, however, they must be delivered to Mozilla browsers in JAR files,
that is, compressed zip archives with all scripts, HTML pages, images, and other
resources in one place. JAR files are signed with digital certificates of the variety
sold by companies such as Thawte and VeriSign. Resources inside signed JAR files
are referred to using a special URL syntax, such as

jar:http://myserver/mySignedJar.jar|/path/to/someWebPage.html

When the user downloads a signed web application, they are asked once whether
they want to allow it to grant any privileges that it asks for, and that is that.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Protecting confidential data 263
 Mozilla provides free downloadable tools for signing JAR files. For users who
want to simply experiment with this technology, unauthenticated digital certifi-
cates can be generated by tools such as the keytool utility that ships with the Sun
Java Development Kit (JDK). We, however, recommend using a certificate from a
recognized authority for live deployments.

 Signed JAR files are not portable. They will only work in Mozilla browsers.
For that reason, we won’t pursue them in any greater detail here. If you’re inter-
ested in exploring this approach further, have a look at the URLs in the
Resources section.

 This concludes our discussion on interacting with remote services using Ajax.
We’ve reached to the point where our application is running in the browser,
exchanging data with its server and possibly with third-party servers as well. That
data is unlikely to execute malicious code on your machine, but it may be a secu-
rity risk of a different kind, particularly if the data is confidential. In the next sec-
tion, we’ll see how to safeguard your users’ data from prying eyes.

7.3 Protecting confidential data

The web browser that your user is sitting in front of does not enjoy a direct con-
nection to your server. When data is submitted to the server, it is routed across
many intermediate nodes (routers and proxy servers, for instance) on the Inter-
net before it finds your server. Ordinary HTTP data is transmitted in plain text,
allowing any intermediate node to read the data in the packets. This exposes the
data to compromise by anyone who has control of these intermediate nodes, as
we will see.

7.3.1 The man in the middle

Let’s suppose you’ve just written an Ajax application that sends financial details,
such as bank account numbers and credit card details, across the Internet. A well-
behaved router transmits the packet unchanged without looking at anything
other than the routing information in the packet headers, but a malicious router
(figure 7.6) may read the contents of the transmission (say, looking for credit card
numbers in the content or valid email addresses to add to a spam list), modify
routing information (for example, to redirect the user to a fake site that mimics
the one she is visiting), or even modify the content of the data (to divert funds
from an intended recipient to his own account, for instance).

 Ajax uses HTTP both for transmitting the client code and for submitting
data requests to the server. All of the communication methods we’ve looked at—
Licensed to jonathan zheng <yiyisjun@gmail.com>

264 CHAPTER 7
Security and Ajax
hidden IFrames, HTML forms, XMLHttpRequest objects—are identical in this
respect. As with any web-based application, a malicious entity looking to inter-
fere with your service has several points of leverage. Exploiting these weak
points are known as “man-in-the-middle” attacks. Let’s look at the measures we
can take to protect ourselves from them.

7.3.2 Using secure HTTP

If you are concerned about protecting the traffic between your Ajax client and the
server, the most obvious measure you can take is to encrypt the traffic using a
secure connection. The Hypertext Transfer Protocol over Secure Socket Layer
(HTTPS) provides a wrapper around plain-text HTTP, using public-private key
pairs to encrypt data going in both directions. The man in the middle still sees
the data packets, but because the content is encrypted, there is nothing much that
he can do with them (figure 7.7).

 HTTPS requires native code support on both the browser and the server. Mod-
ern browsers have good support for HTTPS built in, and most web-hosting firms
now offer secure connections at a reasonable price. HTTPS is computationally
expensive, and transfers binary data. JavaScript is not a natural choice here; just
as we wouldn’t try to reimplement the DOM, CSS, or HTTP using JavaScript,
HTTPS is best viewed as a service that we use, rather than something we can over-
ride and replace for ourselves.

Web browser

Password Password

Password

Password

Password

Password

Routing node

The Internet

Routing node

Routing node

Server

Figure 7.6
In an ordinary HTTP transmission,
data is transmitted across the
Internet in plain text, allowing it to be
read or modified at intermediate
nodes by the man in the black hat.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Protecting confidential data 265
Let us introduce a few caveats about HTTPS. First, the encryption and decryption
do introduce a computational overhead. At the client end, this is not a significant
problem, as a single client need only process one stream of traffic. On the server,
however, the additional load can be significant on a large website. In a classic
web application, it is common practice to transmit only key resources over
HTTPS and send mundane content such as images and boilerplate markup over
plain HTTP. In an Ajax application, you need to be aware of the impact that this
may have on the JavaScript security model, which will recognize http:// and https://
as distinct protocols.

 Second, using HTTPS secures only the transmission of data; it is not a com-
plete security solution in itself. If you securely transmit your users’ credit card
details using 128-bit SSL encryption and then store the information in an
unpatched database that has been infected with a backdoor exploit, the data will
still be vulnerable.

 Nonetheless, HTTPS is the recommended solution for transferring sensitive
data across the network. However, we do recognize that it has its costs and might
not be within easy reach of the small website owner. For those with more modest
security requirements, we next present a plain HTTP mechanism for transmitting
encrypted data.

Web browser

Password Password

Routing node

The Internet

Routing node

Routing node

?

Encryption

Encryption

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

Server

Figure 7.7
Using a secure HTTP connection, data is
encrypted in both directions. Intermediate
nodes still see the encrypted data but lack
the necessary key to decrypt it.
Licensed to jonathan zheng <yiyisjun@gmail.com>

266 CHAPTER 7
Security and Ajax
7.3.3 Encrypting data over plain HTTP using JavaScript

Let’s suppose that you run a small website that doesn’t routinely transmit sensi-
tive data requiring secure connections. You do ask users to log in, however, and
are troubled by the passwords being sent as plain text for verification.

 In such a scenario, JavaScript can come to your aid. First, let’s describe the
overview of the solution and then look at the implementation.

Public and private keys
Rather than transmitting the password itself, we can transmit an encrypted form
of the password. An encryption algorithm will generate a random-looking, but
predictable, output from an input string. MD5 is an example of such an algorithm.
It has a few key features that make it useful for security. First, MD5-ing a piece of
data will always generate the same result, every time. Second, two different
resources are monumentally unlikely to generate the same MD5 digest. Taken
together, these two features make an MD5 digest (that is, the output of the algo-
rithm) of a resource a rather good fingerprint of that resource. The third feature
is that the algorithm is not easy to reverse. The MD5 digest can therefore be freely
passed about in the open, without the risk of a malicious entity being able to use it
to decrypt the message.

 For example, the MD5 algorithm will generate the digest string
“8bd04bbe6ad2709075458c03b6ed6c5a” from the password string “Ajax in
action” every time. We could encrypt it on the client and transmit the encrypted
form to the server. The server would then fetch the password for the user from
the database, encrypt it using the same algorithm, and compare the two strings. If
they match, the server would log us in. At no time did our unencrypted password
go across the Internet.

 We can’t transmit the straight MD5 digest across the Internet in order to log in,
however. A malicious entity might not be able to figure out that it was generated
from “Ajax in action”, but they would soon learn that that particular digest grants
them access to our site account.

 This is where public and private keys come in. Rather than encrypting just our
password, we will encrypt a concatenation of our password and a random
sequence of characters supplied by the server. The server will supply us with a dif-
ferent random sequence every time we visit the login screen. This random
sequence is transmitted across the Internet to the client.

 On the client tier, when the user enters her password, we append the random
string and encrypt the result. The server has remembered the random string for
the duration of this login attempt. It can therefore retrieve the user id, pull the
Licensed to jonathan zheng <yiyisjun@gmail.com>

Protecting confidential data 267
correct password for that user from its database, append the random term,
encrypt it, and compare the results. If they match, it lets us in. If they don’t (say
we mistype our password), it presents the login form again, but with a different
random string this time.

 Let’s say that the server transmits the string “abcd”. The MD5 digest of “Ajax
in actionabcd” is “e992dc25b473842023f06a61f03f3787.” On the next request, it
transmits the string “wxyz”, for which we generate a completely different digest,
“3f2da3b3ee2795806793c56bf00a8b94.” A malicious entity can see each random
string, and match them to the encrypted hashes, but has no way of deducing the
password from these pairs of data. So, unless it gets lucky enough to be snooping
a message whose random string it has seen before, it will be unable to hijack the
login request.

 The random string is the public key. It is visible to all, and disposable. Our
password is the private key. It is long-lived, and is never made visible.

A JavaScript implementation
Implementing this solution requires an MD5 generator at both the client and the
server. On the client, Paul Johnston has written a freely available generator
library in JavaScript (see the Resources section). Using his code is just a matter of
including the library and invoking a simple function:

<script type='text/javascript' src='md5.js'></script>
<script type='text/javascript'>
 var encrypted=str_md5('Ajax in action');
 //now do something with it...
</script>

On the server tier, MD5 algorithms are available for most popular languages. PHP
has had a built-in md5() function since version 3. The java.security.Message-
Digest class provides a base implementation for Java encryption algorithms and
implementations of a number of common algorithms, including MD5. The .NET
Framework provides a System.Security.Cryptography.MD5 class.

 This technique has limited usefulness, since the server must already know the
data being encrypted in order to facilitate a comparison. It is ideal as a means of
providing secure login capabilities without recourse to HTTPS, although it can’t
substitute for HTTPS as an all-around secure transmission system.

 Let’s review where are now. The server of origin policy is safeguarding our
users’ computers from malicious code. Data exchanged between the client and
the server is protected from man-in-the-middle attacks by HTTPS. In the final
section, let’s look at a third point of attack, the server itself. You’ll learn how to
secure your own web services from unwanted visitors.
Licensed to jonathan zheng <yiyisjun@gmail.com>

268 CHAPTER 7
Security and Ajax
7.4 Policing access to Ajax data streams

Let’s begin by reviewing the standard Ajax architecture, in order to identify the
vulnerability that we’ll discuss in this section. The client, once it is running in the
user’s browser, makes requests to the server using HTTP. These requests are ser-
viced by web server processes (servlets, dynamic pages, or whatever) that return
streams of data to the client, which it parses. Figure 7.8 summarizes the situation.

 The web services or pages are accessible by external entities, without any addi-
tional work on our part—that’s just how the Internet works. It may be that we
encourage outsiders to use our web services in this way, and we may even publish
an API, as eBay, Amazon, and Google, among others, have done. Even in this case,
though, we need to keep security in mind. There are two things we can do, which
we discuss in the following two sections. First, we can design our web services
interface, or API, in such a way that external entities cannot subvert the purpose of
our web application—say, by ordering goods without paying for them. Second, we
look at techniques to restrict access to the web services to particular parties.

7.4.1 Designing a secure web tier

When we design a web application, we typically have an end-to-end workflow in
mind. In a shopping site, for example, the users will browse the store, adding items
to their baskets, and then proceed to checkout. The checkout process itself will

Web browser

Ajax client

Web services

External entity

Data stream

Data stream

The Internet

Server

Figure 7.8
In an Ajax architecture, the server
exposes web services to the
Internet over a standard protocol,
typically HTTP. The Ajax client
fetches streams of data from the
server. Because of the public nature
of the web services, external
entities may request the data
directly, bypassing the client.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Policing access to Ajax data streams 269
have a well-defined workflow, with choice of delivery address, shipping options,
payment methods, and confirmation of order. As long as our application is calling
the shots, we can trust that the workflow is being used correctly. If an external
entity starts to call our web services directly, however, we may have a problem.

Screen scrapers and Ajax
A classic web application is vulnerable to “screen-scraping” programs that
traverse these workflows automatically, crafting HTTP requests that resemble
those generated by a user filling in a form. Screen-scrapers can deprive sites of
advertising revenue and skew web statistics. More seriously, by automating what is
intended to be an interaction between a human and the application, they can sub-
vert the workflow of the application, calling server events out of order, or they can
overload server processes by repetitive submission. From a security perspective,
they are generally considered problematic.

 The data in a classic web application’s pages is often buried within a heap of
boilerplate HTML and decorative content. In a well-factored Ajax application, the
web pages sent to the client are much simpler, well-structured data. Separation of
concerns between presentation and logic is good design, but it also makes the job
of a screen-scraper easier, because the data returned from the server is designed
to be parsed rather than rendered in a browser. Screen-scraping programs tend
to be fragile and are prone to break when the look and feel of the site changes.
Visual makeovers of an Ajax client are less likely to alter the signatures of the
underlying web services that the client application uses to communicate to the
server. To protect the integrity of our application, we need to give some thought
to these issues when designing the structure of the high-level API used to commu-
nicate between client and server. By API, we don’t mean HTTP or SOAP or XML,
but the URLs of the dynamic pages and the parameters that they accept.

Example: online battleship game
To illustrate how the design of a web service API affects the security of the appli-
cation, let’s look at a simplistic example. We’re developing an online version of
the classic board game Battleship (see the Resources section), which will be played
using an Ajax client that communicates to the server using web services. We want
to ensure that the game is cheat-proof, even if a malicious player hacks the client,
making it send data to the server out of turn.

 The aim of the game is for each player to guess the position of the other’s
boats. The game consists of two phases. First, the players each position their
pieces on the board. Once this is done, they take turns at guessing particular
Licensed to jonathan zheng <yiyisjun@gmail.com>

270 CHAPTER 7
Security and Ajax
squares on the board, to see if they can sink the other player’s ships. The master
copy of the board is stored on the server during a game, with each client also
maintaining a model of its own half of the board and a blank copy of the other
player’s board, which gradually gets filled in as their ships are discovered
(figure 7.9).

 Let’s look at the setup stage. First, the board is wiped clean. Then each piece is
placed on the board, until all pieces are placed. There are two ways that we can
design the service calls that the clients will make to the server during setup. The
first is to use a fine-grained approach, with calls to clear the board and to add a
given piece at a given position. During the setup phase, the server would be hit
several times, once to clear the board and once to position each piece. Table 7.2
describes the fine-grained setup’s API.

Server

Client 1

Client 2

Figure 7.9 Data models in an Ajax-based game of Battleship. Once
the pieces are positioned, the server will maintain a map of both
players’ pieces. The clients will initially model only their own pieces
but build up a model of their opponent’s as the game progresses.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Policing access to Ajax data streams 271
The second design is a coarse-grained approach, in which a single service call
clears the board and positions all pieces. Under this approach, the server is hit
only once during setup. Table 7.3 describes this alternative API.

We already contrasted these two styles of service architecture when we discussed
SOA in chapter 5. The single network call is more efficient and provides better
decoupling between tiers, but it also helps us to secure our game.

 Under the fine-grained approach, the client takes on the responsibility of
checking that the correct number and type of pieces are placed, and the server
model takes on the responsibility of verifying the correctness of the system at the
end of the setup. Under the coarse-grained approach, this checking is also writ-
ten into the document format of the service call.

 Once setup is completed, an additional service call is defined to represent a
turn of the game, in which one player tries to guess the position of another’s ship.
By the nature of the game, this has to be a fine-grained service call representing a
guess for a single square, as shown in table 7.4.

Table 7.2 Fine-grained web API for Battleship game setup phase

URL Arguments Return Data

clearBoard.do userid Acknowledgment

positionShip.do userid shiplength
coordinates (x,y) format
orientation (N,S,E or W)

Acknowledgment or error

Table 7.3 Coarse-grained web API for Battleship game setup phase

URL Arguments Return Data

setupBoard.do userid
coordinates array of (x,y,length,
orientation) structs

Acknowledgment or error

Table 7.4 Web API for Battleship game play phase (used for both fine- and coarse-grained setup styles)

URL Arguments Return Type

guessPosition.do userid
coordinates (x,y)

“hit,” “miss,” or “not your turn”
plus update of other player’s last
guess
Licensed to jonathan zheng <yiyisjun@gmail.com>

272 CHAPTER 7
Security and Ajax
Under correct game play, both users may set up their pieces in any order and will
then call the URL guessPosition.do in turn. The server will police the order of
play, returning a “not your turn” response if a player tries to play out of turn.

 Let’s now put on our black hats and try to hack the game. We’ve written a cli-
ent that is able to call the web service API in any order it likes. What can we do to
tip the odds in our favor? We can’t give ourselves extra turns because the server
monitors that—it’s part of the published API.

 One possible cheat is to move a piece after the setup phase is finished. Under
the fine-grained architecture, we can try calling positionShip.do while the game
is in progress. If the server code has been well written, it will note that this is
against the rules and return a negative acknowledgment. However, we have noth-
ing to lose by trying, and it is up to the server-side developer to anticipate these
misuses and code defensively around them.

 On the other hand, if the server is using the coarse-grained API, it isn’t possi-
ble to move individual pieces without also clearing the entire board. Fine-tuning
the game in your favor isn’t a possibility.

 A coarse-grained API limits the flexibility of any malicious hacker, without
compromising the usability for law-abiding users. Under a well-designed server
model, use of a fine-grained API shouldn’t present any exploits, but the number of
entry points for potential exploits is much higher, and the burden of checking
these entry points for security flaws rests firmly with the server tier developer.

 In section 5.3.4, we suggested using a Façade to simplify the API exposed by a
service-oriented architecture. We recommend doing so again here, from a secu-
rity standpoint, because a simpler set of entry points from the Internet is easier
to police.

 Design can limit the exposure of our application to external entities, but we
still need to offer some entry points for our legitimate Ajax client to use. In the
following section, we examine ways of securing these entry points.

7.4.2 Restricting access to web data

In an ideal world, we would like to allow access to the dynamic data served from
our app to the Ajax client (and possibly other authorized parties) and prevent
anybody else from getting in. With some rich-client technologies, we would have
the opportunity of using custom network protocols, but the Ajax application is
limited to communicating over HTTP. Secure HTTP can keep the data in individ-
ual transactions away from prying eyes, as we discussed earlier, but it can’t be used
to determine who gets to call a particular URL.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Policing access to Ajax data streams 273
 Fortunately, HTTP is quite a rich protocol, and the XMLHttpRequest object
gives us a good level of fine-grained control over it. When a request arrives on the
server, we have access to a range of HTTP headers from which we can infer things
about the origin of the request.

Filtering HTTP requests
For the sake of providing concrete examples, we’ll use Java code here. Other
server-side technologies offer similar ways to implement the techniques that we
are describing, too. In the Java web application specification, we can define
objects of type javax.servlet.Filter, which intercept specific requests before
they are processed at their destination. Subclasses of Filter override the doFil-
ter() method and may inspect the HTTP request before deciding whether to let it
through or forward it on to a different destination. Listing 7.5 shows the code for
a simple security filter that will inspect a request and then either let it through or
forward it to an error page.

public abstract class GenericSecurityFilter implements Filter {
 protected String rejectUrl=null;
 public void init(FilterConfig config)
 throws ServletException {
 rejectUrl=config.getInitParameter("rejectUrl");
 }

 public void doFilter(
 ServletRequest request, ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {
 if (isValidRequest(request)){
 chain.doFilter(request, response);
 }else if (rejectUrl!=null){
 RequestDispatcher dispatcher
 =request.getRequestDispatcher(rejectUrl);
 dispatcher.forward(request, response);
 }
 }

 protected abstract boolean
 isValidRequest(ServletRequest request);

 public void destroy(){}
}

Listing 7.5 A generic Java security filter

b Configure reject URL

c Check request validity

d Forward to reject URL
Licensed to jonathan zheng <yiyisjun@gmail.com>

274 CHAPTER 7
Security and Ajax
The filter is an abstract class, defining an abstract method isValidRequest() that
inspects the incoming request object before passing a verdict. If the method fails
c, it is forwarded to a different URL d, which is defined in the configuration file
for the web application b, which we’ll look at shortly.

 This filter provides us with considerable flexibility in defining a concrete sub-
class. We can adapt it to more than one security strategy.

Using the HTTP session
One common approach is to create a token in the user’s HTTP session when she
logs in and check for the existence of that object in session during subsequent
requests before performing any other actions. Listing 7.6 demonstrates a simple
filter of this type.

public class SessionTokenSecurityFilter
extends GenericSecurityFilter {
 protected boolean isValidRequest(ServletRequest request) {
 boolean valid=false;
 HttpSession session=request.getSession();
 if (session!=null){
 UserToken token=(Token) session.getAttribute('userToken');
 if (token!=null){
 valid=true;
 }
 }
 return valid;
 }
}

This technique is commonly used in conventional web applications, typically for-
warding to a login screen if validation fails. In an Ajax application, we are free to
return a much simpler response in XML, JSON, or plain text, which the client
could respond to by prompting the user to log in again. In chapter 11, we discuss
a fuller implementation of such a login screen for our Ajax Portal application.

Using encrypted HTTP headers
Another common strategy for validating a request is to add an additional header
to the HTTP request and check for its presence in the filter. Listing 7.7 shows a
second example filter that looks for a specific header and checks the encrypted
value against a known key held on the server.

Listing 7.6 Session token-checking filter
Licensed to jonathan zheng <yiyisjun@gmail.com>

Policing access to Ajax data streams 275
public class SecretHeaderSecurityFilter
extends GenericSecurityFilter {
 private String headerName=null;
 public void init(FilterConfig config) throws ServletException {
 super.init(config);
 headerName=config.getInitParameter("headerName");
 }

 protected boolean isValidRequest(ServletRequest request) {
 boolean valid=true;
 HttpServletRequest hrequest=(HttpServletRequest)request;
 if (headerName!=null){
 valid=false;
 String headerVal=hrequest.getHeader(headerName);
 Encrypter crypt=EncryptUtils.retrieve(hrequest);
 if (crypt!=null){
 valid=crypt.compare(headerVal);
 }
 }
 return valid;
 }
}

When testing the request, this filter reads a specific header name b and com-
pares it with an encrypted value stored in the server session c. This value is tran-
sient and may be generated randomly for each particular session in order to
make the system harder to crack. The Encrypter class uses the Apache Commons
Codec classes and javax.security.MessageDigest classes to generate a hex-
encoded MD5 value. The full class listing is available in the downloadable code
that accompanies this book. The principle of deriving a hex-encoded MD5 in Java
is shown here:

MessageDigest digest=MessageDigest.getInstance("MD5");
byte[] data=privKey.getBytes();
digest.update(data);
byte[] raw=digest.digest(pubKey.getBytes());
byte[] b64=Base64.encodeBase64(raw);
return new String(b64);

where privKey and pubKey are the private and public keys, respectively. To
configure this filter to review all URLs under the path /Ajax/data, we can
add the following filter definition to the web.xml configuration file for our
web application:

Listing 7.7 HTTP header-checking filter

Configure header
name

b Get header value

c Compare header value
Licensed to jonathan zheng <yiyisjun@gmail.com>

276 CHAPTER 7
Security and Ajax
<filter id='securityFilter_1'>
 <filter-name>HeaderChecker</filter-name>
 <filter-class>
 com.manning.ajaxinaction.web.SecretHeaderSecurityFilter
 </filter-class>
 <init-param id='securityFilter_1_param_1'>
 <param-name>rejectUrl</param-name>
 <param-value>/error/reject.do</param-value>
 </init-param>
 <init-param id='securityFilter_1_param_2'>
 <param-name>headerName</param-name>
 <param-value>secret-password</param-value>
 </init-param>
</filter>

This configures the filter to forward rejected requests to the URL /error/reject.do,
after checking the value of HTTP header “secret-password.” To complete the
configuration, we define a filter mapping to match this filter to everything under
a specific path:

<filter-mapping>
 <filter-name>HeaderChecker</filter-name>
 <url-pattern>/ajax/data/*</url-pattern>
</filter-mapping>

On the client side, the client can generate Base64 MD5 digests using Paul John-
ston’s libraries (which we discussed earlier in this chapter). To add the required
HTTP header on our Ajax client, we use the setRequestHeader() method, as out-
lined here:

function loadXml(url){
 var req=null;
 if (window.XMLHttpRequest){
 req=new XMLHttpRequest();
 } else if (window.ActiveXObject){
 req=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if (req){
 req.onreadystatechange=onReadyState;
 req.open('GET',url,true);
 req.setRequestHeader('secret-password',getEncryptedKey());
 req.send(params);
 }
}

where the encryption function is simply defined as the Base64 MD5 digest of a
given string:
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 277
var key="password";
function getEncryptedKey(){
 return b64_md5(key);
}

This solution still requires us to initially communicate the variable key to the Ajax
client. We might send the key for the session over HTTPS when the user logs into
the application. In reality, the key would be something random, not a string as
simple as “password” of course.

 The strength of this particular solution is that the HTTP header information
can’t be modified from a standard hyperlink or HTML form. Requiring the
hacker to use a programmatic HTTP client will stop the less determined ones, at
least. Of course, as the use of XMLHttpRequest becomes more prevalent, the
knowledge of how to craft HTTP headers within web page requests will spread.
Programmatic HTTP clients such as Apache’s HTTPClient and Perl LWP::User-
Agent have been able to do this for a long time.

 Ultimately, filters and similar mechanisms can’t make it impossible for exter-
nal agents to get into your site, but they can make it more difficult. Like any other
developer, evil hackers have limited resources and time on their hands, and by
securing your application in the various ways we have outlined above, you cer-
tainly discourage casual interference with your data services.

 This concludes our discussion of security for Ajax applications. There are sev-
eral aspects to securing an Ajax application that we haven’t covered here, because
they are largely the same as for a classic web application. A good authentication
and authorization mechanism helps to control access to services based on roles
and responsibilities. Standard HTTP headers can be used to verify the origin of
callers, making it harder (but not impossible) to invoke the services outside the
official channels. We recommend consulting the literature on web-based security
for those of you with a deeper interest in securing your Ajax applications.

 Finally, remember that security isn’t an absolute state. Nothing is ever com-
pletely secure. The best that you can hope for is to be one step ahead of any
intruders. Using HTTPS where relevant, minimizing exposure of your web-
based API, and judiciously using HTTP request checking are all good steps in
that direction.

7.5 Summary

In this chapter, we discussed security implications of using Ajax. We concen-
trated on security issues that were different for Ajax than for conventional web
Licensed to jonathan zheng <yiyisjun@gmail.com>

278 CHAPTER 7
Security and Ajax
applications. First, we looked at the sandbox governing the use of JavaScript
within the web browser and the rules that prevent code from different sources
from interacting with each other. We saw how to relax the server of origin policy,
with the user’s consent, in order to access third-party Internet services such as
the Google API.

 Second, we looked at ways of protecting data as it passes between the client
and the server. HTTPS is the recommended industry-strength solution here, but
we also presented a simple Ajax-based way of transmitting passwords securely
over plain-text HTTP. Finally, we saw how Ajax has a specific vulnerability owing
to the way raw data is provided for consumption from the server. Having evalu-
ated this as a serious threat in some cases, we looked at ways of designing the
server architecture to minimize exposure to such risks. We also described ways of
programming the server to make external access to data more difficult.

 The issues that we’ve tackled in this chapter should help you to tighten up
your Ajax applications for use in the real world. In the next chapter, we continue
the theme of grim realities with a look at performance issues.

7.6 Resources

Keys for the Google web service APIs may be obtained at http://www.google.com/
apis/.

 The JavaScript MD5 libraries of Paul Johnston can be found at http://
pajhome.org.uk/crypt/md5/md5src.html. For those wanting a quick taste of MD5,
visit the online checksum generator at www.fileformat.info/tool/hash.htm?text=
ajax+in+action.

 The Apache Commons Codec library for Java, which we used to generate our
Base64-MD5 on the server, can be downloaded at http://jakarta.apache.org/com-
mons/codec/.

 In section 7.1, we looked at signing JAR files to create secure applications for
Mozilla browsers. The official word on that can be found at www.mozilla.org/
projects/security/components/signed-scripts.html. You’ll find some background
information on the Battleship game at http://gamesmuseum.uwaterloo.ca/vex-
hibit/Whitehill/Battleship/.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Performance

This chapter covers
■ Profiling Ajax applications
■ Managing memory footprints
■ Using design patterns for consistent

performance
■ Handling browser-specific performance issues
279

Licensed to jonathan zheng <yiyisjun@gmail.com>

280 CHAPTER 8
Performance
In the previous three chapters, we have built up our understanding of how Ajax
applications can be made robust and reliable—able to withstand real-life usage
patterns and changes in requirements. Design patterns help us to keep our code
organized, and the principle of separation of concerns keeps the coupling in our
code low enough to allow us to respond quickly to changes without breaking things.

 Of course, to make our application really useful, it also has to be able to func-
tion at a reasonable speed and without bringing the rest of our user’s computer
to a grinding halt. So far, we’ve been operating in a high-tech Shangri-la in
which our user’s workstations have infinite resources and web browsers know how
to make use of them effectively. In this chapter, we’ll descend to the grubby side
streets of the real world and look at the issue of performance. We’ll be taking our
idealistic refactoring and design patterns with us. Even down here, they can pro-
vide a vocabulary—and valuable insights—into performance issues that we
might encounter.

8.1 What is performance?

The performance of a computer program hinges on two factors: how fast it can run
and how much of the system resources (most crucially, memory and CPU load) it
takes up. A program that is too slow is frustrating to work with for most tasks. In a
modern multitasking operating system, a program that makes the rest of a user’s
activities grind to a halt is doubly frustrating. These are both relative issues.
There is no fixed point at which execution speed or CPU usage becomes accept-
able, and perception is important here, too. As programmers, we like to focus on
the logic of our applications. Performance is a necessary evil that we need to keep
an eye on. If we don’t, our users will certainly remind us.

 Like chess, computer languages offer self-contained worlds that operate by a
well-specified set of rules. Within that set of rules, everything is properly defined
and fully explicable. There is a certain allure to this comfortable clockwork world,
and as programmers, we can be tempted to believe that the self-contained rules
fully describe the system that we’re working on to earn our daily bread. Modern
trends in computer languages toward virtual machines reinforce this notion that
we can write code to the spec and ignore the underlying metal.

 This is completely understandable—and quite wrong. Modern operating sys-
tems and software are far too complicated to be understood in this mathemati-
cally pure way, and web browsers are no exception. To write code that can actually
perform on a real machine, we need to be able to look beyond the shiny veneer of
the W3C DOM spec or the ECMA-262 specification for JavaScript and come to
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 281
grips with the grim realities and compromises built into the browsers that we
know and love. If we don’t acknowledge these lower layers of the software stack,
things can start to go wrong.

 If our application takes several seconds to respond to a button being clicked or
several minutes to process a form, then we are in trouble, however elegant the
design of the system. Similarly, if our application needs to grab 20MB of system
memory every time we ask it what the time is and lets go of only 15MB, then our
potential users will quickly discard it.

 JavaScript is (rightly) not known for being a fast language, and it won’t per-
form mathematical calculations with the rapidity of hand-tuned C. JavaScript
objects are not light either, and DOM elements in particular take up a lot of mem-
ory. Web browser implementations too tend to be a little rough around the edges
in many cases and prone to memory leaks of their own.

 Performance of JavaScript code is especially important to Ajax developers
because we are boldly going where no web programmer has gone before. The
amount of JavaScript that a full-blown Ajax application needs is significantly
more than a traditional web application would use. Further, our JavaScript objects
may be longer lived than is usual in a classic web app, because we don’t refresh
the entire page often, if at all.

 In the following two sections, we’ll pursue the two pillars of performance,
namely, execution speed and memory footprint. Finally, we’ll round out this chapter
with a case study that demonstrates the importance of naming and understanding
the patterns that a developer uses when working with Ajax and with the DOM.

8.2 JavaScript execution speed

We live in a world that values speed, in which things have to get finished yester-
day. (If you don’t live in such a world, drop me a postcard, or better still, an immi-
gration form.) Fast code is at a competitive advantage to slower code, provided
that it does the job, of course. As developers of code, we should take an interest in
how fast our code runs and how to improve it.

 As a general rule, a program will execute at the speed of its slowest subsystem.
We can time how fast our entire program runs, but having a number at the end of
that won’t tell us very much. It’s much more useful if we can also time individual
subsystems. The business of measuring the execution speed of code in detail is
generally known as profiling. The process of creating good code, like creating
good art, is never finished but just stops in interesting places. (Bad code, on the
other hand, often just stops in interesting places.) We can always squeeze a little
Licensed to jonathan zheng <yiyisjun@gmail.com>

282 CHAPTER 8
Performance
more speed out of our code by optimizing. The limiting factor is usually our time
rather than our skill or ingenuity. With the help of a good profiler to identify the
bottlenecks in our code, we can determine where to concentrate our efforts to get
the best results. If, on the other hand, we try to optimize our code while writing it,
the results can be mixed. Performance bottlenecks are rarely where one would
expect them to be.

 In this section, we will examine several ways of timing application code, and
we’ll build a simple profiling tool in JavaScript, as well as examine a real profiler
in action. We’ll then go on to look at a few simple programs and run them
through the profiler to see how best to optimize them.

8.2.1 Timing your application the hard way

The simplest tool for measuring time that we have at our disposal is the system
clock, which JavaScript exposes to us through the Date object. If we instantiate a
Date object with no arguments, then it tells us the current time. If one Date is sub-
tracted from another, it will give us the difference in milliseconds. Listing 8.1
summarizes our use of the Date object to time events.

function myTimeConsumingFunction(){
 var beginning=new Date();
 ...
 //do something interesting and time-consuming!
 ...
 var ending=new Date();
 var duration=ending-beginning;
 alert("this function took "+duration
 +"ms to do something interesting!");
}

We define a date at each end of the block of code that we want to measure, in this
case our function, and then calculate the duration as the difference between the
two. In this example, we used an alert() statement to notify us of the timing, but
this will work only in the simplest of cases without interrupting the workflow that
we are trying to measure. The usual approach to gathering this sort of data is to
write it to a log file, but the JavaScript security model prevents us from accessing
the local filesystem. The best approach available to an Ajax application is to store
profiling data in memory as a series of objects, which we later render as DOM
nodes to create a report.

Listing 8.1 Timing code with the Date object
Licensed to jonathan zheng <yiyisjun@gmail.com>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp

JavaScript execution speed 283
 Note that we want our profiling code to be as fast and simple as possible while
the program is running, to avoid interfering with the system that we are trying to
measure. Writing a variable to memory is much quicker than creating extra DOM
nodes during the middle of the program flow.

 Listing 8.2 defines a simple stopwatch library that we can use to profile our
code. Profiling data is stored in memory while the test program runs and ren-
dered as a report afterward.

var stopwatch=new Object();
stopwatch.watches=new Array();

stopwatch.getWatch=function(id,startNow){
 var watch=stopwatch.watches[id];
 if (!watch){
 watch=new stopwatch.StopWatch(id);
 }
 if (startNow){
 watch.start();
 }
 return watch;
}

stopwatch.StopWatch=function(id){
 this.id=id;
 stopwatch.watches[id]=this;
 this.events=new Array();
 this.objViewSpec=[
 {name: "count", type: "simple"},
 {name: "total", type: "simple"},
 {name: "events", type: "array", inline:true}
];
}
stopwatch.StopWatch.prototype.start=function(){
 this.current=new TimedEvent();
}
stopwatch.StopWatch.prototype.stop=function(){
 if (this.current){
 this.current.stop();
 this.events.append(this.current);
 this.count++;
 this.total+=this.current.duration;
 this.current=null;
 }
}

stopwatch.TimedEvent=function(){
 this.start=new Date();

Listing 8.2 stopwatch.js

Array of registered timers

Entry point for client code

Stopwatch object constructor

Timed event object constructor
Licensed to jonathan zheng <yiyisjun@gmail.com>

284 CHAPTER 8
Performance
 this.objViewSpec=[
 {name: "start", type: "simple"},
 {name: "duration", type: "simple"}
];
}
stopwatch.TimedEvent.prototype.stop=function(){
 var stop=new Date();
 this.duration=stop-this.start;
}

stopwatch.report=function(div){
 var realDiv=xGetElementById(div);
 var report=new objviewer.ObjectViewer(stopwatch.watches,realDiv);
}

Our stopwatch system is composed of one or more categories, each of which can
time one active event at a time and maintain a list of previous timed events. When
client code calls stopwatch.start() with a given ID as argument, the system will
create a new StopWatch object for that category or else reuse the existing one.
The client code can then start() and stop() the watch several times. On each
call to stop(), a TimedEvent object is generated, noting the start time and dura-
tion of that timed event. If a stopwatch is started multiple times without being
stopped in between, all but the latest call to start() will be discarded.

 This results in an object graph of StopWatch categories, each containing a his-
tory of timed events, as illustrated in figure 8.1.

Profile report generator

Stopwatch
(singleton)

Category

Event
Watches 0...n

Events 0...n

+ id : String

+ start : Date
+ duration : Number

Figure 8.1 Object graph of stopwatch library classes. Each category is
represented by an object that contains a history of events for that category.
All categories are accessible from the stopwatch.watches singleton.
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 285
 When data has been gathered, the entire object graph can be queried and
visualized. The render() function here makes use of the ObjectViewer library that
we encountered in chapter 5 to automatically render a report. We leave it as an
exercise to the reader to output the data in CSV format for cutting and pasting
into a file.

 Listing 8.3 shows how to apply the stopwatch code to our example “time con-
suming” function.

function myTimeConsumingFunction(){
 var watch=stopwatch.getWatch("my time consuming function",true);
 ...
 //do something interesting and time-consuming!
 ...
 watch.stop();
}

The stopwatch code can now be added relatively unobtrusively into our code. We
can define as few or as many categories as we like, for different purposes. In this
case, we named the category after the function name.

 Before we move on, let’s apply this to a working example. A suitable candidate
is the mousemat example that we used in chapter 4 when discussing the Observer
pattern and JavaScript events. The example has two processes watching mouse
movements over the main mousemat DOM element. One writes the current coor-
dinates to the browser status bar, and the other plots the mouse cursor position in
a small thumbnail element. Both are providing us with useful information, but
they involve some processing overhead, too. We might wonder which is taking up
the most processor time.

 Using our stopwatch library, we can easily add profiling capabilities to the
example. Listing 8.4 shows us the modified page, with a new DIV element to hold
the profiler report and a few stopwatch JavaScript methods sprinkled across the
blocks of code that we are interested in.

<html>

<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<link rel='stylesheet' type='text/css' href='objviewer.css' />
<script type='text/javascript' src='x/x_core.js'></script>

Listing 8.3 Timing code with the stopwatch library

Listing 8.4 mousemat.html with profiling
Licensed to jonathan zheng <yiyisjun@gmail.com>

286 CHAPTER 8
Performance
<script type='text/javascript' src='extras-array.js'></script>
<script type='text/javascript' src='styling.js'></script>
<script type='text/javascript' src='objviewer.js'></script>
<script type='text/javascript' src='stopwatch.js'></script>
<script type='text/javascript' src='eventRouter.js'></script>
<script type='text/javascript'>

var cursor=null;

window.onload=function(){
 var watch=stopwatch.getWatch("window onload",true);
 var mat=document.getElementById('mousemat');
 cursor=document.getElementById('cursor');

 var mouseRouter=new jsEvent.EventRouter(mat,"onmousemove");
 mouseRouter.addListener(writeStatus);
 mouseRouter.addListener(drawThumbnail);
 watch.stop();
}

function writeStatus(e){
 var watch=stopwatch.getWatch("write status",true);
 window.status=e.clientX+","+e.clientY;
 watch.stop();
}

function drawThumbnail(e){
 var watch=stopwatch.getWatch("draw thumbnail",true);
 cursor.style.left=((e.clientX/5)-2)+"px";
 cursor.style.top=((e.clientY/5)-2)+"px";
 watch.stop();
}
</script>
</head>

<body>
<div>
profile
</div>

<div>
 <div class='mousemat' id='mousemat'></div>
 <div class='thumbnail' id='thumbnail'>
 <div class='cursor' id='cursor'></div>
 </div>
 <div class='profiler objViewBorder' id='profiler'></div>
</div>

</body>
</html>
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 287
 We define three stopwatches: for the window.onload event and for each mouse
listener process. We assign meaningful names to the stopwatches, as these will be
used by the report that we generate. Let’s load the modified application, then,
and give it a quick spin.

 When we mouse over the mousemat as before, our profiler is busy collecting
data, which we can examine at any point by clicking the profile link in the top left.
Figure 8.2 shows the application in the browser after a few hundred mouse moves,
with the profiler report showing.

 On both Firefox and Internet Explorer browsers we can see that in this case,
the write status method takes less than one quarter the time of the draw thumb-
nail method.

 Note that the window.onload event appears to have executed in 0 ms, owing to
the limited granularity of the JavaScript Date object. With this profiling system,
we’re working entirely within the JavaScript interpreter, with all of the limitations
that apply there. Mozilla browsers can take advantage of a native profiler built
into the browser. Let’s look at that next.

Figure 8.2 Mousemat example from chapter 4 with the JavaScript profiler running and generating
a report on the active stopwatches. We have chosen to profile the window.onload event, the
drawing of the thumbnail cursor in response to mouse movement, and the updating of the status
bar with the mouse coordinates. count indicates the number of recordings made of each code
block, and total the time spent in that block of code.
Licensed to jonathan zheng <yiyisjun@gmail.com>

288 CHAPTER 8
Performance
8.2.2 Using the Venkman profiler

The Mozilla family of browsers enjoys a rich set of plug-in extensions. One of the
older, more established ones is the Venkman debugger, which can be used to step
through JavaScript code line by line. We discuss Venkman’s debugging features in
appendix A. For now, though, let’s look at one of its lesser-known capabilities, as a
code profiler.

 To profile code in Venkman, simply open the page that you’re interested in,
and then open the debugger from the browser’s Tools menu. (This assumes that
you have the Venkman extension installed. If you don’t yet, see appendix A.) On
the toolbar there is a clock button labeled Profile (figure 8.3). Clicking this button
adds a green tick to the icon.

 Venkman is now meticulously recording all that goes on in the JavaScript
engine of your browser, so drag the mouse around the mousemat area for a few
seconds, and then click the Profile button in the debugger again to stop profiling.
From the debugger Window menu, select the Profile > Save Profile Data As
option. Data can be saved in a number of formats, including CSV (for spread-
sheets), an HTML report, or an XML file.

Figure 8.3 Venkman debugger for Mozilla with the Profile button checked, indicating that time
spent executing all loaded scripts (as shown in the panel on the top left) is being recorded.
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 289
Unfortunately, Venkman tends to generate rather too much data and lists various
chrome:// URLs first. These are internal parts of the browser or plug-ins that are
implemented in JavaScript, and we can ignore them. In addition to the main
methods of the HTML page, all functions in all JavaScript libraries that we are
using—including the stopwatch.js profiler that we developed in the previous sec-
tion—have been recorded. Figure 8.4 shows the relevant section of the HTML
report for the main HTML page.

 Venkman generates results that broadly agree with the timings of our own
stopwatch object—rewriting the status bar takes roughly one third as long as
updating the thumbnail element.

 Venkman is a useful profiling tool and it can generate a lot of data without us
having to modify our code at all. If you need to profile code running across dif-
ferent browsers, then our stopwatch library can help you out. In the following
section, we’ll look at a few example pieces of code that demonstrate some refac-
torings that can be applied to code to help speed it up. We’ll make use of our
stopwatch library to measure the benefits.

8.2.3 Optimizing execution speed for Ajax

Optimization of code is a black art. Programming JavaScript for web browsers is
often a hit-or-miss affair. It stands to reason, therefore, that optimizing Ajax code
is a decidedly murky topic. A substantial body of folklore surrounds this topic,
and much of what is said is good. With the profiling library that we developed in
section 8.2.1, however, we can put our skeptic’s hat on and put the folklore to the
test. In this section, we’ll look at three common strategies for improving execu-
tion speed and see how they bear out in practice.

Figure 8.4 Fragment of the HTML profile report generated by Venkman showing the number
of calls and total, minimum, maximum, and average time for each method that listens to the
mouse movements over the mousemat DOM element in our example page.
Licensed to jonathan zheng <yiyisjun@gmail.com>

290 CHAPTER 8
Performance
Optimizing a for loop
The first example that we’ll look at is a fairly common programming mistake. It
isn’t limited to JavaScript but is certainly easy to make when writing Ajax code.
Our example calculation does a long, pointless calculation, simply to take up suf-
ficient time for us to measure a real difference. The calculation that we have cho-
sen here is the Fibonacci sequence, in which each successive number is the sum of
the previous two numbers. If we start off the sequence with two 1s, for example,
we get

 1, 1, 2, 3, 5, 8, ...

Our JavaScript calculation of the Fibonacci sequence is as follows:

function fibonacci(count){
 var a=1;
 var b=1;
 for(var i=0;i<count;i++){
 var total=a+b;
 a=b;
 b=total;
 }
 return b;
}

Our only interest in the sequence is that it takes a little while to compute. Now,
let’s suppose that we want to calculate all the Fibonacci sequence values from 1 to
n and add them together. Here’s a bit of code to do that:

 var total=0;
 for (var i=0;i<fibonacci(count);i++){
 total+=i;
 }

This is a pointless calculation to make, by the way, but in real-world programs
you’ll frequently come across a similar situation, in which you need to check a
value that is hard to compute within each iteration of a loop. The code above is
inefficient, because it computes fibonacci(count) with each iteration, despite the
fact that the value will be the same every time. The syntax of the for loop makes it
less than obvious, allowing this type of error to slip into code all too easily. We
could rewrite the code to calculate fibonacci() only once:

 var total=0;
 var loopCounter=fibonacci(count);
 for (var i=0;i<loopCounter;i++){
 total+=i;
 }
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 291
So, we’ve optimized our code. But by how much? If this is part of a large com-
plex body of code, we need to know whether our efforts have been worthwhile.
To find out, we can include both versions of the code in a web page along with
our profiling library and attach a stopwatch to each function. Listing 8.5 shows
how this is done.

<html>

<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<link rel='stylesheet' type='text/css' href='objviewer.css' />
<script type='text/javascript' src='x/x_core.js'></script>
<script type='text/javascript' src='extras-array.js'></script>
<script type='text/javascript' src='styling.js'></script>
<script type='text/javascript' src='objviewer.js'></script>
<script type='text/javascript' src='stopwatch.js'></script>
<script type='text/javascript' src='eventRouter.js'></script>
<script type='text/javascript'>

function slowLoop(count){
 var watch=stopwatch.getWatch("slow loop",true);
 var total=0;
 for (var i=0;i<fibonacci(count);i++){
 total+=i;
 }
 watch.stop();
 alert(total);
}

function fastLoop(count){
 var watch=stopwatch.getWatch("fast loop",true);
 var total=0;
 var loopCounter=fibonacci(count);
 for (var i=0;i<loopCounter;i++){
 total+=i;
 }
 watch.stop();
 alert(total);
}

function fibonacci(count){
 var a=1;
 var b=1;
 for(var i=0;i<count;i++){
 var total=a+b;
 a=b;
 b=total;
 }

Listing 8.5 Profiling a for loop

Recompute loop counter every time

Compute loop counter once only

Compute Fibonacci sequence
Licensed to jonathan zheng <yiyisjun@gmail.com>

292 CHAPTER 8
Performance
 return b;
}

function go(isFast){
 var count=parseInt(document.getElementById("count").value);
 if (count==NaN){
 alert("please enter a valid number");
 }else if (isFast){
 fastLoop(count);
 }else{
 slowLoop(count);
 }
}

</script>
</head>

<body>
<div>
profile
<input id='count' value='25'/>
fast loop
slow loop
</div>

<div>
 <div class='profiler objViewBorder' id='profiler'></div>
</div>

</body>
</html>

The functions slowLoop() and fastLoop() present our two versions of the algo-
rithm and are wrapped by the go() function, which will invoke one or the other
with a given counter value. The page provides hyperlinks to execute each version
of the loop, passing in a counter value from an adjacent HTML forms textbox. We
found a value of 25 to give a reasonable computation time on our testing
machine. A third hyperlink will render the profiling report. Table 8.1 shows the
results of a simple test.

Table 8.1 Profiling results for loop optimization

Algorithm Execution Time (ms)

Original 3085

Optimized 450
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 293
From this, we can see that taking the lengthy calculation out of the for loop really
does have an impact in this case. Of course, in your own code, it might not. If in
doubt, profile it!

 The next example looks at an Ajax-specific issue: the creation of DOM nodes.

Attaching DOM nodes to a document
To render something in a browser window using Ajax, we generally create DOM
nodes and then append them to the document tree, either to document.body or to
some other node hanging off it. As soon as it makes contact with the document, a
DOM node will render. There is no way of suppressing this feature.

 Re-rendering the document in the browser window requires various layout
parameters to be recalculated and is potentially expensive. If we are assembling a
complex user interface, it therefore makes sense to create all the nodes and add
them to each other and then add the assembled structure to the document. This
way, the page layout process occurs once. Let’s look at a simple example of creat-
ing a container element in which we randomly place lots of little DOM nodes. In
our description of this example, we referred to the container node first, so it
seems natural to create that first. Here’s a first cut at this code:

 var container=document.createElement("div");
 container.className='mousemat';
 var outermost=document.getElementById('top');
 outermost.appendChild(container);
 for(var i=0;i<count;i++){
 var node=document.createElement('div');
 node.className='cursor';
 node.style.position='absolute';
 node.style.left=(4+parseInt(Math.random()*492))+"px";
 node.style.top=(4+parseInt(Math.random()*492))+"px";
 container.appendChild(node);
 }

The element outermost is an existing DOM element, to which we attach our con-
tainer, and the little nodes inside that. Because we append the container first and
then fill it up, we are going to modify the entire document count+1 times! A
quick bit of reworking can correct this for us:

 var container=document.createElement("div");
 container.className='mousemat';
 var outermost=document.getElementById('top');
 for(var i=0;i<count;i++){
 var node=document.createElement('div');
 node.className='cursor';
 node.style.position='absolute';
 node.style.left=(4+parseInt(Math.random()*492))+"px";
Licensed to jonathan zheng <yiyisjun@gmail.com>

294 CHAPTER 8
Performance
 node.style.top=(4+parseInt(Math.random()*492))+"px";
 container.appendChild(node);
 }
 outermost.appendChild(container);

In fact, we had to move only one line of code to reduce this to a single modifica-
tion of the existing document. Listing 8.6 shows the full code for a test page that
compares these two versions of the function using our stopwatch library.

<html>

<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<link rel='stylesheet' type='text/css' href='objviewer.css' />
<script type='text/javascript' src='x/x_core.js'></script>
<script type='text/javascript' src='extras-array.js'></script>
<script type='text/javascript' src='styling.js'></script>
<script type='text/javascript' src='objviewer.js'></script>
<script type='text/javascript' src='stopwatch.js'></script>
<script type='text/javascript' src='eventRouter.js'></script>
<script type='text/javascript'>

var cursor=null;

function slowNodes(count){
 var watch=stopwatch.getWatch("slow nodes",true);
 var container=document.createElement("div");
 container.className='mousemat';
 var outermost=document.getElementById('top');
 outermost.appendChild(container);
 for(var i=0;i<count;i++){
 var node=document.createElement('div');
 node.className='cursor';
 node.style.position='absolute';
 node.style.left=(4+parseInt(Math.random()*492))+"px";
 node.style.top=(4+parseInt(Math.random()*492))+"px";
 container.appendChild(node);
 }
 watch.stop();
}

function fastNodes(count){
 var watch=stopwatch.getWatch("fast nodes",true);
 var container=document.createElement("div");
 container.className='mousemat';
 var outermost=document.getElementById('top');
 for(var i=0;i<count;i++){
 var node=document.createElement('div');

Listing 8.6 Profiling DOM node creation

Append empty container at start
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 295
 node.className='cursor';
 node.style.position='absolute';
 node.style.left=(4+parseInt(Math.random()*492))+"px";
 node.style.top=(4+parseInt(Math.random()*492))+"px";
 container.appendChild(node);
 }
 outermost.appendChild(container);
 watch.stop();
}

function go(isFast){
 var count=parseInt(document.getElementById("count").value);
 if (count==NaN){
 alert("please enter a valid number");
 }else if (isFast){
 fastNodes(count);
 }else{
 slowNodes(count);
 }
}

</script>
</head>

<body>
<div>
profile
<input id='count' value='640'/>
fast loop
slow loop
</div>

<div id='top'>
 <div class='mousemat' id='mousemat'></div>
 <div class='profiler objViewBorder' id='profiler'></div>
</div>

</body>
</html>

Again, we have a hyperlink to invoke both the fast and the slow function, using
the value in an HTML form field as the argument. In this case, it specifies how
many little DOM nodes to add to the container. We found 640 to be a reasonable
value. The results of a simple test are presented in table 8.2.

Append full container at end
Licensed to jonathan zheng <yiyisjun@gmail.com>

296 CHAPTER 8
Performance
Again, the optimization based on received wisdom does make a difference. With
our profiler, we can see how much of a difference it is making. In this particular
case, we took almost one third off the execution time. In a different layout, with
different types of nodes, the numbers may differ. (Note that our example used
only absolutely positioned nodes, which require less work by the layout engine.)
The profiler is easy to insert into your code, in order to find out.

 Our final example looks at a JavaScript language feature and undertakes a
comparison between different subsystems to find the bottleneck.

Minimizing dot notation
In JavaScript, as with many languages, we can refer to variables deep in a com-
plex hierarchy of objects by “joining the dots.” For example:

 myGrandFather.clock.hands.minute

refers to the minute hand of my grandfather’s clock. Let’s say we want to refer to
all three hands on the clock. We could write

 var hourHand=myGrandFather.clock.hands.hour;
 var minuteHand=myGrandFather.clock.hands.minute;
 var secondHand=myGrandFather.clock.hands.second;

Every time the interpreter encounters a dot character, it will look up the child
variable against the parent. In total here, we have made nine such lookups, many
of which are repeats. Let’s rewrite the example:

 var hands=myGrandFather.clock.hands;
 var hourHand=hands.hour;
 var minuteHand=hands.minute;
 var secondHand=hands.second;

Now we have only five lookups being made, saving the interpreter from a bit of
repetitive work. In a compiled language such as Java or C#, the compiler will
often optimize these repetitions automatically for us. I don’t know whether Java-
Script interpreters can do this (and on which browsers), but I can use the stop-
watch library to find out if I ought to be worrying about it.

Table 8.2 Profiling results for DOM node creation

Algorithm Number of Page Layouts Execution Time (ms)

Original 641 681

Optimized 1 461
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 297
 The example program for this section computes the gravitational attraction
between two bodies, called earth and moon. Each body is assigned a number of
physical properties such as mass, position, velocity, and acceleration, from which
the gravitational forces can be calculated. To give our dot notation a good testing,
these properties are stored as a complex object graph, like so:

var earth={
 physics:{
 mass:10,
 pos:{ x:250,y:250 },
 vel:{ x:0, y:0 },
 acc:{ x:0, y:0 }
 }
};

The top-level object, physics, is arguably unnecessary, but it will serve to increase
the number of dots to resolve.

 The application runs in two stages. First, it computes a simulation for a given
number of timesteps, calculating distances, gravitational forces, accelerations,
and other such things that we haven’t looked at since high school. It stores the
position data at each timestep in an array, along with a running estimate of the
minimum and maximum positions of either body.

 In the second phase, we use this data to plot the trajectories of the two bodies
using DOM nodes, taking the minimum and maximum data to scale the canvas
appropriately. In a real application, it would probably be more common to plot
the data as the simulation progresses, but I’ve separated the two here to allow the
calculation phase and rendering phase to be profiled separately.

 Once again, we define two versions of the code, an inefficient one and an
optimized one. In the inefficient code, we’ve gone out of our way to use as many
dots as possible. Here’s a section (don’t worry too much about what the equa-
tions mean!):

 var grav=(earth.physics.mass*moon.physics.mass)
 /(dist*dist*gravF);
 var xGrav=grav*(distX/dist);
 var yGrav=grav*(distY/dist);

 moon.physics.acc.x=-xGrav/(moon.physics.mass);
 moon.physics.acc.y=-yGrav/(moon.physics.mass);
 moon.physics.vel.x+=moon.physics.acc.x;
 moon.physics.vel.y+=moon.physics.acc.y;
 moon.physics.pos.x+=moon.physics.vel.x;
 moon.physics.pos.y+=moon.physics.vel.y;
Licensed to jonathan zheng <yiyisjun@gmail.com>

298 CHAPTER 8
Performance
This is something of a caricature—we’ve deliberately used as many deep refer-
ences down the object graphs as possible, making for verbose and slow code.
There is certainly plenty of room for improvement! Here’s the same code from
the optimized version:

 var mp=moon.physics;
 var mpa=mp.acc;
 var mpv=mp.vel;
 var mpp=mp.pos;
 var mpm=mp.mass;

...

 var grav=(epm*mpm)/(dist*dist*gravF);
 var xGrav=grav*(distX/dist);
 var yGrav=grav*(distY/dist);

 mpa.x=-xGrav/(mpm);
 mpa.y=-yGrav/(mpm);
 mpv.x+=mpa.x;
 mpv.y+=mpa.y;
 mpp.x+=mpv.x;
 mpp.y+=mpv.y;

We’ve simply resolved all the necessary references at the start of the calculation as
local variables. This makes the code more readable and, more important, reduces
the work that the interpreter needs to do. Listing 8.7 shows the code for the com-
plete web page that allows the two algorithms to be profiled side by side.

<html>

<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<link rel='stylesheet' type='text/css' href='objviewer.css' />
<script type='text/javascript' src='x/x_core.js'></script>
<script type='text/javascript' src='extras-array.js'></script>
<script type='text/javascript' src='styling.js'></script>
<script type='text/javascript' src='objviewer.js'></script>
<script type='text/javascript' src='stopwatch.js'></script>
<script type='text/javascript' src='eventRouter.js'></script>
<script type='text/javascript'>

var moon={
 physics:{
 mass:1,
 pos:{ x:120,y:80 },
 vel:{ x:-24, y:420 },

Listing 8.7 Profiling variable resolution

Initialize planetary bodies
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 299
 acc:{ x:0, y:0 }
 }
};
var earth={
 physics:{
 mass:10,
 pos:{ x:250,y:250 },
 vel:{ x:0, y:0 },
 acc:{ x:0, y:0 }
 }
};

var gravF=100000;

function showOrbit(count,isFast){
 var data=(isFast) ?
 fastData(count) :
 slowData(count);
 var watch=stopwatch.getWatch("render",true);
 var canvas=document.
 getElementById('canvas');
 var dx=data.max.x-data.min.x;
 var dy=data.max.y-data.min.y;
 var sx=(dx==0) ? 1 : 500/dx;
 var sy=(dy==0) ? 1 : 500/dy;
 var offx=data.min.x*sx;
 var offy=data.min.y*sy;
 for (var i=0;i<data.path.length;i+=10){
 var datum=data.path[i];
 var dpm=datum.moon;
 var dpe=datum.earth;

 var moonDiv=document.createElement("div");
 moonDiv.className='cursor';
 moonDiv.style.position='absolute';
 moonDiv.style.left=parseInt((dpm.x*sx)-offx)+"px";
 moonDiv.style.top=parseInt((dpm.x*sx)-offy)+"px";
 canvas.appendChild(moonDiv);

 var earthDiv=document.createElement("div");
 earthDiv.className='cursor';
 earthDiv.style.position='absolute';
 earthDiv.style.left=parseInt((dpe.x*sx)-offx)+"px";
 earthDiv.style.top=parseInt((dpe.x*sx)-offy)+"px";
 canvas.appendChild(earthDiv);
 }
 watch.stop();
}

function slowData(count){
 var watch=stopwatch.getWatch("slow orbit",true);

Initialize planetary bodies

b Select
calculation
type

c Render orbit

d Use dot notation a lot
Licensed to jonathan zheng <yiyisjun@gmail.com>

300 CHAPTER 8
Performance
 var data={
 min:{x:0,y:0},
 max:{x:0,y:0},
 path:[]
 };
 ...

 }
 watch.stop();
 return data;
}

function fastData(count){
 var watch=stopwatch.getWatch("fast orbit",true);
 var data={
 min:{x:0,y:0},
 max:{x:0,y:0},
 path:[]
 };
 ...

 }
 watch.stop();
 return data;
}

function go(isFast){
 var count=parseInt(document.getElementById("count").value);
 if (count==NaN){
 alert("please enter a valid number");
 }else{
 showOrbit(count,isFast);
 }
}

</script>
</head>

<body>
<div>
profile
<input id='count' value='640'/>
fast loop
slow loop
</div>

<div id='top'>
 <div class='mousemat' id='canvas'>
</div>
 <div class='profiler objViewBorder' id='profiler'></div>
</div>

e Use dot notation sparingly
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript execution speed 301
</body>
</html>

The structure should be broadly familiar by now. The functions slowData() d
and fastData() e contain the two versions of our calculation phase, which gen-
erates the data structures b. I’ve omitted the full algorithms from the listing
here, as they take up a lot of space. The differences in style are described in the
snippets we presented earlier and the full listings are available in the downloada-
ble sample code that accompanies the book. Each calculation function has a stop-
Watch object assigned to it, profiling the entire calculation step. These functions
are called by the showOrbit() function, which takes the data and then creates a
DOM representation of the calculated trajectories c. This has also been profiled
by a third stopwatch.

 The user interface elements are the same as for the previous two examples,
with hyperlinks to run the fast and the slow calculations, passing in the text input
box value as a parameter. In this case, it indicates the number of timesteps for
which to run the simulation. A third hyperlink displays the profile data. Table 8.3
shows the results from a simple run of the default 640 iterations.

Once again, we can see that the optimizations yield a significant increase, knock-
ing more than one-third from the execution time. We can conclude that the folk
wisdom regarding variable resolution and the use of too many dots is correct. It’s
reassuring to have checked it out for ourselves.

 However, when we look at the entire pipeline of calculation and rendering, the
optimization takes 760 ms, as opposed to the original’s 796 ms—a savings closer
to 5 percent than 40 percent. The rendering subsystem, not the calculation sub-
system, is the bottleneck in the application, and we can conclude that, in this case,
optimizing the calculation code is not going to yield great returns.

 This demonstrates the broader value of profiling your code. It is one thing to
know that a piece of code can be optimized in a particular way and another to

Table 8.3 Profiling results for variable resolution

Algorithm Execution Time (ms)

Original calculation 94

Optimized calculation 57

Rendering (average) 702
Licensed to jonathan zheng <yiyisjun@gmail.com>

302 CHAPTER 8
Performance
know what the expected returns of such an operation would be. It might be
tempting to conclude that DOM operations are roughly eight times more costly
than pure JavaScript calculations, but that holds true only for this specific exam-
ple. You may well find that to be the case in many situations, but a rule of thumb
is best supplemented by a few measurements—and preferably on a range of dif-
ferent machines and browsers.

 We won’t spend more time now on profiling and execution speed. The exam-
ples that we have run through should give you a feel for the benefits that profil-
ing can provide on your Ajax projects. Let’s assume that your code is running at
a satisfactory speed thanks to a bit of profiling. To ensure adequate performance,
you still need to look at the amount of memory that your application is using.
We’ll explore memory footprints in the next section.

8.3 JavaScript memory footprint

The purpose of this section is to introduce the topic of memory management in
Ajax programming. Some of the ideas are applicable to any programming lan-
guage; others are peculiar to Ajax and even to specific web browsers.

 A running application is allocated memory by the operating system. Ideally, it
will request enough to do its job efficiently, and then hand back what it doesn’t
need. A poorly written application may either consume a lot of memory unneces-
sarily while running, or fail to return memory when it has finished. We refer to
the amount of memory that a program is using as its memory footprint.

 As we move from coding simple, transient web pages to Ajax rich clients, the
quality of our memory management can have a big impact on the responsiveness
and stability of our application. Using a patterns-based approach can help by
producing regular, maintainable code in which potential memory leaks are easily
spotted and avoided.

 First, let’s examine the concept of memory management in general.

8.3.1 Avoiding memory leaks

Any program can “leak” memory (that is, claim system memory and then fail to
release it when finished), and the allocation and deallocation of memory are a
major concern to developers using unmanaged languages such as C. Java-
Script is a memory-managed language, in which a garbage-collection process
automatically handles the allocation and deallocation of memory for the pro-
grammer. This takes care of many of the problems that can plague unmanaged
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript memory footprint 303
code, but it is a fallacy to assume that memory-managed languages can’t gener-
ate memory leaks.

 Garbage-collection processes attempt to infer when an unused variable may be
safely collected, typically by assessing whether the program is able to reach that
variable through the network of references between variables. When a variable is
deemed unreachable, it will be marked as ready for collection, and the associated
memory will be released in the next sweep of the collector (which may be at any
arbitrary point in the future). Creating a memory leak in a managed language is
as simple as forgetting to dereference a variable once we have finished with it.

 Let’s consider a simple example, in which we define an object model that
describes household pets and their owners. First let’s look at the owner, described
by the object Person:

function Person(name){
 this.name=name;
 this.pets=new Array();
}

A person may have one or more pets. When a person acquires a pet, he tells the
pet that he now owns it:

Person.prototype.addPet=function(pet){
 this.pets[pet.name]=pet;
 if (pet.assignOwner){
 pet.assignOwner(this);
 }
}

Similarly, when a person removes a pet from his list of pets, he tells the pet that he
no longer owns it:

this.removePet(petName)=function{
 var orphan=this.pets[petName];
 this.pets[petName]=null;
 if (orphan.unassignOwner){
 orphan.unassignOwner(this);
 }
}

The person knows at any given time who his pets are and can manage the list of
pets using the supplied addPet() and removePet() methods. The owner informs
the pet when it becomes owned or disowned, on the assumption that each pet
adheres to a contract (in JavaScript, we can leave this contract as implicit and
check for adherence to the contract at runtime).
Licensed to jonathan zheng <yiyisjun@gmail.com>

304 CHAPTER 8
Performance
 Pets come in several shapes and sizes. Here we define two: a cat and a dog.
They differ in the attitude that they take toward being owned, with a cat pay-
ing no attention to whom it is owned by, whereas a dog will attach itself to a
given owner for life. (I apologize to the animal world for gross generalization
at this point!)

 So our definition of the pet cat might look like this:

function Cat(name){
 this.name=name;
}
Cat.prototype.assignOwner=function(person){
}
Cat.prototype.unassignOwner=function(person){
}

The cat isn’t interested in being owned or disowned, so it provides empty imple-
mentations of the contractual methods.

 We can define a dog, on the other hand, that slavishly remembers who its
owner is, by continuing to hold a reference to its master after it has been dis-
owned (some dogs are like that!):

function Dog(name){
 this.name=name;
}
Dog.prototype.assignOwner=function(person){
 this.owner=person;
}
Dog.prototype.unassignOwner=function(person){
 this.owner=person;
}

Both Cat and Dog objects are badly behaved implementations of Pet. They stick
to the letter of the contract of being a pet, but they don’t follow its spirit. In a Java
or C# implementation, we would explicitly define a Pet interface, but that
wouldn’t stop implementations from breaching the spirit of the contract. In the
real world of coding, object modelers spend a lot of time worrying about badly
behaved implementations of their interfaces, trying to close off any loopholes
that might be exploited.

 Let’s play with the object model a bit. In the script below, we create three
objects:

1 jim, a Person
2 whiskers, a Cat
3 fido, a Dog
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript memory footprint 305
First, we instantiate a Person (step 1):

var jim=new Person("jim");

Next, we give that person a pet cat (step 2). Whiskers is instantiated inline in the
call to addPet(), and so that particular reference to the cat persists only as long as
the method call. However, jim also makes a reference to whiskers, who will be
reachable for as long as jim is, that is, until we delete him at the end of the script:

 jim.addPet(new Cat("whiskers"));

Let’s give jim a pet dog, too (step 3). Fido is given a slight edge over whiskers in
being declared as a global variable, too:

 var fido=new Dog("fido");
 jim.addPet(fido);

One day, Jim gets rid of his cat (step 4):

 jim.removePet("whiskers");

Later, he gets rid of his dog, too (step 5). Maybe he’s emigrating?

 jim.removePet("fido");

We lose interest in jim and release our reference on him (step 6):

 jim=null;

Finally, we release our reference on fido, too (step 7):

 fido=null;

Between steps 6 and 7, we may believe that we have gotten rid of jim by declaring
him to be null. In fact, he is still referenced by fido and so is still reachable by our
code as fido.owner. The garbage collector can’t touch him, leaving him lurking
on the JavaScript engine’s heap, taking up precious memory. Only in step 7,
when fido is declared null, does Jim become unreachable, and our memory can
be released.

 In our simple script, this a small and temporary problem, but it serves to
illustrate that seemingly arbitrary decisions affect the garbage-collection pro-
cess. Fido may not be deleted directly after jim and, if he had the ability to
remember more than one previous owner, might consign entire legions of Per-
son objects to a shadow life on the heap before being destroyed. If we had cho-
sen to declare fido inline and the cat as a global, we wouldn’t have had any such
problem. To assess the seriousness of fido’s behavior, we need to ask ourselves
the following questions:
Licensed to jonathan zheng <yiyisjun@gmail.com>

306 CHAPTER 8
Performance
1 How much memory might he consume in terms of references to other-
wise deleted objects? We know that our simple fido can remember only
one Person at a time, but even so, that Person might have a reference to
500 otherwise-unreachable pet cats, so the extra memory consumption
might be arbitrarily large.

2 How long will the extra memory be held? In our simple script here, the
answer is “not very long,” but we might later add extra steps in between
deleting jim and deleting fido. Further, JavaScript tends toward event-
driven programming, and so, if the deletion of jim and of fido takes
place in separate event handlers, we can’t predict a hard answer, not even
a probabilistic one without performing some sort of use-case analysis.

Neither question is quite as easy to answer as it might seem. The best that we can
do is to keep these sorts of questions in mind as we write and modify our code and
to conduct tests to see if we’re right in our assumptions. We need to think about
the usage patterns of our application while we code, not solely as an afterthought.

 This covers the general principles of memory management. There are spe-
cific issues to be aware of in an Ajax application, so let’s address them next.

8.3.2 Special considerations for Ajax

So far, we’ve covered some ground that is common to the memory management
of most programming languages. Properly understanding concepts such as foot-
print and reachability are important when developing Ajax applications, but
there are also issues that are specific to Ajax. With Ajax, we are operating in a
managed environment, in a container that has exposed some of its native func-
tionality and locked us out of others. This changes the picture somewhat.

 In chapter 4, our Ajax application was divided into three notional subsystems:
the Model, View, and Controller. The Model is usually composed of pure Java-
Script objects that we have defined and instantiated ourselves. The View is com-
posed largely of DOM nodes, which are native objects exposed to the JavaScript
environment by the browser. The Controller glues the two together. It is in this
layer that we need to pay special attention to memory management.

Breaking cyclic references
In section 4.3.1, we introduced a commonly used pattern for event handling,
in which we attach domain model objects (that is, parts of the Model sub-
system) to DOM nodes (that is, part of the View). Let’s recap on the example
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript memory footprint 307
that we presented. Here is a constructor for a domain model object represent-
ing a pushbutton:

function Button(value,domEl){
 this.domEl=domEl;
 this.value=value;
 this.domEl.buttonObj=this;
 this.domEl.onclick=this.clickHandler;
}

Note that a two-way reference between the DOM element domEl and the
domain object itself is created. Below, the event-handler function referenced
in the constructor:

Button.prototype.clickHandler=function(event){
 var buttonObj=this.buttonObj;
 var value=(buttonObj && buttonObj.value) ?
 buttonObj.value : "unknown value";
 alert(value);
}

Remember that the event-handler function will be called with the DOM node, not
the Button object, as its context. We need a reference from the View to the Model
in order to interact with the Model tier. In this case, we read its value property. In
other cases where we have used this pattern in this book, we have invoked func-
tions on the domain objects.

 The domain model object of type Button will be reachable as long as any other
reachable object has a reference to it. Similarly, the DOM element will remain
reachable as long as any other reachable element refers to it. In the case of DOM
elements, an element is always reachable if it is attached to the main document
tree, even if no programmatic references are held to it. Thus, unless we explicitly
break the link between the DOM element and the Button object, the Button can’t
be garbage-collected as long as the DOM element is still part of the document.

 When scripted domain model objects interact with the Document Object
Model, it is possible to create a local JavaScript object that remains reachable via
the DOM rather than through any global variables we have defined. To ensure
that objects aren’t kept from garbage collection unnecessarily by we can write sim-
ple clean-up functions (a step back toward C++ object destructors in many ways,
although we need to invoke them manually). For the Button object, we could
write the following:

Button.prototype.cleanUp=function(){
 this.domEl.buttonObj=null;
 this.domEl=null;
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

308 CHAPTER 8
Performance
The first line removes the reference that the DOM node has on this object. The
second line removes this object’s reference to the DOM node. It doesn’t destroy
the node but simply resets this local reference to the node to a null value. The
DOM node was passed to our object as a constructor argument in this case, so it
isn’t our responsibility to dispose of it. In other cases, though, we do have that
responsibility, so let’s see how to handle it.

Disposing of DOM elements
When working with Ajax, and with large domain models in particular, it is com-
mon practice to construct new DOM nodes and interact with the document tree
programmatically, rather than just via HTML declarations when the page first
loads. Our ObjectViewer from chapters 4 and 5 and the notifications framework
in chapter 6, for example, both contained several domain model objects capable
of rendering themselves by creating additional DOM elements and attaching
them to a part of the main document. With this great power comes great respon-
sibility, and, for each node created programmatically, good housekeeping rules
dictate that we are obliged to see to its disposal programmatically as well.

 Neither the W3C DOM nor the popular browser implementations provide a
way of destroying a DOM node outright once it has been created. The best we can
do in destroying a created DOM node is to detach it from the document tree and
hope that the garbage-collection mechanism in the browser will find it.

 Let’s look at a straightforward example. The following script demonstrates a
simple pop-up message box that uses the DOM to find itself using document.get-
ElementById() when being closed:

function Message(txt, timeout){
 var box=document.createElement("div");
 box.id="messagebox";
 box.classname="messagebox";
 var txtNode=document.createTextNode(txt);
 box.appendChild(txtNode);
 setTimeout("removeBox('messagebox')",timeout);
}

function removeBox(id){
 var box=document.getElementById(id);
 if (box){
 box.style.display='none';
 }
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript memory footprint 309
When we call Message(), a visible message box is created, and a JavaScript timer is
set to call another function that removes the message after a given time.

 The variables box and txtNode are both created locally and go out of scope as
soon as the function Message() has exited, but the document nodes that are cre-
ated will still be reachable, because they have been attached to the DOM tree.

 The removeBox() function handles the job of making the created DOM node
go away when we're done with it. We have several possible options for doing this,
from a technical standpoint. In the example above, we removed the box simply by
hiding it from view. It will still occupy memory when invisible, but if we are plan-
ning on redisplaying it soon, that won’t be a problem.

 Alternatively, we could alter our remove() method to dislocate the DOM nodes
from the main document and hope that the garbage collector spots them before
too long. Again, though, we don’t actually destroy the variable, and the duration
of its stay in memory is outside our control.

function removeBox(id){
 var box=document.getElementById(id);
 if (box && box.parentNode){
 box.parentNode.removeChild(box);
 }
}

We can discern two patterns for GUI element removal here, which we will refer to
as Remove By Hiding and Remove By Detachment. The Message object here has no
event handlers—it simply appears and disappears at its own speed. If we link the
domain model and DOM nodes in both directions, as we did for our Button
object, we would need to explicitly invoke the cleanUp() function if we were using
a Remove By Detachment pattern.

 Both approaches have their advantages and disadvantages. The main decid-
ing factor for us is to ask whether we are going to reuse the DOM node at a later
date. In the case of a general-purpose message box the answer is probably “yes,”
and we would opt for removal by hiding. In the case of a more specific use, such as
a node in a complex tree widget, it is usually simpler to destroy the node when
finished with it than to try to keep lots of references to dormant nodes.

 If we choose to use Remove By Hiding, we can adopt a complementary
approach of reusing DOM nodes. Here, we modify the message-creation function
to first check for an existing node and create a new one only if necessary. We
could rewrite our Message object constructor to accommodate this:

function Message(txt, timeout){
 var box=document.geElementById("messagebox");
 var txtNode=document.createTextNode(txt);
Licensed to jonathan zheng <yiyisjun@gmail.com>

310 CHAPTER 8
Performance
 if (box==null){
 box=document.createElement("div");
 box.id="messagebox";
 box.classname="messagebox";
 box.style.display='block';
 box.appendChild(txtNode);
 }else{
 var oldTxtNode=box.firstChild;
 box.replaceChild(txtNode,oldTxtNode);
 }
 setTimeout("removeBox('messagebox')",timeout);
}

We can now contrast two patterns for GUI element creation, which we will refer to
as Create Always (our original example) and Create If Not Exists (the modified ver-
sion above). Because the ID that we check for is hard-coded, only one Message
can be shown at a time (and that is probably appropriate here). Where we have
attached a domain model object to a reusable DOM node, that domain object can
be used to fetch the initial reference to the DOM node, allowing Create If Not
Exists to coexist with multiple instances of an object.

NOTE When writing an Ajax application, then, it is important to be aware of
memory-management issues regarding DOM elements, as well as con-
ventional variables that we create ourselves. We also need to take account
of the managed nature of DOM elements and treat their disposal differ-
ently. When mixing DOM nodes and ordinary variables, the use of clean-
up code is advised, to break cyclic references.

In the following section, we’ll look at further considerations that the Ajax pro-
grammer needs to take into account when working with Internet Explorer.

Further special considerations for Internet Explorer
Each web browser implements its own garbage collector, and some work differ-
ently than others. The exact mechanisms of the Internet Explorer browser gar-
bage collection are not well understood, but, according to the consensus of the
comp.lang.JavaScript newsgroup, it has specific difficulties with releasing vari-
ables where a circular reference exists between DOM elements and ordinary Java-
Script objects. It has been suggested that manually severing such links would be a
good idea.

 To describe this by example, the following code defines a circular reference:

function MyObject(id){
 this.id=id;
 this.front=document.createElement("div");
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing for performance 311
 this.front.backingObj=this;
}

MyObject is a user-defined type. Every instance will refer to a DOM node as
this.front, and the DOM node will refer back to the JavaScript object as
this.backingObj.

 To remove this circular reference while finalizing the object, we might offer a
method such as this:

 MyObject.prototype.finalize=function(){
 this.front.backingObj=null;
 this.front=null;
 }

By setting both references to null, we break the circular reference.
 Alternatively, a DOM tree could be cleaned up in a generic fashion, by walking

the DOM tree and eliminating references on the basis of name, type, or whatever.
Richard Cornford has suggested such a function, specifically for dealing with
event handler functions attached to DOM elements (see the Resources section at
the end of this chapter).

 My feeling is that generic approaches such as this should be used only as a
last resort, as they may scale poorly to the large document trees typified by Ajax
rich clients. A structured pattern-based approach to the codebase should enable
the programmer to keep track of the specific cases where cleanup is required.

 A second point worth noting for IE is that a top-level “undocumented” func-
tion called CollectGarbage() is available. Under IE v6, this function exists and
can be called but seems to be an empty stub. We have never seen it make a differ-
ence to reported memory in the Task Manager.

 Now that we understand the issues of memory management, let’s explore
the practicalities of measuring it and applying those measurements to a real-
life application.

8.4 Designing for performance

We stated at the outset that performance consisted of both good execution speed
and a controllable memory footprint. We also said that design patterns could
help us to achieve these goals.

 In this section, we’ll see how to measure memory footprint in real applica-
tions, and we’ll use a simple example to show how the use of design patterns
can help us to understand the fluctuations in memory footprint that we may see
in working code.
Licensed to jonathan zheng <yiyisjun@gmail.com>

312 CHAPTER 8
Performance
8.4.1 Measuring memory footprint

When we measured execution speed, we could do so either in JavaScript code
using the Date object or with an external tool. JavaScript doesn’t provide any
built-in capabilities to read system memory usage, so we’re dependent on exter-
nal tools. Fortunately, we have several to choose from.

 There are a variety of ways to see how much memory your browser is consum-
ing during execution of your application. The simplest way to do so is to use a sys-
tem utility appropriate to your operating system to see the underlying processes.
On Windows systems, there is the Task Manager, and UNIX systems have the con-
sole-based top command. Let’s look at each of these in turn.

