v
» &Y
S,
bl k. - Wy L
: 4 Sk
A £ 9W
%
A .a_.:;.-E'a-
v ' * s = X
. . " -~ -(",
. QI ' 3 VLT
25 r '
i 5 :
i 7
r ‘
'

dX
(TION

Dave (rane
Eric Pascarello

with Darren James

MMANNING

Ajax in Action

Licensed to jonathan zheng <yiyi§un@gmail.com>

Licensed to jonathan zheng <yiyi§un@gmail.com>

Ajax m Action

DAVE CRANE
ERIC PASCARELLO
WITH DARREN JAMES

MANNING

Greenwich
(74° w. long.)

Licensed to jonathan zheng <yiyi§un@gmail.com>

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2006 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
/I/I 209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-61-3

Printed in the United States of America
12345678910 - VHG - 0908070605

Licensed to jonathan zheng <yiyi§un@gmail.com>

To Hermes, Apollo, Athena, and my calts, for their wisdom
—D.C.

To my wife; I'm surprised you said yes
—E.P

To my red-headed wife
—D.J.

Licensed to jonathan zheng <yiyi§un@gmail.com>

Licensed to jonathan zheng <yiyi§un@gmail.com>

brief contents

PART 1 RETHINKING THE WEB APPLICATION ...couvuvuiiieenenennnnnnns 1

1 = Anew design for the Web 3
2 = First steps with Ajax 31
3 = Introducing order to Ajax 69
PART 2 CORE TECHNIQUESccccuuiiiiiiiiiiinniiinniieiiiiinineeeennns 117
4 = The page as an application 119
5 = The role of the server 159
PART 3 PROFESSIONAL AJAX ..cccivuiiiiiiiiieiiiiiiecinieeeeenneeeennns 209

6 = 'The user experience 211
7 = Security and Ajax 246

8 = Performance 279

vii

Licensed to jonathan zheng <yiyisun@gmail.com>

viii BRIEF CONTENTS

9 = Dynamic double combo 327
10 = Type-ahead suggest 361
11 = The enhanced Ajax web portal 423
12 = Live search using XSL'T 466
13 = Building stand-alone applications with Ajax 503

Licensed to jonathan zheng <yiyisun@gmail.com>

contents

preface xix
acknowledgments xxi
about this book xxiv

A new design for the Web 3
1.1 Why Ajax rich clients? 5

Comparing the user experiences 5 = Network latency 9
Asynchronous interactions 12 = Sovereign and transient usage
patterns 15 = Unlearning the Web 16

1.2 The four defining principles of Ajax 17

The browser hosts an application, not content 17 = The server
delivers data, not content 19 = User interaction with the application
can be fluid and continuous 21 = This is real coding and requires
discipline 23

1.3 Ajax rich clients in the real world 24
Surveying the field 24 = Google Maps 25

1.4 Alternatives to Ajax 28

Macromedia Flash-based solutions 28 = Java Web Start and related
technologies 28

ix

Licensed to jonathan zheng <yiyisun@gmail.com>

CONTENTS

1.b. Summary 29

1.6

Resources 30

First steps with Ajax 31

2.1
2.2
2.3

24

2.5

2.6
2.7
2.8

The key elements of Ajax 32

Orchestrating the user experience with JavaScript 34
Defining look and feel using CSS 36

CSS selectors 37 = CSS style properties 39
A simple CSS example 40

Organizing the view using the DOM 45

Working with the DOM using JavaScript 47 = Finding a DOM
node 49 = Creating a DOM node 50 = Adding styles to your
document 51 = A shortcut: Using the innerHTML property 53

Loading data asynchronously using
XML technologies 53
IFrames 54 = XmlDocument and XMLHItpRequest objects 56

Sending a request to the server 58 ® Using callback functions to
monitor the request 61 = The full lifecycle 62

What sets Ajax apart 65

Summary 67

Resources 68

Introducing order to Ajax 69

3.1

3.2

3.3
3.4

Order out of chaos 71

Patterns: Creating a common vocabulary 71
Refactoring and Ajax 72 = Keeping a sense of proportion 73
Refactoring in action 73

Some small refactoring case studies 77

Cross-browser inconsistencies: Fagade and Adapter patterns 77
Managing event handlers: Observer pattern 80

Reusing user action handlers: Command pattern 83

Keeping only one reference to a resource: Singleton pattern 87

Model-View-Controller 91
Web server MVC 93

The Ajax web server tier without patterns 93 = Refactoring the
domain model 96 = Separating content from presentation 100

Licensed to jonathan zheng <yiyisun@gmail.com>

CONTENTS

3.5 Third-party libraries and frameworks 103

Cross-browser libraries 104 = Widgets and widget suites 108
Application frameworks 111

3.6 Summary 114
3.7 Resources 115

xi

The page as an application 119
4.1 A different kind of MVC 120

Repeating the pattern at different scales 120
Applying MVC in the browser 122

4.2 The View in an Ajax application 124

Keeping the logic out of the View 124
Keeping the View out of the logic 130

4.3 The Controller in an Ajax application 134

Classic JavaScript event handlers 134
The W3C event model 137
Implementing a flexible event model in JavaScript 138

4.4 Models in an Ajax application 143

Using JavaScript to model the business domain 144
Interacting with the server 145

4.5 Generating the View from the Model 147

Reflecting on a JavaScript object 147 = Dealing with arrays and

objects 151 » Adding a Controller 154

4.6 Summary 157
4.7 Resources 158

The role of the server 159
5.1 Working with the server side 160
5.2 Coding the server side 161

Popular implementation languages 161
N-tier architectures 162
Maintaining client-side and server-side domain models 163

Licensed to jonathan zheng <yiyisun@gmail.com>

xii CONTENTS

5.3 The big picture: common server-side designs 164

Nawve web server coding without a framework 164
Working with Model2 workflow frameworks 166
Working with component-based frameworks 167
Working with service-oriented architectures 170

5.4 The details: exchanging data 174

Client-only interactions 175

Introducing the planet browser example 175

Thinking like a web page: content-centric interactions 178
Thinking like a plug-in: script-centric interactions 182
Thinking like an application: data-centric interactions 188

5.5 Writing to the server 193

Using HTML forms 193 = Using the XM LHItpRequest
object 195 = Managing user updates effectively 197

5.6 Summary 206
5.7 Resources 207

The user experience 211

6.1 Getting it right: building a quality application 212
Responsiveness 213 = Robustness 213 ® Consistency 214
Simplicity 215 = Making it work 215

6.2 Keeping the user informed 216

Handling responses to our own requests 216
Handling updates from other users 218

6.3 Designing a notification system for Ajax 222

Modeling notifications 223
Defining user interface requirements 225

6.4 Implementing a notification framework 226

Rendering status bar icons 226 = Rendering detailed
notifications 229 = Putting the pieces together 230

6.5 Using the framework with network requests 237
6.6 Indicating freshness of data 241

Defining a simple highlighting style 241
Highlighting with the Scriptaculous Effects library 243

Licensed to jonathan zheng <yiyisun@gmail.com>

CONTENTS

6.7 Summary 244
6.8 Resources 245

Security and Ajax 246
7.1 JavaScript and browser security 247

Introducing the “server of origin” policy 248 = Considerations for
Ajax 248 = Problems with subdomains 249
Cross-browser security 250

7.2 Communicating with remote services 251

Proxying remote services 252
Working with web services 253

7.3 Protecting confidential data 263

The man in the middle 263 = Using secure HITP 264
Encrypting data over plain HTTP using JavaScript 266

7.4 Policing access to Ajax data streams 268

Designing a secure web tier 268
Restricting access to web data 272

7.5 Summary 277
7.6 Resources 278

Performance 279
8.1 What is performance? 280
8.2 JavaScript execution speed 281

Timing your application the hard way 282
Using the Venkman profiler 288
Optimizing execution speed for Ajax 289

8.3 JavaScript memory footprint 302

Avoiding memory leaks 302
Special considerations for Ajax 306

8.4 Designing for performance 311

Measuring memory footprint 312 = A simple example 316
Results: how to reduce memory footprint 150-fold 321

8.5 Summary 323
8.6 Resources 324

Licensed to jonathan zheng <yiyisun@gmail.com>

xiii

Xiv CONTENTS

Dynamic double combo 327
9.1 A double-combo script 328

Limitations of a client-side solution 328
Limitations of a server-side solution 329
Ajax-based solution 330

9.2 The client-side architecture 331

Designing the form 331
Designing the client/server interactions 333

9.3 Implementing the server: VB .NET 334

Defining the XML response format 335
Writing the server-side code 336

9.4 Presenting the results 339

Navigating the XML document 339
Applying Cascading Style Sheets 342

9.5 Advanced issues 343

Allowing multiple-select queries 343
Mouving from a double combo to a triple combo 345

9.6 Refactoring 345

New and improved net.ContentLoader 346
Creating a double-combo component 352

9.7 Summary 359

Type-ahead suggest 361
10.1 Examining type-ahead frameworks 362

Type-ahead suggest frameworks 362 = Google Suggest 364
The Ajax in Action type-ahead 365

10.2 The server-side framework: C# 366

The server and the database 366
Testing the server-side code 368

10.3 The client-side framework 369

The HTML 369 = The JavaScript 370
Accessing the server 380

Licensed to jonathan zheng <yiyisun@gmail.com>

CONTENTS

10.4 Adding functionality: multiple elements
with different queries 392
10.5 Refactoring 392

Day 1: developing the TextSuggest component game plan 394
Day 2: TextSuggest creation—clean and configurable 397
Day 3: Ajax enabled 401 = Day 4: handling events 406
Day 5: the suggestions pop-up UI 413

Refactor debriefing 421

10.6 Summary 422

The enhanced Ajax web portal 423
11.1 The evolving portal 424
The classic portal 424 = The rich user interface portal 426

11.2 The Ajax portal architecture using Java 427
11.3 The Ajax login 429

The user table 429 = The server-side login code: Java 430
The client-side login framework 433

11.4 Implementing DHTML windows 439
The portal windows database 439

The portal window’s server-side code 441
Adding the JS external library 445
11.5 Adding Ajax autosave functionality 448
Adapting the library 448
Autosaving the information to the database 450
11.6 Refactoring 453

Defining the constructor 455 = Adapting the AjaxWindows.js
Library 456 = Specifying the portal commands 458
Performing the Ajax processing 462

Refactoring debrief 464

11.7 Summary 464

Live search using XSLT 466
12.1 Understanding the search techniques 467

Looking at the classic search 467 = The flaws of the frame and pop-

wp methods 469 = Examining a live search with Ajax and
XSLT 470 = Sending the results back to the client 472

Licensed to jonathan zheng <yiyisun@gmail.com>

XV

xvi

CONTENTS

12.2 The client-side code 473

Setting up the client 473
Initiating the process 474

12.3 The server-side code: PHP 476

Buwilding the XML document 476
Buwilding the XSLT document 479

12.4 Combining the XSLT and XML documents 481

Working with Microsoft Internet Explorer 483
Working with Mozilla 484

12.5 Completing the search 485

Applying a Cascading Style Sheet 485 = Improving the
search 487 = Deciding to use XSLT 489
Overcoming the Ajax bookmark pitfall 490

12.6 Refactoring 491

An XSLTHelper 492 = A live search component 496
Refactoring debriefing 501

12.7 Summary 501
Building stand-alone applications with Ajax 503

13.1 Reading information from the outside world 504

Discovering XML feeds 505
Examining the RSS structure 506

13.2 Creating the rich user interface 509

The process 510 = The table-less HTML framework 511
Compliant CSS formatting 513

13.3 Loading the RSS feeds 518
Global scope 518 » Ajax preloading functionality 520
13.4 Adding a rich transition effect 524

Cross-browser opacity rules 524 = Implementing the fading
transition 525 = Integrating JavaScript timers 527

13.5 Additional functionality 528

Inserting additional feeds 529
Integrating the skipping and pausing functionality 531

Licensed to jonathan zheng <yiyisun@gmail.com>

13.6

13.7

13.8

appendix A
Al
A2
A3
A4
Ab
A6

appendix B
B.1
B.2
B.3
B.4
B.5

appendix C

CONTENTS

Avoiding the project’s restrictions 534

Overcoming Mozilla’s security restriction 534
Changing the application scope 537

Refactoring 537

RSS reader Model 537 = RSS reader view 541
RSS reader Controller 545 = Refactoring debrief 558

Summary 559

The Ajax craftsperson’s toolkit 561
Working smarter with the right toolset 562
Editors and IDEs 565

Debuggers 571

DOM inspectors 582

Installing Firefox extensions 585
Resources 588

JavaScript for object-oriented programmers 589
JavaScript is not Java 590

Objects in JavaScript 592

Methods and functions 606

Conclusions 617

Resources 617

Ajax frameworks and libraries 619

index 635

Licensed to jonathan zheng <yiyisun@gmail.com>

xvii

Licensed to jonathan zheng <yiyisun@gmail.com>

preface

Sometimes your destiny will follow you around for years before you notice it.
Amidst the medley of fascinating new technologies that I was playing—I mean
working—with in the early 1990s was a stunted little scripting language called
JavaScript. I soon realized that, despite its name, it didn’t really have anything
to do with my beloved Java, but it persistently dogged my every step.