Windows Task Manager
The Windows Task Manager (figure 8.5) is available on many versions of Windows
(Windows 95 and 98 users are out of luck here). It provides a view of all processes
running in the operating system and their resource use. It can usually be invoked

Figure 8.5 Windows Task Manager showing running processes and their
memory usage. Processes are being sorted by memory usage, in
descending order.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing for performance 313
from the menu presented to the user when she presses the Ctrl+Alt+Delete key
combination. The Task Manager interface has several tabs. We are interested in
the tab labeled Processes.

 The highlighted row shows that Firefox is currently using around 38MB of
memory on our machine. In its default state, the Mem Usage column provides
information on active memory usage by the application. On some versions of
Windows, the user can add extra columns using the View > Select Columns menu
(figure 8.6).

 Showing the Virtual Memory Size of a process as well as Memory Usage can be
useful. Memory Usage represents active memory assigned to an application,
whereas Virtual Memory Size represents inactive memory that has been written
to the swap partition or file. When a Windows application is minimized, the Mem
Usage will typically drop considerably, but VM Size will stay more or less flat,

Figure 8.6 Selecting additional columns to view in the Task Manager’s
Processes tab. Virtual Memory Size shows the total amount of memory allocated
to the process.
Licensed to jonathan zheng <yiyisjun@gmail.com>

314 CHAPTER 8
Performance
indicating that the application still has an option to consume real system
resources in the future.

UNIX top
A console-based application for UNIX systems (including Mac OS X), top shows a
very similar view of processes to the Windows Task Manager (figure 8.7).

 As with Task Manager, each line represents an active process, with columns
showing memory and CPU usage and other statistics. The top application is
driven by keyboard commands, which are documented in the man or info pages
and on the Internet. Space precludes a fuller tutorial on top here, or an explora-
tion of the GUI equivalents such as the GNOME System Manager that may be
present on some UNIX/Linux systems.

Power tools
Beyond these basic tools, various “power tools” are available for tracking memory
usage, offering finer-grained views of the operating system’s internal state. We
can’t do justice to the full range of these tools, but here are brief pointers to a cou-
ple of freeware tools that we have found useful.

Figure 8.7 UNIX top command running inside a console, showing memory and CPU
usage by process.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing for performance 315
 First, Sysinternal.com’s Process Explorer tool (figure 8.8) is perhaps best
described as a “task manager on steroids.” It fulfills the same role as Task Man-
ager but allows for detailed drilldown into the memory footprint and proces-
sor use of individual processes, allowing us to target Internet Explorer or
Firefox specifically.

 Second, J. G. Webber has developed Drip (see the Resources section), a simple
but powerful memory management reporter for Internet Explorer that directly
queries an embedded web browser about its known DOM nodes, including those
that are no longer attached to the document tree (figure 8.9).

 However, even with the basic tools, we can discover a lot about the state of a
running Ajax application.

Figure 8.8 Process Explorer provides detailed reporting on memory and processor
usage on a per-process basis, allowing for more accurate tracking of the browser’s
footprint on a Windows machine. This window is tracking an instance of Mozilla Firefox
running the stress test described in section 8.4.2.
Licensed to jonathan zheng <yiyisjun@gmail.com>

316 CHAPTER 8
Performance
So far, we’ve looked at individual patterns and idioms for handling perfor-
mance issues in small sections of code. When we write an Ajax application of
even moderate size, the various patterns and idioms in each subsystem can
interact with each other in surprising ways. The following section describes a
case study that illustrates the importance of understanding how patterns com-
bine with one another.

8.4.2 A simple example

In our discussion thus far, we have covered the theory of memory management
and described a few patterns that might help us when programmatically creating
interface elements. In a real-world Ajax application, we will employ several pat-
terns, which will interact with one another. Individual patterns have impacts on
performance, but so do the interactions between patterns. It is here that having
access to a common vocabulary to describe what your code is doing becomes very
valuable. The best way to illustrate this principle is by example, so in this section
we introduce a simple one and present the performance impact of varying the
combination of patterns that it uses.

 In the simple test program, we can repeatedly create and destroy small Click-
Box widgets, so called because they are little boxes that the user can click on with

Figure 8.9 The Drip tool allows detailed queries on the internal state of Internet Explorer’s
DOM tree.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing for performance 317
the mouse. The widgets themselves have a limited behavior, described by the fol-
lowing code:

function ClickBox(container){

 this.x=5+Math.floor(Math.random()*370);
 this.y=5+Math.floor(Math.random()*370);
 this.id="box"+container.boxes.length;
 this.state=0;
 this.render();
 container.add(this);
}

ClickBox.prototype.render=function(){
 this.body=null;
 if (this.body==null){
 this.body=document.createElement("div");
 this.body.id=this.id;
 }
 this.body.className='box1';
 this.body.style.left=this.x+"px";
 this.body.style.top=this.y+"px";
 this.body.onclick=function(){
 var clickbox=this.backingObj;
 clickbox.incrementState();
 }
}

ClickBox.prototype.incrementState=function(){
 if (this.state==0){
 this.body.className='box2';
 }else if (this.state==1){

 this.hide();
 }
 this.state++;
}

ClickBox.prototype.hide=function(){
 var bod=this.body;
 bod.className='box3';
}

When first rendered, the ClickBoxes are red in appearance. Click on them once,
and they turn blue. A second click removes them from view. This behavior is
implemented by creating two-way references between the domain model object
and the DOM element that represents it onscreen, as discussed earlier.

 Programmatically, each ClickBox consists of a unique ID, a position, a record
of its internal state (that is, how many clicks it has received), and a body. The body
Licensed to jonathan zheng <yiyisjun@gmail.com>

318 CHAPTER 8
Performance
is a DOM node of type DIV. The DOM node retains a reference to the backing
object in a variable called backingObj.

 A Container class is also defined that houses ClickBox objects and maintains
an array of them, as well as a unique ID of its own:

function Container(id){
 this.id=id;
 this.body=document.getElementById(id);
 this.boxes=new Array();
}

Container.prototype.add=function(box){
 this.boxes[this.boxes.length]=box;
 this.body.appendChild(box.body);
}

Container.prototype.clear=function(){
 for(var i=0;i<this.boxes.length;i++){
 this.boxes[i].hide();
 }
 this.boxes=new Array();
 report("clear");
 newDOMs=0;
 reusedDOMs=0;
}

A screenshot of the application is shown in figure 8.10.

Figure 8.10 Our memory management demo application, after creation of the first 100 widgets.
The user has just clicked one of the widgets with the mouse.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing for performance 319
The debug panel on the right reports on the internal state of the system after var-
ious user events, such as adding or removing widgets from the container.

 The code has been written to allow us to swap in different patterns for creation
and destruction of DOM elements and cyclic references while the application is
running. The user may choose between these at runtime by checking and
unchecking HTML form elements on the page. When the links that add or
remove boxes from the container are activated, the combination of patterns that
is used to implement the user interface will match the state of the checkboxes.
Let’s examine each of these options and the corresponding code.

Reuse DOM Nodes checkbox
Checking this option will determine whether the ClickBox widget will try to find
an existing DOM node when creating itself and create a new one only as a last
resort. This allows the application to switch between the Create Always and Cre-
ate If Not Exists patterns that we discussed in section 8.3.2. The modified render-
ing code follows:

ClickBox.prototype.render=function(){
 this.body=null;
 if (reuseDOM){
 this.body=document.getElementById(this.id);
 }
 if (this.body==null){
 this.body=document.createElement("div");
 this.body.id=this.id;
 newDOMs++;
 }else{
 reusedDOMs++;
 }
 this.body.backingObj=this;
 this.body.className='box1';
 this.body.style.left=this.x+"px";
 this.body.style.top=this.y+"px";
 this.body.onclick=function(){
 var clickbox=this.backingObj;
 clickbox.incrementState();
 }
}

Unlink On Hide checkbox
When a ClickBox is removed from the container (either by a second click or by
calling Container.clear()), this switch will determine whether it uses the Remove
By Hiding or Remove By Detachment pattern (see section 8.3.2):

ClickBox.prototype.hide=function(){
 var bod=this.body;
Licensed to jonathan zheng <yiyisjun@gmail.com>

320 CHAPTER 8
Performance
 bod.className='box3';
 if (unlinkOnHide){
 bod.parentNode.removeChild(bod);
 }
 ...
}

Break Cyclic References checkbox
When removing a ClickBox widget, this toggle determines whether the refer-
ences between the DOM element and the backing object are reset to null or not,
using the Break Cyclic References pattern in an attempt to appease the Internet
Explorer garbage collector:

ClickBox.prototype.hide=function(){
 var bod=this.body;
 bod.className='box3';
 if (unlinkOnHide){
 bod.parentNode.removeChild(bod);
 }
 if (breakCyclics){
 bod.backingObj=null;
 this.body=null;
 }
}

Form controls allow the user to add ClickBoxes to the container and to clear the
container. The application may be driven manually, but for the purposes of gath-
ering results here, we have also written a stress-testing function that simulates sev-
eral manual actions. This function runs an automatic sequence of actions, in
which the following sequence is repeated 240 times:

1 Add 100 widgets to the container, using the populate() function.

2 Add another 100 widgets.

3 Clear the container.

The code for the stressTest function is provided here:
function stressTest(){

 for (var i=0;i<240;i++){
 populate (100);
 populate(100);
 container.clear();
 }
 alert("done");
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

Designing for performance 321
Note that the functionality being tested here relates to the addition and removal
of nodes from the container element, not to the behavior of individual Click-
Boxes when clicked.

 This test is deliberately simple. We encourage you to develop similar stress
tests for your own applications, if only to allow you to see whether memory usage
goes up or down when changes are made. Designing the test script will be an art
in itself, requiring an understanding of typical usage patterns and possibly of
more than one type of usage pattern.

 Running the stress test takes over a minute, during which time the browser
doesn’t respond to user input. If the number of iterations is increased, the
browser may crash. If too few iterations are employed, the change in memory
footprint may not be noticeable. We found 240 iterations to be a suitable value for
the machine on which we were testing; your mileage may vary considerably.

 Recording the change in memory footprint was a relatively primitive business.
We ran the tests on the Windows operating system, keeping the Task Manager
open. We noted the memory consumption of iexplore.exe directly after loading
the test page and then again after the alert box appeared, indicating that the test
had completed. top or a similar tool could be used for testing on UNIX (see sec-
tion 8.4.1). We closed down the browser completely after each run, to kill off any
leaked memory, ensuring that each run started from the same baseline.

 That’s the methodology, then. In the following section, we’ll see the results of
performing these tests.

8.4.3 Results: how to reduce memory footprint 150-fold

Running the stress test we just described under various combinations of patterns
yielded radically different values of memory consumption, as reported by the
Windows Task Manager. These are summarized in table 8.4.

Table 8.4 Benchmark results for ClickBox example code

ID Reuse DOM Nodes Unlink On Hide Break Cyclic Refs Final Memory Use (IE)

A N N N 166MB

B N N Y 84.5MB

C N Y N 428MB

D Y N N 14.9MB

E Y N Y 14.6MB

continued on next page
Licensed to jonathan zheng <yiyisjun@gmail.com>

322 CHAPTER 8
Performance
The results in table 8.4 were recorded for the stress test on a fairly unremarkable
workstation (2.8GHz processor, 1GB of RAM) for Internet Explorer v6 on Win-
dows 2000 Workstation under various permutations of patterns. Initial memory
use was approximately 11.5MB in all cases. All memory uses reported are the
Mem Usage column of the Processes tab of the Task Manager application (see
section 8.4.1).

 Since we’re confronting real numbers for the first time, the first thing to note
is that the application consumes quite a bit of memory. Ajax is often described as
a thin client solution, but an Ajax app is capable of hogging a lot of memory if we
make the right combination of coding mistakes!

 The second important point about the results is that the choice of design pat-
terns has a drastic effect on memory. Let’s look at the results in detail. Three of
our combinations consume less than 15MB of RAM after rendering and unrender-
ing all the ClickBox widgets. The remaining combinations climb upward through
80MB, 160MB, to a staggering 430MB and 580MB at the top end. Given that the
browser was consuming 11.5MB of memory, the size of additional memory con-
sumed has varied from 3.5MB to 570MB—that’s a difference of over 150 times,
simply by modifying the combination of design patterns that we used. It’s
remarkable that the browser continued to function at all with this amount of
memory leaking from it.

 No particular pattern can be identified as the culprit. The interaction between
design patterns is quite complex. Comparing runs A, D, and F, for example,
switching on the Reuse DOM pattern resulted in a huge decrease in memory
usage (over 90 percent), but switching on Unlink On Hide at the same time gen-
erated a threefold increase! In this particular case, the reason is understand-
able—because the DOM nodes have been unlinked, they can’t be found by a call
to document.getElementById() in order to be reused. Similarly, switching on
Unlink On Hide by itself increased memory usage against the base case (compar-
ing runs C to A). Before we discount Unlink On Hide as a memory hog, look at
runs E and G—in the right context, it does make a small positive difference.

 Interestingly, there is no single clear winner, with three quite different combi-
nations all resulting in only a small increase in memory. All three of these reuse

F Y Y N 574MB

G Y Y Y 14.2MB

Table 8.4 Benchmark results for ClickBox example code (continued)

ID Reuse DOM Nodes Unlink On Hide Break Cyclic Refs Final Memory Use (IE)
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 323
DOM nodes, but so does the combination that results in the highest memory
increase. We can’t draw a simple conclusion from this exercise, but we can identify
sets of patterns that work well together and other sets that don’t. If we understand
these patterns and have names for them, then it is much easier to apply them
consistently throughout an application and achieve reliable performance. If we
weren’t using a fixed set of patterns but coding each subsystem’s DOM lifecycle in
an ad hoc fashion, each new piece of code would be a gamble that might intro-
duce a large memory leak or might not.

 This benchmarking exercise has provided an overview of the issues involved in
developing a DHTML rich client that plays well with your web browser for
extended periods of time, and it identified places where errors may occur, both in
general and in some of the patterns discussed elsewhere in this book.

 To really stay on top of memory issues, you must give them a place in your
development methodology. Always ask yourself what the effect on memory usage
will be as you introduce changes to your code, and always test for memory usage
during implementation of the change.

 Adopting a pattern-based approach to your codebase will help here, as similar
memory issues will crop up repeatedly with the same patterns. We know, for
example, that backing objects create cyclic references between DOM and non-
DOM nodes, and that Remove By Detachment patterns interfere with Create If
Not Exists patterns. If we use patterns consciously in our designs, we are less
likely to run into these sorts of problems.

 It can help to write and maintain automated test scripts and benchmark your
changes against them. Writing the test scripts is probably the hardest part of this,
as it involves knowledge of how users use your application. It may be that your
app will have several types of user, in which case you would do well to develop sev-
eral test scripts rather than a single average that fails to represent anyone. As with
any kind of tests, they shouldn’t be seen as set in stone once written but should be
actively maintained as your project evolves.

8.5 Summary

Performance of any computer program is a combination of execution speed and
resource footprint. With Ajax applications, we’re working within a highly man-
aged environment, far removed from the operating system and the hardware,
but we still have the opportunity to affect performance greatly, based on the way
we code.
Licensed to jonathan zheng <yiyisjun@gmail.com>

324 CHAPTER 8
Performance
 We introduced the practice of profiling, both by using JavaScript libraries and
using a native profiler tool such as the Venkman debugger. Profiling helps us to
understand where the bottlenecks in our system are, and it also can be used to
provide a baseline against which we can measure change. By comparing profiler
results before and after a code change, we can assess its impact on the overall exe-
cution speed of our application.

 We also looked at the issue of memory management and showed how to avoid
introducing memory leaks into our code, either through generic bad practices or
by running afoul of specific issues with the DOM or Internet Explorer. We saw how
to measure memory consumption using the tools available to Windows and UNIX
operating systems.

 Finally, our benchmark example showed the real impact that attention to
these details can have on our code. The role of design patterns was crucial in
identifying where the great divergence in memory footprint lay and how to man-
age it.

 Performance is an elusive goal—there is always room for a little more optimi-
zation—and we have to adopt a pragmatic approach to getting “good enough”
performance from our Ajax apps. This chapter should have provided you with
the tools needed to do just that.

8.6 Resources

We looked at a few useful development tools in this chapter.

■ Drip, the Internet Explorer leak detector was created by Joel Webber. His
blog, http://jgwebber.blogspot.com/2005/05/drip-ie-leak-detector.html, is
no longer available, but Drip can currently be found at www.outofhan-
well.com/ieleak/.

■ Venkman Profiler: www.svendtofte.com/code/learning_venkman/advanced.
php#profiling

■ Process Explorer: www.sysinternals.com

The official line on Internet Explorer leakiness, and some workarounds, is pre-
sented here: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
IETechCol/dnwebgen/ie_leak_patterns.asp. Richard Cornford’s suggested solu-
tion can be found on Google Groups by searching for “cornford javascript fix-
CircleRefs()”—the full URL is too long to print out here.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Part 4

Ajax by example

The five complete Ajax projects in this section demonstrate the full pro-
cess of building compelling interactive elements for your web applications. In
each case, we’ve developed a straightforward example, step by step, so you
can see how it works. We’ve then refactored the code so that the example can
be dropped into your own projects easily. The examples cover the full spec-
trum of what Ajax can do, from enhancing form elements to developing com-
plete portal solutions, communicating to both your own server-side processes
and to standard Internet services. We’ve deliberately chosen a mixture of
popular server-side programming languages in which to implement the
server-side code, so you’ll find a medley of PHP, Java, VB.Net and C# in this
section. The downloadable code available from the website will contain multi-
ple implementations of the sever-side back-end for each chapter. Have fun!
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

Dynamic double combo

This chapter covers
■ The client-side JavaScript
■ The server side in VB .NET
■ Data exchange format
■ Refactoring into a reusable component
■ Dynamic select boxes
327

Licensed to jonathan zheng <yiyisjun@gmail.com>

328 CHAPTER 9
Dynamic double combo
If you have ever shopped for a new shirt online, you may have run into the fol-
lowing problem. You pick the shirt size from one drop-down list, and from the
next drop-down list you select the color. You then submit the form and get the
message in giant red letters: “Sorry, that item is not in stock.” Frustration sets in
as you have to hit the back button or click a link to select a new color.

 With Ajax we can eliminate that frustration. We can link the selection lists
together, and when our user selects the size option from the first list, all of the
available colors for that shirt can be populated to the second list directly from the
database—without the user having to refresh the whole page. People have been
linking two or more selection lists together to perform this action with either
hard-coded JavaScript arrays or server-side postbacks, but now with Ajax we have
a better way.

9.1 A double-combo script

In a double-combination linked list, the contents of one selection list are depen-
dent on another selection list’s selected option. When the user selects a value
from the first list, all of the items in the second list update dynamically. This func-
tionality is typically called a double-combo script.

 There are two traditional solutions for implementing the dynamic filling of
the second selection list: one is implemented on the client and the other on the
server. Let’s review how they work in order to understand the concepts behind
these strategies and the concerns developers have with them.

9.1.1 Limitations of a client-side solution

The first option a developer traditionally had was to use a client-side-only solu-
tion. It uses a JavaScript method in which the values for the selection lists are
hard-coded into JavaScript arrays on the web page. As soon as you pick a shirt
size, the script seamlessly fills in the next selection list by selecting the values from
the array. This solution is shown in figure 9.1.

 One problem with this client-side method is that, because it does not commu-
nicate with the server, it lacks the ability to grab up-to-date data at the moment
the user’s first selection is made. Another problem is the initial page-loading
time, which scales poorly as the number of possible options in the two lists grows.
Imagine a store with a thousand items; values for each item would have to be
placed in a JavaScript array. Since the code to represent this array would be part
of the page’s content, the user might face a long wait when first loading the page.
There is no efficient way to transmit all of that information to the client up-front.
Licensed to jonathan zheng <yiyisjun@gmail.com>

A double-combo script 329
On the other hand, the JavaScript method has one benefit: after the initial load
time, it is fast. There is no major lag between selecting an option from the first
selection list and the second list being populated. So this method is only usable if
you have just a few double-combination options that will not impact the page-
loading time significantly.

9.1.2 Limitations of a server-side solution

The next traditional solution is the submission of a form back to the server, which
is known as a page postback. In this method, the onchange event handler in the first
selection list triggers a postback to the server, via the submit() method of the
form’s JavaScript representation. This submits the form to the server, transmit-
ting the user’s choice from the first select element. The server, in turn, queries a
database based on the value that the user selected, and dynamically fills in the
new values for the second list, as it re-renders the page. You can see the process of
the server-side method in figure 9.2.

 A drawback to the server-side method is the number of round-trips to the
server; each time the page is reloaded, there is a time delay, since the entire page

Request
page

Page
rendering

Server

JavaScript
Add options

Handles request

Browser
Figure 9.1
The client-side solution

Request
page

Page
rendering

Server

JavaScript
postback

Handles request

Browser

Build select and
rebuild document

Page
rendering

Figure 9.2
The server-side postback method
Licensed to jonathan zheng <yiyisjun@gmail.com>

330 CHAPTER 9
Dynamic double combo
has to re-render. Figure 9.2 shows all of the extra processing required. Additional
server-side code is also needed to reselect the user’s choice on the first select ele-
ment of the re-rendered page. Moreover, if the page was scrolled to a particular
spot before the form was submitted, the user will have to scroll back to that loca-
tion after the page reloads.

9.1.3 Ajax-based solution

We can avoid the problems of the JavaScript and server-side solutions by using
Ajax to transfer data to the server and obtain the desired information for the sec-
ond selection list. This allows the database to be queried and the form element to
be filled in dynamically with only a slight pause. Compared with the JavaScript
method, we are saving the extra page-loading time that was required to load all of
the available options into the arrays. Compared with the server-side postback
solution, we are eliminating the need to post the entire page back to the server;
instead, we are passing only the information necessary. The page is not reloaded,
so you do not have to worry about the scroll position of the page or what option
was selected in the first drop-down field. The initial page loading time is also
shortened since the JavaScript arrays do not have to be included in the page.

 This example will involve two selection lists. The first selection list contains
the sales regions for a company. The second selection list displays the related ter-
ritories for the selected region, as shown in figure 9.3.

 When the user selects a region from the first selection list, the client sends a
request to the server containing only the necessary information to identify both
the selected region, and the form control to populate with the list of territories.
The server queries the database and returns an XML document containing the
names of the territories in the selected region, and also the names of the form
and the control that the client needs to update. Let’s see how this works.

 The first step in building the Ajax solution takes place on the client.

Request
page

Page
rendering

Server

Send
request

Handles request

Browser

Options built

Options
returnedAjax

Figure 9.3
The Ajax solution
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side architecture 331
9.2 The client-side architecture

The client-side architecture is foreign territory to most developers who normally
write server-side code. In this case, it is not that scary since we need to take only a
few steps to get the options into our second selection list. If you have imple-
mented the JavaScript or server-side solutions for a double combo before, then
you have already have experience with part of the processes involved.

 As you can see in figure 9.4, this application’s client-side interaction does not
require many steps. The first step is to build the initial form. The user then selects
an item from the form’s first select. This initiates the second step of the client-
side architecture, which is to create an XMLHttpRequest object to interact with
the server. This transmits the user’s selection to the server, along with the names
of the form and the control that will be updated when the server’s response is
received. The third part requires us to add the contents of the server’s XML
response to the second select element. JavaScript’s XML DOM methods are used
to parse the XML response.

Let’s go over the first two steps, which happen before the Ajax request is sent to
the server. We’ll explain the third step (the DOM interaction with the server’s XML
response document) in more detail in section 9.4, since we need to talk about the
server before we can implement the client-side architecture completely.

9.2.1 Designing the form

The form in this example involves two select elements. The first select element
will initially contain values, while the second selection list will be empty.
Figure 9.5 shows the form.

Server

onchange XMLHttpRequest XML DOM

Figure 9.4 Client-side architecture, showing the Ajax interaction

Figure 9.5
Available options in the first select element
Licensed to jonathan zheng <yiyisjun@gmail.com>

332 CHAPTER 9
Dynamic double combo
The first form element can be filled in three separate ways initially, as shown in
table 9.1.

The first method is to hard-code the values into the select element. This method
is good when you have a few options that are not going to change. The second
method is to fill in the values by using a server-side script. This approach fills in
the options as the page is rendered, which allows them to be pulled from a data-
base or XML file. The third method is to use Ajax to fill in the values; this method
posts back to the server to retrieve the values but does not re-render the entire page.

 In this example, we are hard-coding the values into the selection list since there
are only four options and they are not dynamic. The best solution for dynamically
loading values into the first selection list is to use a server-side script that fills the
list as the page is loaded. Ajax should not be used to populate the first selection list
unless its contents depend on other values the user selects on the form.

 The first selection list needs to have an onchange event handler added to its
select element, as shown in listing 9.1. This event handler calls the JavaScript
function FillTerritory(), which initiates the process of filling the second selec-
tion list by sending a request to the server.

<form name="Form1">
 <select name="ddlRegion"

onchange="FillTerritory(this,document.Form1.ddlTerritory)">
 <option value="-1">Pick A Region</option>
 <option value="1">Eastern</option>
 <option value="2">Western</option>
 <option value="3">Northern</option>
 <option value="4">Southern</option>

Table 9.1 Three ways to populate a form element

Method Advantages Disadvantages

Hard-code the values into the select element. No server-side
processing.

Options cannot be
dynamic.

Fill in the values by using a server-side script. Options can be dynamic
and pulled from the
database.

Requires extra
processing on the server.

Use Ajax to fill in the values; this method posts
back to the server to retrieve the values.

Can be linked to other
values on the page.

Requires extra
processing on the server.

Listing 9.1 The double-combo form
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side architecture 333
 </select>
 <select name="ddlTerritory"></select>
</form>

The code in listing 9.1 creates a form that initiates the FillTerritory() process
when an item is chosen in the first selection list. We pass two element object ref-
erences to the FillTerritory() function. The first is the selection list object that
the event handler is attached to, and the second is the selection list that is to be
filled in. The next step for us is to develop the client-side code for FillTerri-
tory(), which submits our request to the server.

9.2.2 Designing the client/server interactions

The FillTerritory() function’s main purpose is to gather the information that is
needed to send a request to the server. This information includes the selected
option from the first list, the name of the form, and the name of the second selec-
tion list. With this information we can use the Ajax functions in our JavaScript
library to send a request to the server. The first thing we need to do is add our
Ajax functionality. The code needed to link to the external JavaScript file, net.js,
which defines the ContentLoader object, is trivial. Just add this between the head
tags of your HTML document:

<script type="text/javascript" src="net.js"></script>

The ContentLoader object does all of the work of determining how to send a
request to the server, hiding any browser-specific code behind the easy-to-use
wrapper object that we introduced in chapter 3. It allows us to send and retrieve
the data from the server without refreshing the page.

 With the Ajax functionality added, we are able to build the function Fill-
Territory(), shown in listing 9.2, which we also add between the head tags of
our document.

<script type="text/javascript">
function FillTerritory(oElem,oTarget){
 var strValue = oElem.options[
 oElem.selectedIndex].value;
 var url = "DoubleComboXML.aspx";
 var strParams = "q=" + strValue +
 "&f=" + oTarget.form.name +
 "&e=" + oTarget.name;

Listing 9.2 The function FillTerritory() initializes the Ajax request.

b Obtain value from
selection list

c Set the target URL

d Build the
parameter
string
Licensed to jonathan zheng <yiyisjun@gmail.com>

334 CHAPTER 9
Dynamic double combo
 var loader1 = new
 net.ContentLoader(url,FillDropDown,null,
 "POST",strParams);
}

The FillTerritory() function accepts two parameters, passed in this case from
the onchange event handler on the first selection list. These are references to the
first and second select elements. b We access the value that the user selected in
the first list. c We set the URL of our target server-side script. d We then build
the parameters to be sent to the server by creating a string that has the same type
of syntax as a querystring, using an ampersand to separate each name-value pair.
For this example we are sending the value representing the selected region as q,
the name of the form as f, and the name of the second select as e. The server-
side code will use the selected region value to query the database, and it will send
the names of the form and the select element back to the client in its XML
response document. The client will use that information to determine which form
and control to update. Once the parameter string is built, the only thing left is to
initiate the Ajax process.

 e To start the process, we call the ContentLoader() constructor, and pass in
the target URL, the function to be called when the server’s response is received,
the error-handler function, the HTTP method to use, and the parameters to be
sent. In this case, the FillDropDown() function will be called when the data is
returned from the server, we will rely on ContentLoader’s default error-handler
function, and we are using a POST request.

 At this point, the ContentLoader will wait for the server to return an XML doc-
ument. The client-side code continues in section 9.4, but first, the server has
some work to do.

9.3 Implementing the server: VB .NET

The server-side code needs to retrieve the territories belonging to the user’s
selected region from the database, and return them to the client in an XML
document. The result set from the SQL query is used to create an XML docu-
ment that is returned to the client side. Figure 9.6 shows the flow of the server-
side process.

 The server-side code is invoked by the request sent from the client-side Con-
tentLoader object. The server-side code first retrieves the value of the request
parameter q, representing the selected region. The value of q is used to create a

e Initiate the
content
loader
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing the server: VB .NET 335
dynamic SQL query statement, which is run against the database to find the text/
value pairs for the second drop-down list. The data that is returned by the data-
base query is then formatted as XML and returned to the client. Before we write
the code to do this, we need to define the basic XML document structure.

9.3.1 Defining the XML response format

We need to create a simple XML document to return the results of our database
query to the client. It will contain the options to populate the second selection
list. A pair of elements is needed to represent each option, one to contain the
option text, and one to contain the option value.

 The XML document in our example has a root element named selectChoice,
containing a single element named selectElement, followed by one or more
entry elements. selectElement contains the names of the HTML form and selec-
tion list that the results will populate on the client. Each entry element has two
child elements, optionText and optionValue, which hold values representing
each territory’s description and ID. Listing 9.3 shows this structure.

<?xml version="1.0" ?>
<selectChoice>
 <selectElement>
 <formName>Form1</formName>
 <formElem>ddlTerritory</formElem>
 </selectElement>
 <entry>
 <optionText>Select A Territory</optionText>
 <optionValue>-1</optionValue>
 </entry>
 <entry>
 <optionText>TerritoryDescription</optionText>
 <optionValue>TerritoryID</optionValue>
 </entry>
</selectChoice>

Database

Posted
form

Return
document

Build XML
document

Dynamic
SQL

Figure 9.6
Server-side process flow diagram

Listing 9.3 Example of the XML response format
Licensed to jonathan zheng <yiyisjun@gmail.com>

336 CHAPTER 9
Dynamic double combo
Notice in the example XML document in listing 9.3 that there is an entry contain-
ing the option text “Select A Territory”. This is the first option shown in the selec-
tion list, prompting the user to choose a value. The server-side code includes this
value at the start of every response document, before the dynamic options are
obtained from the database.

 Now that we have our response document defined, we can develop the code
that dynamically creates the XML and returns it to the client.

9.3.2 Writing the server-side code

The VB .NET server-side code is straightforward. We perform a query on a data-
base, which returns a record set. We then loop through the record set to create our
XML document and send the XML back to the client. If we do not find any
records, then we do not create any entry elements, also omitting the static “Select
A Territory” option. As you can see in listing 9.4, the server-side code is not very
complicated. It simply contains statements to retrieve the form values posted to
the server, set the content type, perform a search, and output the XML document.

 This example uses the Northwind sample database from Microsoft’s SQL
Server.

Private Sub Page_Load(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load

 Response.ContentType = "text/xml"

 Dim strQuery As String
 strQuery = Request.Form("q")
 Dim strForm As String
 strForm = Request.Form("f")
 Dim strElem As String
 strElem = Request.Form("e")

 Dim strSql As String = "SELECT " & _
 "TerritoryDescription, " & _
 "TerritoryID" & _
 " FROM Territories" & _
 " WHERE regionid = " & _
 strQuery & " ORDER BY " & _
 "TerritoryDescription"

Listing 9.4 DoubleComboXML.aspx.vb: Server-side creation of the XML response

Implement
Page_Load
method

b Set the content type

c Retrieve the
posted data

d Create the SQL
statement
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing the server: VB .NET 337
 Dim dtOptions As DataTable
 dtOptions = FillDataTable(strSql)

 Dim strXML As StringBuilder
 strXML = New StringBuilder("<?xml " & _
 "version=""1.0"" ?>")
 strXML.Append("<selectChoice>")
 strXML.Append("<selectElement>")
 strXML.Append("<formName>" & _
 strForm & _
 "</formName>")
 strXML.Append("<formElem>" & _
 strElem & _
 "</formElem>")
 strXML.Append("</selectElement>")

 If dtOptions.Rows.Count > 0 Then

 strXML.Append("<entry>")
 strXML.Append("<optionText>" & _
 "Select A Territory" & _
 "</optionText>")
 strXML.Append("<optionValue>-1" & _
 "</optionValue>")
 strXML.Append("</entry>")

 Dim row As DataRow
 For Each row In dtOptions.Rows
 strXML.Append("<entry>")
 strXML.Append("<optionText>" & _
 row("TerritoryDescription") & _
 "</optionText>")
 strXML.Append("<optionValue>" & _
 row("TerritoryID") & _
 "</optionValue>")
 strXML.Append("</entry>")
 Next

 End If

 strXML.Append("</selectChoice>")
 Response.Write(strXML.ToString)

End Sub

Public Function FillDataTable(_
 ByVal sqlQuery As String) _
 As DataTable

e Execute the SQL statement

f Begin XML
document

g Verify there are results

h Add first
selection
element

i Loop through
result set and
add XML
elements

j Return the
XML document
Licensed to jonathan zheng <yiyisjun@gmail.com>

338 CHAPTER 9
Dynamic double combo
 Dim strConn As String = _
 "Initial Catalog = Northwind; " & _
 "Data Source=127.0.0.1; " & _
 "Integrated Security=true;"
 Dim cmd1 As _
 New SqlClient.SqlDataAdapter(sqlQuery, _
 strConn)

 Dim dataSet1 As New DataSet
 cmd1.Fill(dataSet1)
 cmd1.Dispose()
 Return dataSet1.Tables(0)
End Function

Setting the page’s content type b to text/xml ensures that the XMLHttpRequest
will parse the server response correctly on the client.

 We obtain the value of the selected region, the HTML form name, and the ele-
ment name from the request parameters c received from the client. For added
safety, we could add a check here to make sure that these values are not null. If the
check does not find a value for each, the script could return an error response. We
should also add checks for SQL injection before the application enters a produc-
tion environment. This would ensure that the database is protected from mali-
cious requests sent by attackers.

 Having obtained the selected region’s value, the next step is to generate a SQL
string so we can retrieve the corresponding territories from the database d. The
two columns we are interested in are TerritoryDescription and TerritoryID,
from the database table Territories. We insert the region value into the SQL
statement’s WHERE clause. To ensure that the results appear in alphabetical order
in our selection list, we also set the SQL ORDER BY clause to TerritoryDescription.
Next, we must execute the SQL statement e. In this case, we call the function
FillDataTable() to create a connection to the database server, perform the query,
and return the results in a data table.

 Now that we have obtained the result of the SQL query, we need to create the
first part of the XML document f, which was discussed in listing 9.2. We begin
the document and add the selectElement, containing the values of formName and
formElem obtained from the request parameters.

 A check is needed to verify if any results were returned by the SQL query g.
If there are results, we add the preliminary “Select A Territory” option h to
the XML.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Presenting the results 339
 Next we loop through the results represented in the DataTable i, populating
the value of the TerritoryDescription column into the optionText tag and the
value of the TerritoryID column into the optionValue tag. By nesting each
description/ID pair inside an entry tag, we provide an easier means to loop through
the values on the client, with JavaScript’s XML DOM methods. After we finish pop-
ulating our results into the XML document, we need to close the root selectChoice
element and write the response to the output page j. The XML response docu-
ment is returned to the client, and the ContentLoader object is notified that the
server-side process is complete. The ContentLoader calls the function FillDrop-
Down() on the client, which will process the XML that we just created.

 Let’s recap what we’ve done on the server. We have taken the value from a
selected item in a selection list and have run a query against a database without
posting back the entire page to the server. We have then generated an XML doc-
ument and returned it to the client. The next step in the process takes us back to
the client side, where we must now convert the XML elements into options for our
second selection list.

9.4 Presenting the results

We now have the results of our database query in an XML document, and we are
going to navigate through its elements using JavaScript’s DOM API. We can easily
jump to a particular element in the document using a function called getEle-
mentsByTagName(). This function uses the element’s name to look it up in the
DOM, somewhat like the alphabetical tabs that stick out in an old-fashioned Rolo-
dex. Since many elements in an XML document can have the same name, getEle-
mentsByTagName() actually returns an array of elements, in the order that they
appear in the document.

9.4.1 Navigating the XML document

Now we will finish the client-side script that adds the options to the selection list.
The names of the form and the selection element that we are going to populate
are specified in the XML document along with all of the available options for the
list. We need to traverse the document’s elements in order to locate the options
and insert them into our select element.

 Once the ContentLoader receives the XML document from the server, it will
call the FillDropDown() function that appears in listing 9.2. In FillDropDown(),
we navigate the entry elements of the XML document, and create a new Option
object for each. These Option objects represent the text and value pairs that
Licensed to jonathan zheng <yiyisjun@gmail.com>

340 CHAPTER 9
Dynamic double combo
will be added to the selection list. Listing 9.5 shows the FillDropDown() func-
tion in full.

function FillDropDown(){
 var xmlDoc = this.req.responseXML.documentElement;

 var xSel = xmlDoc.
 getElementsByTagName('selectElement')[0];
 var strFName = xSel.
 childNodes[0].firstChild.nodeValue;
 var strEName = xSel.
 childNodes[1].firstChild.nodeValue;

 var objDDL = document.forms[strFName].
 elements[strEName];
 objDDL.options.length = 0;

 var xRows = xmlDoc.
 getElementsByTagName('entry');
 for(i=0;i<xRows.length;i++){
 var theText = xRows[i].
 childNodes[0].firstChild.nodeValue;
 var theValue = xRows[i].
 childNodes[1].firstChild.nodeValue;
 var option = new Option(theText,
 theValue);
 try{
 objDDL.add(option,null);
 }catch (e){
 objDDL.add(option,-1);
 }
 }
}

The FillDropDown() function is called by the ContentLoader once it has received
and parsed the server’s XML response. The ContentLoader object is accessible
within FillDropDown() through the this reference, and we use it to obtain the
response document, responseXML. Once we have a reference to the response’s
documentElement b, we can begin using JavaScript’s DOM functions to navigate
its nodes. The first information we want to obtain is the target select list to which
we will add the new options. We look up the element named selectElement using
getElementsByTagName(), taking the first item from the array it returns. We can
then navigate to its child nodes c. The first child contains the form’s name and
the second child the select list’s name.

Listing 9.5 Updating the page with data from the XML response

b Get response XML
document

c Get name of
form and
select element

d Obtain a
reference the
select element

e Loop through the
XML document
adding options
Licensed to jonathan zheng <yiyisjun@gmail.com>

Presenting the results 341
 Using these two values, we reference the target selection list itself d, and clear
any existing options by setting the length of its options array to 0. Now we can add
the new options to the list. We need to access the XML’s document entry elements,
so we call on getElementsByTagName() once again. This time we need to loop
through the array of elements it returns, and obtain the text and value pairs from
each e. The first child node of each entry is the option text that is to be displayed
to the user, and the second child node is the value. Once these two values are
obtained, we create a new Option object, passing the option text as the first con-
structor parameter and the option value as the second. The new option is then
added to the target select element, and the process is repeated until all the new
options have been added. The method signature for select.add() varies between
browsers, so we use a try...catch statement to find one that works. This completes
the coding for our double combo box. We can now load up our HTML page, select
a region, and see the second drop-down populated directly from the database.

 Figure 9.7 shows the double-combo list in action. In this example, the Eastern
region is selected from the first list, and the corresponding territories are
retrieved from the database and displayed in the second list. The Southern
region is then selected from the first list, and its corresponding territories fill in
the second list.

Figure 9.7 The double-combo list in action
Licensed to jonathan zheng <yiyisjun@gmail.com>

342 CHAPTER 9
Dynamic double combo
As you can see in figure 9.7, we still have one job left: changing the selection list’s
appearance to make it more appealing. The second selection list’s size expands as
it is populated with options. We can fix this shift in size by applying a Cascading
Style Sheet (CSS) rule to the element.

9.4.2 Applying Cascading Style Sheets

Cascading Style Sheets allow for changes in the visual properties of the selection
element. We can change the font color, the font family, the width of the element,
and so on. In figure 9.7 we saw that our second select element is initially only a
few pixels wide since it contains no options. When the Eastern region is chosen
from the first selection list, our second select element expands. This change of
size is visually jarring and creates an unpleasant user experience.

 The way to fix this issue is to set a width for the selection list:

<select name="ddlTerritory" style="width:200px"></select>

However, there may still be a problem if one of the displayed values is longer than
the width we set. In Firefox, when the element is in focus the options under the
drop-down list expand to display their entire text. However, in Microsoft Internet
Explorer, the text is chopped off and is not visible to the user, as shown in
figure 9.8.

 To avoid the problem with Internet Explorer, we need to set the width of the
selection list to the width of the longest option. Most of the time the only way to
determine the number of pixels required to show the content is by trial and error.

Figure 9.8 Cross-browser differences in how a select
element is rendered
Licensed to jonathan zheng <yiyisjun@gmail.com>

Advanced issues 343
Some developers use browser-specific hacks in their CSS only to set the width
wider for IE:

style="width:100px;_width:250px"

Internet Explorer recognizes the width with the underscore, while other browsers
ignore it. Therefore, IE’s selection box will be 250 pixels wide, while the other
browsers’ selection width will be 100 pixels wide. However, it’s inadvisable to rely
on browser bugs such as this one, as they may be fixed in a future version of the
browser and break the way your page is displayed.

 Let’s look now at ways to add more advanced features to our double-combo
script.

9.5 Advanced issues

In this chapter, we have built a simplified version of a double-combo script. We
send a single parameter to the server, and we return a set of results for the single
selected item. You may find that you need to change the way that this application
works. You may want to add another element to the form so that you have a triple
combo. You may even want to allow the user to select multiple items in the first
list. If this is the case, then the following sections will give you ideas on how to
implement them.

9.5.1 Allowing multiple-select queries

The code we have discussed so far is a simple example, allowing a user to select
only one option from each selection list. In some cases, a user may be required to
select more than one option from the first list. That means the second list in our
combination will be populated with values corresponding to each selected option
in the first list. With some simple changes to our client-side and server-side code,
we can make this happen.

 The first thing to do is to set up the first selection list to allow multiple items to
be chosen. To do this, we need to add the multiple attribute to the select tag. To
specify how many options to display, we can add the size attribute. If size is
smaller than the number of options, the selection list will be scrollable to reveal
those that are not visible.

<select name="ddlRegion" multiple size="4"
onchange="FillTerritory(this,document.Form1.ddlTerritory)">

 <option value="1">Eastern</option>
 <option value="2">Western</option>
Licensed to jonathan zheng <yiyisjun@gmail.com>

344 CHAPTER 9
Dynamic double combo
 <option value="3">Northern</option>
 <option value="4">Southern</option>
</select>

The next step is to change the FillTerritory() function. Instead of just referenc-
ing the selected index of the select element, we need to loop through all the
options and find each of the selected values. We add the value of each selected
option to the parameter string:

function FillTerritory(oElem,oTarget){
 var url = 'DoubleComboMultiple.aspx';
 var strParams = "f=" + oTarget.form.name +
 "&e=" + oTarget.name;
 for(var i=0;i<oElem.options.length;i++){
 if(oElem.options[i].selected){
 strParams += "&q=" + oElem.options[i].value;
 }
 }

 var loader1 = new

net.ContentLoader(url,FillDropDown,null,"POST",strParams);
}

The last thing to do is change the code of the server-side script to handle the mul-
tiple values passed in the request. In .NET, the multiple values are represented in
a single string, separated by commas. In order to get each item individually, we
need to split the string into an array. We can then build our WHERE clause for the
SQL statement by looping through the array.

Dim strQuery As String = Request.Form("q")
Dim strWhere As String = ""
Dim arrayStr() As String = strQuery.Split(",")
Dim i As Integer
For Each i In arrayStr
 If strWhere.Length > 0 Then
 strWhere = strWhere & " OR "
 End If
 strWhere = strWhere & " regionid = " & i
Next

Dim strSql As String = "SELECT " & _
 " TerritoryDescription, " & _
 " TerritoryID" & _
 " FROM Territories" & _
 " WHERE " & strWhere & _
 " ORDER BY TerritoryDescription"
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 345
With these changes, a user to can select multiple regions from the first selection
list, and the territories corresponding with every selected region will appear in
the second list.

9.5.2 Moving from a double combo to a triple combo

Moving to a double combo to a triple combo requires only a small number of
changes, depending on how we want to handle the logic on the server. The
first option is to move our logic into multiple server-side pages so that we can
run a different query in each. That would mean adding another parameter to
each selection list’s onchange handler, representing the URL of the server-side
script to call.

 The other option can be as simple as adding an if-else or a switch-case
statement to the server-side code. The if-else structure needs a way to deter-
mine which query to execute in order to return the appropriate values. The sim-
plest check is to decide which SQL query to use based on the name of the select
element to be populated. So, when we are performing a triple combo, we can
check that the value of the strElem variable. This way, we do not need to make any
changes to the onchange event handlers in the client-side code.

Dim strSql As String
If strElem = "ddlTerritory" Then
 strSql = "SELECT TerritoryDescription, " & _
 " TerritoryID" & _
 " FROM Territories" & _
 " WHERE " & strWhere & _
 " ORDER BY TerritoryDescription"
Else
 strSql = "SELECT Column1, Column2" & _
 " FROM TableName" & _
 " WHERE " & strWhere & _
 " ORDER BY Column2"
End If

With this solution, as long as the drop-down lists have unique names, you will be
able to have multiple combination elements on the page without having to sepa-
rate all of the logic into different server-side pages.

9.6 Refactoring

So what do you think is lacking at this point? I suspect I know what you’re think-
ing—generality. This is an extremely cool, jazzed-up technique for implement-
ing double combos, but it needs a little polish to be a generalized component.
Licensed to jonathan zheng <yiyisjun@gmail.com>

346 CHAPTER 9
Dynamic double combo
We’ll get there, so hang tight. But first, let’s address something even more funda-
mental: encapsulation of some of the Ajax plumbing itself. The net.Content-
Loader introduced briefly in chapter 3, and more thoroughly in chapter 5, is a
good start. Let’s build on this object to make our handling of AJAX even more
seamless. Ideally we should be able to think of this entity as an Ajax “helper”
object that does all the heavy lifting associated with Ajax processing. This will
allow our component to focus on double combo–specific behaviors and reduce
the amount of code required by the rest of our components as well. Our
improved net.ContentLoader object should ideally encapsulate the state and
behavior required to perform the following tasks:

■ Creation of the XMLHttpRequest object in a cross-browser fashion, and as
an independent behavior from sending requests. This will allow callers to
use the creation method independently from the rest of the object. This is
useful if the caller is using another idiom, framework, or mechanism for
request/response activities.

■ Provide a more convenient API for dealing with request parameters. Ide-
ally the caller should just be able to pass state from the application and let
the net.ContentLoader “helper” worry about creating querystrings.

■ Routing the response back to a component that knows how to handle it
and performing appropriate error handling.

So let’s start our refactoring of net.ContentLoader, and then we’ll move on to
repackaging our double combo as a component.

9.6.1 New and improved net.ContentLoader

Let’s start by thinking about how the constructor should be changed. Consider
the following constructor:

net.ContentLoader = function(component, url, method, requestParams) {
 this.component = component;
 this.url = url;
 this.requestParams = requestParams;
 this.method = method;
}

The constructor shown here is called with four arguments. The first, component,
designates the object that is using the services of this helper. The helper object will
assume that component has an ajaxUpdate() method to handle responses and a
handleError() method to handle error conditions. More about that later. Second,
as before, url designates the URL that is invoked by this helper to asynchronously

net.ContentLoader
state
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 347
get data from the server. The method parameter designates the HTTP request
method. Valid values are GET and POST. Finally, the requestParameters argument is
an array of strings of the form key=value, which designate the request parameters
to pass to the request. This allows the caller to specify a set of request parameters
that do not change between requests. These will be appended to any additional
request parameters passed into the sendRequest method discussed below. So our
helper can now be constructed by a client as follows:

 var str = "Eastern";
 var aComp = new SomeCoolComponent(...);
 var ajaxHelper = new net.ContentLoader(aComp,
 "getRefreshData.aspx", "POST",
 ["query=" + str, "ignore_case=true"]);

Now let’s consider the rest of the API. One thing I should mention at this point is
the stylistic nature of the code sample. The methods of this object are scoped to
the prototype object attached to the constructor function. This is a common tech-
nique when writing object-oriented JavaScript, as it applies the method defini-
tions to all instances of the object. However, there are several ways of syntactically
specifying this. One of my favorites (a pattern I picked up from the prototype.js
library packaged within Ruby On Rails) is to create the prototype object literally,
as shown here:

net.ContentLoader.prototype = {

 method1: function(a, b, c) {
 },

 method2: function() {
 },

 method3: function(a) {
 }

};

The thing we like about this syntactically is that it is expressed minimally. The way
to read this is that the outermost open and close curly braces represent an object
literal, and the content is a comma-delimited list of property-value pairs within
the object. In this case our properties are methods. The property-value pairs are
specified as the name of the property, followed by a colon, followed by the value
of the property. In this case the values (or definitions if you prefer) are function
literals. Piece of cake, huh? Just bear in mind that the methods shown from here
on out are assumed to be contained within the prototype object literal as shown

First method attached
to prototype

Second method
Licensed to jonathan zheng <yiyisjun@gmail.com>

348 CHAPTER 9
Dynamic double combo
here. Also, note that the last property doesn’t need—indeed can’t have—a
comma after it. Now let’s go back to the task at hand: refactoring the API.

 The API should address the requirements that we mentioned above, so let’s
take each one in turn. The first thing we need is an independent behavior to han-
dle the creation of the XMLHttpRequest object in a cross-browser fashion. That
sounds like a method. Fortunately, we’ve implemented this one a few times
already. All we need to do is create it as a method of our helper, as shown in
listing 9.6, and we’ll never have to write it again.

 getTransport: function() {
 var transport;
 if (window.XMLHttpRequest)
 transport = new XMLHttpRequest();
 else if (window.ActiveXObject) {
 try {
 transport = new ActiveXObject('Msxml2.XMLHTTP');
 }
 catch(err) {
 transport = new ActiveXObject('Microsoft.XMLHTTP');
 }
 }
 return transport;
 },

There’s not much explanation required here, since we’ve covered this ground
many times, but now we have a cleanly packaged method to provide a cross-browser
Ajax data transport object for handling our asynchronous communications.

 The second requirement we mentioned was to provide a more convenient API
for dealing with request parameters. In order for it to be used across a wide vari-
ety of applications, it is almost certain that the request being sent will need run-
time values as parameters. We’ve already stored some initial state that represents
request parameters that are constant across requests, but we’ll also need runtime
values. Let’s decide on supporting a usage such as the following code:

 var a,b,c;
 var ajaxHelper = new net.ContentLoader(...);
 ajaxHelper.sendRequest("param1=" + a, "param2=" + b,
 "param3=" + c);

So given this usage requirement, sendRequest is defined as shown in listing 9.7.

Listing 9.6 The getTransport method

Native
object

IE ActiveX
object

Assume initialized with runtime values
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 349
 sendRequest: function() {

 var requestParams = [];
 for (var i = 0 ; i < arguments.length ; i++) {
 requestParams.push(arguments[i]);
 }

 var request = this.getTransport();
 request.open(this.method, this.url, true);
 request.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded');

 var oThis = this;
 request.onreadystatechange = function() {
 oThis.handleAjaxResponse(request) };
 request.send(this.queryString(requestParams));
 },

This method splits the process of sending a request into four steps. Let’s look at
each step of the process in detail:
This step takes advantage of the fact that JavaScript creates a pseudo-array
named arguments that is scoped to the function. As the name suggests, arguments
holds the arguments that were passed to the function. In this case the arguments
are expected to be strings of the form key=value. We just copy them into a first-
class array for now. Also, note that all variables created in this method are pre-
ceded by the keyword var. Although JavaScript is perfectly happy if we leave the
var keyword off, it’s very important that we don’t. Why? Because, if we omit the
var keyword, the variable is created at a global scope—visible to all the code in
your JavaScript universe! This could cause unexpected interactions with other
code (for example, someone names a variable with the same name in a third-
party script you have included). In short, it’s a debugging nightmare waiting to
happen. Do yourself a favor and get accustomed to the discipline of using locally
scoped variables whenever possible.
Here our method uses the getTransport method we defined in listing 9.6 to cre-
ate an instance of an XMLHttpRequest object. Then the request is opened and its
Content-Type header is initialized as in previous examples. The object reference
is held in a local variable named request.
This step takes care of the response-handling task. I’ll bet you’re wondering why
the variable oThis was created. You’ll note that the following line—an anonymous
function that responds to the onreadystatechange of our request object—refer-
ences oThis. The name for what’s going on here is a closure. By virtue of the inner

Listing 9.7 The sendRequest method

b Store
arguments
in an array

c Create the
request

dSpecify the
callback

e Send the request

 b

 c

 d
Licensed to jonathan zheng <yiyisjun@gmail.com>

350 CHAPTER 9
Dynamic double combo
function referencing the local variable, an implicit execution context or scope is
created to allow the reference to be maintained after the enclosing function exits.
(See appendix B for more on closures.) This lets us implement handling of the
Ajax response by calling a first-class method on our ajaxHelper object.
Finally, we send the Ajax request. Note that the array we created in step 1 is
passed to a method named queryString that converts it to a single string. That
string becomes the body of the Ajax request. The queryString method isn’t really
part of the public contract we discussed earlier, but it’s a helper method that
keeps the code clean and readable. Let’s take a look at it in listing 9.8.

 queryString: function(args) {

 var requestParams = [];
 for (var i = 0 ; i < this.requestParams.length ; i++) {
 requestParams.push(this.requestParams[i]);
 }
 for (var j = 0 ; j < args.length ; j++) {
 requestParams.push(args[j]);
 }

 var queryString = "";
 if (requestParams && requestParams.length > 0) {
 for (var i = 0 ; i < requestParams.length ; i++) {
 queryString += requestParams[i] + '&';
 }
 queryString = queryString.substring(0, queryString.length-1);
 }
 return queryString;
 },

This method takes the request parameters that our net.ContentLoader was con-
structed with, along with the additional runtime parameters that were passed into
the sendRequest method, and places them into a single array. It then iterates over
the array and converts it into a querystring. An example of what this achieves is
shown here:

var helper = new net.ContentLoader(someObj, someUrl,
 "POST", ["a=one", "b=two"]);
var str = ajaxHelper.queryString(["c=three", "d=four"]);

str => "a=one&b=two&c=three&d=four"

Listing 9.8 The queryString method

 e

Constant
parameters

Runtime
parameters
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 351
The last thing we need to do to have a fully functional helper object is to collab-
orate with a component to handle the response that comes back from Ajax. If
you’ve been paying attention, you probably already know what this method will
be named. Our sendRequest method already specified how it will handle the
response from the onreadystatechange property of the request:

 request.onreadystatechange = function(){
 oThis.handleAjaxResponse(request)
 }

That’s right, kids; all we need to do is implement a method named handleAjax-
Response. Listing 9.9 contains the implementation.

 handleAjaxResponse: function(request) {
 if (request.readyState == net.READY_STATE_COMPLETE) {
 if (this.isSuccess(request))
 this.component.ajaxUpdate(request);
 else
 this.component.handleError(request);
 }
 },

 isSuccess: function(request){
 return request.status == 0
 || (request.status >= 200 && request.status < 300);
 }

All the method does is check for the appropriate readyState of 4 (indicating
completion) and notifies the this.component that the response is available. But
we’re not quite finished yet. The other requirement we said we would address is
to handle errors appropriately. But what is appropriate? The point is, we don’t
know what’s appropriate. How to handle the error is a decision that should be
deferred to another entity. Therefore we assume that our client, this.component,
has a handleError method that takes appropriate action when the Ajax response
comes back in a way we didn’t expect. The component may in turn delegate the
decision to yet another entity, but that’s beyond the scope of what we care about
as a helper object. We’ve provided the mechanism; we’ll let another entity pro-
vide the semantics. As mentioned earlier, we’re assuming that this.component
has an ajaxUpdate and a handleError method. This is an implicit contract that
we’ve created, since JavaScript isn’t a strongly typed language that can enforce
such constraints.

Listing 9.9 The Ajax response handler methods

Message component
with response

Message component
with error
Licensed to jonathan zheng <yiyisjun@gmail.com>

352 CHAPTER 9
Dynamic double combo
 Congratulations! You’ve morphed net.ContentLoader into a flexible helper to
do all the Ajax heavy lifting for your Ajax-enabled DHTML components. And if
you have a DHTML component that’s not yet Ajax-enabled, now it’ll be easier!
Speaking of which, we have a double-combo component to write.

9.6.2 Creating a double-combo component

We’ve laid some groundwork with our net.ContentLoader to make our task here
much easier, so let’s get started. Let’s assume that our assignment as a rock-star
status developer is to create a double-combo script that can be reused in many
contexts across an application, or many applications for that matter. We need to
consider several features in order to meet this requirement:

■ Let’s assume that we may not be able or want to directly change the HTML
markup for the select boxes. This could be the case if we are not responsi-
ble for producing the markup. Perhaps the select is generated by a JSP or
other server-language-specific tag. Or perhaps a designer is writing the
HTML, and we want to keep it as pristine as possible to avoid major
reworks caused by a round or two of page redesigns.

■ We want a combo script that is able to use different URLs and request
parameters to return the option data. We also want the design to accom-
modate further customization.

■ We want to be able to apply this double-combo behavior potentially across
multiple sets of select tags on the same page, also potentially setting up
triple or quadruple combos, as discussed earlier.

Starting from the perspective of our first task, keeping the HTML markup as pris-
tine as possible, let’s assume the markup shown in listing 9.10 is representative of
the HTML on which we will be operating.

<html>
<body>

<form name="Form1">
 <select id="region" name="region" >
 <options...>
 </select>
 <select id="territory" name="territory" />
</form>

Listing 9.10 Double-combo HTML markup listing
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 353
</body>
</html>

What we need is a DoubleCombo component that we can attach to our document to
perform all of the double-combo magic. So let’s work backwards and consider
what we would want our markup to look like; then we’ll figure out how to imple-
ment it. Let’s change the markup to look something like listing 9.11.

<html>
<head>
 ...
 <script>
 function injectComponentBehaviors() {
 var doubleComboOptions = {};
 new DoubleCombo('region',
 'territory',
 'DoubleComboXML.aspx',
 doubleComboOptions);
 }
 </script>
</head>

<body onload="injectComponentBehaviors()">

<form name="Form1">
 <select id="region" name="region" >
 <option value="-1">Pick A Region</option>
 <option value="1">Eastern</option>
 <option value="2">Western</option>
 <option value="3">Northern</option>
 <option value="4">Southern</option>
 </select>
 <select id="territory" name="territory" />
</form>

</body>
</html>

The markup has now changed in the following ways:

■ A function has been created that injects all desired component behaviors
into our document.

■ An onload handler has been added to the body element that calls this
function.

Listing 9.11 Double-combo HTML modified markup listing

DoubleCombo
component
Licensed to jonathan zheng <yiyisjun@gmail.com>

354 CHAPTER 9
Dynamic double combo
Note that nothing within the body section of the page has been modified. As
stated earlier, this is a good thing. We’ve already satisfied our first requirement.
But, looking at our injectComponentBehaviors() function, it’s apparent that we
have some more work to do. Namely, we need to create a JavaScript object named
DoubleCombo that, when constructed, provides all the behaviors we need to sup-
port double-combo functionality.

DoubleCombo component logic
Let’s start by looking more closely at the semantics of our component creation.
Our injectComponentBehaviors() function creates a DoubleCombo object by call-
ing its constructor. The constructor is defined in listing 9.12.

function DoubleCombo(masterId, slaveId, url, options) {
 this.master = document.getElementById(masterId);
 this.slave = document.getElementById(slaveId);
 this.options = options;
 this.ajaxHelper = new net.ContentLoader(this, url, "POST",
 options.requestParameters || []);

 this.initializeBehavior();
}

This should be a familiar construct at this point; our constructor function initial-
izes the state of our DoubleCombo. A description of the arguments that should be
passed to the constructor is shown in table 9.2.

Consider the nature of the state maintained by the DoubleCombo object—partic-
ularly the URL and options. These two pieces of state satisfy the second functional

Listing 9.12 DoubleCombo constructor

Table 9.2 Description of arguments

Argument Description

masterId The ID of the element in the markup corresponding to the master select ele-
ment. The selection made in this element determines the values displayed by a
second select element.

slaveId The ID of the element in the markup corresponding to the slave select element.
This is the element whose values will be changed when the user makes a choice
from the master select.

options A generic object that provides other data required by the double combo.

Initialize
state

Initialize behavior
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 355
requirement mentioned earlier. That is, our component can accommodate any
URL for data retrieval and is customizable via the options parameter. Currently
the only thing we assume we’ll find within the options object is a requestParame-
ters property. But, because the options parameter is just a general object, we
could set any property on it needed to facilitate further customizations down the
road. The most obvious kinds of properties we could place in our options object
are such things as CSS class stylings and the like. However, the style and function
of the double combo are fairly independent concepts, so we’ll leave the styling to
the page designer.

 To many of you, we’re sure, the more interesting part of the constructor comes
in the last two lines. Let’s look at each in turn:

 this.ajaxHelper = new net.ContentLoader(this, url, "POST",
 options.requestParameters || []);

Obviously, we know that our component requires Ajax capabilities. As fortune
and a little planning would have it, we already have an object to perform the
lion’s share of our Ajax-related work—that is, the net.ContentLoader we cleverly
refactored earlier. The DoubleCombo simply passes itself (via this) as the compo-
nent parameter to the ContentLoader helper. The url parameter is also passed
through to the helper as the target URL of Ajax requests, and the HTTP request
method is specified with the string "POST". Finally, the requestParameters prop-
erty of the options object, or an empty array if none was defined, is passed as the
“constant” parameter array to send with every Ajax request. Also recall that
because we passed this as a component argument, the DoubleCombo object is
obligated to implement the implied contract with the net.ContentLoader object
we discussed earlier. That is, we must implement an ajaxUpdate() and a han-
dleError() method. We’ll get to that in a bit, but first let’s look at the last line of
our constructor:

 this.initializeBehavior();

Finally our constructor is doing something that looks like behavior. Yes, the
moment we’ve all been waiting for: the behavior implementation. Everything
we’ll do from here on out is directly related to providing double-combo function-
ality. So without further ado, let’s take a look at this method along with all the
other DoubleCombo methods that will be required. Thanks to all of the infra-
structure we’ve put in place, our task is far from daunting at this point. Keep in
mind that all the methods that appear throughout the rest of the example are
assumed to be embedded within a prototype literal object, exactly as we did for
the net.ContentLoader implementation.
Licensed to jonathan zheng <yiyisjun@gmail.com>

356 CHAPTER 9
Dynamic double combo
DoubleCombo.prototype = {
 // all of the methods….
};

So, let’s peek under the hood. First, the initializeBehavior() method is
shown here:

 initializeBehavior: function() {
 var oThis = this;
 this.master.onchange = function() { oThis.masterComboChanged(); };
 },

Short and sweet. This method puts an onchange event handler on the master
select element (formerly done in the HTML markup itself). When triggered, the
event handler invokes another method on our object, masterComboChanged():

 masterComboChanged: function() {
 var query = this.master.options[
 this.master.selectedIndex].value;
 this.ajaxHelper.sendRequest('q=' + query);
 },

Wow, also short and sweet. All this method has to do is create a request parameter
and send our Ajax request. Since the Ajax-specific work has been factored out
into another object, this is a single line of code. Recall that sendRequest() will cre-
ate and send an XMLHttpRequest, then route the response back to our ajaxUp-
date() method. So let’s write that:

 ajaxUpdate: function(request) {
 var slaveOptions = this.createOptions(
 request.responseXML.documentElement);
 this.slave.length = 0;
 for (var i = 0 ; i < slaveOptions.length ; i++)
 try{
 this.slave.add(slaveOptions[i],null);
 }catch (e){
 this.slave.add(slaveOptions[i],-1);
 }
 },

This method takes the response XML from the request object and passes it to a
method named createOptions(), which creates our slave select’s option ele-
ments. The method then simply clears and repopulates the slave select ele-
ment. The createOptions() method, although not part of any public contract, is
a helper method that makes the code cleaner and more readable. Its implemen-
tation, along with another helper method, getElementContent(), is shown in list-
ing 9.13.

Clear any existing options

Populate
new options
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 357
 createOptions: function(ajaxResponse) {
 var newOptions = [];
 var entries = ajaxResponse.getElementsByTagName('entry');
 for (var i = 0 ; i < entries.length ; i++) {
 var text = this.getElementContent(entries[i],
 'optionText');
 var value = this.getElementContent(entries[i],
 'optionValue');
 newOptions.push(new Option(text, value));
 }
 return newOptions;
 },

 getElementContent: function(element,tagName) {
 var childElement = element.getElementsByTagName(tagName)[0];
 return (childElement.text != undefined) ? childElement.text :
 childElement.textContent;
 },

These methods perform the hard work of actually fetching values from the XML
response document, and creating options objects from them. To recap, the XML
structure of the response is as follows:

<?xml version="1.0" ?>
<selectChoice>
 ...
 <entry>
 <optionText>Select A Territory</optionText>
 <optionValue>-1</optionValue>
 </entry>
 <entry>
 <optionText>TerritoryDescription</optionText>
 <optionValue>TerritoryID</optionValue>
 </entry>
</selectChoice>

The createOptions() method iterates over each entry element in the XML and
gets the text out of the optionText and optionValue elements via the get-
ElementContent() helper method. The only thing particularly noteworthy about
the getElementContent() method is that it uses the IE-specific text attribute of
the XML element if it exists; otherwise it uses the W3C-standardized text-
Content attribute.

Listing 9.13 Combo population methods
Licensed to jonathan zheng <yiyisjun@gmail.com>

358 CHAPTER 9
Dynamic double combo
Error handling
We’re all finished. Almost. We’ve implemented all the behaviors needed to make
this component fully operational. But, dang, we said we’d handle error condi-
tions, too. You will recall that we have to implement a handleError() method in
order to play nicely with the net.ContentLoader. So let’s implement that, and
then we’ll really be finished. So what’s the appropriate recovery action if an error
occurs? At this point we still can’t really say. The application using our Double-
Combo component ultimately should decide. Sounds like a job for our options
object—remember the one we passed to the constructor? Let’s think about that
contract for a second. What if we constructed our double-combo component with
code that looks something like this?

 function myApplicationErrorHandler(request) {
 // Application function that knows how
 // to handle an error condition
 }

 var comboOptions = { requestParameters: [
 "param1=one", "param2=two"],
 errorHandler: myApplicationErrorHandler };

 var doubleCombo = new DoubleCombo('region',
 'territory',
 'DoubleComboXML.aspx',
 comboOptions);

In this scenario, we’ve let the application define a function called myApplication-
ErrorHandler(). The implementation of this method is finally where we can put
application-specific logic to handle the error condition. This could be an alert.
Or it could be a much less intrusive “oops” message a la GMail. The point is we’ve
deferred this decision to the application that’s using our component. Again,
we’ve provided the mechanism and allowed someone else to provide the seman-
tics. So now we have to write the DoubleCombo object’s handleError() method:

 handleError: function(request) {
 if (this.options.errorHandler)
 this.options.errorHandler(request);
 }

Component bliss
Congratulations are in order! We’re finally all done. We have a general compo-
nent that we can construct with the IDs of any two select elements and some con-
figuration information, and we have instant double-combo capability. And it’s just
so … door slams open!
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 359
 Enter pointy-haired manager, 2:45 P.M. Friday. “Johnson,” he says. “We have
to support subterritories! … And we need it by Monday morning!” Dramatic
pause. “Ouch!” you finally retort. Then you regain your composure and say, “I’ll
make it happen, sir. Even if I have to work all weekend.” He hands you the new
page design:

<form>
 <select id="region" name="region"><select>
 <select id="territory" name="territory"></select>
 <select id="subTerritory" name="subTerritory"></select>
</form>

Pointy-hair retreats. You open the HTML page in Emacs, because that’s the way
you roll. You go directly to the head section. The cursor blinks. You begin to type:

 <script>
 function injectComponentBehaviors() {
 var opts1 = { requestParameters: "master=region" };
 var opts2 = { requestParameters: "master=territory" };

 new DoubleCombo('region',
 'territory',
 'DoubleComboXML.aspx', opts1);
 new DoubleCombo('territory',
 'subTerritory',
 'DoubleComboXML.aspx', opts2);
 </script>

You press a key that runs a macro to nicely format your code. You save. You
exclaim over your shoulder, “I’ll be working from home,” as you pass by Pointy’s
office at 2:57. You plop down on the sofa and think to yourself, “Boy, I am a rock
star!” Okay, already. Enough of the fantasy. Let’s tie a bow around this thing and
call it a day.

9.7 Summary

The double combination select element is an efficient method to create dynamic
form elements for the user. We can use JavaScript event handlers to detect
changes in one select element and trigger a process to update the values in the
second element. By using Ajax, we are able to avoid the long page-loading time
that you would see using a JavaScript-only solution. Using Ajax, we can make a
database query without the entire page being posted back to the server and dis-
rupting the user’s interaction with the form. Ajax makes it easy for your web
application to act more like a client application.
Licensed to jonathan zheng <yiyisjun@gmail.com>

360 CHAPTER 9
Dynamic double combo
 With this code, you should be able to develop more sophisticated forms with-
out having to worry about the normal problems of posting pages back to the
server. With the ability to extend this script to act on multiple combinations of
selection lists, your users can drill down more precisely through several layers of
options to obtain the information or products they are looking for.

 Finally, we did some refactoring of the code to build ourselves an industrial-
strength component to facilitate reuse and customization down the road. From
our perspective, we’ve encapsulated this functionality in a reusable component
and won’t ever need to write it again. From our users’ perspective, they won’t be
getting that screen that says the product is not available when buying items from
our online store. Everybody’s happy.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Type-ahead suggest
This chapter covers
■ Type-ahead suggest
■ Caching search results on the client
■ Rico library
■ Prototype library
■ JavaScript apply() function
■ Parameterizing components
361

Licensed to jonathan zheng <yiyisjun@gmail.com>

362 CHAPTER 10
Type-ahead suggest
Type-ahead suggest is one of the main applications of Ajax that has helped put
Ajax into the mainstream world of programming. Google Suggest amazed peo-
ple as they discovered a list of choosable suggestions appearing while they were
typing (and even now, several months later, it still gives a buzz). It is as if a little
helper is sitting next to you and telling you what you are looking for. Some peo-
ple first thought they were storing values on the page, and others thought they
were using a hidden IFrame to get the data. Google was actually using the
XMLHttpRequest object to obtain the values for each keystroke.

 In this chapter, you’ll learn how to send Ajax requests while the user is typing.
We also examine the flaws of the available type-ahead suggest implementations
and find ways to avoid these pitfalls in our application. At first we take a low-level
approach that is easy to understand. After we get our application functioning, we
reexamine it at a higher level, and use an object-oriented approach to gain more
flexibility and usability. Before we build the application, though, let’s take a quick
look at some of the typical type-ahead suggest features, and how we will design
our application to use the best of those features.

10.1 Examining type-ahead applications

Since Ajax has become popular, the type-ahead suggest has been one of the most
sought-after pieces of code. Many people have created different versions of the
type-ahead suggest that handle the interaction with the server in many ways. A lot
of the solutions out there have flaws, while others go way overboard. We first eval-
uate some of the functionality in many type-ahead suggest applications and then
take a quick look at Google Suggest. After that, we'll design our application.

10.1.1 Common type-ahead suggest features
Numerous type-ahead applications are available, from basic to advanced. Each of
them does the same basic thing; some have fancy interfaces with fading transition
effects. If you do a search for “type-ahead suggest Ajax,” you will find plenty of
examples.

 If you look at a few of them, you should see that they all perform the same type
of actions:

1 You type a character.
2 The type-ahead makes a request to the server.
3 It returns data to the client.
4 The client takes that data and displays the results in the table, div, text-

box, or some other format.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Examining type-ahead applications 363
However, there are things that some of the scripts do not handle well. Developers
need to take into consideration bandwidth, server capacity, and the client’s con-
figuration. If you forget about these factors, Ajax may hurt your user’s experience
instead of improving it.

 The problems listed in table 10.1 are very common with Ajax applications.

Many developers tend to forget about bandwidth. Even one user who is filling in a
simple word can post back a number of times. Combine this with a fast typist, and
you can have more hits in a second than you normally would for the user’s entire
session in a non-Ajax application.

 Keeping the user interface responsive is also very important. The more time a
control takes to render, the longer the user has to wait before seeing it, and the
less effective the type-ahead suggest is. Delays can also be introduced by hitting
the server too hard. If requests are made too frequently, or if they return too
much data, the responsiveness of the user interface will suffer.

 A good strategy for improving responsiveness is to cache the data on the client.
(We can also cache data on the server, but that’s another issue, more familiar to
developers of classic web apps.) A type-ahead suggest system will typically return
fewer results as extra characters are typed, and these will often be a subset of ear-
lier results. A simple implementation will discard previous requests and fetch all
data from the server every time. A more intelligent solution might retain the
results of the initial request and whittle away unwanted entries as the user types,

Table 10.1 Problems with type-ahead suggest

Problem Result

Posting back on every
keystroke

Large bandwidth consumption. Imagine the server-side bandwidth required
for 1,000 users typing 10-characters words.

Not caching data Requests are hitting the database each time even though they are return-
ing a subset of data they already have.

The 56K modem Yes, there are still people who dial in, and these users may see a lag in
response time.

Returning too many results Not limiting the results can send too much data to the client, slowing down
response time.

Too fancy an interface Fancy interfaces can be bad if they take a long time to render.

Fast typists Some people can type fast. Certain type-ahead scripts have problems if
the user is not a hunt-and-peck typist.
Licensed to jonathan zheng <yiyisjun@gmail.com>

364 CHAPTER 10
Type-ahead suggest
refreshing the user interface without going back to the server for every keystroke.
This improves the application by increasing responsiveness and reducing the
bandwidth. We’ll just be going through the result set that we have, making it
quicker to pull the necessary information and eliminating the extra postbacks to
the server.

 That’s enough of the theory for now. In the next section, we’ll take a look at a
production-ready implementation of the type-ahead suggest.

10.1.2 Google Suggest

Some people consider Google Suggest to be the cream of the crop of the type-
ahead suggest applications. Google Suggest is fast and user-friendly and does its
job efficiently. In figure 10.1, Google Suggest is giving suggestions for the letter e.

 In figure 10.1, the result set for the letter e is limited to 10 results. Knowing the
vast collection of data Google has, it could be billions of results. Google uses an
algorithm to determine what should be displayed. Developers have dissected
Google’s JavaScript code to figure out how it is accomplishing the task. Remem-
ber, JavaScript code cannot be completely hidden from view, although obfusca-
tion can help.

 One of the impressive things about Google Suggest is that it accounts for fast
typists by using timers to limit multiple postbacks in a short span of time. This
had to be one of Google’s biggest concerns since they have such a large user base.
Lots of postbacks to their servers could lead to problems, and limiting the num-
ber of postbacks saves resources.

Figure 10.1 Google Suggest showing the available suggestions for the letter e
Licensed to jonathan zheng <yiyisjun@gmail.com>

Examining type-ahead applications 365
Google has inspired us (and many others). In the next section, we’ll incorpo-
rate the best of the features we’ve reviewed as we design our own type-ahead
Ajax application.

10.1.3 The Ajax in Action type-ahead
The type-ahead for this application will try to limit the impact on the server as
much as possible. Smaller sites cannot handle the traffic that Google, Amazon,
and Yahoo! can, since they do not have fancy load-balancing and multiple servers
to handle the requests. Therefore, the more bandwidth that can be saved, the
cheaper it is for the smaller websites in the long run.

 To do this, we use the server only when we need new data. In this application,
we use a script-centric interaction between the server and the client. The server
formats the results as JavaScript statements that can be executed on the client.
The data returned by the server contains only the text to display to the user and
any identification field we want to relate with this data. This identification field
can be compared to the value or an option tag. Most scripts do not allow us to
send an ID; this one allows that. Then the browser handles the returned data, as
JavaScript. With the data in the form of JavaScript variables, DHTML takes its
turn in the process. You can see a diagram of this process in figure 10.2.

 The Ajax portion of the script, as shown in figure 10.2, allows us to grab the
data from the server. The server returns a text document containing a JavaScript
statement to the client. The client processes the data contained in the JavaScript
statement and checks to see if there are any results. If there are, the options are
displayed for the user to choose.

 The concept sounds easy until you realize that a large amount of JavaScript is
involved. But with a number of small steps, the process of building a type-ahead
script that minimizes the impact on the server is rather simple. The easiest part
of this project is the server-side code, so that’s a good place to start.

Post form Return results

Server

Browser

Output
resultsHave

data

Limit
results

Inputs
text

Detect
keystroke

Need data

Query database and
process results

Figure 10.2
The system architecture for the
type-ahead suggest
Licensed to jonathan zheng <yiyisjun@gmail.com>

366 CHAPTER 10
Type-ahead suggest
10.2 The server-side framework: C#

The type-ahead suggest that we are about to tackle involves three parts: the
server, the database, and the client. The database could actually be an XML file,
but the same basic concept can be applied.

10.2.1 The server and the database

The server and the database code can be handled at the same time since we are
just going to connect to a database of information. In this example, we will use
Microsoft’s Northwind database and obtain the data from the Products table, but
you can make this work for any database you want.

 The idea behind the XMLHttpRequest object is to be able to send a request
from the client to the server and receive back a formatted data structure. In this
case, we create a text document dynamically with the data that we obtained from a
database query. The text document will hold JavaScript code to create an array
containing the data. You can see the steps for building the JavaScript array in list-
ing 10.1.

private void Page_Load(object sender,
System.EventArgs e)
{
 Response.ContentType = "text/html";
 string strQuery =
 Request.Form.Get("q").ToString();
 string strAny = "";
 if (Request.Form.Get("where").ToLower()
 == "true")
 {
 strAny = "%";
 }
 string strSql = "Select top 15 " +
 "ProductName, " +
 "ProductId FROM Products " +
 "WHERE ProductName like '" +
 strAny + strQuery + "%"
 "' ORDER BY ProductName";
 DataTable dtQuestions = FillDataTable(
 strSql);
 System.Text.StringBuilder strJSArr =
 new System.Text.StringBuilder(
 "arrOptions = new Array(");

Listing 10.1 typeAheadData.aspx.cs

b Initialize code
on page load

c Set content type

d Request form element

e Declare a
string

f Build SQL
statement

g Initialize database query

h Build JavaScript array
Licensed to jonathan zheng <yiyisjun@gmail.com>

The server-side framework: C# 367
 int iCount = 0;
 foreach (DataRow row in
 dtQuestions.Rows)
 {
 if (iCount > 0)
 {
 strJSArr.Append(",");
 }
 strJSArr.Append("[");
 strJSArr.Append("\"" +
 row["ProductName"].ToString()
 + "\",");
 strJSArr.Append("\"" +
 row["Productid"].ToString()
 + "\"");
 strJSArr.Append("]");
 iCount++;
 }
 strJSArr.Append(");");
 Response.Write(strJSArr.ToString());
}

public static DataTable
 FillDataTable(string sqlQuery)
{
string strConn = "Initial Catalog = "+
 "Northwind;Data Source=127.0.0.1; "
 "Integrated Security=true;";
 SqlConnection conn = new
 SqlConnection(strConn);
 SqlDataAdapter cmd1 = new
 SqlDataAdapter();
 cmd1.SelectCommand = new

 SqlCommand(sqlQuery,conn);
 DataSet dataSet1 = new DataSet();
 cmd1.Fill(dataSet1);
 cmd1.Dispose();
 conn.Close();
 return dataSet1.Tables[0];
}

The code in listing 10.1 lets us receive the values from the client and process the
data into a string forming a JavaScript array. This newly created array is returned
to the client where it will be processed. We need to initialize this on the page load
b of the document. The first step when we return the string is to make sure that
the content type of the page is set to text/html c.

i Loop through
results

j Write string to page

1) Execute query
Licensed to jonathan zheng <yiyisjun@gmail.com>

368 CHAPTER 10
Type-ahead suggest
 The client-side code will post the values to this page via the XMLHttpRequest
object. Therefore, we need to request the form element q for the text we are sup-
posed to query d. Unlike most type-ahead suggests, we’ll allow users to find
results in the middle of a word, so we declare a string e to handle this situation.
The client script passes the boolean string within the form element named where.
If it is true, we add a % to the start of our search term to enable searching from
anywhere in the string.

 We can now build the SQL statement f to obtain the values from the database
based on user input. To minimize the impact on the user, we limit the search by
only allowing 15 records to be returned. We can then initialize g our procedure
to query the database 1) and return a data table with the available search results.

 Once the results have been returned from the database, we can start building
the JavaScript array h. We then loop through our record set i, building the
two-dimensional array containing the product name and ID. When the looping
is complete, we write our string to the page j so that our JavaScript statement
can use it.

 If you are using a server-side language that has a code-behind page and an
HTML page, you need to remove all the extra tags from the HTML page. With our
C# page, the only tag that should be on the ASPX page is the following:

<%@ Page Language="c#" AutoEventWireup="false"
Codebehind="TypeAheadXML.aspx.cs" Inherits="Chapter10CS.TypeAheadXML"%>

If we did not remove the extra HTML tags that are normally on the ASPX page by
default, we would not have a valid text (with JavaScript) file, meaning that our
JavaScript DOM methods would not be able to use the data. To ensure that the
data being transferred back to our client is correct, we need to run a quick test.

10.2.2 Testing the server-side code
It is important to test the server-side code when you are working with Ajax since
JavaScript is known for its problems, the causes of which are hard to find.
Improvements have been made with Mozilla’s JavaScript console, but it is always
a good idea to make sure that the server is performing properly to eliminate the
chances of error.

 We have two options for testing the server-side code. Since we will be using the
HTTP POST method with our XMLHttpRequest object, either we have to create a
simple form with two textboxes and submit it to the server-side page, or we can
comment out the lines that check for the form submission and hard-code values
in its place. As you can see in the partial code listing in listing 10.2, the form
request statements are commented out and replaced with hard-coded values.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 369
//string strQuery = Request.Form.Get("q").ToString();
string strQuery = "a";

string strAny = "";
//if (Request.Form.Get("where").ToLower() == "true")
//{
 strAny = "%";
//}

This code is looking for all the words that contain the letter a. Therefore, when
this code is executed, the JavaScript array declaration appears as shown in
figure 10.3.

As you can see, the string in figure 10.3 is correct. Therefore, we can remove the
comments and hard-coded values and continue building the type-ahead suggest.
You may be wondering where all the caching of the data returned from the server
is. The client-side code will handle this. The only time the server will be called is
for the very first keystroke or when the results are greater than or equal to 15.
There is no reason to keep requesting the same data if we are only going to get a
subset of the returned results. Now that we’ve finished the server-side code, let’s
develop the client-side framework.

10.3 The client-side framework

The client-side framework involves Ajax’s XMLHttpRequest object and a good
amount of DHTML. The first thing we tackle is building the textboxes.

10.3.1 The HTML
The HTML we’ll use is very simple since we’re dealing with only three form ele-
ments: two textboxes and a hidden field. The first textbox is the type-ahead sug-
gest form element. The hidden field accepts the value of the selected item that

Listing 10.2 Partial listing for commenting out the request lines for testing

Figure 10.3 JavaScript statement output of the server-side page for a test run
Licensed to jonathan zheng <yiyisjun@gmail.com>

370 CHAPTER 10
Type-ahead suggest
the user picks from our type-ahead suggest. The other textbox does nothing
other than keep our form from posting back to the server when the Enter key is
pressed. The default action of the Enter key in a form with one text field is to sub-
mit the form. Adding another textbox to the page is the easiest way to get around
the default action of the form. If you’re adding the type-ahead suggest on a page
that contains multiple form elements, then you don’t need to add it. The basic
HTML layout is shown in listing 10.3.

<form name="Form1" AUTOCOMPLETE="off" ID="Form1">
 AutoComplete Text Box: <input type="text" name="txtUserInput" />
 <input type="hidden" name="txtUserValue" ID="hidden1" />
 <input type="text" name="txtIgnore" style="display:none" />
</form>

In listing 10.3, we added a form with autocomplete turned off. We need to do this
to prevent the browser from putting values into the fields when the page is first
loaded. It is a great feature when you need it, but in this case it disrupts the flow
for our type-ahead suggest. Note that this is an Internet Explorer–specific fix, to
prevent the built-in autocomplete drop-downs from interfering with our DHTML
drop-down. Other browsers will ignore this attribute.

 We added a textbox with the name txtUserInput, a hidden element with the
name txtUserValue, and our dummy textbox with the name txtIgnore. The
txtIgnore textbox, used to prevent automatic submission of the form, also has
a CSS style applied to it to hide it from view, so the user cannot see it. There
are other ways around this with coding, but this is the easiest and quickest solu-
tion. Now that we have added our text fields to the form, we can start coding
the JavaScript.

10.3.2 The JavaScript

The JavaScript for the type-ahead suggest performs three main tasks:

■ Monitoring the user’s actions on the keyboard and mouse
■ Sending and receiving data from the server
■ Producing HTML content with which the user can interact

Before we start coding, it’s a good idea to see exactly what we’re going to be cod-
ing in action.

Listing 10.3 The basic HTML layout for the type-ahead suggest
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 371
When the user types a letter, a hidden span is made visible with the information
that relates to the typed letter. In figure 10.4, the highlighted letter in all of the
available options is the letter a, which appears in the textbox also. The first
option in the list is highlighted. By pressing the Up and Down Arrow keys, we can
move this selection. Pressing the Enter key allows us to select the option. We can
also select the option by clicking on one of the words from the list with the mouse.

 Because of the complexity of this script, the explanation may seem rather
jumpy, since it involves the use of many functions to perform the type-ahead sug-
gest. One function monitors the keystrokes, another one loads the text and Java-
Script code, a third one builds the list, a fourth one underlines the typed letters,
and so on. You can download the code from Manning’s website so you can follow
along and look at the code in your favorite editor.

Adding the external Ajax JavaScript file
To add Ajax functionality to this application, we must include the external Java-
Script file, net.js (introduced in chapter 3), in the head tag. It contains the Con-
tentLoader object, which allows us to initiate the Ajax request without having to
do all the if-else checking:

<script type="text/javascript" src="net.js"></script>

To add the external file, we add the JavaScript tag and include the src attribute
that specifies the external file. We link to the file just as we would link to an image
or CSS file. This file does all the work of determining how to send the information

Figure 10.4
The output for the type-ahead suggest
for this application
Licensed to jonathan zheng <yiyisjun@gmail.com>

372 CHAPTER 10
Type-ahead suggest
to the server, hiding any browser-specific code behind the easy-to-use wrapper
object. This now allows us to send and retrieve the data from the server without
refreshing the page. With this file attached to our project, we can start to develop
the type-ahead suggest.

The output span
Figure 10.4 shows a gray box that contains all the available options. The box is an
HTML span element that is dynamically positioned to line up directly under the
textbox. Instead of having to add the span to the page every time we want to use
this script, we can add the span to the page from the script.

 In listing 10.4, we create a new span element with DOM on the page load event.
We are inserting a span to the HTML page with an ID of spanOutput and a CSS
class name of spanTextDropdown. The span is then added by appending the new
child element to the body element. The CSS class reference that we added allows
us to assign the rules so that we can position the span dynamically. Since we are
going to be dynamically positioning the span on the screen depending on where
the textbox is located, we set the CSS class of the span to absolute positioning.

window.onload = function(){
 var elemSpan = document.createElement("span");
 elemSpan.id = "spanOutput";
 elemSpan.className = "spanTextDropdown";
 document.body.appendChild(elemSpan);
}

We are using the page onload event handler to allow us to dynamically add a span
element to the page. This prevents us from having to manually add it to the page
every time we want to use this script. The DOM method createElement is used to
create the span. We then need to assign our new span an ID and a className
attribute. Once we add those new attributes, we can append the element to the
page. At this point, let’s create our CSS class (listing 10.5) so that we can dynami-
cally position the element on the page.

span.spanTextDropdown{ position: absolute;
 top: 0px;
 left: 0px;
 width: 150px;
 z-index: 101;

Listing 10.4 The JavaScript code to output the positioned span

Listing 10.5 CSS class for drop-down span
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 373
 background-color: #C0C0C0;
 border: 1px solid #000000;
 padding-left: 2px;
 overflow: visible;
 display: none;
}

The position of the span is initially set to arbitrary positions on the screen by add-
ing the top and left parameters. We set a default width for our span and set the
z-index to be the uppermost layer on the page. The CSS rule also lets us style the
background and border of our span so it stands out on the page. The display
property is set to none so that it is hidden from the user’s view when the page is
initially loaded. As the user starts to input data in the type-ahead text field, the
display property is changed so that we can see the results.

Assigning the type-ahead functionality to a textbox
Because we may want to use the type-ahead functionality on multiple fields, we
should develop a way to have different properties assigned to the various ele-
ments. The properties are used to determine how the script reacts. We set prop-
erties to match text with case sensitivity, match anywhere in the text, use
timeouts, and perform other features we will discuss shortly. One way to do this is
to build an object that contains all the needed parameters that are unique to the
individual textbox. Therefore, when we have the textbox in focus, we can refer-
ence the object that is attached to the element to obtain the correct settings. In
listing 10.6, a new object is created so we are able to organize the list of parame-
ters that we assign to the textbox.

function SetProperties(xElem,xHidden,xserverCode,
 xignoreCase,xmatchAnywhere,xmatchTextBoxWidth,
 xshowNoMatchMessage,xnoMatchingDataMessage,xuseTimeout,
 xtheVisibleTime){
 var props={
 elem: xElem,
 hidden: xHidden,
 serverCode: xserverCode,
 regExFlags: ((xignoreCase) ? "i" : ""),
 regExAny: ((xmatchAnywhere) ? "^" : ""),
 matchAnywhere: xmatchAnywhere,
 matchTextBoxWidth: xmatchTextBoxWidth,
 theVisibleTime: xtheVisibleTime,
 showNoMatchMessage: xshowNoMatchMessage,

Listing 10.6 Building a custom object
Licensed to jonathan zheng <yiyisjun@gmail.com>

374 CHAPTER 10
Type-ahead suggest
 noMatchingDataMessage: xnoMatchingDataMessage,
 useTimeout: xuseTimeout
 };
 AddHandler(xElem);
 return props;
}

The first step in creating our objects for the type-ahead suggest is to create a new
function called setProperties(), which can assign properties to the object. In this
example, we are going to be passing in several parameters to this function. The
list of parameters includes the textbox that the type-ahead is assigned to, the hid-
den element used to hold the value, the URL to the server-side page, a boolean to
ignore case in the search, a boolean to match the text anywhere in the string, a
boolean to match the textbox width, a boolean to show no matching message, the
message to display, a boolean to determine if the options should hide after a
given period of time, and the time span it should remain open.

 This is a large list of parameters to pass into the function. We must take these
parameters and assign them to our object. To do this, we use the JavaScript
Object Notation (JSON), which we describe in more detail in appendix B. The
keyword is defined before the colon, and the value afterward. Our treatment of
two parameters, ignoreCase and matchAnywhere, is slightly more complex. Instead
of storing the boolean value, we store the regular expression equivalent in the
property. In this case, we use i to ignore case and ^ to match the beginning of a
string in regular expressions. It is easier for us to set the regular expression
parameters here instead of using if statements each time the functions are called.

 The last step in our function is assigning the event handlers to the textbox. For
this example, we’ll call a function that adds the event handlers automatically. We
develop the code for the function in a moment, but first let’s call the function
SetProperties() to create our object. The code in listing 10.7 is executed on the
page onload event handler, enabling us to set the properties to the textbox.

window.onload = function(){
 var elemSpan = document.createElement("span");
 elemSpan.id = "spanOutput";
 elemSpan.className = "spanTextDropdown";
 document.body.appendChild(elemSpan);

 document.Form1.txtUserInput.obj =
 SetProperties(document.Form1.txtUserInput,

Listing 10.7 Initializing the script
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 375
document.Form1.txtUserValue,'typeAheadData.aspx',
true,true,true,true,"No matching Data",false,null);
}

The event handlers must be assigned when the page is loading. Therefore, we
need to assign them to the window.onload event handler that we created earlier to
add the new span element. In this example, we are using just one textbox for the
type-ahead. We must reference the form element to which we want to add the
type-ahead suggest and add a new property to it called obj. We will assign our
custom object to this property so we can reference it throughout the script to
obtain our values instead of using global variables.

 We set the reference equal to the function SetProperties(). We then assign all
the parameters that we created in listing 10.6. The important things to point out
are that we are referencing the two form elements we created in listing 10.3 and
we are calling the server-side page typeAheadData.aspx, which we created in list-
ing 10.1. Now that the onload handler is initializing the process, we can add the
event handlers, which our function SetProperties() is calling.

The event handlers
In order for us to determine the user’s actions within the textbox for the type-
ahead suggest, we need to add event handlers to the form. The two main things
to consider are the user’s typing on the keyboard and whether the user has left
the text field. In listing 10.8, we use event handlers to detect the user’s actions.

var isOpera=(navigator.userAgent.toLowerCase().indexOf("opera")!= -1);
 function AddHandler(objText){
 objText.onkeyup = GiveOptions;
 objText.onblur = function(){
 if(this.obj.useTimeout)StartTimeout();
 }
 if(isOpera)objText.onkeypress = GiveOptions;
}

Listing 10.8 begins with a browser-detection statement. The browser detection is
going to be used in a few places in this example since Opera behaves differ-
ently with keypress detection. This is the easiest way to determine if the browser
used is Opera, but it is not always the most reliable way since Opera can act like
other browsers.

Listing 10.8 Attaching the event handlers
Licensed to jonathan zheng <yiyisjun@gmail.com>

376 CHAPTER 10
Type-ahead suggest
 Our function AddHandler() is given a reference to the textbox. This reference
allows us to add the onkeyup and onblur event handlers to the element. The
onkeyup event handler fires a function called GiveOptions() when the key is
released on the keyboard. Therefore, when the user types a five-letter word, the
function GiveOptions is fired five times as the keys are released.

 The onblur event handler that we attach to our textbox calls the function
StartTimeout() when the user removes the focus from the textbox. Actions that
can remove the focus from the textbox include clicking on another part of the
screen or pressing the Tab key. We will be developing the StartTimeout() function
in listing 10.19.

 The reason we did the browser detection for Opera is that it does not fire
the onkeyup event handler in the same manner as the other browsers do. When
onkeyup is fired, Opera does not show the value in the textbox that includes
that current keystroke. Adding the onkeypress event handler to Opera corrects
this problem. You can see that we check for the browser using our boolean vari-
able isOpera, and we then assign our onkeypress event handler to our textbox.
With this event handler, Opera performs in the same way as other browsers.
Since we now are able to detect the user’s typing, we can determine what
actions need to take place in the function GiveOptions().

Handling the user’s keypress
The GiveOptions() function that we are about to create is called when keypress
events are fired. This function has two main jobs: determining the action to take
depending on the keystroke, and determining whether we need to use Ajax to
obtain the data from the server or use the data we already have. Therefore, the
GiveOptions() function is performing the same role as the data caching that we
discussed in section 10.1.1. By using client-side code to handle the additional
keystrokes, we are decreasing the bandwidth consumption of the type-ahead
suggest. To implement our cache of options, let’s set some global variables on
the client. The code in listing 10.9 contains a list of global variables that we
need to start with.

var arrOptions = new Array();
var strLastValue = "";
var bMadeRequest;
var theTextBox;
var objLastActive;

Listing 10.9 Global variables used throughout the project
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 377
var currentValueSelected = -1;
var bNoResults = false;
var isTiming = false;

The first global variable is arrOptions. This variable references an array that
holds all the available options from the server query. The next variable is str-
LastValue, which holds the last string that was contained in the textbox. The vari-
able bMadeRequest is a boolean flag that lets us know that a request has already
been sent to the server so we do not keep sending additional requests. The flag is
meant for very fast typists, so we do not have to worry about using timeouts as
Google does.

 The variable theTextBox will hold a reference to the textbox that the user has
in focus, whereas objLastActive will hold the reference to the last active textbox.
This is used to determine whether the data set needs to be refreshed if the user
switches textboxes. While there is only one visible textbox on our example, if this
solution is implemented on a window with multiple textboxes, we need to know
which one has the focus. The next variable, currentValueSelected, will act like
the selectedIndex of a select list. If the value is -1, nothing is selected. The final
global variable that we need right now is a boolean bNoResults. This will tell us
that there are no results, so we should not bother trying to find any. The variable
isTiming allows us to determine whether a timer is running on the page. The
timer runs to hide the options from the user’s view if there is a period of inactivity.

 Even though you might not completely understand what these global vari-
ables’ roles are at this time, you’ll understand better when we start using them.
With all our global variables referenced, we can build the GiveOptions() function,
which is called from the keystrokes in the textbox. The GiveOptions() function in
listing 10.10 lets us determine the action the user has performed in the textbox.

function GiveOptions(e){
 var intKey = -1;
 if(window.event){
 intKey = event.keyCode;
 theTextBox = event.srcElement;
 }
 else{
 intKey = e.which;
 theTextBox = e.target;
 }

Listing 10.10 The JavaScript code that detects the user’s keypresses

b Detect the
keypress
Licensed to jonathan zheng <yiyisjun@gmail.com>

378 CHAPTER 10
Type-ahead suggest
 if(theTextBox.obj.useTimeout){
 if(isTiming)EraseTimeout();
 StartTimeout();
 }

 if(theTextBox.value.length == 0
 && !isOpera){
 arrOptions = new Array();
 HideTheBox();
 strLastValue = "";
 return false;
 }

 if(objLastActive == theTextBox){
 if(intKey == 13){
 GrabHighlighted();
 theTextBox.blur();
 return false;
 }
 else if(intKey == 38){
 MoveHighlight(-1);
 return false;
 }
 else if(intKey == 40){
 MoveHighlight(1);
 return false;
 }
 }

 if(objLastActive != theTextBox ||
 theTextBox.value
 .indexOf(strLastValue) != 0 ||
 ((arrOptions.length==0 ||
 arrOptions.length==15)
 && !bNoResults) ||
 (theTextBox.value.length
 <= strLastValue.length)){

 objLastActive = theTextBox;
 bMadeRequest = true
 TypeAhead(theTextBox.value)
 }
 else if(!bMadeRequest){
 BuildList(theTextBox.value);
 }
 strLastValue = theTextBox.value;
}

c Reset the
timer

d Determine if
text exists

e Determine
function
keys

f Handle
keypress
action

g Save user input
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 379
If the user is typing a word, either this function will start a new search, checking
the server for matching data, or it will work with the cached result set. If we do not
need to get new data from the server, then we can call a BuildList() function,
which will limit the result set. We explain more about that in the section “Building
the results span,” later in this chapter.

 The GiveOptions() function is declared with the parameter e, which allows us
to detect the source of the event. The first thing we need to declare is a local vari-
able intKey. This variable holds the code of the key that the user pressed b. To
determine which key was pressed, we must determine what method the user’s
browser needs to function. If the window.event property is supported, then we
know the browser is IE. We use event.keyCode to obtain the key code value, and
we also use event.srcElement to get the object of the user’s textbox. For the other
browsers, we use e.which to obtain the key code value and e.target to obtain the
textbox object reference.

 We then need to check whether the textbox is using a timer to hide the textbox
c. To do so, we reference the textbox’s obj property (which we created earlier)
and the boolean useTimeout. If the timer is running, we cancel it and then restart
it by calling the functions EraseTimeout() and StartTimeout(), which we will code
in the section “Using JavaScript timers.”

 We then check to see if anything is in the textbox d. If nothing is there, we call
a HideTheBox() function (which is developed in the section “Setting the selected
value”), set the strLastValue to null, and return false to exit the function. If the
textbox contains text, then we can continue. Before we can detect the Enter key
and arrow keys, we need to verify that the current active textbox is the same text-
box as the last textbox that was active.

 The first key to detect is the Enter key, which has a key code of 13 e. The
Enter key will allow us to grab the value of the selected drop-down item and place
it into the visible textbox. Therefore, we call a GrabHighlighted() function (which
we will also code in the section “Setting the selected value”). We then remove the
focus from the textbox and exit the function.

 The next two keys we want to capture are the Up and Down Arrow keys, which
have the values 38 and 40, respectively. The arrow keys move the highlighted
option up and down the list. In figure 10.4, the dark gray bar is the selected item.
By using the Down Arrow key, you can select the next item in the list. This func-
tionality will be discussed in the section “Highlighting the options.” The impor-
tant thing to note is that the Down Arrow key sends a value of 1 to the function
MoveHighlight(), while the Up Arrow key sends -1.
Licensed to jonathan zheng <yiyisjun@gmail.com>

380 CHAPTER 10
Type-ahead suggest
 If no special key was pressed, then we check to see if we should hit the server to
obtain the values or use the list that we already obtained from the server f. Here
again we are using the caching mechanism of this script to limit the postbacks
and reduce the load on the server. We can perform a couple of checks to see if we
have to get new results. The first check is to determine whether or not the last
active textbox is the textbox that currently has the focus. The next check is to
make sure that the text the user typed into the textbox is the same as last time
with only an addition at the end. If there are no results or our result set has 15 ele-
ments or less, then we need to check the server for data. The last check is to make
sure that the current value’s length is greater than the last value. If any of these
checks pass, then we need to obtain new data from the server. We set the
objLastActive with the current textbox. We then set a boolean saying that a
request has been sent so we do not perform multiple requests, and we call our
function TypeAhead() to grab the values.

 Then we set the current string in the textbox to the last-known string g. We’ll
use that value again to see if we need to request data from the server on the next
keystroke. This brings us to accessing the server to obtain the data.

10.3.3 Accessing the server

The XMLHttpRequest object allows us to transfer the text from the textbox to the
server and to receive the results from the server. In this case, we are posting the
data to the server since the server-side page we created in listing 10.1 is referenc-
ing the elements submitted in a form. We must specify in our ContentLoader the
location of the page on the server, the function to call when it is completed, and
the form parameters to be submitted to the form, as shown in listing 10.11.

function TypeAhead(xStrText){
 var strParams = "q=" + xStrText +
 "&where=" + theTextBox.obj.matchAnywhere;
 var loader1 = new net.ContentLoader(
 theTextBox.obj.serverCode,
 BuildChoices,null,"POST",strParams);
}

When we called the function TypeAhead() from the function GiveOptions(), we
passed the current string value from the textbox to perform the search. We need
to build the parameter string, strParams, that contains our textbox string value

Listing 10.11 Ajax functionality to send data back to the server
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 381
and also the matchAnywhere boolean value. Both of these were used in listing 10.1
to develop the results. Then we start to load the document by calling the Content-
Loader. We are sending the URL of the server-side page and the JavaScript func-
tion to call when the results are returned as the first two parameters in the
ContentLoader. The third parameter is null since we want to ignore any error
messages. Ignoring the errors allows the type-ahead to act like a normal text
field. The last two properties inform the ContentLoader to post the data to the
server and send the form parameters contained in the string strParams.

 When the results are returned from the server, the function BuildChoices() is
called to allow us to finish the processing of the data on the client. When we
developed the server-side code, we returned the results as a two-dimensional
JavaScript array. This array contained the option’s text-value pairs for the
choices. However, in the response, it is just a string of characters. We need to take
this returned string and make it accessible as a JavaScript array. Listing 10.12
contains the functionality that executes the information returned from our Con-
tentLoader using the eval() method.

function BuildChoices(){
 var strText = this.req.responseText;
 eval(strText);
 BuildList(strLastValue);
 bMadeRequest = false;
}

The responseText property of the returned request object lets us obtain the text
from the Ajax request. To allow this returned string to be used by our JavaScript
code, we need to use the eval() method. The eval() method evaluates the string
contained within its parentheses. In this case, it recognizes that the string is a
variable declaration to make a new array. It processes the array so that we can
access it. If we were just to write the string to the page, it would not be accessible
to the JavaScript statement. Developers frown on using the eval() method since
it is known to be slow. However, in this case we are eliminating the need to loop
through an XML document on the client to obtain the values. Now we can call the
function BuildList() to format and display the returned results. We also want to
set our boolean bMadeRequest to false to inform the rest of the script that the
request to the server is complete.

Listing 10.12 Transforming the responseText property to a JavaScript array
Licensed to jonathan zheng <yiyisjun@gmail.com>

382 CHAPTER 10
Type-ahead suggest
Building the results span
The use of JavaScript to manipulate the current document is normally consid-
ered to be DHTML. In this example, we are taking a two-dimensional array and
turning it into lines of text on the screen. Looking back at figure 10.4, we see a list
of words that have a portion of their text underlined. The underlined text is the
text that matches what the user entered. We are going to display those words in
the span element.

 The BuildList() function that we create in listing 10.13 utilizes a series of
three functions. The functions include finding the matched words, setting the
position of the span, and formatting the results with the underline.

function BuildList(theText){
 SetElementPosition(theTextBox);
 var theMatches = MakeMatches(theText);
 theMatches = theMatches.join().replace(/\,/gi,"");
 if(theMatches.length > 0){
 document.getElementById("spanOutput")
 .innerHTML = theMatches;
 document.getElementById(
 "OptionsList_0").className =
 "spanHighElement";
 currentValueSelected = 0;
 bNoResults = false;
 }
 else{
 currentValueSelected = -1;
 bNoResults = true;
 if(theTextBox.obj.showNoMatchMessage)
 document.getElementById(
 "spanOutput").innerHTML =
 "" +
 theTextBox.obj
 .noMatchingDataMessage +
 "";
 else HideTheBox();
 }
}

The function BuildList() in listing 10.13 takes the string the user entered and
formats the results. The first thing we need to do is dynamically position the span
element directly under the textbox from which the type-ahead is being imple-
mented. To do this, we call the function SetElementPosition() (which we develop

Listing 10.13 Formatting the results into a displayable format

Set element position
Format matches

Show
results

Show no
matches
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 383
in the section “Dynamically setting an element’s position”). After we position the
span element, we can start to manipulate the array to find the matches by using
the MakeMatches() function (see the section “Using regular expressions”). This
function returns an array that contains only the information that matches the
user’s input. We are using JavaScript to limit the results on the client rather than
requiring the processing to be done on the server like most of the type-ahead
applications available online.

 The MakeMatches() function formats the results and returns them as an array.
We then turn this array into a string by using the join method. If the length of the
string is greater than 0, then we can display the results in a span by setting its
innerHTML property. Then we select the first element in the list and set its class-
Name so it is highlighted.

 If the returned array contains no data, then we display our “no matches” mes-
sage if the textbox allows it. We make sure that we set the currentSelectedValue
to -1 so we know there are no matches. If no message is to be displayed, then we
just hide the box.

 We’ve finished the BuildList() function, so now we have to create all the func-
tions that it calls. The first one we’ll tackle is SetElementPosition().

Dynamically setting an element’s position
The input textbox is positioned on the page by the browser's layout engine. When
we construct the DHTML drop-down suggest, we want to place it exactly in line
with the textbox. One of our most difficult tasks is finding the position of a non-
positioned element, in this case the textbox, so that we can compute the drop-
down’s coordinates. A nonpositioned element is one that is relatively set on the
page without specifying the absolute left and top positions. If we reference the left
and top positions for our textbox, we’ll get an undefined string returned. There-
fore, we need to use some JavaScript to determine the position of our element so
that our box of choices lines up directly underneath it. In listing 10.14, we are
dynamically positioning the span element to line up under our textbox.

function SetElementPosition(theTextBoxInt){

 var selectedPosX = 0;
 var selectedPosY = 0;
 var theElement = theTextBoxInt;
 if (!theElement) return;
 var theElemHeight = theElement.offsetHeight;
 var theElemWidth = theElement.offsetWidth;

Listing 10.14 Dynamically finding the position of a nonpositioned element
Licensed to jonathan zheng <yiyisjun@gmail.com>

384 CHAPTER 10
Type-ahead suggest
 while(theElement != null){
 selectedPosX += theElement.offsetLeft;
 selectedPosY += theElement.offsetTop;
 theElement = theElement.offsetParent;
 }
 xPosElement = document.getElementById("spanOutput");
 xPosElement.style.left = selectedPosX;
 if(theTextBoxInt.obj.matchTextBoxWidth)
 xPosElement.style.width = theElemWidth;
 xPosElement.style.top = selectedPosY + theElemHeight
 xPosElement.style.display = "block";
 if(theTextBoxInt.obj.useTimeout){
 xPosElement.onmouseout = StartTimeout;
 xPosElement.onmouseover = EraseTimeout;
 }
 else{
 xPosElement.onmouseout = null;
 xPosElement.onmouseover = null;
 }
}

In listing 10.14, we declare our function SetElementPosition(), which accepts
one parameter: the textbox object reference. Two local variables, selectedPosX
and selectedPosY, are set to 0. These two integers are used to calculate the posi-
tion of the element. The textbox reference is set into another local variable. The
textbox’s width and height are obtained by referencing the offsetHeight and
offsetWidth properties.

 A while loop is used to loop through the document tree. The document tree
allows us to obtain the X and Y positions of the element relative to its parent. By
looping through each positioned parent, we can find the exact position of the ele-
ment by adding the offset position to the two local variables that we created.

 Once we obtain the position of the textbox, we can retrieve the span’s object
reference, which is used to set the left and top positions of the drop-down suggest
element. We then look at the textbox’s obj object that we created to see if its width
property is supposed to match the width of the textbox. If the boolean is true,
then we set the width of the span. If the boolean is false, the width comes from
the value specified in the stylesheet. The last step is to change the visibility of the
span so it is not hidden from the user’s view any more. We do this by setting the
display property to block.

 Now that our span is adequately positioned and visible to the user, we can
develop the code that fills in the selectable option’s content.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 385
Using regular expressions
Since we are going to be searching for string segments, regular expressions are
one of the best ways to find matches with added flexibility. The MakeMatches()
function that we create next allows us to find the words in the options list that
match the user’s text in the textbox. This means we can avoid a trip to the server
after every keystroke, since the function narrows the choices for us. The code in
listing 10.15 lets us save bandwidth by limiting our result set.

var countForId = 0;
function MakeMatches(xCompareStr){

 countForId = 0;
 var matchArray = new Array();
 var regExp = new RegExp(theTextBox.obj.regExAny +
 xCompareStr,theTextBox.obj.regExFlags);
 for(i=0;i<arrOptions.length;i++){
 var theMatch = arrOptions[i][0].match(regExp);
 if(theMatch){
 matchArray[matchArray.length]=
 CreateUnderline(arrOptions[i][0],
 xCompareStr,i);
 }
 }
 return matchArray;
}

We create the function MakeMatches(), which accepts one parameter: the string
the user entered. We then reset the variable countForId to 0 and create a local
array variable matchArray. (Note that countForId is a global variable. That keeps
the example simple for now. We’ll do away with it in the refactoring section later!)
The key to this function is creating a regular expression that finds the options
that match the user’s input. Since we have already determined the parameters for
the regular expression when we created the code in listing 10.6, we just need to
reference our textbox’s object. We add the property reqExAny, which allows us to
match at the beginning of or anywhere in the string. The regExFlags property
lets us determine whether to ignore the case when performing the matches.

 With the regular expression completed, we loop through the array arrOptions
to verify that the options in the array match our regular expression. If they
match, then we add the text to our array matchArray after we call the function
CreateUnderline(). CreateUnderline() formats the code to be displayed.

Listing 10.15 Using regular expressions to limit results
Licensed to jonathan zheng <yiyisjun@gmail.com>

386 CHAPTER 10
Type-ahead suggest
 After we loop through all the elements in our array, we return the matched
options to the main function BuildList(), where the matches are displayed to the
user. MakeMatches() provides the caching mechanism that we talked about earlier.
Instead of returning to the server to limit the search for every keystroke, regular
expressions allow us to limit the available options to the user. The CreateUnder-
line() function is the last step in formatting the results.

Manipulating strings
The final step for formatting the strings so that the user can view and interact
with them is to manipulate the string so that it is contained within a span tag, has
an underline under the matching text, and has the onclick event handler
attached to it so we can select it with the mouse. This section uses regular expres-
sions again to build the formatted string, as you can see in listing 10.16.

var undeStart = "";
var undeEnd = "";

var selectSpanStart = "<span style='width:100%;display:block;'
 class='spanNormalElement' onmouseover='SetHighColor(this)' ";
var selectSpanEnd ="";

function CreateUnderline(xStr,xTextMatch,xVal){
 selectSpanMid = "onclick='SetText(" + xVal + ")'" +
 "id='OptionsList_" +
 countForId + "' theArrayNumber='"+ xVal +"'>";
 var regExp = new RegExp(theTextBox.obj.regExAny +
 xTextMatch,theTextBox.obj.regExFlags);
 var aStart = xStr.search(regExp);
 var matchedText = xStr.substring(aStart,
 aStart + xTextMatch.length);
 countForId++;
 return selectSpanStart + selectSpanMid +
 xStr.replace(regExp,undeStart +
 matchedText + undeEnd) + selectSpanEnd;
}

In listing 10.16, we define two variables to hold strings that are used to insert a
CSS class around the portion of text that matches the string. This allows us to style
the text easily. The first variable, undeStart, holds our start span tag, while the
second variable, undeEnd, holds the closing span tag.

Listing 10.16 Performing string manipulation with JavaScript
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 387
 The next two variables form the container for the entire string. This container
lets us manipulate the background color and determine whether the cell is
clicked on. You can see that in the variable selectSpanStart, we added a mouse-
over to highlight the cell. The selectSpanEnd variable is just the closing tag for
the span.

 Our function CreateUnderline() is called by the MakeMatches() function that
we just coded. MakeMatches() passes in three parameters: the string the user
entered, the option’s text, and the option’s value. With the passed-in data, we can
develop the onclick handler and add an ID for the span. The onclick handler
allows us to select the option, and the ID allows us to use DOM to select the option
from the list.

 We use a regular expression again to match the text typed by the user. This is
so that we can insert the underline spans we created in the string. The search
method is used to determine where the match is located in the string. After we
find the location of the string, we can obtain the substring so that we can keep the
original formatting. Our counter countForId is incremented, and we return our
formatted string by joining together all the span elements that we created. The
returned text is now formatted, but we still need to finish the CSS classes we
added to the span elements.

 The span elements were assigned CSS class names, so we do not have to man-
ually go into the JavaScript code to change certain properties of the text. This
allows us to fit the autocomplete textbox into any color scheme by simply chang-
ing these few CSS rules:

span.spanMatchText{ text-decoration: underline;
 font-weight: bold; }
span.spanNormalElement{ background: #C0C0C0; }
span.spanHighElement{ background: #000040;
 color: white;
 cursor: pointer; }
span.noMatchData{ font-weight: bold;
 color: #0000FF; }

Remember that in figure 10.4 the matching text was bold and underlined. You
can see those two properties listed in the CSS rule span.spanMatchText. The span
default style is represented with span.spanNormalElement, which contains a gray
background color. The selected item is applied the CSS rule span.spanHigh-
Element. By looking back at that figure you can see that the background color is
dark gray and the text color is white. The cursor is also changed to a pointer, so
the user knows she can select that option with the mouse. We can add more prop-
erties to any of the elements, such as fonts, sizes, borders, and so on. Now that we
Licensed to jonathan zheng <yiyisjun@gmail.com>

388 CHAPTER 10
Type-ahead suggest
have built the stylesheet rules, we have finished working with outputting the
results. All that is left is handling the Enter and arrow keys and creating our timer
(which hides the options in case of inactivity).

Highlighting the options
Earlier in the chapter, we captured the keypresses of the Up and Down Arrow
keys so that the user could move the selectedIndex up or down without having
to use her mouse. The arrow keys send us either 1 (to move down the selection)
or –1 (to move up the selection). When we move a selection, we apply CSS classes
to the span elements. We are also adjusting the global variable currentValue-
Selected so that it holds our current index. The MoveHighlight() function in list-
ing 10.17 gives us a richer user interface since it interacts with both the mouse
and the keyboard.

function MoveHighlight(xDir){
 if(currentValueSelected >= 0){
 newValue = parseInt(currentValueSelected) + parseInt(xDir);
 if(newValue > -1 && newValue < countForId){
 currentValueSelected = newValue;
 SetHighColor (null);
 }
 }
}

function SetHighColor(theTextBox){
 if(theTextBox){
 currentValueSelected =
 theTextBox.id.slice(theTextBox.id.indexOf("_")+1,
 theTextBox.id.length);
 }
 for(i = 0; i < countForId; i++){
 document.getElementById('OptionsList_' + i).className =
 'spanNormalElement';
 }
 document.getElementById('OptionsList_' +
 currentValueSelected).className = 'spanHighElement';
}

The MoveHighlight() function enables the user to use the Up and Down Arrow
keys to make a selection. The function accepts one parameter, xDir, symbolizing
the direction in which the highlight should be moved. The first check verifies that
we have options to select. If there are options, we can obtain the new value. We

Listing 10.17 Changing the CSS class names of elements with JavaScript
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 389
verify that the new value is within the range of the selection. If it is, we set
currentValueSelected and proceed to the next function, SetHighColor(), to
highlight the new selection.

 SetHighColor() is called from two different events: the arrow keys and the
onmouseover event handler. This function is called to remove the highlight from
the last selected option and add it to the new option that has been chosen. The
onmouseover event in listing 10.16 passes in the object of the span; therefore, we
need to obtain the index number of the span by ripping apart the ID. The arrow
keys pass this value, so we are not required to perform this action since the move-
Highlight() function already set currentValueSelected.

 We loop through all of the span tags and set their CSS class to spanNormal-
Element. This resets their appearance to their nonselected state. After the looping
is completed, we add the CSS class to the selected option. With the two functions
that we just created, we have given the user the ability to select an option with
either the mouse or the keyboard. All that is left is to take this selected value and
add it to the textbox.

Setting the selected value
The purpose of the type-ahead suggest is to allow the users to select available
options to limit the amount of effort required to fill in a form field. In order to do
this, we need to take the index of the item that the user selected and set the text to
the textbox and the value to the hidden text field. These three functions in
listing 10.18 allow our span element to act like an HTML select element.

function SetText(xVal){
 theTextBox.value = arrOptions[xVal][0]; //set text value
 theTextBox.obj.hidden.value = arrOptions[xVal][1];
 document.getElementById("spanOutput").style.display = "none";
 currentValueSelected = -1; //remove the selected index
}

function GrabHighlighted(){
 if(currentValueSelected >= 0){
 xVal = document.getElementById("OptionsList_" +
 currentValueSelected).getAttribute("theArrayNumber");
 SetText(xVal);
 HideTheBox();
 }
}

Listing 10.18 Handling the arrow keys and mouse click events
Licensed to jonathan zheng <yiyisjun@gmail.com>

390 CHAPTER 10
Type-ahead suggest
function HideTheBox(){
 document.getElementById("spanOutput").style.display = "none";
 currentValueSelected = -1;
 EraseTimeout();
}

The function that allows us to obtain the text and value of the selected item is
GrabHighlighted(). First we need to see if the user has selected a value. If a value
is selected, then we obtain the index number of the arrOptions array in which the
text resides. To do this, we grab the value from the attribute, theArrayNumber, that
we set earlier. Then, we call the function SetText() to set the selected option’s
text and value into their respective form elements.

 SetText() uses the index value passed in as a parameter to index the array
arrOptions. The visible text the user sees is set by indexing the first index of the
array. The hidden form element receives the second index value stored in our
array. After we retrieve the values, we remove the option list from the screen by
calling our function HideTheBox().

 HideTheBox() allows us to remove the span, spanOutput, from the view. To do
this, we reference the span and set its style.display property to none. We
remove the selected index by setting the variable currentValueSelected to –1.
Any timers that we may have set are removed by calling EraseTimeout(), which
we develop next.

Using JavaScript timers
This is the final JavaScript section before the type-ahead project is complete, so
your brain may be hurting from all of this client-side code. The JavaScript’s set-
Timeout() method executes a statement after an elapsed time has passed. The
elapsed time is specified in milliseconds, which we added to the object we created
back in listing 10.6. The reason for using a timer is to hide the selection span if
there is an inactive timeout period. If we set the parameter in our object useTim-
eout to true, then this function will be called. The timer in listing 10.19 gives us
one more feature for a rich user interface.

function EraseTimeout(){
 clearTimeout(isTiming);
 isTiming = false;
}
function StartTimeout(){

Listing 10.19 Attaching and removing timing events
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side framework 391
 isTiming = setTimeout("HideTheBox()",
 theTextBox.obj.theVisibleTime);
}

The function StartTimeout() sets the timer when the function is executed. We
initialize the timer by setting the variable isTiming to the setTimeout method.
The setTimeout method should call the function HideTheBox() after the set time
span, indicated by theVisibleTime.

 The only other thing we have to do is to remove the timeout. To cancel it, we
create the EraseTimeout() function that uses JavaScript’s built-in clearTime-
out() function for preventing HideTheBox() from firing. We set our boolean
isTiming to false.

 Upon finishing that last line of code, we can now run the type-ahead suggest
project! Save the project, open it, and start typing in a word. Figure 10.5 shows
the progression of the type-ahead suggest. The first letter, s, returned more than
15 options. The second letter, h, reduced the list to five options. The third letter,
o, reduced the list to one, which we selected by pressing the Enter key. By adding
this project to any form, you can increase the efficiency of your users so they do
not have to type in entire words.

Figure 10.5 The progression of the type-ahead project
Licensed to jonathan zheng <yiyisjun@gmail.com>

392 CHAPTER 10
Type-ahead suggest
10.4 Adding functionality:
multiple elements with different queries

With the way that we designed the script, we can have multiple type-ahead select
elements on the page. We just need to add declarations with new calls to Set-
Properties() for each element. The downside to this method is that in order to
have different values fill in the drop-down, we would have to reference different
server-side pages. In most cases we will be fine with this, but the only difference
between these methods is most likely the SQL statement.

 We can come up with an elaborate solution to this problem by adding an addi-
tional parameter to our custom object and sending it to the server. Another
option is to work with what we have now so that we can make a minimum number
of changes to our code. In this case, the simple solution involves changing one
line in our code and adding an if statement on the server-side code.

 The goal is to be able to somehow differentiate between the elements on the
server to determine which element has caused the postback. A simple way to tell
the difference is to use the name that is on the element. In this case, we’ll refer-
ence the name of our textbox. In listing 10.20, we alter the parameter string to
allow for this new functionality.

function TypeAhead(xStrText){
 var strParams = "q=" + xStrText + "&where=" +
 theTextBox.obj.matchAnywhere + "&name=" + theTextBox.name;
 var loader1 = new net.ContentLoader(theTextBox.obj.serverCode,
 BuildChoices,null,"POST",strParams);
}

By making the slight change to the variable strParams in the function Type-
Ahead(), we are passing the name of the textbox in the form parameters being
passed to the server. That means we can reference this value on the server and use
either an if-else or a case statement to run a different query. Now we do not
need multiple pages for multiple elements.

10.5 Refactoring

Now that we’ve developed a fairly robust set of features for providing type-
ahead suggest capabilities, it’s time to think about how to package all of this
functionality in a more palatable way for the consuming web developer. What

Listing 10.20 Altering the TypeAhead() function to allow for different queries
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 393
we’ve developed to this point provides the functionality needed for the suggest
behavior, but it has some drawbacks in terms of the work required for a devel-
oper to plug it into a web page—or 20 to 30 web pages, for that matter.

 So let’s imagine for a moment that we are the grand architect of an Ajax-based
web framework and we’ve been assigned the task of writing a suggest component
for the rest of the company to use. As the requirements-gathering meeting dis-
perses, we’re handed a sheet giving us our loose set of functional requirements.
Unsure of what we’re getting into, we glance down at the list (table 10.2).

As we survey the list, several thoughts run through our head. Okay, first of all, the
powers that be don’t seem understand the concept of a priority. But we’re fairly
used to that, so we look to the heart of the matter—the requirements. And despite
all our hard work, we’ve satisfied less than half of them. Our script is already
done, so that satisfies number 7 in the sense that we don’t need to reduce the
effort because the script is already implemented. Obviously requirement 8 is sat-
isfied for the same reason. Our script supports multiple browsers, so number 6 is

Table 10.2 Our functional requirements

Number Requirement Description Priority

1 The component must work with existing HTML markup without requiring any changes
to the markup. Simple changes to the head section to inject the component’s behav-
ior are acceptable.

1

2 The component must support being instantiated multiple times on the same page
with no additional effort.

1

3 Each component instance should be independently configurable, in terms of both
the behavioral aspects (e.g., case matching, match anywhere) and the CSS styling.

1

4 The component should not introduce any global variables. The company uses third-
party JavaScript libraries, and the global namespace is already cluttered. Any global
names, with the exception of the component itself, are strictly prohibited.

1

5 The component should provide reasonable defaults for all of the configuration
options.

1

6 The component must work in IE and Firefox. 1

7 The component should use an open source framework to reduce the amount of cod-
ing effort required and improve the quality and robustness of the solution.

1

8 Oh, and if you can, get it done by the end of the week. 1
Licensed to jonathan zheng <yiyisjun@gmail.com>

394 CHAPTER 10
Type-ahead suggest
covered as well. As for the rest, we’ve got some work to do. We have only a week,
so we’d better get started.

10.5.1 Day 1: developing the TextSuggest component game plan

The first thing to decide is how to boost productivity to accommodate the short
time schedule. One of the best ways to do this is by leveraging the work of others.
If someone else can do some of the work, that’s less for us to do. So for this com-
ponent, we’re going to leverage the open source efforts of Rico (http://open-
rico.org) and by extension Prototype.js (http://prototype.conio.net/). Rico provides
some Ajax infrastructure, effects, and utility methods that will boost our develop-
ment speed. Prototype provides some infrastructure for nice syntactic idioms
that will make our code look cleaner and also take less time to develop. Let’s take
a look at the implications of using Prototype and Rico.

Prototype
Prototype provides developers with a few extensions to the core JavaScript object
as well as a few functions that make for a nice coding style. Here are the ones we’ll
use in this example:

The Class object
The Class object introduced in the Prototype library has a single method called
create(), which has the responsibility of creating instances that can have any
number of methods. The create() method returns a function that calls another
method in the same object named initialize(). It sounds complicated from the
inside, but in practical use, it is straightforward. What this effectively does is cre-
ate a syntactical way for specifying types in JavaScript. The idiom is as follows:

 var TextSuggest = Class.create();

 TextSuggest.prototype = {

 initialize: function(p1, p2, p3) {
 },
 ...
 };

This segment of code creates what we can think of as a “class” (even though the
language itself doesn’t support such a concept) and defines a constructor func-
tion named initialize(). The client of the component can create an instance via
this line of code:

 var textSuggest = new TextSuggest(p1, p2, p3);

Called during construction
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 395
The extend() method
The Prototype library extends the JavaScript base object and adds a method to it
named extend(), thus making this method available to all objects. The extend()
method takes as its parameters two objects, the base object and the one that will
extend it. The properties of the extending object are iterated over and placed
into the base object. This allows for a per-instance object extension mechanism.
We’ll exploit this later when we implement the default values of the configurabil-
ity parameters of the TextSuggest component.

The bind/bindAsEventListener() method
The Prototype library also adds two methods to the Function object called bind()
and bindAsEventListener(). These methods provide a syntactically elegant way
to create function closures. You will recall other examples where we created clo-
sures, such as

 oThis = this;
 this.onclick = function() { oThis.callSomeMethod() };

With the bind() method of Prototype, this can be expressed more simply as

 this.onclick = this.callSomeMethod.bind(this);

The bindAsEventHandler() API passes the Event object to the method and nor-
malizes the differences between IE and the W3C standard event model to boot!

The $ method—syntactic sugar
A little-known fact about JavaScript is that you can name methods with certain
special characters, such as the dollar sign ($). The Prototype library did just that
to encapsulate one of the most common tasks in DHTML programming, namely,
getting an element out of the document based on its ID. So, in our code we will be
able to write constructs such as

 $('textField').value = aNewValue;

rather than

 var textField = document.getElementById('textField')
 textField.value = aNewValue;

Rico
We got Prototype for free by virtue of using Rico. Let’s talk about what we’ll be
using from Rico. Rico has a rich set of behaviors, drag-and-drop capability, and
cinematic effects, but since we are writing a component that uses a single text
field, we won’t need most of these. What we will be able to use, however, is a nice
Licensed to jonathan zheng <yiyisjun@gmail.com>

396 CHAPTER 10
Type-ahead suggest
Ajax handler and some of the utility methods provided by Rico. We will discuss
the utility methods of Rico as the example progresses, but first let’s take a
moment to discuss the Rico Ajax infrastructure.

 The Rico Ajax capabilities are published via a singleton object available to the
document named ajaxEngine. The ajaxEngine API provides support for register-
ing logical names for requests as well as for registering objects that know how to
process Ajax responses. For example, consider the following:

 ajaxEngine.registerRequest('getInvoiceData',
 'someLongGnarlyUrl.do');
 ajaxEngine.registerAjaxObject('xyz', someObject);

The first line registers a logical name for a potentially ugly Ajax URL. This logical
name can then be used when sending requests rather than having to keep track of
the aforementioned ugly URL. An example is shown here:

ajaxEngine.sendRequest('getInvoiceData', request parameters...);

The registerRequest() method isolates the usage of URLs to a single location,
usually in the onload of the body element. If the URL needs to be changed, it can
be changed at the point of registration without affecting the rest of the code.

 Then registerAjaxObject() illustrates the registration of an Ajax handling
object. The previous example implies that the object reference someObject should
be referred to in responses by the logical name xyz and be set to handle Ajax
responses via an ajaxUpdate() method.

 Given that these functionalities of the ajaxEngine object are used, the only
thing left to consider is the XML response expected by the Ajax engine. This is
somewhat different from the dynamically generated JavaScript returned by the
previous version of this example, but Rico expects to see XML. The response should
have a top-level element around all of the <response> elements named <ajax-
response>. Within that element, the server can return as many <response> ele-
ments as required by the application. This is a nice feature, as it allows the server
to return responses handled by different objects that update potentially unrelated
portions of a web page—for example, to update a status area, a data area, and a
summary area. The XML response for the previous example is shown here:

<ajax-response>

 <response type="object" id="xyz">
 ... the rest of the XML response as normal ...
 </response>
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 397
 <response...> more response elements if needed..
 </response>

</ajax-response>

This XML indicates to the ajaxEngine that an object registered under the identi-
fier xyz should handle this response. The engine finds the object registered
under the name xyz and passes the content of the appropriate <response> ele-
ment to its ajaxUpdate() method.

 Well, it was a short day overall. We spent some time researching open source
frameworks to boost our productivity, and we came up with a game plan for
incorporating them into our component. We’ve not yet written any code, but we
have decided on a jump-start. We also have a good handle on a platform that will
boost our performance, satisfying number 7 on our requirements list. Tomorrow
we code.

10.5.2 Day 2: TextSuggest creation—clean and configurable

Now that there’s a good technology platform to build on, let’s start writing
the component. It’s often good to work backward from the desired result in
order to think about the contract of our component up front. Let’s recap our
first requirement:

Requirement 1—The component must work with existing HTML markup
without requiring any changes to the markup. Simple changes to the head
section to inject the component’s behavior are acceptable.

This requirement forces us to leave pretty much everything inside the <body>
alone. In light of that, let’s assume we’re going to inject our script into the HTML
via code that looks similar to the HTML in listing 10.21.

<html>
<head>
 <script>
 var suggestOptions = { /*details to come*/ };
 function injectSuggestBehavior() {
 suggest = new TextSuggest('field1',
 'typeAheadData.aspx',
 suggestOptions);
 });
 </script>
</head>

Listing 10.21 TextSuggest HTML markup

Create component in <head>
Licensed to jonathan zheng <yiyisjun@gmail.com>

398 CHAPTER 10
Type-ahead suggest
<body onload="injectSuggestBehavior()">
 <form name="Form1">
 AutoComplete Text Box:
 <input type="text" id="field1" name="txtUserInput">
 </form>
</body>

</html>

The implication of this HTML is that we’re going to construct our object with the
ID of the text field we will be attaching to, the URL for the Ajax data source, and a
set of configuration objects yet to be specified. (Note that the text field needs an
ID attribute for this to work properly.) Everything inside the <body> element is left
untouched. With that established, let’s start with a look at the constructor. We’ll
put a name for our TextSuggest component into the global namespace via the
constructor function that, as you recall, is generated by the Prototype library’s
Class.create() method, as shown in listing 10.22.

TextSuggest = Class.create();

TextSuggest.prototype = {

 initialize: function(anId, url, options) {
 this.id = anId;
 this.textInput = $(this.id);

 var browser = navigator.userAgent.toLowerCase();
 this.isIE =
 browser.indexOf("msie") != -1;
 this.isOpera =
 browser.indexOf("opera")!= -1;

 this.suggestions = [];
 this.setOptions(options);
 this.initAjax(url);
 this.injectSuggestBehavior();
 },
 ...
};

Now let’s deconstruct the constructor. As already mentioned, we pass into our
constructor the ID of the text input to which we’ll be attaching the suggest

Listing 10.22 TextSuggest constructor

b Reference the
input element

c Detect the
browser type

d Set the defaults
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 399
behavior. A reference is held to both the ID and the DOM element for the input
field b. Next we do a little browser sniffing and store the state for the few things
in the rest of the component that need to know specifics about the browser run-
time environment c. In this case, special case code is needed only for IE and
Opera, so we sniff only for them.

 We’ll discuss the complex part of setting up Ajax and injecting behavior later
d. Let’s concentrate for the rest of the day on component configurability. As you
recall, earlier we created a SetProperties() function to hold all of the config-
urable aspects of our suggest script:

function SetProperties
 (xElem, xHidden, xserverCode,
 xignoreCase, xmatchAnywhere,
 xmatchTextBoxWidth, xshowNoMatchMessage,
 xnoMatchingDataMessage, xuseTimeout,
 xtheVisibleTime){
 ...
}

This meets the requirement of providing configurability but not of providing a
convenient API or appropriate defaults. For this, we introduce an options object
that is passed into the constructor. The options object has a property for each
configuration parameter of the suggest component. Let’s now fill in the options
with some configuration parameters:

 var suggestOptions = {
 matchAnywhere : true,
 ignoreCase : true
 };

 function injectSuggestBehavior() {
 suggest = new TextSuggest('field1',
 'typeAheadXML.aspx',
 suggestOptions);
 });

This simple idiom comes with a big-time payload:

■ It keeps the signature of the constructor clean. The client pages using our
component can construct it with only three parameters.

■ Configuration parameters can be added over time without changing the
contract of the constructor.

■ We can write a smart setOptions() that provides appropriate default val-
ues for any unspecified properties, allowing the caller to specify only the
properties that she wants to override.
Licensed to jonathan zheng <yiyisjun@gmail.com>

400 CHAPTER 10
Type-ahead suggest
The last bullet is exactly what the d setOptions() method shown earlier in the
constructor does. Let’s look at how it works:

 setOptions: function(options) {
 this.options = {
 suggestDivClassName: 'suggestDiv',
 suggestionClassName: 'suggestion',
 matchClassName : 'match',
 matchTextWidth : true,
 selectionColor : '#b1c09c',
 matchAnywhere : false,
 ignoreCase : false,
 count : 10
 }.extend(options || {});
 },

Each property in the options object that has an appropriate default value is spec-
ified here. Then, the extend() method of the Prototype library is called to over-
ride any properties specified in the options object passed in at construction time.
The result is a merged options object that has the defaults and overrides specified
in a single object! In the example we used here, the matchAnywhere and ignore-
Case boolean properties were both overridden to values of true. The values of the
configuration properties are explained in table 10.3.

Table 10.3 Values of configuration properties

Value Explanation

suggestDivClassName Specifies the CSS class name of the div element that will be generated to
hold the suggestions.

suggestionClassName Specifies the CSS class name of the span element that is generated for
each suggestion.

matchClassName Specifies the CSS class name of the span holding the portion of the sug-
gestion that matches what the user has typed in.

matchTextWidth A boolean value indicating whether or not the div generated for the sugges-
tions should size itself to match the width of the text field it is attached to.

selectionColor Specifies a hex value (or any valid value used as a CSS color specification)
for the background color of the selected suggestion.

matchAnywhere A boolean value that specifies whether the match should be looked for only
at the beginning of a string or anywhere.

continued on next page
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 401
Note that there are several options that specify which CSS class names should be
generated internally when building the HTML structure for the pop-up list of
suggestions. Recall the configurability requirements from table 10.2:

Requirement 3—Each component instance should be independently config-
urable, in terms of both the behavioral aspects (for example, case matching,
match anywhere) and the CSS styling.

Requirement 5—The component should provide reasonable defaults for all
of the configuration options.

Our code will use this configuration mechanism to provide per-instance config-
urability in terms of behavior (for example, case matching) as well as styling (for
example, the CSS class names).

 So, here at the end of day 2, we’ve made a good start on our component. With
our constructor out of the way, and with a clean way to make our component
highly configurable, it’s time to move on to making it Ajax aware.

10.5.3 Day 3: Ajax enabled

Let’s put some Ajax into action, shall we? A TextSuggest component without
Ajax is like a burger without the beef. With no disrespect to vegetarians, it’s time
for the beef. You already saw a hint of some Ajax setup when we were looking at
the constructor. As you might recall, we placed a method call within the construc-
tor called initAjax(). The initAjax() method does the setup required for the
Rico Ajax support discussed earlier. Here’s the implementation:

 initAjax: function(url) {
 ajaxEngine.registerRequest(this.id + '_request', url);
 ajaxEngine.registerAjaxObject(this.id + '_updater', this);
 },

Recall that the registerRequest() method provides the Rico Ajax engine a logi-
cal name for the URLs to invoke for a given request via the sendRequest()
method. Given that we have to support the requirement of having multiple suggest

ignoreCase A boolean value indicating whether or not the matching should be case
sensitive.

count The maximum number of suggestions to render.

Table 10.3 Values of configuration properties (continued)

Value Explanation
Licensed to jonathan zheng <yiyisjun@gmail.com>

402 CHAPTER 10
Type-ahead suggest
components on the same page using different URLs (but using the same ajax-
Engine singleton), we need to generate a unique logical name for each. So, we
generate the name for the request based on the ID of the component, which we
assume to be unique. The same goes for the handler registration. We register
this as the object that will handle responses routed to the ID we’re generating.

 An example would probably help at this point. Suppose we attach the suggest
behavior to a field with id='field1', and then we effectively register ourselves as
'field1_updater'. The XML we expect to come back to this component should
have a response element that looks like this:

<ajax-response>
 <response type='object' id='field1_updater'>.
 ...same xml content as before.
 </response>
</ajax-response>

Internally, we will be sending requests via the following:

 ajaxEngine.sendRequest('field1_request',
 'param1=val1', 'param2=val2', ...);

With that in mind, there are two things we have to do from the client to make our
component Ajax enabled: send the request and handle the response. Let’s look at
each in turn.

Text suggest—sending the Ajax request
Obviously there’s a little bit of work involved in getting to the point where we can
send a request. The text input will have to generate an onchange event that we will
listen to and conditionally send a request for the suggestions. We’ve not put any
of that code in place yet, but that’s okay. We can still think in terms of our method
responsibilities and the contracts we’d like to enforce independently of that being
done. So, let’s assume that some piece of code yet to be written will decide that it
needs to send a request to get some suggestions. Let’s call it sendRequestFor-
Suggestions() and implement it as follows:

 sendRequestForSuggestions: function() {

 if (this.handlingRequest) {
 this.pendingRequest = true;
 return;
 }

 this.handlingRequest = true;
 this.callRicoAjaxEngine();
 },
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 403
All this code does is to conditionally call this.callRicoAjaxEngine() if a request
is not still being processed. This simple mechanism turns an internal boolean
property, this.handlingRequest, to true as soon as an Ajax request is made and
back to false (shown later) once the request has been handled. This is a very sim-
ple mechanism to use to throttle the sending of events based on the speed of the
server. The boolean property this.pendingRequest is set to true if the method is
called while a request is currently being processed. This state will let the handler
know that it may have to send another request once the one being processed is
finished. Now let’s peek under the hood and look at the callRicoAjaxEngine()
method shown in listing 10.23.

callRicoAjaxEngine: function() {
 var callParms = [];
 callParms.push(this.id + '_request');
 callParms.push('id=' + this.id);
 callParms.push('count=' + this.options.count);
 callParms.push('query=' + this.lastRequestString);
 callParms.push('match_anywhere=' + this.options.matchAnywhere);
 callParms.push('ignore_case=' + this.options.ignoreCase);

 var additionalParms = this.options.requestParameters || [];
 for(var i=0 ; i < additionalParms.length ; i++)
 callParms.push(additionalParms[i]);

 ajaxEngine.sendRequest.apply(ajaxEngine,
 callParms);
},

To understand what this method does, we first need to talk about a JavaScript
mechanism we are making use of on the very last line of the method:

ajaxEngine.sendRequest.apply(ajaxEngine, callParms);

This uses a method called apply(), which is available to all function objects (see
appendix B for more details). Let’s illustrate the usage with a simpler example:

 Greeter.prototype.greetPeople = function(str1, str2) {
 alert('hello ' + str1 + 'and ' + str2)
 };

Suppose we have an instance of Greeter called friendlyPerson, and we want to
call the greetPeople() method on that object. But we don’t have the parameters

Listing 10.23 Using the Rico ajaxEngine

Build the
parameter

array

Send the Ajax request
Licensed to jonathan zheng <yiyisjun@gmail.com>

404 CHAPTER 10
Type-ahead suggest
in a form that is easy to pass. We actually have an array of people. This is where
the apply method comes in handy. We can write the code as

 var people = ["Joe", "Sally"];
 friendlyPerson.greetPeople.apply(friendlyPerson, people);

The apply() method converts the array passed in as the second argument to first-
class method parameters and invokes the method on the object passed in as the
first parameter. The previous code is equivalent to

 friendlyPerson.greetPeople(people[0], people[1]);

Now back to the task at hand. We have to call ajaxEngine’s sendRequest()
method, which takes as its first parameter the logical name of the request,
and a variable number of string parameters of the form key=value represent-
ing the request parameters. Therein lies the rub. We have request parameters
from different sources, and we don’t know how many we have. Let’s look at
the code again:

var callParms = [];
callParms.push(this.id + '_request');
...
callParms.push('ignore_case=' + this.options.ignoreCase);

var additionalParms =
 this.options.requestParameters || [];
for(var i=0 ; i < additionalParms.length ; i++)
 callParms.push(additionalParms[i]);

The array of parameters to send to the sendRequest() method via apply is popu-
lated from a combination of the internal state of the object, things like the ID and
the lastRequestString, as well as specific properties of the Options object (for
example, count, matchAnywhere, ignoreCase) b.

 However, we also have to provide a mechanism for the user of our component
to pass in external request parameters as well c. For this, we look for the exist-
ence of a requestParameters property on the options object. If it is non-null, it’s
assumed to be an array of strings of the form key=value. The array is iterated
over and added to the callParms already populated with the component-specific
parameters. Finally, the request is sent via

 ajaxEngine.sendRequest.apply(ajaxEngine, callParms);

Whew! Request sending all done. Now let’s hope the server is up and running
and we get a response. And let’s talk about how we will handle it when it does.

b

c

Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 405
Text suggest—handling the Ajax response
We went to a lot of trouble to provide a robust request-sending capability, so we’d
better make sure we properly handle the response or all our hard work will be in
vain. Recall that Rico’s ajaxEngine routes the request back to the handler object’s
ajaxUpdate() method, passing the content of the <response> element. So, by
implication, we must write an ajaxUpdate() method, and that method will be the
entry point into our response handling. The ajaxUpdate() method is shown in
listing 10.24 along with its parsing helper methods, createSuggestions() and
getElementContent().

 ajaxUpdate: function(ajaxResponse) {

 this.createSuggestions(ajaxResponse);

 if (this.suggestions.length == 0) {
 this.hideSuggestions();
 $(this.id + "_hidden").value = "";
 }
 else {
 this.updateSuggestionsDiv();
 this.showSuggestions();
 this.updateSelection(0);
 }

 this.handlingRequest = false;

 if (this.pendingRequest) {
 this.pendingRequest = false;
 this.lastRequestString = this.textInput.value;
 this.sendRequestForSuggestions();
 }
 },
 createSuggestions: function(ajaxResponse) {
 this.suggestions = [];
 var entries = ajaxResponse.getElementsByTagName('entry');
 for (var i = 0 ; i < entries.length ; i++) {
 var strText = this.getElementContent(
 entries[i].getElementsByTagName('text')[0]);
 var strValue = this.getElementContent(
 entries[i].getElementsByTagName('value')[0]);
 this.suggestions.push({ text: strText, value: strValue });
 }
 },
 getElementContent: function(element) {
 return element.firstChild.data;
 }

Listing 10.24 Ajax response handling

Create suggestions

Create and
show UI

Finish handling response

Send another request
Licensed to jonathan zheng <yiyisjun@gmail.com>

406 CHAPTER 10
Type-ahead suggest
Because we want to focus solely on the Ajax mechanisms being put in place, we’ll
just cover much of the content here at a high level and talk about our response
handling in terms of the algorithm. The first thing we do is to parse the response
via the createSuggestions() method into an in-memory representation of the
suggestions held in the suggestions property. The suggestions property is an
array of objects, each with a text and a value property corresponding to the
<text> and <value> elements of each <entry> in the XML response.

 The remainder of the ajaxUpdate() method’s algorithm is fairly straightfor-
ward and should be easy to follow. If no suggestions were found, the pop-up is
hidden and the internal value held by the component via a hidden field is
cleared. If suggestions were found, the drop-down UI element is created, popu-
lated with the suggestions, and displayed, and the selection is updated to be the
first one in the list. At this point, the response is considered to be handled, so
the this.handlingRequest property discussed earlier is set back to false. Finally,
the ajaxUpdate() method checks if there are any pending requests. If so, it sets
the pendingRequest flag back to false, takes the current value in the input field
for the lastRequestString, and initiates another request cycle via sendRequest-
ForSuggestions().

 This concludes the full request/response cycle for the Ajax support and wraps
up day 3. We’ve accomplished quite a bit today, plugging in an open source
framework that fully “Ajax-enables” our component-meeting requirement, num-
ber 7, as well as making sure that it’s done in a way that’s configurable and sup-
ports multiple instances on the same page, satisfying requirements 2 and 3. We’ll
get into the details of what it means to create, position, show, and hide the UI for
the pop-up on day 5. In the meantime, we’ll hook up the component events and
take care of the keyboard and mouse handling.

10.5.4 Day 4: handling events

Now that the suggest component is fully Ajax enabled, it’s time to hook it into the
events produced by the native input field’s responses to the keyboard. If you are
an astute reader, you will have guessed that the code that initiates this process was
back in the constructor hiding in a call to the injectSuggestBehavior() method.
This is the code that initiates all modifications to the DOM of the existing
markup, including the event handling, extra inputs, and the container for the
suggestions. It’s all done programmatically so we don’t have to touch any of the
HTML code on the page, per requirement number 1. The behavior injection is
shown in listing 10.25.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 407
 injectSuggestBehavior: function() {

 if (this.isIE) {
 this.textInput.autocomplete = "off";
 }
 var keyEventHandler =
 new TextSuggestKeyHandler(this);
 new Insertion.After(this.textInput,
 '<input type="text" id="' + this.id +
 '_preventtsubmit'+
 '" style="display:none"/>');
 new Insertion.After(this.textInput,
 '<input type="hidden" name="'+
 this.id+'_hidden'+
 '" id="'+this.id+'_hidden'+'"/>');

 this.createSuggestionsDiv();
 },

This method first checks to see if the browser is IE and, if so, sets the proprietary
autocomplete property value to off. This keeps the autocompletion pop-up from
interfering with our own pop-up. Next an object called TextSuggestKeyHandler is
created to be the controller object for brokering the events to the right methods.
Yes, the event mechanics are enough of a chore on their own that we split this
behavior out into a separate object that we will discuss in a moment. The method
next inserts a couple of input elements into the markup. You will recall that in the
previous round of our script code, we added a hidden input field for storing the
value of the component and an invisible text field to prevent the Enter key from
causing the form to be submitted. Because our first requirement forbids us from
monkeying with the HTML, we programmatically perform these chores with the
two Insertion.After() calls. Insertion.After() is brought to us courtesy of the
Prototype library. Finally, createSuggestionsDiv() is called to create the contain-
ing div element, which holds the UI for the suggestions.

The TextSuggestKeyHandler
We’ve decided to put the broker of the events into a dedicated controller class.
There’s nothing new or revolutionary about it, but it’s definitely a helpful way
to separate class responsibilities. In reality, the design could be further sepa-
rated by creating explicit classes for the model and view roles to provide a full
MVC pattern. This exercise is left to the user, but we will break down the

Listing 10.25 The behavior injection

Remove IE interference

Create controller

Create UI
Licensed to jonathan zheng <yiyisjun@gmail.com>

408 CHAPTER 10
Type-ahead suggest
architecture of the RSS reader in chapter 13 with a set of classes that satisfies a
traditional MVC pattern.

 The controller is constructed in the same way as our main class—using
Class.create() and an initialize() method. The constructor is shown in
listing 10.26.

TextSuggestKeyHandler = Class.create();

TextSuggestKeyHandler.prototype = {

 initialize: function(textSuggest) {
 this.textSuggest = textSuggest;
 this.input = this.textSuggest.textInput;
 this.addKeyHandling();
 },
 // rest of API
},

Upon construction, the controller holds a reference to the suggest component
along with the native HTML form input field. It then adds the handlers onto the
input field via this.addKeyHandling(). The addKeyHandling() method is shown
in listing 10.27.

 addKeyHandling: function() {
 this.input.onkeyup =
 this.keyupHandler.bindAsEventListener(this);
 this.input.onkeydown =
 this.keydownHandler.bindAsEventListener(this);
 this.input.onblur =
 this.onblurHandler.bindAsEventListener(this);
 if (this.isOpera)
 this.input.onkeypress =
 this.keyupHandler.bindAsEventListener(this);
 },

All the relevant events that we need to listen to along with the Opera-specific
hack mentioned in the first round of our script development are set up in this
method. You will recall that the bindAsEventListener() method is a closure
mechanism provided courtesy of the Prototype library. This mechanism allows

Listing 10.26 The TextSuggestKeyHandler constructor

Listing 10.27 The keyboard handler

Reference to TextSuggest
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 409
our handlers to call first-class methods on the controller and normalizes the IE
and W3C event models. Very nice, indeed. keyupHandler(), keydownHandler(),
onblurHandler(), and their helper methods are mostly a repackaging of what’s
already been covered with a few changes. We’ll show the full range of methods
next and point out differences from the original script along the way. We’ll start
by discussing keydownHandler() and its manipulation of the selection. The key-
downHandler() method is shown in listing 10.28.

 keydownHandler: function(e) {
 var upArrow = 38;
 var downArrow = 40;

 if (e.keyCode == upArrow) {
 this.textSuggest.moveSelectionUp();
 setTimeout(this.moveCaretToEnd.bind(this), 1);
 }
 else if (e.keyCode == downArrow) {
 this.textSuggest.moveSelectionDown();
 }
 },

The most significant difference from the original script in terms of functionality
is in the handling of the arrow keys. The arrow keys in our TextSuggest compo-
nent handle the movement of the selection based on the onkeydown event rather
than the onkeyup event. This is done solely as a usability improvement. It’s some-
what disconcerting to see the selection remain where it is when you press one of
the arrow keys, only to see it move once you release the key. keydownHandler()
therefore handles the movement of the selection. Note that the selection manip-
ulation methods are methods of the TextSuggest component. The controller,
because it saved a reference to the component at construction time, can call
these methods through the saved object reference this.textSuggest. The selec-
tion manipulation methods of TextSuggest are shown in listing 10.29 for the
sake of completeness.

 moveSelectionUp: function() {
 if (this.selectedIndex > 0) {
 this.updateSelection(this.selectedIndex - 1);
 }
 },

Listing 10.28 keydownHandler() method

Listing 10.29 TextSuggest selection manipulation methods
Licensed to jonathan zheng <yiyisjun@gmail.com>

410 CHAPTER 10
Type-ahead suggest
 moveSelectionDown: function() {
 if (this.selectedIndex < (this.suggestions.length - 1)) {
 this.updateSelection(this.selectedIndex + 1);
 }
 },
 updateSelection: function(n) {
 var span = $(this.id +"_"+this.selectedIndex);
 if (span){
 span.style.backgroundColor = "";
 }
 this.selectedIndex = n;
 var span = $(this.id+"_"+this.selectedIndex);
 if (span){
 span.style.backgroundColor =
 this.options.selectionColor;
 }
 },

The updateSelection() method does all the real work of actually changing the
visual state of the selection. It updates the span created in the selection list—we’ll
write that code on day 5—and sets its style.backgroundColor to the value speci-
fied as the options.selectionColor of our component’s Configuration object.

 Before we leave the topic of key-down handling, there’s one more bit of book-
keeping to take care of. Because we handle the arrow keys on the key-down rather
than the key-up, we have to change the Up Arrow from its default behavior of
moving the caret backward within the text field. We do this with the moveCaret-
ToEnd() method called on a one-millisecond delay via setTimeout. The move-
CaretToEnd() method is implemented as shown in listing 10.30.

 moveCaretToEnd: function() {
 var pos = this.input.value.length;
 if (this.input.setSelectionRange) {
 this.input.setSelectionRange(pos,pos);
 }
 else if(this.input.createTextRange){
 var m = this.input.createTextRange();
 m.moveStart('character',pos);
 m.collapse();
 m.select();
 }
 },

Listing 10.30 TextSuggest moveCaretToEnd() method

Clear previous selection
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 411
Now, let’s move onto the key-up handling. The key-up implementation is a bit
simpler than the key-down. All it has to do is broker its event to one of a couple of
places based on the value in the input field and the key that was pressed. Let’s
take a look at the details in listing 10.31.

 keyupHandler: function(e) {
 if (this.input.length == 0 && !this.isOpera)
 this.textSuggest.hideSuggestions();

 if (!this.handledSpecialKeys(e))
 this.textSuggest.handleTextInput();
 },
 handledSpecialKeys: function(e) {
 var enterKey = 13;
 var upArrow = 38;
 var downArrow = 40;

 if (e.keyCode == upArrow || e.keyCode == downArrow) {
 return true;
 }
 else if (e.keyCode == enterKey) {
 this.textSuggest.setInputFromSelection();
 return true;
 }

 return false;
 },

The key-up handler first checks to see if the input field contains any text. If not, it
tells the TextSuggest component to hide its pop-up list of suggestions. Next it
checks to see if the key pressed was one of the special keys: Up Arrow, Down
Arrow, or the Enter key. If either the Up or Down Arrow key was pressed, the
method just returns without performing any action, since the arrow keys have
already been handled during the key-down processing. However, if the Enter key
was pressed, the method tells the TextSuggest component to set its input value
based on the currently selected item in the suggestion list. Finally, if the input
field has a value and the key pressed was not one of the special keys, the key-up
handler tells the TextSuggest component to consider that there is some input to
be processed via the textSuggest.handleTextInput() method. This is the method
of the TextSuggest component that finally calls the Ajax infrastructure we dili-
gently put in place yesterday. The code for handleTextInput() is implemented in
listing 10.32.

Listing 10.31 TextSuggest key-up handlers
Licensed to jonathan zheng <yiyisjun@gmail.com>

412 CHAPTER 10
Type-ahead suggest
 handleTextInput: function() {
 var previousRequest =
 this.lastRequestString;
 this.lastRequestString =
 this.textInput.value;
 if (this.lastRequestString == "")
 this.hideSuggestions();
 else if (this.lastRequestString != previousRequest) {
 this.sendRequestForSuggestions();
 }
 },

The handleTextInput() method first sets a local variable called previousRequest
to the prior value of this.lastRequestString. It then sets the lastRequestString
property to the current value of the input field so that it can compare the two to
make sure that it’s not trying to send a request for the same information that has
already been requested. If the request is an empty string, the pop-up list is hid-
den. If the request is a valid request for new information, the handleTextInput()
method calls the sendRequestForSuggestions() method that we wrote yesterday
to call the Ajax-based data source to get some suggestions from the server. If the
request is the same as the last one, the request is ignored and no action is taken.
Finally, the pieces are starting to come together. The construction, the configura-
tion, the Ajax handling, the event handling—it’s almost as if we know what we’re
doing. And just in the nick of time; it’s already day 4!

 We have one more method of our controller class to cover—the onblur han-
dler. The onblur handler is a very simple method that sets the value of the text
field from the current selection and hides the suggestion. The implementation is
as follows:

 onblurHandler: function(e) {
 if (this.textSuggest.suggestionsDiv.style.display == '')
 this.textSuggest.setInputFromSelection();
 this.textSuggest.hideSuggestions();
 }

The onblurHandler and handledSpecialKeys both reference a method of the Text-
Suggest component that we’ve not seen yet—setInputFromSelection(). This
method does essentially the same thing that our SetText() function did earlier—
namely, to take the currently selected suggestion; set both the input field and the
hidden field with its text and value, respectively; and hide the list of suggestions.
The implementation is shown here:

Listing 10.32 Text input handler

Previous request value

Current request value

Ajax request for data
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 413
 setInputFromSelection: function() {
 var hiddenInput = $(this.id + "_hidden");
 var suggestion = this.suggestions[this.selectedIndex];

 this.textInput.value = suggestion.text;
 hiddenInput.value = suggestion.value;
 this.hideSuggestions();
 }

We may have put in a little overtime to accomplish all that’s been done today. We
created a controller class to handle all of our event management. We used the
Prototype library’s bindAsEventListener() method to automatically create clo-
sures for us and normalize the IE and W3C event models. We implemented our
key-up/down handlers to encapsulate the complexities of processing the selection
as well as normal text input. We ensured that we initiate only requests for new
information. We managed the showing and hiding of the suggestions UI as appro-
priate. We updated the DOM programmatically to manage the hidden input value
and the invisible text field that prevents form submission when the Enter key is
pressed. And we handled the updating of the hidden and visible values of the
TextSuggest component. On day 5, we wrap a bow around our refactored compo-
nent by implementing all the methods required to create the pop-up, position it,
show it, hide it, and manage its mouse events. The once dim light at the end of the
tunnel is now clearly in view.

10.5.5 Day 5: the suggestions pop-up UI

Now that we’re fully plugged in, so to speak, it’s time to tie up all the loose ends.
To this point, we’ve created infrastructure for configurability and defaults, Ajax
request and response handling, and the events that tie everything together. All
that’s left to cover is the graphical part. What we’re referring to here, obviously, is
the pop-up list of suggestions and all that implies. The tasks left to handle with
respect to the UI are as follows:

■ Creation of the suggestion pop-up UI. This entails the creation of the div
for the suggestions as well as the span for each suggestion.

■ The positioning of the pop-up.
■ The population of the pop-up with suggestions.
■ The showing and hiding of the suggestions.

Update visible value
Update hidden value
Licensed to jonathan zheng <yiyisjun@gmail.com>

414 CHAPTER 10
Type-ahead suggest
Creating the suggestion pop-up
Let’s go back and examine the implementation of the injectSuggestBehavior()
method. Recall that this code was more or less the entry point to all the DOM
manipulation done by the TextSuggest component:

 injectSuggestBehavior: function() {
 // HTML Dom Behavior Injection...
 this.createSuggestionsDiv();
 },

The last line of the injectSuggestBehavior() method calls the createSugges-
tionsDiv() method, which creates the outermost containing div of the suggestion
pop-up. Since this is the container of all GUI artifacts, it’s the logical place to start
looking at UI code. The details of the implementation are shown in listing 10.33.

 createSuggestionsDiv: function() {
 this.suggestionsDiv =
 document.createElement("div");
 this.suggestionsDiv.className =
 this.options.suggestDivClassName;

 var divStyle =
 this.suggestionsDiv.style;
 divStyle.position = 'absolute';
 divStyle.zIndex = 101;
 divStyle.display = "none";

 this.textInput.parentNode.appendChild
 (this.suggestionsDiv);
 },

The creation method of the container has four basic responsibilities. First, it has
to create the DIV via the document’s createElement() API b.