By the late 90s, I had decided to cut my hair and get a proper job, and
found myself working with the early adopters of digital set-top box technol-
ogy. The user interface for this substantial piece of software was written
entirely in JavaScript and I found myself the technical lead of a small team of
developers writing window-management code, schedulers, and all kinds of
clever stuff in this language. “How curious,” I thought. “It'll never catch on.”

With time I moved on to more demanding work, developing the enter-
prise messaging backbone and various user interface components for an
“intelligent,” talking “House of the Future.” I was hired for my Java skills, but
I was soon writing fancy JavaScript user interfaces again. It was astonishing to
find that some people were now taking this scripting language seriously
enough to write frameworks for it. I quickly picked up the early versions of
Mike Foster’s x library (which you’ll find put into occasional action in this
book). One afternoon, while working on an email and text message bulletin
board, I had the weird, exciting idea of checking for new messages in a hid-
den frame and adding them to the user interface without refreshing the screen.

Xix

Licensed to jonathan zheng <yiyisun@gmail.com>

XX

PREFACE

After a few hours of frenzied hacking, I had it working, and I'd even figured out
how to render the new messages in color to make them noticeable to the user.
“What a laugh,” I thought, and turned back to some serious code. Meantime,
unbeknownst to me, Eric Costello, Erik Hatcher, Brent Ashley, and others were
thinking along similar lines, and Microsoft was cooking up the XMLHttpRequest
for its Outlook Web Access.

Destiny was sniffing at my heels. My next job landed me in a heavy-duty
development role, building software for big Tier 1 banks. We use a mixture of
Java and JavaScript and employ tricks with hidden frames and other things. My
team currently looks after more than 1.5 million bytes of such code—that’s static
JavaScript, in addition to code we generate from JSPs. No, I'm not counting any
image resources in there either. We use it to develop applications for hundreds of
operators managing millions of dollars’ worth of accounts. Your bank account
may well be managed by this software.

Somewhere along the way, JavaScript had grown up without my quite realiz-
ing it. In February 2005, Jesse James Garrett provided the missing piece of the
jigsaw puzzle. He gave a short, snappy name to the cross-browser-asynchronous-
rich-client-dynamic-HTML-client-server technology that had been sneaking up
on us all for the last few years: Ajax.

And the rest, as they say, is history. Ajax is generating a lot of interest now,
and a lot of good code is getting written by the people behind Prototype, Rico,
Dojo, qooxdoo, Sarissa, and numerous other frameworks, too plentiful to count.
Actually, we do try to count them, in appendix C. We think we’ve rounded up
most of the suspects. And I've never had so much fun playing—I mean working—
with computers.

We have not arrived yet. The field is still evolving. I was amazed to see just
how much when I did the final edits in September on the first chapter that I
wrote back in May! There’s still a lot of thinking to be done on this subject, and
the next year or two will be exciting. I've been very lucky to have Eric and Darren
on the book piece of the journey with me so far.

We hope you will join us—and enjoy the ride.

DAVE CRANE

Licensed to jonathan zheng <yiyisun@gmail.com>

acknowledgments

Although there are only three names on the cover of this book, a legion of tal-
ented, hardworking, and just plain crazy people supported us behind the
scenes. We’d like to thank everyone at Manning, especially our publisher, Mar-
jan Bace, and our development editors, Jackie Carter and Doug Bennett, for
their continuous support and help on so many aspects of the manuscript. To
the others at Manning who worked with us in different stages of the project—
Blaise Bace, review editor Karen Tegtmayer, webmaster Iain Shigeoka, publi-
cist Helen Trimes, and not least of all project editor Mary Piergies—thanks for
helping to steer us along so smoothly. Our copyeditors, Linda Recktenwald
and Liz Welch, and proofreaders Barbara Mirecki and Tiffany Taylor, proved
to be indispensable, and design editor Dottie Marsico and typesetter Denis
Dalinnik did a marvelous job of converting our scribbles into pictures and our
text into a real book!

Many talented coders gave their time unflinchingly to our cause, as techni-
cal proofreaders and reviewers. Leading the charge were Phil McCarthy (who
not only corrected our code, but also our grammar and style, even setting us
straight on the rules of Battleship) and Bear Bibeault, who bravely advised on
server architecture, client-side code, and Mac compatibility, in the face of Hur-
ricane Rita. Joe Mayo, Valentin Crettaz, James Tikalsky, Shane Witbeck, Frank
Zammetti, Joel Webber, Jonathan Esterhazy, Garret Wilson, Joe Walker, and

xxi

Licensed to jonathan zheng <yiyisun@gmail.com>

xxii

ACKNOWLEDGMENTS

J.B. Rainsberger provided first-rate technical support at very short notice. We are
truly grateful to them.

We also thank the many reviewers of the manuscript, in its various stages, for
their thoughtful feedback: Ernest Friedman-Hill, Craig Walls, Patrick Peak, J. B.
Rainsberger, Jack Herrington, Erik Hatcher, Oliver Zeigermann, Suresh Kumar,
Mark Chaimungkalanont, Doug Warren, Deiveehan Nallazhagappan, Norman
Richards, Mark Eagle, Christophe Avare, Bill Lynch, Wayland Chan, Shane Wit-
beck, Mike Stenhouse, Frank Zammetti, Brendan Murray, Ryan Cox, Valentin
Crettaz, Thomas Baekdal, Peter-Paul Koch, Venkatt Guhesan, Frank Jania, Mike
Foster, Bear Bibeault, Peter George, Joel Webber, Nikhil Narayana, Harshad
Oak, and Bas Vodde.

Thanks to Paul Hobbs, Bill Gathen, and Charlie Arehart for spotting typos in
the code in the Manning Early Access Program chapters (MEAP). Finally, special
thanks are due to Brian J. Sletten, Ben Galbraith, and Kito Mann for helping to
get the ball rolling in the first place. Our thanks also go to the authors of the
many Ajax frameworks that we have used in the book, and to Jesse James Garrett
for providing us with a short, snappy acronym to grace the cover of our book.
(We feel that “Those Rich Client JavaScript Network Things in Action” wouldn’t
have been quite as effective.)

We’re standing on the shoulders of a whole group of giants here. The view is
fantastic.

DAVE CRANE
I'd like to thank Chia, Ben, and Sophie for their support, wisdom, and enthusi-
asm, and for putting up with me through all the late nights and early mornings.
I'm finished now and I promise to behave. Thanks too to my parents for listen-
ing to the book-writing saga unfold and for instilling in me the strength and
foolishness to undertake such a project in the first place.

Eric and Darren have been excellent co-authors to work with, and I'd like to
extend my thanks to them too, for their invaluable contributions to the book.

My thanks to my colleagues at Smartstream Technologies for exploring the
world of Ajax with me before it was christened—Tony Coombes, John Kellett, Phil
McCarthy, Anthony Warner, Jon Green, Rob Golder, David Higgins, Owen Rees-
Hayward, Greg Nwosu, Hristo Gramatikov, and Stuart Martin, and to my manag-
ers Colin Reid and Andrew Elmore. Thanks too to our colleagues overseas: Bhu-
pendra, Pooja, Rahul, Dhiraj, Josef, Vjeko and Ted, and to the many other
talented people with whom I've had the pleasure to work over the years. Special
thanks are due to Rodrigo Barnes for introducing me to this new programming

Licensed to jonathan zheng <yiyisun@gmail.com>

ACKNOWLEDGMENTS xxiii

language called “Java” ten years ago, and to my brother Mike for figuring out
how to drive our BBC microcomputer.

ERIC PASCARELLO

I would like to thank Shona, my wife, for putting up with the late nights and for
planning our wedding without my help, while I wrote this book. Thanks to my
parents for letting me become a computer nerd. Thanks to my co-workers Fred
Grau, Paul Fuseyamore, Tim Stanton, Tracey Baker, Adrienne Cantler, and Kelly
Singleton for putting up with my early morning grumpiness after the long
nights of writing. Thanks to the people at www.]JavaRanch.com for their support
and many great ideas. And I cannot forget to thank the aliens who abducted me
and taught me to program.

DARREN JAMES

I would like to thank my wife, Alana, and my children, Hannah and Paul, for
being my life’s inspiration. Thanks to my parents for encouraging me to do well
in school; to my colleague and friend, Bill Scott, for his ideas and support; to
Richard Cowin and the contributors to Rico; to Butch Clarke for being an
anchor in the storm; and to Gordon, Junior, and Jub-Jub for making me laugh.

Licensed to jonathan zheng <yiyisun@gmail.com>

about this book

Ajax is a growing new technology at the time of this writing and we're
delighted to bring you the lowdown on it, in the inimitable style of Manning’s
In Action series. In doing so, though, we faced an interesting problem.
Although Ajax is indisputably hot, it isn’t really new. It isn’t really a technol-
ogy, either.

Let us explain. Ajax brings together several well-established web technolo-
gies and uses them in new and interesting ways. Learning to use a completely
new technology for the first time is in some ways simpler because you start
with a blank slate. Ajax is different: there is also much to unlearn. Because of
this, our book is organized somewhat differently from most Manning In Action
books. You may notice this when reading and should know that we feel the way
it is organized best suits this subject.

And, as you will see, although the Ajax technologies themselves are all cli-
ent side, the differences extend all the way down to the server. This book is
mainly about client-side programming, and most of the code examples that
you’ll find in here are JavaScript. The principles of Ajax decouple the client
from the server beautifully, and can be used with any server-side language.
We’ve therefore got a broad audience to address and have opted to present
our server-side code in a mixture of languages: PHP, Java, C#, and Visual
Basic .NET. More importantly, though, we’ve tried to keep the server-side code
relatively simple and implementation-agnostic, so that you can port it to what-

XXiv

Licensed to jonathan zheng <yiyisun@gmail.com>

ABOUT THIS BOOK XXV

ever environment you choose. Where we do use language-specific features, we
explain them in enough detail for those unfamiliar with that particular environ-
ment to figure out what we’re doing.

Who should read this book?

Ajax is at the crossroads of a number of disciplines; readers will approach it from
a number of directions. On the one hand there are professional enterprise devel-
opers with computer science degrees and several years of hands-on experience
with large software projects, who need to sometimes pop their heads above the
battlements and work with the presentation tier. On the other hand are creative
professionals who have moved from graphic design to web design and “new
media,” and taught themselves how to program using scripting languages such
as PHP, Visual Basic, or JavaScript/ActionScript. In between there are desktop
app developers retraining for the Web and sysadmins called upon to put
together web-based management tools, as well as many others.

All of these possible readers have a real interest in Ajax. We've tried to
address the needs of all of them, at least to some extent, in this book. We provide
pointers to the basic web technologies for the server-side developer used to
treating the web browser as a dumb terminal. We also give a grounding in soft-
ware design and organization for the new media developer who may be more
used to ad hoc coding styles. Wherever you come from, Ajax is a cross-disciplin-
ary technology and will lead you into some unfamiliar areas. We're going to
stretch you a bit, and ask you to pick up a few new skills along the way. We've
done the same in our own use of Ajax, even while writing this book. We have
found it to be a very rewarding and enjoyable experience, with benefits extend-
ing to other aspects of our professional lives.