 Second, it has to style the DIV according to the client configuration c. Recall
that one of our requirements was to make the CSS styling of each component
instance individually configurable. We achieve that in this case by setting the div’s
className attribute according to the suggestDivClassName property of the
options object. You will recall that we set the default value of this property to sug-
gestDiv within the setOptions method. So if the user doesn’t explicitly specify a
value for a property, this is what she will get. This is a convenient feature because
it allows the client of our component to have a default stylesheet that uses our

Listing 10.33 Creating the suggestion pop-up UI

b Create the div

c Style the div

d Add
behavioral
style

e Insert into document
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 415
default class names to style all TextSuggest component instances used across the
application. Other stylesheets could also be provided (for example, product- or
customer-specific stylesheets) that override the definitions of these standard style
names. And finally, an individual page can override the value of the suggestDiv-
ClassName parameter to provide a page-level or instance-level styling to the com-
ponent. Sounds pretty flexible to us.

 There are certain aspects of the style of the pop-up that are nonnegotiable,
annotated as “Behavioral style,” so we style them explicitly through the style
attribute of the element d. Note that anything styled programmatically via the
style attribute overrides anything specified via a CSS className, typically by a
stylesheet. These nonnegotiable aspects are 1) position='absolute' because the
component must manage the positioning of the div internally, 2) zIndex=101,
which we use to make sure the pop-up is on top of everything on the page, and 3)
display="none" because the pop-up has to be hidden from the user’s view until
the user’s keystrokes trigger it. Note that the value of 101 for the zIndex is some-
what arbitrary.

 Finally, the method inserts the div into the document as a sibling of the text
field e. The parent in this case really doesn’t matter, since the div will be posi-
tioned absolutely.

Positioning the pop-up
Now that our pop-up has been created, at some point it will have to be shown. But
before it can be shown, it has to be positioned. When we show the pop-up, we
want it to appear just below the text field and to be aligned with the left side of the
text field. Let’s write the positionSuggestionsDiv method in listing 10.34.

 positionSuggestionsDiv: function() {
 var textPos = RicoUtil.toDocumentPosition(this.textInput);
 var divStyle = this.suggestionsDiv.style;
 divStyle.top = (textPos.y + this.textInput.offsetHeight)
 + "px";
 divStyle.left = textPos.x + "px";

 if (this.options.matchTextWidth)
 divStyle.width = (this.textInput.offsetWidth –
 this.padding()) + "px";
 },

Listing 10.34 Positioning the pop-up UI
Licensed to jonathan zheng <yiyisjun@gmail.com>

416 CHAPTER 10
Type-ahead suggest
You will recall that in the previous version of this script, we wrote a method to cal-
culate the absolute position of the text field. In this refactored version, we are
relying on a utility method provided by Rico—toDocumentPosition(). All we have
to do is to use this method to get our reference point and perform the appropri-
ate calculations to get our pop-up below and align on the left with the text field.
We then check for the existence of the configuration option matchTextWidth, and
if it is true, we also size the width of the div element to match the width of the text
input. Note that we adjust the width by the padding value. We do this because, as
you recall, we’ve allowed the div element to be externally styled through a CSS
class. We don’t know if the user will have put margins and borders on the compo-
nent, which would throw off the visual alignment to the width of the text field.
Let’s write a padding() method (listing 10.35) to compute the left and right pad-
ding values and margins to subtract from the overall width.

 padding: function() {
 try{
 var styleFunc = RicoUtil.getElementsComputedStyle;
 var lPad = styleFunc(this.suggestionsDiv,
 "paddingLeft",
 "padding-left");
 var rPad = styleFunc(this.suggestionsDiv,
 "paddingRight",
 "padding-right");
 var lBorder = styleFunc(this.suggestionsDiv,
 "borderLeftWidth",
 "border-left-width");
 var rBorder = styleFunc(this.suggestionsDiv,
 "borderRightWidth",
 "border-right-width");
 lPad = isNaN(lPad) ? 0 : lPad;
 rPad = isNaN(rPad) ? 0 : rPad;
 lBorder = isNaN(lBorder) ? 0 : lBorder;
 rBorder = isNaN(rBorder) ? 0 : rBorder;

 return parseInt(lPad) + parseInt(rPad) +
 parseInt(lBorder) + parseInt(rBorder);
 }catch (e){ return 0; }
 },

Getting the calculated style of an element—the actual value of an attribute
regardless of how it was set—is tricky business. To achieve this, IE provides a pro-
prietary currentStyle attribute for each element. Mozilla-based browsers use a
getComputedStyle() method of the defaultView property of the document to

Listing 10.35 Calculation of left and right padding
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 417
calculate this. Each one of these mechanisms expects a different specification for
the attribute being queried, as well. The IE currentStyle expects style attributes
specified via the JavaScript-like binding (for example, borderRightWidth), whereas
the Mozilla getComputedStyle() expects attributes specified with the stylesheet-
like syntax (for example, border-right-width). Luckily, Rico provides a method
that takes care of all of this for us—RicoUtil.getElementsComputedStyle(). We
just pass it the element, the IE name for the attribute, and the Mozilla name for
the attribute, and the method returns a value. Our method here gets the values
of the left and right borders and margins, sums them up, and returns them.

 The Rico.getElementsComputedStyle() is known to have issues with some ver-
sions of Safari, and so we provide a default return value within a try...catch block.

Creating the pop-up contents
Now that we have the code to create and position the pop-up, we need to write a
method to populate it with actual suggestions before it can be useful. Recall that
our ajaxUpdate() method parses the XML from the response into an array of sug-
gestion objects. And, if at least one suggestion exists, it calls a method named
this.updateSugggestionsDiv(). This method is the transformer of the in-memory
collection of suggestions to actual SPAN elements within the pop-up div. Let’s
look at how that’s done now:

 updateSuggestionsDiv: function() {
 this.suggestionsDiv.innerHTML = "";
 var suggestLines = this.createSuggestionSpans();
 for (var i = 0; i < suggestLines.length; i++)
 this.suggestionsDiv.appendChild(suggestLines[i]);
 },

This method is deceptively simple, but there’s still lots of work to do, so hang with
us. This method simply sets the value of the innerHTML property of the sugges-
tionsDiv created earlier to an empty string in order to wipe out any prior con-
tent. Then it calls createSuggestionSpans() to create a span for each suggestion
in the suggestions array. Finally, it iterates over the created spans and appends
them to the div. This is where the real work starts. Let’s continue by looking at
createSuggestionSpans() in listing 10.36 to see what’s involved in creating them.

 createSuggestionSpans: function() {
 var regExpFlags = "";
 if (this.options.ignoreCase)
 regExpFlags = 'i';
 var startRegExp = "^";

Listing 10.36 Creation of suggestion list items

Remove prior content

Create new
content
Licensed to jonathan zheng <yiyisjun@gmail.com>

418 CHAPTER 10
Type-ahead suggest
 if (this.options.matchAnywhere)
 startRegExp = '';

 var regExp = new RegExp(startRegExp +
 this.lastRequestString,
 regExpFlags);

 var suggestionSpans = [];
 for (var i = 0 ; i < this.suggestions.length ; i++)
 suggestionSpans.push(
 this.createSuggestionSpan(i, regExp));

 return suggestionSpans;
 },

This method first looks at our options object to find the value of the ignoreCase
and matchAnywhere properties. This has to be done so that a regular expression
can be created with the appropriate parameters that will facilitate the retrieval of
the portion of the string in the response that actually matches what the user has
typed in. The method then iterates over the suggestions property, which you will
recall is an array of objects that have a .text and a .value property. For each sug-
gestion in the array, the createSuggestionSpan() method is called with the index
of the suggestion and the regular expression created earlier. All the real work is
done in createSuggestionSpan(), shown in listing 10.37.

 createSuggestionSpan: function(n, regExp) {
 var suggestion = this.suggestions[n];

 var suggestionSpan = document.createElement("span");
 suggestionSpan.className = this.options.suggestionClassName;
 suggestionSpan.style.width = '100%';
 suggestionSpan.style.display = 'block';
 suggestionSpan.id = this.id + "_" + n;
 suggestionSpan.onmouseover =
 this.mouseoverHandler.bindAsEventListener(this);
 suggestionSpan.onclick =
 this.itemClickHandler.bindAsEventListener(this);

 var textValues = this.splitTextValues(suggestion.text,
 this.lastRequestString.length,
 regExp);

 var textMatchSpan = document.createElement("span");
 textMatchSpan.id = this.id + "_match_" + n;
 textMatchSpan.className = this.options.matchClassName;

Listing 10.37 Creation of a list item span
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 419
 textMatchSpan.onmouseover =
 this.mouseoverHandler.bindAsEventListener(this);
 textMatchSpan.onclick =
 this.itemClickHandler.bindAsEventListener(this);

 textMatchSpan.appendChild(
 document.createTextNode(textValues.mid));

 suggestionSpan.appendChild(
 document.createTextNode(textValues.start));
 suggestionSpan.appendChild(textMatchSpan);
 suggestionSpan.appendChild(
 document.createTextNode(textValues.end));

 return suggestionSpan;
 },

This task is starting to look daunting, but don’t bail out just yet. This method
probably looks more complicated than it is, although it does quite a bit of work.
Perhaps it would be best to back up at this point and look at this method in terms
of what it is attempting to produce: namely, some HTML for a suggestion. Let’s
imagine HTML markup for a suggestion that looks something like this:

before matching text, and after

This is a gross simplification of what’s actually generated, but it illustrates the
structure. Suppose that the user has typed “matching text,” and one of the values
in the database is “before matching text, and after.” What’s generated for a sug-
gestion is basically what we just showed but with some extra attributes added to
the spans for identification, styling, and event handling. All the hard work of
splitting up the before and after portions of the text is done by the following line
of code:

 var textValues = this.splitTextValues(suggestion.text,
 this.lastRequestString.length,
 regExp);

The textValues value returned is an object that has three properties: .start,
.mid, and .end. So in the example just shown, textValues is an object that looks
like the following:

 textValues = { start: 'before ',
 mid: 'matching text',
 end: ', and after' };

Finally, the splitTextValues() method implementation is shown here:
Licensed to jonathan zheng <yiyisjun@gmail.com>

420 CHAPTER 10
Type-ahead suggest
 splitTextValues: function(text, len, regExp) {
 var startPos = text.search(regExp);
 var matchText = text.substring(startPos, startPos + len);
 var startText = startPos == 0 ?
 "" : text.substring(0, startPos);
 var endText = text.substring(startPos + len);
 return { start: startText, mid: matchText, end: endText };
 },

Now that we’ve covered the basic structure of a suggestion span, let’s talk about
the relevant attributes that get generated on the spans. Both the outer span and
the inner span are created with CSS class names based on the value of the sugges-
tionClassName and matchClassName properties of the Options object, respectively.
Just as the suggestionsDiv has an entirely customizable look and feel via CSS
classes, so does all of the internal HTML structure of each suggestion.

 The other noteworthy attributes generated within the spans are ID attributes
so that the spans can be retrieved later by the aforementioned event handlers. An
onmouseover event handler has to be placed on the spans so that the component
can update the selection to the suggestion that the mouse is currently over. Also,
an onclick event handler must be placed on each suggestion so that when a sug-
gestion line is clicked on, its value can be placed within the text field. The two
event handlers are implemented as shown in listing 10.38.

 mouseoverHandler: function(e) {
 var src = e.srcElement ? e.srcElement : e.target;
 var index = parseInt(src.id.substring(src.id.lastIndexOf('_')+1));
 this.updateSelection(index);
 },

 itemClickHandler: function(e) {
 this.mouseoverHandler(e);
 this.hideSuggestions();
 this.textInput.focus();
 },

mouseoverHandler() simply finds the target of the event and parses out the ID
that we generated on it to get an index representing which suggestion it is. It can
then use the updateSelection() method we wrote on day 4 to update the selec-
tion to the suggestion over which the mouse is currently hovering.

 Similarly, itemClickHandler() has to update the selection, so it just calls mouse-
overHandler() to do the selection update work. It then has to do the additional

Listing 10.38 List item mouse event handlers
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 421
behavior of hiding the suggestions pop-up via a call to the hideSuggestions()
method and giving the focus back to the text field so the user can continue typing.

 We’ve finally completed the pop-up creation task. Now let’s concentrate on
the infinitely simpler task of hiding and showing it.

Showing and hiding the pop-up
Now that we’ve developed code to handle all of the complex details of creating a
pop-up list of suggestions, we need to write the code that shows and hides it.
Fortunately, this is an extremely straightforward process, as any seasoned devel-
oper of DHTML like yourself knows. The showing and hiding of an element are
typically done by manipulating the display property of an element’s style. This
component will be no different. So without further ado, listing 10.39 contains
the code that shows the pop up and the code that hides the pop-up.

 showSuggestions: function() {
 var divStyle = this.suggestionsDiv.style;
 if (divStyle.display == '')
 return;
 this.positionSuggestionsDiv();
 divStyle.display = '';
 },

 hideSuggestions: function() {
 this.suggestionsDiv.style.display =
 'none';
 },

The show and hide, as shown here, simply manipulate the style.display prop-
erty of suggestionsDiv in order to show it (via an empty string value) and hide it
(via none). The showSuggestions() method does the additional work of position-
ing the pop-up before showing it. That’s it! We mean that’s really it. Our compo-
nent is done. Let’s take a few seconds to debrief.

10.5.6 Refactor debriefing

This was certainly a fairly complex component with a lot of moving parts. Grand
architects or not, we’ve developed a reusable component to be proud of. Our
TextSuggest component handles a wide range of configuration parameters, it’s
extensible, it’s server-agnostic, it’s unobtrusive, it’s cross-browser, it has a simple
API for creation, it slices, it dices… Well, maybe it’s not all that, but seriously, it’s

Listing 10.39 Showing and hiding the suggestions pop-up

Position the pop-up
Show the pop-up

Hide the pop-up
Licensed to jonathan zheng <yiyisjun@gmail.com>

422 CHAPTER 10
Type-ahead suggest
pretty cool, and it covers all the bases that we listed in table 10.2. The compo-
nent source code is available in its entirety at http://www.manning.com/crane.
Rico can be found at http://openrico.org/ and Prototype at http://prototype.
conio.net/.

10.6 Summary

The type-ahead suggest lets your users save time by offering the options that they
may need as they are typing. When they type a few keystrokes on the keyboard,
the data that they want is available for selection. This chapter has looked at the
downfalls of the currently available implementations and has initiated an appli-
cation that lets us eliminate any unnecessary postbacks to the server by doing
most of the processing on the client. We have worked with DHTML to create a
dynamic user interface that allows interaction with the keyboard and the mouse.
This example shows how Ajax can be used effectively to add a seamless interac-
tion with the server without disrupting the user’s interactions with the web page.
This script also degrades well with browsers that do not support Ajax, since the
type-ahead textbox acts like a plain textbox into which users can enter data rather
than just having a quick solution at their fingertips. Finally, we pushed the enve-
lope of object-oriented JavaScript component development by refactoring the
script into an easily created, configured, and used TextSuggest component.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The enhanced
Ajax web portal
This chapter covers
■ Constructing an Ajax portal
■ Implementing a login framework
■ Creating dynamic windows
■ Remembering window state
■ Adapting library code
423

Licensed to jonathan zheng <yiyisjun@gmail.com>

424 CHAPTER 11
The enhanced Ajax web portal
More and more companies have been adopting a portal-based intranet. Portals
give users an easy gateway for obtaining large quantities of information on one
page. This eliminates the need for the user to go to multiple locations to get
the information they need. Online portals such as Yahoo! allow us to obtain
news, weather, sports scores, mail, games, and so much more on just one page.
Another portal is Amazon’s A9.com search portal, which lets us do searches on
multiple areas without going to separate pages. We can search for web pages,
books, images, and much more on one page. A9.com utilizes Ajax to display
the information on the screen. This allows for a great user experience since the
user does not have to sit and wait for page re-rendering when new search
results are displayed.

 In this chapter, we are incorporating Ajax into a portal to improve the user’s
experience: specifically, how he logs into the system and how the system remem-
bers his details. The portal project will allow the user to customize the layout of
the portal with a minimum amount of effort. The user will not even realize that
his actions are sending information back to the server to remember the exact
location of the objects on the page. This means that his personal settings are the
same every time he logs into the system. We first take a low-level approach to
building the portal. We implement a basic portal framework in a less-structured
manner to shed light on the concept behind the portal. We then look at the portal
in a more advanced light using an object-oriented approach. Before we imple-
ment the portal, let’s examine some current portals and see how adding Ajax can
improve the user’s experience.

11.1 The evolving portal

Over time, portals have evolved from simple sites that let us check our mail and
do a search to elaborate setups that allow us to obtain a large amount of informa-
tion in little time and with little effort. By comparison, in the past we had to check
one site for news, another for weather, another for comics, another for a search,
and so on. Either we had tons of bookmarks for the sites that we checked daily, or
we just memorized our routine of what addresses to type into the browser.

11.1.1 The classic portal

We are all accustomed to classic portals—we’ve been using them for years—and a
lot of company intranets are using them to improve company performance by
having everything in one place. The classic portal is one that allows a user to log
into the system and have the content personalized to her tastes. For example, a
Licensed to jonathan zheng <yiyisjun@gmail.com>

The evolving portal 425
company portal can have one setup for a salesperson and another setup for a
computer programmer. Both of these employees may need to have a window to
the company calendar, but they both may not need to see the sales figures or the
bug report for the applications. By limiting what they can see, we increase com-
pany security and improve the employees’ performance since they do not have to
search for information all over the company intranet.

 Another example of a classic portal is Yahoo!. When we log into Yahoo!, we can
check mail, change the weather to fit our current location, change the look, and
so much more. As you can see in figure 11.1, Yahoo!’s portal is customized to the
needs of the user.

 Yahoo! accomplishes this by sending us to maintenance screens to alter the
information. One example of the maintenance page allows us to select the city
that we live in so that the weather forecast is for our area. In figure 11.1, you can

Figure 11.1 Yahoo!’s portal shows customized information.
Licensed to jonathan zheng <yiyisjun@gmail.com>

426 CHAPTER 11
The enhanced Ajax web portal
see that the weather is customized to Laurel, Maryland. While it is great that we
can customize the information we want to see, we can enhance the user experi-
ence even more by incorporating Ajax into the portal in the same way that Ama-
zon did with the A9.com portal.

11.1.2 The rich user interface portal

With an Ajax portal, the rich user interface is more dynamic than a classic portal
while positively impacting the user’s experience. We can add new content and
change the way the content is displayed in a seamless manner. A great example of
this seamless interaction is in Amazon’s A9.com search portal. Let’s look at how
that works. In figure 11.2, a search has been performed for Eric Pascarello with
only the Web checkbox selected.

 Now let’s narrow the search results. We know that we are looking for a book
that Pascarello has written, so we click the Books checkbox. The Book Results
pane is inserted into the right-hand side of the page. The search results for Eric
Pascarello’s books are displayed without posting the entire page back to the
server to obtain them, as shown in figure 11.3.

 Another example of using Ajax to enhance the portal experience is in the
configuration of the portal. Ajax allows the user interface to become part of the

Figure 11.2 A9.com’s portal with the web results for Eric Pascarello
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax portal architecture using Java 427
configuration-management tools by having the user click on objects in the win-
dow instead of going to another web page to configure the setup. The user can
dynamically resize and position the elements on the screen, thus customizing his
portal to fit his needs exactly.

 Now that we’ve seen some of the advantages of an Ajax portal, let’s look at the
architecture of the portal we will be building.

11.2 The Ajax portal architecture using Java

To provide a highly customizable Ajax portal for multiple users, we need client-
side code, server-side code, and a database. The client side handles the users’
interactions with the windows, such as dragging, dropping, and sending data
back to the server with Ajax. The server, in return, handles our users’ sessions,
data transfer back to the client, and interaction with the database. The database
holds our users’ logins and passwords in one table, and a second table holds the
portal window metadata, such as the position, size, and content.

 This project has a lot of steps since it contains dynamic results. To get this
project started, let’s look at how the project flows (figure 11.4).

Figure 11.3 A9.com’s portal showing the search results with the Book Results column
Licensed to jonathan zheng <yiyisjun@gmail.com>

428 CHAPTER 11
The enhanced Ajax web portal
The basic idea of the rich user interface portal that uses Ajax to interact with the
server sounds difficult, but you will be amazed at how simple it is to implement
the project. The portal architecture illustrated in figure 11.4 contains two major
portions: the initial login and the dynamic interaction with the windows. Thus,
we can break our processes into two different sections and adapt the Ajax func-
tionality to meet those needs. The first operation validates a user’s credentials
against a database, and the second operation interacts with DHTML elements and
returns values to our client.

 In this chapter, we use a DHTML library to handle a lot of the client-side code.
The DHTML library allows us to develop customizable windows that use IFrames
to display content. The DHTML windows created by this library can be positioned
anywhere on the page since the library supports dragging functionality. Another
feature the library supports is resizing of the windows, so we can make the window
any size we want. The DHTML library frees us from dwelling on the cross-browser
problems that we might encounter with these actions. Instead we can focus on
adding the Ajax technology into this library to make a dynamic script even more
powerful by integrating it with the server.

 The implementation that we’ll present here uses Java on the server side, sim-
ply to provide a little variety from the previous two chapters, which used .NET
languages. We’ve kept the implementation fairly simple. Because Ajax can work
equally well against any server-side technology, we won’t concentrate on the
server-side details. The full source code for the server tier is available as part of
the download for this book. Let’s start off by introducing the Ajax login.

Server

Send users
changes

Grab user
preferences

Browser

Save user
preferencesVerify

login

Build
windows

Login

Error

Figure 11.4 Ajax portal flow. Users log in to the portal and manage
their windows. Changes are saved automatically in the background
while they work.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax login 429
11.3 The Ajax login

The first action we need to take care of is the login procedure to access our
portal. To do this, we create the database table, the server-side code to handle
the request, and the client-side code that obtains the login information from
the user and processes the request. The first step is to design our user table in
the database.

11.3.1 The user table

The first table we will look at in the database is the users table. It contains three
columns. We are using only the bare minimum of information for this project, but
we can add more depending on our needs. The three columns in our user table
are id, username, and password, and they are created with the basic SQL statement
in listing 11.1. Figure 11.5 shows the table in design view mode with the SQL
Squirrel database client program (http://squirrel-sql.sourceforge.net).

create table users(
 id int primary key unique not null,
 username varchar(50) not null,
 password varchar(50) not null
);

Now that we have created the table, we need to add some users. In this case, we
hard-code in the usernames and passwords. As you can see in figure 11.6, two
users have been added to the table with the ID numbers of 1 and 2. Those ID
numbers will be important later on in this chapter.

 Next, we need to set up the user accounts for the users in the table. As it
stands, the portal doesn’t present an administrative user interface for adding new
users, and this would have to be done manually using the database tool of your

Listing 11.1 The users table schema

Figure 11.5
The users table properties
in SQL Squirrel, the graphical
database explorer
Licensed to jonathan zheng <yiyisjun@gmail.com>

430 CHAPTER 11
The enhanced Ajax web portal
choice. Developing an Ajax-based user administration front-end is possible, but
we don’t have the space to explore it here.

 The last step is to make sure that we assign the permissions to the table. The
user accounts that will be accessing the table must have the read and write per-
mission set. Without setting the permissions, we would have trouble using our
SQL query since we would get errors.

 Now that we have our users table, let’s write the code for the login process,
starting with the server.

11.3.2 The server-side login code: Java

The server-side code for the Ajax portal is simple in nature, but it will have
numerous steps by the time we get finished because of all the functionality that
the portal contains. Right now, we are concerned with coding the login portion of
the Ajax portal.

 Let’s review the process. When the user logs into the portal, the client-side
code sends a request to the server, passing the user’s credentials with the request.
The server-side process that intercepts this request will determine whether the
credentials that were sent to the server are correct. If they are correct, we start to
process the building of the portal windows. If the user’s credentials are incorrect,
we pass an error message back to the client page.

 Because we are developing in Java, we’ll use a servlet filter to secure all our
interactions with the server. To those unfamiliar with the term, a filter is simply a
bit of logic that can be assigned to one or more resources, which is given the
opportunity to modify a request before it reaches its destination servlet. We dis-
cussed using filters for security in chapter 7. If you’re using a system that doesn’t
support filters, you can simply create a helper object or function that checks to
see whether the user is logged in and invoke it manually at the top of each page
that you want to protect. Listing 11.2 shows our login filter.

Figure 11.6
The contents of the
users table
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax login 431
public class LoginFilter implements Filter {

 public void init(FilterConfig config)
 throws ServletException { }

 public void doFilter(
 ServletRequest request,
 ServletResponse response,
 FilterChain filterChain)
 throws IOException, ServletException {
 boolean accept=false;
 HttpSession session=(
 (HttpServletRequest)request).getSession();
 User user=(User)
 (session.getAttribute("user"));
 if (user==null){
 accept=login(request);
 }else{
 accept=true;
 }
 if (accept){
 filterChain.doFilter
 (request,response);
 }else{
 Writer writer=response.getWriter();
 writer.write
 (JSUtil.getLoginError());
 writer.flush();
 writer.close();
 }
 }

 private boolean login(ServletRequest request){
 String user=request
 .getParameter("username");
 String password=request
 .getParameter("password");
 User userObj=findUser(user,password);
 if (userObj!=null){
 HttpSession session=
 ((HttpServletRequest)request).getSession(true);
 session.setAttribute("user",userObj);
 }
 return (userObj!=null);
 }

 private User findUser(String user, String password) {
 User userObj=null;
 Connection conn=DBUtil.getConnection();

Listing 11.2 LoginFilter.java : server-side login code

b Check session for User object

c Authenticate request

d Let them in

e Proceed

f Return error code

g Get credentials
from request

h Store in session for future use
Licensed to jonathan zheng <yiyisjun@gmail.com>

432 CHAPTER 11
The enhanced Ajax web portal
 try{
 String sql="SELECT id FROM users WHERE username='"
 +user+"' AND password='"+password+"'";
 Statement stmt=conn.createStatement();
 ResultSet rs=stmt.executeQuery(sql);
 if (rs.next()){
 int id=rs.getInt("id");
 userObj=new User(id,user);
 }
 }catch (SQLException sqlex){

 }
 return userObj;
 }

 public void destroy() { }

}

In this case, we will apply a filter that checks to see whether a User object is
already held in session b. If it is, then we accept it d; otherwise, we authenticate
it against the username and password supplied in the request c. If the request is
accepted, it is passed on to the servlet e; otherwise, it will return an instruction
to display an error message f. We have wrapped all generated JavaScript up
into an object called JSUtil. The method that generates the error message is
shown here:

 public static String getLoginError() {
 StringBuffer jsBuf=new StringBuffer()
 .append("document.getElementById('spanProcessing')\n")
 .append(" .innerHTML = ")
 .append("'The Username and Password are invalid';\n");
 return jsBuf.toString();
 }

The login() method in listing 11.2 provides the details on authentication. We
extract the username and password from the request g and then invoke find-
User(), which contacts the database for a matching row i. (We’ve abstracted
away the details of the database behind a DBUtil object here.) If a row match-
ing the user is found, the function returns a User object j, which is then
stored in session h for the next time we pass through this filter. On subse-
quent passes through this filter, we won’t need to provide the username and
password in the querystring, because the User object will already be in session.

i Build SQL statement

j Create User object
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax login 433
Another nice feature of this approach is that it makes it easy to log the user
out. All we need to do is remove the User object from session.

 The User object itself is a simple representation of the database structure, as
shown in listing 11.3.

public class User {
 private int id=-1;
 private String userName=null;

 public User(int id, String userName) {
 super();
 this.id = id;
 this.userName = userName;
 }
 public int getId() { return id;}
 public String getUserName() { return userName;}
}

We do not store the password field in this object. We won’t need to refer to it again
during the lifecycle of our portal, and having it sitting in session would be some-
thing of a security risk, too! So, that’s our login framework from the server side.
Nothing very unusual there. Let’s move on now to see how our client-side code
interacts with it.

11.3.3 The client-side login framework

The client-side login framework consists of two parts. The first is the visual part,
which the user is able to view and interact with. We will dynamically create this
with HTML; you’ll see how easy it is to create a layout with divs, spans, and CSS.

 The second part is our Ajax or our JavaScript code, which sends the request to
the server and also processes the data. In this case, we are going to introduce
JavaScript’s eval() method. The eval() method evaluates the string passed to it
as JavaScript code. If the string contains a variable name, it creates the variable. If
the eval input contains a function call, it will execute that function. The eval()
method is powerful, but its performance can be slow depending on the complex-
ity of the operation.

The HTML layout
As in previous chapters, we are not using a table to do our layout. Table layouts
lengthen the page-rendering time, and since we are using Ajax, we would like
everything to be faster and more responsive. We need to place a textbox, a pass-

Listing 11.3 User.java
Licensed to jonathan zheng <yiyisjun@gmail.com>

434 CHAPTER 11
The enhanced Ajax web portal
word field, and a submit button on a form that we can submit to the server. We
also need a span so that we can display the error message from the server if the
username or password is invalid. By putting the entire form inside divs and
spans, we format the HTML to produce the portal’s header. Listing 11.4 shows the
basic HTML framework of our login header.

<form name="Form1">
 <div id="header">

 Name:
 <input type="text" name="username">

Password:
 <input type="password" name="password">

 <input type="button" name="btnSub" value="login"
 onclick="LoginRequest()">

 Ajax Portal
 </div>
 <div id="defaultContent">
 <p>Some text goes here!</p>
 </div>
 <div id="divSettings" class="hidden"></div>
</form>

First, we add our form b to our HTML document. The form provides a semanti-
cally meaningful container for the textboxes. It also provides a degradation path
for a non-Ajax-based authentication via normal form submission. We create a
header div c, which surrounds all our content. A span d is then added to house
our username textbox e or password field f, our processing span g, and our
submit button h.

 The button we use to submit the data back to the server needs an onclick
event handler. The onclick event handler initializes the Ajax by calling a Java-
Script function, LoginRequest(). LoginRequest() is explained in the section “The
JavaScript login code.”

 The only things left for the header are to add the slogan i for the portal and
to add a place for the default content j to be shown when the page is loaded.
Any message can be displayed inside the div defaultContent. In this example, we
just put in a string of text, but we can add links, images, text, or whatever we think

Listing 11.4 HTML login layout

b Define form
c Add header

d Insert login span

e Add username textbox

f Add password element

g Insert processing span

h Add submit button

i Append slogan

j Add default
content
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax login 435
is appropriate. Then we save the HTML; you can see how unsightly it looks with-
out any CSS applied to the elements (figure 11.7).

 To fix this drab-looking layout, we need to apply CSS to our elements. Since
we have given the elements their own IDs, it makes the process simple. We refer-
ence the element’s ID by placing a pound sign in front of it. We can add the
stylesheet as an external file or inline via the <style> tag. In this case, we are
using an inline <style> tag that we add to the head tag of the document. The CSS
rules are added to alter the colors, fonts, sizes, location, margins, and so on, as
shown in listing 11.5.

<style type="text/css">
 html, body{ margin: 0px; padding:0px;
 height:100%; }
 #header{ background-color: #C0C0C0;
 height: 100px;
 border-bottom: 1px solid black;
 font-weight: bold; }
 #login{ text-align: right; float: right;
 margin-top:15px;
 margin-right:15px; }
 #sloganText{ font-size: 25px;
 margin-left: 15px;
 line-height: 100px; }
</style>

We start out by removing any margins or padding from the body b of the docu-
ment. We specify the height as 100% so that it is easier to define document heights
in percentages if we need to in the future. It is important to note that we need to
specify these properties both for the HTML and the body tags, since different
browsers look at either one tag or the other for this information.

 For the header c, we can apply a background color to the div. We can
also set the height and add a bottom border to separate the header from the

Listing 11.5 Login form CSS rules

Figure 11.7
The HTML login form with no CSS applied

b HTML and
body elements

c Style the header
element

d Position
login span

e Format
slogan text
Licensed to jonathan zheng <yiyisjun@gmail.com>

436 CHAPTER 11
The enhanced Ajax web portal
content in a more dynamic manner. We can also adjust any of the font proper-
ties as we think necessary.

 We take the login information d and move it to the right side of the screen.
We use the float property and set the value to right. To make the text boxes
uniform, we use the text-align property so that the content within the span is
also aligned on the right margin. This gives our textboxes a more uniform look.
Without it, the textboxes would not line up correctly since the string name is
shorter than the password. We can also add some margins to adjust the position
of the login information so that its right edge is not directly on the border of our
header div.

 The last thing to style in our header is the slogan e. By setting the line-
height to the height of the div, we are allowing the slogan to be centered vertically
in the header. We also set the font properties to make the text noticeable. Just as
we did for the login span, we add a margin so the A in Ajax is not directly sitting
on the edge of the header. After applying the CSS to our header, we can save the
document and view how the CSS has changed the look and feel of the header, as
shown in figure 11.8.

Here you can see that our textboxes are aligned on the right side and that our slo-
gan is on the left side. We have taken the basic HTML structure and created an
attractive login header that did not require a table. Now that the header is styled,
we can add some functionality to this form. We need to add our JavaScript func-
tionality so that we can make a request back to the server without submitting the
entire page.

The JavaScript login code
The JavaScript login code will use the power of Ajax to allow us to send only the
username and password to the server without having to submit the entire page.
In order to do this, we need to reference our external JavaScript file, net.js,

Figure 11.8
Ajax portal’s login page with
the CSS stylesheet attached
Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax login 437
which contains the ContentLoader object, so we can use Ajax to send and
retrieve the request:

<script type="text/javascript" src="net.js"></script>

The ContentLoader file does all of the work of determining how to send the
information to the server, hiding any browser-specific code behind the easy-to-
use wrapper object that we introduced in chapter 3. Now that the net.js file is ref-
erenced, we are able to perform the request. The request is initiated by the button
click from our login form. The login form needs to perform three actions. The
first is to inform the user that his request is being processed, the next is to gather
the information, and the third is to send the request to the server (listing 11.6).

function LoginRequest(){
 document.getElementById("spanProcessing").innerHTML =
 " Verifying Credentials";
 var url = 'portalLogin.servlet';
 var strName = document.Form1.username.value;
 var strPass = document.Form1.password.value;
 var strParams = "user="+strName
 + "&pass=" + strPass
 var loader1 = new net.ContentLoader(
 url,CreateScript,null,"POST",strParams
);
}

Before we send the information to the server, we display a message to the user
saying that his action of clicking the button is allowing him to log into the sys-
tem. This keeps the user from clicking the button repeatedly, thinking that noth-
ing happened.

 We obtain the username and password field values and place them into a
string that we will submit to the server. We submit the values to the server with our
ContentLoader object, which accepts our parameters for the URL, the function to
call for success, the function to call for an error, the POST form action, and the
string containing the parameters to post. Let’s look at the function we call when
the server returns success: CreateScript(). It will process the data returned from
the server-side page:

function CreateScript(){
 strText = this.req.responseText;
 eval(strText);
}

Listing 11.6 The XMLHttpRequest login request
Licensed to jonathan zheng <yiyisjun@gmail.com>

438 CHAPTER 11
The enhanced Ajax web portal
When we built the server-side code, we returned text strings that contained Java-
Script statements in the responseText of our returned object. In order to effec-
tively use the JavaScript statements, we must process them with the eval()
method, which determines exactly what the strings contain and executes it. In
this case, the string is either going to contain the error message generated by the
LoginFilter failing, or the code to build the windows, if the filter lets us through
to the SelectServlet (see listing 11.8).

 What does the string consist of? In this application, we are not going to be
sending back an XML document, as we have done in many of our examples.
Instead, we will be sending back structured JavaScript statements with which we
will be able to use the eval() method. Using the terms that we developed in chap-
ter 5, we would say that our solution here is script-centric rather than data-centric.
Again, we’ve chosen this approach simply for variety’s sake. A portal solution
could equally well be coded using XML or JSON as the communication medium.

 We can now save the portal and run it to see if our login procedure is working
correctly. As you can see in figure 11.9, the wrong username and password were
entered into the fields.

 The text beside the login button in figure 11.9 shows an error message to the
user, informing her that the credentials that were provided are incorrect.

 If, on the other hand, the login is successful, then the request will be for-
warded to the main portal page. In this case, the next step is to build our win-
dows. This will require a large amount of DHTML to develop our rich user
interface, but the hard work is already done for us because we are using a prewrit-
ten JavaScript DHTML library.

Figure 11.9 An error message is displayed because of invalid credentials.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing DHTML windows 439
11.4 Implementing DHTML windows

Our Ajax portal has a rich user interface that allows the user to dynamically posi-
tion the windows. The user can also set the size of the window to the desired width
and height. When the user changes these settings, we can use Ajax to interact with
the server to store them as values in our database without the user even knowing
anything is happening.

 To enable this, we need to develop a database table to store the window prop-
erties such as height, width, and position. The server-side code needs to receive
these new window properties and update the values in the database.

 Writing browser-compliant DHTML can be complicated, so we are using a
DHTML library script to perform the drag, drop, and resizing of the window. A
library is nothing more than an external JavaScript file that contains all of the
code for a given functionality. You can obtain the JavaScript library, JSWindow.js,
for this project with the rest of the book’s downloads. We will need to make only a
few modifications to the library to enable Ajax.

11.4.1 The portal windows database

We need a database table that can hold the properties of several DHTML windows
for each user. Each user can have multiple rows in this table, one for every window
she has in her portal. The table is used to retrieve the last-known position and
size of the window when the user first logs in. When the user makes changes, the
values are then updated so that she can access them at future times and still see
the same layout. The following SQL will create the portal_windows table:

create table portal_windows(
 id int primary key not null,
 user_id int not null,
 xPos int not null,
 yPos int not null,
 width int not null,
 height int not null,
 url varchar(255) not null,
 title varchar(255) not null
);

Each user can have multiple windows, all with different configurations. The col-
umn named user_id relates to our users database. Each of the windows must
have an id as the primary key, so we can use this to save and update properties.
Make sure you add the auto increment for the window’s id column. This id col-
umn is used by the Ajax code and the DHTML window library to obtain and
update the user’s window properties.
Licensed to jonathan zheng <yiyisjun@gmail.com>

440 CHAPTER 11
The enhanced Ajax web portal
We need two columns to hold the x and y coordinates of our DHTML window.
These give us the location of the window on the screen from the upper-left cor-
ner of the browser. The column names for coordinates are xPos and yPos. Two
other properties we need to capture are the width and height properties of the
DHTML window. These are all stored as integers in the table.

 The last two columns in our database determine the URL of the content within
the window and the title of the content that the user assigns as a quick reference.
All of the database properties for portal_windows are shown in figure 11.10.

 Now we need to enter some default values so we can perform some testing. We
can add as many windows as we want for any of the users in the database table
users. You can see in figure 11.10 that we have added three DHTML windows for
user 1.

 In figure 11.11, the three DHTML window parameters give us the information
needed to create three windows on the screen with different dimensions and posi-
tions. The three windows in this table display three different websites: JavaRanch,
Google, and Eric’s Ajax Blog. Now that the database table has been built, we have
to get this information to the user when he logs into the portal. You’ll see how
straightforward this is in the next section.

Figure 11.10
portal_windows database
table structure

Figure 11.11 Data entered for the user with the id of 1
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing DHTML windows 441
11.4.2 The portal window’s server-side code

Let’s assume that our login request has made it through the security filter. The
next step is to retrieve the list of portal windows for our authenticated user and
send back the JavaScript telling the browser what to display. We define a Portal-
Window object that represents a row of data in the database, as shown in
listing 11.7.

public class PortalWindow {
 private int id=-1;
 private User user=null;
 private int xPos=0;
 private int yPos=0;
 private int width=0;
 private int height=0;
 private String url=null;
 private String title=null;

 public PortalWindow(
 int id, User user, int xPos, int yPos,
 int width,int height,
 String url, String title
) {
 this.id = id;
 this.user = user;
 this.xPos = xPos;
 this.yPos = yPos;
 this.width = width;
 this.height = height;
 this.url = url;
 this.title = title;
 }
 public int getHeight() {return height;}
 public void setHeight(int height) {this.height = height;}
 public int getId() {return id;}
 public void setId(int id) {this.id = id;}
 public String getTitle() {return title;}
 public void setTitle(String title) {this.title = title;}
 public String getUrl() {return url;}
 public void setUrl(String url) {this.url = url;}
 public User getUser() {return user;}
 public void setUser(User user) {this.user = user;}
 public int getWidth() {return width;}
 public void setWidth(int width) {this.width = width;}
 public int getXPos() {return xPos;}
 public void setXPos(int pos) {xPos = pos;}

Listing 11.7 PortalWindow.java
Licensed to jonathan zheng <yiyisjun@gmail.com>

442 CHAPTER 11
The enhanced Ajax web portal
 public int getYPos() {return yPos;}
 public void setYPos(int pos) {yPos = pos;}
}

Again, this object is pretty much a straightforward mapping of the database struc-
ture. In production, we’d probably use an ORM system such as Hibernate or iBATIS
to help us out, but we want to keep things fairly simple and platform-agnostic for
now. Note that we provide setter methods as well as getters for this object, because
we’ll want to update these objects dynamically in response to user events.

 The URL that we requested on login, portalLogin.servlet, is mapped to a serv-
let that retrieves all the portal windows for that user and sends back JavaScript
instructions. Listing 11.8 shows the main servlet.

public class SelectServlet extends HttpServlet {
 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response
) throws ServletException, IOException {
 HttpSession session=request.getSession();
 User user=(User)
 (session.getAttribute("user"));
 StringBuffer jsBuf=new StringBuffer();
 if (user==null){
 jsBuf.append(JSUtil.logout());
 }else{
 List windows=DBUtil
 .getPortalWindows(user);
 jsBuf.append(JSUtil.initUI());
 for (Iterator iter=windows.iterator();iter.hasNext();){
 PortalWindow window=(PortalWindow)(iter.next());
 session.setAttribute("window_"+window.getId(),window);
 jsBuf.append
 (JSUtil.initWindow(window));
 }
 }
 Writer writer=response.getWriter();
 writer.write(jsBuf.toString());
 writer.flush();
 }
}

Again, we use the DBUtil object to abstract out the database interactions and the
JSUtil to generate JavaScript code. DBUtil provides a getPortalWindows()

Listing 11.8 SelectServlet.java (mapped to 'portalLogin.servlet')

b Check session

c Define object

d Utilize the JSUtil object

e Declare portal window

f Write to output stream
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing DHTML windows 443
method c that takes a User object as an argument. We have one of those sitting
in the session, so we pull it out now b. The actual JavaScript is written by the
JSUtil object again, providing some user interface initialization code d, declar-
ing each of the portal windows that we’ve extracted from the database e and
then writing them directly to the servlet output stream f.

 Let’s briefly review the helper objects that we’ve used along the way, DBUtil
and JSUtil. We used DBUtil to get a list of the portal windows. As we noted, we’d
probably automate this in production using Hibernate or something similar; but
listing 11.9 provides a method from DBUtil that is a simple home-rolled imple-
mentation of accessing the portal_windows table in the database, for teaching
purposes. We’re using straightforward SQL directly here, so it should be easy to
adapt to the server language of your choice.

 public static List getPortalWindows(User user){
 List list=new ArrayList();
 Connection conn=getConnection();
 try{
 String sql="SELECT * FROM portal_windows "
 +"WHERE user_id="+user.getId();
 Statement stmt=conn.createStatement();
 ResultSet rs=stmt.executeQuery(sql);
 PortalWindow win=null;
 while (rs.next()){
 int id=rs.getInt("id");
 int x=rs.getInt("xPos");
 int y=rs.getInt("yPos");
 int w=rs.getInt("width");
 int h=rs.getInt("height");
 String url=rs.getString("url");
 String title=rs.getString("title");

 win=new PortalWindow(

 id,user,x,y,w,h,url,title
);
 list.add(win);
 }
 rs.close();
 stmt.close();
 }catch (SQLException sqlex){
 }
 return list;
 }

Listing 11.9 getPortalWindows() method

b Construct SQL statement

c Iterate through results

d Add Object
Licensed to jonathan zheng <yiyisjun@gmail.com>

444 CHAPTER 11
The enhanced Ajax web portal
We simply construct the SQL statement b, iterate through the result set that it
generates c, and add a PortalWindow object to our list in each case d.

 Second, we use the JSUtil helper object to generate some initialization code
and declare our window objects in JavaScript. The methods are basically exercises
in string concatenation, and we won’t show the full class here. The following code
gives a flavor of how it works:

public static String initWindow(PortalWindow window) {
 StringBuffer jsBuf=new StringBuffer()
 .append("CreateWindow(new NewWin('")
 .append(window.getId())
 .append("',")
 .append(window.getXPos())
 .append(",")
 .append(window.getYPos())
 .append(",")
 .append(window.getWidth())
 .append(",")
 .append(window.getHeight())
 .append(",'")
 .append(window.getUrl())
 .append("','")
 .append(window.getTitle())
 .append("'));\n");
 return jsBuf.toString();
}

The initWindow() method generates the JavaScript code for initializing a single
portal window. The JavaScript code from a successful request might look like this,
with initWindow() being called for each window in turn (the code has been for-
matted here for improved readability):

document.getElementById('login')
 .innerHTML='Welcome back!'
document.getElementById('defaultContent')
 .style.display='none';

CreateWindow(
 new NewWin(
 '1',612,115,615,260,
 'http://www.javaranch.com','JavaRanch'
)
);
CreateWindow(
 new NewWin(
 '2',10,115,583,260,
 'http://www.google.com','Google'
)
);
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing DHTML windows 445
CreateWindow(
 new NewWin(
 '3',10,387,1220,300,
 'http://radio.javaranch.com/pascarello','Ajax Blog!'
)
);

Since we are now logged in, we can remove the login textboxes and submit button
by placing a welcome message in their place. After we put up the welcome mes-
sage, we need to hide the content that’s on the screen by default. To do this, we set
the defaultContent DOM element’s display property to none so it is removed
from the user’s view.

 The JavaScript statement that instantiates the window involves two parts for
each window. The first part is a function call to CreateWindow(), which is part of
the JavaScript library that we added. Inside the function call, we will call a new
object constructor. The constructor creates a window class, to make it easier to ref-
erence the window properties. The JavaScript function that produces the window
class needs to receive the id, width, height, xPos, yPos, url, and title of the win-
dow. When the servlet returns this string to the client, our JavaScript eval()
method will execute it.

 For the most part, we’re following good code-generation conventions in gen-
erating simple, repetitive code that calls out to our JavaScript library functions.
Our initialization code could be wrapped up into a single client-tier call, but we
leave that as an exercise for the reader.

 The JavaScript library that we use creates JavaScript floating windows. Let’s
now see how to make those window-building functions available on the client tier.

11.4.3 Adding the JS external library

As mentioned earlier, we are using a DHTML library that you can download from
Manning’s website. The file, called JSWindow.js, contains all of the JavaScript
DOM methods to produce the window elements. The library also applies event
handlers to the window objects so that we can use drag-and-drop functionality. It
is convenient to use code libraries that are already developed since it cuts down
on development time and the code is normally cross-browser compliant.

 The first thing we need to do is rename the file so we can make changes to it.
Rename the JavaScript file to AjaxWindow.js, and save it to the directory in which
you are working.

 To use the functions contained in AjaxWindow.js, we need to reference the
external JavaScript file with a script tag. We use the src attribute of the JavaScript
Licensed to jonathan zheng <yiyisjun@gmail.com>

446 CHAPTER 11
The enhanced Ajax web portal
element tag. The script element that links to our .js file should be included within
the head tags of our HTML page:

<script type="text/javascript" src="AjaxWindow.js"></script>

We also need to get the DHTML windows stylesheet, so we can style the window.
To do this, download the file AjaxWindow.css from Manning’s website and link to
it using the link tag and the href attribute:

<link rel="stylesheet" type="text/css"
 href="AjaxWindows.css"></link>

Now that we have the JavaScript and the CSS files attached to the HTML page, we
can test to make sure that we have linked to them correctly. We are also verifying
that our server-side code is calling our JavaScript library correctly. If the code is
linked correctly and we have obtained the data from the server properly, we
should see three windows created from the information contained in the data-
base, as shown in figure 11.12, after logging in with a username and password
from our database. Remember that the library function we created is building the
windows and adding all of the functionality to them. In a sense it is magic, since
we just call it and it works.

Figure 11.12 The Ajax portal with three windows open on the screen
Licensed to jonathan zheng <yiyisjun@gmail.com>

Implementing DHTML windows 447
With the portal windows open, we can test the functionalities built into the
DHTML library without the Ajax functionality we are going to add next. Here are
some of the things we can do:

■ Maximize and minimize the windows by clicking on the button labeled
with an O.

■ Hide the window by clicking the button labeled with an X.
■ Open the DHTML window into its own pop-up window by clicking on the w.
■ Drag the window by holding down the left mouse button on the title bar

and moving the mouse around. Releasing the mouse button stops the drag
operation.

■ Resize the window by clicking on the green box on the lower-right corner
and dragging it around the screen.

You can see that the windows in figure 11.13 are in different positions than in fig-
ure 11.12.

 Now that we have the ability to position and resize the windows with the library,
we need to make our changes to the external .js file. The changes will allow us to
call a function that utilizes Ajax to send the new property values to our database.

Figure 11.13 Ajax portal showing windows with different positions
Licensed to jonathan zheng <yiyisjun@gmail.com>

448 CHAPTER 11
The enhanced Ajax web portal
11.5 Adding Ajax autosave functionality

Using Ajax allows us to implement an autosave feature that can be fired by any
event without the user knowing that it is happening. Normally, the user would
have to click a button to force a postback to the server. In this case, we will be fir-
ing the autosave with the onmouseup event, which ends the process of dragging
and resizing events. If we were to fire a normal form submission on the onmouseup
event, the user would lose all of the functionality of the page, disrupting her
workflow. With Ajax, the flow is seamless.

11.5.1 Adapting the library
As we mentioned earlier, the code from JavaScript DHTML libraries is normally
cross-browser compliant, which frees us from spending time getting cross-browser
code to work correctly. If you look at the code in the external JavaScript file, Ajax-
Window.js, you’ll see a lot of functionality (which we will not discuss here because
of its length). There are functions that monitor the mouse movements, and one
function that builds the windows. There are functions that set the position of the
windows, and another function that sets the size. Out of all of these functions, we
need to adapt only one to have our window save back to the database with Ajax.

Adapting the DHTML library for Ajax
The DHTML library functions for dragging and resizing windows use many event
handlers and DOM methods to overcome the inconsistencies between browsers.
The dragging and resizing of the windows is completed when the mouse button is
released (“up”). Therefore, we should look for a function that is called with the
onmouseup event handler in the AjaxWindow.js file. It contains the following code,
which is executed when the mouse button is released:

document.onmouseup = function(){
 bDrag = false;
 bResize = false;
 intLastX = -1;
 document.body.style.cursor = "default";
 elemWin="";
 bHasMoved = false;
}

In this code, a lot of booleans are being set to false to indicate that their actions
have been canceled. The cursor is being set back to the default. The line that we
need to change is the one where the elemWin reference is being canceled. At this
point, we want to take the reference and pass it to another function to initialize
our XMLHttpRequest object, in order to transfer the information to the server.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Adding Ajax autosave functionality 449
Although sometimes when we adapt libraries, it might take a lot of trial and error
to adapt them to our needs, in this case, the functionality is pretty straightfor-
ward. Just add the following line, shown in bold, to your document’s onmouseup
event handler:

document.onmouseup = function(){
 bDrag = false;
 bResize = false;
 intLastX = -1;
 document.body.style.cursor = "default";
 if(elemWin && bHasMoved)SaveWindowProperties(elemWin);
 bHasMoved = false;
}

The bold line in the previous code snippet checks to make sure that the object has
been moved or resized and that the element still exists. If the user did not per-
form either of these actions, then there would be no reason to send the request to
the server. If one of these actions was performed, we pass the element reference
to the function SaveWindowProperties(), which initiates the request to the server.

Obtaining the active element properties
After the user has moved or resized an element, we must update the server with
the new parameters. The DHTML window library uses CSS to position the ele-
ments and to set their width and height. This means that all we have to do is
obtain the database ID, the coordinates, and the size of the window. We can obtain
the coordinates and size by looking at the CSS parameters assigned to the window
that had focus. We then can take these new parameters and send them to the
server to be saved in the database with Ajax (listing 11.10).

function SaveWindowProperties(){
 winProps = "ref=" +
 elemWin.id;
 winProps += "&x=" +
 parseInt(elemWin.style.left);
 winProps += "&y=" +
 parseInt(elemWin.style.top);
 winProps += "&w=" +
 parseInt(elemWin.style.width);
 winProps += "&h=" +
 parseInt(elemWin.style.height);
 Settings("saveSettings",winProps);
 elemWin = "";
}

Listing 11.10 SaveWindowProperties() function

b Obtain window ID

c Find
window
position

d Grab
window size

e Call Settings function
f Remove element reference
Licensed to jonathan zheng <yiyisjun@gmail.com>

450 CHAPTER 11
The enhanced Ajax web portal
As you can see in listing 11.11, we obtain the ID of the window b by referencing
the window object. The ID that we obtained was assigned to the window when the
library built it. When it assigns an ID, it appends win in front of the number from
the database id column; we can see that by looking at the JavaScript code that is
building the windows.

 The x and y positions of the window are obtained c by referencing the left
and top properties in the stylesheet. We also use the stylesheet properties to
obtain the size d of the window by referencing its width and height properties.

 After obtaining the information, we can call another function, Settings() e,
which we will be creating shortly, to send our request to the server. Once we call
the function, we should remove the element object from our global variable elem-
Win f. To do this, we assign an empty string to the variable elemWin. Now with the
SaveWindowProperties() function complete, we can initiate our silent Ajax
request to the server with the JavaScript function Settings().

11.5.2 Autosaving the information to the database

Ajax lets us send information to the server without the user even knowing it is
happening. We can see this in action with two projects in this book. We can easily
submit requests to the server as a result of both monitoring keystrokes, as we do in
the type-ahead suggest (chapter 10), and monitoring mouse movements, as we
do in this chapter. This invisible submission is great for developers since we can
update the user’s settings without him having to lift a finger. In most cases, reduc-
ing steps increases the user’s satisfaction. For this application, the action of the
user releasing the mouse button is all we need to initiate the XMLHttpRequest
object. Now it’s time to initiate the process to send the request to the server.

The client: sending the silent request
The XMLHttpRequest process in this case will not require anything sophisticated.
The user’s interaction with the form sends all of the form properties to our func-
tion. We first need to initialize the XMLHttpRequest object:

function Settings(xAction,xParams){
 var url = xAction + ".servlet";
 var strParams = xParams;
 var loader1 = new net.ContentLoader(url,
 BuildSettings,
 ErrorBuildSettings,
 "POST",
 strParams);
}
Licensed to jonathan zheng <yiyisjun@gmail.com>

Adding Ajax autosave functionality 451
For the function Settings(), we are passing the action string that contains all of
our window’s properties. We attach the parameters that we’re going to post back
to the server. If we get a successful round-trip to the server, the loader will call the
function BuildSettings(). If we get an error during the round-trip, we will call
the function ErrorBuildSettings():

function BuildSettings(){
 strText = this.req.responseText;
 document.getElementById("divSettings").innerHTML = strText;
}
function ErrorBuildSettings(){
 alert('There was an error trying to connect to the server.');
 document.getElementById("divSettings").style.display = "none";
}

The function BuildSettings() shown here is quite basic; all we are doing is fin-
ishing up our XMLHttpRequest received from the server. We can set a message
on the portal status bar to show that we have updated the information on the
server. We can add an error message to the status bar if we encounter a problem
updating the information on the server. We also generate an alert, which tells
the user of the error, but will also disrupt their workflow. We presented produc-
tion-ready notification mechanisms in chapter 6, and leave it as an exercise for
the reader to integrate those systems into the portal. Now let's see what hap-
pens on the server.

The server: gathering information from the client
All we have left to do is to extract the values from our form submission. The
values were sent by our XMLHttpRequest object, which was triggered by the
onmouseup event handlers. We need to create our SQL query with this informa-
tion and update the record in the database to save the new information. We
define an UpdateServlet for this purpose, which is shown in listing 11.11.

public class UpdateServlet extends HttpServlet {
 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response
)throws ServletException, IOException{
 String windowId=
 request.getParameter("ref");
 HttpSession session=request.getSession();
 PortalWindow window=(PortalWindow)
 (session.getAttribute
 ("window_"+windowId));
 window.setXPos(getIntParam(request,"x"));

Listing 11.11 UpdateServlet.java (mapped to 'saveSettings.servlet')

b Get unique ID from request

c Get Window object from session
Licensed to jonathan zheng <yiyisjun@gmail.com>

452 CHAPTER 11
The enhanced Ajax web portal
 window.setYPos(getIntParam(request,"y"));
 window.setWidth(getIntParam(request,"w"));
 window.setHeight(getIntParam(request,"h"));
 DBUtil.savePortalWindow(window);
 Writer writer=response.getWriter();
 writer.write("Save Complete");
 writer.flush();
 }
 private int getIntParam(HttpServletRequest request, String param) {
 String str=request.getParameter(param);
 int result=Integer.parseInt(str);
 return result;
 }
}

Given the window ID as a request parameter b, we can extract the PortalWindow
from session c and update its geometry based on further request parameters.
We then call another method on our DBUtil object to save the portal window set-
tings in the database d. Again, the implementation that we’ve provided here in
listing 11.12 has been written to be simple and easy to translate to other languages.

public static void savePortalWindow(PortalWindow window){
 Connection conn=getConnection();
 int x=window.getXPos();
 int y=window.getYPos();
 int w=window.getWidth();
 int h=window.getHeight();
 int id=window.getId();
 String sql="UPDATE portal_windows SET xPos="+x
 +",yPos="+y
 +",width="+w
 +",height="+h
 +" WHERE id="+id;
 try{
 Statement stmt=conn.createStatement();
 stmt.execute(sql);
 stmt.close();
 }catch (SQLException sqlex){
 }
}

The code in listing 11.12 is very straightforward. We read the relevant details
from the PortalWindow object and construct a SQL update statement accord-
ingly. Rather than returning any JavaScript this time, we issue a simple text
acknowledgment.

Listing 11.12 savePortalWindows() method

d Save changes

Return simple text reply
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 453
 To test the new functionality, log into the portal as our test user. Drag the
windows around the screen, and resize them so they are in different positions
from their defaults. Close the browser to force an end to the session. When we
reopen the browser and log back into the portal as that user, we see the windows
in the same position. Move the windows to a new position and look at the data-
base table. We are automatically saving the user’s preferences without him even
knowing it.

 We’ve now provided all the basic functionality for a working portal system,
including a few things that a classic web application just couldn’t do. There are
several other requirements that we could classify as “nice to have,” such as being
able to add, remove, and rename windows. Because of limited space, we are not
going to discuss them here. The full code for the portal application is available to
download and includes the ability to add, delete, rename, and adjust the win-
dow’s properties without leaving the single portal page. If you have any questions
about the code in this section or need a more thorough understanding, you can
always reach us on Manning.com’s Author Online at www.manning.com.

 Our code so far has been somewhat rough and ready so that we could demon-
strate how the individual pieces work. Let’s hand it over to our refactoring team
now, to see how to tighten things up and make the system easier to reuse.

11.6 Refactoring

The concept of an Ajax-based portal client that interacts with a server-side portal
“manager” is, as you’ve seen, a compelling notion. In our refactoring of this
chapter’s client-side code, let’s consider our component as an entity that serves as
the arbitrator of portal commands sent to the portal manager on the server.
Throughout this refactoring discussion, let’s make it our goal to isolate the pieces
of code that might change over time and facilitate those changes as easily as pos-
sible. Since the portal is a much coarser-grained component and something that
will more or less take over the real estate of our page, we won’t be so stringent
with the requirement of not interrupting the HTML as we have in the previous
two refactoring examples.

 But, before discussing the client-side semantic, let’s first stop and contemplate
the contract with the server. Our previous server-side implementation was written
in Java, so we had a servlet filter perform the authentication functionality: one
servlet to return the window configurations, and another servlet to save window
configurations. Similarly, for adding new windows and deleting the current ones, we
would provide further standalone servlets. In a Java web application, the servlets
Licensed to jonathan zheng <yiyisjun@gmail.com>

454 CHAPTER 11
The enhanced Ajax web portal
can be mapped to URLs in a very flexible fashion, defined in the web.xml file of
the web archive (.war) file. For example, our SelectServlet, which returned the
script defining the initial windows, was mapped to the URL portalLogin.servlet.

 One of the strengths of Ajax is the loose coupling between the client and the
server. Our portal example uses Java as a back-end, but we don’t want to tie it to
Java-specific features such as servlet filters and flexible URL rewriting. An alter-
native back-end architecture might use a request dispatch pattern, in which a sin-
gle servlet, PHP page, or ASP.NET resource accepts all incoming requests and
then reads a GET or POST parameter that specifies what type of action is being
undertaken. For example, the URL for logging in to the portal might be por-
tal?action=login&userid=user&password=password or, more likely, the equiva-
lent using POST parameters. In Java, we might implement a request dispatcher
approach by assigning a specific URL prefix, say .portal, to the dispatcher servlet,
allowing us to write URLs such as login.portal.

 In our refactored component, we will generalize our assumptions about the
back-end to allow either a request dispatcher architecture or the multiple address
option that we used for our Java implementation. We don’t, however, need to
introduce complete flexibility, so we’ll predefine a number of commands that the
portal back-end will be expected to understand, covering login, showing the
user’s portal windows, and adding and deleting windows from the portal. With
these changes to the server in mind, let’s return our attention to the client-side
implementation.

 Let’s begin our discussion of the portal refactoring by redefining the usage
contract from the perspective of the page’s HTML; then we’ll delve into the
implementation. Recall that the hook from our HTML page into the portal script
was via the login, specifically through the login button:

 <input type="button" name="btnSub" value="login"
 onclick="LoginRequest('login')">

We’ll change the onclick handler to be a call to a function that will use our portal
component. Let’s assume that the portal component will be instantiated via a
script that executes once the page loads. A representative example of what this
should look like is shown in listing 11.13.

 function createPortal() {
 myPortal = new Portal(
 'portalManager',

Listing 11.13 Portal creation and login

b Base URL for portal
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 455
 {
 messageSpanId: 'spanProcessing',
 urlSuffix: '.portal'
 }
);

 myPortal.loadPage(Portal.LOAD_SETTINGS_ACTION);
 document.getElementById('username').focus();
 }
 function login() {
 myPortal.login(document.getElementById('username').value,
 document.getElementById('password').value);
 }

In this usage semantic, createPortal(), which should get called once the page
loads, creates an instance of the portal component. The first argument is the base
URL for the portal’s server-side application b, and the second provides optional
parameters used to customize it for a particular context c. In this case, we tell it
the ID of the DOM element into which status messages should be written and the
name of the request parameter that will denote which action to execute. Once
created, an API on the portal named loadPage is called. This loads the page’s por-
tal windows if there is already a user login present in the server session d. If
nobody is logged in, this server will return an empty script, leaving only the login
form on the screen.

 The login() function is just a utility function in the page that calls the login()
method of our portal component, passing the username and password values as
arguments. Given this contract, the login button’s onclick handler now calls the
page’s login() method, as shown here:

 <input type="button" name="btnSub" value="login" onclick="login()">

11.6.1 Defining the constructor

Now that you have a basic understanding of how the component will be used
from the perspective of the page, let’s implement the logic, starting with the
constructor:

function Portal(baseUrl, options) {
 this.baseUrl = baseUrl;
 this.options = options;
 this.initDocumentMouseHandler();

The constructor takes the URL of the Ajax portal management on the server as
its first argument and an options object for configuration as the second. In our

c Optional
parameters

d Call to load windows
Licensed to jonathan zheng <yiyisjun@gmail.com>

456 CHAPTER 11
The enhanced Ajax web portal
earlier development of the script, recall that we had a servlet filter and two serv-
lets perform the back-end processing. Throughout the rest of this example, we’ll
assume a single servlet or resource, portalManager, which intercepts all requests
to the portal back-end, as configured in listing 11.13. If we wanted to configure
the portal against a back-end that didn’t use a single request dispatcher, we could
simply pass different arguments to the constructor, for example:

myPortal = new Portal(
 'data',
 { messageSpanId: 'spanProcessing', urlSuffix: '.php' }
);

This will pass a base URL of “data” and, because no actionParam is defined in the
options array, append the command to the URL path, with the suffix .php, result-
ing in a URL such as data/login.php. We’ve given ourselves all the flexibility we’ll
need here. We’ll see how the options are turned into URLs in section 11.6.3. For
now, let’s move on to the next task. The final line of the constructor introduces
the issue of adapting the AjaxWindows.js library.

11.6.2 Adapting the AjaxWindows.js library

Recall that the implementation of this portal used an external library called Ajax-
Windows.js for creating the individual portal windows and managing their size
and position on the screen. One of the things we had to do was to adapt the
library to send Ajax requests to the portal manager for saving the settings on the
mouseup event. This was the hook we needed; all move and resize operations are
theoretically terminated by a mouseup event. The way we performed the adapta-
tion in round one was to make a copy of the AjaxWindows.js library code and
change the piece of code that puts a mouseup handler on the document. If we
think of the AjaxWindow.js library as a third-party library, the drawback to this
approach is evident. We’ve branched a third-party library codebase, that is, modi-
fied the source code and behavior of the library in such a way that it’s no longer
compatible with the version maintained by its original author. If the library
changes, we have to merge in our changes with every new version we upgrade to.
We haven’t done a good job of isolating this change point and making it as pain-
less as possible. Let’s consider a less-radical approach of adaptation and see if we
can rectify the situation. Recall the last line of our constructor:

 this.initDocumentMouseHandler();

Our initDocumentMouseHandler() method is an on-the-fly adaptation of the Ajax-
Windows.js library. It just overrides the document.onmouseup as before, but within
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 457
our own codebase instead. Now our own method will perform the logic required
to perform the adaptation within the portal’s handleMouseUp() method. This is
shown in listing 11.14.

 initDocumentMouseHandler: function() {
 var oThis = this;
 document.onmouseup = function() { oThis.handleMouseUp(); };
 },

 handleMouseUp: function() {
 bDrag = false;
 bResize = false;
 intLastX = -1;
 document.body.style.cursor = "default";

 if (elemWin && bHasMoved)
 this.saveWindowProperties(elemWin.id);

 bHasMoved = false;
 },

This solution is much better, but we could take it one step further. If the AjaxWin-
dows.js library defined the mouseup handler within a named function rather than
anonymous, we could save the handler under a different name and invoke it from
our own handler. This would have the benefit of not duplicating the logic already
defined in the AjaxWindows.js library. This approach is illustrated in the follow-
ing code:

 function ajaxWindowsMouseUpHandler() {
 // logic here...
 }
 document.onmouseup = ajaxWindowsMouseUpHandler;

ajaxWindowsMouseUpHandler() is a callback defined by the AjaxWindows.js exter-
nal library. Using it would allow us to save the definition of the method and use it
later, as shown here:

 initDocumentMouseHandler: function() {
 this.ajaxWindowsMouseUpHandler =
 ajaxWindowsMouseUpHandler;
 var oThis = this;
 document.onmouseup = function() { oThis.handleMouseUp(); };
 },

Listing 11.14 Adaptation of the AjaxWindows.js mouse hander

b Store our own reference
Licensed to jonathan zheng <yiyisjun@gmail.com>

458 CHAPTER 11
The enhanced Ajax web portal
 handleMouseUp: function() {
 this.ajaxWindowsMouseUpHandler();
 if (elemWin && bHasMoved)
 this.saveWindowProperties(elemWin.id);
 },

Now our handleMouseUp() method doesn’t have to duplicate the AjaxWindows.js
library functionality. We just invoke the functionality c through our saved refer-
ence b and then add our own functionality d. And if the mouseup handler of
AjaxWindows changes in the future, we pick up the changes without requiring
any code modifications. This is a much more palatable change-management sit-
uation. Of course, it does assume that the implied contract with the library
doesn’t change—the contract being two global variables named elemWin and
bHasMoved. Given that the library currently defines the mouseup handler as an
anonymous function, we could still save a reference to the existing mouseup func-
tionality with a line of code such as

 this.ajaxWindowsMouseUpHandler = this.document.onmouseup;

This would achieve the same thing, but it’s a slightly more brittle proposition,
since the contract in this situation is much looser. This solution relies on the fact
that we’ve included our script libraries in the appropriate order and that the
AjaxWindows.js library has already executed the code that placed the mouseup
handler on the document. It also assumes no other library has placed a different
mouseup handler on the document or has performed some other wrapping tech-
nique just as we’ve done.

 That’s probably about as much as we can hope to do with the library adapta-
tion. Let’s move on to the portal API. The handleMouseUp() method reveals one of
the three portal commands that the portal component has to accommodate.
When the mouse button is released, the saveWindowProperties() method is called
to save the size and position of the current window. The following discussion will
detail that along with the other portal command APIs.

11.6.3 Specifying the portal commands

As already discussed, our portal component is primarily a sender of commands.
The commands that are sent are Ajax requests to a server-side portal manage-
ment system. We’ve already discussed the notion of commands and the formal
Command pattern in Ajax, in chapters 3 and 5. Here is another opportunity to
put that knowledge to use.

 The commands that we’ve supported up to this point in our portal are logging
in, loading settings, and saving settings. We’re going to throw in the ability to add

c Call library function

d Add our functionality
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 459
and delete windows, which we alluded to although we didn’t show the full imple-
mentation. We can think of each of these in terms of a method of our portal. But
before we start looking at code, let’s do a bit of prep work to help with the task of
isolating change points. What we’re referring to is the names of the commands
themselves. Let’s define symbols for each command name so that the rest of our
components can use them. Consider the following set of symbols:

Portal.LOGIN_ACTION = "login";
Portal.LOAD_SETTINGS_ACTION = "PageLoad";
Portal.SAVE_SETTINGS_ACTION = "UpdateDragWindow";
Portal.ADD_WINDOW_ACTION = "AddWindow";
Portal.DELETE_WINDOW_ACTION = "DeleteWindow";

Even though the language doesn’t really support constants, let’s assume that based
on the uppercase naming convention, these values are intended to be constant val-
ues. We could lazily sprinkle these string literals throughout our code, but that’s a
fairly sloppy approach. Using constants in this way keeps our “magic” strings in a
single location. If the server contract changes, we can adapt. For example, imagine
the ways in which the server contract could change, as shown in table 11.1.

Now that we can reference commands by these symbols, let’s look at a generic
mechanism for issuing the commands to the portal management server. We need
a helper method that generically sends Ajax-based portal commands to the
server. Consider this usage contract:

 myPortal.issuePortalCommand(Portal.SAVE_SETTINGS_ACTION,
 "setting1=" + setting1Value,
 "setting2=" + setting2Value, ...);

In this scenario, we’re contemplating a method named issuePortalCommand()
that takes the name of a command as its first argument (for example, one of our

Table 11.1 Public contract changes

Server Contract Change Action Required

A command is renamed (e.g., PageLoad gets
renamed to its verb-noun form LoadPage).

Change the right side of the assignment of the
LOAD_SETTINGS_ACTION constant to the new
value. The rest of the code remains unaffected.

The server no longer supports a command. Remove the constant, and do a global search for all
references. Take appropriate action at each refer-
ence point.

The server supports a new command. Add a constant for the command, and use its name
within the code.
Licensed to jonathan zheng <yiyisjun@gmail.com>

460 CHAPTER 11
The enhanced Ajax web portal
constants) and a variable number of arguments corresponding to the parame-
ters the command expects/requires. The parameters are, quite intentionally, of
the exact form as that required by the net.ContentLoader’s sendRequest()
method. The issuePortalCommand() method we’ve defined could be imple-
mented as follows:

 issuePortalCommand: function(commandName) {
 var actionParam = this.options['actionParam'];

 var urlSuffix = this.options['urlSuffix'];

 if (!urlSuffix) urlSuffix="";
 var url = this.baseUrl;
 var callParms = [];
 if (actionParam){
 callParms.push(
 actionParam + "=" + commandName
);
 }else{
 url += "/" + commandName
 + urlSuffix;
 }
 for (var i = 1 ; i < arguments.length ; i++)
 callParms.push(arguments[i]);
 var ajaxHelper = new
 net.ContentLoader(this, url, "POST", []);
 ajaxHelper.sendRequest
 .apply(ajaxHelper, callParms);
 },

This method builds a URL based on the configuration options that we discussed
in section 11.6.1. If we have supplied a value for actionParam b, then it will be
added to the parameters that are POSTed to the server d. If not, we will append
the command to the URL path e, adding the URL suffix if we have supplied one
in our options c. The first function argument is the command name. All remain-
ing arguments are treated as request parameters. The URL that we have con-
structed is then passed to the ContentLoader f, and the request is sent with the
request parameters in tow g, as illustrated in the example usage shown previ-
ously. With this method in place, each of our portal command APIs will have a
nicely minimal implementation. Another “for free” feature of having a generic
method like this is that we can support new commands that become available on
the server without having to change any client code. For now, let’s look at the
commands we do know about.

b Get action parameter

c Get URL suffix

d Apply action parameter

e Apply URL
suffix

f Create ContentLoader

g Send request
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 461
Login
Recall that our login button’s onclick handler initiates a call to the login()
method of our page, which in turn calls this method. The login command, at
least from the perspective of the server, is a command that the server must handle
by checking the credentials and then (if they are valid) responding with the same
response that our load-page command would perform. With that in mind, let’s
look at the implementation shown in listing 11.15.

 login: function(userName, password) {

 this.userName = userName;
 this.password = password;

 if (this.options.messageSpanId)
 document.getElementById(
 this.options.messageSpanId).innerHTML =
 "Verifying Credentials";
 this.issuePortalCommand(Portal.LOGIN_ACTION,
 "user=" + this.userName,
 "pass=" + this.password);
 },

The method puts a “Verifying Credentials” message into the span designated by
our configurable option this.options.messageSpanId. It then issues a login com-
mand to the portal back end, passing the credentials that were passed into the
method as request parameters. The issuePortalCommand() method we’ve just put
in place does all the hard work.

Load settings
Recall that the createPortal() function of our page calls this method to load the
initial configuration of our portal windows. The method to load the settings for
the page is even simpler than the login method just discussed. It’s just a thin
wrapper around our issuePortalCommand(). It passes the user as the lone param-
eter that the server uses to load the relevant window settings, since the settings
are on a per-user basis:

 loadPage: function(action) {
 this.issuePortalCommand(Portal.LOAD_SETTINGS_ACTION,
 "user=" + this.userName,
 "pass=" + this.password);
 },

Listing 11.15 The portal login method
Licensed to jonathan zheng <yiyisjun@gmail.com>

462 CHAPTER 11
The enhanced Ajax web portal
Save settings
The save settings method is equally simplistic. Recall that this method is called by
our AjaxWindows.js library adaptation on the mouseup event in order to store all
move and size operations:

 saveWindowProperties: function(id) {
 this.issuePortalCommand(Portal.SAVE_SETTINGS_ACTION,
 "ref=" + id,
 "x=" + parseInt(elemWin.style.left),
 "y=" + parseInt(elemWin.style.top),
 "w=" + parseInt(elemWin.style.width),
 "h=" + parseInt(elemWin.style.height));
 elemWin = null;
 },

Adding/deleting windows
Although we didn’t fully develop the concept out of adding and deleting win-
dows, at least from the perspective of providing a nice UI to initiate these actions,
we can certainly define the command API methods that would support these
operations, as shown here:

 addWindow: function(title, url, x, y, w, h) {
 this.issuePortalCommand(Portal.ADD_WINDOW_ACTION,
 "title=" + title,
 "url=" + url,
 "x=" + x,
 "y=" + y,
 "w=" + w,
 "h=" + h);

 },

 deleteWindow: function(id) {
 var doDelete =
 confirm("Are you sure you want to delete this window?");
 if(doDelete)
 this.issuePortalCommand(Portal.DELETE_WINDOW_ACTION,
 "ref=" + id);
 },

This concludes our discussion of the APIs required to support the portal com-
mands. Now let’s look at our portal Ajax handling.

11.6.4 Performing the Ajax processing

As already noted, in this example we’re using an Ajax technique for handling
responses in a script-centric way. The technique relies on the fact that the
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 463
expected response is valid JavaScript code. The thing that’s very desirable about
this kind of approach is that the client doesn’t have to do any data-marshaling or
parsing to grok (geek-speak for understand) the response. The response is simply
evaluated via the JavaScript eval() method, and the client is absolved from all
further responsibility. The negative side of this approach is that it puts the
responsibility on the server to be able to understand the client-side object model
and generate a syntactically correct language-specific (JavaScript) response.
The second downside of this approach is partially addressed by the popular vari-
ety of this technique of using JSON to define our responses. There are some
server-side libraries that aid in the generation of JSON responses (see chapter 3),
although these are moving more toward what we described in chapter 5 as a
data-centric approach.

 For now, we’re going to stick to a script-centric system, so let’s look at our
implementation and see what we can do to help it along. Let’s start with our ajax-
Update() function and its helper runScript():

 ajaxUpdate: function(request) {
 this.runScript(request.responseText);
 },

 runScript: function(scriptText) {
 eval(scriptText);
 },

As already discussed, the response handling is simple to a fault. All we do is call
the runScript() method with the responseText, and the runScript() simply
eval()s the response text. So why, you might ask, don’t we just get rid of the run-
Script() method altogether and just call eval() from within the ajaxUpdate()
method? Well, that’s certainly a valid and useful approach. It might be nice, how-
ever, to have a method that encapsulates the concept of running a script. For
example, what if we added a preprocessing step or a postprocessing step to our
runScript() implementation? Again, we’ve isolated a change point. Our ajax-
Update() method is happily oblivious of the change, and we pick up the new
behavior. One interesting application of this technique would be a preprocessor
that does token replacement of values that reside on the client before executing.

 Finishing out our Ajax discussion with the ever-important handling of errors,
let’s show our handleError() method. Recall that just as the ajaxUpdate()
method is an implied contract required for collaboration with the net.Content-
Loader, so is the handleError(). The handleError() method is shown here:
Licensed to jonathan zheng <yiyisjun@gmail.com>

464 CHAPTER 11
The enhanced Ajax web portal
 handleError: function(request) {
 if (this.options.messageSpanId)
 document.getElementById
 (this.options.messageSpanId).innerHTML =
 "Oops! Server error. Please try again later.";
 },

This method checks for the existence of the messageSpanId configuration prop-
erty and, if it exists, uses it as the element to place an “Oops!” message onto the
UI. The actual text of the message that’s presented is something that could also
be parameterized with the options object. This is an exercise left to the reader.

 With that, our portal component refactoring session has come to a close. We’ve
created a deceptively simple mechanism for providing Ajax portal management.
Now let’s take a few moments to review the focus of our refactoring and recap
what we’ve accomplished.

11.6.5 Refactoring debrief

In a couple of ways, the development of this component is quite different than
the other component examples in this book. First, the portal component is a
more coarse-grained component for providing an Ajax-based portal capability. A
third-party developer is unlikely to want to drop a portal system into the corner of
his page! Second, it uses a technique for handling Ajax responses as JavaScript
code. Our refactoring of this component focused on ways to isolate change
points. This was illustrated in several ways:

■ We provided a clean way to adapt the AjaxWindows.js library.
■ We isolated string literals as pseudo-constants.
■ We wrote a generic method for issuing commands.
■ We isolated via a method the concept of running an Ajax response script.

11.7 Summary

The portal can be one of the most powerful tools a company has. The company
can set up business logic to allow users to see only the information that pertains to
them. Portals also allows users to customize the look and feel of the window to fit
their needs in order to increase their performance since the page is laid out
exactly as they want it to be.

 By using Ajax in the portal, we can keep all of the functionality in one area
without having to send the server to multiple pages. There is no more worrying
about what the back button is going to do when the user logs out. There will be no
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 465
page history, since we never left the page. We talked about the drawbacks of nav-
igating away from the page, but we were able to solve the problem by using Ajax
to perform a request to the server.

 We also sent requests back to the server without the user knowing that data was
being saved. By triggering Ajax with event handlers, we are able to save data
quickly without disrupting the user’s interaction. A portal that uses Ajax intro-
duces a new level of performance in a rich user interface.

 In the final section of this chapter, we looked at refactoring the portal code. In
previous sections, we have focused on creating a reusable component that can be
dropped in to an existing page. In this case, that isn’t appropriate, as the portal is
the shell within which other components will reside. Our emphasis in these refac-
torings has been on increasing the maintainability of the code by isolating String
constants, creating some generic methods, and separating the third-party library
from our project code in a cleaner way.

 In this chapter, we’ve generated simple XML responses from the server and
decoded them manually using JavaScript. In the next chapter, we’ll look at an
alternative approach: using XSLT stylesheets on the client to transform abstract
XML directly into HTML markup.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Live search using XSLT
This chapter covers
■ Dynamic search techniques
■ Using XSLT to translate XML to HTML
■ Bookmarking dynamic information
■ Building a live search component
466

Licensed to jonathan zheng <yiyisjun@gmail.com>

Understanding the search techniques 467
With Ajax, it’s easy to perform server-side actions while controlling what is hap-
pening on the client. If a process takes an extended period of time, we can show
animated GIFs that display messages that let the user know what’s happening.
The user can perform other actions while the server-side process is taking place
and will be less likely to think that the browser has frozen.

 In this chapter, we use this Ajax technique to create a live search. It utilizes
Extensible Stylesheet Language Transformations (XSLT) to transform an XML
document into an HTML layout. The XSLT translation is easier to maintain than
the code to manually parse the XML and produce HTML using JavaScript state-
ments. It uses a tree-oriented transformation on a dynamically generated XML
document, which replaces the server-side code and the JavaScript on which the
previous projects relied. We are eliminating the hassles of manually making sure
that all the HTML elements are formed properly.

 As with previous examples, we first develop the code in a straightforward way
and then refactor it into a reusable component. By the end of this chapter, you
should understand the principles of using XSLT with Ajax and have a ready-rolled
search component that you can drop into your own projects.

12.1 Understanding the search techniques

When we perform searches, we are accustomed to seeing the page freeze while
the search is conducted on the server. (At least, this is the case on websites that do
not have 1,200 clustered servers that perform a search over 8 billion pages in less
than a second. The budget constraints of your project may vary.) To eliminate the
pause, some developers implement pop-up windows and frames. The additional
window is used to perform the processing so the user’s experience can be
enhanced, but this also creates problems. With Ajax, we can eliminate the com-
mon delays of the classic form and frame submissions.

12.1.1 Looking at the classic search

In a classic search process, when we include a search form on our website, one or
more form elements are posted back to the server. Google’s main search page is
an example. Google’s search page (www.google.com) contains a single textbox
and two search buttons. Depending on what search action we select, the form
either directs us to a list of records, which we can navigate, or takes us to a single
result in that list. This design is well suited for a page that doesn’t have any other
functionality, but if it is part of a larger project, the design may cause problems,
such as losing the state of the page, clearing form fields, and so on. Figure 12.1 is
Licensed to jonathan zheng <yiyisjun@gmail.com>

468 CHAPTER 12
Live search using XSLT
a diagram of the classic search model, where the entire page is posted back to the
server for processing and a complete, new results page is returned.

 One source of delay is that database queries can take an extended period of
time. The browser is not accessible to the user until the results are displayed,
causing the page to seem as if it has become frozen or inaccessible. Developers
attempt to alleviate this inaccessibility period by adding functionality to the page
to notify the user that the process is happening. It’s important to note that this
inaccessibility problem is not limited to search operations. It can appear when
updating or deleting records in a database, running a complicated server-side
transaction, and so on.

 One way developers try to cope with this is to display an animated GIF, such as
a status bar, while the server is processing the submission. A common question on
forums such as JavaRanch (www.JavaRanch.com) is how this can be done. The
problem with an animated GIF is that it does not always run. The GIF tends to
remain on the first frame with Microsoft Internet Explorer and does not loop
through the GIF animation cycle. Developers have reported that some users think
that their browser has frozen since they do not see the animation, and they click
the refresh button or close their browser.

 The classic search form also suffers from the same problems as some of the
previous examples in which the page has to be re-rendered. The scroll position of
the page may be lost because the new page is loaded at the top of the page
instead of where the action took place. The form fields may not stay filled in,
which requires the user to enter the data again. Developers attempt to solve these
problems by using frames and pop-up windows, but they end up creating more
problems. Let’s take a look at the underlying reasons.

Submit
page

Render
page

Server

Display results

Browser

Process search
and page
generation

Figure 12.1
Classic search model showing the
processing over a period of time
Licensed to jonathan zheng <yiyisjun@gmail.com>

Understanding the search techniques 469
12.1.2 The flaws of the frame and pop-up methods

Developers have traditionally used frames, IFrames, and pop-up windows to
avoid the problems with pages appearing to be frozen, losing scroll position, and
so on. The frames and the pop-up window allow the processing to be continued
in another part of the web page, so the user can manipulate the part of the form
where the action originated. Not only can the user manipulate the form, but
other JavaScript functions can be executed as well.

 The frame and pop-up windows have other added benefits. The frame solu-
tion allows the returned record set to be scrolled while the search form elements
remain in the view of the user. The pop-up window permits the result to be dis-
played in a separate window, taking the processing away from the main window.
With some parent/child window communication, we can pass data from the child
window back to the parent window to return results. The pop-up window is great
for adding searches in large forms when the user needs specific information that
can be hard to memorize. The window can also be set to close after the processing
is complete. That is useful when we want to perform updates without returning
any data.

 Figure 12.2 shows how a search in a frame is implemented. The bottom frame
is responsible for submitting the search request to the server, allowing the results
to be processed. As a result of having the bottom frame initiate the search, the
frame at the top of the window is still accessible to the user, unlike the classic
search shown in figure 12.1.

 Although these solutions solve the problems that we talked about earlier,
they also introduce new problems. Frames have been (and still are) one of devel-
opers’ worst nightmares. The main problem is navigation, since we do not know
how the frame will react with the browser. We wonder how the back button will
affect the frame. Will the frame take us to the right page, will it destroy our

Submit
frame

Render
frame

Server

Display results

Browser

Process search
and frame
generation

Figure 12.2
Process flow of a search
executed in the frame model
Licensed to jonathan zheng <yiyisjun@gmail.com>

470 CHAPTER 12
Live search using XSLT
frameset, or will it just not seem to work? These are the questions that are typi-
cally in our minds when testing. And what if the pages are opened in a browser
that does not support framesets? To avoid this latter problem, we would have to
include frame-detection scripts on the page, adding more weight to our applica-
tion and introducing more code to manage, and thus increasing the complexity
of our codebase.

 Pop-up windows, on the other hand, are subject to pop-up blockers as users
increasingly turn them on. Pop-up windows should have no problem if they are
explicitly initiated by the user’s button click, but pop-up windows can be spawned
by the browser automatically, such as an onload or onunload pop-up. These
onload pop-up windows are often prevented from opening since they tend to be
abused as advertisements. Some users block all pop-up windows—which means
users will never get their results since no window will open.

 Other problems can occur with pop-up windows, such as when the child win-
dow appears underneath its parent; the pop-up window cannot be seen since it is
covered by the parent window. This is known as a pop-under. Another problem can
happen when an action takes place in the parent window. If the user clicks a link
or refreshes the page, the action can sever the child-parent relationship, resulting
in loss of communication between the windows. When the page refreshes, the
pop-up window object is destroyed; there is no way to carry the object from page
to page in a reasonable manner.

 As you can see, although the frame and pop-up methods solve the problems
inherent in traditional form submission, their solutions may lead to bigger prob-
lems. One way to fix these problems is to use Ajax. Ajax handles server commu-
nication independently of the browser page, which allows our animations to play
and maintains the page state; we do not have to worry about outside factors such
as pop-up blockers and users closing the window because they think it is frozen.

12.1.3 Examining a live search with Ajax and XSLT

We can improve the functionality of certain search features on a website by turn-
ing the search into a live search, which is how some developers are naming the
functionality of Ajax searches. This search is performed without posting the
entire page to the server (as in the traditional search), which means that the cur-
rent state of the page can be maintained. In addition, we can run JavaScript and
GIF animations without any major problems, since the results are displayed
within the browser with innerHTML or other DOM methods.

 Let’s say we have a search that triggers a long database transaction that
appears to lock the page. With Ajax, the animation can start when the database
Licensed to jonathan zheng <yiyisjun@gmail.com>

Understanding the search techniques 471
transaction starts. When we begin to output the results, we can simply set the CSS
display property of the animated image to none, which will make the animation
disappear. A variation on this is to place the animation image in the output loca-
tion where the results are to be displayed. When the transaction is complete, we
replace the GIF with the results, so the wait image is removed. Either way, the user
can still use the form while the XMLHttpRequest object is processing the data of
the server.

 Let’s look at a popular example of allowing the user to work with an applica-
tion while processing is being done on the server: Google Maps. We send out a
request to the server for, say, restaurants on Main Street, and we are still able to
manipulate the map while the server processes our request. We do not have to
wait as we would with a normal form submission. The server-side process then
returns the results to the page, where they are displayed to the user. In the same
way, our live search allows the user to interact with the page while the server is
processing the data. Figure 12.3 shows Ajax’s process flow.

 The Ajax approach to handling searches and long transitions allows us to
eliminate the problems that we have faced with the other options used in the past.
This live search feature is not only useful when used with a search engine like
Google or Yahoo, but it can also be helpful for smaller lookups. For instance, we
can use a live search to perform a lookup to a database table to retrieve informa-
tion for some of the form fields, such as an address, based on what the user has
entered so far—all while the user is filling in other fields. Any long transaction
with the server can be turned into a live process, with the server providing incre-
mental updates to the client, which are displayed in an unobtrusive way (see
chapter 6). With Ajax, we can improve data transfer and get the results to the cli-
ent in a richer environment.

Server

Display results

Browser

XMLHttpRequest

Process search
and

generate data

Figure 12.3
Process flow of the Ajax model.
The server-side process generates
data, which the client-side code
inserts into the page directly. Less
bandwidth is used, and the user
interface is smoother.
Licensed to jonathan zheng <yiyisjun@gmail.com>

472 CHAPTER 12
Live search using XSLT
12.1.4 Sending the results back to the client

When the server returns the result of a live search, we can send the information
back to the client in one of several ways. We can format the results as XML,
plain text, or HTML tags. In previous examples, we created an XML document
on the server. The JavaScript code on the client side then called XML DOM
methods to build the results table on the client side by looping through the
XML nodes. This process used two loops. The first loop was on the server when
we built the XML document, and the second was the loop to build the HTML
table on the client.

 We can avoid the client-side XML DOM loop by building the HTML table on
the server before we send it back, rather than building the XML file. With this
technique, we concatenate HTML tags into a large string, similar to what we did to
create the XML document. However, instead of building it with XML tags, we use
table elements. The HTML string is returned to the client, and we can apply it
directly to an element’s innerHTML property. In this case, we would use the
XMLHttpRequest object’s responseText property since we would have no need to
navigate through the nodes.

 The problem with these techniques is that—whether it happens on the server
or the client—there is a requirement to loop through the data and build the table
dynamically. If we need to make changes to the table format in the future, it may
be a tedious task, depending on the complexity of the table. Adding or subtract-
ing a column may cause a problem, since we must alter the code inside the loop.
We also need to take into account the extra quotes that are contained inside our
string; we must make sure that we are escaping the quotes when building the
string. Also, if we embed JavaScript into this HTML tag, it adds even more quotes
and apostrophes to worry about—we have to verify that all of the tags are closed
and that they are properly formatted. The only way we can do that effectively is by
examining the text after we build the string.

 One option that lets us avoid these problems is to use XSLT. With Ajax, it is
possible to combine an XSLT file with an XML document and display the results,
thus avoiding DOM methods. If a developer knows XSLT and is not great at cod-
ing JavaScript, this may be an excellent solution.

 One thing to note about an Ajax search is that it does not require a postback to
the server, and consequently the URL of the page does not change to match the
search results. Therefore bookmarking the URL will not give us the results we
want. In a classic search, such as Google, we can easily copy a URL from a page
found by the search and paste it into an e-mail; when the recipient clicks the link,
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side code 473
they see the results. However, with an Ajax search, we need to add a little extra
code to make this happen. We will look at this solution in section 12.5.4.

12.2 The client-side code

Formatting XML data using XSLT is a popular technique since XML has a struc-
tured layout that can be easily manipulated. In previous projects such as the type-
ahead suggest in chapter 10, we used JavaScript, XML, and DOM manipulation to
create the HTML that we were to display. In this example, we use XSLT to produce
the same effect.

 XSLT enables us to format our data by building the HTML layout in another
file and combining it with the XML document. The XSLT file takes all of the
guesswork out of navigating through the XML nodes and building our tables,
menus, and HTML layouts. With Ajax, we can retrieve a static or dynamic XML
file and a static or dynamic XLST file from the server, and combine them on the
client to build our HTML document. XSLT could also be undertaken on the server
side, but we’ll look at client-side transformations here.

12.2.1 Setting up the client

For this project, we perform a phonebook search on a user’s name. We use one
textbox and one submit button to do this. Our simple search form is shown in list-
ing 12.1.

<form name="Form1" ID="Form1"
 onsubmit="GrabNumber();return false;">

 Name: <input name="user" type="text"/>
 <input type="submit" name="btnSearch"
 value="Search" />

 <div id="results"></div>
</form>

To initialize the live search, we need to add an event handler to the form tag. The
onsubmit event handler b intercepts clicks on both the Enter key on the textbox
and the submit button. This event handler calls the function GrabNumber(), which
initiates the XMLHttpRequest without submitting the form back to the page. (In a
production environment, we would check to see whether the user has JavaScript

Listing 12.1 Client-side form

b Add onsubmit handler

c Insert textbox

d Add submit button

e Add div for results
Licensed to jonathan zheng <yiyisjun@gmail.com>

474 CHAPTER 12
Live search using XSLT
disabled. In that case, the form would have to be submitted back to the server,
and we could use a classic search form to support that user. However, we are not
adding that functionality to this project.)

 The form that we have created is basic, containing only one event handler to
initialize the XMLHttpRequest. The textbox c and the submit button d are
added to the form to collect the user’s search criteria. If we wanted to get fancy, we
could also add an onblur handler to the textbox that calls the function Grab-
Number(), and when the user removes focus from the textbox, it would perform the
search. In this example, we stick with the onsubmit handler to perform the search.

 We next add our div element e to the document as the output location for
the search results. We can position the div wherever we want the results to
appear on the page. The ID is added to the div so that we can reference it to add
the results and an animated GIF. We are not required to use a div element to out-
put the results. We could easily output the results into a cell in a table or even a
span; in fact, we can use any HTML element whose innerHTML property can be
manipulated. We are using a div because it is a block element, which contains a
line break before and after the element. The div also takes up 100 percent of the
available width of the browser, making it easier for larger results tables to be dis-
played to the user.

 It is important to note that the onsubmit handler must return false when the
event handler is executing. This informs the browser that the form should not be
submitted back to the server, which would trigger a full-page refresh and inter-
rupt our JavaScript programming of the form. We’ll see the return value in
listing 12.2 in the next section.

12.2.2 Initiating the process

In this example, we use two files on the server: an XML document and an XSL
document. The XML document is created dynamically by PHP when the client
requests it. The PHP code takes the user input posted from the page, runs a query
against the database, and then formats the results into an XML document. The
static XSL document transforms our dynamic XML file into an HTML document.
Because it is static, it does not have to be created by the server at the time of the
client request, but can be set up ahead of time.

 Just as with the other projects in this book, we are using a function to initialize
our XMLHttpRequest object. We gather this information and call the function in
listing 12.2.
Licensed to jonathan zheng <yiyisjun@gmail.com>

The client-side code 475
function GrabNumber(){
 var urlXML='PhoneXML.php?q='
 + document.Form1.user.value;

 var urlXSL='Phone.xsl';

 var newImg=document.createElement('img');

 newImg.setAttribute('src',
 'images/loading.gif');

 document.getElementById("results")
.appendChild(newImg);

 LoadXMLXSLTDoc(urlXML,urlXSL,"results");
}

This function assembles the information needed for the call to the server, sets the
“in progress” image, and calls the server, which will dynamically build the
response data based on the querystring value we send. The first parameter of the
LoadXMLXSLTDoc() function is the URL of the PHP page that generates the XML
document, combined with the querystring, which is built by referencing the value
of HTML form field b. The second parameter is the name of the XSLT file c
that is used in the transformation of the XML data. The third parameter that we
need for the function LoadXMLXSLTDoc() is the ID of the div where the search
results are to appear. The ID is just the string name of the output element and is
not the object’s reference; in this case, the string is “results”.

 The next step is to add the loading image to the web page, using DOM meth-
ods. The image element d is created and the source attribute e of the image is
set. We append the newly created element f to the results div. This places the
image file on the page when our function is called from the onsubmit handler of
the form. It is important to show the user visual feedback, such as a message or an
image, to indicate that the request processing is happening. This eliminates the
chance of the user repeatedly clicking the submit button, thinking that nothing
has happened, since Ajax is a “silent” process.

 The last step is to call the function LoadXMLXSLTDoc() g, which initiates the
process of sending the information to the server. The LoadXMLXSLTDoc() function
that we will build in section 12.4 will handle calling our ContentLoader(), which
requests the documents from the server. By specifying the output location as a

Listing 12.2 Initiation function

Create the function

b Build XML URL

c Build XSL URL

d Create image element

e Set the source

f Append image to page

g Start loading
Licensed to jonathan zheng <yiyisjun@gmail.com>

476 CHAPTER 12
Live search using XSLT
parameter instead of hard-coding the value into our LoadXMLXSLTDoc() function,
we can reuse this function multiple times on the same page without having to add
multiple functions or if statements to separate the functionality. Therefore, we
redirect the output of different searches to different parts of the page. But before
we do this, let’s look at how we build the XML and XSLT documents on the server.

12.3 The server-side code: PHP

In this section, we create the dynamic XML document for this project using the
popular open source scripting language PHP (remember, Ajax is able to work with
any server-side language or platform). The XML document is dynamically gener-
ated from the result set of a database query at the time of the client’s request. We
also show how to create the static XSLT document, which resides on the server
and is retrieved each time the dynamic file is requested. Both of these documents
are sent back to the client separately when the ContentLoader requests each of
them in two separate requests, as shown in listing 12.7. The XSLT transforms our
dynamic XML document on the client and creates an HTML table that is dis-
played to the user.

12.3.1 Building the XML document

Since we are using XSLT, we need a structured XML document that is just a simple
listing of information, so the XSLT file can perform a basic transformation. For
this project, we develop a dynamic XML file when the PHP file is requested from
the client.

Designing the XML structure
Before we can start to build the XML file, we need to create a template for that
file. The template should reflect the structure of the data returned by the search.
For our address book example, we’ll return the company name, the name of a
contact person, the country, and a phone number. Listing 12.3 shows our basic
XML template containing the four fields.

<?xml version="1.0" ?>
 <phonebook>
 <entry>
 <company>Company Name</company>
 <contact>Contact Name</contact>
 <country>Country Name</country>
 <phone>Phone Number</phone>

Listing 12.3 Basic XML file
Licensed to jonathan zheng <yiyisjun@gmail.com>

The server-side code: PHP 477
 </entry>
 </phonebook>

The first element is phonebook. The next one is the entry element, which contains
the subelements that hold all the details that relate to each contact found in the
query. If we have five results, there will be five entry elements in our XML docu-
ment. The company name is displayed in the company element. We are also add-
ing the contact name, the country name, and the phone number. We are not
limited to just these fields; we can add and subtract fields depending on the infor-
mation we want to display.

 Instead of displaying an alert message to the user if results are not found, we
can create an entry displaying that information to the user. This makes it easy for
us to return the result to the user without having to add any extra client-side code.
The code in listing 12.4 is almost the same as that in listing 12.3, but this time we
are inserting text into the XML elements that we want to display to the user to
show that no results were returned.

<?xml version="1.0" ?>
 <phonebook>
 <entry>
 <company>No Results</company>
 <contact>N/A</contact>
 <country>N/A</country>
 <phone>N/A</phone>
 </entry>
 </phonebook>

With this code, we display a single row to the user showing that there is no infor-
mation. In the company tag b, we display a message to the user informing her
that there were no results. In the other tags c, we are telling the user that there is
no information. If we do not want to display “N/A”, we can add a nonbreaking
space, , instead, which allows the table cells to show up. If we were to not
add any information, the cells would not appear in the table.

 As you can see, the XML format has a very simple structure. If this XML file
were static, it would be rather easy for any user to add a new customer to the file.
Because we are creating it dynamically, we will have to create a loop, which builds
our XML document from our result set.

Listing 12.4 XML file with no results

b Display “No Results”
for company name

c Display “N/A”
for remaining
fields
Licensed to jonathan zheng <yiyisjun@gmail.com>

478 CHAPTER 12
Live search using XSLT
Building the dynamic XML document
As always, we build our XML document on the server. Following our policy of
using different server languages for our illustrations, we’ve implemented the
server code for this chapter in PHP. Ajax can work with any server-side language,
and the fine details of the server code aren’t important to our story here. Listing
12.5 shows the server-side code. The code obtains the querystring parameter and
generates a result set of a database query. We then loop through the result set and
create an entry in the XML file for each phone entry returned from the query, fol-
lowing our basic template (listing 12.4).

<?php
header("Content-type: text/xml");
echo("<?xml version='1.0' ?>\n");

$db = mysql_connect("localhost","ajax","action");
mysql_select_db("ajax",$db);
$result = mysql_query("SELECT * FROM Contacts WHERE ContactName like '%".
$_GET['q']."%'",$db);
?>
<phonebook>
<?
if ($myrow = mysql_fetch_array($result)) {
 do {
?>
<entry id='<?=$myrow['id']?>001'>
 <company><?=$myrow['companyName']?></company>
 <contact><?=$myrow['contactName']?></contact>
 <country><?=$myrow['country']?></country>
 <phone><?=$myrow['phone']?></phone>
</entry>
<?
 }while ($myrow = mysql_fetch_array($result));
}else{
?>
<entry id='001'>
 <company>No Results</company>
 <contact>N/A</contact>
 <country>N/A</country>
 <phone>N/A</phone>
</entry>
<?
}
?>
</phonebook>

Listing 12.5 phoneXML.php: Server-side XML generation

b Declare mime type

c Connect to
database

d Populate query

e Test results
f Iterate through results

g Show empty dataset
Licensed to jonathan zheng <yiyisjun@gmail.com>

The server-side code: PHP 479
In order for this dynamic XML document generation to work, we must set the
document’s type to text/xml b; if we skip this step, the XSLT transformation may
not take place, especially with Mozilla and Firefox.

 The data that we are searching for is stored in a database table. We need to
select the relevant entries. In this case, we are using PHP’s built-in MySQL func-
tions to talk to the database directly, in order to keep things as simple as possible.
We connect to the database ajax running on the local database server as the user
ajax with password action c. We then construct our SQL query string using the
request parameter passed in from the client code to populate the WHERE clause d.

 For a more robust server-side implementation, we recommend an Object-
Relational Mapping system such as Pear DB_DataObject (see chapter 3) rather
than talking directly to the database as we have done here. However, the current
implementation is simple and can be easily configured by readers wanting to test
the example for themselves. Having returned the result set, we check whether it is
empty e, and then either iterate over it f to create the phone entries, or print
out the “No Results” message g.

12.3.2 Building the XSLT document

We can use XSLT to transform our XML file into a nice HTML table with only a
few lines of code. The XSLT document allows for pattern matching if necessary
to display the data in any format we want. The pattern matching uses a template
to display the data. We loop through the source tree nodes with the XSLT to dis-
play the data. The XSLT takes the structured XML file and converts it into a view-
able format that is easy to update and change. Our XSLT document will be
defined statically.

Explaining the XSLT structure
An XSLT transformation contains the rules for transforming a source tree into
a result tree. The whole XSLT process consists of pattern matching. When a
pattern is matched against the source tree elements, the template then creates
our result tree.

 The result tree structure does not have to be related to the source tree struc-
ture. Since they can be different, we can take our XML file and convert it into any
format we want. We are not required to stick with a tabular dataset.

 This XSLT transformation is called a stylesheet since it styles the result tree.
The stylesheet contains template rules, which have two parts. The first part is the
pattern, which is matched against the nodes of the source tree. When a match is
Licensed to jonathan zheng <yiyisjun@gmail.com>

480 CHAPTER 12
Live search using XSLT
found, the XSLT processor uses the second part, the template, which contains the
tags to build the source tree.

Building the XSLT document
Building the XSLT transformation for this project is rather simple. Since we are
developing a table, we won’t need any special pattern matching; instead, we will
loop through the source tree element nodes. The template that we’ll develop
outputs an HTML table with four columns. Listing 12.6 shows the XSLT file for
this project.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl=
 "http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <table id="table1">
 <tr>
 <th align="left">Company</th>
 <th align="left">Contact</th>
 <th align="left">Country</th>
 <th align="left">Phone</th>
 </tr>
 <xsl:for-each
 select="phonebook/entry">
 <tr>
 <td><xsl:value-of
 select="company"/></td>
 <td><xsl:value-of
 select="contact"/></td>
 <td><xsl:value-of
 select="country"/></td>
 <td><xsl:value-of
 select="phone"/></td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:template>
</xsl:stylesheet>

When we create an XSLT transformation, we need to state the version and encod-
ing b of the XML. The XSLT namespace c needs to be specified. The namespace
gives the document the rules and specifications that it is expected to follow. The

Listing 12.6 XSLT file

b Set XML version and encoding

c Specify XSLT namespace

d Set template rule

e Add table element

f Create
heading
row

g Loop through phonebook entries

h Output the
entry data
Licensed to jonathan zheng <yiyisjun@gmail.com>

Combining the XSLT and XML documents 481
elements in the XML namespace are recognized in the source document and not
in the results document. The prefix xsl is used to define all our elements in the
XSLT namespace. We can then set the template rule to the match pattern of / d,
which references the whole document.

 We can start building the table template that displays our results. We add the
table tag e, giving the table an ID. The table header row f is next inserted,
which contains the column names to be displayed to the user so she can under-
stand what information is contained in the table.

 By looping through the source node set, we obtain the remaining rows of the
table. For this, we use the for-each loop g to iterate over the records to obtain
the nodes that are located in phonebook/entry.

 The column values have to be selected as we are looping through the docu-
ment tree. To select the values from the nodes, we use value-of h, which extracts
the value of an XML element and adds it to the output stream of the transforma-
tion. To specify the XML element whose text we want to retrieve, we use the
select attribute with the element’s name. Now that we have built the XSLT file
and created the code to dynamically generate the XML document, we can finish
building the JavaScript code to see how the XSLT transformation structures our
XML file into a viewable table when we combine them.

 The next step takes us back to the client, which retrieves the files that we just
created with the HTTP response.

12.4 Combining the XSLT and XML documents

Back on the client, we need to combine the XSLT and XML documents from the
server. When using an XSLT transformation, we’ll find that the browsers differ on
how they combine the two documents. Therefore, we first check to see what
method the browser supports in order to load and combine our two documents.

 Again we’re using the ContentLoader object, introduced in chapter 3. It is
contained in the external JavaScript file, net.js. This file does all of the work of
determining how to send the information to the server, hiding any browser-
specific code behind the easy-to-use wrapper object.

<script type="text/javascript" src="net.js"></script>

Now we can begin the process of obtaining the server-side files and combining
them on the client. In listing 12.7, the LoadXMLXSLTDoc() function is being called
from the function GrabNumber() in listing 12.2. The function GrabNumber()
passes in the values for the URL that generates the XML data, the XSL file, and
Licensed to jonathan zheng <yiyisjun@gmail.com>

482 CHAPTER 12
Live search using XSLT
the output reference ID. With these three values, we are able to load the two doc-
uments and combine them when both have been completely loaded. After they
have been loaded, we have to do some cross-browser coding in order to com-
bine the XML and XSL files. You can see all of this happening in listing 12.7.

var xmlDoc;
var xslDoc;
var objOutput;
function LoadXMLXSLTDoc(urlXML,urlXSL,elementID){
 xmlDoc=null;
 xslDoc=null;
 objOutput = document.getElementById(
 elementId);
 new net.ContentLoader(urlXML,onXMLLoad);
 new net.ContentLoader(urlXSL,onXSLLoad);
}

function onXMLLoad(){
 xmlDoc=this.req.responseXML;
 doXSLT();
}

function onXSLLoad(){
 xslDoc=this.req.responseXML;
 doXSLT();
}

function doXSLT(){
 if (xmlDoc==null || xslDoc==null){ return; }
 if (window.ActiveXObject){
 objOutput.innerHTML=xmlDoc.transformNode(xslDoc);
 }
 else{
 var xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(xslDoc);
 var fragment =xsltProcessor.
 transformToFragment(
 xmlDoc,document);
 objOutput.innerHTML = "";
 objOutput.appendChild(fragment);
 }

}

Listing 12.7 LoadXMLXSLTDoc

b Declare global
variables

c Set variables
to null

d Reference
output element

e Load XML and
XSL files

f Handle XML
document

g Handle XSL
document

h Check for loaded documents

i Transform
XML
document
Licensed to jonathan zheng <yiyisjun@gmail.com>

Combining the XSLT and XML documents 483
To simplify the client-side script, we need to declare three global variables b to
hold three different objects. The first two variables, xmlDoc and xslDoc, are going
to hold the XML and XSLT files returned from the server. The third variable,
objOutput, holds the object reference to our DOM element where the results are to
be inserted. With these variables defined, we can now build the function Load-
XMLXSLTDoc(), which we invoked from the function GrabNumber().

 Since we are loading two documents, we need a way to determine when they
are both loaded. We do this by looking to see if the variables xmlDoc and xslDoc
contain their respective documents. Before we start, we must set the variables to
null c. This removes any data that may exist in the variables if this function is
run more than once on the page. The output location for the results is set d by
using the passed element ID from the function call. Now we call the Content-
Loader e twice, once for the XML document and once for the XSL document. In
each call, the ContentLoader will get the URL and then call another function to
load the documents. onXMLLoad() f loads the returned XML results into our glo-
bal variable xmlDoc and then calls the function doXSLT() for future processing.
onXSLLoad() g loads the XSL document into the global variable xslDoc and also
calls the doXSLT() function.

 Processing cannot continue until both documents have been loaded, and there
is no way of knowing which will be loaded first, so the doXSLT() function first
checks for that. It is called twice, once after the XML document is loaded and
once after the XSL document is loaded. The first time it is called, one of our glo-
bal variables is still set to null and we exit the function h. The next time it is
called, the function will not exit since neither of the variables will be null. With
both documents now loaded, we are able to perform the XSLT transformation i.

 Once the two documents are loaded, we need to transform the XML docu-
ment with the XSLT. As you can see by looking at the code in the listing, there
are two different ways to do this, depending on the browser. Internet Explorer
uses transformNode(), whereas Mozilla uses the XSLTProcessor object. Let’s
examine these two different implementations of performing the transformation
in greater detail.

12.4.1 Working with Microsoft Internet Explorer

Internet Explorer makes it easy to transform the XML document with the XSLT
with only a few lines of code. We use the transformNode() method, which takes the
XML and XSLT documents and combines them in one step:
Licensed to jonathan zheng <yiyisjun@gmail.com>

484 CHAPTER 12
Live search using XSLT
 if (window.ActiveXObject){
 objOutput.innerHTML=xmlDoc.transformNode(xslDoc);
 }

We first check to see if the browser supports the transformNode() method. We’ve
done this here by testing for ActiveX object support. If it supports it, we call the
transformNode() method on the global variable containing our XML data, pass-
ing it the global variable containing our XSLT data. The result of this transforma-
tion is added to the innerHTML of our result element, which then contains the
newly formatted search results.

 Now that we are able to format the results for Internet Explorer, let’s get this
functioning for Mozilla-compatible browsers.

12.4.2 Working with Mozilla

With Mozilla, we need to use the XSLTProcessor object, which lets us combine the
XML and XSLT documents. Note that even though Opera and Safari both sup-
port the XMLHttpRequest object, they still do not support the XSLTProcessor
object, and they cannot run this project without support from the server (we will
address this issue in section 12.5.2). In the listing 12.8, we transform the XML
document using the XSLT and display the formatted result set.

else{
 var xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(xslDoc);
 var fragment=xsltProcessor.transformToFragment(xmlDoc,document);
 objOutput.innerHTML = "";
 objOutput.appendChild(fragment);
 }

The first step is to initialize the XSLTProcessor object, which enables us to join the
XML and XSLT files together. The importStylesheet method of the XSLTProces-
sor object allows us to import the XSLT file so that we can join it to the XML file in
the upcoming steps. When the XSLT file is loaded into the processor, we are left
with transforming the XML document. The XSLTProcessor is used again with a
new method called transformToFragment(). The transformToFragment() method
takes the XML file and combines it with the XSLT, and then returns the formatted
result tree.

 We replace the content that exists in our result element by setting the
innerHTML with a blank string. This removes our loading animation from the

Listing 12.8 Invoking XSLT for Mozilla
Licensed to jonathan zheng <yiyisjun@gmail.com>

Completing the search 485
page. Finally, we take the result we obtained from the transformToFragment()
method and append it to the element. The newly formatted search results are
now displayed to the user.

 This code introduced some new concepts to us, including the XSLTProcessor
object, which allows us to combine arbitrary XML and XSLT files. The Mozilla and
Firefox browsers require us to use more DOM methods to combine the two docu-
ments. Internet Explorer, on the other hand, required only a single line of code
to transform the XML document. The overall end result is exactly the same: they
both show our results formatted according to the XSLT file.

 Now that the client-side code is finished, we can save our documents and run a
test of our live search. Enter some text into the textbox, and click the search but-
ton. The results should appear in the table format shown in figure 12.4.

 As you can see, we have finished building our XSLT document and were able to
run a successful search. The table displayed in figure 12.4 is rather dull since it
has no formatting. That means the only thing that we have left to do is style our
results table to make it more visually appealing. To do that, we need to use Cas-
cading Style Sheets (CSS).

12.5 Completing the search

Now that we have combined our XML and XSLT documents to get our results,
we need to enhance the style of the search results by applying CSS to our ele-
ments. Styling the elements will make it easier for the users to read the results.
The first step in improving the user experience is to apply our CSS rules to the
HTML elements.

12.5.1 Applying a Cascading Style Sheet

We introduced Cascading Style Sheets in chapter 2. A Cascading Style Sheet will
make the results look professional with a minimum amount of effort on our part,
separating the presentation of the results from the document structure and from
the transformation logic. Along the way, if the manager or client hates the col-
ors, we can make the changes quickly and easily. If we’re on a large project with

Figure 12.4
The search results are displayed
from the Ajax live search.
Licensed to jonathan zheng <yiyisjun@gmail.com>

486 CHAPTER 12
Live search using XSLT
separate design and coding teams, CSS helps to keep them from treading on
each other’s toes. We can either include the stylesheet as an external file on our
search page or embed the code into the search page. Using an external CSS file
is preferable since it is cached by the browser and decreases the page-loading
time in the future. The stylesheet rules are shown in listing 12.9.

table{
 border: 1px solid black;
 border-collapse: collapse;
 width: 50%;
}
th, td{
 border: 1px solid black;
 padding: 3px;
 width: 25%;
}
th{
 background-color: #A0A0A0;
}

The first CSS rule we are applying is to the table tag b. In this case, we want to make
the border a solid-black line one pixel wide. We set the table’s border-collapse
property to collapse. The collapse CSS model basically allows the properties of
the table to be uniform. The borders become even thicknesses, with adjacent cells
sharing borders rather than accumulating to double or triple thicknesses. The
final step for the table tag is to set the table width property. In this case, we are set-
ting the width of the table to 50% of the div that it is contained in since we are not
returning a large number of columns. Each of our columns will contain only a
small amount of data, so the table does not need wide spacing.

 After styling the table element, our next step is to format the table’s body and
header cells c. Just as we did for the table, we are setting the border to be a solid-
black one-pixel line. We insert padding into the cells so that the text is not sitting
directly on the cell borders. We also set the width property of the cells to 25% of
the width of the table so that all four columns are uniform in size.

 The final step to apply CSS to our table is to change the properties of the
header cell so it stands out from the body cell. We reference the header cell d
and change the background-color of the cell to a shade of gray. We can change
other properties here, such as font-weight, color, and so on. After we finish

Listing 12.9 Cascading Style Sheet

b Style the
table

c Style the
table cells

d Style the
header cells
Licensed to jonathan zheng <yiyisjun@gmail.com>

Completing the search 487
applying the stylesheet properties, we save our document and run the same
search again. Our new formatted table is shown in figure 12.5.

 As you can see, the table has a structured format that was easily created by
applying CSS properties to our table elements. If we wanted to add more func-
tionality to our stylesheet, we could add class references to the XSLT file to make it
even more flexible. CSS lets us customize the table any way we want, but we may
want to improve the search in other areas as well.

12.5.2 Improving the search
One of the benefits of Ajax is that it’s easy to pass information back to the server.
This project was a simple exercise for creating a search utilizing Ajax and XSLT to
display a formatted results table with a minimum amount of effort. We can make
the live search as sophisticated as we want. Let’s look at some ways to improve it.

Including new features
The search form we created uses a single textbox and a single submit button to
perform the search. We can easily adapt this search to use multiple parameters,
such as additional search parameters with the contact name or country. All we
have to do is send the additional parameters back to the server and have the
server-side code check for them. That means the users can have additional ways
to look for information, making the form more useful.

 We could add other Ajax features to this script, such as the double combina-
tion script, as we did in chapter 9. This would help reduce the possibilities from
which the user can choose. We can implement techniques from chapter 10 with
the type-ahead suggest, too.

Supporting Opera and Safari
If you recall, we have a problem with Opera and Safari not supporting either the
transformNode() method or the XSLTProcessor object. We have two options for
supporting Opera and Safari. The first one is to use Ajax to send the files to a
server-side page for processing. The server-side code can combine the XML and

Figure 12.5
The search results are displayed from the Ajax
live search with CSS applied to the elements.
Licensed to jonathan zheng <yiyisjun@gmail.com>

488 CHAPTER 12
Live search using XSLT
XSLT documents. We would then fetch the result of the transformation using a
single ContentLoader object, rather than fetching the XML data and the XSLT
stylesheet independently. This is not the best solution since we have to use two
round-trips to perform the transformation.

 Our second option is to submit the entire page back to the server without the
use of Ajax. The server in this case would handle the submission and combine the
XML and XSLT documents on the server as we would do traditionally. This
approach is better because it lets all users use the search. If a person is using an
early version of a browser that does not support the XMLHttpRequest object, then
that user can use the form. If we used the Ajax-only technique, the people without
the ability to use Ajax would not be able to retrieve the two files for processing.
Our second approach gives them the ability to use the form since Ajax is not
required. In order to add this functionality, we need to make two changes to the
LoadXMLXSLTDoc() function, as shown in listing 12.10. We must alter the first if
statement to include a check for the XSLT processor. Then we must add an else
statement to force the submit back to the server.

function LoadXMLXSLTDoc(urlXML,urlXSL,elementID){
 var reqXML;
 var reqXSL;
if (window.XMLHttpRequest && window.XSLTProcessor){
 //...do Mozilla client XSLT
}else if (window.ActiveXObject){
 //...do Internet Explorer client XSLT
}else{
 document.Form1.onsubmit = function(){return true;}
 document.Form1.submit();
 }
}

In listing 12.10, we remove the onsubmit event handler inside the else branch of
the conditional check so that we submit the form to the server. Without removing
the onsubmit handler, the form would not submit back to the server.

 The server-side page then has to do all of the processing and put the ele-
ment on the form. In return, we get a fast response for those users who can com-
bine XSLT with JavaScript, and we do not alienate the users who do not support
Ajax or the XSLTProcessor. Remember that Ajax is giving us the benefit of not
having to re-render the entire page, which can lose the current state of the page.
We do not have to worry about the scroll position, form values, and so on. Since

Listing 12.10 Altering LoadXMLXSLTDoc to support Opera and Safari
Licensed to jonathan zheng <yiyisjun@gmail.com>

Completing the search 489
we were able to solve this problem with Opera and Safari, that is one less argu-
ment we have to face when determining whether it is a wise solution to use an
XSLT transformation.

12.5.3 Deciding to use XSLT

One of the discussions that we may have with our development team or boss is
why we’re using XSLT in the first place. The argument starts out with “You have to
generate the XML file dynamically on the server, so why don’t you just generate
the results table instead?”

 The major point that our fellow developers are trying to make is that we are
using more processing in order to display the results to the user. That is true in
the sense that the web page has to perform extra work when the browser renders
the results table. Instead of loading one file, the Ajax code has to load two files,
which then have to be combined.

 We can dynamically build the table on the server with no major problems. The
results table is displayed by using the responseText property of the XMLHttp-
Request object and applying the returned value to our HTML element. There is
nothing wrong with this method since it means one less step to deal with.

 The one problem that we face when building the HTML table with the server-
side code is the effort required to update the table if changes need to be made. As
we discussed earlier in this chapter, we as developers may face many problems
when building the table. We have to worry about quotes, tag syntax, attributes,
event handlers, and so much more. If the users want us to change the order of the
columns of the results table, we have to alter a bunch of code to perform this task.

 By using XSLT, we are taking the building of the table away from our server-
side code. The server can build a simplified version of the results table in XML for-
mat. XML format is very easy to look at and makes it easy to find mistakes. Also,
the XSLT looks like an HTML page. We do not have to sit and count quotation
marks or search through strings to see if a tag is there. With XSLT we can look
directly at it and know that it is correct.

 Another feature is that we can easily take a table layout that a web designer has
designed and place it into an XSLT file. If we ever need to make a change such as
swapping columns, it is as easy as cutting and pasting the data. No more scratch-
ing our heads wondering if the tags are still going to be right when we paste them.
By using XSLT, we are removing the processing of the HTML from our dynamic
code. This allows us to change the results table without any major problems.

 And finally, using JavaScript lets us do some things very easily that we couldn’t
do if we did the transformation on the server:
Licensed to jonathan zheng <yiyisjun@gmail.com>

490 CHAPTER 12
Live search using XSLT
■ We can retrieve different XSL documents based on a theme, screen dimen-
sions, language, and so on.

■ We can retrieve an XML document and an XSL document without help
from the server.

■ We can examine an XML log file on our local machine without having con-
trol over the XML document structure.

When performing your daily tasks, you’ll find that Ajax gives you so many possi-
bilities.

 We still have one issue with the live search that we need to address: allowing
the user to bookmark the results page.

12.5.4 Overcoming the Ajax bookmark pitfall

There is one downside to using Ajax to perform searches: Bookmarking the page
in the traditional manner is not an option. (This same problem occurs with
frames and pop-up windows.) Bookmarks allow us to come back to the search
results in the future without having to type in the request information, and they
can be easily sent to friends and colleagues by email or messaging. Since an Ajax
search does not require a postback to the server, we are not changing the URL of
the page during the search, and therefore bookmarking the URL will simply mark
the starting point for our application, not the results that we want to preserve.

 An easy solution for this is to add a behavior that lets us remember the search.
We can build a dynamic string that will be used to create a dynamic bookmark.
This dynamic string will contain a direct link to the page it’s on and will include
a querystring parameter with the search value. Therefore, when we write this
string to the page to form the link, the user can either bookmark it (by right-
clicking on the link) or copy the link, and her search will be automatically saved.
We add this functionality of reading the querystring value when the page is
loaded after we build the link.

 The link can be built when our GrabNumber() function is executed. We add
another span to our document so that we have a location to put this link on the
page. In this case, the span has an ID of spanSave, as you can see in listing 12.11
by looking at the statement where getElementById is invoked. We can position the
span wherever we want on the page so it is convenient for the user.

function GrabNumber(){
 var strLink = "<a href='" +

Listing 12.11 Altering the GrabNumber function to integrate a bookmarking link
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 491
 location.href.split("?")[0] + "?q=" +
 document.Form1.user.value + "'>Save Search";
 document.getElementById("spanSave").innerHTML = strLink;

The code in listing 12.11 generates a dynamic link to our current search page and
adds the querystring parameter q with the value of the textbox. The querystring
parameter is what allows us to remember the search. This new link is then added
to the span on the page so the user can select the link and send it to others or
bookmark it by clicking on the link and setting it to their favorites for future use.
In listing 12.12, we obtain the querystring value from the URL when the page
loads and then perform the search automatically so the results are shown.

window.onload = function(){
 var strQS = window.location.search;
 var intQS = strQS.indexOf("q=");
 if(intQS != -1){
 document.Form1.user.value = strQS.substring(intQS+2);
 GrabNumber();
 }
}

We add a handler for the onload event to our window object that will execute a
function when the page is loaded. We check to see if our querystring value is in
the URL; if it is, we obtain the value. The querystring value is placed inside the
textbox, and then the GrabNumber() function is executed automatically to build
the results table. Adding this code lets us bookmark the search pages and have
the search results appear when we come to the page, instead of having to type in
the value each time. This makes our Ajax project even more user-friendly.

12.6 Refactoring

It’s time to take our XSLT live search to the next level by—you know the drill—
componentizing! We need to take this nifty script and refactor it until we have an
object-oriented reusable component. So let’s start with the client-side XSLT pro-
cessing. This example is different than all the others in the sense that it handles
all the DOM manipulation aspects of response handling with XSLT. So let’s start
there. We should be able to refactor our XSLT processing in such a way that we can
use it with other components—not just the live search. Once we do that, we’ll

Listing 12.12 Obtaining the querystring value and performing the search
Licensed to jonathan zheng <yiyisjun@gmail.com>

492 CHAPTER 12
Live search using XSLT
focus on refactoring the live search in such a way that it can be quickly added to
any page as an easy-to-use pluggable component.

12.6.1 An XSLTHelper

We’ve gone through a lot of trouble to learn the ins and outs of XSLT processing
on the client side. For example, we’ve noticed that there are completely different
APIs for doing XSLT processing on the client based on whether we’re targeting
an IE browser or a Mozilla-based browser. And each API has its own set of quirks
and peculiarities. So, it would be a shame for us not to encapsulate that hard-
earned knowledge so that our colleagues who come behind us don’t have to go
through the same pains to do some seemingly simple XSLT transformations.
Therefore, let’s do just that by creating an XSLTHelper object to encapsulate all
of our XSLT concerns.

 All XSLT processing typically requires two sources of information: the XML
document to transform and the XSL document to provide the transformation
rules. With that in mind, let’s write a constructor for our helper that will give us a
way to store that state:

 function XSLTHelper(xmlURL, xslURL) {
 this.xmlURL = xmlURL;
 this.xslURL = xslURL;
 }

The constructor is probably one of the simplest you’ve seen in this book yet. It
stores the URLs for the documents we just noted: the XML data document and
the XSLT transformation document. But before we get too giddy about the sim-
plicity of it all, we need to think about an API to support graceful degradation.
You’ll note that our script conditionally performs only XSLT processing if the
browser supports it. So if we’re writing a helper, it would be nice for the helper to
provide an API to tell the client whether or not it can perform XSLT operations.
However, instantiating some object with XSLT in its name just to find out
whether XSLT is supported doesn’t seem right. The solution to this conundrum
is an API function that’s not scoped to the prototype object but rather to the con-
structor function itself. We can think of this function much like a static method in
the Java world. The intent is that a client should be able to write code that looks
something like this:

 XSLTHelper.isXSLTSupported();

rather than having to instantiate an object like this:
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 493
 var helper = new XSLTHelper('phoneBook.xml',
 'transformation.xsl');
 var canDoThis = helper.isXSLTSupported();

So let’s accommodate our inquisitive users with a pseudo-static method, which is
expressed as follows:

XSLTHelper.isXSLTSupported = function() {
 return (window.XMLHttpRequest && window.XSLTProcessor) ||
 XSLTHelper.isIEXmlSupported();
}

XSLTHelper.isIEXmlSupported = function() {
 if (! window.ActiveXObject)
 return false;
 try { new ActiveXObject("Microsoft.XMLDOM");
 return true; }
 catch(err) { return false; }
}

There’s nothing new here. The logic is identical to the logic defined earlier; we’ve
just encapsulated that knowledge about how to detect XSLT support. I’m sure
someone will thank us for this. So now we can get on to the business of fleshing
out the rest of the XSLTHelper API.

 Let’s keep things simple. How about saying that we’ll have a single method for
clients of our class to call to perform XSLT processing? Our helper will have ancil-
lary methods to separate the responsibilities of all the internal logic, but we’ll pro-
vide a single API for our clients to use. The semantics will be as follows:

 var helper = new XSLTHelper ('phoneBook.xml',
 'transformation.xsl');
 helper.loadView('someContainerId');

In this example usage, the phoneBook.xml document should be transformed
into HTML by the transformation.xsl document, and the resulting HTML should
be placed within the element whose ID is someContainerId. Let’s further specify
that the parameter to loadView() can be either a string representing the ID of an
element or the element itself. We’ll internally figure out what we’re dealing with
and react accordingly. And, by the way, if the client doesn’t care to reuse the
helper instance, we can express all this with a single line of code:

 new XSLTHelper('phoneBook.xml',
 'transformation.xsl').loadView('someContainerId');

Now that we’ve defined our API and its semantics, let’s implement it as shown in
listing 12.13.
Licensed to jonathan zheng <yiyisjun@gmail.com>

494 CHAPTER 12
Live search using XSLT
 loadView: function (container) {

 if (! XSLTHelper.isXSLTSupported())
 return;

 this.xmlDocument = null;
 this.xslStyleSheet = null;
 this.container = $(container);

 new Ajax.Request(this.xmlURL,
 {onComplete: this.setXMLDocument.bind(this)});
 new Ajax.Request(this.xslURL,
 {method:"GET",
 onComplete:
 this.setXSLDocument.bind(this)});

 },

The first thing the loadView() method does is makes sure it’s operating within a
browser runtime that supports XSLT b. The client should have already done this,
as in our earlier example, but just in case the user of our code is sloppy, we take a
better-safe-than-sorry approach and check again. Second, the method sets the
state variables holding the XML and XSL documents to null and sets the refer-
ence to the container to be updated c. Lastly, we send the Ajax requests to
retrieve the XML and XSL documents d. When the server responds to the
request for the XML document, the setXMLDocument() method is called. Likewise,
when the server responds to the request for the XSL document, the setXSLDocu-
ment() method is called. These functions are shown in listing 12.14.

 setXMLDocument: function(request) {
 this.xmlDocument = request.responseXML;
 this.updateViewIfDocumentsLoaded();
 },

 setXSLDocument: function(request) {
 this.xslStyleSheet = request.responseXML;
 this.updateViewIfDocumentsLoaded();
 },

Listing 12.13 The loadView method

Listing 12.14 Setting the XML and XSL documents

b Check for XSLT
support

c Reinitialize
helper state

d Request documents
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 495
These methods set the state variables of the XSLTHelper corresponding to the
XML document and XSL document, respectively. They then call the updateView-
IfDocumentsLoaded() method, which checks to see if both documents have been
initialized, and if this is the case, updates the view. The updateViewIfDocuments-
Loaded() method is implemented as shown here:

 updateViewIfDocumentsLoaded: function() {
 if (this.xmlDocument == null || this.xslStyleSheet == null)
 return;
 this.updateView();
 },

Once both responses have come back from the server, we are ready to update the
UI. We know that both responses have come back when both the this.xmlDocu-
ment and the this.xslStyleSheet state variables are non-null. The updateView()
method is shown in listing 12.15.

 updateView: function () {
 if (! XSLTHelper.isXSLTSupported())
 return;

 if (window.XMLHttpRequest && window.XSLTProcessor)
 this.updateViewMozilla();
 else if (window.ActiveXObject)
 this.updateViewIE();
 },

As we’ve noted already, we require different implementations for each browser
type being supported, so we’ve separated out the details. Let’s look at each imple-
mentation, beginning with the Mozilla implementation, shown in listing 12.16.

 updateViewMozilla: function() {

 var xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(this.xslStyleSheet);
 var fragment = xsltProcessor.
 TransformToFragment(
 this.xmlDocument,
 document);

 this.container.innerHTML = "";
 this.container.appendChild(fragment);
 },

Listing 12.15 Updating the view

Listing 12.16 Updating the view in Mozilla

Initialize transformer

b Perform XSLT
transform

c Update
the UI
Licensed to jonathan zheng <yiyisjun@gmail.com>

496 CHAPTER 12
Live search using XSLT
The specific update implementations, whether IE or Mozilla, perform two basic
steps: b performing the XSLT transformation, and c updating the UI with the
result. Recall that the result of the Mozilla transformation process is a document
fragment that is added to an element via appendChild(), whereas the IE transfor-
mation results in a string that is added via the innerHTML property. So with that in
mind, the updateViewIE() implementation is shown here:

 updateViewIE: function() {
 this.container.innerHTML =
 this.xmlDocument.transformNode(this.xslStyleSheet);
 },

The same two steps are performed in the IE implementation, which is a good deal
more compact because the steps of applying the transformation and updating the
UI are all done in a single line of code. As to which one is more efficient, we’ll let
you decide.

 Our XSLTHelper is now complete, and we have a clean, simple, one-method
API for performing XSLT transformations. Our helper should prove to be very
useful and more than worth the relatively small amount of effort we have put into
it. Now let’s refocus our efforts on the live search and contemplate a simple com-
ponent design.

12.6.2 A live search component

Now that we have some sweet XSLT help in our back pocket, let’s implement our
live search script as a component that uses it. The component should satisfy the
component requirements that we’ve discussed in detail in our other refactoring
examples. These include such things as providing a clean API, being configurable
while providing appropriate default values, being unobtrusive to the surrounding
HTML, and being able to have multiple instantiations on a page. Let’s develop a
clean object-oriented solution with the guiding principle that each responsibility
should be encapsulated in a dedicated method. One responsibility, one method.
With that in mind, let’s get started in the usual place—considering construction.

 From the perspective of component state, the live search component has to
keep track of more “stuff ” than most other components we’ve written. It needs to
know about an XML document source, an XSL document source, a field that ini-
tiates the search, and the URL of the page that it should use to support book-
marking. So, that means our constructor is going to be a little heavier in this
example than in previous ones. However, it should still be quite manageable.
Let’s take a stab at a live search constructor now:
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 497
function LiveSearch(pageURL, lookupField, xmlURL,
xsltURL, options) {
 this.pageURL = pageURL;
 this.lookupField = lookupField;
 this.xmlURL = xmlURL;
 this.xsltURL = xsltURL;
 this.setOptions(options);

 var oThis = this;
 lookupField.form.onsubmit = function(){
 oThis.doSearch(); return false; };
 this.initialize();
}

The first four arguments of our constructor are the things we just indicated we’d
have to keep up with: the URL of the page, the search field, and the two docu-
ment URLs. The last parameter is our familiar options parameter for providing
component configurability. The options argument is passed to the setOptions()
method, which, as you recall, provides some default values for all configurable
data b. Let’s look briefly at the defaults before moving on:

setOptions: function(options) {
 this.options = options;
 if (!this.options.loadingImage)
 this.options.loadingImage = 'images/loading.gif';
 if (!this.options.bookmarkContainerId)
 this.options.bookmarkContainerId = 'bookmark';
 if (!this.options.resultsContainerId)
 this.options.resultsContainerId = 'results';
 if (!this.options.bookmarkText)
 this.options.bookmarkText = 'Bookmark Search';
 },

The setOptions() method is not as succinct as its counterpart in the TextSuggest
component (see chapter 10), which used the Prototype library’s extend() method
to make the expression of this nice and compact. This method performs the same
chores, however, and provides default values for the loading image, the ID of the
element to contain the bookmark, the ID of the element to contain the result
data, and, finally, the text of the generated bookmark. Recapping the mecha-
nism, any values to these properties that live in the options object passed in by the
user will override the defaults that are specified here. The resulting options
object is a merged set of defaults and their overrides in a single object. These
options are then used at the appropriate points throughout the rest of the exam-
ple to configure the component.

b Configure the component

Go to previous search
Licensed to jonathan zheng <yiyisjun@gmail.com>

498 CHAPTER 12
Live search using XSLT
 With component configurability and defaults squared away, let’s turn our
attention back to the constructor for a moment and recall these two unassuming
lines of code:

 var oThis = this;
 lookupField.form.onsubmit = function(){
 oThis.doSearch(); return false; };

You will recall that our script in its original form modified the HTML by putting
an onsubmit handler on the search form:

<form name="Form1" onsubmit="GrabNumber();return false;">

Because we are striving to make our components as unobtrusive as possible, at
least in terms of the amount of HTML that needs to be modified to use them, the
same functionality has been provided by these two aforementioned lines of our
constructor. The difference from a naming point of view is that we’ve renamed
GrabNumber() to a more generic name, doSearch(), and doSearch() is a method of
our component rather than a global function. Speaking of which, let’s now take a
look at the doSearch() method implementation:

 doSearch: function() {
 if (XSLTHelper.isXSLTSupported())
 this.doAjaxSearch();
 else
 this.submitTheForm();
 },

Our smarty-pants component knows that it should be checking for XSLT support
before trying to actually do XSLT processing, so the search method uses the
XSLTHelper API we wrote earlier to determine whether to use XSLT processing or
to just do a standard form submission. Pretty smart indeed. Our client can just
call the doSearch() method and not have to worry about whether it’s doing XSLT.
We’ve taken care of all the worrying for it. Let’s take each of the two forms of
searching and look at them in detail. Because the form submission is simpler,
we’ll look at it first:

 submitTheForm: function() {
 var searchForm = this.lookupField.form;
 searchForm.onsubmit = function() { return true; };
 searchForm.submit();
 },

This method simply finds the reference to the appropriate form through the
lookup field and changes its onsubmit to a function that returns true. This allows
the search request to be submitted back to the server in an explicit way. Then the
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 499
method just calls the submit() method of the native HTML form, which causes a
traditional form submission. In this scenario, the component assumes that there
is an appropriate action attribute of the form and that the result of the action
returns an appropriate page with search results.

 Now let’s look at the Ajax implementation of searching:

 doAjaxSearch: function() {

 this.showLoadingImage();

 var searchUrl = this.appendToUrl(this.xmlURL,
 'q',
 this.lookupField.value);

 new XSLTHelper(searchUrl,

 this.xsltURL).loadView(
 this.options.resultsContainerId);
 this.updateBookmark ();
 },

The doAjaxSearch() method performs the same steps that the first iteration of
our script did, but it puts each step into a method to perform each responsibility.
At this point, you might object and say that this method has four responsibilities.
Well, actually it just has one: searching. However, the responsibility of searching
has four parts, each a responsibility on its own. So let’s look at each in turn:
Show the loading image—The search is started by calling the method to show the
“busy loading” image. The image used is determined by the options object:

 showLoadingImage: function() {
 var newImg = document.createElement('img');
 newImg.setAttribute('src', this.options.loadingImage);
 document.getElementById(
 this.options.resultsContainerId).appendChild(newImg);
 },

Formulate the search URL—The search URL is built using the xmlURL attribute that
was passed in at construction time with a q= parameter appended to it with the
value currently contained in the lookup field. The appending is performed by a
method that checks the URL for the existence of a previous querystring to make
sure the correct parameter separators are used:

 appendToUrl: function(url, name, value) {

 var separator = '?';
 if (url.indexOf(separator) > 0;)
 separator = '&';

 return url + separator + name + '=' + value;
 },

b Show loading image

c Formulate URL

d Perform XSLT processing

e Update bookmark

 b

 c
Licensed to jonathan zheng <yiyisjun@gmail.com>

500 CHAPTER 12
Live search using XSLT
Do the XSLT processing and update the UI—Because we had the presence of mind to
factor out the task of client-side XSLT processing, this seemingly heavy-duty
responsibility is achieved within a single line of code:

 new XSLTHelper(searchUrl,
 this.xsltURL).loadView(this.options.resultsContainerId);

Update the bookmark—Once the user has initiated a search, the bookmark
should be updated as well. This responsibility is performed via the update-
Bookmark() method:

 updateBookmark: function() {
 var container = document.getElementById(
 this.options.bookmarkContainerId);
 var bookmarkURL = this.appendToUrl(
 this.pageURL, 'q', this.lookupField.value);
 if (container)
 container.innerHTML = '<a href="' +
 bookmarkURL + '" >' +
 this.options.bookmarkText + '';
 }

This method gets the container element and the text for the bookmark from the
options object. The URL for the generated bookmark is the value passed into the
constructor as the pageURL argument. The q= parameter with the value of the cur-
rent search are appended to that URL. The innerHTML property of the container is
updated with all of these values to produce the appropriate URL.

 If a bookmark is stored and used to hit our page, the user is returned to our
page with a q=someValue parameter. But what initiates the search to produce the
result? Recall that the final line of the constructor called this.initialize();.
We’ve not peeked at what that actually does yet, so we should do so now. As you’ve
probably guessed, the initialize() method is there to support our bookmarking
feature. The implementation is as follows:

 initialize: function() {
 var currentQuery = document.location.search;
 var qIndex = currentQuery.indexOf('q=');
 if (qIndex != -1) {
 this.lookupField.value =
 currentQuery.substring(qIndex + 2);
 this.doSearch();
 }
 },

 d

 e
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 501
The initialize() method takes the current location of the document and looks
for a parameter named q in the querystring. If one exists, it parses the value of
the parameter and places it into the lookup field. Then, it simply initiates a
search via the doSearch() method. Mystery solved.

12.6.3 Refactoring debriefing

Let’s take a moment to consider what we’ve accomplished so far. We’ve written a
helper class called XSLTHelper, which encapsulates the hard-earned knowledge of
providing XSLT support on the browser client. We’ve taken advantage of that
helper in our live search component. We’ve written a simple yet generic config-
urable live search component that can take just a few pieces of information and
transform the user’s web page into a responsive searching animal. We’ve written
our component in a clean OO style that exemplifies simple design and separation
of responsibilities. Overall, not bad for a day’s work.

12.7 Summary

In this chapter, we took a basic search page and added Ajax functionality to it.
The search allows the process to flow so that we can control the window while the
server-side process is taking place. This means that we are able to place an ani-
mation in the browser. Having control of the browser allows us to perform other
operations so we can make sure that the users of the application know that their
search is taking place.

 We then implemented XSLT processing to transform our XML document into
formatted HTML code, which we applied to our div element’s innerHTML prop-
erty. This let us avoid using JavaScript to dynamically loop through the XML
nodes and build a large string to apply to the document. Instead, we could rely on
XSLT to produce the document from the XML.

 Just because we used the processing animation and the XSLT with the live
search does not mean we cannot apply these concepts to other projects. We can
easily add this capability to a normal transaction with the server. I always hear
people say that they have a process that takes several minutes to complete. Is
there a way to show a message? We can easily use the innerHTML property that we
used in this project to add an image or message telling the user that the process-
ing of the search is under way. With almost every Ajax application, we should
show that an action is taking place so the user does not repeatedly click the sub-
mit or the refresh buttons.
Licensed to jonathan zheng <yiyisjun@gmail.com>

502 CHAPTER 12
Live search using XSLT
 We can use XSLT to style RSS feeds or to change any of the other projects that
we have done by using XSLT instead of performing the XML DOM looping on
the client.

 In the four examples that we’ve developed so far, we’ve implemented our own
server-side processes specifically to serve our Ajax clients. In the final chapter,
we’ll look at an Ajax client that communicates directly to an Internet standard
web service: an RSS news syndication feed.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Building stand-alone
applications with Ajax
This chapter covers
■ Handling RSS feeds
■ Ajax for accessing websites directly
■ Ajax without a server
■ Fade-in, fade-out
503

Licensed to jonathan zheng <yiyisjun@gmail.com>

504 CHAPTER 13
Building stand-alone applications with Ajax
In the last four chapters, we’ve developed a range of neat Ajax applications and
shown the client-side and server-side code for each. In this chapter, we don’t
need to present you with any server-side code, because we’re not going to write
any. This may come as a surprise to most people, but we can run Ajax applica-
tions directly against any web server-based stream of data, including those that
are generated by third-party applications. We can develop a rich user interface
for a web page that acts like a client application.

 Many websites offer XML feeds in the formats of Really Simple Syndication
(RSS), Resource Descriptor Framework (RDF), or Atom, which are the three most
common syndication feeds that we see. The information contained in these syn-
dication feeds can be daily news articles, comics, weblogs (blogs), jokes, weather,
and so on. With Ajax we have the ability to get the syndication information with-
out having to visit these websites or buy a client application that will read the XML
syndication feeds on our computers.

 In this chapter, we develop our own client application, an XML reader that
obtains feeds from various websites. It can be run in the browser on any computer
that has an active Internet connection.

13.1 Reading information from the outside world

An XML syndication feed consists of articles that are freely available for the public
to read and display on other websites. A blog is good example of a syndicated
XML feed for our purposes because it is so widely available. These XML feeds are
different from plain old articles on a website since they can be shared and dis-
played in multiple formats. It is like finding a newspaper or magazine that fits
perfectly on your table as you eat your morning breakfast. You can eat and read at
the same time without having to shift everything around and spilling your coffee.
The syndicated feeds can be formatted in any style that fits your needs, allowing
you to obtain just the information you want.

 We can view the contents of an XML syndication feed in several ways. For
instance, for a single blog, we could go to the website where the XML feed is
located. To view several feeds at once, we could go to sites such as JavaCrawl.com,
which allow us to view multiple XML feeds without going to multiple sites. We can
also view the RSS feed in its raw unedited form by directly opening up the path of
the XML file directly in our web browser, or we can use downloadable software to
organize and format the feeds we want to see.

 A new option is to use Ajax to view the syndication feeds. Without Ajax, we
were stuck with downloading a client application or having to visit a website to
Licensed to jonathan zheng <yiyisjun@gmail.com>

Reading information from the outside world 505
grab this information, but with Ajax we do not have to download anything or
visit a website. Instead we are able to develop a JavaScript-based RSS reader that
can be run directly on our desktop with just a browser. In this chapter, we build
an application that obtains multiple RSS feeds from multiple sources and allows
us to view them in an orderly fashion. We also integrate transition effects to add
to the flashiness of the user interface. But before we develop this application
with Ajax, we need to understand the format of an XML feed and where we can
find XML feeds.

13.1.1 Discovering XML feeds

One of the most popular places to find an XML feed is on a blog. Many people
today publish blogs, for all kinds of reasons. They can contain information such
as a personal diary, personal musings, news articles, jokes, or technology discus-
sions. Let’s look at one example of a blog by Eric Pascerello, in figure 13.1.

 Eric’s blog is accessible, which means that it can be linked to by anyone. While
many people simply read it on the JavaRanch site, it can also be accessed as a syn-
dication feed. We can read this feed by accessing it directly in its native XML form,
or we can go to other websites (such as JavaLobby) that obtain the syndication
feed and display it in their format.

Figure 13.1 Eric Pascarello’s blog, which has an accessible RSS feed
Licensed to jonathan zheng <yiyisjun@gmail.com>

506 CHAPTER 13
Building stand-alone applications with Ajax
In figure 13.1, we see in the upper-right corner of the screen that there are links
to RSS, RDF, and Atom. As we mentioned earlier, these are the most common
XML syndication feeds that we can find.

 Each of the syndication feeds has a different XML specification. That means if
we were to look at the different XML files, we would see different naming schemes
for the elements. Each feed has a specification clarifying what information must
be defined in the feed. Since we are dealing with different formats, the easiest way
to address it is to pick a single format and design the reader around it.

 One of the most popular syndication feeds is Really Simple Syndication, better
known as the RSS feed.

13.1.2 Examining the RSS structure

Before we create our Ajax XML reader, let’s examine the structure of the RSS file.
Knowing the structure allows us to navigate the XML DOM more efficiently to
obtain the information that we want to display. The RSS document has two parts:
the channel and the items. The channel gives us the information about where the
RSS feed is from, and the items are the articles that we can read.

The channel elements
The channel can be considered to be the header information of the RSS feed. The
channel elements tell the user where the RSS feed is coming from, what the title of
the document is, when it was last updated, and so on. Only a few items are
required by the RSS specification, as shown in table 13.1.

The three required elements in table 13.1 give us the basic information about the
RSS feed. The RSS feed’s required elements tell us where the RSS channel is from,
what the title of the channel is, and what the channel is about. If we want to obtain
other information about the RSS feed, we need to check for optional elements.

Table 13.1 Channel required elements

Element Description Example

description Phrase describing the channel. Weird thoughts from Eric’s Head

link The URL to the HTML website referring to
the channel.

http://radio.javaranch.com/pascarello

title The name of the channel and how people
refer to the service. The name should be
related to the name of the website.

Eric’s blog on JavaRanch.com
Licensed to jonathan zheng <yiyisjun@gmail.com>

Reading information from the outside world 507
 The RSS feed can contain any number of the optional channel elements. The
RSS feed developer can select none, one, or all 16. The optional elements
(table 13.2) give us more options to learn about the feed.

Table 13.2 Optional channel elements

Element Description Example

category Specifies which categories the chan-
nel belongs to.

Programming

cloud Allows processes to register with a
cloud so they can be notified of
updates to the channel, implementing a
lightweight publish-subscribe protocol.

copyright The copyright notice for the content in
the channel.

Eric Pascarello

docs A URL that points to the documenta-
tion for an RSS feed.

http://backend.userland.com/rss

generator A string that indicates what program
was used to generate the protocol.

Pebble

image Specifies an image that can be dis-
played along with the feed.

http://pebble.soundforge.net/common/
images/powered-by-pebble.gif

language The language the channel is written in. En

lastBuildDate The last time the content was changed.

managing editor Email address for person who is
responsible for the editorial content.

pascarello@javaranch.com

pubDate The publication date for the content.

rating The PICS rating for the channel. See
http://www.w3.org/PICS/.

skipDays Informs aggregators what days they
can skip checking for updates.

skipHours Informs aggregators what hours they
can skip checking for updates.

textInput Specifies a text input box that can be
displayed.

continued on next page
Licensed to jonathan zheng <yiyisjun@gmail.com>

508 CHAPTER 13
Building stand-alone applications with Ajax
Some of the element options include email addresses in case we have problems
with the feed’s content or layout. There is also information that explains when the
syndication feed is updated.

 The channel’s required and optional elements describe the content of the RSS
feed so that we can determine the characteristics of the feed. Just like the chan-
nel, the item elements have optional elements as well.

The item elements
The RSS feed can contain multiple item elements, similar to the way a newspaper
consists of multiple articles. Each item element is required to have at least one of
the following two elements: the title or the description. Only one is needed,
according to the RSS specifications, but both are allowed in an item element.

 There are also eight other optional elements that can be added to the item.
Returning to the newspaper analogy, an article normally contains the story, the
author, the source, and a title. In the same way, each item element in an RSS feed
can have separate titles, authors, sources, and so on. All of the optional elements
that are available for the item element are shown in table 13.3.

ttl Indicates the Time to Live (TTL), or
number of minutes the channel can be
cached before it is updated.

webmaster Email address for the person who is
responsible for technical issues.

webmaster@javaranch.com

Table 13.3 Item elements

Element Description Example

author The item author’s
email address

Pascarello@javaranch.com

category Includes the item in
one or more catego-
ries

Programming

comments The URL of the page
for comments that
relates to this item

http://radio.javaranch.com/pascarello/2005/05/25/
1117043999998.html#comments

continued on next page

Table 13.2 Optional channel elements (continued)

Element Description Example
Licensed to jonathan zheng <yiyisjun@gmail.com>

Creating the rich user interface 509
The heart and soul of the RSS feed are the title and the description. The title gives
us a small insight into what the article is, whereas the description element can be
one of two things: a synopsis about the article or the entire article itself. There is
no set standard on how the description element is used. To determine how to han-
dle it, we have to look at the individual feeds before we start to write the RSS feed
reader. If it’s a synopsis, we can compare it to a blurb on the front of a magazine
where it says, “see page 10 for more information.” That is where the link element
comes into use. The link is the URL to the entire article on the author’s site.

 Most RSS feeds try to utilize as many of the optional elements as possible in
order to provide developers, like us, the tools to make our RSS reader as robust as
possible. With better data at our hands, we can better display the RSS feed con-
tent. For more information about the RSS specification, visit http://backend.user-
land.com/rss.

 Now that we understand the basic elements of the RSS document, we can cre-
ate our Ajax-based RSS reader.

13.2 Creating the rich user interface

In this chapter, we create an RSS feed viewer that obtains the XML feeds from
websites without using a server-side language or a client application RSS reader.

description The item summary Ajax allows developers to improve the UI by making a web
application act like a client application.

enclosure Describes the media
object that is
attached to the item

<enclosure url="http://radio.javaranch.com/
pascarello/media/TheAjaxInActionSong.mp3"
length="5908124" type="audio/mpeg"/>

guid A string that is a
unique identifier

http://radio.javaranch.com/pascarello/2005/05/25/
1117043999998.html

link The URL of the item http://radio.javaranch.com/pascarello/

pubDate The date the item was
published

Wed, 25 May 2005 17:59:59 GMT

source The RSS channel the
item came from

<source url="http://radio.javaranch.com/
pascarello/blog.xml">Eric's Blog</source>

title The title of the ele-
ment

Ajax Improves UI Development

Table 13.3 Item elements (continued)

Element Description Example
Licensed to jonathan zheng <yiyisjun@gmail.com>

510 CHAPTER 13
Building stand-alone applications with Ajax
Ajax allows us to view the information with a web page that is stored on our desk-
top. This example demonstrates that Ajax does not have to run with a web server
that has a server-side language such as .NET or JSP. As long as we have an active
Internet connection, we are able to access RSS feeds from any site we desire. (If
you are running a Mozilla browser, see section 13.6.1. You must overcome
Mozilla’s security restrictions, which we discussed in chapter 7, before you try to
execute the code in this project.)

13.2.1 The process

If you find yourself scanning multiple websites for content every day, you will be
able to avoid that by running this reader. The viewer will be able to show multiple
feeds on one page.

 The unique feature of this application is that we are not using any server-side
code; we are only obtaining RSS XML documents that are created by the other
websites. The complete application resides on a web page saved on our desktop
environment or delivered as part of our website.

 The first thing is to understand the steps for what we are going to develop. We
are developing an RSS reader that is going to set up a slideshow that uses two lay-
ers. Each layer will contain one feed, which will be displayed for a set period of
time, after which the next feed fades in. In figure 13.2, we can see the control flow
of the application.

 The process has a lot of steps. The first step is to load our multiple feeds. We
will use a master array to hold the information we need from each feed source. We
do not require all the optional item elements that we listed in table 13.2.

Optain web site
RSS file

Send
request Repeat Format

RSS feed

Preloader

Load message

Start transition Start fade

Start timer

Figure 13.2 RSS reader project’s process flow diagram
Licensed to jonathan zheng <yiyisjun@gmail.com>

Creating the rich user interface 511
After we load all the files, we need to create our transition effect of fading in and
out. In this case, we’ll use CSS classes to do this. We’ll use a timer to switch
between messages and loop through all the messages.

 Other features that we want to incorporate into this application are back, for-
ward, and pause buttons. We can also add the ability to insert additional feeds
from a selection list. The first step is to create our client-side form and layers.

13.2.2 The table-less HTML framework

The biggest part of this project is presentation. We’ll use a series of div and span
elements to make a table-like layout that contains a header, a body, and a footer.
We can see how this looks in figure 13.3.

 We could have used tables to create the layout, but tables were the pre-CSS
page layout tool (see chapter 2 for an introduction to CSS). Today, tables should
not be used for layout since they require more time to render and they are not as
easy to change as a CSS layout. Listing 13.1 shows the markup on which our XML
viewer’s layout is based.

Figure 13.3
The RSS syndication reader
developed in this project
Licensed to jonathan zheng <yiyisjun@gmail.com>

512 CHAPTER 13
Building stand-alone applications with Ajax
<form name="Form1">
 <div id="divNewsHolder">

 <div id="divNewsTitle">

 Loading

 Ajax News Viewer
 </div>
 <div id="divAd">
 <div id="divNews1">
 Loading Content...
 </div>
 <div id="divNews2">
 Loading Content...
 </div>
 </div>
 <div id="divControls">
 <input type="button" name="btnPrev"
 id="btnPrev" value="<BACK" />
 <input type="button" name="btnPause"
 id="btnPause" value="PAUSE" />
 <input type="button" name="btnNext"
 id="btnNext" value="NEXT>" />
 <hr/>
 <select name="ddlRSS">
 </select>
 <input type="button" name="btnAdd"
 value="Add Feed" />
 </div>
 </div>
</form>

The first div that we added is divNewsHolder b, our container, which we use to set
the overall size of our display window. The next div that we add is divNewsTitle
c, which is the header in our layout. Inside this div, we add a span d that con-
tains a placeholder for our feed count. The other line of text e is the title of our
feed viewer. We can make that line say anything we want.

 The div divAd f is our next row. This row is the placeholder for our RSS feed
information that we will retrieve later. We insert two more div elements inside of
the div divAd. The two new divs, divNews1 g and divNews2 h, are used to hold
the RSS feed information. The CSS properties of these elements will be altered by
the JavaScript to create a fading transition.

 The footer row is made up of a div divControls i. The footer row contains
our navigation and our feed management functions. The next, back, and pause

Listing 13.1 Basic HTML for the RSS reader

b Container div

c Header div

d Feed count holder

e Title

f News feed container

g First news
feed layers

h Layout
footer

i

j Action
buttons

1) Additional feed
element
Licensed to jonathan zheng <yiyisjun@gmail.com>

Creating the rich user interface 513
j buttons are added to the div. The select form element and a button 1) are
added that allow a user to select additional XML feeds. This now finishes up the
basic framework for the viewer, as seen in figure 13.4.

 Figure 13.4 is not visually appealing since we have not formatted our HTML
elements. The viewer lacks any structure, but that changes when we add CSS rules
to the elements. By looking at figure 13.3, we see that our two divs, divNews1 and
divNews2, need to be sitting on top of each other in order for our fading effect to
work properly.

13.2.3 Compliant CSS formatting

Without CSS, our web pages would all look like those in figure 13.4: very boring
and unpleasant on the eyes. We’ll apply some CSS to make this example more
pleasing. The style allows us to easily edit the properties in the future without
having to edit the HTML. The first thing we can apply style to is our holder div
and our header row.

Applying style to the holder and header divs
The divNewsHolder div mentioned earlier can be considered our container for the
viewer. It allows us to position the reader on the page and also set the width of the
reader. Since we are using divs for our other rows, they take up 100 percent of the
width that is available to them. By setting the width in the holder, we can dictate
the width of the other elements, making future updates easier. Listing 13.2 shows
how we achieve this using CSS.

#divNewsHolder{
 width: 600px;
 border: 2px solid black;
 padding: 0px;
}
#divNewsTitle{
 font-size: 20px;
 height: 26px;

Figure 13.4
HTML elements are shown
without any CSS

Listing 13.2 CSS for the holder and header divs

b The holder div

c The title div
Licensed to jonathan zheng <yiyisjun@gmail.com>

514 CHAPTER 13
Building stand-alone applications with Ajax
 background-color: #BACCD9;
 line-height: 26px;
}
#spanCount{

 float: right;
 font-size: 15px;
 padding-right: 10px;
}

We apply style to our form elements by referencing its ID along with the pound
(#) sign b. This specifies that the style should be applied to only our div with the
id divNewsHolder. For our divNewsHolder, we can assign width and border rules to
it and set the padding to 0.

 Now that we have set our holder div, we can style our first row. We want to set
the height, background color, and font size of div divNewsTitle c. The line-
height property d is set to the height of the div. This ensures that our single line
of text that is 20 pixels high is centered vertically in the div. Without the line
height, the text would be located at the top border of the div.