Roadmap

This book is divided into four parts. Part 1 will tell you what Ajax is, explain why
it is a useful addition to your development toolbox, and introduce the tools that
can make you successful. Part 2 covers the core techniques that make an Ajax
application work, and part 3 builds on these to discuss what is needed to go from
proof of concept to production-ready software. In part 4 we take a direct hands-
on approach, and build five Ajax projects step by step; we then refactor them
into drop-in components that you can use in your own web applications.

Licensed to jonathan zheng <yiyisun@gmail.com>

XXVi

ABOUT THIS BOOK

As we have said, Ajax is not a technology but a process. We've therefore dedi-
cated chapter 1 to reorienting developers familiar with pre-Ajax web develop-
ment. We discuss the fundamental differences between Ajax and the classic web
application, how to think about usability, and other conceptual goodies. If you
want to find out what the buzz around Ajax is, we suggest you start here. If you
just want to eat, drink, and sleep code, then you’d best move on to chapter 2.

The Ajax technologies are all reasonably well documented in their own right
already. We've provided a whistle-stop, example-driven run through these tech-
nologies in chapter 2, but we haven’t aimed at being comprehensive. What we
have done is emphasize where the technology is used differently, or behaves dif-
ferently, as a result of being part of Ajax.

Chapter 3 introduces the third main theme for this book, managing the Ajax
codebase. Having watched a JavaScript codebase grow to over 1.5 MB of source
code, we can attest to the fact that writing JavaScript for Ajax is a different ball
game. We talk design patterns and refactoring here, not because we think they’re
cool, but because we’ve found them to be invaluable, practical tools in working
with Ajax. And we think you will too as you start to pick up speed.

In chapters 4 and 5, we turn our sights on the core components of Ajax, and
apply our design pattern knowledge to find the best practices. Chapter 4 looks at
ways of keeping your code clean on the client itself, applying the old web work-
horse, Model-View-Controller, in a new way. Chapter 5 looks at the different ways
of communicating between the client and the server and how various types of
frameworks can be adapted to work with Ajax. By this point, we have covered all
the basic plumbing and you’ll know how Ajax operates end to end.

Chapters 6 through 8 build on the fundamental knowledge that we've
acquired to look at how to add polish to your application and go beyond a proof
of concept to something that’s fun, and safe, to usable in the real world. Chapter
6 addresses the user experience, and takes an in-depth look at ways of keeping
the user informed while asynchronous tasks are executing. There’s a balance to
be struck between keeping out of the user’s way and keeping him in the dark,
and we show you how to find that happy middle ground here.

Chapter 7 looks at the issue of security in Ajax from a number of angles. Ajax
is a web technology and many of the issues that it faces are no different from any
other web app. We cover the basic ground, concentrating on Ajax-specific issues
here, such as securely importing generated JavaScript from the server, and pro-
tecting your web service entry points from unwanted direct manipulation. Secu-
rity can be a showstopper for serious applications, and we give the basic steps
needed to keep it under control here.

Licensed to jonathan zheng <yiyisun@gmail.com>

ABOUT THIS BOOK xxvii

Chapter 8 discusses that other showstopper, performance (or rather, lack of
it!). We show how to monitor the performance of your application and how to
analyze code in order to improve it and keep those improvements consistent
across an application.

In part 4, which consists of chapters 9 through 13, we switch gears to look at a
number of Ajax projects. In each case, we code the functionality up in a straight-
forward way and then refactor it into something robust that you can drop into
your own projects with no more than a few lines of code. This gives you the bene-
fit of understanding the principles, the benefits of reuse, as well as showing Ajax
refactoring in action.

In chapter 9, we look at a simple way to give the user a richer experience
by enhancing HTML forms with Ajax: we use data entered in one field to pre-
populate a second drop-down list by making a background request to the
server. We continue the theme of form enhancement in chapter 10 with an
implementation of type-ahead suggest, fetching data from the server in
response to user keystrokes.

Chapter 11 moves on to the wider possibilities of Ajax user interfaces. We
develop a complete portal application that resembles a workstation desktop
more than a web page, complete with its own draggable, resizable windows. Ajax
processes track window movements in the background, so that the desktop is
always in the same state you left it, even if you log back in on a different machine.

Chapter 12 develops an Ajax-based search system and demonstrates the
power of client-side XSLT as a way of turning raw XML data into formatted,
styled content.

In chapter 13, we present an Ajax client without a back-end implementation.
It still talks to server processes, but in this case, does so directly to blog and news
syndication feeds, using the Internet standard RSS protocol.

Finally, we include three appendices that we hope you’ll find useful. The body
of the book discusses the technology itself. With a new, cross-disciplinary tech-
nology, assembling the tools to use it effectively is more of a challenge than with
a mature technology stack such as J2EE or .NET. The vendors haven’t started
offering Ajax tools yet, but we’re sure that they will! In the meantime, we provide
in appendix A an overview of the tools and tricks that we’ve used to develop our
Ajax projects and to keep our house in order.

Appendix B is for enterprise programmers who understand software design
principles but aren’t quite sure how to apply them in such a flexible, unstructured,
and well, downright odd language as JavaScript. We walk through what the lan-
guage can do, and point out where the main divergences from Java and C# lie.

Licensed to jonathan zheng <yiyisun@gmail.com>

XXviii

ABOUT THIS BOOK

It the tool vendors haven’'t quite caught up with Ajax yet, neither have the
framework developers. The Ajax framework scene is a hotbed of innovation,
intrigue (and often re-invention) right now. Appendix C rounds up the Ajax
frameworks and toolkits that we know of at the moment, and provides a short
overview and link for each.

Code conventions

All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. We make use of many languages and markups in this
book—JavaScript, HTML, CSS, XML, Java, C#, Visual Basic .NET, and PHP—but
we try to adopt a consistent approach. Method and function names, object prop-
erties, XML elements, and attributes in text are presented using this same font.

In many cases, the original source code has been reformatted: we’ve added
line breaks and reworked indentation to accommodate the available page space
in the book. In rare cases even this was not enough, and listings include line-con-
tinuation markers. Additionally, many comments have been removed from the
listings. Where appropriate, we’ve also cut implementation details that distract
rather than help tell the story, such as JavaBean setters and getters, import and
include statements, and namespace declarations.

Code annotations accompany many of the listings, highlighting impor-
tant concepts. In some cases, numbered bullets link to explanations that fol-
low the listing.

Code downloads

Source code for all of the working examples in this book is available for down-
load from http://www.manning.com/crane.

We realize that not all of you will have a .NET server, J2EE app server, and a
Linux, Apache, MySQL, PHP/Python/Perl (LAMP) setup sitting on your desk, and
that your principal interest in this book is in the client technology. As a result,
we've tried to include “mock”-based versions of the example code that can be
run with static dummy data from any web server, including Apache, Tomcat, and
11S. These are in addition to the full working examples, so that if you do enjoy
wrestling with databases and app servers, you can dig in. Some basic setup docu-
mentation is provided with the download.

Licensed to jonathan zheng <yiyisun@gmail.com>

http://www.manning.com/crane.We

ABOUT THIS BOOK XXix

Author Online

Purchase of Ajax in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to http:/www.manning.com/
crane. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the book’s forum remains volun-
tary (and unpaid). We suggest you try asking the authors some challenging ques-
tions, lest their interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people best remember are things they discover dur-
ing self-motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that in
order for learning to become permanent it must pass through stages of explora-
tion, play, and, interestingly, retelling of what was learned. People understand
and remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of all In Action guides
is that they are example-driven. This encourages readers to try things out, to
play with new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them “in action.” The books in this
series are designed for such readers.

Licensed to jonathan zheng <yiyisun@gmail.com>

XXX

ABOUT THIS BOOK

About the cover illustration

The figure on the cover of Ajax in Action is a “Sultana,” a female member of a sul-
tan’s family; both his wife and his mother could be addressed by that name. The
illustration is taken from a collection of costumes of the Ottoman Empire pub-
lished on January 1, 1802, by William Miller of Old Bond Street, London. The
title page is missing from the collection and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both English
and French, and each illustration bears the names of two artists who worked on
it, both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase, and a credit card and check
were both politely turned down. With the seller flying back to Ankara that evening
the situation was getting hopeless. What was the solution? It turned out to be
nothing more than an old-fashioned verbal agreement sealed with a handshake.
The seller simply proposed that the money be transferred to him by wire and the
editor walked out with the bank information on a piece of paper and the portfolio
of images under his arm. Needless to say, we transferred the funds the next day,
and we remain grateful and impressed by this unknown person’s trust in one of us.
It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of
two centuries ago. They recall the sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago—brought back to life by the pictures from this collection.

Licensed to jonathan zheng <yiyisun@gmail.com>

Part 1

Rethinking
the web application

Ihis part of the book introduces the main concepts of Ajax. Chapter 1
presents Ajax and reasons to use it. Chapter 2 covers the technical fundamen-
tals, and shows how they fit together. The aim is that, by the end of the book,
you’ll be able to tackle real-world projects bigger than a “hello world.” Chap-
ter 3 introduces the software development tools that we’ve used to manage
large projects, and shows you how to use them with Ajax.

Licensed to jonathan zheng <yiyisun@gmail.com>

Licensed to jonathan zheng <yiyisun@gmail.com>

A new design for the Web

This chapter covers

m Asynchronous network interactions
and usage patterns

m The key differences between Ajax
and classic web applications

m The four fundamental principles of Ajax
m Ajax in the real world

Licensed to jonathan zheng <yiyisun@gmail.com>

CHAPTER 1
A new design for the Web

Ideally, a user interface (UI) will be invisible to users, providing them with the
options they need when they need them but otherwise staying out of their way,
leaving users free to focus on the problem at hand. Unfortunately, this is a very
hard thing to get right, and we become accustomed, or resigned, to working with
suboptimal Uls on a daily basis—until someone shows us a better way, and we
realize how frustrating our current method of doing things can be.

The Internet is currently undergoing such a realization, as the basic web
browser technologies used to display document content have been pushed
beyond the limits of what they can sanely accomplish.

Ajax (Asynchronous JavaScript + XML) is a relatively recent name, coined by
Jesse James Garrett of Adaptive Path. Some parts of Ajax have been previously
described as Dynamic HTML and remote scripting. Ajax is a snappier name, evoking
images of cleaning powder, Dutch football teams, and Greek heroes suffering the
throes of madness.

It’s more than just a name, though. There is plenty of excitement surrounding
Ajax, and quite a lot to get excited about, from both a technological and a busi-
ness perspective. Technologically, Ajax gives expression to a lot of unrealized
potential in the web browser technologies. Google and a few other major players
are using Ajax to raise the expectations of the general public as to what a web
application can do.

The classical “web application” that we have become used to is beginning to
creak under the strain that increasingly sophisticated web-based services are plac-
ing on it. A variety of technologies are lining up to fill the gap with richer,
smarter, or otherwise improved clients. Ajax is able to deliver this better, smarter
richness using only technologies that are already installed on the majority of
modern computers.

With Ajax, we are taking a bunch of dusty old technologies and stretching
them well beyond their original scope. We need to be able to manage the com-
plexity that we have introduced. This book will discuss the how-tos of the individ-
ual technologies but will also look at the bigger picture of managing large Ajax
projects. We'll introduce Ajax design patterns throughout the book as well to help
us get this job done. Design patterns help us to capture our knowledge and expe-
rience with a technology as we acquire it and to communicate it with others. By
introducing regularity to a codebase, they can facilitate creating applications that
are easy to modify and extend as requirements change. Design patterns are even
a joy to work with!

Licensed to jonathan zheng <yiyisun@gmail.com>

Why Ajax rich clients? 5

1.1 Why Ajax rich clients?

1.1.1

Building a rich client interface is a bit more complicated than designing a web
page. What is the incentive, then, for going this extra mile? What'’s the payoft?
What is a rich client, anyway?