 The last step for formatting our header row is to move the spanCount e to the
right portion of the header instead of it being in front of our title. To do this, we
use the float property f and set it to right. This right-aligns our text, whatever
the width of the containing element, and does not affect our title. The font size
can be set to a smaller pixel height so it is not as prominent as our title. The
padding-right property moves the text from the right edge so it is not sitting
directly on the border. We are now finished with our holder and our header row;
see figure 13.5.

 In figure 13.5, we can see that the header row is very different compared to the
other rows that have not been styled. The word Loading appears on the right side
of the div, and our text is centered in the div. The holder div border surrounds the
rest of the elements; now we need to work on the content divs.

d Height of line

e The count span

f Float-based layout

Figure 13.5
CSS is applied to the
holder and header divs.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Creating the rich user interface 515
Styling the content divs
The next step is to style the middle section or the body of our RSS reader
(listing 13.3). The body section will contain our formatted RSS feed information.
We position the divs, divNews1 and divNews2, on top of each other for our transi-
tion effect to work. The transition effect is to change the opacity of the layer so
the layer contained below shows through. By increasing the opacity level of the
layer, we are able to create a fading effect.

#divAd{

 width: 100%;

 height: 400px;

 overflow: hidden;

 border-top: 2px solid black;

 border-bottom: 2px solid black;

}

#divNews1, #divNews2{

 width: 100%;

 height: 400px;

 background: #D9CCBA;

 position: relative;

 overflow: auto;

 left: 0px;

}

#divNews1{top: 0px;}

#divNews2{top: -400px;}

The first step is to style our div divAd b that is the container for our feed spans.
The width c is set to 100 percent, and the height d is set to 400px. We do not
want scrollbars to appear for the row; therefore, the overflow e property to set to
hidden. This means if any content is larger than 400 pixels, it is hidden from the
view. The other divs inside this holder allow for scrolling so we do not lose the
content. We then set our top and bottom borders f styles by setting a solid 2-
pixel black line. A side border is not needed since our holder div contains a bor-
der thickness. If we applied the borders all the way around our row, it would be 4
pixels wide instead of 2 on the sides and only 2 pixels tall on the top and bottom
of the row, which makes it look awkward.

 We have to format our two content holder divs, divNews1 and divNews2 g. We
can style the properties that are the same between them by separating both of

Listing 13.3 CSS for the content divs

b Format divAd
c Set width

d Set height
e Hide scrollbars

f Format
borders

g Style both news divs

h Set width and
height

i Use relative positioning
j Show scrollbars if necessary

1) Move divs to the edge

1! Position first div
1@ Position second div
Licensed to jonathan zheng <yiyisjun@gmail.com>

516 CHAPTER 13
Building stand-alone applications with Ajax
their IDs with a comma. The width and height values h are set to take up the
space of our holder div. By setting our divs’ position i to relative, it allows us to
position the divs in relation to our parent div divAd, unlike the absolute position,
which is in relation to the top-left corner of the browser window. We set the divs’
overflow property j to auto, allowing scrollbars to appear if necessary. The last
step is to set the left 1) position of the divs to 0 pixels, allowing the div to be flush
so there are no gaps around the edges.

 We want the two content divs to sit exactly on top of each other. Because we
are using relative layout, separate position properties are required to be applied
to our two feed divs. The div divNews1’s vertical position 1! is set to 0 pixels.
This forces it to sit flush to the top border of the parent div. The divNews2 posi-
tion 1@ is set to –400px. The reason for the negative number is that the second
div is positioned lower down the page than the first div, as shown in figures 13.4
and 13.5. Since we set the height of the container div to 400 pixels, we need to
move divNews2 up 400 pixels so it is flush on the top of the parent div, just like
divNews1. In figure 13.6, we can see how our two divs are now on top of each
other, unlike in figure 13.5.

 Since the two divs are on top of each other, we are only able to see the content
from one of them. In this case, the opacity level is set at 100 percent; therefore,
the content underneath is not visible. The level of 100 percent is going to be the
last step in our fade transition, but before we can get to that we have to finish styl-
ing our reader.

Figure 13.6
CSS applied to the
content divs
Licensed to jonathan zheng <yiyisjun@gmail.com>

Creating the rich user interface 517
Configuring the footer
The last section we want to add CSS to is our footer. In this section, we have to set
the background color and standardize the form elements so that the section is
more structured. To accomplish this, we set the colors, the font sizes, and the size
of the buttons (listing 13.4).

#divControls{
 background-color: #BACCD9;
 text-align: center;
 padding-top: 4px;
 padding-bottom: 4px;

}
#divControls input{
 width: 100px;
 background-color: #8C8C8C;
 color: #000000;
 font-size: 10px;
}

We apply the CSS to our footer div divControls b so it matches the header row.
The background color c is added to the div to match the header’s background
color. We align the text d so the content is centered in the div horizontally. Top
and bottom padding e is added to the div, which means the content doesn’t
have to sit on the border. We don’t have to add a border to our div since the mid-
dle row has the top border defined and the holder div has the other three bor-
ders covered.

 The last step in the CSS for formatting our footer is applying styles to our form
elements so they fit in with the style of the reader. The button elements f that
are located inside the divControl div are referenced with the div’s name and then
a space followed by the tag name. That means only the elements within that div
tag get these properties assigned to them. Any of the other elements with the
same tag name on the page will not.

 Since the text in each of our buttons is a different length, we apply the width
property g to the buttons so they will all be the same width, causing the buttons
to look more uniform. We change the background color so it is not the default
color of the user’s operating system. The text color and the size of the font for the
element’s text can be assigned also. Figure 13.7 shows us how our footer is now
styled to match the feel of the RSS reader.

Listing 13.4 CSS for the footer div

b Style footer div
c Set background color

d Center the text

e Add padding

f Style form elements

g Set size and
colors
Licensed to jonathan zheng <yiyisjun@gmail.com>

518 CHAPTER 13
Building stand-alone applications with Ajax
In figure 13.7, we see all of the properties that we applied to the divs. We applied
widths, colors, font sizes, borders, padding, and much more. We can customize the
CSS properties of these elements so they fit the needs and styles of any website theme
or personal taste. The next thing we need to do is get content into our RSS reader!

13.3 Loading the RSS feeds

In this example, we will load files from multiple feeds. We will use our Content-
Loader object to do the work, as we have throughout this book. In the first ver-
sion, we use a series of global variables to quickly develop an RSS feed viewer.

13.3.1 Global scope

Global variables allow for easy adjustments to our script so we do not have to
change the functionality inside the for loops and timers. We will be able to adjust
the contents of the global variables to make changes throughout the script and
communicate between the different functions. We want to use global variables
rather than local variables in this script so they can be shared and we don’t have
to pass them from function to function. Later on in this chapter, when we refactor
our script, you will see a solution that doesn’t use global variables; but for now,
they keep our example simple.

 One downfall to JavaScript is that there is no variable type for constants, so we
are simulating the effect with global variables. However, global variables can be

Figure 13.7
CSS applied to the footer
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading the RSS feeds 519
overwritten, so we must be careful when using them. The variables in listing 13.5
will not be overwritten at any time during the application.

var flipLength = 5000;
var timeColor = 100;
var strErrors = "<hr/>Error List:
"
var arrayRSSFeeds = new Array(
 "http://radio.javaranch.com/news/rss.xml",
 "http://radio.javaranch.com/pascarello/rss.xml",
 "http://radio.javaranch.com/bear/rss.xml",
 "http://radio.javaranch.com/lasse/rss.xml");

In listing 13.5, we assign the global variables that affect how our viewer performs.
The first global variable, flipLength, determines how many milliseconds our cur-
rent message is displayed before it is replaced with the next message. In this case,
the value 5000 represents the total number of milliseconds between messages.
Another timer variable is timeColor. This time span is the number of milliseconds
between the coloring or fading steps in our script. The larger the number, the
longer the transition takes to complete.

 The next global variable that we use is strErrors. This line is the heading for
any errors we encounter during the loading process. We can change the message
or add style parameters to it. The last global variable that is going to affect the
outcome of the script is the array, arrayRSSFeeds. In this array, we add the URLs
of the RSS feeds that we want to access. In this case, we access four separate RSS
feeds from JavaRanch.com’s radio blogs.

 The next set of global variables that we declare, in listing 13.6, are used to
communicate between our separate functions. These global variables hold the
state of the RSS feeder. Their values change depending on the action that is
being performed.

var currentMessage = 0;
var layerFront = 2;
var timerSwitch;
var bPaused = false;
var arrayMessage = new Array();
var intLoadFile = 0;
var bLoadedOnce = false;

Listing 13.5 Global constant variables

Listing 13.6 Global variables that maintain the state
Licensed to jonathan zheng <yiyisjun@gmail.com>

520 CHAPTER 13
Building stand-alone applications with Ajax
The first global variable that we instantiate in listing 13.6 is currentMessage. The
variable currentMessage keeps track of the message that is being viewed. It can be
considered a counter that is reset when it reaches the maximum number of
records. The next global variable is layerFront, which holds the state of our lay-
ers. When we designed our RSS reader layout, we had two layers on top of each
other. This variable is keeping track of the state of those layers.

 The variable timerSwitch holds the timer object that determines when the
next frame is going to be loaded. If the user pauses the feeder, we cancel this
timer and change the state of our next variable, bPaused. The boolean value that
bPaused holds allows us to determine the state of the timer: true if it is paused
and false if it is running.

 The global variable arrayMessage holds the formatted messages that we
retrieved from the RSS items. The array is multidimensional and holds all the
information we want to show. As stated earlier, the item elements in the RSS feed
hold more information than we may need; therefore, we only grab the few items
that interest us and store them in arrayMessage.

 The last variable, intLoadFile, leads us into our next section of code. The vari-
able is a counter, which holds the current file count that is being loaded from our
array, arrayRSSFeeds, during the preloading process.

 Now that all the global variables have been declared, we can see a global pic-
ture of where this project is heading. We preload the RSS feeds from an array of
URLs. We use a counter to track the status of the preload process. During the pre-
loading, we are only selecting the desired information from each XML file. After
the preload process has finished, the messages are displayed with a fading transi-
tion to create a slideshow, which we can pause and manipulate. With the global
variables that we declared, we are able to control the functionality of the script.
This has led us to the starting point of the RSS preloader function.

13.3.2 Ajax preloading functionality

One of the problems developers face with Ajax is how to preload multiple files
without sending too many requests to the external websites and having them step
all over each other. One solution is to use queuing, and that is what our Ajax Con-
tentLoader does.

Making the repeated requests
The ContentLoader allows the queuing mechanism to fire the requests in an
orderly fashion. In listing 13.7, we take our array (which was populated when the
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading the RSS feeds 521
page was loaded in listing 13.5) that contains the URLs to our feeds and prepare
them for our ContentLoader.

window.onload = function(){
 var loader= new Array()
 for(i=0;i<arrayRSSFeeds.length;i++){
 loader[loader.length] = new

 net.ContentLoader(arrayRSSFeeds[i],
 BuildXMLResults,BuildError);
 }
}

The code in listing 13.7 is fired with the onload event handler. As the page is
loaded, we prepare an array variable, loader, to hold all the requests to the server.
We loop through our array arrayRSSFeeds to obtain all of the URLs from which we
want to obtain information. For each iteration, we increment our loader array to
hold the new ContentLoader request. We pass in the URL of the feed, the func-
tion BuildXMLResults() that formats the content, and the function BuildError()
that will be called if there is an error obtaining the feed. Now that we have begun
the loading process, we need to format the returned XML feeds.

Adapting the function
When the request is made, it is going to call either BuildXMLResults() (if it was
successful) or BuildError() (if it encountered any problems). BuildXMLResults()
takes the XML feed and formats it into a usable format. BuildError() logs the
error to the error list. Both functions update the status so we can see the progress
of the loading. Listing 13.8 shows the implementation of this logic.

function BuildXMLResults(){
 var xmlDoc = this.req.responseXML.documentElement;
 var RSSTitle =

xmlDoc.getElementsByTagName('title')[0].firstChild.nodeValue;
 var xRows = xmlDoc.getElementsByTagName('item');
 for(iC=0;iC<xRows.length;iC++){
 intMessage = arrayMessage.length;
 arrayMessage[intMessage] = new Array(
 RSSTitle,
 xRows[iC].getElementsByTagName('title')[0]
.firstChild.nodeValue,
 xRows[iC].getElementsByTagName('link')[0]

Listing 13.7 Preload JavaScript function

Listing 13.8 Formatting the XML results into a JavaScript array
Licensed to jonathan zheng <yiyisjun@gmail.com>

522 CHAPTER 13
Building stand-alone applications with Ajax
.firstChild.nodeValue,
 xRows[iC].getElementsByTagName('description')[0]
.firstChild.nodeValue);
 }
 UpdateStatus();
}

The function BuildXMLResults() in listing 13.8 retrieves the XML document by
referencing our request object’s responseXML property. With the XML document
stored in our local variable xmlDoc, we are able to obtain the RSS title information
for the feed. To do this, we reference the title element tag and reference the first
child node’s value.

 We obtain the item elements and prepare to loop through the resulting array
stored in xRows. By looping through the array, we are able to create a multidimen-
sional array, storing it in the next position of our global array, arrayMessage. The
global array holds the title of the RSS feed and the title, link, and description of
the article. We build this multidimensional array for every item element stored in
xRows. After we’ve finished traversing the document, we call the function Update-
Status() (listing 13.9) to display the current state of the process to the user.

function UpdateStatus(){
 intLoadFile++;
 if(intLoadFile < arrayRSSFeeds.length){
 document.getElementById("divNews2").innerHTML =
 "Loaded File " + intLoadFile + " of "
 + arrayRSSFeeds.length + strErrors;
 }else if(intLoadFile >= arrayRSSFeeds.length && !bLoadedOnce){
 document.getElementById("divNews2").innerHTML =
 "Loading Completed" + strErrors;
 if(arrayMessage.length == 0){
 alert("No RSS information was collected.");
 return false;
 }
 bLoadedOnce = true;
 var timerX = setTimeout("ChangeView()",1500);
 }
}

The function UpdateStatus() performs two services, as shown in listing 13.9.
The first service displays the status of the preloader to the user. The second ser-
vice determines if the slideshow has to be started. We first increment our global

Listing 13.9 Function informing user of preloading functionality
Licensed to jonathan zheng <yiyisjun@gmail.com>

Loading the RSS feeds 523
variable intLoadFile to update the file count. If intLoadFile is less than the total
files we are to load, we display our loading status by setting the innerHTML of our
top layer divNews2 with our output string.

 If the file count is greater than or equal to the number of files in our array
(and also the slideshow has not been started), then we can start the transitions.
Before we can start the slideshow, we need to verify that we actually have data to
show. We verify the data by checking the length of our formatted message array,
arrayMessage. If there are no messages, we notify the user and exit the function by
returning false.

 If there is data to display, we set bLoadedOnce to true and call the function
ChangeView() after a slight pause in time. The slight pause allows the user to read
any error messages that we may have encountered. As mentioned previously, if
the loader encountered a problem with loading the XML document, it calls our
function BuildError() (see listing 13.10).

function BuildError(){
 strErrors += "Error:" + "" + "
";
 UpdateStatus();
}

BuildError() allows us to display an error to the user. This tells the user that not
all of the files were loaded. We just append the error to our global variable str-
Errors and call our UpdateStatus() function that we just developed to inform
the user of the application’s current loading state. We can verify that our pre-
loader works by saving the document and running the web page in our browser
(figure 13.8).

 When we test the viewer, we should see the status update on the screen. In fig-
ure 13.8, the preloader is loading file 2 of 4 and there have been no error mes-
sages. When all of the files have loaded, we should see that the files have been
loaded successfully and there are no errors in the list. However, there is a Java-
Script error indicated in our status bar since we still have not created our function
ChangeView(). We’ll do that in the next section, but first we will create the cross-
browser fading transition effect.

Listing 13.10 Function to handle the errors generated from the XMLHttpRequest
Licensed to jonathan zheng <yiyisjun@gmail.com>

524 CHAPTER 13
Building stand-alone applications with Ajax
13.4 Adding a rich transition effect

The code that we have written so far has loaded the files into an array. We now
have to take the data stored in an array and build a slideshow. The slideshow is
based on DHTML. By changing the content within divs by using innerHTML, we
can display the different articles that our preloader has loaded. Changing CSS
classes of the elements and altering the z-Index of layers allows us to create fad-
ing transition effects with the divs. By placing all of the steps together, we are
going to create a dynamic fading slideshow.

13.4.1 Cross-browser opacity rules

When we are creating the fading effect, we need to change the opacity of the top
layer. Changing the opacity of the layer lets the content underneath show
through. With an opacity level of 0 percent, we are allowing all of the content to
show through. An opacity level of 100 percent blocks anything on the layer
underneath from showing through.

 Now, as always, we have issues with Internet Explorer and Mozilla-based
browsers. Both browsers view opacity differently, so in our stylesheet rules we
must account for the differences. Mozilla uses opacity, whereas Internet Explorer
uses a filter specifying the alpha opacity, as listing 13.11 shows.

Figure 13.8
The preloader is loading
file 2 of 4 as indicated by
the status message with
no errors.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Adding a rich transition effect 525
.opac0{opacity: .0;filter: alpha(opacity=0);}

.opac1{opacity: .2;filter: alpha(opacity=20);}

.opac2{opacity: .4;filter: alpha(opacity=40);}

.opac3{opacity: .6;filter: alpha(opacity=60);}

.opac4{opacity: .8;filter: alpha(opacity=80);}

Listing 13.11 shows that we created a series of style rules that have different
opacity levels. Using CSS rules instead of using JavaScript to manipulate the val-
ues is a matter of preference. By using CSS rules, we can change other proper-
ties; maybe we want the colors to change as the fading occurs, or maybe we want
to increase the text size. Using CSS classes allows us to do that without adding
any extra JavaScript code, and it also encapsulates the cross-browser differences
in a single place.

 Now that we have created our classes, we can start the process of loading the
RSS feed information into our divs.

13.4.2 Implementing the fading transition

In section 13.3.2, we received an error message when testing the code since we
had not created the function ChangeView(). ChangeView() initiates the process of
the fading in and out of the content divs. For the fading process to work correctly,
we alter the CSS classes and position the divs on different z-Index levels. Listing
13.12 shows how this is implemented.

function ChangeView(){
 strDisplay = "" +
 arrayMessage[currentMessage][0] + ": "
 strDisplay += "" +
 arrayMessage[currentMessage][1] + "<hr>";
 strDisplay += arrayMessage[currentMessage][3]
 + "<hr>";
 strDisplay += "<a href='" +
 arrayMessage[currentMessage][2] +
 "' title='View Page'>View Page";
 document.getElementById("spanCount").innerHTML =
 "Message " + (currentMessage+1) +
 " of " + arrayMessage.length;
 var objDiv1 = document.getElementById("divNews1");
var objDiv2 = document.getElementById("divNews2");
if(layerFront == 1){
 objDiv2.className = "opac0";

Listing 13.11 CSS Opacity filter classes

Listing 13.12 ChangeView() function

b Declare ChangeView()
c Display RSS title

d Show element title

e Insert item
description

f Output feed’s URL

g Change feed status

h Prepare transition
Licensed to jonathan zheng <yiyisjun@gmail.com>

526 CHAPTER 13
Building stand-alone applications with Ajax
 objDiv1.style.zIndex = 1;
 objDiv2.style.zIndex = 2;
 objDiv2.innerHTML = strDisplay;
 layerFront = 2;
 }
 else{
 objDiv1.className = "opac0";
 objDiv2.style.zIndex = 1;
 objDiv1.style.zIndex = 2;
 objDiv1.innerHTML = strDisplay;
 layerFront = 1;
 }
 SetClass(0);
}

The ChangeView() b function has two major roles. The first is to build the HTML
to display our data obtained from the RSS feeds. The second role is to prepare our
divs for the fading in. Building the HTML is simple since we are using a basic lay-
out. The hardest part is making sure that we keep track of quotes and apostro-
phes so we do not encounter any errors.

 The first line of text we want to display is the RSS channel’s title c, which we
stored in the first index of the array, arrayMessage. We need to surround the title
with a span and assign a CSS class name of RSSFeed. The next step is to display the
item element’s title d by referencing the second index of the array. By surround-
ing the title with a span and assigning a CSS class of itemTitle to the span, we are
able to apply a separate style to our titles. To allow for a separation between the
title and the message body, a horizontal rule is inserted.

 The item description e was stored in the fourth index of the arrayMessage. We
divide the description from our next section, which holds the last item element we
collected. The last item is the link f; we assign the value of the URL element to the
link’s HREF attribute. The text that is visible to the user is “View Page,” which the
user is able to click. The link sends the user to the RSS feed’s website.

 We want to update the current message display counter that we built into our
RSS header. To do this, we alter the innerHTML g of our span spanCount by using
the arrayMessage length and our current message counter. We need to prepare
the divs h for the transition effect. We initialize the div by setting the zIndex so it
is on top of the current one and set the class to our first CSS rule for opacity.

 After we load the current message into our div, we start the process of fading
the div into view. To do this, we need to create a function that loads the CSS
classes in order; therefore, we call the function SetClass()i.

h Prepare
transition

i Start transition
Licensed to jonathan zheng <yiyisjun@gmail.com>

Adding a rich transition effect 527
13.4.3 Integrating JavaScript timers

The process of loading our div into view creates a smooth transition effect
between messages instead of an abrupt change. Altering the opacity level of the
layer with the CSS classes we created earlier creates the effect. The opacity level
allows the layers underneath the div to show through, as if we were looking
through a window that was tinted. We increase the opacity level in order to block
out all the content that is below the div.

 As mentioned in section 13.4.1, we are using five CSS classes to handle the fad-
ing in and out. The reason for using the classes is that in the future we can add
colors to the fading or anything else that we would like to display in the transition
effect. In this case, we loop through the classes. This is illustrated in listing 13.13.

function SetClass(xClass){
 if(xClass<5){
 document.getElementById("divNews" +
layerFront).className = "opac" + xClass;
 timerAmt = setTimeout("SetClass(" +
 (xClass+1) + ")",timeColor);
 }
 else{
 document.getElementById("divNews"
 + layerFront).className = "";
 currentMessage++;
 if(currentMessage>=arrayMessage.length)
 currentMessage = 0;
 if(!bPaused)
 timerSwitch = setTimeout(
 "ChangeView()",flipLength);
 }
}

Listing 13.13 shows the function SetClass()b, which has a parameter, xClass,
passed to it. This parameter allows us to track the current state of our transition
effect without using another global variable. We call this function for every step of
our transition to update the status until the fading transition is complete.

 Since we are dealing with five CSS classes, we need to verify that the current
step of our transition c has a value under five. If that’s the case, we know that
there are still more CSS classes that need to be applied to our transition. If we are
below five, we apply the next CSS class to the element. We reference the attribute
className d and apply the next class to the element.

Listing 13.13 JavaScript function to set CSS class and to execute the transition effect

b Declare SetClass()
c Verify transition step

d Set next className

e Initiate fade timer

f Remove CSS class

g Increment count
h Verify next message

i Start viewer
timer
Licensed to jonathan zheng <yiyisjun@gmail.com>

528 CHAPTER 13
Building stand-alone applications with Ajax
 After we set the new class, we need to create a timer to call the next step. The
setTimeout e method has two parameters. The first is the function or JavaScript
statement to execute, and the second is the amount of time in milliseconds before
it is executed. In this case, we are going to call our SetClass() function with the
incremented state of our class. The timeout is set to our global variable, flip-
Length, which we declared in section 13.3.1.

 The else portion of our script handles the situation when we have looped
through our five CSS classes and applied them to the div. First, we remove the
CSS Class f from our div. The default opacity is 100 percent and allows the div
to cover the other one completely with nothing showing through from the bot-
tom layer.

 We increment the currentMessage g variable, allowing the next message to be
loaded. We check to see if that message number h is greater than the number of
messages contained in our array arrayMessage. If it is greater, we set the current
message back to the start. The timer is restarted to load the next message i after
our set period of time. The setTimeout method calls our function, ChangeView(),
and our global variable, flipLength, determines the length of time. In order for
this to execute, we make sure that our global variable, bPaused, is not true. We will
be coding the pause feature of this script in section 13.5.2.

 The transition effect of the slideshow is now complete. We can test what we
have created so far and see if it works. If everything is working correctly, we
should see the page-loading counter slowly increasing as the files are being
loaded into the script, and the first message should begin to fade in.

 As you can see in figure 13.9, there are two different messages in the viewer
since the one is slightly transparent. The current message (6) is displayed in the
header, and we are able to see that in total 31 messages were loaded. Now, all we
have left to do is add the pause, back, forward, and add functionality to our viewer.

13.5 Additional functionality

The code that we already developed can be used on its own, without the other fea-
tures, but they can make the script more flexible for users and for us. The first fea-
ture that we want to add allows us to import other RSS feeds that are not included
in the preload function. Perhaps we want to check a site once in a while for new
content, or maybe we want to grab a weather RSS feed. This feature allows us to
obtain the syndication feed when we need it. The other features that we can
include will let us skip through messages and pause them if we want more time to
read them.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Additional functionality 529
13.5.1 Inserting additional feeds

Adding additional messages to our feed is easier than you may think. Take a look
at figure 13.9 again. The selection list contains the names and URLs of additional
feeds we want to check occasionally; we just select a name and click the Add Feed
button. We have already built most of the functionality in section 13.3; all we need
to do now is execute our ContentLoader, in listing 13.14, which will add the feed
selected in the select element.

function LoadNews(){
 var sel = document.Form1.ddlRSS;
 if(sel.options[sel.selectedIndex].className!="added"){
 var url = sel.options[sel.selectedIndex].value;
 sel.options[sel.selectedIndex].className="added";
 var loader1 = new net.ContentLoader(url,
 BuildXMLResults);
 }
}

We create a function called LoadNews() that we initiate from our button named
btnAdd. Since we are obtaining the additional RSS feeds’ URLs from a select ele-
ment, we need to reference our select element, ddlRSS, so we can access its values.

Figure 13.9
The fading transition is
taking place between
message 5 and 6.

Listing 13.14 JavaScript function to load additional RSS feeds
Licensed to jonathan zheng <yiyisjun@gmail.com>

530 CHAPTER 13
Building stand-alone applications with Ajax
When we want to add an RSS feed from the select element, we need to have some
way to tell if it already has been added. One way to do this is to add a CSS class to
the option element. Therefore, we need to add a check to verify that we have not
added this RSS feed already. If the feed is new, we grab the value of the selected
option and change the className to added.

 We execute the ContentLoader with the URL of the feed and also the function
BuildXMLResults(). We can use the default error message of the ContentLoader if
it encounters an error. Now that we have the ability to load a document from the
selection list, we need to add RSS feeds to the selection list and also add the event
handler to the button, shown in listing 13.15.

<select name="ddlRSS">
 <option
 value="http://radio.javaranch.com/frank/rss.xml">
 Frank</option>
 <option
 value="http://radio.javaranch.com/gthought/rss.xml">
 Gregg</option>
</select>
<input type="button" name="btnAdd"
 value="Add Feed" onclick="LoadNews()" />

In the selection list, we add URLs to RSS feeds that are not contained in our pre-
loader RSS feed array. In this case, two additional RSS syndication feeds were
added from JavaRanch’s radio blog. We add the onclick event handler to our
button btnAdd so the function LoadNews() can be executed.

 The last step to loading the individual feeds is to create a CSS class to add to
our stylesheet. This gives an added benefit to the users by giving a visual aid that
the feed has been loaded.

.added{background-color: silver;}

In the CSS class, we can add any CSS rule so we are able to distinguish the added
feeds from the others. In this case, we change the background color of the option
to silver so that the option stands out in the list. After we add the class, we can test
our application.

 As figure 13.10 shows, we have added the RSS feed of Frank since it is high-
lighted in silver. The feed labeled Gregg is not added since it still has the default
white background color. The number of messages in our RSS reader also

Listing 13.15 HTML selection list
Licensed to jonathan zheng <yiyisjun@gmail.com>

Additional functionality 531
increased from 31 to 54 after we added the feed. The only features remaining to
add are our back, forward, and pause buttons.

13.5.2 Integrating the skipping and pausing functionality

One of the most useful features that we can add is the ability to skip through mes-
sages. If we find a message that is not interesting to us, we can click a button to see
the next one instead of having to wait for the timeout to execute. The pause fea-
ture allows us to have more time to read a message that is interesting or long.
Since we have used global variables for our timers, pause, and the currentMessage
counter, we are able to affect the current state of the RSS reader very easily.
Listing 13.16 shows the code that lets the user flip through the feed.

function MoveFeed (xOption){
 if(xOption == 0){
 if(!bPaused){
 bPaused = true;
 if(timerSwitch)
 clearTimeout(timerSwitch);
 document.getElementById("btnPause").value =
 "RESUME";
 }

Figure 13.10
The Frank feed has been
added to the Ajax reader.

Listing 13.16 JavaScript function to pause and skip the RSS reader feeds

b Create function MoveFeed()
c Check for pause/resume action

d Pause the reader
Licensed to jonathan zheng <yiyisjun@gmail.com>

532 CHAPTER 13
Building stand-alone applications with Ajax
 else{
 bPaused = false;
 setTimeout("ChangeView()",300);
 document.getElementById("btnPause").value =
 "PAUSE";
 }
 }
 else{
 if(timerSwitch)
 clearTimeout(timerSwitch);
 if(xOption == -1)currentMessage += -2;
 if(currentMessage < 0)
 currentMessage = arrayMessage.length
 + currentMessage;
 ChangeView();
 }
}

By creating a function, MoveFeed()b and allowing it to accept a single parameter,
we can handle all three situations; pause, skip forward, and skip backward. We
can use an integer to differentiate between the different actions. To pause the
reader, we pass in a 0. To skip forward, we use 1, and to skip backward we use –1.

 The first functionality we check for is the pause. We verify c that the passed-
in parameter is a 0. The pause button has two behaviors. The first is to enter the
pause mode, which stops the transitions from executing. The second is resume,
which allows for the slideshow to restart the transitions.

 If the feed is not paused d, then we need to set our bPaused variable to true
and check to see if our timer timerSwitch is running. If the timer is running, we
need to cancel it by using the clearTimeout method. We change the button’s text
to display the string “RESUME”. If the button is clicked to resume the feed, we do
the opposite of pausing the feed e. We set the bPaused variable to false; we call
our function ChangeView() with a slight pause in time, and we change the text of
our button value back to “PAUSE”.

 The pause behavior is now complete.
 We have to create our skipping and backtracking functionality f. Since we are

changing messages, we should remove the timer to avoid problems with skipping
multiple messages. After we remove the timeout, we need to see if the action was
–1. If we are moving backward, we need to subtract 2 from the currentMessage
variable. This is because the variable, currentMessage, is actually holding the
value of the next message since it already has been incremented. By subtracting 1
from the variable, we stay on the same message. Since we are already have the

e Resume the
reader

f Change
current
message
Licensed to jonathan zheng <yiyisjun@gmail.com>

Additional functionality 533
next message variable stored in currentMessage, we do not have to do anything
for the forward button.

 We have to be sure that our number is not less than 0. If it is, we need to set our
variable to the last message in our array. After we have changed the current-
Message, we can call our ChangeView() function to load our message. All we have
to do is add the event handlers to the buttons (listing 13.17) so we can execute the
function, MoveFeed().

value=" <BACK " onclick="MoveFeed(-1)">
value=" PAUSE " onclick="MoveFeed(0)">
value="NEXT>" onclick="MoveFeed(1)">

To initialize the function, we add onclick handlers to our buttons. The onclick
handlers call our function MoveFeed(), which passes the integers of –1 to skip
backwards, 0 to pause the reader, and 1 to skip forward a message. By saving
the document and opening our browser to this page, we can test the last of the
functionality.

 Now that we have the ability to skip messages, we can advance to the messages
in the middle of the RSS feed list. Figure 13.11 shows that the reader is paused
since the button btnAdd’s text says RESUME. With the additional features that we

Listing 13.17 onclick event handlers for button actions

Figure 13.11
This window shows the RSS
feeder being paused since
the center button is now
labeled RESUME.
Licensed to jonathan zheng <yiyisjun@gmail.com>

534 CHAPTER 13
Building stand-alone applications with Ajax
have created, the RSS viewer allows us to read the feeds from our desktops with-
out visiting the individual websites that host the feeds.

13.6 Avoiding the project’s restrictions

With the Ajax-based RSS syndication feed reader that we have developed, we are
able to view RSS feeds from an HTML file stored on the desktop with no server-
side code required. We can use this application to grab the RSS feeds we read
without having to go to the websites. We may want to offer this page as a down-
load for the users on our websites. We can set it up to read our site’s RSS feeds.
Because we can run this script on our website too, we can use it for other things as
well. One use can be a banner ad rotator, a company news banner, or anything
else we can think of. But there are some limitations to what this script can do, and
we may have trouble running this application with Mozilla on our desktop.

13.6.1 Overcoming Mozilla’s security restriction

Unlike Microsoft Internet Explorer, Firefox and Mozilla cannot execute the appli-
cation from our desktop due to security restrictions. The security restrictions keep
Ajax from communicating from our desktop to other websites since they want to
protect us from having code send information without our knowledge.

 To verify that this is the problem with the Ajax script, we need to look for an
error message. In Mozilla, we need to open up the JavaScript Console. The Java-
Script console is located under Tools > Web Development > JavaScript Console
(figure 13.12).

 When we click on the JavaScript Console menu option, another window opens
(figure 13.13).

Figure 13.12
In Mozilla, choose Tools >
Web Development >
JavaScript Console.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Avoiding the project’s restrictions 535
In figure 13.13, we see a permission denied error caused by the XMLHttpRequest
object. There are two ways to correct this. The first is to go into the configuration
file of Mozilla and set the permission setting to allow the XMLHttpRequest object
to perform its desired task. To do this, we type about:config into the address bar of
the browser and adjust the setting, but that is not a safe procedure to perform.

 The reason it is not safe is that we are enabling it for anything that runs on our
computer. That means any script that wants to talk to the outside world would be
able to do so. How can we avoid this and allow only our Ajax application to talk to
the outside? The solution is to set the security with JavaScript. We showed how to
do this in chapter 7, provided the browser is configured to listen to programmatic
requests to the Privilege Manager, but let’s recap briefly here. Listing 13.18 shows
the generic code for enabling the additional privileges required to read external
resources.

if(window.netscape &&
 window.netscape.security.PrivilegeManager.enablePrivilege)
 netscape.security.PrivilegeManager.enablePrivilege(
 'UniversalBrowserRead');

In listing 13.18, we check if we can access the Privilege Manager. If we can, we
enable the UniversalBrowserRead privilege. We need to add this code in two sep-
arate places inside our ContentLoader object that handles the Ajax functionality.

 The first place we need to add it is directly after the loadXMLDoc declaration, as
shown in listing 13.19.

net.ContentLoader.prototype.loadXMLDoc = function(
url,method,params,contentType){
 if(window.netscape &&

window.netscape.security.PrivilegeManager.enablePrivilege)
 netscape.security.PrivilegeManager.enablePrivilege(
 'UniversalBrowserRead');

Listing 13.18 Security Privilege Manager code

Listing 13.19 Code placement for loadXMLDoc

Figure 13.13
The permission denied
error message caused by
the XMLHttpRequest object
Licensed to jonathan zheng <yiyisjun@gmail.com>

536 CHAPTER 13
Building stand-alone applications with Ajax
We also need to add it to our onReadyState function (listing 13.20).

net.ContentLoader.onReadyState=function(){
 if(window.netscape &&
 window.netscape.security
 .PrivilegeManager.enablePrivilege)
 netscape.security.PrivilegeManager
 .enablePrivilege('
UniversalBrowserRead');

Both of these functions interact with the data from the outside world. That is why
we are required to add this functionality in both locations. When the script is exe-
cuted, we will get a message prompt informing us of the request to change the
security settings (figure 13.14).

 If we simply click the Allow button at the prompt, the security prompt will still
open every single time the function is accessed. To avoid this, click the “Remem-
ber this decision” checkbox. That way, the browser makes a note of your decision
and allows the XMLHttpRequest to execute every time it is accessed without issu-
ing the prompt.

 With the security settings of the browser changed, we are able to make this
application work off the desktop with Mozilla, Firefox, and Netscape. We can

Listing 13.20 Code placement for onReadyState

Figure 13.14
The security prompt notifies
the user about the request
for access rights.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 537
access XML feeds from any site without having to open multiple tabs or windows
by using this reader. We also have the ability to alter this application to obtain
other information from the Web, such as weather and comics.

13.6.2 Changing the application scope

This application is not limited to being an XML syndication reader from sites. We
can easily adapt it as a banner ad rotator, company news updater, an event calen-
dar, and so much more.

 For instance, we can store our banner ads within an XML document. That way,
anyone can update the XML file with new ads without having to touch any of the
HTML files or the server-side code. We can preload the banner ads and have
them displayed in the reader. Instead of just having one ad on the screen, we can
have them rotate through as the user is reading the site.

 We can set up the XML document to hold the company news so we can display
our current articles to the employees or customers. We just need to fill in the basic
items of the XML feed. We can also make it display the updates to the site or any
other information we want. As you can see, we are not limited to just the plain
XML feeds.

13.7 Refactoring

Now that we have a fully developed script for reading RSS feeds, let’s take the
time once again to improve upon our efforts. As mentioned earlier, there are lots
of possibilities for extending our script in terms of perusing different types of
content. In this section, we concentrate on reorganizing the script along Model-
View-Controller (MVC) boundaries. As we explained in chapters 3 and 4, the MVC
pattern is a very common design pattern for separating the responsibilities of
software. We’ll start our discussion with defining the Model types, then we’ll cre-
ate a View for the Model, and finally we’ll round out the discussion with the Con-
troller that ties everything together.

13.7.1 RSS reader Model

The RSS reader we’ve developed in this example will definitely benefit from hav-
ing some first-class Model types to deal with. This will make the software concep-
tually cleaner and easier to read and maintain. With Ajax-based applications
putting a heavier emphasis on the client DHTML than more traditional web
applications, it becomes increasingly important to write clean, maintainable soft-
ware. The Model classes we develop should also be generally applicable to other
Licensed to jonathan zheng <yiyisjun@gmail.com>

538 CHAPTER 13
Building stand-alone applications with Ajax
applications that deal with RSS feeds. As a syntactic simplification, we’ll use the
Prototype library to define types just as we did in chapter 10.

 Let’s start by defining a Model class for an RSS feed. An RSS feed is for our
purposes an XML document that adheres to a predefined structure and has a URL
that specifies how it can be accessed. The primary attributes of the structure are
the title, link, and description, with many other optional attributes, as dis-
cussed earlier. The feed also has several items, which can be thought of as the arti-
cles of its content. Let’s start by capturing what we know so far, as represented in
listing 13.21.

RSSFeed = Class.create();
RSSFeed.prototype = {

 initialize: function(title, link, description) {
 this.title = title;
 this.link = link;
 this.description = description;
 this.items = [];
 },

 addItem: function(anItem) {
 this.items.push(anItem);
 }
};

This code defines the RSSFeed type via the Prototype library Class.create(). You
will recall that using this idiom, the initialize method is invoked by the gener-
ated constructor. So with this definition of our RSS feed Model class, a feed could
be constructed via the following line of code:

 var rssFeed = new RSSFeed('JavaRanch News',
 'http://radio.javaranch.com/news/',
 'Stories from around the ranch');

This is pretty much all that’s required for the definition of an RSSFeed Model
object. Notice that the RSSFeed has an addItem API that enables the addition of
items to the internal item’s array. Each item should be a Model object as well—
one that encapsulates the attributes of each item in the feed. Given what we
know about the RSS items, let’s define our item Model class as shown in
listing 13.22.

Listing 13.21 The RSSFeed Model class
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 539
RSSItem = Class.create();
RSSItem.prototype = {
 initialize: function(rssFeed, title, link, description) {
 this.rssFeed = rssFeed;
 this.title = title;
 this.link = link;
 this.description = description;
 }
};

Nothing much to get excited about here. The item encapsulates the title, link,
and description attributes but also holds a reference to the RSSFeed object that it
belongs to. Given these two Model classes, now we can envision that an item and
one of its feeds could be constructed as shown here:

 var rssFeed = new RSSFeed('JavaRanch News',

 'http://radio.javaranch.com/news/',
 'Stories from around the ranch');
 var feed1 = new RSSItem(rssFeed,
 'Win a copy of JBoss',
 'http://radio.javaranch.com/news/05/07/20/9.html',
 'Text of Article');
 rssFeed.addItem(feed1);

So far, so good. The Model is a very straightforward encapsulation of the
attributes of an RSS feed and its items. The two Model classes that encapsulate
these two concepts are RSSFeed and RSSItem, respectively. Now let’s consider the
construction of the Model itself. We know that these objects will get instantiated
as a result of the XML data being loaded into the client by an Ajax request. So let’s
define an API that our Ajax handler can call for converting the XML response into
an instance of our RSSFeed Model class. Let’s start by defining the contract of our
Model creator as follows:

 var rssFeed = RSSFeed.parseXML(rssXML);

This contract implies that we’ll pass the XML response returned from our Ajax
handler to the parse method of our RSSFeed type, and it will return to us an
instance of an RSSFeed. Given that assumption, let’s implement the parseXML()
method as shown in listing 13.23.

Listing 13.22 The RSSItem Model class
Licensed to jonathan zheng <yiyisjun@gmail.com>

540 CHAPTER 13
Building stand-alone applications with Ajax
RSSFeed.parseXML = function(xmlDoc) {

 var rssFeed = new RSSFeed(
 RSSFeed.getFirstValue(xmlDoc, 'title'),
 RSSFeed.getFirstValue(xmlDoc, 'link'),
 RSSFeed.getFirstValue(xmlDoc, 'description'));

 var feedItems = xmlDoc.getElementsByTagName('item');
 for (var i = 0 ; i < feedItems.length ; i++) {
 rssFeed.addItem(new RSSItem(rssFeed,
 RSSFeed.getFirstValue(feedItems[i], 'title'),
 RSSFeed.getFirstValue(feedItems[i], 'link'),
 RSSFeed.getFirstValue(feedItems[i], 'description'))
 }
 return rssFeed;
}

This method does the textbook response XML parsing that we’ve done many
times already. It takes the values of the title, link, and description elements and
uses them to create the RSSFeed. It then iterates over all of the item elements and
does the same, creating an RSSItem instance for each. Within each iteration, the
addItem() method is used to add the item to its parent RSS feed. Note that a
helper method is used here to get the node value from the first child of an ele-
ment with a given tag name. The helper method, getFirstValue, is shown in list-
ing 13.24.

RSSFeed.getFirstValue = function(element, tagName) {
 var children = element.getElementsByTagName(tagName);
 if (children == null || children.length == 0)
 return "";
 if (children[0].firstChild &&
 children[0].firstChild.nodeValue)
 return children[0].firstChild.nodeValue;
 return "";
}

This is everything we need from a Model perspective. Obviously, we could add
attributes for all the optional parts of an RSS feed and populate them if they are
present in the feed. We didn’t do that in this case because the RSS reader doesn’t
use or need any of the optional attributes. But it’s definitely an opportunity to

Listing 13.23 The RSS XML parsing

Listing 13.24 Parsing helper method
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 541
provide extended metadata for future features. We could also define accessor
methods for the attributes to provide a more formal contract for accessing them.
For example, we could write a getTitle()/setTitle() method pair for accessing
the title attribute. Since JavaScript doesn’t support visibility semantics like other
object-oriented languages (for example, the private/protected keywords in
Java), we didn’t bother. Now let’s take a gander at our View.

13.7.2 RSS reader view

With our Model classes securely in place, we can now consider a View class. We
could develop a View class for the RSSFeed, and another for the RSSItem, but
because our RSSReader doesn’t really view a feed independently of an item, we’ll
define a single View class called RSSItemView, which encapsulates the View for an
RSSItem in the context of its parent RSSFeed. Since the View in this case is obvi-
ously HTML, our View class is really just responsible for the generation of HTML.
Let’s start by looking at the constructor in listing 13.25.

RSSItemView = Class.create();

RSSItemView.prototype = {

 initialize: function(rssItem, feedIndex, itemIndex, numFeeds) {
 this.rssItem = rssItem;
 this.feedIndex = feedIndex + 1;
 this.itemIndex = itemIndex + 1;
 this.numFeeds = numFeeds;
 },
}

Let’s take a moment to consider the parameters. The first parameter is an
instance of an RSSItem. This tells the View what Model instance it’s providing a
view for. Note that it’s not generally copasetic for the Model classes to have any
knowledge of the View, but the View by necessity typically has intimate knowledge
of the Model. The other parameters provide some supplemental context for the
View. The feedIndex tells the View which feed number it’s in. The itemIndex tells
the View where this item resides within its parent RSSFeed’s array of items. The
numFeeds tells the View how many feeds there are. All of these index-based param-
eters are for the View to indicate its place in the world, so to speak. The View
might want to display a context area that indicates, for example, “this is feed

Listing 13.25 The RSSItemView View class
Licensed to jonathan zheng <yiyisjun@gmail.com>

542 CHAPTER 13
Building stand-alone applications with Ajax
number 1 of 7 and article number 3 of 5.” These attributes could be embedded
within the Model, but they’re not really attributes that the Model should typically
care about, so this context that the View needs is passed into the View constructor
by the client.

 As mentioned previously, the responsibility of the View is to generate HTML.
So our View class will need a single method that does precisely that. Let’s see what
that might look like in listing 13.26.

 toHTML: function() {
 var out = ""
 out += 'RSS Feed '
 out += '(' + this.feedIndex + ' of ' + this.numFeeds + ') : ';
 out += '';
 out += '';
 out += '' +
 this.rssItem.rssFeed.title + '';
 out += '';
 out += '
';
 out += 'Article ';
 out += '(' + this.itemIndex + ' of ' +
 this.rssItem.rssFeed.items.length + ') : ';
 out += '';
 out += '';
 out += '' +
 this.rssItem.title + '';
 out += '';

 out += '<div class="rssItemContent">';
 out += this.rssItem.description;
 out += '</div>';

 return out;
 },

The toHTML method produces the contextual elements of the display followed by
the text of the article. The first portion of the code displays the RSS Feed (x of y) :
RSS Feed Title. The link attribute of the rssFeed parent is used to generate the
HREF of the anchor produced, and the title is used to generate the text of the
anchor. A CSS class name is generated for each span, one for the prompt, and
another for the anchor, allowing each to be styled independently. This is illus-
trated in figure 13.15.

Listing 13.26 The HTML generation method
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 543
The next portion of code generates the Article (x of y) : RSS Item Title. The link
attribute of the RSS item is used to generate the HREF of the anchor produced,
and the title of the item is used to generate the text of the anchor. This code also
provides CSS class names for both the prompt and the title, as illustrated in
figure 13.16.

The last few lines of the toHTML method generate a div element to hold the
content of the RSSItem’s article (the description attribute). The code for this
is as follows:

 out += '<div class="rssItemContent">';
 out += this.rssItem.description;
 out += '</div>';

The CSS class name rssItemContent is generated for the article content. It should
have a little bit of margin and padding in order for the content to visually reside
within the display without touching any borders. It should also have a fixed
height and overflow set to auto so that the content scrolls when needed—inde-
pendently of the contextual information shown previously. A representative CSS
definition for this class is shown here:

 .rssItemContent {
 border-top : 1px solid black;
 width : 590px;
 height : 350px;

var out = ""
out += 'Rss Feed '
out += '(' + this.feedIndex + ' of ' + this.nubFeeds + ') : ';
out += '';
out += '';
out += ''
 + this.rssItem.rssFeed.title + '';
out += '';
out += '
';

RSS Feed (2 of 4) :
Eric's weblog

Figure 13.15 RSS Feed (x of y) : RSS Feed Title

out += 'Article ';
out += '(' + this.itemIndex + ' of '
 + this.rssItem.rssFeed.items.length + ') : ';
out += '';
out += '';
 + this.rssItem.title + '';
out += '';

Article (1 of 3) :
Sending XML to the Server

Figure 13.16 Article (x of y) : RSS Item Title
Licensed to jonathan zheng <yiyisjun@gmail.com>

544 CHAPTER 13
Building stand-alone applications with Ajax
 overflow : auto;
 padding : 5px;
 margin-top : 2px;
 }

Given the code and style shown in this code, the content area produced should
look something like the sample shown in figure 13.17.

 Putting it all together, the view generated by our RSSItemView class is shown in
figure 13.18.

 Before we leave the topic of our View, let’s add one more little method to the
View to make its usage more convenient:

 toString: function() {
 return this.toHTML();
 }

The reason we give the View a toString method is that it allows us to use the View
instance and the HTML string that it generates interchangeably. For example, we
can assign the View to the innerHTML attribute of an element, and the string rep-
resentation, which is the HTML that it generates, will be used. For instance, the
following code would assign the generated HTML of a view to the innerHTML of a
div with the ID contentDiv:

 var rssItemView = new RSSItemView(anRSSFeed, 0, 0, 5);
 $('contentDiv'). innerHTML = rssItemView;

Figure 13.17 Article (x of y) : RSS Item Title
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 545
(Remember, $() is a function provided by Prototype for retrieving DOM ele-
ments by their ID.) Now that we have a good set of abstractions for our Model
classes and our View, let’s tackle the RSS reader Controller that ties all the
pieces together.

13.7.3 RSS reader Controller

The RSSReader class will perform functions related to manipulation of the Model
and View classes to coordinate all of the activities associated with the reader.
Recall that the RSS reader provides a slideshow-type interface to the feeds where
each article is presented for a certain period of time, and then a transition effect
is created to move from one article to the next. Buttons are provided to move
backward and forward within the articles, as well as pause and resume the slide-
show. Finally, a select list and an add button are provided to add supplemental
feeds to the initial set of RSS feeds in the list. The RSS reader has to perform five
categories of behaviors to implement these features, as outlined here:

Figure 13.18 RSSItemView result
Licensed to jonathan zheng <yiyisjun@gmail.com>

546 CHAPTER 13
Building stand-alone applications with Ajax
■ Constructing objects and initial setup
■ Creating slideshow functionality
■ Creating the transition effects
■ Loading the RSS feeds via Ajax
■ Updating the UI

To reduce the complexity and amount of code required to do all of this, we’ll use
the Prototype library for syntactical brevity, the Rico library to provide the func-
tionality for our transition effects, and the net.ContentLoader for the Ajax sup-
port. Let’s tackle the initial construction and setup first.

Construction and setup
The de facto starting point for our component development has been construc-
tors. Let’s stick with that practice here and start by defining our constructor. The
constructor in this case is a simple method to set the initial defaults for some of
the component state and, as in other examples, to set our configuration options
and perform behavior initialization. With that in mind, our RSSReader construc-
tor is defined as shown in listing 13.27.

RSSReader = Class.create();
RSSReader.prototype = {

 initialize: function(readerId, options) {
 this.id = readerId;
 this.transitionTimer = null;
 this.paused = false;
 this.visibleLayer = 0;
 this.setOptions(options);

 this.start();

 },
 ...
};

The constructor takes two arguments: an ID and an options object. The ID is
used as a unique identifier for the reader and is used as a prefix for the IDs of the
buttons that it will need to identify from the DOM. This will be shown shortly in
the applyButtonBehaviors method. The first thing the constructor does b is to
set the default values for its state. Next, the options object, as with most of the
components we’ve written, is used c to specify configuration options to the

Listing 13.27 The RSSReader constructor

b Set default
values

c Set configuration options

d Initialize behavior
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 547
component. This is done via the setOptions method. Finally, everything that
needs to happen to bring the component to life happens in the start method
d. Let’s ponder configuration first, and then we’ll move on to behavior.

 Our boilerplate configuration idiom, setOptions, shown in listing 13.28, pro-
vides the configuration. Let’s establish the setOptions implementation now and
talk about our configuration options.

 setOptions: function(options) {
 this.options = {
 slideTransitionDelay: 7000,
 fadeDuration : 300,
 errorHTML : '<hr/>Error retrieving content.
'
 }.extend(options);
 },

The properties we’ve decided to make configurable in our RSS reader are indi-
cated within the setOptions method shown here. The slideTransitionDelay
property specifies the number of milliseconds an article’s “slide” is visible before
transitioning to the next one. The fadeDuration property specifies the amount of
time in milliseconds it takes to fade out and subsequently fade in the next slide.
Finally, if an error occurs while loading an RSS feed, the errorHTML property spec-
ifies the HTML to display as an error message. The defaults for these values, if not
explicitly overridden by the user, are shown in this code. It’s worth noting here
that the component will expect an rssFeeds property of the options object to be
passed in as the initial set of feeds to peruse. Because we can’t really assume a rea-
sonable default for this value, it’s not defaulted within the setOptions method.
The intent is that a reader will be created with an options object similar to the
example shown here:

var options = {
 rssFeeds: ["http://radio.javaranch.com/news/rss.xml",
 "http://radio.javaranch.com/pascarello/rss.xml",
 "http://radio.javaranch.com/bear/rss.xml",
 "http://radio.javaranch.com/lasse/rss.xml"] };

var rssReader = new RSSReader('rssReader', options);

With creation and configuration quickly coded, it’s time to peek behind the cur-
tain at the magical start method that kicks everything off. We’ll look at it briefly
and cover its implications in the relevant sections that follow. Let’s start by illus-
trating the implementation shown in listing 13.29.

Listing 13.28 The setOptions method
Licensed to jonathan zheng <yiyisjun@gmail.com>

548 CHAPTER 13
Building stand-alone applications with Ajax
 start: function() {
 this.applyButtonBehaviors();
 new Effect.FadeTo(this.getLayer(1), 0.0, 1, 1, {});
 this.loadRSSFeed(0,true);
 this.startSlideShow(false);
 },

The applyButtonBehaviors method sets up the onclick handlers for the previous,
pause, next, and Add Feed buttons. This is the next method we’ll discuss. The
fade effect on the second line fades out the visible div element so that when the
first slide is loaded it can be faded in. Note that in this implementation, we’re
using an effect provided by Rico rather than writing our own, which reduces the
amount of code we have to write, debug, and maintain. The loadRSSFeed method
initiates the Ajax request to load in the first feed, and the startSlideShow method
starts a timer with the value of the slideTransitionDelay to initiate the slideshow.
The loadRSSFeed method will be explored in more detail in the “Loading RSS
feeds with Ajax” section (page 556), and the startSlideShow method will be dis-
sected in the “Slideshow functionality” (page 549) section. As promised, we’ll
close our discussion of construction and setup by looking at the applyButton-
Behaviors method in listing 13.29.

 The applyButtonBehaviors method, as mentioned previously, hooks the but-
tons up to methods that implement their behaviors. The implementation is
shown in listing 13.30.

 applyButtonBehaviors: function() {
 $(this.id + '_prevBtn').onclick = this.previous.bind(this);
 $(this.id + '_nextBtn').onclick = this.next.bind(this);
 $(this.id + '_pauseBtn').onclick = this.pause.bind(this);
 $(this.id + '_addBtn').onclick = this.addFeed.bind(this);
 },

Let’s start with some refresher notes about the syntax and idioms being used
here. We’re using a couple of syntactical elements of the Prototype library. First,
the $ method, as you will recall, can be thought of as a call to document.getEle-
mentById. Second, the bind method implicitly creates a closure for us so that the
onclick handler for each button can call first-class methods of our component.
Now to the details of the implementation.

Listing 13.29 The start method

Listing 13.30 The applyButtonBehaviors method
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 549
 The implementation reveals an implicit contract between the component
and the HTML markup for the reader. The component is constructed with an ID
that it stores in its this.id attribute. The ID is then used as a prefix to find vari-
ous elements within the markup. In this case, the IDs of the buttons are assumed
to be the ID passed into the constructor, followed by _prevBtn, _nextBtn,
_pauseBtn, and addBtn. To illustrate this, in the example construction just men-
tioned that uses rssReader for the ID, the component expects the buttons to be
specified as follows:

 <input type="button" id="rssReader_prevBtn" value=" << " />
 <input type="button" id="rssReader_pauseBtn" value=" | | " />
 <input type="button" id="rssReader_nextBtn" value=" >> " />
 <input type="button" id="rssReader_addBtn" value="Add Feed" />

Now that our RSSReader controller is starting to take shape, let’s take a look at the
implementation details of providing the slideshow behavior.

Slideshow functionality
Now would probably be a good time to talk about a change in semantic from our
previous version of the script. In our first version of the RSS reader, we loaded all
of the RSS feeds into memory at start time and then just transitioned through our
in-memory representation. This had the advantage of simplicity but the decided
disadvantage of not being very scalable. If we have dozens or even hundreds of
RSS feeds that we read on a regular basis, each with dozens of articles, preloading
them all would bring our browser to its knees. So in this refactoring, we’ll take the
opportunity to improve the scalability and performance of our RSS reader by
changing our semantic to load only a single RSS feed into memory at a time. All
of the RSSItems of a single feed will be in memory, but only a single RSSFeed will
be in memory at a time. Three attributes of the Controller keep track of where the
slideshow is in its list of displayable content. These are outlined in table 13.4.

Table 13.4 Attributes of the Controller

Attribute Purpose

this.currentFeed The RSSFeed instance currently loaded into memory.

this.feedIndex The index of the currently visible feed. This is an index into the
this.options.rssFeeds array.

this.itemIndex The index of the currently visible item. This is an index into the currently visible
RSSFeed object’s internal items array.
Licensed to jonathan zheng <yiyisjun@gmail.com>

550 CHAPTER 13
Building stand-alone applications with Ajax
With that overview of semantic change, let’s ponder navigation. There are a num-
ber of methods that we must contemplate in order to navigate through each of
the articles (item elements) of each one of the RSS feeds. Let’s consider previous/
next method pairs. A mechanism for moving forward and backward is needed not
only to provide the implementation for the explicit button events but also for the
passive perusal via the automated slideshow.

 Let’s start by looking at the boolean method pair that tells the reader whether
it can move forward or backward. These two methods, hasPrevious and hasNext,
are shown in listing 13.31.

 hasPrevious: function() {
 return !(this.feedIndex == 0 && this.itemIndex == 0);
 },

 hasNext: function() {
 return !(this.feedIndex == this.options.rssFeeds.length - 1 &&
 this.itemIndex == this.currentFeed.items.length - 1);
 },

These methods will be used in the previous and next processing to determine
whether a previous or next slide is available. As implemented here, a previous
slide is available unless we are on the first item of the first feed, and a next slide is
available unless we are on the last item of the last feed.

 Now let’s examine what it means to move backward and forward. Let’s start
with the previous() method, shown in listing 13.32.

 previous: function() {
 if (!this.hasPrevious()) return;

 var requiresLoad = this.itemIndex == 0;
 this.fadeOut(this.visibleLayer, Prototype.emptyFunction);
 this.visibleLayer = (this.visibleLayer + 1) % 2;
 if (requiresLoad)
 this.loadRSSFeed(this.feedIndex - 1, false);
 else
 setTimeout(this.previousPartTwo.bind(this),
 parseInt(this.options.fadeDuration/4));
 },

Listing 13.31 The hasPrevious/hasNext method pair

Listing 13.32 The previous() method
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 551
 previousPartTwo: function() {
 this.itemIndex--; this.updateView();
 },

The first thing the previous() method does is to put a guard condition at the
beginning of the method. If there isn’t a previous content item, then previous()
just returns without performing any action. If the requiresLoad value is true,
then the RSS content for the item being navigated to isn’t loaded yet. When mov-
ing backward as we are here, a load is required if we’re currently on the first item
of a feed. The previous RSS feed will have to be loaded in order to be displayed.
The fade-out method, which we’ll examine in the “Transition effects” section on
page 554, fades out the visible layer. What the method does next depends on
whether or not it needs to load some content before it can display it. If we have to
load content, then we initiate the load of that content via the loadRSSFeed()
method. The first parameter is the index of the feed to be loaded, and the second
parameter is a boolean value indicating a forward direction (false in this case).
But if the content is already loaded, we call previousPartTwo() after a delay of
one fourth of the overall fadeDuration. The “part two” of the method simply
updates the itemIndex property and then calls updateView(), which fades in the
appropriate slide.

 Confused? Well, what’s going on is that if the content that needs to be dis-
played isn’t loaded, then the load is initiated immediately, which causes an
update of the UI as soon as the response comes back. The time it takes for the
response to come back provides a natural delay for the fade-in! On the other
hand, if the content is already loaded (that is, we’re looking at a different article
in the same RSS feed that’s loaded), then we intentionally delay by a quarter of
the fade duration before we fade-in the next slide. Pretty slick, huh?

 The next() method, shown in listing 13.33, is an inverse of the algorithm
described previously.

 next: function() {
 if (!this.hasNext()) return;
 var requiresLoad =
 this.itemIndex == (this.currentFeed.items.length - 1);
 this.fadeOut(this.visibleLayer, Prototype.emptyFunction);
 this.visibleLayer = (this.visibleLayer + 1) % 2;
 if (requiresLoad)
 this.loadRSSFeed(this.feedIndex + 1, true);

Listing 13.33 The next() method
Licensed to jonathan zheng <yiyisjun@gmail.com>

552 CHAPTER 13
Building stand-alone applications with Ajax
 else
 setTimeout(this.nextPartTwo.bind(this),
 parseInt(this.options.fadeDuration/4));
 },
 nextPartTwo: function() {
 this.itemIndex++; this.updateView();
 },

Look familiar? The next() method reverses the logic in terms of indexing but
otherwise is identical to the algorithm shown previously. Note that the previ-
ous()/next() method pairs toggle the visible layer with each transition from one
slide to the next with the expression

 this.visibleLayer = (this.visibleLayer + 1) % 2;

This just tells the code that ultimately updates the UI as a result of the content
load or the explicit call to updateView() into which layer to put the result. Recall
that the content area of the reader has HTML markup that looks something like
the following:

 <!-- Content area -->
 <div class="content" id="rssReader_content">
 <div class="layer1">Layer 0</div>
 <div class="layer2">Layer 1</div>
 </div>

The visibleLayer is just an integer property that keeps track of into which div to
put content. An index of 0 tells the UI update to put the content into Layer 0. A
value of 1 indicates to put the content into Layer 1.

 Now that we have the methods in place to provide forward and backward func-
tionality, we can use these to create our slideshow methods. Let’s dissect those
now. The startSlideShow method, which you will recall was invoked from our
start() method, and its companion nextSlide() are shown in listing 13.34.

 startSlideShow: function(resume) {
 var delay = resume ? 1 : this.options.slideTransitionDelay;
 this.transitionTimer = setTimeout(
 this.nextSlide.bind(this),
 delay);
 },

 nextSlide: function() {
 if (this.hasNext())
 this.next();

Listing 13.34 The slideshow navigation methods
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 553
 else
 this.loadRSSFeed(0, true);

 this.transitionTimer = setTimeout(
 this.nextSlide.bind(this),
 this.options.slideTransitionDelay);
 },

Our startSlideShow method just calls nextSlide on a delay. The delay is either
the slideTransitionDelay or a single millisecond (effectively immediate), based
on whether or not we’re resuming the slideshow after having paused it. The
nextSlide method is equally uncomplicated. It just calls our next() method as
long as there is another slide available. If we’re at the last slide, loadRSS-
Feed(0,true) is called to wrap back to the beginning. It then just sets a timer to
repeat the process. Piece of cake!

 We mentioned that we can pause the slideshow via the pause button, but we
haven’t implemented that method yet. Let’s do that now. This is shown in list-
ing 13.35.

 pause: function() {
 if (this.paused)
 this.startSlideShow(true);
 else
 clearTimeout(this.transitionTimer);
 this.paused = !this.paused;
 },

The pause method toggles the paused state of the slideshow. This is tracked by
the boolean attribute this.paused. If the slideshow is already paused, the pause
method calls startSlideShow, passing true as the resume property; otherwise it
clears the transitionTimer attribute, which suspends all slide transitions until the
pause button is clicked again.

 The final piece related to our slideshow functionality is to allow the slideshow
to be augmented with additional RSS feeds via a select box and add button. We
saw in the applyButtonBehaviors() function that the add button calls the addFeed
method. Let’s implement that to round out our slideshow functionality (see list-
ing 13.36).

Listing 13.35 The pause method
Licensed to jonathan zheng <yiyisjun@gmail.com>

554 CHAPTER 13
Building stand-alone applications with Ajax
 addFeed: function() {
 var selectBox = $(this.id + '_newFeeds');
 var feedToAdd = selectBox.options[
 selectBox.selectedIndex].value;
 this.options.rssFeeds.push(feedToAdd);
 },

This method also relies on an implicit contract with the HTML markup in terms
of a naming convention for the select box of additional RSS feeds. The ID of the
select box should be the ID of the reader with the suffix _newsFeeds. The method
simply takes the selected RSS feed in the select box and appends it to the end of
the this.options.rssFeeds array. Nothing more required! Don’t you love it when
adding functionality can happen in just a few lines of code?

 This rounds out all of the slideshow-related methods. Let’s now briefly look at
the methods supporting our transition effects.

Transition effects
There are a few methods that we’ve already referenced that support our fade
transitions between slides. Let’s take a moment to decipher transitions. First, we
defined a fadeIn() and fadeOut() method pair, as shown in listing 13.37.

 fadeIn: function(layer, onComplete) {
 this.fadeTo(0.9999, layer, onComplete);
 },

 fadeOut: function(layer, onComplete) {
 this.fadeTo(0.0001, layer, onComplete);
 },

These two methods both delegate to the fadeTo() method (shown next). They
pass to the fadeTo() method an opacity value between 0 and 1—0 indicating the
layer is invisible, 1 indicating the layer is completely visible. A value that is math-
ematically very close to 1 without actually being 1 seemed to cause less flicker in
some browsers, which is why we used 0.9999 instead of 1. The layer number (0 or
1) is passed to indicate which layer to fade, and finally a function is passed in that
provides a completion callback hook once the fade has completed. The fadeTo()
method is implemented as shown in listing 13.38.

Listing 13.36 The addFeed method

Listing 13.37 The fadeIn()/fadeOut() method pair
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 555
 fadeTo: function(n, layer, onComplete) {
 new Effect.FadeTo(this.getLayer(layer),
 n,
 this.options.fadeDuration,
 12,
 {complete: onComplete});
 },

In a bout of utter laziness, or perhaps as a methodical well-thought-out strategy,
we decided not to reinvent a fade effect. Instead, we use the Effect.FadeTo pro-
vided by the Rico library to perform the fancy fading magic for us. The
Effect.FadeTo parameters are illustrated in table 3.5.

We use the helper method getLayer() to get the div element corresponding to
the content layer to be faded. The getLayer() method is shown in listing 13.39.

 getLayer: function(n) {
 var contentArea = $(this.id+'_content');
 var children = contentArea.childNodes;
 var j = 0;
 for (var i = 0 ; i < children.length ; i++) {
 if (children[i].tagName &&
 children[i].tagName.toLowerCase() == 'div') {
 if (j == n) return children[i];
 j++;
 }
 }
 return null;
 },

Listing 13.38 The fadeTo() method

Table 13.5 The Effect.FadeTo parameters

Parameter Description

this.getLayer(layer) The DOM element to fade

n An opacity value between 0 and 1

this.options.fadeDuration How long it should take the fade to occur

12 The number of steps in the fade

{complete: onComplete} The completion callback to call once done

Listing 13.39 The getLayer() method
Licensed to jonathan zheng <yiyisjun@gmail.com>

556 CHAPTER 13
Building stand-alone applications with Ajax
This method simply finds the content area, assuming its ID to be the ID of the
reader with the value _content appended to the end. Once it finds the content
element, it navigates to the children and finds the nth div child and returns it.

 This finishes our treatment of transitions. Let’s now examine the topic of load-
ing our RSS feeds via the magic of Ajax.

Loading RSS feeds with Ajax
We’ve given a fair amount of attention to the topics of creating a component and
providing a rich slideshow semantic and fancy DHTML techniques for transition-
ing between slides. But without Ajax at the core, the fanfare would be for naught.
The point is that it’s the synergy between Ajax, with its scalability and fine-
grained data retrieval, and sophisticated DHTML, with its rich affordances and
effects, that provides a superior user experience. Okay, enough of the soapbox.
Let’s look at some Ajax, starting with the method in listing 13.40 that loads an
RSS feed into memory.

 loadRSSFeed: function(feedIndex, forward) {
 this.feedIndex = feedIndex;
 this.itemIndex = forward ? 0 : "last";
 new net.ContentLoader(this,
 this.options.rssFeeds[feedIndex],
 "GET", []).sendRequest();
 },

This method uses our ever-familiar net.ContentLoader to make an Ajax request,
passing the URL of an RSS feed as specified in the this.options.rssFeeds array.
The forward parameter is a boolean specifying whether or not we’re loading in
new content as a result of moving forward. Given this knowledge, the itemIndex
property is updated accordingly. Note that itemIndex is given the value of last
rather than an integer if we’re moving backward. That’s because we want item-
Index to indicate the index of the last item in the previous RSS feed. The only
problem is that we don’t know how many items are in the feed, because it isn’t
loaded yet.

 You’ll recall that the ajaxUpdate and handleError methods are required as an
implicit contract with the net.ContentLoader. We will look next at the ajaxUpdate
method, shown in listing 13.41, to see how the implementation resolves our
indexing dilemma.

Listing 13.40 The loadRSSFeed method
Licensed to jonathan zheng <yiyisjun@gmail.com>

Refactoring 557
ajaxUpdate: function(request) {

if (window.netscape &&
 window.netscape.security.PrivilegeManager.enablePrivilege)
 netscape.security.PrivilegeManager.enablePrivilege(
 'UniversalBrowserRead');

 this.currentFeed =
 RSSFeed.parseXML(request.responseXML.documentElement);
 if (this.itemIndex == "last")
 this.itemIndex = this.currentFeed.items.length - 1;
 this.updateView();
},

The ajaxUpdate method starts with a check to see if it’s running in an environ-
ment that provides a PrivilegeManager. If so, it asks to grant the Universal-
BrowserRead privilege. As noted earlier, this is done so that our reader can run
locally within a Mozilla-based browser.

 The this.currentFeed is an instance of our RSSFeed model object that we
defined in the Model section. It corresponds to the single RSSFeed loaded into
memory, as populated from the Ajax response. If this.itemIndex has a value of
last—as set by the loadRSSFeed method when moving backward—the itemIndex
property is updated to contain the actual number of items in the newly loaded
RSSFeed. Finally, the UI is updated via a call to updateView().

 Let’s not forget to do our due diligence and define a handleError method both
to satisfy our contract with the net.ContentLoader and because we really should
do something to handle errors. If an RSS feed fails to load, we’ll just provide a
“punt” message, as shown in our handleError implementation. More sophisti-
cated implementations are certainly possible—and desirable.

 handleError: function(request) {
 this.getLayer(this.visibleLayer).innerHTML =
 this.options.errorHTML;
 },

Now that our RSSReader is fully Ajax-ified, the only remaining piece of our puzzle
it to write a couple of methods that handle updating the UI.

UI manipulation
Recall that early on we took the time to create Model and View classes to support
our refactoring effort. Now that we’ve come to the portion of the Controller that

Listing 13.41 The ajaxUpdate method
Licensed to jonathan zheng <yiyisjun@gmail.com>

558 CHAPTER 13
Building stand-alone applications with Ajax
has responsibility for updating the UI, we should expect our work to be mostly
done. If that’s your expectation, then you’re right on target. To illustrate this, our
updateView() method that has been referenced numerous times throughout our
refactoring session is shown in listing 13.42.

 updateView: function() {

 var rssItemView = new RSSItemView(
 this.currentFeed.items[this.itemIndex],
 this.feedIndex,
 this.itemIndex,
 this.options.rssFeeds.length);

 this.getLayer(this.visibleLayer).innerHTML = rssItemView;
 this.fadeIn(this.visibleLayer,
 this.bringVisibleLayerToTop.bind(this));
 },

As you can see, the updateView() method delegates all of the hard work to our
View class by instantiating an instance of it, setting it as the value of the visible
layer’s innerHTML property, and finally fading the layer into visibility. Three lines
of code. Not too shabby. Notice that once the layer is faded into view, we call a
completion callback named bringVisibleLayerToTop. What this does is update
the layer’s zIndex style property to ensure that it’s above the other layer being
faded out. The bringVisibleLayerToTop() function is implemented as follows:

 bringVisibleLayerToTop: function() {
 this.getLayer(this.visibleLayer).style.zIndex = 10;
 this.getLayer((this.visibleLayer+1)%2).style.zIndex = 5;
 }

That’s all we have to do from a UI-manipulation perspective. The separation of
concerns across our Model, View, and Controller classes has facilitated a clean,
maintainable architecture.

13.7.4 Refactoring debrief

Our refactoring session concentrated on repackaging our script in such a way as
to provide an MVC implementation of our RSS reader. We created an RSSFeed
Model class to encapsulate the concept of an RSS feed, as well as an RSSItem class.
We created a View class to encapsulate the concept of providing a View for an
RSSItem in context of its parent RSSFeed, the RSSItemView. Finally, we tied the

Listing 13.42 The updateView() method
Licensed to jonathan zheng <yiyisjun@gmail.com>

Summary 559
Model and View classes together with an RSSReader Controller class that provided
all of the event-management glue and sophisticated interaction of a slideshow
with transition effects.

13.8 Summary

In this chapter, Ajax allowed us to obtain information straight from our desktop
without requiring a commercial client application, saving us money and allowing
us to customize the solution to our needs. We were able to load multiple XML files
and only obtain the information that is relevant to our needs. We developed an
HTML framework and applied CSS to allow easy customization of the reader. By
using DHTML, we were able to develop a rich user interface that allows users to
skip messages, pause messages, and add additional feeds as needed. All of this
was possible by taking advantage of Ajax functionality to obtain the syndication
feeds from websites. By changing a few statements, we can easily adapt the reader
to read any XML feed. We can even develop our own custom XML formats to dis-
play news, ads, and anything else that may be of importance for our websites.
Finally, we repackaged the script along the lines of a Model-View-Controller
architecture in order to facilitate the readability and maintainability of our code.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

The Ajax
craftsperson’s toolkit
561

Licensed to jonathan zheng <yiyisjun@gmail.com>

562 APPENDIX A
The Ajax craftsperson’s toolkit
Ajax is a very easy technology to work with. The toolset required to get the job
done is minimal, and it is possible to develop complex Ajax applications using
nothing more than a web browser, a text editor, and access to a web server—
either on your development machine or through your ISP or hosting provider.
Nonetheless, tools are important to programmers, and toolsets are becoming
increasingly sophisticated.

 As yet, there are no dedicated Ajax IDEs, although these will probably appear
in time. Several development tools do, however, offer support for some parts of
the Ajax development process. In this appendix, we present an overview of the
types of tools available and how they can help you to work smarter and faster.

A.1 Working smarter with the right toolset

The right development tools can be invaluable in speeding up repetitive or diffi-
cult processes, and they can have an enormous impact on a developer’s produc-
tivity. The wrong tools can be distracting, gimmicky, and constraining, forcing a
project into a particular process or way of doing things that doesn’t really fit. Dif-
ferent tools suit different people and will suit them better or worse on different
kinds of projects. It’s arguably a key part of a developer’s job to devote time and
effort to finding the right toolset. Abraham Lincoln put it nicely:

Give me six hours to chop down a tree and I will spend the first four sharpening the axe.

If sufficient attention is invested in doing so, the returns can be considerable.
Finding the balance between perfecting your tools and actually using them is
important, too, particularly in a fragmented situation such as the current Ajax
tools offerings, as you’ll see in the following section.

A.1.1 Acquiring tools that fit

Many tools can be acquired relatively easily, in the form of free downloads, open
source projects, or commercial products. There are no mature tools dedicated to
Ajax yet, but several are available that are designed for developing web applica-
tions, and many of these support JavaScript, HTML, and CSS.

 Ajax uses the same technologies as classical web applications but in quite dif-
ferent ways, as we outlined in chapter 1. Instead of being built out of lots of little
pages presented in sequence, an Ajax application will tend to have only a few
pages—and often only one—that undergo a variety of programmatic transitions
as the user works with them and that talk to the server asynchronously in the
Licensed to jonathan zheng <yiyisjun@gmail.com>

Working smarter with the right toolset 563
background. Further, because of the much greater volume of JavaScript being
generated, the Ajax programmer is more likely to be developing with JavaScript
frameworks (see appendix C for a round-up of frameworks, and chapter 3 for a
discussion of a few of the more popular ones).

 These differences raise two concerns, then. First, the tool may make assump-
tions about page-based workflows that are at odds with the Ajax approach. Sec-
ond, support for JavaScript may be based on the use of a particular set of
functions or coding practices that don’t play well with third-party frameworks
that the user is employing.

 The differences, then, are mainly in the high-level structure of an applica-
tion rather than in the details. The concerns raised here are more likely to apply
to complex tools, such as IDEs, than to simpler tools, such as JavaScript-aware
text editors.

 It’s important to bear these considerations in mind when evaluating tools for
an Ajax project. We’ll raise them again later when we look at the different classes
of tools on the market.

 Finally, it’s worth noting that many tools these days provide extensible fea-
ture sets, in the form of plug-ins. Complex tools such as general-purpose IDEs
and web browsers are used by different types of users in different ways. Plug-ins
allow users to customize a base application with the specific features that they
need, avoiding bloat in the base feature set, and empower them to extend the
functionality of an app in ways that the original development team hadn’t antici-
pated. Two notable cases of plug-in–based applications are the Eclipse IDE,
which, although it is mainly a Java developer’s tool, supports a range of Ajax
functionality through plug-ins, and the Firefox browser, which has an active
plug-in (a.k.a. extensions) community and several useful extensions targeted at
web developers.

 Eclipse and Firefox both have very active plug-in communities, and the
chances are that a plug-in already exists that does more or less what you want.
There is also a strong tradition in computing, and in web development, of build-
ing your own tools, to which the plug-in approach also caters. Let’s have a look at
that tradition now.

A.1.2 Building your own tools

As an alternative to buying or downloading a ready-made tool, you can always
write your own tool. This may sound daunting and unrealistic, given that the dis-
cussion has focused so far on IDEs and large-scale tools. We certainly wouldn’t
suggest that you begin an Ajax project by writing its own IDE!
Licensed to jonathan zheng <yiyisjun@gmail.com>

564 APPENDIX A
The Ajax craftsperson’s toolkit
 There’s a strong tradition in UNIX culture of developing small tools that do a
single job. These kinds of tools are easily developed in a short time and are sim-
ple enough to be maintained easily, too. The stopwatch classes that we developed
for profiling JavaScript code in chapter 7 are an example of this kind of tool, as is
the output console that we’ll demonstrate in section A.3.4.

 Tools written in JavaScript and other Ajax technologies have the advantage of
being portable across any browser. However, the capabilities available within the
browser are severely limited, owing to the JavaScript security model that we dis-
cussed in chapter 6. Sometimes it makes more sense to write a tool as a stand-
alone program, whether in .NET, Java, or any other programming language. The
HTTP debuggers that we describe in section A.3.3 are a case in point here.

 A middle way between writing tools within the browser and writing a stan-
dalone tool is to develop a plug-in. Many of the larger web development tools
support the development of plug-ins these days, and some have made it quite
easy to develop plug-ins, too. Two notable examples are the Firefox web browser
and the Eclipse IDE, as discussed in the previous section. Eclipse even offers a
set of plug-ins, bundled with the core download, that make it easy to write plug-
ins. Nonetheless, plug-in development is somewhat more advanced than devel-
oping in-browser tools and probably only justifiable within the time budget of a
larger project.

 A variety of tools can be useful in Ajax development. These are rather scat-
tered at present, and actively maintaining them is an ongoing task. Let’s say a few
words about that before moving on to look at some specific tools.

A.1.3 Maintaining your toolkit

As noted, Ajax tools are currently rather fragmented, a rather different situation
for the Java or .NET programmer used to sitting in front of the comfortable bulk
of Eclipse, NetBeans, or Visual Studio.

 Developers owe it to themselves to keep their toolkit up to date. Without the
central focus of a de facto standard IDE, this task is somewhat more problematic
and will generally rely on word of mouth, mailing lists, portal sites, blogs, and the
other distributed communications media of the Internet.