Two key features characterize a rich client: it’s rich, and it’s a client.

Let me explain a little more. Rich refers here to the interaction model of the
client. A rich user interaction model is one that can support a variety of input
methods and that responds intuitively and in a timely fashion. We could set a
rather unambitious yardstick for this by saying that for user interaction to be rich,
it must be as good as the current generation of desktop applications, such as word
processors and spreadsheets. Let’s take a look at what that would entail.

Comparing the user experiences

Take a few minutes to play with an application of your choice (other than a web
browser), and count the types of user interaction that it offers. Come back here
when you've finished. I'm going to discuss a spreadsheet as an example shortly,
but the points I'll make are sufficiently generic that anything from a text editor up
will do.

Finished? I am. While typing a few simple equations into my spreadsheet, I
found that I could interact with it in a number of ways, editing data in situ,
navigating the data with keyboard and mouse, and reorganizing data using
drag and drop.

As I did these things, the program gave me feedback. The cursor changed
shape, buttons lit up as I hovered over them, selected text changed color, high-
lighted windows and dialogs were represented differently, and so on (figure 1.1).
That’s what passes for rich interactivity these days. Arguably there’s still some way
to go, but it’s a start.

So is the spreadsheet application a rich client? I would say that it isn’t.

In a spreadsheet or similar desktop application, the logic and the data model
are both executed in a closed environment, in which they can see each other very
clearly but shut the rest of the world out (figure 1.2). My definition of a client is a
program that communicates to a different, independent process, typically run-
ning on a server. Traditionally, the server is bigger, stronger, and better than the
client, and it stores monstrously huge amounts of information. The client allows
end users to view and modify this information, and if several clients are con-
nected to the same server, it allows them to share that data. Figure 1.3 shows a
simple schematic of a client/server architecture.

Licensed to jonathan zheng <yiyisun@gmail.com>

CHAPTER 1
A new design for the Web

File Edit View Insert Format Tools Data Window Help
| Fiee v B yBE S =
et =

[Bitstream veras.¥| 10 | B i U A = E| 9% e Qo

[cs ez = |
< A | B [¢ T o [€ [T *F T &]
=i 1 2 3 a 5 6 7
2 2 6 12 20 30 a2
y [3
G. =
o 75 —
e

7

8

] |
® 1o
TN
aso | 12
ard B
& 14
m |15

16

17

18

19 v
[] <]V |» \Sheet1 (Sheetz /sheet3 /7 |1+ | ,
Sheet1/3 Default 100% STD | * Sum=0

Figure 1.1 This desktop spreadsheet application illustrates a variety of possibilities for user
interaction. The headers for the selected rows and columns are highlighted; buttons offer
tooltips on mouseover; toolbars contain a variety of rich widget types; and the cells can be
interactively inspected and edited.

Process 1 Process 2

(Filesystem ’

Figure 1.2 Schematic architectures for a standalone desktop application. The
application runs in a process of its own, within which the data model and the program
logic can “see” one another. A second running instance of the application on the same
computer has no access to the data model of the first, except via the filesystem.
Typically, the entire program state is stored in a single file, which is locked while the
application is running, preventing any simultaneous exchange of information.

Licensed to jonathan zheng <yiyisun@gmail.com>

Why Ajax rich clients? ‘ 7

Process 1 Process 2

Process 1 Process 2

"Server"
e\ e e e e =
(\I
: |
1 Mlddleware layer(s) |
|
Server (e.g. database) | |
| |
: |
: |
: |
! Server farm Internet services)
\ — o o e o e e — — -

Figure 1.3 Schematic architectures for client/server systems and n-tier architectures. The
server offers a shared data model, with which clients can interact. The clients still maintain
their own partial data models, for rapid access, but these defer to the server model as the
definitive representation of the business domain objects. Several clients can interact with the
same server, with locking of resources handled at a fine-grain level of individual objects or
database rows. The server may be a single process, as in the traditional client/server model of
the early- to mid-1990s, or consist of several middleware tiers, external web services, and so
on. In any case, from the client’s perspective, the server has a single entry point and can be
considered a black box.

In a modern n-tier architecture, of course, the server will communicate to further
back-end servers such as databases, giving rise to middleware layers that act as
both client and server. Our Ajax applications typically sit at the end of this chain,
acting as client only, so we can treat the entire n-tier system as a single black box
labeled “server” for the purposes of our current discussion.

My spreadsheet sits on its own little pile of data, stored locally in memory and
on the local filesystem. If it is well architected, the coupling between data and
presentation may be admirably loose, but I can’t split it across the network or
share it as such. And so, for our present purposes, it isn’t a client.

Web browsers are clients, of course, contacting the web servers from which
they request pages. The browser has some rich functionality for the purpose of
managing the user’s web browsing, such as back buttons, history lists, and tabs
for storing several documents. But if we consider the web pages for a particular
site as an application, then these generic browser controls are not related to the
application any more than the Windows Start menu or window list are related to
my spreadsheet.

Licensed to jonathan zheng <yiyisun@gmail.com>

CHAPTER 1
A new design for the Web

Let’s have a look at a modern web application. Simply because everyone has
heard of it, we’ll pick on Amazon, the bookseller (figure 1.4). I point my browser
to the Amazon site, and, because it remembers who I am from my last visit, it
shows me a friendly greeting, a list of recommended books, and information
about my purchasing history.

Clicking on a title from the recommendations list leads me to a separate page
(that is, the screen flickers and I lose sight of all the lists that I was viewing a few
seconds earlier). This, too, is stuffed full of contextual information: reviews, sec-
ond-hand prices for the book, links to similar authors, and titles of other books
that I've recently checked out (figure 1.5).

In short, I'm presented with very rich, tightly interwoven information. And yet
my only way of interacting with this information is through clicking hyperlinks
and filling in text forms. If I fell asleep at the keyboard while browsing the site
and awoke the next day, I wouldn’t know that the new Harry Potter book had been
released until I refreshed the entire page. I can’t take my lists with me from one

Eile Edit View Go Bookmarks Tools Help
- _] @ @ EB http://www.amazon co.uk/exec/obidositg/storesir |[¥| @ Go (Gl

|| Firefox Help | | Firefox Support | | Plug-in FAQ

Amazon.co.uk amazonCOUk N VIEW BASKET | WISHLIST | | YOUR ACCOUNT) | HELP FREE ;%
MasterCard ~— UK Delive
s = e
(vewcone [N TR s [ovo fneosormune | B ERRRR | (X8

» YOUR FAVOURITE STORES >y ATIONS » THE PAGE YOU MADE » NEW FOR YOU

Hello D, we have recommendations for you (if you're not D, click here).
Here's your New For You™ recommendations

AECOMMENDATIONS .

[recoumcuotions] improve Your

All Products Your Recommendatlons Recommendations
All Used Hello, D. Explore today's featured recommendations, (it you'm not D,

Are recommended items
click here.) .
Books — not quite on target? Tell us

Music Books Recommendations more about your interests:
ovD Flower Fairies of the Summer (Flower Fairies S.) Items you own (23)
Video sue Synopsis Items not rated (23)

£ For the first time in over 10 years all
El & Ph & ;| i =l

Sl A e "_43{ eight Original Flower Fairies Aocommaaed Authors,

: ivhﬁ

Soltware
——— Books[trademark] have been Akists & Ditaciors

PC & Video Games re-designed drawing inspiration from
Kitchen & Home the original publishers connections
Parsonal Care with The Glasgow School of Art to produce
these exquisite new covers. With fresh new title
pages and endpapers, reset text and... fead mw

-
Connle Zwelg

® Moth to the Flame,

More to Explore The -

Done

Figure 1.4 Amazon.com home page. The system has remembered who | am from a previous
visit, and the navigational links are a mixture of generic boilerplate and personal information.

Licensed to jonathan zheng <yiyisun@gmail.com>

1.1.2

Why Ajax rich clients? 9

Eile Edit View Go Bookmarks Tools Help
@ - —'I»"' - @ @ B hittp:/iwww.amazon.co.uk/exec/obidos/ASIN/OOGC ¥ @ Go [GL

|| Firefox Help | | Firefox Support | | Plug-in FAQ

MasterCard —~25~ - : ;

Apply
now

SPECIAL
OFFERS

BROWSE
CATEGORIES

BOOK

AUDIO PAPERBACKS MNEW & USED HARAY
SEARCH | | |

SELL
BOOKS 3FOR 12 TEXTBOOKS POTTER | YOUR BOOKS

TOP
SELLERS

QUICKSEARCH | All Subjects = BROWSE | All Subjects |
—]
Digital o 1[0 O RLEELEY save un o 20% off digital cameras Shop now)

By the Shores of Silver Lake (Little House (Original
At A Glance Laura Ingalls Wilder, Garth Williams (lllustrator) o
= = sign in o tum on 1-Click™ omdering.

Customer Reviews

See more by these
authors:

e Laura Ingalls Wilder
* Garth Williams

E-mail a Friend About

US List Price: $5-99
Our Price: £3.20 & eligible for Free UK delivery on

orders over £19 with Super Saver Delivery. See 12 New from £0.90
details & conditions 8 used from €0.75

Avallability: usually dispatched within 24 hours. Have one fo ssi? | Sell yours here |

This Item
20 Used & New from £0.75 Gismwinq’wi:h us is safa,
e) Seelamer photo (“Add to Wish Tist } -
Done

Figure 1.5 Amazon.com book details page. Again, a dense set of hyperlinks combines generic
and personal information. Nonetheless, a significant amount of detail is identical to that shown
in figure 1.4, which must, owing to the document-based operation of the web browser, be
retransmitted with every page.

page to another, and I can’t resize portions of the document to see several bits of
content at once.

This is not to knock Amazon. It’s doing a good job at working within some
very tight bounds. But compared to the spreadsheet, the interaction model it
relies on is unquestionably limiting.

So why are those limits present in modern web applications? There are sound
technical reasons for the current situation, so let’s take a look at them now.

Network latency

The grand vision of the Internet age is that all computers in the world intercon-
nect as one very large computing resource. Remote and local procedure calls
become indistinguishable, and issuers are no longer even aware of which physical

Licensed to jonathan zheng <yiyisun@gmail.com>

10

CHAPTER 1
A new design for the Web

machine (or machines) they are working on, as they happily compute the folds in
their proteins or decode extraterrestrial signals.

Remote and local procedure calls are not the same thing at all, unfortunately.
Communications over a network are expensive (that is, they are slow and unreli-
able). When a non-networked piece of code is compiled or interpreted, the vari-
ous methods and functions are coded as instructions stored in the same local
memory as the data on which the methods operate (figure 1.6). Thus, passing
data to a method and returning a result is pretty straightforward.

Under the hood, a lot of computation is going on at both ends of a network
connection in order to send and receive data (figure 1.7). It’s this computation
that slows things down, more than the physical journey along the wire. The vari-
ous stages of encoding and decoding cover aspects of the communication ranging
from physical signals passing along the wire (or airwaves), translation of these sig-
nals as the 1s and Os of binary data, error checking and re-sending, to the reassem-
bling of the sequence, and ultimately the meaning, of the binary information.

The calling function’s request must be encoded as an object, which is then
serialized (that is, converted into a linear set of bytes). The serialized data is then
passed to the application protocol (usually HTTP these days) and sent across the
physical transport (a copper or fiber-optic cable, or a wireless connection of
some sort).

On the remote machine, the application protocol is decoded, and the bytes of
data deserialized, to create a copy of the request object. This object can then be
applied to the data model and a response object generated. To communicate the
response to the calling function, the serialization and transport layers must be
navigated once more, eventually resulting in a response object being returned to
the calling function.

Calling
function

Figure 1.6 Sequence diagram of a local procedure
call. Very few actors are involved here, as the program
logic and the data model are both stored in local
memory and can see each other directly.

Licensed to jonathan zheng <yiyisun@gmail.com>

Why Ajax rich clients? ‘ 11

(Local model) (Serialization) (App protocoD éhysical transpo@ (App protocoD (Serialization)@emote mod@
T T T T T

Calling
function

Figure 1.7 Sequence diagram of a remote procedure call. The program logic on one machine
attempts to manipulate a data model on another machine.

These interactions are complex but amenable to automation. Modern program-
ming environments such as Java and the Microsoft .NET Framework offer this
functionality for free. Nonetheless, internally a lot of activity is going on when a
remote procedure call (RPC) is made, and if such calls are made too freely, perfor-
mance will suffer.

So, making a call over a network will never be as efficient as calling a local
method in memory. Furthermore, the unreliability of the network (and hence the
need to resend lost packets of information) makes this inefficiency variable and
hard to predict. The responsiveness of the memory bus on your local machine is
not only better but also very well defined in comparison.

But what does that have to do with usability? Quite a lot, as it turns out.

A successful computer UI does need to mimic our expectations of the real
world at the very basic level. One of the most basic ground rules for interaction is
that when we push, prod, or poke at something, it responds immediately. Slight
delays between prodding something and the response can be disorienting and
distracting, moving the user’s attention from the task at hand to the Ul itself.

Having to do all that extra work to traverse the network is often enough to slow
down a system such that the delay becomes noticeable. In a desktop application,
we need to make bad usability design decisions to make the application feel buggy
or unresponsive, but in a networked application, we can get all that for free!

Licensed to jonathan zheng <yiyisun@gmail.com>

12 CHAPTER 1
A new design for the Web

Because of the unpredictability of network latency, this perceived bugginess
will come and go, and testing the responsiveness of the application can be
harder, too. Hence, network latency is a common cause of poor interactivity in
real-world applications.

1.1.3 Asynchronous interactions

There is only one sane response to the network latency problem available to the
Ul developer—assume the worst. In practical terms, we must try to make UI
responses independent of network activity. Fortunately, a holding response is
often sufficient, as long as it is timely. Let’s take a trip to the physical world again.
A key part of my morning routine is to wake my children up for school. I could
stand over them prodding them until they are out of bed and dressed, but this is a
time-consuming approach, leaving a long period of time in which I have very lit-
tle to do (figure 1.8).

Sleeping child

4. Stare out of

i 5. Forgetto feed ! '

Y

Figure 1.8 Sequence diagram of a synchronous response to user input, during my
morning routine. In a sequence diagram, the passage of time is vertical. The height of
the shaded area indicates the length of time for which | am blocked from further input.

Licensed to jonathan zheng <yiyisun@gmail.com>

Why Ajax rich clients? 13

I need to wake up my children, stare out the window, and ignore the cat. The chil-
dren will notify me when they are properly awake by asking for breakfast. Like
server-side processes, children are slow to wake. If I follow a synchronous interac-
tion model, I will spend a long time waiting. As long as they are able to mutter a
basic “Yes, I'm awake,” I can happily move on to something else and check up on
them later if need be.

In computer terms, what I'm doing here is spawning an asynchronous process,
in a separate thread. Once they’re started, my children will wake up by themselves
in their own thread, and I, the parent thread, don’t need to synchronize with
them until they notify me (usually with a request to be fed). While they’re waking
up, I can’t interact with them as if they were already up and dressed, but I can be
confident that it will happen in due course (figure 1.9).

With any U], it’s a well-established practice to spawn an asynchronous thread
to handle any lengthy piece of computation and let it run in the background
while the user gets on with other things. The user is necessarily blocked while that
thread is launched, but this can be done in an acceptably short span of time.

Sleeping child Hungry cat
: : :

1. Wakeup call | i

4. Stare out of

[.
T | Lt | 1

5. Forget to feed

f f >
i i i
6. Notify H H :

-— ! !
i i i

i i i

i i i
Figure 1.9 Sequence diagram of an asynchronous response to user input. If |
follow an asynchronous input model, | can let the children notify me that they are

starting to wake up. | can then continue with my other activities while the wakeup
happens and remain blocked for a much shorter period of time.

Licensed to jonathan zheng <yiyisun@gmail.com>

14

CHAPTER 1
A new design for the Web

Because of network latency, it is good practice to treat any RPC as potentially
lengthy and handle it asynchronously.

This problem, and the solution, are both well established. Network latency
was present in the old client/server model, causing poorly designed clients to
freeze up inexplicably as they tried to reach an overloaded server. And now, in
the Internet age, network latency causes your browser to “chug” frustratingly
while moving between web pages. We can’t get rid of latency, but we know how to
deal with it—by processing the remote calls asynchronously, right?

Unfortunately for us web app developers, there’s a catch. HTTP is a request-
response protocol. That is, the client issues a request for a document, and the
server responds, either by delivering the document, saying that it can’t find it,
offering an alternative location, or telling the client to use its cached copy, and so
on. A request-response protocol is one-way. The client can make contact with the
server, but the server cannot initiate a communication with the client. Indeed, the
server doesn’t remember the client from one request to the next.

The majority of web developers using modern languages such as Java, PHP,
or .NET will be familiar with the concept of user sessions. These are an after-
thought, bolted onto application servers to provide the missing server-side state
in the HTTP protocol. HTTP does what it was originally designed for very well,
and it has been adapted to reach far beyond that with considerable ingenuity.
However, the key feature of our asynchronous callback solution is that the client
gets notified twice: once when the thread is spawned and again when the thread
is completed. Straightforward HTTP and the classic web application model can’t
do this for us.

The classic web app model, as used by Amazon, for example, is still built
around the notion of pages. A document is displayed to the user, containing lists
of links and/or form elements that allow them to drill down to further documents.
Complex datasets can be interacted with in this way on a large scale, and as Ama-
zon and others have demonstrated, the experience of doing so can be compelling
enough to build a business on.

This model of interaction has become quite deeply ingrained in our way of
thinking over the ten years or so of the commercial, everyday Internet. Friendly
WYSIWYG web-authoring tools visualize our site as a collection of pages. Server-
side web frameworks model the transition between pages as state transition dia-
grams. The classic web application is firmly wedded to the unavoidable lack of
responsiveness when the page refreshes, without an easy recourse to the asyn-
chronous handler solution.

Licensed to jonathan zheng <yiyisun@gmail.com>

1.1.4

Why Ajax rich clients? 15

But Amazon has built a successful business on top of its website. Surely the
classic web application can’t be that unusable? To understand why the web page
works for Amazon but not for everyone, we ought to consider usage patterns.

Sovereign and transient usage patterns

It’s futile to argue whether a bicycle is better than a sports utility vehicle. Each has
its own advantages and disadvantages—comfort, speed, fuel consumption, vague
psychological notions about what your mode of transport “says” about you as a
person. When we look at particular use patterns, such as getting through the rush
hour of a compact city center, taking a large family on vacation, or seeking shelter
from the rain, we may arrive at a clear winner. The same is true for computer Uls.

Software usability expert Alan Cooper has written some useful words about
usage patterns and defines two key usage modes: transient and sovereign. A tran-
sient application might be used every day, but only in short bursts and usually as a
secondary activity. A sovereign application, in contrast, must cope with the user’s
full attention for several hours at a time.

Many applications are inherently transient or sovereign. A writer’s word pro-
cessor is a sovereign application, for example, around which a number of tran-
sient functions will revolve, such as the file manager (often embedded into the
word processor as a file save or open dialog), a dictionary or spellchecker (again,
often embedded), and an email or messenger program for communicating with
colleagues. To a software developer, the text editor or Integrated Development
Environment (IDE) is sovereign, as is the debugger.

Sovereign applications are also often used more intensely. Remember, a well-
behaved UI should be invisible. A good yardstick for the intensity of work is the
effect on the user’s workflow of the UI stalling, thus reminding the user that it
exists. If I'm simply moving files from one folder to another and hit a two-second
delay, I can cope quite happily. If I encounter the same two-second delay while
composing a visual masterpiece in a paint program, or in the middle of a heavy
debugging session with some tricky code, I might get a bit upset.

Amazon is a transient application. So are eBay and Google—and most of the
very large, public web-based applications out there. Since the dawn of the Inter-
net, pundits have been predicting the demise of the traditional desktop office
suite under the onslaught of web-based solutions. Ten years later, it hasn’t hap-
pened. Web page-based solutions are good enough for transient use but not for
sovereign use.

Licensed to jonathan zheng <yiyisun@gmail.com>

16

CHAPTER 1
A new design for the Web

1.1.5 Unlearning the Web

Fortunately, modern web browsers resemble the original ideal of a client for
remote document servers about as closely as a Swiss army knife resembles a
neolithic flint hunting tool. Interactive gizmos, scripting languages, and plug-ins
have been bolted on willy-nilly over the years in a race to create the most compel-
ling browsing experience. (Have a look at www.webhistory.org/www.lists/www-
talk.1993q1/0182.html to get a perspective on how far we’ve come. In 1993, a
pre-Netscape Marc Andreessen tentatively suggested to Tim Berners-Lee and
others that HTML might benefit from an image tag.)

A few intrepid souls have been looking at JavaScript as a serious programming
language for several years, but on the whole, it is associated with faked-up alert
dialogs and “click the monkey to win” banners.

Think of Ajax as a rehabilitation center for this misunderstood, ill-behaved
child of the browser wars. By providing some guidance and a framework within
which to operate, we can turn JavaScript into a helpful model citizen of the Inter-
net, capable of enhancing the real usability of a web application—and without
enraging the user or trashing the browser in the process. Mature, well-under-
stood tools are available to help us do this. Design patterns are one such tool that
we make frequent use of in our work and will refer to frequently in this book.

Introducing a new technology is a technical and social process. Once the tech-
nology is there, people need to figure out what to do with it, and a first step is often
to use it as if it were something older and more familiar. Hence, early bicycles were
referred to as “hobbyhorses” or “dandy horses” and were ridden by pushing one’s
feet along the ground. As the technology was exposed to a wider audience, a sec-
ond wave of innovators would discover new ways of using the technology, adding
improvements such as pedals, brakes, gears, and pneumatic tires. With each incre-
mental improvement, the bicycle became less horse-like (figure 1.10).

Figure 1.10 Development of the modern bicycle

Licensed to jonathan zheng <yiyisun@gmail.com>

1.2

1.2.1

The four defining principles of Ajax 17

The same processes are at work in web development today. The technologies
behind Ajax have the ability to transform web pages into something radically
new. Early attempts to use the Ajax technologies resembled the traditional web
page document and have that neither-one-thing-nor-the-other flavor of the hob-
byhorse. To grasp the potential of Ajax, we must let go of the concept of the web
page and, in doing so, unlearn a lot of the assumptions that we have been making
for the last few years. In the short few months since Ajax was christened, a lot of
unlearning has been taking place.

The four defining principles of Ajax

The classic page-based application model is hard-wired into many of the frame-
works that we use, and also into our ways of thinking. Let’s take a few minutes to
discover what these core assumptions are and how we need to rethink them to get
the most out of Ajax.

The browser hosts an application, not content

In the classic page-based web application, the browser is effectively a dumb ter-
minal. It doesn’t know anything about where the user is in the greater workflow.
All of that information is held on the web server, typically in the user’s session.
Server-side user sessions are commonplace these days. If you're working in Java
or .NET, the server-side session is a part of the standard API, along with requests,
responses, and Multipurpose Internet Mail Extensions (MIME) types. Figure 1.11
illustrates the typical lifecycle of a classic web application.

When the user logs in or otherwise initializes a session, several server-side
objects are created, representing, say, the shopping basket and the customer cre-
dentials if this is an e-commerce site. At the same time, the home page is dished
up to the browser, in a stream of HTML markup that mixes together standard
boilerplate presentation and user-specific data and content such as a list of
recently viewed items.

Every time the user interacts with the site, another document is sent to the
browser, containing the same mixture of boilerplate and data. The browser duti-
fully throws the old document away and displays the new one, because it is dumb
and doesn’t know what else to do.

When the user hits the logout link or closes the browser, the application exits
and the session is destroyed. Any information that the user needs to see the
next time she or he logs on will have been handed to the persistence tier by

Licensed to jonathan zheng <yiyisun@gmail.com>

18

CHAPTER 1
A new design for the Web

Business
logic

Figure 1.11 Lifecycle of a classic web application. All the state of
the user’s “conversation” with the application is held on the web
server. The user sees a succession of pages, none of which can
advance the broader conversation without going back to the server.

now. An Ajax application moves some of the application logic to the browser, as
figure 1.12 illustrates.