 The most fundamental tool for any developer is the editor into which he types
his code. Let’s take a look at them next.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Editors and IDEs 565
A.2 Editors and IDEs

Code-editing tools vary a great deal in complexity, from the simple Notepad to
complex IDEs that model the code objects in a variety of ways as you type. Java-
Script, HTML, and CSS aren’t as well supported as enterprise-class languages
such as C#, Visual Basic, and Java, but there’s still quite a wide range of function-
ality from which to choose. Let’s run through the types of features that we might
look for before we consider the products available today.

A.2.1 What to look for in a code editor

Code editors can do many things, arguably too many. A lot of it comes down to
individual tastes. Some developers prefer a simple tool that processes text; others
like the visual aids and cues of a full-blown IDE.

 When it comes to supporting Ajax code, in the form of HTML, CSS, and Java-
Script, there are a number of ways in which the editor can help us. Many of these
may seem like overkill for the web content of a classic web app, but as the code-
base of an Ajax application is typically much larger and more structured, support
for that structuring becomes more critical. Here’s a quick rundown of useful fea-
tures to look for.

Multiple file support
This is a very basic requirement but worth noting anyway. Ajax projects will typi-
cally entail a large number of files, and an editor that cannot manage multiple
files or buffers (such as Windows Notepad) will quickly become annoying. Nearly
all coding editors support multiple files through tabbed panels, a selector panel,
or something similar.

Syntax highlighting
This is a fairly basic feature nowadays and one that most programmer’s editors
will support. Syntax highlighting simply colors, italicizes, or otherwise marks lan-
guage keywords, symbols, quoted strings, and code comments, making it easier to
read a sequence of code.

 Most editors support syntax coloring for a range of languages, often with
pluggable syntax definition files. The key issue for Ajax programming is that a
variety of languages are typically used. There are HTML, CSS, XML, and Java-
Script on the client side, all of which can benefit from syntax highlighting, and
some or all of Java, C#, VB, and the more complex ASP, PHP, and JSP, in which
blocks of HTML and code alternate with one another. Not all syntax-aware editors
support the full range of languages in use in an Ajax project.
Licensed to jonathan zheng <yiyisjun@gmail.com>

566 APPENDIX A
The Ajax craftsperson’s toolkit
Higher-level code support
Coloring in the code provides useful visual cues, but some editors go beyond this
to model the code at a higher level of function, methods, and object declarations.
This higher-level understanding of a codebase opens up a broader range of tools
such as outliners that summarize a file’s contents, navigational aids such as maps
of object hierarchies, and the ability to search for uses of a specific property or
invocations of a method or function. Tools of this type become invaluable as a
codebase matures.

Project-level support tools
Taking another step up from modeling individual object definitions, some IDEs
will also manage a codebase as an integrated project, recognizing linkages between
the various components and resources that lead to a deployed product. In an IDE
for a compiled language, a key benefit of this is the ability to build the entire
project into executable form, but this isn’t a concern for Ajax, in which all client-
side resources are deployed in their human-readable form. Nonetheless, this
capability may be useful when working with server-side code.

 Further, project-level support may provide the ability to deploy a project to a
web server, even to manage the web server itself, either by controlling an external
server through RPC calls or by embedding a simple server into the IDE. A tool
that supports the codebase at the project level can release the developer from
maintaining a build-and-deploy system.

Version control integration
Version control is a necessity in larger projects and good practice in a project of
any size. Version-control systems themselves generally work on text and binary
files without understanding their higher-level semantics, so there is little to say
about them that is specific to Ajax, but integrating version control into your
toolset can be a great help.

Mixed-language development: client and server integration
As we noted earlier, many Ajax projects will require a server-side component in
addition to the many web browser technologies being employed. Server-side Java-
Script is possible but not fashionable, and the Ajax developer will usually make
use of different languages on the server side and the client side. It is possible to
use completely different tools for server and client coding, but some tasks will
involve rapidly switching between the tiers, and an editor that can support the full
range of languages can be a distinct advantage.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Editors and IDEs 567
 Those, then, are our main criteria for choosing a code editor, whether it be a
plain text editor or an IDE. In the next section, we’ll have a look at some of the
available tools at the time this book was written.

Two-way visual designers
Many web-design tools provide visual WYSIWYG designers for web pages. These
can be useful for prototyping, although they are often poorly adapted to Ajax’s
more dynamic approach to rearranging the user interface through DOM manip-
ulation. Most visual editors will also allow the programmer to switch to a text-
based view of the HTML. When you’re using this kind of tool with Ajax, it is
important that the visual editor preserve elements that it does not understand,
such as comments and custom tag types and attributes, particularly as the latter
may be used by the JavaScript code that rearranges the DOM tree.

A.2.2 Current offerings

A variety of text editors and IDEs offer some support for Ajax technologies. We’ll
start by looking at the programmer’s editors and move on from there to the more
complex IDEs.

Text editors
Depending on your operating system, a wide range of open source, freeware, and
shareware text editors is available these days, such as shareware tools TextPad,
Notepad2, EditPlus, the UNIX veterans Vim and Emacs, and the extensible
cross-platform jEdit, whose plug-in system enables some IDE-like functionality.
Figure A.1 shows a few common text editors in JavaScript mode.

 TextPad provides a staggeringly diverse base of user-contributed syntax defi-
nition files, including several for CSS, JavaScript, XML, and HTML, and for most
popular server-side languages. There is minimal support for running user-
defined commands such as compilers against the current file. TextPad runs on
Microsoft Windows only. NotePad2 and EditPlus fill similar niches.

 jEdit is Java based and can run on any platform that supports Java. It supports
syntax highlighting for over 100 languages, including all the main Ajax ones.
Several more advanced features are available through a plug-in system, which is
well integrated. Plug-ins can be automatically browsed, downloaded, and
installed from within jEdit itself. Useful plug-ins include support for syntax
checkers, debuggers, compilers, and version-control interfaces, and specific sup-
port for CSS and XSLT.
Licensed to jonathan zheng <yiyisjun@gmail.com>

568 APPENDIX A
The Ajax craftsperson’s toolkit
Vim and Emacs are powerful extensible text editors with a long tradition in UNIX
operating systems, although both have been ported to Windows, too. Both have
well-developed modes for JavaScript coding.

Integrated development environments
Enterprise programming languages such as .NET and Java have a long history of
integrated development environments. The market for these is mature, and in
recent years, a number of mature, feature-rich open source and freeware IDEs
have appeared. IDEs designed for server-side coding languages are often exten-
sible enough to allow for client-side development using Ajax.

 Microsoft technologies are still dominated by Microsoft’s own Visual Studio.
Visual Studio includes support for web development through the Visual InterDev

Figure A.1 Syntax highlighting support for JavaScript in (left to right) the TextPad, Gvim, and jEdit
programmer’s editors
Licensed to jonathan zheng <yiyisjun@gmail.com>

Editors and IDEs 569
component, which supports JavaScript and CSS. Free, cut-down versions have
recently become available under the name Visual Studio Express, including one
targeted at web developers.

 The most prominent Java IDE at present is the IBM-sponsored Eclipse. Eclipse
is mostly a Java development tool and ships with a complex set of plug-ins specif-
ically written for Java developers. A thriving plug-in community exists, including
some relatively simple JavaScript plug-ins providing syntax highlighting and out-
line views of methods and classes (figure A.2).

 With the recent Eclipse version 3.1, a broader range of web developer plug-
ins is being developed by the Web Tools Platform project, which in addition to
supporting server-side J2EE technologies, has editors for JavaScript, XML,
HTML, and CSS. Eclipse also offers strong project-level codebase-management
features and full integration with CVS version control out of the box. Third-party
integration with Subversion, Visual SourceSafe, and other version-control sys-
tems is available.

 Some enterprise Java development tools such as the Sun Java Studio Creator
and SAP NetWeaver offer high-level design facilities for web applications. In our
experience, these are based heavily on the classic web application metaphor,
with an application being modeled as a series of discrete pages, and may trans-
late poorly to the Ajax approach. Studio Creator uses Java ServerFaces (JSF)
behind the scenes, however. We discussed JSF and Ajax in chapter 5, and
although the two technologies have some challenges to overcome before being
fully interoperable, it may be possible that JSF-based tools will support Ajax bet-
ter in the near future.

Figure A.2 The JavaScript editor plug-in for Eclipse provides rudimentary outlining support for
JavaScript objects but doesn’t handle the full object-based syntax.
Licensed to jonathan zheng <yiyisjun@gmail.com>

570 APPENDIX A
The Ajax craftsperson’s toolkit
 As well as having a foot in the enterprise-development camp, Ajax has roots in
the web-design community, for whom an entirely different type of toolset has
developed. Macromedia Dreamweaver and Microsoft FrontPage are two notable
web-design tools of this type, and both offer support for the basic client-side tech-
nologies used by Ajax. Dreamweaver provides good support for basic JavaScript
and CSS editing (figure A.3) and a two-way HTML editor with visual and text
modes, but for WYSIWYG orchestration of complex JavaScript user interfaces, it
supports only its own code library. Integrating third-party libraries such as x,
Prototype, and Rico into a Dreamweaver or FrontPage project would require a lot
of hand-crafting the scripts, making use of the text editor functionality of the
tools and relatively little else.

 The final tool worth a mention here is ActiveState’s Komodo, which is a cross-
language scripting IDE, supporting Perl, Python, PHP, Tcl, JavaScript, and XSLT.
Komodo has very good support for JavaScript codebase navigation and a sophis-

Figure A.3 Dreamweaver’s editor supports JavaScript and CSS. The CSS file being edited in the
upper-right pane is also shown in outline form in the upper left.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Debuggers 571
ticated outliner that recognizes JavaScript classes as well as functions and meth-
ods (figure A.4). As a general-purpose scripting IDE, it deals only with JavaScript
the generic language, not the browser-based implementations. As such, it is most
useful when developing domain models for Ajax. Komodo is a commercial tool
with free trials available. As an interesting aside, the Komodo UI is built using the
XML-based XUL toolkit used to create the Firefox web browser.

 In the next section, we’ll consider another key tool in the developer’s arsenal:
the source code debugger.

A.3 Debuggers

The behavior of simple computer programs can often be figured out by looking
at the code, but larger, more complex programs are often too large to hold in
your mind all at once. Debugger tools provide a way of controlling the flow of
execution of a piece of running code, allowing it to be stopped and started man-
ually and the state of the program inspected while it is running.

Figure A.4 The Komodo IDE provides high-quality outlining features for JavaScript
objects and can understand a number of coding idioms. Here the code outliner has
recognized that various functions belong to the ObjectViewer prototype.
Licensed to jonathan zheng <yiyisjun@gmail.com>

572 APPENDIX A
The Ajax craftsperson’s toolkit
A.3.1 Why we use a debugger

Debuggers provide a very practical way of finding out what a program does. In
any programming effort, a debugger can be useful in testing whether you have
understood a piece of code correctly. In Ajax, this is particularly valuable.

 When the term debugger is used, most developers tend to think of source code
debuggers, and server-side and JavaScript debuggers are indeed handy to have at
your disposal when writing Ajax. However, it is also helpful to be able to debug
network traffic when writing Ajax, as HTTP can be surprisingly complicated, too.
In the following sections, we’ll consider both source code and HTTP debugging
tools. Let’s look at the state of JavaScript debuggers first.

A.3.2 JavaScript debuggers

Being able to debug JavaScript code is especially useful because of the fluidity of
the language. A C# or Java programmer generally knows which properties and
methods are available on a given object by examining its class definition and
knows the types and number of a method’s arguments from its declared signa-
ture. It isn’t always possible with JavaScript, though, to work out from the code
how many arguments a function will be invoked with, or even what the variable
this will resolve to inside a function. This latter issue is particularly problematic
for callback handlers, for which the invocation of the function may be done by an
unknown object or by the browser itself.

 At its simplest, a source code debugger allows the user to set breakpoints that
halt program execution and hand it over to the user when that line of code is exe-
cuted. The user may then step through the code a line at a time, inspecting the
values of any variables that are in scope, or resume normal execution until the
next breakpoint is encountered. In JavaScript, breakpoints may be set by the
debugger tool itself or by the coder, by adding a debugger statement to the code.
For example, when the browser executes the following code

 var x=3;
 var y=x*7;
 debugger;
 var z=x+y;

control will be handed over to any debugger that is registered with the browser on
the third line of code (figure A.5), at which point the values of variables x and y
can be inspected. z has not been declared yet and so can be inspected only after
the user has stepped the debugger forward over the fourth line.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Debuggers 573
This defines the basic functionality of a source-debugging tool. A more sophisti-
cated debugger may support further features, as discussed next.

Call stack navigation
When a function is executed in JavaScript, a new execution context is created,
with its own set of local variables. When a debugger stops inside a function, it can
see the local variables inside that function but not those in the function that
called it. Consider the following example:

function doASum(){
 var a=3;
 var b=4;
 var c=multiply(a-2,b+6);
 return (a+b)/c;
}

function multiply(var1,var2){
 var n1=parseFloat(var1);
 var n2=parseFloat(var2);
 debugger;
 return n1*n2;
}

At the point at which the debugger is invoked, we can see variables n1, n2, var1,
and var2. While examining a problem with our program, we may decide that the
issue lies with the arguments being passed into our function. We need to know
what values a and b held in the enclosing doASum() method. We could set an extra
breakpoint in doASum() and run the program again, but it might take us some
time to return to this state in a complex program. If the debugger supports call
stack navigation, then we can simply move up the call stack to the doASum() func-
tion and inspect its state as though we had set a breakpoint on the third line,
where multiply() is invoked (figure A.6). In a complex program, the call stack
may be very deep, and the debugger is capable of moving up and down among
all layers.

Figure A.5
Using the JavaScript debugger statement
triggers a breakpoint programmatically.
Licensed to jonathan zheng <yiyisjun@gmail.com>

574 APPENDIX A
The Ajax craftsperson’s toolkit
Watching expressions
Some debugger tools are capable of evaluating expressions on the fly and allow
the user to predefine code expressions that will be reevaluated as the debugger
moves across the code. These expressions can make use of any variables currently
in scope, allowing the developer to interact with the program while it is running.

Conditional breakpoints
Setting a breakpoint at a particular point in the code can give a developer fine-
grained control over when to invoke the debugger, but in some cases, this control
is not enough. When executing a loop, for example, any breakpoint inside the
body of the loop will be executed each time the loop is executed. Let’s take the
following example:

Figure A.6 The Mozilla Venkman debugger allows inspection of local
variables in functions higher up the call stack than the current point
of execution.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Debuggers 575
for (var i=0;i<100;i++){
 var divisor=i-57;
 var val=42/divisor;
 plotOnGraph(i,val);
}

Running this code causes an exception to be thrown midway through the loop. In
this case, a quick inspection of the code tells us that this will happen when i is 57,
and we attempt to divide by zero. However, let’s pretend for now that it isn’t so
obvious, as will often be the case with real-world code. We suspect that the divisor
being set to zero is the problem but don’t know when such a condition will occur.

 We could set a debugger breakpoint inside the loop:

for (var i=0;i<100;i++){
 var divisor=i-57;
 debugger;
 var val=42/divisor;
 plotOnGraph(i,val);
}

but we would need to click the resume button on our debugger numerous times to
step through the loop to the point where we encounter the error condition. If
we’re being clever, we can test for the error condition in our code:

for (var i=0;i<100;i++){
 var divisor=i-57;
 if (divisor==0){ debugger; }
 var val=42/divisor;
 plotOnGraph(i,val);
}

This will take us straight to the fifty-seventh iteration of the loop, the one at which
our error condition occurs. We could describe this as a conditional breakpoint—
that is, it will break the flow of execution only if a certain condition is met.

 We can set up conditions in this way only by modifying the code. However, if
we are assigning breakpoints through the debugger IDE, we can set a condition
on the breakpoint independently of the actual code (figure A.7). Some debuggers
do support this facility, allowing the user to attach expressions to a breakpoint,
and break the flow only if the expression evaluates to true.

Changing the values of variables
If we encounter an error condition, our program execution halts. In a debugging
session, we may realize what the solution is but want to coerce the program into
continuing anyway, in order to test some later piece of code under the current set
of conditions.
Licensed to jonathan zheng <yiyisjun@gmail.com>

576 APPENDIX A
The Ajax craftsperson’s toolkit
Some debuggers will allow us to do this by providing write as well as read access to
local variables (figure A.8). In the case of our loop example shown previously, if
we know that a divisor value of 0 is going to be problematic but want to explore
some code following the loop, we could temporarily reassign a value of 1 to the
divisor, letting the flow of execution continue.

Figure A.7 Setting up a conditional breakpoint in the Mozilla Venkman debugger

Figure A.8 Changing the value of a variable in a running program
using the Mozilla Venkman debugger
Licensed to jonathan zheng <yiyisjun@gmail.com>

Debuggers 577
A number of debuggers for JavaScript are available. Free debugging tools include
the Venkman plug-in for Mozilla Firefox and the Microsoft Script Debugger (see
the Resources section at the end of this appendix for information on both of
these) for Internet Explorer. Venkman supports all of the advanced features
described previously, as well as having an inbuilt profiling tool, which we describe
in chapter 7. The Microsoft Script Debugger supports call stack navigation and
an “immediate window” for executing JavaScript on the fly, including querying
and reassigning local variable values.

 Visual Studio and Komodo IDEs also support JavaScript debuggers with an
advanced set of capabilities.

Server-side debugging
In addition to being able to debug JavaScript on the client, it is often useful to
debug the server-side code, too. Java and .NET IDEs generally ship with high-
quality debuggers. Eclipse’s Java tools and Visual Studio both offer debugging
out of the box, as do most other IDEs. For debugging Java-based web applica-
tions, the JBoss application server and Eclipse plug-ins provide a simple sys-
tem for deploying and debugging web applications. Web development versions
of Visual Studio ship with a built-in ASP.NET-enabled web server for develop-
ment purposes. Visual Studio is the only development environment to my
knowledge to support debugging of client-side and server-side code within the
same user interface.

 It can be also very useful to debug network traffic. Again, a range of free and
commercial tools is available for this purpose. Let’s look at them now.

A.3.3 HTTP debuggers

Between the Ajax client and the web server, all communications take place over
HTTP. This in itself can be a complex business and may be a source of errors. At
times, it is reassuring to be able to inspect the HTTP traffic, to look at the headers,
querystrings, content of the request and response, and sequence of interchanges.

LiveHTTPHeader
Mozilla Firefox supports an extension called LiveHTTPHeaders, which is capable
of logging HTTP traffic from the browser (figure A.9). Request and response
headers are recorded and displayed, and they can be exported as text files to pro-
vide a permanent record of an Ajax session. Querystrings from GET and POST
methods are also recorded, but the response content is not.
Licensed to jonathan zheng <yiyisjun@gmail.com>

578 APPENDIX A
The Ajax craftsperson’s toolkit
LiveHTTPHeaders supports only reading headers. Other Firefox extensions are
available for modifying headers in transit, such as the Modify Headers extension.

Fiddler
Microsoft Research recently released a .NET-based application called Fiddler that
fulfills a similar role to LiveHTTPHeaders but also allows for scripted rewriting of
headers on the fly, using JavaScript. This provides a similar capability to the abil-
ity to change variable values in some debuggers during a session, and it can be
used to quickly work around bugs in an application while it is running.

 Unlike LiveHTTPHeaders, which is integrated into the browser, Fiddler is an
independent process that acts as a proxy between the client and server. As such, it
can be used with any combination of browser and web server.

Charles
Charles is a shareware tool written in Java. Like Fiddler, it acts as a proxy between
browser and server. It can log request and response data, including the content,
and export sessions as spreadsheet files. It also provides a highly configurable
built-in bandwidth-shaping tool, which allows easy simulation of very slow con-
nections over a fast LAN or even when the client and server are both deployed to
the same machine.

 There are a number of other useful tools in this category, which we don’t have
space to cover fully here. If Charles and Fiddler don’t do what you want, a quick
online search for “Ethereal” or “Apache TCPMon” might help you out.

 This concludes our review of off-the-shelf debugging tools. By combining a
server-side code debugger, a JavaScript debugger on the client, and an HTTP

Figure A.9 The Mozilla LiveHTTPHeaders extension can log HTTP traffic and
present details of request and response headers.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Debuggers 579
debugger in between, it is possible to intercept your application at any point in its
lifecycle and be able to see what it is really getting up to.

 Debuggers are, by their nature, intrusive. Although they are very powerful in
many ways, there are times when a background logging system is preferable.
Plenty of mature server-side logging frameworks are available, such as Apache
log4j for Java, but, once again, the JavaScript toolset is lagging. In the final part
of this section, we’ll look at a simple logging tool written in JavaScript that can be
integrated into your browser code to provide a record of background activity.

A.3.4 Building your own cross-browser output console

A debugger gives a developer a very detailed view of running code, but it inter-
rupts the ordinary flow of events. When tracking a user’s interactions for usability
testing or monitoring the execution of code in a tight loop, it is sometimes more
useful to log activity without interrupting the flow.

 Web browser JavaScript doesn’t provide a built-in logging facility. (The Mozilla
JavaScript console may look like one at first glance, but it can only be written to
by the browser and by extensions.) In this section, we’ll develop our own simple
logging system and demonstrate its use in one of our example applications. Let’s
sketch out our requirements first. We can’t write to a local file because of the Java-
Script security model, so we’ll opt to write to an on-screen console element
instead. We want to be able to append messages to our console. Ideally, we’d like
to be able to use HTML markup in our logging, as well as plain text. We’d also like
to clear the console of existing messages.

 To keep things simple, we’ll pass a DOM element in as an argument to the
object constructor. The placement of the console can then be determined on a
page-by-page basis. The constructor simply sets up a two-way reference between
the DOM element and the console object itself:

Console=function(el){
 this.el=document.getElementById(el);
 this.el.className='console';
 this.el.consoleModel=this;
 this.clear();
}

To append to the console, we simply pass in an argument, which may be a textual
string or a DOM element, and optionally pass in a CSS class name as well:

Console.prototype.append=function(obj,style){
 var domEl=styling.toDOMElement(obj);
 if (style) {
 domEl.className=style;
Licensed to jonathan zheng <yiyisjun@gmail.com>

580 APPENDIX A
The Ajax craftsperson’s toolkit
 }
 this.el.appendChild(domEl);
}

The toDOMElement() method calls a generic styling function, which ensures that
the message is wrapped up as a DOM element. If the argument is already a DOM
element, it is returned unchanged. If it is a string, it is wrapped in a DIV element:

styling.toDOMElement=function(obj){
 var result=null;
 if (obj instanceof Element){
 result=obj;
 }else{
 var txtNode=document.createTextNode(String(obj));
 var wrapper=document.createElement('div');
 wrapper.appendChild(txtNode);
 result=wrapper;
 }
 return result;
}

To clear the console, we simply remove all child elements from it, one by one:

Console.prototype.clear=function(){
 while(this.el.firstChild){
 this.el.removeChild(this.el.firstChild);
 }
}

That provides a simple implementation of an in-browser logging console. Let’s
have a look at how we use it now. We’ll take the ObjectViewer example from
chapters 4 and 5. First, we define a DOM element in our page to contain the log-
ging console

<div id='console'></div>

and a CSS class to position it on screen for us:

div.console {
 position:absolute;
 top:32px;
 left:600px;
 width:300px;
 height:500px;
 overflow:auto;
 border: 1px solid black;
 background-color: #eef0ff;
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

Debuggers 581
We are using absolute positioning here, but we could use any Ajax user interface
technique to do the job for us. Next, we need to create the logging object. We’ll
define it as a global variable in this example for convenience.

var logger=null;
window.onload=function(){
 logger=new Console("console");
 logger.append("starting planets app");
 ...
}

We initialize the logger in the window.onload event, so that the DOM element that
it requires is guaranteed to be created. Now let’s suppose that we want to log a
message whenever a planet object is created in our domain model. We simply
need to invoke logger.append():

planets.Planet=function
 (id,system,name,distance,diameter,image){
 this.id=id;
 ...
 logger.append("created planet object '"+this.name+"'");
}

Similarly, we can add logging statements to the ObjectViewer code when we
edit values and launch pop-up subwindows, to the ContentLoader object when
we load network resources, and so on, in order to track the behavior of our
codebase while it is running. We can style important messages, for example,
network failures:

net.ContentLoader.prototype.defaultError=function(){
 logger.append("network error! "+this.url, "urgent");
}

Figure A.10 illustrates the logger console in operation as part of the modified
planet viewer application.

 This demonstration shows how straightforward it is to add simple logging
capabilities to an Ajax application. The system is considerably simpler than
server-side logging frameworks such as Apache’s log4j. We leave it as an exercise
for the reader to add multiple categories of logging that can be turned on and
off independently.

 Now let’s move on to our next type of tool: the DOM inspector.
Licensed to jonathan zheng <yiyisjun@gmail.com>

582 APPENDIX A
The Ajax craftsperson’s toolkit
A.4 DOM inspectors

In an Ajax application, it is common to modify the user interface by modifying
the DOM programmatically. Using a JavaScript debugger, we can walk through
our DOM manipulation code one step at a time and ensure that it is doing what
we want it to do.

 The DOM, however, is still one step removed from the view presented to the
user. We may be confident that our code is altering the DOM in the way that we
think it is, but this won’t necessarily translate into the user interface that we
expect. A DOM inspector is a tool that allows the developer to inspect the rela-
tionships between the DOM tree that our code works with and the visible interface
that the end user sees.

 DOM inspectors need to be tightly integrated with the browser and always sup-
port only one make of browser. The most popular DOM inspector is the one that
ships with Mozilla Firefox, so we’ll look at that first, and then we’ll look at the
alternatives for Internet Explorer.

Figure A.10 The logging console in operation, monitoring object creation, network activity,
user edits, and so on. We have added a second network request to a nonexistent server
resource, moons.xml, to demonstrate the display of the styled logging message.
Licensed to jonathan zheng <yiyisjun@gmail.com>

DOM inspectors 583
A.4.1 Using the Mozilla DOM Inspector

The DOM Inspector tool is bundled with Firefox but needs to be selected as a cus-
tom option during installation. If the DOM Inspector is installed, it will appear in
the browser’s menu system under the Tools menu as the option DOM Inspector.
When initially opened, the DOM Inspector consists of two panes side by side (fig-
ure A.11). The left-hand pane presents a tree-table widget, typically showing only
a document and an HTML node initially. The nodes may be opened to reveal a
head and body to the document, and within the body, an assortment of nodes
representing the HTML markup of a page, plus any elements that have been con-
structed programmatically. Where nodes have been assigned ID or CSS class
attributes, these will be displayed in additional columns of the tree-table widgets.

 This tree widget is synchronized to the page being displayed in the main
browser window. Selecting a tree node with the mouse will make the related ele-
ment in the page layout flash a red border. The relationship is two-way, too. By
invoking the Search > Select Element by Click menu option on the DOM Inspec-
tor, the user can click on the web browser window and highlight the tree element
corresponding to the element clicked upon. (There’s also a toolbar button for this
functionality.)

 The right-hand pane lists information about the current node in one of sev-
eral possible formats, including DOM node, CSS style rules, and as a JavaScript
object (figure A.12). In the latter mode, the object may be programmatically
scripted by right-clicking on the right-hand pane and selecting the Evaluate Java-
Script button. The currently selected DOM element can be referred to as target,
so, for example, typing in

target.style.border='4px solid blue'

will outline that element with a thick blue border.

Figure A.11 The Mozilla DOM Inspector presents a structural view of the DOM behind a web page,
including nodes declared in the HTML and those generated programmatically.
Licensed to jonathan zheng <yiyisjun@gmail.com>

584 APPENDIX A
The Ajax craftsperson’s toolkit
The DOM Inspector also has a third pane, below the other two, into which the vis-
ible content of a document can be rendered (figure A.13). If the user types a page
address into the URL bar and clicks on the Inspect button, this pane will appear,
allowing the abstract DOM and the visible document to be examined side by side.

A.4.2 DOM inspectors for Internet Explorer

As with all the Mozilla-based toolkits, a major drawback is that the inspectors
can’t be used to inspect problems that occur only in Internet Explorer. Several
DOM inspectors with similar functionality are available for Internet Explorer.
Many are commercial or shareware, but some workable free versions also exist,
such as the IEDocMon utility (see the Resources section for URLs).

 Like the Mozilla DOM Inspector, IEDocMon provides a simple two-pane view
of the DOM, with a tree on the left and node details on the right (figure A.13).

 That concludes our discussions of specific types of development tools. One
very active source of Ajax tools is the community that has sprung up around the
Firefox browser’s extensions capabilities. In the following section, we’ll briefly
outline how to find and install Firefox extensions.

Figure A.12 The Mozilla DOM Inspector allows direct scripting access to elements in the DOM. The
variable name target refers to the currently selected DOM node, in this case the image of the
planet, whose border we have just altered.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Installing Firefox extensions 585
A.4.3 The Safari DOM Inspector for Mac OS X

The Mac OS X browser Safari has a built-in DOM inspector too. This is available
from the debug menu. The debug menu is not enabled by default. To enable it,
open the Terminal application and type in the following:

defaults write com.apple.Safari IncludeDebugMenu 1

Depending on your privileges, you may need to sudo this command. Once it has
executed, restart Safari and the debug menu should appear.

A.5 Installing Firefox extensions

We’ve already looked at two very useful Firefox extensions, the Venkman debug-
ger and the LiveHTTPHeaders network debugger. There are many extensions
available for Firefox, and several are designed for use by web developers. In this

Figure A.13 The IEDocMon toolbar for Internet Explorer provides
functionality similar to the Firefox DOM Inspector, allowing for
rapid resolution of rendering issues with programmatically
generated user interfaces.
Licensed to jonathan zheng <yiyisjun@gmail.com>

586 APPENDIX A
The Ajax craftsperson’s toolkit
section, we’ll walk briefly through the process of installing a Firefox plug-in, using
the Modify Headers extension as an example.

 Firefox extensions are installed from the web browser itself. Initially, you need
to locate the download page for the extension; in this case it’s found at https://
addons.mozilla.org/extensions. The Mozilla add-ons site can also be launched
from the browser by clicking the Tools > Extensions menu and then selecting the
Get More Extensions link in the pop-up dialog. Figure A.14 shows Firefox point-
ing at the Mozilla Update site page for the Modify Headers extension.

 In this case, the hyperlink we need is the large Install Now button. We click on
it, and a dialog appears, warning us of the dangers of installing unsigned exten-
sions (figure A.15).

 Unlike ordinary JavaScript code, extensions have full access to the local file-
system. Signing extensions offers a guarantee from the author that the exten-
sion hasn’t been tampered with, but in practice, not all extensions are signed.
After installation, the extension is registered in the pop-up Extensions dialog
(figure A.16).

Figure A.14 The Firefox browser lists all installed extensions in a pop-up dialog. More
extensions can be installed from the Web.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Installing Firefox extensions 587
All that remains is to close down all open Firefox windows (including DOM
inspectors, debuggers, and so on), and restart Firefox. The extension is then
ready to run, appearing as an option in the Tools menu (figure A.17).

 Firefox supports a large number of extensions, many of which are aimed at
web developers. Not all extensions are hosted on the addons.mozilla.org site, but
this is certainly the first port of call for such things. The installation procedure is
generally similar for all extensions, including the Venkman debugger that we dis-
cussed earlier.

 This concludes our review of development tools for Ajax. We hope that it has
provided you with some useful advice in getting your project off the ground.

Figure A.15
Firefox extensions can be installed
from the Web, using a special
downloadable archive format.

Figure A.16
Newly installed extensions are visible in the
Extensions dialog immediately but won’t become
active until the browser is restarted.
Licensed to jonathan zheng <yiyisjun@gmail.com>

588 APPENDIX A
The Ajax craftsperson’s toolkit
A.6 Resources

This chapter was all about tools. Here are links to those that we featured:

■ Textpad: www.textpad.com
■ jEdit: www.jedit.org
■ Eclipse: www.eclipse.org
■ Eclipse JavaScript plug-ins: http://jseditor.sourceforge.net/
■ Visual Studio Express: http://lab.msdn.microsoft.com/express/
■ Dreamweaver: www.macromedia.com/software/dreamweaver/
■ Komodo: www.activestate.com/Products/Komodo/
■ Venkman Debugger: www.mozilla.org/projects/venkman/
■ Microsoft Script debugger: www.microsoft.com/downloads/details.aspx?

FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
■ Charles: www.xk72.com/charles/
■ Fiddler: www.fiddlertool.com
■ LiveHttpHeaders: http://livehttpheaders.mozdev.org/
■ Modify Headers extension: https://addons.mozilla.org/extensions/more-

info.php?id=967&vid=4243
■ IEDocMon DOM inspector for IE: www.cheztabor.com/IEDocMon/index.htm

Figure A.17
After you restart the browser, the extension is ready to use.
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript for
object-oriented
programmers
589

Licensed to jonathan zheng <yiyisjun@gmail.com>

590 APPENDIX B
JavaScript for object-oriented programmers
There are many routes into becoming a JavaScript programmer, ranging from
graphic design to a serious programmer coming up from the business tiers.

 This appendix won’t aim to teach you how to program in JavaScript—there are
already many good books and articles to help you do that. What I intend to record
here are a few core concepts that will help Java and C# programmers make the
leap to JavaScript programming in a relatively painless way. (The same is true to a
lesser extent of C++ programmers, but C++ inherits a lot of strange flexibility
from C, so that JavaScript should prove less of a shock to the system.) If you are a
serious enterprise programmer with a grounding in OO design principles, then
your first approaches to JavaScript may be overly influenced by your experience
with languages such as Java and C#, and you may find yourself fighting against
the language rather than working with it. I certainly did, and I’ve based this on my
own experience as a programmer and in mentoring others along the same route.

 JavaScript can do a lot of clever things that Java and C# can’t. Some of these
can help you to write better code, and some can only help you to shoot yourself in
the foot more accurately! It’s worth knowing about both, either to make use of the
techniques or to avoid doing them unwittingly. If you are coming to Ajax from a
structured OO language such as Java or C++, then I hope that reading this appen-
dix will help you as much as I think it would have helped me a few years back!

B.1 JavaScript is not Java

What’s in a name? In the case of Java and JavaScript, a lot of marketing and rel-
atively little substance. JavaScript was renamed from “livescript” at the last
minute by Netscape’s marketing department, and now the name has stuck. Con-
trary to popular perception, JavaScript is not a descendent of the C family of lan-
guages. It owes a lot more to functional languages such as Scheme and Self, and it
has quite a lot in common with Python, too. Unfortunately, it’s been named after
Java and syntactically styled to look like Java. In places, it will behave like Java,
but in many places, it just plain won’t.

 Table B.1 summarizes the key differences.

Table B.1 Key features of JavaScript and their implications

Feature Implications

Variables are loosely typed. Variables are just declared as variables, not as integers, strings, or
objects of a specific class. In JavaScript, it is legal to assign values
of different types to the same variable.

continued on next page
Licensed to jonathan zheng <yiyisjun@gmail.com>

JavaScript is not Java 591
These differences allow the language to be used in different ways and open up the
possibility of a number of weird tricks worthy of a seasoned Lisp hacker. If you’re
a really clever, disciplined coder, you can take advantage of these tricks to do mar-
velous things, and you might even do so beyond a few hundred lines of code. If,
on the other hand, you only think you’re really clever and disciplined, you can
quickly end up flat on your face.

 I’ve tried it a few times and come to the conclusion that keeping things simple
is generally a good thing. If you’re working with a team, coding standards or guide-
lines should address these issues if the technical manager feels it is appropriate.

 However, there is a second reason for knowing about these differences and
tricks: the browser will use some of them internally, so understanding what is
going on can save you much time and pain in debugging a badly behaved applica-
tion. In particular, I’ve found it helpful to know where the code is not behaving like
a Java object would, given that much of the apparent similarity is only apparent.

 So read on, and find out what JavaScript objects really look like when the
lights are out, how they are composed of member fields and functions, and what a
JavaScript function is really capable of.

Code is dynamically interpreted. At runtime, code is stored as text and interpreted into machine
instructions as the program runs, in contrast to precompiled lan-
guages such as Java, C, and C#. Users of your website can gener-
ally see the source code of your Ajax application. Furthermore, it
allows for the possibility of code being generated dynamically by
other code without resorting to special bytecode generators.

JavaScript functions are
first-class objects.

A Java object’s methods are tied to the object that owns them and
can be invoked only via that object. JavaScript functions can be
attached to objects so that they behave like methods, but they
can also be invoked in other contexts and/or reattached to other
objects at runtime.

JavaScript objects are
prototype-based.

A Java, C++, or C# object has a defined type, with superclasses
and virtual superclasses or interfaces. This strictly defines its func-
tionality. Any JavaScript object is just an object, which is just an
associative array in disguise. Prototypes can be used to emulate
Java-style types in JavaScript, but the similarity is only skin deep.

Table B.1 Key features of JavaScript and their implications (continued)

Feature Implications
Licensed to jonathan zheng <yiyisjun@gmail.com>

592 APPENDIX B
JavaScript for object-oriented programmers
B.2 Objects in JavaScript

JavaScript doesn’t require the use of objects or even functions. It is possible to
write a JavaScript program as a single stream of text that is executed directly as it
is read by the interpreter. As a program gets bigger, though, functions and objects
become a tremendously useful way of organizing your code, and we recommend
you use both.

 The simplest way to create a new JavaScript object is to invoke the built-in con-
structor for the Object class:

var myObject=new Object();

We’ll look at other approaches, and what the new keyword really does, in sec-
tion B.2.2. Our object myObject is initially “empty,” that is, it has no properties or
methods. Adding them in is quite simple, so let’s see how to do it now.

B.2.1 Building ad hoc objects

As already noted, the JavaScript object is essentially just an associative array, with
fields and methods keyed by name. A C-like syntax is slapped on top to make it
look familiar to C-family programmers, but the underlying implementation can
be exploited in other ways, too. We can build up complex objects line by line, add-
ing new variables and functions as we think of them.

 There are two ways of building up objects in this ad hoc fashion. The first of
these is to simply use JavaScript to create the object. The second is to use a special
notation known as JSON. Let’s start with the plain old JavaScript technique.

Using JavaScript statements
In the middle of a complicated piece of code, we may want to assign a value to
some object’s property. JavaScript object properties are read/write and can be
assigned by the = operator. Let’s add a property to our simple object:

myObject.shoeSize="12";

In a structured OO language, we would need to define a class that declared a
property shoeSize or else suffer a compiler error. Not so with JavaScript. In fact,
just to emphasize the array-like nature, we can also reference properties using
array syntax:

myObject['shoeSize']="12";

This notation is clumsy for ordinary use but has the advantage that the array
index is a JavaScript expression, offering a form of runtime reflection, which we’ll
return to in section B.2.4.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 593
We can also add a new function to our object dynamically:

myObject.speakYourShoeSize=function(){
 alert("shoe size : "+this.shoeSize);
}

Or borrow a predefined function:

function sayHello(){
 alert('hello, my shoeSize is '+this.shoeSize);
}
...
myObject.sayHello=sayHello;

Note that in assigning the predefined function, we omit the parentheses. If we
were to write

myObject.sayHello=sayHello();

then we would execute the sayHello function and assign the return value, in this
case null, to the sayHello property of myObject.

 We can attach objects to other objects in order to build up complex data mod-
els and so on:

var myLibrary=new Object();
myLibrary.books=new Array();
myLibrary.books[0]=new Object();
myLibrary.books[0].title="Turnip Cultivation through the Ages";
myLibrary.books[0].authors=new Array();
var jim=new Object();
jim.name="Jim Brown";
jim.age=9;
myLibrary.books[0].authors[0]=jim;

This can quickly become tedious (often the case where turnips are involved, I’m
afraid), and JavaScript offers a compact notation that we can use to assemble
object graphs more quickly, known as JSON. Let’s have a look at it now.

Using JSON
The JavaScript Object Notation (JSON) is a core feature of the language. It pro-
vides a concise mechanism for creating arrays and object graphs. In order to
understand JSON, we need to know how JavaScript arrays work, so let’s cover the
basics of them first.

 JavaScript has a built-in Array class that can be instantiated using the new
keyword:

myLibrary.books=new Array();
Licensed to jonathan zheng <yiyisjun@gmail.com>

594 APPENDIX B
JavaScript for object-oriented programmers
Arrays can have values assigned to them by number, much like a conventional C
or Java array:

myLibrary.books[4]=somePredefinedBook;

Or they can be associated with a key value, like a Java Map or Python Dictionary,
or, indeed, any JavaScript Object:

myLibrary.books["BestSeller"]=somePredefinedBook;

This syntax is good for fine-tuning, but building a large array or object in the first
place can be tedious. The shorthand for creating a numerically indexed array is
to use square braces, with the entries being written as a comma-separated list of
values, thus:

myLibrary.books=[predefinedBook1,predefinedBook2,predefinedBook3];

And to build a JavaScript Object, we use curly braces, with each value written as a
key:value pair:

myLibrary.books={
 bestSeller : predefinedBook1,
 cookbook : predefinedBook2,
 spaceFiller : predefinedBook3
};

In both notations, extra white space is ignored, allowing us to pretty-print for
clarity. Keys can also have spaces in them, and can be quoted in the JSON nota-
tion, for example:

 "Best Seller" : predefinedBook1,

We can nest JSON notations to create one-line definitions of complex object hier-
archies (albeit rather a long line):

var myLibrary={
 location : "my house",
 keywords : ["root vegetables", "turnip", "tedium"],
 books: [
 {
 title : "Turnip Cultivation through the Ages",
 authors : [
 { name: "Jim Brown", age: 9 },
 { name: "Dick Turnip", age: 312 }
],
 publicationDate : "long ago"
 },
 {
 title : "Turnip Cultivation through the Ages, vol. 2",
Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 595
 authors : [
 { name: "Jim Brown", age: 35 }
],
 publicationDate : new Date(1605,11,05)
 }
]
};

I have assigned three properties to the myLibrary object here: location is a sim-
ple string, keywords is a numerical list of strings, and books a numerically indexed
list of objects, each with a title (a string), a publication date (a JavaScript Date
object in one case and a string in the other), and a list of authors (an array). Each
author is represented by a name and age parameter. JSON has provided us with a
concise mechanism for creating this information in a single pass, something that
would otherwise have taken many lines of code (and greater bandwidth).

 Sharp-eyed readers will have noted that we populated the publication date for
the second book using a JavaScript Date object. In assigning the value we can use
any JavaScript code, in fact, even a function that we defined ourselves:

function gunpowderPlot(){
 return new Date(1605,11,05);
}

var volNum=2;

var turnipVol2={
 title : "Turnip Cultivation through the Ages, vol. "
 +volNum,
 authors : [
 { name: "Jim Brown", age: 35 }
],
 publicationDate : gunpowderPlot()
 }
]
};

Here the title of the book is calculated dynamically by an inline expression, and
the publicationDate is set to the return value from a predefined function.

 In the previous example, we defined a function gunpowderPlot() that was eval-
uated at the time the object was created. We can also define member functions for
our JSON-invoked objects, which can be invoked later by the object:

var turnipVol2={
 title : "Turnip Cultivation through the Ages, vol. "+volNum,
 authors : [
 { name: "Jim Brown", age: 35 }
],
Licensed to jonathan zheng <yiyisjun@gmail.com>

596 APPENDIX B
JavaScript for object-oriented programmers
 publicationDate : gunpowderPlot()
 }
],
 summarize:function(len){
 if (!len){ len=7; }
 var summary=this.title+" by "
 +this.authors[0].name
 +" and his cronies is very boring. Z";
 for (var i=0;i<len;i++){
 summary+="z";
 }
 alert(summary);
 }
};

...

turnipVol2.summarize(6);

The summarize() function has all the features of a standard JavaScript function,
such as parameters and a context object identified by the keyword this. Indeed,
once the object is created, it is just another JavaScript object, and we can mix and
match the JavaScript and JSON notations as we please. We can use JavaScript to
fine-tune an object declared in JSON:

var numbers={ one:1, two:2, three:3 };
numbers.five=5;

We initially define an object using JSON syntax and then add to it using plain
JavaScript. Equally, we can extend our JavaScript-created objects using JSON:

var cookbook=new Object();
cookbook.pageCount=321;
cookbook.author={
 firstName: "Harry",
 secondName: "Christmas",
 birthdate: new Date(1900,2,29),
 interests: ["cheese","whistling",
 "history of lighthouse keeping"]
};

With the built-in JavaScript Object and Array classes and the JSON notation, we
can build object hierarchies as complicated as we like, and we could get by with
nothing else. JavaScript also offers a means for creating objects that provides a
comforting resemblance to class definitions for OO programmers, so let’s look at
this next and see what it can offer us.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 597
B.2.2 Constructor functions, classes, and prototypes

In OO programming, we generally create objects by stating the class from which
we want them to be instantiated. Both Java and JavaScript support the new key-
word, allowing us to create instances of a predefined kind of object. Here the
similarity between the two ends.

 In Java, everything (bar a few primitives) is an object, ultimately descended
from the java.lang.Object class. The Java virtual machine has a built-in under-
standing of classes, fields, and methods, and when we declare in Java

MyObject myObj=new MyObject(arg1,arg2);

we first declare the type of the variable and then instantiate it using the relevant
constructor. The prerequisite for success is that the class MyObject has been
declared and offers a suitable constructor.

 JavaScript, too, has a concept of objects and classes but no built-in concept of
inheritance. In fact, every JavaScript object is really an instance of the same base
class, a class that is capable of binding member fields and functions to itself at
runtime. So, it is possible to assign arbitrary properties to an object on the fly:

MyJavaScriptObject.completelyNewProperty="something";

This free-for-all can be organized into something more familiar to the poor OO
developer by using a prototype, which defines properties and functions that will
automatically be bound to an object when it is constructed using a particular
function. It is possible to write object-based JavaScript without the use of proto-
types, but they offer a degree of regularity and familiarity to OO developers that
is highly desirable when coding complex rich-client applications.

 In JavaScript, then, we can write something that looks similar to the Java dec-
laration

var myObj=new MyObject();

but we do not define a class MyObject, but rather a function with the same name.
Here is a simple constructor:

function MyObject(name,size){
 this.name=name;
 this.size=size;
}

We can subsequently invoke it as follows:

var myObj=new MyObject("tiddles","7.5 meters");
alert("size of "+myObj.name+" is "+myObj.size);
Licensed to jonathan zheng <yiyisjun@gmail.com>

598 APPENDIX B
JavaScript for object-oriented programmers
Anything set as a property of this in the constructor is subsequently available as a
member of the object. We might want to internalize the call to alert() as well, so
that tiddles can take responsibility for telling us how big it is. One common
idiom is to declare the function inside the constructor:

function MyObject(name,size){
 this.name=name;
 this.size=size;
 this.tellSize=function(){
 alert("size of "+this.name+" is "+this.size);
 }
}

var myObj=new Object("tiddles","7.5 meters");
myObj.tellSize();

This works, but is less than ideal in two respects. First, for every instance of
MyObject that we create, we create a new function. As responsible Ajax program-
mers, memory leaks are never far from our minds (see chapter 7), and if we plan
on creating many such objects, we should certainly avoid this idiom. Second, we
have accidentally created a closure here—in this case a fairly harmless one—but
as soon as we involve DOM nodes in our constructor, we can expect more serious
problems. We’ll look at closures in more detail later in this appendix. For now,
let’s look at the safer alternative, which is something known as a prototype.

 A prototype is a property of JavaScript objects, for which no real equivalent
exists in OO languages. Functions and properties can be associated with a con-
structor’s prototype. The prototype and new keyword will then work together,
and, when a function is invoked by new, all properties and methods of the proto-
type for the function are attached to the resulting object. That sounds a bit
strange, but it’s simple enough in action:

function MyObject(name,size){
 this.name=name;
 this.size=size;
}

MyObject.prototype.tellSize=function(){
 alert("size of "+this.name+" is "+this.size);
}

var myObj=new MyObject("tiddles","7.5 meters");
myObj.tellSize();

First, we declare the constructor as before, and then we add functions to the pro-
totype. When we create an instance of the object, the function is attached. The
keyword this resolves to the object instance at runtime, and all is well.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 599
 Note the ordering of events here. We can refer to the prototype only after the
constructor function is declared, and objects will inherit from the prototype only
what has already been added to it before the constructor is invoked. The proto-
type can be altered between invocations to the constructor, and we can attach any-
thing to the prototype, not just a function:

MyObject.prototype.color="red";
var obj1=new MyObject();

MyObject.prototype.color="blue";
MyObject.prototype.soundEffect="boOOOoing!!";
var obj2=new MyObject();

obj1 will be red, with no sound effect, and obj2 will be blue with an annoyingly
cheerful sound effect! There is generally little value in altering prototypes on the
fly in this way. It’s useful to know that such things can happen, but using the pro-
totype to define class-like behavior for JavaScript objects is the safe and sure route.

 Interestingly, the prototype of certain built-in classes (that is, those imple-
mented by the browser and exposed through JavaScript, also known as host objects)
can be extended, too. Let’s have a look at how that works now.

B.2.3 Extending built-in classes

JavaScript is designed to be embedded in programs that can expose their own
native objects, typically written in C++ or Java, to the scripting environment.
These objects are usually described as built-in or host objects, and they differ in
some regards to the user-defined objects that we have discussed so far. Nonethe-
less, the prototype mechanism can work with built-in classes, too. Within the web
browser, DOM nodes cannot be extended in the Internet Explorer browser, but
other core classes work across all major browsers. Let’s take the Array class as an
example and define a few useful helper functions:

Array.prototype.indexOf=function(obj){
 var result=-1;
 for (var i=0;i<this.length;i++){
 if (this[i]==obj){
 result=i;
 break;
 }
 }
 return result;
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

600 APPENDIX B
JavaScript for object-oriented programmers
This provides an extra function to the Array object that returns the numerical
index of an object in a given array, or -1 if the array doesn’t contain the object. We
can build on this further, writing a convenience method to check whether an
array contains an object:

Array.prototype.contains=function(obj){
 return (this.indexOf(obj)>=0);
}

and then add another function for appending new members after optionally
checking for duplicates:

Array.prototype.append=function(obj,nodup){
 if (!(nodup && this.contains(obj))){
 this[this.length]=obj;
 }
}

Any Array objects created after the declaration of these functions, whether by the
new operator or as part of a JSON expression, will be able to use these functions:

var numbers=[1,2,3,4,5];
var got8=numbers.contains(8);
numbers.append("cheese",true);

As with the prototypes of user-defined objects, these can be manipulated in the
midst of object creation, but I generally recommend that the prototype be modi-
fied once only at the outset of a program, to avoid unnecessary confusion, partic-
ularly if you’re working with a team of programmers.

 Prototypes can offer us a lot, then, when developing client-side object models
for our Ajax applications. A meticulous object modeler used to C++, Java, or C#
may not only want to define various object types but to implement inheritance
between types. JavaScript doesn’t offer this out of the box, but the prototype can
come in useful here, too. Let’s find out how.

B.2.4 Inheritance of prototypes

Object orientation provides not only support for distinct object classes but also a
structured hierarchy of inheritance between them. The classic example is the
Shape object, which defines methods for computing perimeter and area, on top
of which we build concrete implementations for rectangles, squares, triangles,
and circles.

 With inheritance comes the concept of scope. The scope of an object’s meth-
ods or properties determines who can use it—that is, whether it is public, pri-
vate, or protected.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 601
 Scope and inheritance can be useful features when defining a domain model.
Unfortunately, JavaScript doesn’t support either natively. That hasn’t stopped
people from trying, however, and some fairly elegant solutions have developed.

 Doug Crockford (see the Resources section at the end of this appendix) has
developed some ingenious workarounds that enable both inheritance and scope
in JavaScript objects. What he has accomplished is undoubtedly impressive and,
unfortunately, too involved to merit a detailed treatment here. The syntax that
his techniques require can be somewhat impenetrable to the casual reader, and in
a team-based project, adopting such techniques should be considered similar to
adopting a Java framework of the size and complexity of Struts or Tapestry—that
is, either everybody uses it or nobody does. I urge anyone with an interest in this
area to read the essays on Crockford’s website.

 Within the world of object orientation, there has been a gradual move away
from complex use of inheritance and toward composition. With composition,
common functionality is moved out into a helper class, which can be attached as
a member of any class that needs it. In many scenarios, composition can pro-
vide similar benefits to inheritance, and JavaScript supports composition per-
fectly adequately.

 The next stop in our brief tour of JavaScript objects is to look at reflection.

B.2.5 Reflecting on JavaScript objects

In the normal course of writing code, the programmer has a clear understanding
of how the objects he is dealing with are composed, that is, what their properties
and methods do. In some cases, though, we need to be able to deal with com-
pletely unknown objects and discover the nature of their properties and methods
before dealing with them. For example, if we are writing a logging or debugging
system, we may be required to handle arbitrary objects dumped on us from the
outside world. This discovery process is known as reflection, and it should be famil-
iar to most Java and .NET programmers.

 If we want to find out whether a JavaScript object supports a certain property
or method, we can simply test for it:

if (MyObject.someProperty){
 ...
}

This will fail, however, if MyObject.someProperty has been assigned the boolean
value false, or a numerical 0, or the special value null. A more rigorous test
would be to write

if (typeof(MyObject.someProperty) != "undefined"){
Licensed to jonathan zheng <yiyisjun@gmail.com>

602 APPENDIX B
JavaScript for object-oriented programmers
If we are concerned about the type of the property, we can also use the instanceof
operator. This recognizes a few basic built-in types:

if (myObj instanceof Array){
 ...
}else if (myObj instanceof Object){
 ...
}

as well as any class definitions that we define ourselves through constructors:

if (myObj instanceof MyObject){
 ...
}

If you do like using instanceof to test for custom classes, be aware of a couple of
“gotchas.” First, JSON doesn’t support it—anything created with JSON is either a
JavaScript Object or an Array. Second, built-in objects do support inheritance
among themselves. Function and Array, for example, both inherit from Object, so
the order of testing matters. If we write

function testType(myObj){
 if (myObj instanceof Array){
 alert("it's an array");
 }else if (myObj instanceof Object){
 alert("it's an object");
 }
}
testType([1,2,3,4]);

and pass an Array through the code, we will be told—correctly—that we have an
Array. If, on the other hand, we write

function testType(myObj){
 if (myObj instanceof Object){
 alert("it's an object");
 }else if (myObj instanceof Array){
 alert("it's an array");
 }
}
testType([1,2,3,4]);

then we will be told that we have an Object, which is also technically correct but
probably not what we intended.

 Finally, there are times when we may want to exhaustively discover all of an
object’s properties and functions. We can do this using the simple for loop:

function MyObject(){
 this.color='red';
 this.flavor='strawberry';
Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 603
 this.azimuth='45 degrees';
 this.favoriteDog='collie';
}

var myObj=new MyObject();
var debug="discovering...\n";
for (var i in myObj){
 debug+=i+" -> "+myObj[i]+"\n";
}
alert(debug);

This loop will execute four times, returning all the values set in the constructor.
The for loop syntax works on built-in objects, too—the simple debug loop above
produces very big alert boxes when pointed at DOM nodes! A more developed
version of this technique is used in the examples in chapters 5 and 6 to develop
the recursive ObjectViewer user interface.

 There is one more feature of the conventional object-oriented language that
we need to address—the virtual class or interface. Let’s look at that now.

B.2.6 Interfaces and duck typing

There are many times in software development when we will want to specify how
something behaves without providing a concrete implementation. In the case of
our Shape object being subclassed by squares, circles, and so on, for example, we
know that we will never hold a shape in our hands that is not a specific type of
shape. The base concept of the Shape object is a convenient abstraction of com-
mon properties, without a real-world equivalent.

 A C++ virtual class or a Java interface provides us with the necessary mecha-
nism to define these concepts in code. We often speak of the interface defining a
contract between the various components of the software. With the contract in
place, the author of a Shape-processing library doesn’t need to consider the spe-
cific implementations, and the author of a new implementation of Shape doesn’t
need to consider the internals of any library code or any other existing imple-
mentations of the interface.

 Interfaces provide good separation of concerns and underpin many design
patterns. If we’re using design patterns in Ajax, we want to use interfaces. Java-
Script has no formal concept of an interface, so how do we do it?

 The simplest approach is to define the contract informally and simply rely on
the developers at each side of the interface to know what they are doing. Dave
Thomas has given this approach the engaging name of “duck typing”—if it walks
like a duck and it quacks like a duck, then it is a duck. Similarly with our Shape
interface, if it can compute an area and a perimeter, then it is a shape.
Licensed to jonathan zheng <yiyisjun@gmail.com>

604 APPENDIX B
JavaScript for object-oriented programmers
 Let’s suppose that we want to add the area of two shapes together. In Java, we
could write

public double addAreas(Shape s1, Shape s2){
 return s1.getArea()+s2.getArea();
}

The method signature specifically forbids us from passing in anything other than
a shape, so inside the method body, we know we’re following the contract. In
JavaScript, our method arguments aren’t typed, so we have no such guarantees:

function addAreas(s1,s2){
 return s1.getArea()+s2.getArea();
}

If either object doesn’t have a function getArea() attached to it, then we will get a
JavaScript error. We can check for the presence of the function before we call it:

function hasArea(obj){
 return obj && obj.getArea && obj.getArea instanceof Function;
}

and modify our function to make use of the check:

function addAreas(s1,s2){
 var total=null;
 if (hasArea(s1) && hasArea(s2)){
 total=s1.getArea()+s2.getArea();
 }
 return total;
}

Using JavaScript reflection, in fact, we can write a generic function to check that
an object has a function of a specific name:

function implements(obj,funcName){
 return obj && obj[funcName] && obj[funcName] instanceof Function;
}

Or, we can attach it to the prototype for the Object class:

Object.prototype.implements=function(funcName){
 return this && this[funcName] && this[funcName] instanceof Function;
}

That allows us to check specific functions by name:

function hasArea(obj){
 return obj.implements("getArea");
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

Objects in JavaScript 605
or even to test for compliance with an entire interface:

function isShape(obj){
 return obj.implements("getArea") && obj.implements("getPerimeter");
}

This gives us some degree of safety, although still not as much as we would get
under Java. A rogue object might implement getArea() to return a string rather
than a numerical value, for example. We have no way of knowing the return type
of a JavaScript function unless we call it, because JavaScript functions have no
predefined type. (Indeed, we could write a function that returns a number during
the week and a string on weekends.) Writing a set of simple test functions to check
return types is easy enough; for example:

function isNum(arg){
 return parseFloat(arg)!=NaN;
}

NaN is short for “not a number,” a special JavaScript variable for handling number
format errors. This function will actually return true for strings if they begin with
a numeric portion, in fact. parseFloat() and its cousin parseInt() will try their
best to extract a recognizable number where they can. parseFloat("64 hectares")
will evaluate to 64, not NaN.

 We could firm up our addAreas() function a little further:

function addAreas(s1,s2){
 var total=null;
 if (hasArea(s1) && hasArea(s2)){
 var a1=s1.getArea();
 var a2=s2.getArea();
 if (isNum(a1) && isNum(a2)){
 total=parseFloat(a1)+parseFloat(a2);
 }
 }
 return total;
}

I call parseFloat() on both arguments to correctly handle strings that slip
through the net. If s1 returns a value of 32 and s2 a value of 64 hectares, then
addAreas() will return 96. If I didn’t use parseFloat, I’d get a misleading value of
3264 hectares!

 In summary, duck typing keeps things simple but requires you to trust your
development team to keep track of all the details. Duck typing is popular among
the Ruby community, who are generally a very smart bunch. As one moves from a
single author or small tightly bound team to larger projects involving separate
Licensed to jonathan zheng <yiyisjun@gmail.com>

606 APPENDIX B
JavaScript for object-oriented programmers
subgroups, this trust inevitably weakens. If you want to add a few checks and bal-
ances to your code on top of duck typing, then perhaps this section will have
shown you where to start.

 We’ve looked at the language from the point of view of objects. Now let’s drill
down a little to look at these functions that we’ve been throwing around and see
what they really are.

B.3 Methods and functions

We’ve been defining functions and calling them in the previous section and in the
rest of this book. A Java or C# programmer might have assumed that they were
something like a method, defined with a slightly funny-looking syntax. In this
section, we’ll take functions apart a bit more and see what we can do with them.

B.3.1 Functions as first-class citizens

Functions are a bit like Java methods in that they have arguments and return val-
ues when invoked, but there is a key difference. A Java method is inherently
bound to the class that defined it and cannot exist apart from that class. A Java-
Script function is a free-floating entity, a first-class object in its own right. (Static
Java methods lie somewhere in between these two—they are not bound to any
instance of an object but are still attached to a class definition.)

 Programmers who have worked their way through the C family may think
“Ah, so it’s like a function pointer in C++, then.” It is indeed, but that’s not the
end of it.

 In JavaScript, Function is a type of built-in object. As expected, it contains exe-
cutable code, and can be invoked, but it is also a descendant of Object, and can do
everything that a JavaScript object can, such as storing properties by name. It is
quite possible (and quite common) for a Function object to have other Function
objects attached to it as methods.

 We’ve already seen how to get a reference to a Function object. More usually,
we would want to reference a function and invoke it in a single line, such as

var result=MyObject.doSomething(x,y,z)

However, the Function is a first-class object, and it can also be executed via the
call() method (and its close cousin apply()):

var result=MyObject.doSomething.call(MyOtherObject,x,y,z)

or even
Licensed to jonathan zheng <yiyisjun@gmail.com>

Methods and functions 607
var result=MyObject['doSomething'].call(MyOtherObject,x,y,z)

The first argument of Function.call() is the object that will serve as the function
context during the invocation, and subsequent arguments are treated as argu-
ments to the function call. apply() works slightly differently in that the second
argument is an array of arguments to pass to the function call, allowing greater
flexibility in programmatically calling functions whose argument list length is
undetermined.

 It’s worth pointing out here that the argument list to a JavaScript function is
not of a fixed length. Calling a Java or C# method with more or fewer arguments
than it declares would generate a compile-time error. JavaScript just ignores any
extra args and assigns undefined to missing ones. A particularly clever function
might query its own argument list through the arguments property and assign
sensible defaults to missing values, throw an exception, or take any other reme-
dial action. This can be exploited to combine a getter and setter method into a
single function, for example:

function area(value){
 if (value){
 this.area=value;
 }
 return this.area;
}

If we simply call area(), then value is undefined, so no assignment takes place,
and our function acts as a getter. If a value is passed in, our function acts as a set-
ter. This technique is used extensively by Mike Foster’s x library (see the Resources
section at the end of this chapter, and also chapter 3), so if you plan on working
with that, you’ll soon be familiar with the idiom.

 Functions become really interesting, though, when we take advantage of their
independence as first-class objects.

B.3.2 Attaching functions to objects

As a functional language, JavaScript allows us to define functions in the absence
of any object, for example:

function doSomething(x,y,z){ ... }

Functions can also be defined inline:

var doSomething=function(x,y,z){ ... }

As a concession to object-orientation, functions may be attached to objects, giving
the semblance of a Java or C# method. There is more than one way of doing this.
Licensed to jonathan zheng <yiyisjun@gmail.com>

608 APPENDIX B
JavaScript for object-oriented programmers
 We can attach a predefined function to a predefined object (in which case
only that object can call the function, not any other object derived from the
same prototype):

myObj.doSomethingNew=doSomething;
myObj.doSomethingNew(x,y,z);

We can also attach functions such that every instance of a class can access them, by
adding the function (either predefined or declared inline) to the new object in
the constructor, as we saw in section B.2.2, or by attaching it to the prototype.

 Once we’ve done this, though, they aren’t very strongly attached, as we will see.

B.3.3 Borrowing functions from other objects

Giving functions first-class object status alters the capabilities of a language sig-
nificantly. Furthermore, an understanding of these alterations is important when
coding GUI event handling, so most Ajax programmers would do well to under-
stand it.

 So what are these new capabilities? Well, first off, one object can borrow
another’s function and call it on itself. Let’s define a class to represent species of
tree in a taxonomic system:

function Tree(name, leaf, bark){
 this.name=name;
 this.leaf=leaf;
 this.bark=bark;
}

Next, we’ll add a function to it that provides a quick description of the tree:

Tree.prototype.describe=function(){
 return this.name+": leaf="+this.leaf+", bark="+this.bark;
}

If we now instantiate a Tree object and ask it to describe itself, we get a fairly pre-
dictable response:

var Beech=new Tree("green, serrated edge","smooth");
alert(Beech.describe());

The alert box will display the text Beech: leaf=green, serrated edge,

bark=smooth. So far, so good. Now let us define a class to represent a dog:

function Dog(name,bark){
 this.name=name;
 this.bark=bark;
}

Licensed to jonathan zheng <yiyisjun@gmail.com>

Methods and functions 609
and create an instance of our Dog class:

var Snowy=new Dog("snowy","wau! wau!");

Snowy wants to show us his bark, but, although we’ve defined it for him, he has no
function through which to express it. He can, however, hijack the Tree class’s
function:

var tmpFunc=Beech.describe;
tmpFunc.call(Snowy);

Remember, the first argument to function.call() is the context object, that is,
the object that the special variable this will resolve to. The previous code will
generate an alert box displaying the text Snowy: leaf=undefined, bark=wau! wau!.
Well, it’s better than nothing for the poor dog.

 So what’s going on here? How can a dog call a function that really belongs to a
tree? The answer is that the function doesn’t belong to the tree. Despite being
peppered with references to this, assigning the function to the Tree prototype
binds it only inasmuch as it enables us to use the shorter MyTree.describe() nota-
tion. Internally, the function is stored as a piece of text that gets evaluated every
time it is called, and that allows the meaning of this to differ from one invocation
to the next.

 Borrowing functions is a neat trick that we can use in our own code, but in
production-quality code, we’d prefer to see someone implement a bark()
method for Snowy of his very own. The real reason for discussing this behavior is
that when you are writing event-handling code, the web browser will do it for you
behind the scenes.

B.3.4 Ajax event handling and function contexts

Ajax event handlers are pretty much the same as most GUI toolkit languages, with
specialized categories for mouse and keyboard events, as we saw in chapter 4. Our
example uses the onclick handler, fired when a mouse is clicked on a visible ele-
ment. A full discussion of DHTML event handling is beyond the scope of this
book, but let’s take the time here to highlight a particular issue that can often trip
up the unwary.

 Event handlers can be declared either as part of the HTML markup; for
example

<div id='myDiv' onclick='alert:alert(this.id)'></div>

or programmatically; for example:
Licensed to jonathan zheng <yiyisjun@gmail.com>

610 APPENDIX B
JavaScript for object-oriented programmers
 function clickHandler(){ alert(this.id); }
 myDiv.onclick=clickHandler;

Note that in the programmatic case, we pass a reference to the Function object
(that is no () after the clickHandler). When declaring the function in the HTML,
we are effectively declaring an anonymous function inline, equivalent to

myDiv.onclick=function(){ alert(this.id); }

Note that in both cases, the function has no arguments assigned to it, nor is there
any way for us to pass in arguments with the mouse click. However, when we click
on the DOM element, the function is called with an Event object as the argument
and the element itself as the context object. Knowing this can save a lot of grief
and puzzlement, particularly when you’re writing object-based code. The key
source of confusion is that the DOM node is always passed as context, even if the
function is attached to the prototype of a different object.

 In the following example, we define a simple object with an event handler for
a visible GUI element that it knows about. We can think of the object as the Model
in MVC terms, with the event handler taking the role of Controller, and the DOM
element being the View.

 function myObj(id,div){
 this.id=id;
 this.div=div;

 this.div.onclick=this.clickHandler;
 }

The constructor takes an internal ID and a DOM element, to which it assigns an
onclick handler. We define the event handler as follows:

 myObj.prototype.clickHandler=function(event){
 alert(this.id);
 }

So, when we click on the GUI element, it will alert us to the ID of that object, right?
In fact, it won’t, because the myObj.clickHandler function will get borrowed by the
browser (just as our wayward dog borrowed a method from the tree object in the
previous section) and invoked in the context of the element, not the Model object.
Since the element happens to have a built-in id property, it will show a value, and,
depending on your naming conventions, it may even be the same as the Model
object’s ID, allowing the misunderstanding to continue for some time.

 If we want the event handler to refer to the Model object that we’ve attached
it to, we need another way of passing the reference to that object across. There
Licensed to jonathan zheng <yiyisjun@gmail.com>

Methods and functions 611
are two idioms for doing this that I’ve commonly come across. One is clearly
superior to the other, in my opinion, but I coded for years using the other one,
and it works. One of the aims of this book is to give names to the patterns (and
anti-patterns) that we have adopted by habit, so I will present both here.

Referencing the Model by name
In this solution, we assign a globally unique ID to each instance of our Model
object and keep a global array of these objects referenced by the ID. Given a ref-
erence to a DOM element, we can then reference its Model object by using part of
the ID as a key to the lookup array. Figure B.1 illustrates this strategy.

 Generating a unique ID for every element is an overhead in this approach, but
ID generation can be accomplished fairly automatically. We can use the array
length as part of the key, for example, or a database key, if we’re generating code
on the web server.

 As a simple example, we’re creating an object of type myObj, which has a click-
able title bar that invokes a function myObj.foo().

 Here is the global array:

var MyObjects=new Array();

And here is the constructor function, which registers the Model object with
that array:

Model object

Event handler

3. Retrieve reference
 to Model

Global lookup

DOM element

2. Query lookup
 with id fragment

1. Resolve this.id and
 extract fragment

Figure B.1 Referencing the Model from an event handler function by
name. The DOM element ID is parsed, and the parsed value used as a
key to a global lookup array.
Licensed to jonathan zheng <yiyisjun@gmail.com>

612 APPENDIX B
JavaScript for object-oriented programmers
function myObj(id){
 this.uid=id;
 MyObjects[this.uid]=this;
 ...
 this.render();
}

Here is a method of the myObj object, which does something exciting. We want to
invoke this when the title bar is clicked:

myObj.prototype.foo=function(){
 alert('foooo!!! '+this.uid);
}

Here is the object’s render() method, which creates various DOM nodes:

myObj.prototype.render=function(){
 ...
 this.body=document.createElement("div");
 this.body.id=this.uid+"_body";
 ...
 this.titleBar=document.createElement("div");
 this.titleBar.id=this.uid+"_titleBar";
 this.titleBar.onclick=fooEventHandler;
 ...
}

When we construct any DOM nodes in the view for this Model object, we assign an
ID value to them that contains the Model object ID.

 Note that we refer to a function fooEventHandler() and set it as the onclick
property of our title bar DOM element:

function fooEventHandler(event){
 var modelObj=getMyObj(this.id);
 if (modelObj){ modelObj.foo(); }
 }
}

The event handler function will need to find the instance of myObj in order to
invoke its foo() method. We provide a finder method:

function getMyObj(id){
 var key=id.split("_")[0];
 return MyObjects[key];
}

It has a reference to the DOM node and can use its id property to extract a key
from which to retrieve the Model object from the global array.

 And there it is. The Reference Model By Name method served me well for a few
years, and it works, but there is a simpler, cleaner way that doesn’t pepper your
Licensed to jonathan zheng <yiyisjun@gmail.com>

Methods and functions 613
DOM tree with lengthy IDs. (Actually, I never reached a decision as to whether
that was good or bad. It was a waste of memory, for sure, but it also made debug-
ging in the Mozilla DOM Inspector very easy.)

Attaching a Model to the DOM node
In this second approach to DOM event handling, everything is done with object
references, not strings, and no global lookup array is needed. This is the
approach that has been used throughout this book. Figure B.2 illustrates this
approach.

 This approach simplifies the event handler’s job considerably. The construc-
tor function for the Model object needs no specialized ID manipulation, and the
foo() method is defined as before. When we construct DOM nodes, we exploit
JavaScript’s dynamic ability to attach arbitrary attributes to any object and clip
the Model object directly onto the DOM node receiving the event:

myObj.prototype.createView=function(){
 ...
 this.body=document.createElement("div");
 this.body.modelObj=this;
 ...
 this.titleBar=document.createElement("div");
 this.titleBar.modelObj=this;
 this.titleBar.onclick=fooEventHandler;
 ...
}

When we write the event handler, we can then get a direct reference back to
the Model:

Model object

Event handler

DOM element

2. Resolve
 this.modelObj

1. Resolve this

Figure B.2
Attaching a reference to the Model directly to
a DOM node makes it easier for the event
handler function to find the Model at runtime.
Licensed to jonathan zheng <yiyisjun@gmail.com>

614 APPENDIX B
JavaScript for object-oriented programmers
function fooEventHandler(event){
 var modelObj=this.modelObj;
 if (modelObj){ modelObj.foo(); }
 }
}

No finders, no global lookups—it’s as simple as that.
 One word of warning, however. When using this pattern, we create a cyclic

reference between a DOM and a non-DOM variable, and web browser folklore has
it that this is bad for garbage collection under certain popular browsers of the
day. If this pattern is used correctly, memory overheads can be avoided, but I’d
recommend you study chapter 7 before implementing the Attach Model To DOM
Node pattern.

 Understanding how a JavaScript function has defined its context has helped
us to develop an elegant reusable solution for the browser event model, then. The
ability of a function to switch between contexts can be confusing at first, but
understanding the model behind us helps to work with it.

 The final thing that we need to understand about JavaScript functions is the
language’s ability to create closures. Again, Java and C# lack the concept of clo-
sures, although some Java and .NET scripting languages, such as Groovy and
Boo, support them, and C# 2.0 will support them, too. Let’s look at what they are
and how to work with them.

B.3.5 Closures in JavaScript

On its own, a Function object is incomplete—to invoke it, we need to pass in a
context object and a set of arguments (possibly an empty set). At its simplest, a
closure can be thought of as a Function bundled with all the resources that it
needs to execute.

 Closures are created in JavaScript implicitly, rather than explicitly. There is no
constructor function new Closure() and no way to get a handle on a closure
object. Creating a closure is as simple as declaring a function within a code block
(such as another function) and making that function available outside the block.

 Again, this sounds a bit weird conceptually but is simple enough when we
look at an example. Let’s define a simple object to represent a robot and record
the system clock time at which each robot is created. We can write a constructor
like this:

function Robot(){
 var createTime=new Date();
 this.getAge=function(){
 var now=new Date();
Licensed to jonathan zheng <yiyisjun@gmail.com>

Methods and functions 615
 var age=now-createTime;
 return age;
 }
}

(All the robots are identical, so we haven’t bothered to assign names or anything
else through constructor arguments.) Normally, we would record createTime as a
member property, that is, write

this.createTime=new Date();

but here we’ve deliberately created it as a local variable, whose scope is limited to
the block in which it is called, that is, the constructor. On the second line of the
constructor, we define a function getAge(). Note here that we’re defining a func-
tion inside another function and that the inner function uses the local variable
createTime, belonging to the scope of the outer function. By doing this, and
nothing else, we have in fact created a closure. If we define a robot and ask it how
old it is once the page has loaded,

var robbie=new Robot();

window.onload=function(){
 alert(robbie.getAge());
}

then it works and gives us a value of around 10–50 milliseconds, the difference
between the script first executing and the page loading up. Although we have
declared createTime as being local to the constructor function scope, it cannot be
garbage-collected so long as Robbie the robot is still referenced, because it has
been bound up in a closure.

 The closure works only if the inner function is created inside the outer one. If
we refactor my code to predefine the getAge function and share it between all
robot instances, like so

function Robot(){
 var createTime=new Date();
 this.getAge=roboAge;
}

function roboAge(){
 var now=new Date();
 var age=now-createTime;
 return age;
};

then the closure isn’t created, and we get an error message telling me that cre-
ateTime is not defined.
Licensed to jonathan zheng <yiyisjun@gmail.com>

616 APPENDIX B
JavaScript for object-oriented programmers
 Closures are very easy to create and far too easy to create accidentally, because
closures bind otherwise local variables and keep them from the garbage collector.
If DOM nodes, for example, get caught up in this way, then inadvertently created
closures can lead to significant memory leaks over time.

 The most common situation in which to create closures is when binding an
event-handler callback function to the source of the event. As we discussed in sec-
tion B.3.4, the callback is invoked with a context and set of arguments that is
sometimes not as useful as it might be. We presented a pattern for attaching addi-
tional references (the Model object) to the DOM element that generates the event,
allowing us to retrieve the Model via the DOM element. Closures provide an alter-
native way of doing this, as illustrated here:

myObj.prototype.createView=function(){
 ...
 this.titleBar=document.createElement("div");
 var modelObj=this;
 this.titleBar.onclick=function(){
 fooEventHandler.call(modelObj);
 }
}

The anonymous onclick handler function that we define makes a reference to the
locally declared variable modelObj, and so a closure is created around it, allowing
modelObj to be resolved when the function is invoked. Note that closures will
resolve only local variables, not those referenced through this.

 We use this approach in the ContentLoader object that we introduced in chap-
ter 2, because the onreadystatechange callback provided in Internet Explorer
returns the window object as the function context. Since window is defined glo-
bally, we have no way of knowing which ContentLoader’s readyState has changed,
unless we pass a reference to the relevant loader object through a closure.

 My recommendation to the average Ajax programmer is to avoid closures if
there is an alternative. If you use the prototype to assign functions to your custom
object types, then you don’t duplicate the functions and you don’t create closures.
Let’s rewrite our Robot class to follow this advice:

function Robot(){
 this.createTime=new Date();
}

Robot.prototype.getAge=function(){
 var now=new Date();
 var age=now-this.createTime;
 return age;
};
Licensed to jonathan zheng <yiyisjun@gmail.com>

Resources 617
The function getAge() is defined only once, and, because it is attached to the pro-
totype, it is accessible to every Robot that we create.

 Closures have their uses, but we’d consider them an advanced topic. If you do
want to explore closures in greater depth, then Jim Ley’s article, listed in the
Resources section, is a good place to start.

B.4 Conclusions

We’ve taken you through some of the stranger and more interesting features of
the JavaScript language in this appendix, with two purposes in mind. The first
was to show the expressive power of the language. The second was to point out
several traps for the unwary, in which thinking in an OO style may result in sub-
optimal or even dangerous code.

 We’ve looked at JavaScript’s support for objects and at the similarities between
the Object and Array classes. We’ve seen several ways of instantiating JavaScript
objects, using JSON, constructor functions, and the prototype concept. Along the
way, we’ve discussed how to tackle OO concepts such as inheritance and interfaces
in JavaScript, in ways that work with rather than against the language.

 In our exploration of JavaScript Function objects, we saw how functions can
exist independently of any object to which they are assigned and even be bor-
rowed or swapped between objects. We used this knowledge to get a better under-
standing of the JavaScript event model. Finally, we looked at closures and saw how
some common programming idioms can create closures unintentionally, poten-
tially resulting in memory leaks.

 Compared to Java or C#, JavaScript offers a great deal of flexibility and scope
for developing personal styles and approaches to the language. This can be liber-
ating for the individual programmer, provided that you know what you are doing.
It can also present problems when working in teams, but these problems can be
alleviated by shared coding conventions or house styles.

 JavaScript can be a very enjoyable language to work with, once you under-
stand what makes it tick. If you’re coming to Ajax from a structured OO back-
ground, we hope that this chapter has helped you to cross the gap.

B.5 Resources

There are very few books on JavaScript the language, as opposed to web browser
programming. David Flanagan’s JavaScript: The Definitive Guide (O’Reilly, 2001)
is the definitive work. It’s a bit old, but a new version is due out next year. A more
Licensed to jonathan zheng <yiyisjun@gmail.com>

618 APPENDIX B
JavaScript for object-oriented programmers
recent book, Nicholas Zakas’s Professional JavaScript for Web Developers (Wrox,
2004) offers a good language overview, too, and covers some more recent devel-
opments in the language.

 On the Web, Doug Crockford discusses object-oriented approaches to Java-
Script, such as creating private members for classes (www.crockford.com/javas-
cript/private.html) and inheritance (www.crockford.com/javascript/private.html).
Peter-Paul Koch’s Quirksmode site (http://quirksmode.org) also discusses many of
the finer points of the language. Jim Ley’s discussion of closures in JavaScript can
be found at http://jibbering.com/faq/faq_notes/closures.html.

 Mike Foster’s x library can be found at www.cross-browser.com.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks
and libraries
619

Licensed to jonathan zheng <yiyisjun@gmail.com>

620 APPENDIX C
Ajax frameworks and libraries
The last year has seen a rapid proliferation of Ajax and JavaScript frameworks,
from small cross-browser wrapper utilities to complete end-to-end client and
server solutions. In this appendix, we attempt to take a snapshot of the current
range of offerings, with apologies to any that we’ve omitted.