When the user logs in, a more complex document is delivered to the browser, a
large proportion of which is JavaScript code. This document will stay with the
user throughout the session, although it will probably alter its appearance consid-
erably while the user is interacting with it. It knows how to respond to user input
and is able to decide whether to handle the user input itself or to pass a request
on to the web server (which has access to the system database and other
resources), or to do a combination of both.

Because the document persists over the entire user session, it can store state. A
shopping basket’s contents may be stored in the browser, for example, rather
than in the server session.

Licensed to jonathan zheng <yiyisun@gmail.com>

1.2.2

The four defining principles of Ajax 19

Server

Business
logic

Deliver
client app

Frequent
requests
for data

Figure 1.12 Lifecycle of an Ajax application. When the user logs
in, a client application is delivered to the browser. This application
can field many user interactions independently, or else send
requests to the server behind the scenes, without interrupting the
user's workflow.

The server delivers data, not content

As we noted, the classic web app serves up the same mixture of boilerplate, con-
tent, and data at every step. When our user adds an item to a shopping basket, all
that we really need to respond with is the updated price of the basket or whether
anything went wrong. As illustrated in figure 1.13, this will be a very small part of
the overall document.

An Ajax-based shopping cart could behave somewhat smarter than that, by
sending out asynchronous requests to the server. The boilerplate, the navigation
lists, and other features of the page layout are all there already, so the server
needs to send back only the relevant data.

The Ajax application might do this in a number of ways, such as returning a
fragment of JavaScript, a stream of plain text, or a small XML document. We’ll

Licensed to jonathan zheng <yiyisun@gmail.com>

20

CHAPTER 1
A new design for the Web

(A) —

"g i [] Data
(=]

[l Branding
; [

[l Content
T T T T T
New New New Logout

T
Login
page page page
Time
o
= 1
a Il Data
T1 [l Presentation
T [Logic
- ._,_. B o e B o wm o

T
Login Logout
Time
S
©
(=]
]
2
=
(_u -
E 4 Classic
=1 ‘A'ax
o i
T T T T T T T T T T T T
Login Logout
Time

Figure 1.13 Breakdown of the content delivered (A) to a classic web application and
(B) to an Ajax application. As the application continues to be used, cumulative traffic
(C) increases.

Licensed to jonathan zheng <yiyisun@gmail.com>

1.2.3

The four defining principles of Ajax 21

look at the pros and cons of each in detail in chapter 5. Suffice it to say for now
that any one of these formats will be much smaller than the mish-mash returned
by the classic web application.

In an Ajax application, the traffic is heavily front-loaded, with a large and
complex client being delivered in a single burst when the user logs in. Subsequent
communications with the server are far more efficient, however. For a transient
application, the cumulative traffic may be less for a conventional web page appli-
cation, but as the average length of interaction time increases, the bandwidth cost
of the Ajax application becomes less than that of its classic counterpart.

User interaction with the application
can be fluid and continuous

A web browser provides two input mechanisms out of the box: hyperlinks and
HTML forms.

Hyperlinks can be constructed on the server and preloaded with Common
Gateway Interface (CGI) parameters pointed at dynamic server pages or servlets.
They can be dressed up with images and Cascading Style Sheets (CSS) to provide
rudimentary feedback when the mouse hovers over them. Given a good web
designer, hyperlinks can be made to look like quite fancy UI components.

Form controls offer a basic subset of the standard desktop UI components:
input textboxes, checkboxes and radio buttons, and drop-down lists. Several
likely candidates are missing, though. There are no out-of-the-box tree controls,
editable grids, or combo-boxes provided. Forms, like hyperlinks, point at server-
side URLs.

Alternatively, hyperlinks and form controls can be pointed at JavaScript func-
tions. It’s a common technique in web pages to provide rudimentary form valida-
tion in JavaScript, checking for empty fields, out-of-range numbers, and so on,
before submitting data to the server. These JavaScript functions persist only as
long as the page itself and are replaced when the page submits.

While the page is submitting, the user is effectively in limbo. The old page
may still be visible for a while, and the browser may even allow the user to click on
any visible links, but doing so will produce unpredictable results and may wreak
havoc with the server-side session. The user is generally expected to wait until the
page is refreshed, often with a set of choices similar to those that were snatched
away from them seconds earlier. After all, adding a pair of trousers to the shop-
ping basket is unlikely to modify the top-level categories from “menswear,”

“women’s wear,” “children’s,” and “accessories.”

Licensed to jonathan zheng <yiyisun@gmail.com>

22

CHAPTER 1
A new design for the Web

Let’s take the shopping cart example again. Because our Ajax shopping cart
sends data asynchronously, users can drop things into it as fast as they can click. If
the cart’s client-side code is robust, it will handle this load easily, and the users
can get on with what they’re doing.

There is no cart to drop things into, of course, just an object in session on the
server. Users don’t want to know about session objects while shopping, and the
cart metaphor provides a more comfortable real-world description of what’s tak-
ing place. Switching contexts between the metaphor and direct access to the com-
puter is distracting to users. Waiting for a page to refresh will jerk them back to
the reality of sitting at a computer for a short time (figure 1.14), and our Ajax
implementation avoids doing this. Shopping is a transient activity, but if we con-
sider a different business domain, for example, a high-pressure help desk sce-
nario or a complex engineering task, then the cost of disrupting the workflow
every few seconds with a page refresh is prohibitive.

The second advantage of Ajax is that we can hook events to a wider range of
user actions. More sophisticated UI concepts such as drag-and-drop become fea-
sible, bringing the UI experience fully up to par with the desktop application
widget sets. From a usability perspective, this freedom is important not so much
because it allows us to exercise our imagination, but because it allows us to blend
the user interaction and server-side requests more fully.

Case Case
Account Account
t Concept t
! oncepts, .
Custcimer : metaphors, Custo‘mer ;
" : Contract business domain & Contract
) I) I
(IR : ,‘ (IR : ,‘
O | g - 5
Boundary (painful to cross) '- ! -
. . ! A . 1
: ; 1 . : p 1 ;
: I) ' /4 '
Filesystem - \ I Filesystem i T
¥ Lo ! Web service -l i ! Web service
File Lo v Data model, File Lo v
Ve bits and bytes, Ve
\;‘./ machinery \‘/
Database Database

Figure 1.14 Interrupting the user’s workflow to process events. The user deals with two types of
object: those relating to their business, and those relating to the computer system. Where the user
is forced to switch between the two frequently, disorientation and lack of productivity may occur.

Licensed to jonathan zheng <yiyisun@gmail.com>

1.2.4

The four defining principles of Ajax 23

To contact the server in a classic web application, we need to click a hyperlink
or submit a form, and then wait. This interrupts the user’s workflow. In contrast,
contacting the server in response to a mouse movement or drag, or a keystroke,
allows the server to work alongside the user. Google Suggest (www.google.com/
webhprcomplete=1) is a very simple but eftective example of this: responding to
users keystrokes as they type into the search box and contacting the server to
retrieve and display a list of likely completions for the phrases, based on searches
made by other users of the search engine worldwide. We provide a simple imple-
mentation of a similar service in chapter 8.

This is real coding and requires discipline

Classic web applications have been making use of JavaScript for some time now,
to add bells and whistles around the edge of their pages. The page-based model
prevents any of these enhancements from staying around for too long, which lim-
its the uses to which they can be put. This catch-22 situation has led, unfairly, to
JavaScript getting a reputation as a trivial, hacky sort of language, looked down
upon by the serious developers.

Coding an Ajax application is a different matter entirely. The code that you
deliver when users launch the application must run until they close it, without
breaking, without slowing down, and without generating memory leaks. If we're
aiming at the sovereign application market, then this means several hours of
heavy usage. To meet this goal, we must write high-performance, maintainable
code, using the same discipline and understanding that is successfully applied to
the server tiers.

The codebase will also typically be larger than anything written for a classic
web application. Good practices in structuring the codebase become important.
The code may become the responsibility of a team rather than an individual,
bringing up issues of maintainability, separation of concerns, and common cod-
ing styles and patterns.

An Ajax application, then, is a complex functional piece of code that com-
municates efficiently with the server while the user gets on with work. It is
clearly a descendent of the classic page-based application, but the similarity is
no stronger than that between the early hobbyhorse and a modern touring
bike. Bearing these differences in mind will help you to create truly compel-
ling web applications.

Licensed to jonathan zheng <yiyisun@gmail.com>

24

CHAPTER 1
A new design for the Web

1.3 Ajaxrich clients in the real world

1.3.1

So much for the theory. Ajax is already being used to create real applications, and
the benefit of the Ajax approach can already be seen. It’s still very much early
days—the bicycles of a few far-sighted individuals have pedals and solid rubber
tires, and some are starting to build disc brakes and gearboxes, so to speak. The
following section surveys the current state of the art and then looks in detail at
one of the prominent early adopters to see where the payoff in using Ajax lies.

Surveying the field

Google has done more than any other company to raise the profile of Ajax appli-
cations (and it, like the majority of adopters, was doing so before the name Ajax
was coined). Its GMail service was launched in beta form in early 2004. Along with
the extremely generous mailbox size, the main buzz around GMail was the Ul,
which allowed users to open several mail messages at once and which updated
mailbox lists automatically, even while the user was typing in a message. Com-
pared with the average web mail system offered by most Internet service provid-
ers (ISPs) at the time, this was a major step forward. Compared with the corporate
mail server web interfaces of the likes of Microsoft Outlook and Lotus Notes,
GMail offered most of the functionality without resorting to heavy, troublesome
ActiveX controls or Java applets, making it available across most platforms and
locations, rather than the corporate user’s carefully preinstalled machine.

Google has followed this up with further interactive features, such as Google
Suggest, which searches the server for likely completions for your query as you
type, and Google Maps, an interactive zoomable map used to perform location-
based searches. At the same time, other companies have begun to experiment with
the technology, such as Flickr’s online photo-sharing system, now part of Yahoo!

The applications we have discussed so far are testing the water. They are still
transient applications, designed for occasional use. There are signs of an emerg-
ing market for sovereign Ajax applications, most notably the proliferation of
frameworks in recent months. We look at a few of these in detail in chapter 3, and
attempt to summarize the current state of the field in appendix C.

There are, then, sufficient signals to suggest that Ajax is taking hold of the
market in a significant way. We developers will play with any new technology for
its own sake, but businesses like Google and Yahoo! will join in only if there are
compelling business reasons. We've already outlined many of the theoretical
advantages of Ajax. In the following section, we’ll take apart Google Maps, in
order to see how the theory stacks up.

Licensed to jonathan zheng <yiyisun@gmail.com>

Ajax rich clients in the real world 25

1.3.2 Google Maps

Google Maps is a cross between a map viewer and a search engine. Initially, the
map shows the entire United States (figure 1.15). The map can be queried using
free text, allowing drill-down to specific street addresses or types of amenity such
as hotels and restaurants (figure 1.16).

The search feature functions as a classic web app, refreshing the entire page,
but the map itself is powered by Ajax. Clicking on individual links from a hotel
search will cause additional pop-ups to be displayed on the fly, possibly even
scrolling the map slightly to accommodate them. The scrolling of the map itself is

Eile Edit View Go Bookmarks Tools Help e
Qi . @ - g @ @ ircj hitp:fimaps google com/ | ©@cGo =}
|| Firefox Help | | Firefox Support | | Plug-in FAQ
i Maps Local Search Directions

Oogle | Search | Hale

Maps QF scra
Maps Map - Satelite"=
TP o b : @ Print & Emod s Link to this page

Drag the map with your mouse, or
double-click to center.

. it

4

Example searches:
Go to a location

“kansas aty* Lry it
10 market st, san frandsco® Lrv it

s

Find a business

"hotels near lax" try it

“pizza® try it
Get directions

"jfk to 350 5th, new york, ny" tryit

"seattle to 98109" trvit
Toke o tour »

Like our new Satellite feature? Try
Keyhole - Google's 3D Earth.

Dane

Figure 1.15 The Google Maps home page offers a scrolling window on a zoomable map of the
United States, alongside the familiar Google search bar. Note that the zoom control is
positioned on top of the map rather than next to it, allowing the user to zoom without taking his
eyes off the map.

Licensed to jonathan zheng <yiyisun@gmail.com>

26

CHAPTER 1
A new design for the Web

Eile Edit View Go Bookmarks Tools Help

Q-Lzl - ‘ - @ |C] http://maps google com/ ¥ ©@Go |[GL
|| Firefox Help | | Firefox Support | | Plug-in FAQ
Maps Local Search Directions 1
O L)g [e fhotels near lax Search | Hele
Maps BETA
Maps Map - SatelliteMe!
| 1 T [(ZE @" & Print (3 Email ee Link to this page
Courtyard by Marriott: A T Radisson Lax
Lax 1 Ao (310) 670-9000 - 0.2 mi E
Park
?llﬁul’ﬁgﬁgy Bivd = Courtyard by Marriott:
Torrance Plaza
Los Angeles, CA 90045 1 e T
hotelguide net - 211 more = .. (5101 533:8000 - . 20i R
| Directions: To here - From here | Courtyard by Marriott: Lax
WA (310) 649-1400- 0.3 m E

&;—; ? Sheraton Gateway
.|1 1 (310) 642-1111 - 04 mi E
'l Crowne Plaza Los Angeles
¥y Airport
i (310) 642-7500 - 0.5 mi E

L
l— ? Vagabond Inn
J

(415) 776-7500 - 0.6 mu E

Starwood Hotels &
Resorts
(310) 348-1800 - 0.7 mi E

|

i § | ji Mandarin Oriental Hotel

I Group
(310) 670-6422 - 0.7 mi E

I H | 1§ I'.
hEASRSCETSE B GO0 NAVIER ™ T'.;“IF“L‘ @ Embassy Suites Hotel v

http://maps.google com/

Figure 1.16 Google Maps hotel search. Note the traditional use of the DHTML technologies to
create shadows and rich tooltip balloons. Adding Ajax requests makes these far more dynamic
and useful.

the most interesting feature of Google Maps. The user can drag the entire map by
using the mouse. The map itself is composed of small tiled images, and if the user
scrolls the map far enough to expose a new tile, it will be asynchronously down-
loaded. There is a noticeable lag at times, with a blank white area showing ini-
tially, which is filled in once the map tile is loaded; however, the user can continue
to scroll, triggering fresh tile requests, while the download takes place. The map
tiles are cached by the browser for the extent of a user’s session, making it much
quicker to return to a part of the map already visited.

Looking back to our discussions of usability, two important things are appar-
ent. First, the action that triggers the download of new map data is not a specific

Licensed to jonathan zheng <yiyisun@gmail.com>

Ajax rich clients in the real world 27

click on a link saying “fetch more maps” but something that the user is doing
anyway, namely, moving the map around. The user workflow is uninterrupted by
the need to communicate with the server. Second, the requests themselves are
asynchronous, meaning that the contextual links, zoom control, and other page
features remain accessible while the map is gathering new data.

Internet-based mapping services are nothing new. If we looked at a typical
pre-Ajax Internet mapping site, we would see a different set of interaction pat-
terns. The map would typically be divided into tiles. A zoom control, and perhaps
sideways navigation links at the map’s edges, might be provided. Clicking on any
of these would invoke a full-screen refresh, resulting in a similar page hosting dif-
ferent map tiles. The user workflow would be interrupted more, and after looking
at Google Maps, the user would find the site slow and frustrating.

Turning to the server-side, both services are undoubtedly backed by some
powerful mapping solutions. Both serve up map tiles as images. The conven-
tional web server of the pre-Ajax site is continually refreshing boilerplate code
when the user scrolls, whereas Google Maps, once up and running, serves only
the required data, in this case image tiles that aren’t already cached. (Yes, the
browser will cache the images anyway, providing the URL is the same, but
browser caching still results in server traffic when checking for up-to-date data
and provides a less-reliable approach than programmatic caching in memory.)
For a site with the prominent exposure of Google, the bandwidth savings must
be considerable.

To online services such as Google, ease of use is a key feature in getting users
to visit their service and to come back again. And the number of page impressions
is a crucial part of the bottom line for the business. By introducing a better UI
with the flexibility that Ajax offers, Google has clearly given traditional mapping
services something to worry about. Certainly other factors, such as the quality of
the back-end service, come into play, but other things being equal, Ajax can offer
a strong business advantage.

We can expect the trend for this to rise as public exposure to richer interfaces
becomes more prevalent. As a marketable technology, Ajax looks to have a bright
future for the next few years. However, other rich client technologies are looking
to move into this space, too. Although they are largely outside the scope of this
book, it’s important that we take a look at them before concluding our overview.

Licensed to jonathan zheng <yiyisun@gmail.com>

28

CHAPTER 1
A new design for the Web

1.4 Alternatives to Ajax

1.4.1

1.4.2

Ajax meets a need in the marketplace for richer, more responsive web-based cli-
ents that don’t need any local installation. It isn’t the only player in that space,
though, and in some cases, it isn’t even the most appropriate choice. In the fol-
lowing section, we’ll briefly describe the main alternatives.

Macromedia Flash-based solutions

Macromedia’s Flash is a system for playing interactive movies using a compressed
vector graphics format. Flash movies can be streamed, that is, played as they are
downloaded, allowing users to see the first bits of the movie before the last bits
have arrived. Flash movies are interactive and are programmed with Action-
Script, a close cousin of JavaScript. Some support for input form widgets is also
provided, and Flash can be used for anything from interactive games to complex
business Uls. Flash has very good vector graphics support, something entirely
absent from the basic Ajax technology stack.

Flash has been around for ages and is accessed by a plug-in. As a general rule,
relying on a web browser plug-in is a bad idea, but Flash is the web browser plug-
in, with the majority of browsers bundling it as a part of the installation. It is avail-
able across Windows, Mac OS X, and Linux, although the installation base on
Linux is probably smaller than for the other two platforms.

For the purposes of creating rich clients with Flash, two very interesting tech-
nologies are Macromedia’s Flex and the open source Laszlo suite, both of which
provide simplified server-side frameworks for generating Flash-based business
Uls. Both frameworks use Java/Java 2 Enterprise Edition (J2EE) on the server
side. For lower-level control over creating Flash movies dynamically, several tool-
kits, such as PHP’s libswf module, provide core functionality.

Java Web Start and related technologies

Java Web Start is a specification for bundling Java-based web applications on a
web server in such a way that a desktop process can find, download, and run
them. These applications can be added as hyperlinks, allowing seamless access
from a Web Start—savvy web browser. Web Start is bundled with the more recent
Java runtimes, and the installation process will automatically enable Web Start on
Internet Explorer and Mozilla-based browsers.

Once downloaded, Web Start applications are stored in a managed “sandbox”
in the filesystem and automatically updated if a new version is made available.
This allows them to be run while disconnected from the network and reduces

Licensed to jonathan zheng <yiyisun@gmail.com>

1.5

Summary 29

network traffic on reload, making the deployment of heavy applications weigh-
ing several megabytes a possibility. Applications are digitally signed, and the
user may choose to grant them full access to the filesystem, network ports, and
other resources.

Traditionally, Web Start Uls are written in the Java Swing widget toolkit, about
which strong opinions are held on both sides. The Standard Widget Toolkit (SWT)
widgets used to power IBM’s Eclipse platform can also be deployed via Web Start,
although this requires a bit more work.

Microsoft’s .NET platform offers a similar feature called No Touch Deploy-
ment, promising a similar mix of easy deployment, rich Uls, and security.

The main downside to both technologies is the need to have a runtime prein-
stalled. Of course, any rich client needs a runtime, but Flash and Ajax (which uses
the web browser itself as a runtime) use runtimes that are commonly deployed.
Java and .NET runtimes are both very limited in their distribution at present and
can’t be relied on for a public web service.

Summary

We've discussed the differences between transient and sovereign applications and
the requirements of each. Transient applications need to deliver the goods, but,
when users are using them, they have already stepped out of their regular flow of
work, and so a certain amount of clunkiness is acceptable. Sovereign applications,
in contrast, are designed for long-term intensive use, and a good interface for a
sovereign application must support the users invisibly, without breaking their
concentration on the task at hand.

The client/server and related n-tier architectures are essential for collaborative
or centrally coordinated applications, but they raise the specter of network
latency, with its ability to break the spell of user productivity. Although a general-
purpose solution to the conflict between the two exists in asynchronous remote
event handling, the traditional request-response model of the classic web appli-
cation is ill suited to benefit from it.

We’ve set a goal for ourselves, and for Ajax, in this chapter of delivering usable
sovereign applications through a web browser, thereby satisfying the goals of user
productivity, networking, and effortless, centralized maintenance of an applica-
tion all at once. In order for this mission to succeed, we need to start thinking
about our web pages and applications in a fundamentally different way. We’ve
identified the key ideas that we need to learn and those that we need to unlearn:

Licensed to jonathan zheng <yiyisun@gmail.com>

30

1.6

CHAPTER 1
A new design for the Web

m The browser hosts an application, not content.
m The server delivers data, not content.

m The user interacts continuously with the application, and most requests to
the server are implicit rather than explicit.

m Our codebase is large, complex, and well structured. It is a first-class citi-
zen in our architecture, and we must take good care of it.

The next chapter will unpack the key Ajax technologies and get our hands dirty
with some code. The rest of the book will look at important design principles that
can help us to realize these goals.

Resources

To check out some of our references in greater depth, here are URLs to several of
the articles that we’ve referred to in this chapter:

m Jesse James Garrett christened Ajax on February 18, 2005, in this article:
www.adaptivepath.com/publications/essays/archives/000385.php

= Alan Cooper’s explanation of sovereign and transient applications can be
found here: www.cooper.com/articles/art_your_programs_posture.htm

m Google Maps can be found here if you live in the United States:
http://maps.google.com

and here if you live in the United Kingdom:
http://maps.google.co.uk

and here if you live on the moon:
http://moon.google.com

The images of the bicycle were taken from the Pedaling History website:
www.pedalinghistory.com

Licensed to jonathan zheng <yiyisun@gmail.com>

First steps with Ajax

This chapter covers

m [ntroducing the technologies behind Ajax

m Using Cascading Style Sheets to define look
and feel

m Using the Document Object Model to define the
user interface structure

m Using XMLHttpRequest to asynchronously
contact the server

m Putting the pieces together

31

Licensed to jonathan zheng <yiyisun@gmail.com>

32

2.1

CHAPTER 2
First steps with Ajax

In chapter 1 we focused on users and how Ajax can assist them in their daily activ-
ities. Most of us are developers, and so, having convinced ourselves that Ajax is a
Good Thing, we need to know how to work with it. The good news is that, as with
many brand-new, shiny technologies, most of this process will be reasonably
familiar already, particularly if you’ve worked with the Internet.

In this chapter, we’ll explain the Ajax technology. We’ll discuss the four
technological cornerstones of Ajax and how they relate to one another, using
code examples to demonstrate how each technology works and how everything
fits together.

You might like to think of this chapter as the “hello world” section of the book,
in which we introduce the core technologies using some simple examples. We’re
more interested here in just getting things to work; we’ll start to look at the bigger
picture in chapter 3. If you're already familiar with some or all of the Ajax tech-
nologies, you may want to skim these sections. If you're new to Ajax and to web
client programming, these introductions should be sufficient to orient you for the
rest of the book.

The key elements of Ajax

Ajax isn’t a single technology. Rather, it’s a collection of four technologies that
complement one another. Table 2.1 summarizes these technologies and the role

that each has to play.

Table 2.1 The key elements of Ajax

JavaScript JavaScript is a general-purpose scripting language designed to be embedded inside
applications. The JavaScript interpreter in a web browser allows programmatic inter-
action with many of the browser’s inbuilt capabilities. Ajax applications are written in

JavaScript.
Cascading Style CSS offers a way of defining reusable visual styles for web page elements. It offers a
Sheets (CSS) simple and powerful way of defining and applying visual styling consistently. In an
Ajax application, the styling of a user interface may be modified interactively through
CSS.