 We, the authors of this book, haven’t personally used all of these frame-
works and toolkits in a production setting, and in many cases we’ve based our
descriptions on the author or vendor’s own claims for the toolkit. If you’re
reading this a year after publication, many of the descriptions will be wildly
inaccurate or out of date, and many of the frameworks may have been aban-
doned or absorbed into other projects. The current state of play is unstable, in
our opinions, and we would expect a few successful frameworks to predominate
over the next 12 months.

 So here, without any further ado, is our roundup of Ajax frameworks that you
might encounter in the wild. We haven’t attempted to categorize them beyond
listing them alphabetically. Happy coding!

Accesskey Underlining Library
Open source
www.gerv.net/software/aul/

Adds accesskey underlining to pages without requiring <u> tags in the source. Tag
items with the accesskey attribute and JavaScript will create the appropriate
underlining tags in the DOM.

ActiveWidgets
Commercial with free download
www.activewidgets.com

Rich client JavaScript widgets; current flagship product is a rich grid widget.

Ajax JavaServer Faces Framework
Open source (Apache)
http://smirnov.org.ru/en/ajax-jsf.html

The Ajax-JSF framework is designed to allow simple conversion of any existing
JavaServer Faces application to Ajax functionality. Most of the existing compo-
nents can be used as is or simply converted to Ajax support. Proposal to MyFaces
project. Minimal differences from JSF specifications.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 621
Ajax JSP Tag Library
Open source
http://ajaxtags.sourceforge.net/

The Ajax JSP Tag Library is a set of JSP tags that simplify the use of Asynchronous
JavaScript and XML (Ajax) technology in JavaServer Pages. This tag library eases
development by not forcing J2EE developers to write the necessary JavaScript to
implement an Ajax-capable web form.

 Autocomplete retrieves a list of values that matches the string entered in a text
form field as the user types. Callout displays a callout or popup balloon,
anchored to an HTML element with an onclick event. Select populates a second
select field based on a selection within a drop-down field. Toggle switches a hid-
den form field between true and false and at the same time switches an image
between two sources. Update Field updates one or more form field values based
on the response to text entered in another field.

Ajax.NET
Michael Schwarz (2005)
Unspecified, free to use
http://weblogs.asp.net/mschwarz/

Ajax.NET is a library enabling various kinds of access from JavaScript to server-
side .NET. Can pass calls from JavaScript into .NET methods and back out to Java-
Script callbacks. Can access session data from JavaScript. Caches results. No
source code change needed on server side; mark methods to expose with an
attribute. Provides full class support for return values on client-side JavaScript,
including DataTable, DataSet, DataView, Arrays, and Collections.

AjaxAC
Open source (Apache 2.0)
http://ajax.zervaas.com.au

AjaxAC encapsulates the entire application in a single PHP class. All applica-
tion code is self-contained in a single class (plus any additional JavaScript
libraries). The calling PHP file/HTML page is very clean. You simply create the
application class, then reference the application JavaScript and attach any
required HTML elements to the application. No messy JavaScript code clogging
up the calling HTML code; all events are dynamically attached. Easy to inte-
grate with templating engine, and to hook into existing PHP classes or MySQL
database for returning data from subrequests. Extensible widget structure lets
Licensed to jonathan zheng <yiyisjun@gmail.com>

622 APPENDIX C
Ajax frameworks and libraries
you easily create further JavaScript objects (this needs a bit of work, though,
according to the author).

AjaxAspects
Free to use with source
http://ajaxaspects.blogspot.com

AjaxAspects is an engine that uses JavaScript proxies to call server-side Web Ser-
vice methods. Standard SOAP and WSDL is reused for the communication between
client and server. Simple types and XML objects are supported as parameters and
return values. Supports caching and queuing of actions.

AjaxCaller
Michael Mahemoff (2005)
Open source
http://ajaxify.com/run/testAjaxCaller

AjaxCaller is a basic thread-safe wrapper around XMLHttpRequest mainly for
Ajax newcomers; still raw alpha and under development and is only packaged
with the AjaxPatterns live search demo for now. Follows REST principles.

AjaxFaces
Open source (ASF)
http://myfaces.apache.org/

Apache’s JavaServer Faces implementation; currently experimenting with Ajax
support.

BackBase
Commercial with community edition
http://www.backbase.com

BackBase is a comprehensive browser-side framework with support for rich
browser functionality as well as .NET and Java integration. BackBase provides
Rich Internet Application (RIA) software that radically improves the usability and
effectiveness of online applications, and increases developer productivity. With
BackBase you can build web applications with a richer and more responsive user
interface. BackBase provides separation of presentation from logic through a cus-
tom XHTML namespace.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 623
Behaviour
Ben Nolan (2005)
Open source
www.ripcord.co.nz/behaviour/

Behaviour works by using CSS selectors to add JavaScript code to DOM elements.
You create a hash of CSS selectors and functions that take an element, and add
JavaScript event handlers such as onclick. You then register these rules against a
page and compare them against their matching DOM elements, and the Java-
Script code is added. The code is designed in a way that you can treat these rule
files just like stylesheets so that all the page using them needs is an include.
Behaviour’s goal is to remove the heavy use of onclick attributes and script nodes
from pages so they aren’t messing up content. It works well and can help make
your JavaScript more reusable since it’s more centralized.

Bindows
Commercial
www.bindows.net

Bindows is a software development kit (SDK) that generates highly interactive
Internet applications with richness that rivals modern desktop applications using
the strong combination of DHTML, JavaScript, CSS, and XML. Bindows applica-
tions require no downloads and no installation on the user’s side; only a browser
is required (no Java, Flash, or ActiveX is used). Bindows provides a range of wid-
gets, as well as native XML, SOAP, and XML-RPC support.

BlueShoes
Commercial with free version
www.blueshoes.org

Rich component suite, including a WYSIWYG text editor and spreadsheet widget.

CakePHP
Open source
http://cakephp.org/

A comprehensive port of Ruby on Rails to PHP, including top-notch support
for Ajax.
Licensed to jonathan zheng <yiyisjun@gmail.com>

624 APPENDIX C
Ajax frameworks and libraries
CL-Ajax
Richard Newman (2005)
Open source
http://cliki.net/cl-ajax

CL-Ajax directs JavaScript calls directly into server-side Lisp functions. Generates
JavaScript stub with arguments. Can call back to JavaScript functions or DOM
objects. May be integrated into SAJAX.

ComfortASP.NET
Pre-release commercial with free download
www.daniel-zeiss.de/ComfortASP/

ComfortASP.NET is an approach that lets developers rely on pure ASP.NET pro-
gramming while offering Ajax-like features. ComfortASP.NET uses Ajax (DHTML,
JavaScript, XMLHTTP) to implement these features, but the web developer only
implements pure server-side ASP.NET.

Coolest DHTML Calendar
Open source with commercial support
www.dynarch.com/projects/calendar/

Configurable JavaScript calendar widget; can be wired up to form fields as a
drop-down or pop-up, and styled using CSS.

CPAINT
(Cross-Platform Asynchronous Interface Toolkit)
Open source (GPL and LGPL)
http://cpaint.sourceforge.net

CPAINT is a true Ajax implementation and JSRS (JavaScript Remote Scripting)
implementation that supports both PHP and ASP/VBScript. CPAINT provides you
the code required to implement Ajax and JSRS on the back-end, while the
returned data is manipulated, formatted, and displayed on the front-end in Java-
Script. This allows you to build web applications that can provide near real-time
feedback to the user.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 625
Dojo
Alex Russell (2004)
Open source
http://dojotoolkit.org

Dojo provides several libraries for use with Ajax, including widgets, an event
model, and messaging using XMLHttpRequest and other techniques. Aims to
support JavaScript in a range of settings, including SVG and Netscape’s Java-
based Rhino engine, as well as in the web browser.

DWR (Direct Web Remoting)
Open source (Apache)
www.getahead.ltd.uk/dwr

Direct Web Remoting is a framework for calling Java methods directly from Java-
Script code. Like SAJAX, it can pass calls from JavaScript into Java methods and
back out to JavaScript callbacks. It can be used with any web framework—such as
Struts or Tapestry—following a Spring-like KISS/POJO/orthogonality philosophy.
Direct Web Remoting is due to be incorporated into the next release of the Open-
Symphony WebWorks framework.

Echo 2
Open source (MPL or GPL)
www.nextapp.com/products/echo2

Echo 2 allows you to code Ajax apps in pure Java. Automatically generates HTML
and JavaScript, and coordinates messages between the browser and the server.
Offers messaging in XML. The developer can handwrite custom JavaScript com-
ponents if desired.

f(m)
Open source
http://fm.dept-z.com/

The f(m) project is an ECMAScript Base Class Library, based on the .NET Frame-
work, that was written to serve as the foundation for a new breed of browser-based
web applications.
Licensed to jonathan zheng <yiyisjun@gmail.com>

626 APPENDIX C
Ajax frameworks and libraries
FCKEditor
Open source
www.fckeditor.net

Rich WYSIWYG editor widget; can be swapped in for an HTML textarea in one
line of JavaScript code, allowing easy integration with existing web applications,
CMS, wikis, and so forth. Very similar functionality to TinyMCE.

Flash JavaScript Integration Kit
Open source
www.osflash.org/doku.php?id=flashjs

The Flash JavaScript Integration Kit allows for the integration of JavaScript and
Flash content. Enables JavaScript to invoke ActionScript functions, and vice
versa. All major data types can be passed between the two environments.

Google AjaxSLT
Open source license (BSD)
http://goog-ajaxslt.sourceforge.net

AjaxSLT is offered by the innovative search solutions company that refers to itself
as “Google.” Google AjaxSLT is a JavaScript framework for performing XSLT
transformations as well as XPath queries. Builds on Google Map work.

Guise
Commercial with free downloads
www.javaguise.com

Java-based server-side component model (similar in some ways to JSF, but sim-
pler). Currently integrates Ajax functionality for greater responsiveness.

HTMLHttpRequest
Angus Turnbull (2005)
Open source (LGPL)
www.twinhelix.com/JavaScript/htmlhttprequest/

Simple remote scripting wrapper. Uses XMLHttpRequest and IFrames as well for
improved compatibility.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 627
Interactive Website Framework
Open source
http://sourceforge.net/projects/iwf/

Interactive Website Framework is a project whose aim is to support the various
aspects of Ajax infrastructure in the browser. Describes itself as a framework for
creating highly interactive websites using JavaScript, CSS, XML, and HTML.
Includes a custom XML parser for highly readable JavaScript. Contains essen-
tially all the plumbing for making Ajax-based websites, as well as other common
scripts. Provides a thread-safe XMLHttpRequest implementation and a wrapper
around the DOM, making for more readable code.

Jackbe
Commercial
www.jackbe.com/solutions/development.html

Ajax rich client widget suite; can be plugged into any middleware technology
such as ASP, Java, .NET, or PHP.

JPSpan
Open source (PHP)
http://jpspan.sourceforge.net/wiki/doku.php

JPSpan passes JavaScript calls directly to PHP functions. Heavily unit-tested.

jsolait
Open source (LGPL)
http://jsolait.net

Set of open source JavaScript libraries, including cryptography, serialization and
deserialization, XML-RPC, and JSON-RPC.

JSON
Open source; most implementations are LGPL
www.json-rpc.org/

JSON is a “fat-free XML alternative” and JSON-RPC is a remote procedure proto-
col, akin to XML-RPC, with strong support for JavaScript clients. Implementa-
tions exist for several server-side languages and platforms, including Java,
Python, Ruby, and Perl.
Licensed to jonathan zheng <yiyisjun@gmail.com>

628 APPENDIX C
Ajax frameworks and libraries
JSRS (JavaScript Remote Scripting)
Brent Ashley (2000)
Open source
www.ashleyit.com/rs/jsrs/test.htm

JSRS routes calls directly from JavaScript into your server-side language and
back out again. Known browsers: IE 4+, Netscape 4.x, Netscape 6.x, Mozilla,
Opera 7, and Galeon. Server-side support: ASP, ColdFusion, PerlCGI, PHP, Python,
and JSP (servlet).

LibXMLHttpRequest
Stephen W. Coate (2003)
Source available, protected by copyright
www.whitefrost.com/servlet/connector?file=reference/2003/06/17/libXml-
Request.html

LibXMLHttpRequest is a thin wrapper around XMLHttpRequest.

Mochikit
Open source (MIT)
www.mochikit.com/

Mochikit is a set of libraries whose highlights include logging, visual effects, asyn-
chronous task management, string and date/time formatting, and a “painless”
DOM manipulation API that makes heavy use of JavaScript’s built-in Array objects
and JSON-like notation to represent the DOM.

netWindows
Open source
www.netwindows.org

Complete DHTML desktop/windowing environment inside the browser. Code is
purely standards-based, with no browser hacks. Contains a “signals and slots”
messaging implementation, modeled after Trolltech’s Qt widgets and the Small-
talk language; also available as a standalone library.

Oddpost
Commercial
www.oddpost.com

JavaScript widget suite; includes fully functional rich e-mail client. Now part of
Yahoo!.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 629
OpenRico
Bill Scott, Darren James (2005)
Open source
http://openrico.org

A multipurpose framework with support for Ajax. Covers user interface issues
such as animations, separation of content from logic through behaviors, drag and
drop, and some prebuilt widgets, notably a data grid. Sponsored by Sabre Airline
Solutions; has seen real-world use. Built on top of Prototype.

Pragmatic Objects
Open source
http://pragmaticobjects.com/products.html

Pragmatic Objects’ WebControls is a set of JSP tag libraries designed as reusable
controls or components to enrich Java-based web applications. As opposed to
rich but fat web applications, a thin client web application, at the end of the day,
consists of nothing but a series of HTML pages, containing JavaScript and CSS
codes that are rendered by the browsers. Current offerings consist of an “outlook
bar,” a tree widget, and a control panel.

Prototype
Sam Stephenson (2004)
Open source
http://prototype.conio.net/

Prototype is a JavaScript framework designed for RIA development. It includes a
solid Ajax library and a toolkit to simplify use. Prototype is the JavaScript engine
for Ruby on Rails, Rico, and Scriptaculous, among others. Prototype’s JavaScript
code is generated from Ruby, but the generated JavaScript may be deployed in
non-Ruby environments.

Qooxdoo
Open source (LGPL)
http://qooxdoo.sourceforge.net

This is an Ajax user interface library with a large range of prebuilt components
and a well-thought-out design. Includes widgets, layout managers, and portable
PNG transparency. Also provides development support such as timers for profil-
ing and debugger support.
Licensed to jonathan zheng <yiyisjun@gmail.com>

630 APPENDIX C
Ajax frameworks and libraries
RSLite
Brent Ashley (pre-2000)
www.ashleyit.com/rs/main.htm

A simple component released as part of Brent Ashley’s more comprehensive
Remote Scripting work (see the JSRS entry earlier in this appendix).

Ruby on Rails
David Heinemeier Hansson (2004)
Open source (MIT)
www.rubyonrails.org

Ruby on Rails is a general web framework with strong Ajax support. Rails was
still in its early days when the Ajax hype began, so Ajax may become increasingly
core to the Rails framework. Generates most if not all of the JavaScript for wid-
gets and animation in the browser. Support for calling server-side. Scheduling
support. Current darling of the fashionable web development crowd, Ruby on
Rails eschews the complex overdesigned, cover-all-bases strategy in favor of a
straightforward, getting-the-job-done approach, with the help of a good deal of
code generation. Has won over many Java developers for that reason. Our interest
in Ruby on Rails for the purposes of this book is primarily its very good support for
Ajax. Prototype, and most recently Scriptaculous, have been integrated into Rails.

Sack
Open source (modified MIT/X11)
http://twilightuniverse.com/2005/05/sack-of-ajax

Sack is a thin wrapper around XMLHttpRequest. The caller can specify a callback
function or a callback DOM object. With a callback DOM, the response text is
pushed directly into the DOM.

SAJAX
Open source
www.modernmethod.com/sajax

SAJAX routes calls directly from JavaScript into your server-side language and
back out again. So, for example, calling a JavaScript method x_calculateBudget()
will go the server and call a Java calculateBudget() method, then return the value
in JavaScript to x_calculateBudget_cb(). Facilitates mapping from a JavaScript
stub function to a back-end operation. Capable of stubbing calls to numerous
server-side platforms: ASP, ColdFusion, Io, Lua, Perl, PHP, Python, and Ruby.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 631
Sarissa
Open source (GPL and LGPL)
http://sarissa.sf.net

Sarissa is a JavaScript API that encapsulates XML functionality in browser-
independent calls. Supports a variety of XML technologies, including XPath
queries, XSLT, and serialization of JavaScript objects to XML, in a browser-
neutral way.

Scriptaculous
Thomas Fuchs (2004)
Open source
http://script.aculo.us

Scriptaculous is a well-documented visual effects library built in JavaScript on top
of Prototype. It includes demos, sample applications, and a drag-and-drop library.

SWATO…
Open source (ASF)
http://swato.dev.java.net

SWATO (Shift Web Application TO...) is a set of reusable and well-integrated Java/
JavaScript libraries that give you an easier way to shift the interaction of your web
apps through the Ajax way. The server-side Java library can be easily deployed in
all Servlet 2.3+ compatible containers. The client-side JavaScript library can be
worked in various browsers, as long as XMLHttpRequest is supported. SWATO
uses JSON to marshal the data of your POJOs on the server side, so that you can
access the remote data in any JavaScript environment (HTML, XUL, SVG) easily
by either hard-coding or by integrating with mature JavaScript libraries. Comes
with several reusable components (Auto-complete Textbox, Live Form, Live List,
etc.) that help you develop your web apps rapidly.

Tibet
Commercial
www.technicalpursuit.com

Tibet aims to provide a highly portable and comprehensive JavaScript API, so
that a great amount of client-side code is possible. Pitches itself as “Enterprise
Ajax.” Supports web service standards such as SOAP and XML-RPC, with prebuilt
support for some popular web services such as Google, Amazon, and Jabber
instant messaging. Includes an IDE written in JavaScript using the Tibet toolkit.
Licensed to jonathan zheng <yiyisjun@gmail.com>

632 APPENDIX C
Ajax frameworks and libraries
TinyMCE
Open source, with commercial backing and some proprietary plug-ins
http://tinymce.moxiecode.com/

Rich WYSIWYG editor widget; can be swapped in for an HTML textarea in one
line of JavaScript code, allowing easy integration with existing web applications,
CMS, wikis, etc. Very similar functionality to FCKEditor.

TrimPath Templates
Open source
http://trimpath.com/project/wiki/JavaScriptTemplates

JavaScript template engine for splicing together data and presentation on
the browser.

Walter Zorn’s DHTML Libraries
Open source
www.walterzorn.com/index.htm

DHTML libraries for drag-and-drop support, and for vector graphics drawing of
lines and curves by using DIV elements as pixels.

WebORB for .NET
Commercial with free edition
www.themidnightcoders.com/weborb/aboutWeborb.htm

WebORB for .NET is a platform for developing Ajax and Flash-based rich client
application and connecting them with .NET objects and XML web services.

WebORB for Java
Commercial with community/free edition
www.themidnightcoders.com/weborb/aboutWeborb.htm

WebORB for Java is a platform for developing Ajax and Flash-based rich client
application and connecting them with Java objects and XML web services.
Includes a client-side library called Rich Client System (www.themidnightcod-
ers.com/rcs/index.htm). The Rich Client System provides a simple one-line API to
bind to and invoke any method on any Java object, XML web service, or Enter-
prise JavaBean. Provides a special API for handling database query results; the
server code can return DataSets or DataTables, and the client presents it as a spe-
cial RecordSet JavaScript object. The object provides a way to retrieve column
names as well as row data.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Ajax frameworks and libraries 633
x
Mike Foster (2005)
Open source
www.cross-browser.com

Veteran DHTML library, providing cross-browser support for animation, styling,
events, and other common functionality.

XAJAX
J. Max Wilson (2005)
Open source
http://xajax.sf.net

XAJAX passes JavaScript calls directly to PHP functions. Use a JavaScript stub to
call a PHP script.

x-Desktop
Open source (GPL)
www.x-desktop.org/

This project comprises a library for developing thin client application front-ends
using a browser. It helps developers to create GUI application interfaces for
Internet, intranet, and extranet applications. x-Desktop features include the fact
that it is browser based and that no plug-ins are required. It supports all operat-
ing systems that provide a DOM 2/JavaScript capable browser; offers a simple,
well-documented object interface; and provides a customizable desktop and win-
dow skins.

XHConn
Brad Fults (2005)
http://xkr.us/code/JavaScript/XHConn

XHConn is a thin wrapper around XMLHttpRequest.
Licensed to jonathan zheng <yiyisjun@gmail.com>

Licensed to jonathan zheng <yiyisjun@gmail.com>

 index
Symbols

$ method in Prototype library 548

Numerics

200 response, in HTTP 60
302 response, in HTTP 60

A

A9.com, Amazon portal 424
absolute position property,

CSS 516
ActionScript, in Flash 28
Adapter pattern 79

Sarissa library uses 105
add/delete windows

command 462
addFeeds() of RSSReader

object 553
AddHandler() 376
addItem() in RSS feed

object 538
Ajax

as a separate tier 162
as Dynamic HTML 4
defining principles 17
definition 4
handling 405
increments of

implementation 65
injecting behavior 401
key elements 32
request/response cycle 406
sending 402
silent process 475
using full page posting 488

Ajax application
A9.com 424
allocation of logic 18
alternatives to 28–29
battleship 269
characteristics 23
“clickbox” memory

management 316
code volume 23
compared to conventional web

apps 65
delays in 468
double combo box 331
exchanging data 174
file system access 248
framework requirements 169
frameworks, server side 111
GMail 24
Google Maps 25
guessing game 253
HTTPS implications 265
hyperlinks required 165
in role of a desktop

application 65
interaction model 65
inventory management 92
life cycle 18
localization 221
memory use 322
mouse pad 138
MVC architecture in

browser 122
need for structure 73
phone book search 473
planet browser 175
problems with 363
RSS feed reader 509
server side example 93

stock trading 87
tools, effect on 562
with only client-side code 510
with unstructured server

code 164
without patterns 93
workflow 65
workflow problems 165

Ajax component
Cascading Style Sheets 33
Document Object Model 33
JavaScript 33
XMLHttpRequest object 33

Ajax tools
browser tools 564
compared to other tools 564
compared to web tools 562
maintenance information 564
page-based workflow in 563
state of IDEs 562

Ajax, DHTML techniques
displaying comlex

objects 151
event router 141
handling data from

server 144
ajaxEngine(), in Rico 396
ajaxUpdate() 346, 356, 463

in ContentLoader 556
in Rico library 405

AjaxWindow.css 446
AjaxWindows.js library 445, 456
alert(), using for data 148
animation, as processing

indicator 468
anonymous function, as event

handler 457
Apache Axis, framework 170
635

Licensed to jonathan zheng <yiyisjun@gmail.com>

636 INDEX
API
server, coarse-grained 271
server, fine-grained 270

security in 271
appendChild() 50
application

desk top 5
secure login 267
transient vs sovereign 15

application framework 111
Backbase for widgets 113
Echo2 for UI components 113
Ruby on Rails for web page

development 114
SAJAX for remote procedure

calls 112
server side 111

applyButtonBehaviors() in
RSSReader object 548

architectural patterns 91
architecture

MVC 123
n-tier 7, 162

Ajax as a tier 162
early 2-tier 162
web application 162

server-side 164
architecture, n-tier 162

Ajax view 7
arguments pseudo array 349
arguments, property 607
Array

asignment by keyword 594
assignment by index 594

Array class
extending methods of 599
instantiation 593

arrow keys
event handler 379, 409
moving highlight 388
preventing default

behavior 410
ASP 161
asynchronous communication

ActiveX objects 58
and HTTP protocol 14
benefits 27
callback function 61
detecting completion 351
example of 62
IFrame 54
Microsoft.XMLHTTP 58
onload property 61
onreadystatechange

property 61

readyState property 62
response handling 349
Rico AjaxEngine object 110
send a request 58
XmlDocument object 56
XMLHttpRequest object 56

asynchronous data exchange
client-only interaction 175
content-centric interaction 178
data-centric interaction 188
script-centric interaction 182

asynchronous interactions 12
asynchronous request to server 34
asynchronous requests 19
asynchronous thread, for lengthy

interaction 13
Atlas toolkit 169
ATOM syndication feed format

504, 506
attachEvent() IE function 137
attributes property of XML

DOM 145
authenticate user and

password 432
authentication 277
authorization 277
autocomplete, browser feature

disable for type-ahead suggest
370

autosave 448
adapting the library 448
collecting properteis 449
saving properties 450
server side code 451

B

Backbase application framework
for widgets 113

background color
property 517
setting 435

background image 42
background processing,

techniques for 469
background property 42
backing object 611

circular reference and 323
design pattern 141
for DOM node 318
in MVC 137
reference by name 611

bandwidth, in type-ahead
suggest 363

banner ad rotator 537

battleship game
implementation 269

hacking the game 272
setup 270

behavior object in Rico
library 109

behaviors, injecting to a page 353
bind(), in Prototype library

395, 548
bindAsEventListener(), in

Protrotype 395
blog 505
bookmarking Ajax pages

problems with 472, 490
recovering query string 499
updating query string 500

border-collapse property,
CSS 486

box-model 39
branching a library codebase 456
Break Cyclic References design

pattern
example 320

breakpoints
conditional 574
debugger 572

browser
as application host 17
as dumb application 17
borrowing functions 610
event hooks 135
event models 134
host objects in 599
storing state 18

browser detection 375
IE autocomplete 407

browser differences 34
ActiveX component 78
adding content to DOM

elements 496
animation in IE 468
asynchronous communication

objects 56
attaching callbacks 137
bindAsEventListener(), in

Prototype 408
browser detection 375, 399
callback handler functions 137
creating XMLHttpRequest 348
detecting key press 379
detecting XSLT support 498
document type, effect of 479
event handlers 395
extending host objects 599
façade and adapter, role of 77
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 637
browser differences (continued)
finding element’s position 77
flicker in fades 554
getting attributes of

elements 416
graceful degradation 492
handling transparency 42

gif files 42
handling with try-catch

block 257
HTML and body tags 435
IE and web services 254
IE asynchronous

communication 64
IE garbage collection 310
Jar file for application

delivery 262
keypress 376
libraries for 104
loading documents 78
Mozilla asynchronous

communication 64
Mozilla PrivilegeManager 254
object detection 57
opacity rules 524
optimizing on visibility 55
pixelLeft property 78
position, finding 78
privilege granting 255
PrivilegeManager access 535
profiler in Mozilla 288
profiling tools 289
Prototype library for 107
ready states 64
Sarissa library 105
security model 250
security of local file system 251
select list display 342
string arguments 220
text attribute in IE 357
W3C event model

incompatibilities 138
W3C multiple event

handler 83
width property in IE 343
window libraries 445, 448
writing to status bar 197
x library for 104
XmlDocument object 57
XSLT in Mozilla 484
XSLT in MS Internet Explorer

483
XSLT in Opera and Safari 487
XSLT processing 481
XSLT processing code 485

browser functionality, visible to
JavaScript 35

browser render engine vs
JavaScript 133

browsers
Camino 34
Firefox 34
in PDAs 34
Internet Explorer 34
Mozilla/Gecko 34
Netscape Navigator 34
Opera 34
Safari 34

BuildChoices(), processing results
381

BuildError() 523
BuildSettings() 451
BuildXMLResults() 522
business domain, JavaScript

model 144
business tier, in architecture 162

C

C#, server-side example 366
cache

client side 376
managing updates 377, 380
need for 363
server side data 369

call stack inspection 573
callback function 61

context for 136
callback handler 76
Cascading Style Sheets

adding events with 125
adjusting opacity 525
Ajax component 32
apply to multiple tags 515
applying 485
box model 39
centering lines 436
class name as progress

marker 530
cursor formatting 387
description 36
elements inside another

element 517
external file 486
formatting 36
formatting strings 386
hiding elements 373
layout with 40
overriding values 415
padding property 486

page layout 36
positioning elements 372
rules 36
selector rules

class-based 37
element-based 37
tag-based 37

style properties 39
table formatting 486
visual styling 41

categories, in StopWatch
system 284

centering text
horizontally 517
vertically 514

CGI parameters 58
change point 456, 463

isolating 459, 464
ChangeView() 523, 525–526
channel element, in RSS feed 506
childNodes, DOM property 49
circular reference

memory leaks 305
removing 311

class
associative 594
functions 595
indexed 594

Class object, in Prototype library
394

class, HTML
declaring 37
multiple class declarations 42

className property 51
clean-up functions, for circular

references 307
cleanUp() 309
ClickBox widgets 316
client program, definition 5
client side

data, ways to provide 332
domain model 163

client/server
architecture 5
communication

document-centric
approach 173

exposing server objects 171
frameworks for 112
HTML forms 193
message granularity 172
SAJAX object 113
sending data to server 333
serializing data 201
small methods, effect of 172
Licensed to jonathan zheng <yiyisjun@gmail.com>

638 INDEX
client/server (continued)
updating the server 197
using HTML 472
using XML 472
XML as medium 95

controlling request rate 403
loading JavaScript 186
script-centric 438
synchronizing models 193
XmlHttpRequest 195
XSLT 192

client-only interaction 175
closure

avoiding 616
creating 395, 548, 614
definition 614
execution scope 349
function scope in 615
memory leaks, in 616

code generation
conventions 445
in Ruby on Rails 114

code-behind class, .NET
MVC 102

code-behind page 368
CollectGarbage(), IE function 311
command

add/delete windows 462
issuing to server 459
load settings 461
login 461
save settings 462
symbols for 459

command processor, error
handling 463

command stack 85
Command, design pattern

85, 173
in portal object 458

completion callback method
555, 558

compliant CSS formatting 513
component configurability 399

defaults 497
component-based frameworks

Ajax compatability 168
componentizing, Ajax code 491
composite function, event

handler 81
composition 601

alternative to inheritance 601
as helper classes 601

conditional breakpoints, set in
IDE 575

configurability, per instance 401

configuration parameters,
holding 399

consistency, application
feature 214

reuse and 215
constants, in JS 518
constructor

attaching functions to 492
for portal object 455
function 597
hiding in JavaScript 89
prototype and 598
prototype object 347

constructor word in 598
content-centric interaction 178
ContentLoader

applied 333, 371
constructor 346
defined 74
in portal application 437
refactored 195
with notifications 237

Content-Type header 349
context area display 541
context of functions 307
contract

as interface 603
changes to 459
ContentLoader 355
model creator 539
portal object, defined 458
usage 454
with server 453

controller in MVC 134–143
as event handler 134
example 121
in classic web application 165
Model2 framework for 166

controller object for event
handling 408

Cooper, Alan 15
Cornford, Richard 311
coupling

client and server, with
XML 190

in content-centric
interaction 180

in script-centric interaction 182
with mobile script 187

Create Always, design pattern 310
Create If Not Exists, design

pattern 310
createElement() 50
createOptions() 356
createPortal() 455

CreateScript(), call back 437
createTextNode() 50
CreateUnderline() 387
CreateWindow() window library

method 445
Crockford, Doug 601
cross scripting 248

using document.domain
property 250

CSS classes for transitions 511
CSS properties, reading 450
CSS. See Cascading Style Sheets
currentStyle, IE attribute 416
cursor, styling 387
cyclic reference 306

D

data exchange interaction
styles 174

client-only 175
content-centric 178
data-centric 188
script-centric 182

data freshness, notification 241
database

normalizing 96
tables for windows 439

data-centric interaction 188
data-marshaling 463
DBUtil object 452

db access 432
interface to DB 442

deadlock, in a GUI 214
debugger

evaluating expressions 574
types 572

default values, providing
reasonable 393

degradation path for non-Ajax
systems 434

DELETE, HTTP method 60
dereference a variable 303
description element, in RSS

feed 509
design pattern

Adapter defined 79
architectural 91
Attach Backing Object To DOM

Node 613
backing object 141
Command 85, 173

JS function objects in 85
Create Always 310
Create If Not Exists 310
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 639
design pattern (continued)
definition of 71
Façade

defined 79
interface for server

side 172
for memory management 319
history 71
in memory footprint 302
interaction between 322
interactions between 316
introduce with refactoring 73
memory management 322
nested 120
Observer

defined 80, 82
implemented 82
listener in 82

over use 73
refactoring in 72
Reference Backing Object By

Name 612
Remove by Dislocation 309
Remove by Hiding 309
request dispatch 454
Singleton

defined 89
in business logic 90
in Java 88
using top variable 90

design tools
examples 569
lack of support for Ajax 569

detachEvent(), IE function 137
DHTML

example 369
formatting results 382
library for windows 428

dialog modal, non-modal 226
dialup modem, accounting

for 363
display property

hiding elements 390
of DOM element 421

div element, properties 474
document

global variable 49
root of DOM tree 49

Document Object Model
$() function for getting an

element 395
adding nodes 293
Ajax component 32
attaching functions to

nodes 613

circular links with domain
model objects 310

creating dynamically 47
creating nodes 50
destroying nodes 308

by disconnecting 309
by hiding 309

dynamic content creation 130
element, definition 46
event handler properties 135
exposes page structure 45
finding a node 49
finding location with

offsets 383
getting elements 49
IFrame element 54
library for manipulating 104
manipulate with XSLT 192
node, definition 45
parent and child nodes 49
position of a node 77
property 51

innerHTML 53
style array 51
style.left 78
style.pixelLeft 78

removing 320
removing nodes

by walking the tree 311
rendering on attachment 293
reusing nodes 309, 319
root of DOM tree 49
setting styles 51
single event handler

supported 81
tree structure 45
XML document 190

document, HTML
look 43
structure 43

doFilter() Java method 273
DOM Inspector tool

for Safari 585
IEDocMon for Internet

Explorer 584
Mozilla 46, 583

domain model
cache on client 144
circular links with DOM

elements 310
client side 163
client side, building 146
objects on client 144
on the client 146
on the server 146

refactoring for 96
server side 163

domains, defining “the same” IP
address 249

double combo box
Ajax solution 330
client side solution 328
description 328
expanding to triple combo

box 345
server side solution 329

DoubleCombo object 354
drag-and-drop library

Scriptaculous 109
draggable window object 178
Dreamweaver, web

development 570
Drip tool 315
DRY

don’t repeat yourself 79
in view 125

Duck Typing, contract 603
DWR

application framework 112
for Java 170
framework example 170

Dynamic HTML, initial
promise 34

dynamic query construction 338

E

e.target, non-IE property 379
e.which, non-IE property 379
Echo2 application

framewwork 113
Eclipse, IDE 569

plug-in based 563
plug-ins for making

plug-ins 564
editor, code

characteristics of 565
jEdit 567
TextPad 567
UNIX editors, Vim, Emacs 568

editor, syntax highlighting 565
Effect object, in Rico 548
element id in DOM,

constructing 549
element, HTML, applying

styles 37
Emacs, editor 568
encryption

add on client side 276
HTTP headers 274
Licensed to jonathan zheng <yiyisjun@gmail.com>

640 INDEX
encryption (continued)
in HTTPS 264
MD5 algorithm 266
overhead of 265
with plain JavaScript 266

Enter key, event handler for 379
error handling 463, 557

deferring to the
application 358

design 358
ignoring errors 381

error, communication 351
ErrorBuildSettings() 451
eval()

handling results with 381
JS function 35, 433

in script-centric
interactions 438

performance 433
script context of 187

event handler
adding to list spans 420
attaching

programmatically 125
attaching to page DOM

element 356
blocking form submit 473
borrowing functions 609
broker object for 407
changing function 498
classic 138
classic JavaScript 134
composite function 81
CSS based 125
custom notify event 156
detecting user actions 375
DOM as context of 610
dymanic substitution 457
Event as argument 610
EventRouter object 143
example 127
function, context for 136
hooking to user actions 22
injecting 402, 406
inline 124
listeners 82
mouse events 420
multiple 81
Observer pattern 80
onclick event 548
onmouseup 448
onreadystatechange 350
onReadyStateChange(),

callback 62
portability 128

properties 135
removing 488
retrieveing anonymous

function 458
router for 139
using markers 125
W3C multiple event handler

system 83
W3C not recommended 138

event model
browser differences 137
calling callback functions 137
classic 134
new W3C 137
normalized in Prototype

library 409
event types, multiple 84
event.keyCode, IE property 379
event.srcElement, IE

property 379
EventRouter

constructor 141
in ObjectViewer 156

execution context, creating 350
extend(), in Prototype 395
external files

CSS 47
JavaScript 47

F

Façade, design pattern 79
fading transition 512

implementation 525
fading with CSS classes 527
feed count 512
feed management

functions 512
fibonacci(count) 290
file links, testing 446
FillDataTable() 338
FillDropDown() 340
FillTerritory() 333
filter

configuration 275
for opacity 525
in Java 430

findUser() 432
Firefox browser, Ajax plug-ins

for 563
Flex framework 28
float property 41

CSS 436, 514
CSS attribute to align

icons 234

for loop
optimization 290

identical calculations 291
form element, populating with

data 332
form, HTML

submit button, disabling 194
validating 194

formatting data
flexibility in 472
with XLST 472

formatting, with CSS 41
Forms arguments 58
Foster, Mike 77, 137
frame

for background processing 469
navigation problems in 469

frame-detection scripts 470
frameworks

Ajax data needs 169
Ajax support 169
Apache Axis 170
Apache Struts 166
component-based 167
DWR 170
event listener 138
event processing in 167
Flex 28
for server side 163

no framework 164
JavaServer Faces 168
Lazlo 28
Model2 166
Object-Relational Mapping 146
SAJAX 170
service-oriented

architecture 170
Windows Forms 168
workflow 166

function
() for execution control 593
argument list 607
as object 593, 606
binding to object 609
borrowing from other

objects 608
context 609
return type, testing for 605
stand-alone 607

function context 136
in the call() 607

function literals 347
Function object 604

apply() 403, 607
as Command pattern objects 85
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 641
Function object (continued)
call() 76, 606
context of method call 76
in array 595
in command processor 460
using 76

function parameter
checking for null 338
options array 107

functional requirements, for
suggest component 393

functions as first-class
references 76

functions as objects 591

G

Gamma, Erich 73
garbage-collection 302

determining unused
variables 303

Garrett, Jesse J. 4
GET, HTTP method 59
getComputedStyle(), Mozilla

method 416
getElementById() 49
getElementsByTagName() 50, 339
getElementsComputedStyle, Rico

utility function 416
getLayer() helper method 555
getPortalWindows() 443
getTransport() 348
gif images, with transparency

property 42
global variable

alternate to 375
appropriate use 75
avoiding in reusable

components 393
for communication 519
for sharing 518
for simplicity 518
inappropriate use 74
var keyword, effect on 349

GMail 24
Google

googleKey access code 258
license key for access 260
SOAP interface to services 253

Google Maps 25
Google Suggest 24, 362

as an Ajax application 23
limits results 364
timers for post backs 364

GrabNumber() 473

graphical user interface, GUI
for message object 225

gray out a window 233

H

handleAjaxResponse() 351
handleError() 351, 358,

463, 557
handleMouseUp() 458
handleTextInput(), of

textSuggest 411
HEAD, HTTP method 60
helper functions 84
helper method

example 356
getFirstValue 540

helper objects 346
DBUtil 443
JSUtil 442
portal application 443

hidden field for holding user
choice 369

highlighting
for notification 241
list items 383
with CSS 388

horizontal rule in HTML 526
host objects 599

extending 599
HTML

page layout 433
structure for document 43
tree structure of tags 45
web tag in 16

HTML page
as template for code 128
as view in MVC 93, 124
dynamic creation 526, 542
for type ahead suggest 369

HTML page layout
positioning elements on top of

each other 516
tables for 511
with CSS 511

HTTP protocol 59
DELETE() 60
GET() 59
HEAD() 60
header 59
header, for security 277
POST() 60
PUT() 60
state free 14
status codes 60

synchronous protocol 14
viewing headers 59

hyperlink 23
Hypertext Transfer Protocol over

Secure Socket Layer
(HTTPS) 264

browser support for 264
overhead of 265

I

iconized message 230
IDE 568
identification field, in type-ahead

suggest 365
IFrame

background processing in 469
communication between 181
description 54
dynamic content display 428
dynamic creation 55
in asynchronous

communication 54
in data exchange 178
loading script 184
making invisible 55
separate scriptng context 181

image loading 499
implicit execution context 350
inheritance in JavaScript 597

of prototypes 600
initAjax(), Rico function 401
initializeBehavior() 356
initWindow() 444
injectComponentBehaviors() 354
injecting behavior 399
innerHTML

attaching messages 230
clearing an element 484
property 53

instanceof operator 151, 602
in multiple script context 185

integrated development tool
effect of page-based

workflow 563
interaction model in Ajax 65
interface, not explicitly supported

in JS 603
Internet Explorer

XSLT processing XSLT 483
zone security model 254

Internet Explorer browser
secruity zones 250

interpreted language 591
issuePortalCommand() 459
Licensed to jonathan zheng <yiyisjun@gmail.com>

642 INDEX
isValidRequest() 274
item element in RSS model 538
item elements 520
itemClickHandler handler 420

J

JAR files
for Mozilla browsers 262
keytool for certificates 263
Mozilla tools for signing 263
portability 263

Java 161
filtering HTTP requests 273
server side example 428

Java Web Start 28
application 28
runtime system for 29

JavaCrawl.com for XML
feeds 504

JavaScript
$ as function name 395
accesing nested objects 296
accessing the DOM 47
Ajax component 32
apply() method of Function

object 403
arguments pseudo array 349
as OO language 143
bracket, and dot notation 141
call stack 573
comparison to other

languages 590
constants in 459
context in IFrame 185
conventionl use 21
debugger 572

statement 572
description 35
document variable 45
domain model in 143
dynamic creation 441
dynamic loading 182, 184

function approach 185
object approach 185
problems 185
with SMKHttpRequest 186

eval() 186, 433, 463
execution speed 281
for loop optimization 290

identical calculations 291
functions as objects 76
general purpose 35
global variables as

constants 518

global variables in 145
in Ajax application 18
inheritance

in 597
with Prototype library 106

interpreted language 35
loading external file 371
login code 436
loose typing 35
memory managed

language 302
mutable function

arguments 145
Net.js library 178
object creation 89, 592
on the server 163
patterns and 72
processing with JS disabled 473
properties 590
public and private keys 266
returned from server 432
role in conventional apps 16
scripting languages, and 72
security issues 247
security model 249
setTimeout() problems 243
setting security

parameters 535
static function 492
String.split function 128
timers 390, 527–528
try...catch blocks 257
types in, Prototype library 394
var keyword and global

variables 349
visibility semantics 541
Windows.js library 178

JavaScript Console, viewing
permission errors 534

JavaScript Object Notation 593
creates only Object or Array

classes 602
description 593
mixing with plain

JavaScript 596
object graph, creating 594
using 154

JavaServer Faces (JSF),
widgets 168

JDOM library, parsing XML 204
jEdit, editor 567
Johnston, Paul 276
join method, of String 383
JScript .NET, consumes JSON

script 192

JScript .NET, JavaScript
interpreter 163

JSON 593
JavaScript Object Notation 191

JSON-RPC
application framework 112
library 192

JSUtil
generate JS code 442
initialization code 444

JSWindow library 439, 445
adapting 448

K

key-down event handler 409
keypress, detecting 379
key-up event handler 411
Komodo, IDE 571

L

Laszlo framework 28
layout with CSS 40
layout, reusing 128
layout, using browser engine 133
left and top properties,

CSS 450
library

adapting 445
adapting without changing

code 456
AjaxWindows.js 456
Behaviour library for event

handlers 129
JDOM, XMLparsing 204
JSON-RPC 192
JSWindow 439, 445

adapting 448
MD5 generator 267
overriding functions 456
Prototype for OO

programming 105
Sarissa for XML 105
Scriptaculous 243
Scriptaculous for widgets 108

Effects library 108
transition object 109

x library 77
for DHTML 104

line-height property 514
for centering text 436

link element in RSS feed 509
list item, creating 419
list, selecting from 389
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 643
listener 138
attaching new 198

live search
description 470
double combination search 487
multiple parameters 487

LiveHTTPHeaders, browser
utility 59

load settings command 461
LoadNews() 529
loadPage() 455
loadRSSFeed() in RSSReader

object 548, 556
localization, date format 221
login

client side code 433
process 430
verifying 430

login code, JavaScript 436
login command 461
login() 429, 432, 455, 461

M

Macromedia Flash 28
MakeMatches() 383, 386
man-in-the-middle attack 263
many-to-many relationships

implementing in object
functions 99

masterComboChanged() 356
MD5 algorithm 266

hex encoded 275
JavaScript library for 267
on server side 267

memory footprint
defined 302
effect of memory management

models 322
example 316
freeware tools 315

Drip 315
Sysinternal.com Process

Explorer 315
measuring 312
UNIX Top 314
Windows Task Manager 312

memory leak 302
circular reference 305–306

clean-up functions 307
closures and 616
dereference a variable 303
disposing of DOM objects 308
in controllers 306
inspecting for 306

memory management 302
example approaches 316

memory usage, JS and DOM
objects 281

message granularity,
client/server 172

message object 223
automatic rendering 236
constructor 236
options 225
removing 235
self rendering 227

method
defining 598
defining with prototype 598
invoking 598
limiting exposure 172

method scope
sharing across instances 347
specify with prototype 347

Microsoft Script Debugger 577
mobile code

definition 248
technology for 182

modal dialog,
implementation 233

model in MVC 143–147
example 121
in RSS reader 537

Model2 framework 166
Model-View-Controller

applied to tree widget 121
by refactoring 102
client side, on 122
connecting view and

controller 155
coupling model and view 96
defined 91
example 120
in Apache Struts 102
in RSS reader 537
Object-Relational Mapping tools

in 98
separating view and

controller 125
separating view and model 125
separation of concerns 122
server side, on 91
using dynamic content

creation 130
view

HTML page as 93, 124
XML document as 93

view-model coupling 541
modes, in an application 87

mouseoverHandler handler 420
mouseup event in windows

processing 456
MoveFeed(), navigation 532
MoveHighlight() 379, 388
Mozilla browser

PrivilegeManager 254
security restriction 534
XSLT processing 484

Mozilla, signed jar files 262
multiple attribute of select

element 343
multiple elements, in type-ahead

suggest 392
multiple event callbacks 138
multiple feeds, loading 510
MVC. See Model-View-Controller
myTimeConsumingFunction() 282

N

Naive web server coding 164
namespace, XML 480
namespacing object 145
navigation buttons 512, 532

implementation 550
logic 550

navigation, in frames 469
.NET 161
net.ContentLoader,

refactored 346
network latency

definition 9
predicting 11
remote procedure call 13–14
responsiveness 213
usability, effect on 11

new, keyword 592
news viewer 537
next(), in RSSReader object 551
nextSlide() 553
node, DOM

accessing 47
creating 50
editing 155
finding 49
text node 50

Nolan, Ben 129
non-positioned element, setting

position 383
Northwind database 336
notification

add and remove 235
alert message 217
by highlighting 241
Licensed to jonathan zheng <yiyisjun@gmail.com>

644 INDEX
notification (continued)
calling from programs 237
loading status 523
low level, using 237
of asynchronous events 216
parameterizng messages 240
pop-up dialog 229
removing 236
search progress 468
status bar implementation 226
status in 242
techniques 471
types of 222

changing mouse cursor 222
dialog box 222
secondary icons 222
status bar 222

view 225
notification message

description 223
priority 223

notifying on change in Observer
pattern 156

notifyLoaded(), callback 240
null data, handling 383
null results, reporting 477

O

object
ad hoc creation 592
adding methods 593
array syntax for 592
as associative array 148
constructor 141, 592
displaying complex 151
dynamic creation 592
function object 151
functions as 591
in IFrame context 185
initializing varibles 145
loose function binding 609
namespacing 145
ORM-based 99
prototype based 591
references, in event

handlers 613
subclassing with Prototype 106
vs function call 135

() controls 135
with statements 592

Object class 592
extending 200

object detection 57
example 78

object literal 347
object reference, of a DOM

element 384
Object-Relational Mapping

tools 97
in MVC 98

ObjectViewer
Observer pattern in 156
reusable object 149
with notifications 241

Observable object in Observer
pattern 83

Observer, design pattern 82
definition 139
extending for multiple event

callback 138
onblur event

handler 412
unpredictable firing 217
using 376

onchange event handler, select
element 332

onclick event handler 434, 533
for login 455
installing 548

onkeydown event, using 408
onkeyup event, using 376
onload event handler 521
onload()

as callback function 61
as event handler 81
to initialize parameters 375

onload() function 48
onmouseup event 448

handler for autosave 448
onreadystatechange, JS

property 61
onsubmit eventhandler 475

blocking post back in Ajax
applications 474

onUpdate() 220–221
pluggable 222

onXMLLoad() 483
opacity

in Mozilla 524
opacity property, CSS 515
opacity rules 524
optimization 282, 289

attaching DOM nodes 293
by refactoring 289
dot notation 296
for loop 290

identical calculations 291
Options object, for

configuration 399

ORM
based objects 99
system 442
tools, summary 97
See also Object-Relational

Mapping
OSI model 10
outlook bar in Rico 109
overflow property 516

CSS 515, 543
overriding functions 456

P

padding property, CSS 486
padding-right property,

CSS 514
page post back 329

loss of form content 468
loss of scroll position 468

paralysis by analysis 73
parameters

defaults 497
extend(), in Rico 547
options 497
overriding defaults 547

parentNode DOM property 49
parse method of RSSFeed 539
parseGoogleResponse() 261
parseResponse() 217
parsing

SOAP response 260
window properties 450

parsing response text 406
parsing script 193
password, encryption of 266

public and privatekeys 266
pattern matching

in strings 385
in XSLT 479

pause behavior 532
pause method 553
PEAR DB_DataObject 479

applied 98
performance

attaching DOM nodes 293
definition 280
design for 311
execution speed 281
inspecting for memory

leaks 305
memory leaks 302
page loading time 328
rendering 301
subsystems 281
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 645
performance (continued)
timing 282
Venkman profiler 288

permissions, for database
table 430

PHP 161
server side example 95

physical transport 10
placing text, with CSS 45
plug-ins

debugger for Mozilla 288
developing 564
Flash for browsers 28
for Ajax tools 563
for Eclipse 563
Venkman debugger 288

pop-under window 470
pop-up

blocker, avoid with
IFrame 180

content 417
creating 414
positioning 415
required properties 415
showing, hiding 421

pop-up widget
avoid pop-up blocker 180
implementation 180

pop-up window
appearing underneath other

windows 470
background processing in 469
communication with parent

469–470
destroyed on refresh 470
links with parent window 470
pop-up blockers 470
spawned from onload 470

portal
Ajax version 426
Amazon A9.com 424
architecture 427
background 424
classic 424
command processor 459
commands 458
component 454
customized 425
functionality 425
header 434
maintenance page 425
manager 453
multi-user 439
server-side code 441
Yahoo! 424

portal object
add/delete windows

command 462
addWindow command 462
API 459
Command pattern in 458
constructor 455
helper objects 456
load settings command 461
loadPage command 461
loadPage() 455
login command 461
portalManager.do server 456
save settings command 462
savePropertries command 462
usage contract 459

portal_windows table design 439
portalManager portal server 456
PortalWindow object, Java 441
positioning

absolute 516
HTML elements 39
on top of each other 516
relative 516
Rico functionality 416
with CSS 40, 372

post back
excessive 363
identifying source 392
limiting 380
suppressing default

behavior 370
POST, HTTP method 59
preload function 521
presentation tier,

in architecture 162
previous method in RSSReader

object 550
priority levels in notification

messages 223
privileges

in Mozilla security model 254
scope of privilege 257

procedure calls
local 9
remote 10

Process Explorer tool 315
profiling 281

adding to application 285
attaching DOM nodes 293
for loop 291
object dot access 297
rendering system 301

programming environment,
selecting 161

programming language,
server-side choices 161

progress indicator
in classic web app 468
installing 475
techniques 471

progress messages,
implementing 237

progress notification 437
properties

DOM, rendering 153
overriding defaults 400
setting 374

PropertyViewer, reusable object 149
prototype

description 597–598
extending 599
for functions 598
literal object 347, 355
property, extending Object 200

Prototype library 105
$() 395, 548
as library for library developers

106
class constructor 398
description 394
extend() 400
in RSS reader model 538
inheritance in 106
object extension 395
types in 394

prototype.js, library 347
public and private keys, use in

JavaScript 266
public interface

Ajax server side 172
granularity of 172

public key
for password encryption 266
initial communication 277

PUT, HTTP method 60

Q

qooxdoo. See user interface,
toolkits, qooxdoo

querystring
assembling from requests 350
creation 350
dynamic construction 334
parameters 58
retaining for book mark 490

queryString() 350
queue of commands 199
queuing server requests 520
Licensed to jonathan zheng <yiyisjun@gmail.com>

646 INDEX
R

Rails application framework 114
RDF syndication feed format 506
readyState property 62
Really Simple Syndication

(RSS) 504
refactoring 392

and reuse 132
definition 71
DRY principle 79
for usability 215
introduce with refactoring 73
one responsibility, one

method 496
role of design patterns 72

reflection 147–148
discoveirng object

properties 601
listing all properties 603
reading an object 148
reflection-based solutions,

frameworks 171
testing for properties 601
update domain model 205

registerRequest, in Rico API 396
regular expression

creating suggestions 418
formatting strings 386
parameterizing 418
parameters for 385
string processing 385

relative position property,
CSS 516

Remove By Dislocation, design
pattern 309

example 319
Remove By Hiding, design

pattern 309
example 319

removeEventListener(),
Mozilla 137

render() 230
renderer, pluggable 169
renderFull() 229

multiple messages 230
rendering

messages 236
methods 153
objects 152
performance 301
text 154

renderSmall() 228
repeat() 220
request dispatch pattern 454

request parameters 347
assembling from different

sources 404
generalized 349

request to server, controlling
rate 403

request validation
encrypted HTTP header 274
filtering encrypted HTTP

headers 274
filtering HTTP requests 273

tokens for 274
Resource Descriptor Framework

(RDF) 504
resource, protecting single 87
responseText, XMLHttpRequest

property 64
responseXML property 262, 522

XMLHttpRequest
property 64

responsiveness application
feature 213

result set
checking for null 479
empty 336
handling null results 477
limiting results 368
parsing 339, 406
processing in HTML

format 472
processing in XML

format 472
restricting 363

reusable component, multiple
installations 393

reusable object
accessing google content 255
barriers to reuse 74
being configurable 496
clean API 496
Command queue 198
configuring 399, 547
constructor for 75
ContentLoader 187

defined 74
data objects 99
default options 497
defined 74
double combo box 352

extending 359
requirements 352

edit a property 155
Event Router 141
extended array 142
flexibility in 240, 458

function naming 76
implements(), testing for

functions 604
isolating the “plumbing” 76
LoadXMLXSLTDoc() 476
message object 223
notification 222–236
notification framework 237
ObjectViewer 148–149

applied 285
output console 579
parameterizing 476
problems creating 96
profiling tool 282
PropertyViewer 149
requirements for 393
stopwatch applied 291
stopwatch library 283
suggest component 393
TextSuggest 394
TimedEvent 284
type-ahead object 373
unchanged HTML

requirement 397
using Prototype library 107
XSLTHelper 492

reuse, script vs XML 183
reusing DOM nodes 309
Rhino

consumes JSON script 192
JavaScript interpreter 163

rich client
alternates to Ajax 27
definition 5
distributing intelligence 146
spread sheet as 5

rich form element 366
rich transition effect 524
rich user interface 428
Rico library 109

.tag in responses 396
AjaxEngine

Ajax support 396
for communication 110

Behaviour object 109
Effect object 548
example 109
FadeTo effect 554
identifying responses 396
outlook bar 109

Robustness
application feature

definition 213
testing for 213

RPC 11
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 647
RSS feed
adding more 530
array for 519
channel element

optional elements 507
required elements 506

channel element, table of 506
cycling through 556
item element, required parts

508
item element, table of 508
item model 538
loading 518, 556
object model 538
optional items 508, 540
parsing content 522
structure 506
syndication format 506

RSS feed reader, application 509
RSS item object, link

attribute 543
RSS reader layout, state of 520
RSS reader object

additional feeds 529
behavior categories 545
controller 545
model for 537
Mozilla browser problem 534
navigation behavior 532
navigation buttons 532
refactoring for MVC 537
view classes 541

RSS XML documents 510
RSSFeed object 539

items in 557
RSSItem object 539

creating 540
RSSItemView object 541, 544

constructor 541
RSSReader object

constructor 546
controlling 549
feed loading 549

Ruby 161
rules, CSS

selector part 36
style declaration part 36

runScript() 463
runtime, interpreted 591

S

SAJAX, framework 112, 170
sandbox, execution enclosure 248
SAP NetWeaver 569

Sarissa library 105
adapter pattern in 79

save settings command 462
savePortalWindows() 452
SaveWindowProperties() 449
scope, of a method 600
screen-scraper 269
Scriptaculous Effects library 243

pulsate effect 243
Scriptaculous widget library 108
script-centric 438

interaction 182
pre- and post-processing 463
processing returned

scripts 463
pros and cons 462
security issues in 248
using the script 381

scripting context in Singleton
pattern 90

scroll position, maintaining 469
scrollable map, widget 169
scrollbars, suppressing 515
scrolling, as Ajax function 25
search application, classic 467
search performance 467
security

filtering encrypted HTTP
headers 274

filtering HTTP requests 273
HTTPS 264
man-in-the-middle attack 263

security issues
access to data 268
access to the server 268
accessing web services 253–254
browser security models 250
confidential data 263

HTTPS recommended 265
in content loader 255
mobile code 248
screen-scraper attack 269

sensitivity to layout
change 269

server of origin 248
testing 251

security model, browser, effect on
tools 564

select list 329
adding behavior 354
dynamic fill 339
formatting 342
from span element 372
multiple selections 343

reading 344

static fill 331
width, setting 342

selecting list items 389
selection list, first entry 336
selector, CSS

class and element rules 37
class type 37
element type 37
id-based 38
multiple type 37
parent-child selectors 38
pseudo-selectors 38
tags inside other tags 517
tag-type 37

SelectServlet 438, 442
sendRequest() 347, 460
separation of concerns 558

content from presentation 100
using template language 100

event handler object 407
Model from database 97
MVC, in 91
server side code and client data

format 489
view and logic 130

separation of responsibilities,
definition 71

serialized data 10
serializing data 201
server

delivers data 19
role in Ajax 160

server of origin
communication between

scripts 248
data source 252
proxying other servers 252
security policy 248

server requests
queuing 520
triggering action 27

server-side
design 164
domain model 163
frameworks 111
login request code 430
MVC structure 102
PHP example 478
programming

environment 161
programming languages 161
query for results 334
testing 368
XSLTprocessing 488

service, in SOA 170
Licensed to jonathan zheng <yiyisjun@gmail.com>

648 INDEX
service-oriented architecture, Ajax
and 170

servlet filter 430
function alternate 430

ServletRequest parameters 58
session

finding user in 432
persistent documents in 18
saving active windows 452
storing user object 432
user 14

SetClass() for fade transition 527
setInterval(), JavaScript 220
setOptions() in RSSReader

object 547
setRequestHeader() 276
setter, getter methods, for

dynamic updating 442
setTimeout() 528
Settings() 450
showOrbit() 301
Simple Object Access Protocol.

See SOAP
simplicity application feature 215
singleton

defined 88
design pattern in business

logic 90
scripting context 90

slideshow
behavior 549
forward, back pause control 511
starting 522, 547
transitions 510

SOAP
browser tools for 260
build request manually 260
creating 260
parsing response 260
response example 261
role in security 253

sovereign application
definition 15
frameworks moving toward 24

SQL
dynamic query construction

335, 338
empty result set 336
extracting results 339
injection attack 96
injection error check 338
table creation 429

SQL SQuirrel database client
program 429

start(), in RSSReader object 548

startSlideShow(), in RSSReader
object 552–553

status bar, notification
implementation 226

stopwatch categories 284
stopwatch library 283
stopwatch.start() 284
storyboards, as Web app

model 66
stress-testing, memory

management 320
string formatting with regular

expressions 386
stying, visual with CSS 41
style array, DOM property 51
style classes

applying 48
naming 48

style properties, CSS 39
background image 40
color 40
dimensions 39
positioning 39
text properties 39
visibility 40

style.left, DOM property 78
style.pixelLeft, DOM property 78
stylesheet, XSLT as 479
subdomain

determining identical 249
effect on scripts 249
using document.domain

property 250
submit button, disabling 194
submit() 329
submitGuess() 258
Sun Java Studio Creator 569
synchronous communication

example 12
hyperlink 23

synchronous server requests,
usability impact 216

syndicated XML feed 504
how to view 504

syndication feed, formats of 506
syntax definition files, pluggable

565
Syntax highlighting 565
system resources in

performance 280

T

table cells, showing empty 477
table width property 486

tag, inline 435
Task Manager 312

adding columns 313
Technical Pursuit 24
template

for XML document 476
XSLT 480

template language
Apache Velocity 100
definition 100
PHP Smarty 100

example 100
testing

by non-developer 214
file links 446
for latency 213
providing client input 368
robustness 213

text attribute in IE 357
text rendering 154
text style properties 39
text-align property CSS 436
textbox, detecting active 379
TextPad, editor 567
TextSuggest component 394
texturing elements, with CSS 45
this

keyword 76
resolving reference 572

Thomas, Dave 603
tier, in architecture 162

compared to MVC 162
TimedEvent object 284
timeout method, JavaScript 390
timer object for transitions 520
timers, using JS 390
timestamp 218

format of 221
timing events, adding and

removing 390
timing execution 282

system clock 282
toDocumentPosition(), Rico 416
toHTML method 542
tools, custom made 563
tooltip

device, in notification 225
event handlers 229
implementation 229
pinned 229

top variable 90
toString()

for view object 544
results with different

objects 151
Licensed to jonathan zheng <yiyisjun@gmail.com>

INDEX 649
traffic volume, Ajax vs
conventional web 21

transfer objects, in J2EE 163
transformNode(), XSLT

processing 483
transient application

definition 15
transition

effect 511, 554
implementing 527

object, in Scriptaculous
library 109

timing 519
triple combo box 345
try...catch blocks, in JS 257
type-ahead suggest 362

basic process 362
effect of fast typists 363
handling multiple

elements 377
limiting post backs 364
limiting results 364, 368
middle of a word result 368
multiple elements 392
operation 391
parameters for 373

TypeAhead() 380
typing, loose 590

U

UI manipulation 557
underline with regular

expression 387
undo(), using command objects

in 85
UniversalBrowserRead privilege

in Mozilla browsers 557
invoking 535

updates
by multiple users 218

notifying users 218
timestamp for 218

polling ther server for 218
UpdateServlet, for saving

windows 451
UpdateStatus() 522–523
updateView(), in RSSReader

object 558
usability 212

alert message for errors 217
consistency 214
desktop app vs. web

page 212
feedback 212

responsiveness 213
robustness 213
simplicity 215

usage contract, portal
object 459

user accounts 429
user interface

drag-and-drop in Ajax 22
generate from a model 147
GMail 24
response time 11
rich client 5
smooth interaction 21
toolkits 214

Backbase 214
Bindows 214
qooxdoo 214

typical web page 8
user interface programming,

frameworks for 167
user interface quality 4
user investment in the

application 212
user table, design 429
user updates

managing 197
server side code 202
to server 201

V

var keyword 349
Venkman

plug-in debugger 288, 577
profiler 288
profiler output 288–289

version control tools, integration
with 566

view in MVC 124–134
application level 124
business logic in 125
example 121
excluding model logic 124
for mesages 225
hand coded 147
in RSS reader object 541
initializing 541
refactoring 101

view object in MVC as as
string 544

Vim, editor 568
visibility semantics in

JavaScript 541
Visual Studio, Visual InterDev

component 568

W

web application
architecture 162
as set of pages 14
blocked pages 21
classic 4
conventional 8
conventional interaction 27
life cycle 17
limitations 9
problems 8
transient application 15

web archive (.war) file 454
web browsers

potential of 4
technology included with 34

web service
accessing with Ajax 253
as Ajax data source 170
coarse-grained façade 172
fine-grained façade 172
protecting private

methods 172
Web Services, definition 170
Web Tools Platform project-

Eclipse 569
Webber, J.G. 315
weblog 504–505

availability 505
widget

button, implementing 84
desktop 40
need for custom 169
sets for JavaScript 108

width of div elements 513
width of element set by

padding 416
width property

CSS 517
in IE 343

window
DHTML library 445
extracting properties 449
saving properties 448
storing size and location 439

window library
adapting for autosave 448
testing 447

window properties database
table 439

Windows Forms for .NET,
framework 168

workflow
in Ajax application 27
Licensed to jonathan zheng <yiyisjun@gmail.com>

650 INDEX
workflow (continued)
interrupting 217
interruptions 213

X

x library 104
XML

coupling client and server 190
data format 188
dynamic generation 205
form definition 335
generating content 94
parsing 145
parsing Google return 260
SOAP message 260
support for 189

XML document
as medium for client/server

communication 95
dynamic construction 478
dynamic creation 336
parsing 357
structuring 476

XML feeds
Ajax for viewing 504
formats 504
viewing multiple 504

XML messages, bulk of 173
XML parsing 540
XML syndication feed 504
XmlDocument object

description 56
sample usage 56

XMLHttpRequest object
Ajax component 32
creating 348
cross browser invocation 346
description 56
function of 366
library for 105
querystring parameters 58
responseText property 64
responseXML property 64
script loading 186
setting Mozilla permission 535
using JSON data 191
using SOAP messages 253

XSLT
applying to source 481
choosing to use 489
degradation of processing 492
document example 480
ease of change 489
for-each loop 481
input from web design 489

output 480
pattern 479, 481
pattern matching 479
processing input 492
reusable component 491
rules for transformation 479
select attribute 481
stylesheet 479
template 480
template rules 479
value-of operator 481
version, encoding 480
XML document structure 476
XML namespace 480

XSLTHelper object 492
XSLTProcessor object

in Mozilla 484

Y

Yahoo!, portal 425

Z

z-Index property 524
zones, in IE security model 250
zoom slider, widget 169

	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions
	Code downloads
	Author Online
	About the title
	About the cover illustration

	Rethinking the web application
	A new design for the Web
	1.1 Why Ajax rich clients?
	1.1.1 Comparing the user experiences
	1.1.2 Network latency
	1.1.3 Asynchronous interactions
	1.1.4 Sovereign and transient usage patterns
	1.1.5 Unlearning the Web

	1.2 The four defining principles of Ajax
	1.2.1 The browser hosts an application, not content
	1.2.2 The server delivers data, not content
	1.2.3 User interaction with the application can be fluid and continuous
	1.2.4 This is real coding and requires discipline

	1.3 Ajax rich clients in the real world
	1.3.1 Surveying the field
	1.3.2 Google Maps

	1.4 Alternatives to Ajax
	1.4.1 Macromedia Flash-based solutions
	1.4.2 Java Web Start and related technologies

	1.5 Summary
	1.6 Resources

	First steps with Ajax
	2.1 The key elements of Ajax
	2.2 Orchestrating the user experience with JavaScript
	2.3 Defining look and feel using CSS
	2.3.1 CSS selectors
	2.3.2 CSS style properties
	2.3.3 A simple CSS example

	2.4 Organizing the view using the DOM
	2.4.1 Working with the DOM using JavaScript
	2.4.2 Finding a DOM node
	2.4.3 Creating a DOM node
	2.4.4 Adding styles to your document
	2.4.5 A shortcut: Using the innerHTML property

	2.5 Loading data asynchronously using XML technologies
	2.5.1 IFrames
	2.5.2 XmlDocument and XMLHttpRequest objects
	2.5.3 Sending a request to the server
	2.5.4 Using callback functions to monitor the request
	2.5.5 The full lifecycle

	2.6 What sets Ajax apart
	2.7 Summary
	2.8 Resources

	Introducing order to Ajax
	3.1 Order out of chaos
	3.1.1 Patterns: creating a common vocabulary
	3.1.2 Refactoring and Ajax
	3.1.3 Keeping a sense of proportion
	3.1.4 Refactoring in action

	3.2 Some small refactoring case studies
	3.2.1 Cross-browser inconsistencies: Façade and Adapter patterns
	3.2.2 Managing event handlers: Observer pattern
	3.2.3 Reusing user action handlers: Command pattern
	3.2.4 Keeping only one reference to a resource: Singleton pattern

	3.3 Model-View-Controller
	3.4 Web server MVC
	3.4.1 The Ajax web server tier without patterns
	3.4.2 Refactoring the domain model
	3.4.3 Separating content from presentation

	3.5 Third-party libraries and frameworks
	3.5.1 Cross-browser libraries
	3.5.2 Widgets and widget suites
	3.5.3 Application frameworks

	3.6 Summary
	3.7 Resources

	Core techniques
	The page as an application
	4.1 A different kind of MVC
	4.1.1 Repeating the pattern at different scales
	4.1.2 Applying MVC in the browser

	4.2 The View in an Ajax application
	4.2.1 Keeping the logic out of the View
	4.2.2 Keeping the View out of the logic

	4.3 The Controller in an Ajax application
	4.3.1 Classic JavaScript event handlers
	4.3.2 The W3C event model
	4.3.3 Implementing a flexible event model in JavaScript

	4.4 Models in an Ajax application
	4.4.1 Using JavaScript to model the business domain
	4.4.2 Interacting with the server

	4.5 Generating the View from the Model
	4.5.1 Reflecting on a JavaScript object
	4.5.2 Dealing with arrays and objects
	4.5.3 Adding a Controller

	4.6 Summary
	4.7 Resources

	The role of the server
	5.1 Working with the server side
	5.2 Coding the server side
	5.2.1 Popular implementation languages
	5.2.2 N-tier architectures
	5.2.3 Maintaining client-side and server-side domain models

	5.3 The big picture: common server-side designs
	5.3.1 Naive web server coding without a framework
	5.3.2 Working with Model2 workflow frameworks
	5.3.3 Working with component-based frameworks
	5.3.4 Working with service-oriented architectures

	5.4 The details: exchanging data
	5.4.1 Client-only interactions
	5.4.2 Introducing the planet browser example
	5.4.3 Thinking like a web page: content-centric interactions
	5.4.4 Thinking like a plug-in: script-centric interactions
	5.4.5 Thinking like an application: data-centric interactions

	5.5 Writing to the server
	5.5.1 Using HTML forms
	5.5.2 Using the XMLHttpRequest object
	5.5.3 Managing user updates effectively

	5.6 Summary
	5.7 Resources

	Professional Ajax
	The user experience
	6.1 Getting it right: building a quality application
	6.1.1 Responsiveness
	6.1.2 Robustness
	6.1.3 Consistency
	6.1.4 Simplicity
	6.1.5 Making it work

	6.2 Keeping the user informed
	6.2.1 Handling responses to our own requests
	6.2.2 Handling updates from other users

	6.3 Designing a notification system for Ajax
	6.3.1 Modeling notifications
	6.3.2 Defining user interface requirements

	6.4 Implementing a notification framework
	6.4.1 Rendering status bar icons
	6.4.2 Rendering detailed notifications
	6.4.3 Putting the pieces together

	6.5 Using the framework with network requests
	6.6 Indicating freshness of data
	6.6.1 Defining a simple highlighting style
	6.6.2 Highlighting with the Scriptaculous Effects library

	6.7 Summary
	6.8 Resources

	Security and Ajax
	7.1 JavaScript and browser security
	7.1.1 Introducing the “server of origin” policy
	7.1.2 Considerations for Ajax
	7.1.3 Problems with subdomains
	7.1.4 Cross-browser security

	7.2 Communicating with remote services
	7.2.1 Proxying remote services
	7.2.2 Working with web services

	7.3 Protecting confidential data
	7.3.1 The man in the middle
	7.3.2 Using secure HTTP
	7.3.3 Encrypting data over plain HTTP using JavaScript

	7.4 Policing access to Ajax data streams
	7.4.1 Designing a secure web tier
	7.4.2 Restricting access to web data

	7.5 Summary
	7.6 Resources

	Performance
	8.1 What is performance?
	8.2 JavaScript execution speed
	8.2.1 Timing your application the hard way
	8.2.2 Using the Venkman profiler
	8.2.3 Optimizing execution speed for Ajax

	8.3 JavaScript memory footprint
	8.3.1 Avoiding memory leaks
	8.3.2 Special considerations for Ajax

	8.4 Designing for performance
	8.4.1 Measuring memory footprint
	8.4.2 A simple example
	8.4.3 Results: how to reduce memory footprint 150-fold

	8.5 Summary
	8.6 Resources

	Ajax by example
	Dynamic double combo
	9.1 A double-combo script
	9.1.1 Limitations of a client-side solution
	9.1.2 Limitations of a server-side solution
	9.1.3 Ajax-based solution

	9.2 The client-side architecture
	9.2.1 Designing the form
	9.2.2 Designing the client/server interactions

	9.3 Implementing the server: VB .NET
	9.3.1 Defining the XML response format
	9.3.2 Writing the server-side code

	9.4 Presenting the results
	9.4.1 Navigating the XML document
	9.4.2 Applying Cascading Style Sheets

	9.5 Advanced issues
	9.5.1 Allowing multiple-select queries
	9.5.2 Moving from a double combo to a triple combo

	9.6 Refactoring
	9.6.1 New and improved net.ContentLoader
	9.6.2 Creating a double-combo component

	9.7 Summary

	Type-ahead suggest
	10.1 Examining type-ahead applications
	10.1.1 Common type-ahead suggest features
	10.1.2 Google Suggest
	10.1.3 The Ajax in Action type-ahead

	10.2 The server-side framework: C#
	10.2.1 The server and the database
	10.2.2 Testing the server-side code

	10.3 The client-side framework
	10.3.1 The HTML
	10.3.2 The JavaScript
	10.3.3 Accessing the server

	10.4 Adding functionality: multiple elements with different queries
	10.5 Refactoring
	10.5.1 Day 1: developing the TextSuggest component game plan
	10.5.2 Day 2: TextSuggest creation-clean and configurable
	10.5.3 Day 3: Ajax enabled
	10.5.4 Day 4: handling events
	10.5.5 Day 5: the suggestions pop-up UI
	10.5.6 Refactor debriefing

	10.6 Summary

	The enhanced Ajax web portal
	11.1 The evolving portal
	11.1.1 The classic portal
	11.1.2 The rich user interface portal

	11.2 The Ajax portal architecture using Java
	11.3 The Ajax login
	11.3.1 The user table
	11.3.2 The server-side login code: Java
	11.3.3 The client-side login framework

	11.4 Implementing DHTML windows
	11.4.1 The portal windows database
	11.4.2 The portal window’s server-side code
	11.4.3 Adding the JS external library

	11.5 Adding Ajax autosave functionality
	11.5.1 Adapting the library
	11.5.2 Autosaving the information to the database

	11.6 Refactoring
	11.6.1 Defining the constructor
	11.6.2 Adapting the AjaxWindows.js library
	11.6.3 Specifying the portal commands
	11.6.4 Performing the Ajax processing
	11.6.5 Refactoring debrief

	11.7 Summary

	Live search using XSLT
	12.1 Understanding the search techniques
	12.1.1 Looking at the classic search
	12.1.2 The flaws of the frame and pop-up methods
	12.1.3 Examining a live search with Ajax and XSLT
	12.1.4 Sending the results back to the client

	12.2 The client-side code
	12.2.1 Setting up the client
	12.2.2 Initiating the process

	12.3 The server-side code: PHP
	12.3.1 Building the XML document
	12.3.2 Building the XSLT document

	12.4 Combining the XSLT and XML documents
	12.4.1 Working with Microsoft Internet Explorer
	12.4.2 Working with Mozilla

	12.5 Completing the search
	12.5.1 Applying a Cascading Style Sheet
	12.5.2 Improving the search
	12.5.3 Deciding to use XSLT
	12.5.4 Overcoming the Ajax bookmark pitfall

	12.6 Refactoring
	12.6.1 An XSLTHelper
	12.6.2 A live search component
	12.6.3 Refactoring debriefing

	12.7 Summary

	Building stand-alone applications with Ajax
	13.1 Reading information from the outside world
	13.1.1 Discovering XML feeds
	13.1.2 Examining the RSS structure

	13.2 Creating the rich user interface
	13.2.1 The process
	13.2.2 The table-less HTML framework
	13.2.3 Compliant CSS formatting

	13.3 Loading the RSS feeds
	13.3.1 Global scope
	13.3.2 Ajax preloading functionality

	13.4 Adding a rich transition effect
	13.4.1 Cross-browser opacity rules
	13.4.2 Implementing the fading transition
	13.4.3 Integrating JavaScript timers

	13.5 Additional functionality
	13.5.1 Inserting additional feeds
	13.5.2 Integrating the skipping and pausing functionality

	13.6 Avoiding the project’s restrictions
	13.6.1 Overcoming Mozilla’s security restriction
	13.6.2 Changing the application scope

	13.7 Refactoring
	13.7.1 RSS reader Model
	13.7.2 RSS reader view
	13.7.3 RSS reader Controller
	13.7.4 Refactoring debrief

	13.8 Summary

	The Ajax craftsperson’s toolkit
	A.1 Working smarter with the right toolset
	A.1.1 Acquiring tools that fit
	A.1.2 Building your own tools
	A.1.3 Maintaining your toolkit

	A.2 Editors and IDEs
	A.2.1 What to look for in a code editor
	A.2.2 Current offerings

	A.3 Debuggers
	A.3.1 Why we use a debugger
	A.3.2 JavaScript debuggers
	A.3.3 HTTP debuggers
	A.3.4 Building your own cross-browser output console

	A.4 DOM inspectors
	A.4.1 Using the Mozilla DOM Inspector
	A.4.2 DOM inspectors for Internet Explorer
	A.4.3 The Safari DOM Inspector for Mac OS X

	A.5 Installing Firefox extensions
	A.6 Resources

	JavaScript for object-oriented programmers
	B.1 JavaScript is not Java
	B.2 Objects in JavaScript
	B.2.1 Building ad hoc objects
	B.2.2 Constructor functions, classes, and prototypes
	B.2.3 Extending built-in classes
	B.2.4 Inheritance of prototypes
	B.2.5 Reflecting on JavaScript objects
	B.2.6 Interfaces and duck typing

	B.3 Methods and functions
	B.3.1 Functions as first-class citizens
	B.3.2 Attaching functions to objects
	B.3.3 Borrowing functions from other objects
	B.3.4 Ajax event handling and function contexts
	B.3.5 Closures in JavaScript

	B.4 Conclusions
	B.5 Resources

	Ajax frameworks and libraries
	Accesskey Underlining Library
	ActiveWidgets
	Ajax JavaServer Faces Framework
	Ajax JSP Tag Library
	Ajax.NET
	AjaxAC
	AjaxAspects
	AjaxCaller
	AjaxFaces
	BackBase
	Behaviour
	Bindows
	BlueShoes
	CakePHP
	CL-Ajax
	ComfortASP.NET
	Coolest DHTML Calendar
	CPAINT (Cross-Platform Asynchronous Interface Toolkit)
	Dojo
	DWR (Direct Web Remoting)
	Echo 2
	f(m)
	FCKEditor
	Flash JavaScript Integration Kit
	Google AjaxSLT
	Guise
	HTMLHttpRequest
	Interactive Website Framework
	Jackbe
	JPSpan
	jsolait
	JSON
	JSRS (JavaScript Remote Scripting)
	LibXMLHttpRequest
	Mochikit
	netWindows
	Oddpost
	OpenRico
	Pragmatic Objects
	Prototype
	Qooxdoo
	RSLite
	Ruby on Rails
	Sack
	SAJAX
	Sarissa
	Scriptaculous
	SWATO…
	Tibet
	TinyMCE
	TrimPath Templates
	Walter Zorn’s DHTML Libraries
	WebORB for .NET
	WebORB for Java
	x
	XAJAX
	x-Desktop
	XHConn

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