Document Object The DOM presents the structure of web pages as a set of programmable objects that
Model (DOM) can be manipulated with JavaScript. Scripting the DOM allows an Ajax application to
modify the user interface on the fly, effectively redrawing parts of the page.

XMLHttpRequest The (misnamed) XMLHttpRequest object allows web programmers to retrieve data
object from the web server as a background activity. The data format is typically XML, but it
works well with any text-based data. While XMLHttpRequest is the most flexible
general-purpose tool for this job, there are other ways of retrieving data from the
server, too, and we’ll cover them all in this chapter.

Licensed to jonathan zheng <yiyisun@gmail.com>

The key elements of Ajax 33

We saw in chapter 1 how an Ajax application delivers a complex, functioning
application up front to users, with which they then interact. JavaScript is the glue
that is used to hold this application together, defining the user workflow and
business logic of the application. The user interface is manipulated and refreshed
by using JavaScript to manipulate the Document Object Model (DOM), continu-
ally redrawing and reorganizing the data presented to the users and processing
their mouse- and keyboard-based interactions. Cascading Style Sheets (CSS) pro-
vide a consistent look and feel to the application and a powerful shorthand for
the programmatic DOM manipulation. The XMLHttpRequest object (or a range
of similar mechanisms) is used to talk to the server asynchronously, committing
user requests and fetching up-to-date data while the user works. Figure 2.1 shows
how the technologies fit together in Ajax.

Web browser \ ™
J CSS styling

Define

look and feel

Talk to

Define
web server content and Document
layout Object
model
A XMLHttpRequest Object
\ /

Web server

%

Figure 2.1 The four main components of Ajax: JavaScript defines
business rules and program flow. The Document Object Model and
Cascading Style Sheets allow the application to reorganize its appearance
in response to data fetched in the background from the server by the
XMLHttpRequest object or its close cousins.

Licensed to jonathan zheng <yiyisun@gmail.com>

34

2.2

CHAPTER 2
First steps with Ajax

Three of the four technologies—CSS, DOM, and JavaScript—have been collec-
tively referred to as Dynamic HTML, or DHTML for short. DHTML was the Next
Big Thing around 1997, but not surprisingly in this industry, it never quite lived
up to its initial promise. DHTML offered the ability to create funky, interactive
interfaces for web pages, yet it never overcame the issue of the full-page refresh.
Without going back to talk to the server, there was only so much that we could do.
Ajax makes considerable use of DHTML, but by adding the asynchronous request,
it can extend the longevity of a web page considerably. By going back to the
server while the interface is doing its stuff, without interruption, Ajax makes a
great difference to the end result.

Rather conveniently, all of these technologies are already preinstalled in most
modern web browsers, including Microsoft’s Internet Explorer; the Mozilla/
Gecko family of browsers, including Firefox, Mozilla Suite, Netscape Navigator,
and Camino; the Opera browser; Apple’s Safari; and its close cousin Konqueror,
from the UNIX KDE desktop. Inconveniently, the implementations of these tech-
nologies are frustratingly different in some of the fine details and will vary from
version to version, but this situation has been improving over the last five years,
and we have ways of coping cleanly with cross-browser incompatibilities.

Every modern operating system comes with a modern browser preinstalled. So
the vast majority of desktop and laptop computers on the planet are already
primed to run Ajax applications, a situation that most Java or .NET developers
can only dream about. (The browsers present in PDAs and Smartphones generally
offer a greatly cut-down feature list and won’t support the full range of Ajax tech-
nologies, but differences in screen size and input methods would probably be an
issue even if they did. For now, Ajax is principally a technology for desktop and
laptop machines.)

We’ll begin by reviewing these technologies in isolation and then look at how
they interoperate. If you're a seasoned web developer, you’'ll probably know a lot
of this already, in which case you might like to skip ahead to chapter 3, where we
begin to look at managing the technologies by using design patterns.

Let’s start off our investigations by looking at JavaScript.

Orchestrating the user experience with JavaScript

The central player in the Ajax toolkit is undoubtedly JavaScript. An Ajax appli-
cation downloads a complete client into memory, combining data and presenta-
tion and program logic, and JavaScript is the tool used to implement that logic.

Licensed to jonathan zheng <yiyisun@gmail.com>

Orchestrating the user experience with JavaScript 35

JavaScript is a general-purpose programming language of mixed descent, with a
superficial similarity to the C family of languages.

JavaScript can be briefly characterized as a loosely typed, interpreted, general-
purpose scripting language. Loosely typed means that variables are not declared
specifically as strings, integers, or objects, and the same variable may be assigned
values of different types. For example, the following is valid code:

var x=3.1415926;

x="'pi';
The variable x is defined first as a numeric value and reassigned a string value
later.

Interpreted means that it is not compiled into executable code, but the source
code is executed directly. When deploying a JavaScript application, you place the
source code on the web server, and the source code is transmitted directly across
the Internet to the web browser. It’s even possible to evaluate snippets of code on
the fly:

var x=eval('7*5');

Here we have defined our calculation as a piece of text, rather than two numbers
and an arithmetic operator. Calling eval () on this text interprets the JavaScript it
contains, and returns the value of the expression. In most cases, this simply slows
the program execution down, but at times the extra flexibility that it brings can
be useful.

General purpose means that the language is suitable for use with most algo-
rithms and programming tasks. The core JavaScript language contains support
for numbers, strings, dates and times, arrays, regular expressions for text process-
ing, and mathematical functions such as trigonometry and random number gen-
eration. It is possible to define structured objects using JavaScript, bringing
design principles and order to more complex code.

Within the web browser environment, parts of the browser’s native functional-
ity, including CSS, the DOM, and the XMLHttpRequest objects, are exposed to the
JavaScript engine, allowing page authors to programmatically control the page to
a greater or lesser degree. Although the JavaScript environment that we encoun-
ter in the browser is heavily populated with browser-specific objects, the underly-
ing language is just that, a programming language.

This isn’t the time or place for a detailed tutorial on JavaScript basics. In
appendix B we take a closer look at the language and outline the fundamental
differences between JavaScript and the C family of languages, including its

Licensed to jonathan zheng <yiyisun@gmail.com>

36

2.3

CHAPTER 2
First steps with Ajax

namesake, Java. JavaScript examples are sprinkled liberally throughout this
book, and several other books already exist that cover the language basics (see
our Resources section at the end of this chapter).

Within the Ajax technology stack, JavaScript is the glue that binds all the other
components together. Having a basic familiarity with JavaScript is a prerequisite
for writing Ajax applications. Being fluent in JavaScript and understanding its
strengths will allow you to take full advantage of Ajax.

We’ll move on now to Cascading Style Sheets, which control the visual style of
elements on a web page.

Defining look and feel using CSS

Cascading Style Sheets are a well-established part of web design, and they find
frequent use in classic web applications as well as in Ajax. A stylesheet offers a
centralized way of defining categories of visual styles, which can then be applied
to individual elements on a page very concisely. In addition to the obvious styling
elements such as color, borders, background images, transparency, and size,
stylesheets can define the way that elements are laid out relative to one another
and simple user interactivity, allowing quite powerful visual effects to be achieved
through stylesheets alone.

In a classic web application, stylesheets provide a useful way of defining a style
in a single place that can be reused across many web pages. With Ajax, we don’t
think in terms of a rapid succession of pages anymore, but stylesheets still provide
a helpful repository of predefined looks that can be applied to elements dynami-
cally with a minimum of code. We’ll work through a few basic CSS examples in this
section, but first, let’s look at how CSS rules are defined.

CSS styles a document by defining rules, usually in a separate file that is
referred to by the web page being styled. Style rules can also be defined inside a
web page, but this is generally considered bad practice.

A style rule consists of two parts: the selector and the style declaration. The selec-
tor specifies which elements are going to be styled, and the style declaration
declares which style properties are going to be applied. Let’s say that we want to
make all our level-1 headings in a document (that is, the <H1> tags) appear red.
We can declare a CSS rule to do this:

hl { color: red }

The selector here is very simple, applying to all <#1> tags in the document. The
style declaration is also very simple, modifying a single style property. In practice,

Licensed to jonathan zheng <yiyisun@gmail.com>

2.3.1

Defining look and feel using CSS 37

both the selector and the style declaration can be considerably more complex.
Let’s look at the variations in each, starting with the selector.

CSS selectors

In addition to defining a type of HTML tag to apply a style to, we can limit the
rule to those within a specific context. There are several ways of specifying the
context: by HTML tag type, by a declared class type, or by an element’s unique ID.

Let’s look at tag-type selectors first. For example, to apply the above rule
only to <H1> tags that are contained within a <DIv> tag, we would modify our
rule like this:

div hl { color: red; }

These are also referred to as element-based selectors, because they decide
whether or not a DOM element is styled based on its element type. We can also
define classes for styling that have nothing to do with the HTML tag type. For
example, if we define a style class called callout, which is to appear in a colored
box, we could write

.callout { border: solid blue 1lpx; background-color: cyan }

To assign a style class to an element, we simply declare a class attribute in the
HTML tag, such as

<div>I'1ll appear as a normal bit of text</div>

<div class='callout'>And I'll appear as a callout!</div>
Elements can be assigned more than one class. Suppose that we define an addi-
tional style class loud as

.loud { color: orange }
and apply both the styles in a document like so:

<div class='loud'>I'll be bright orange</div>

<div class='callout'>I'll appear as a callout</div>

<div class='callout loud'>

And I'll appear as an unappealing mixture of both!

</div>
The third <div> element will appear with orange text in a cyan box with a blue
border. It is also possible to combine CSS styles to create a pleasing and harmoni-
ous design!

We can combine classes with element-based rules, to define a class that oper-

ates only on particular tag types. For example:

Licensed to jonathan zheng <yiyisun@gmail.com>

38

CHAPTER 2
First steps with Ajax

span.highlight { background-color: yellow }

will be applied only to tags with a declared class attribute of highlight.
Other tags, or other types of tag with class="highlight', will be unaffected.

We can also use these in conjunction with the parent-child selectors to create
very specific rules:

div.prose span.highlight { background-color: yellow }

This rule will be applied only to tags of class highlight that are nested
within <div> tags of class prose.

We can specify rules that apply only to an element with a given unique ID, as
specified by the id attribute in the HTML. No more than one element in an
HTML document should have a given ID assigned to it, so these selectors are typ-
ically used to select a single element on a page. To draw attention to a close but-
ton on a page, for example, we might define a style:

#close { color: red }

CSS also allows us to define styles based on pseudo-selectors. A web browser
defines a limited number of pseudo-selectors. We'll present a few of the more use-
ful ones here. For example:
*:first-letter {
font-size: 500%;
color: red;
float: left;
}
will draw the first letter of any element in a large bold red font. We can tighten up
this rule a little, like this:
p.illuminated:first-letter {
font-size: 500%;
color: red;
float: left;
}
The red border effect will now apply only to <p> elements with a declared class of
illuminated. Other useful pseudo-selectors include first-line, and hover, which
modifies the appearance of hyperlinks when the mouse pointer passes over them.
For example, to make a link appear in yellow when under the mouse pointer, we
could write the following rule:

a:hover{ color:yellow; }

That covers the bases for CSS selectors. We've already introduced several style
declarations informally in these examples. Let’s have a closer look at them now.

Licensed to jonathan zheng <yiyisun@gmail.com>

Defining look and feel using CSS 39

2.3.2 CSS style properties

Every element in an HTML page can be styled in a number of ways. The most
generic elements, such as the <p1v> tag, can have dozens of stylings applied to
them. Let’s look briefly at a few of these.

The text of an element can be styled in terms of the color, the font size, the
heaviness of the font, and the typeface to use. Multiple options can be specified
for fonts, to allow graceful degradation in situations where a desired font is not
installed on a client machine. To style a paragraph in gray, terminal-style text, we
could define a styling:

.robotic{
font-size: 1l4pt;
font-family: courier new, courier, monospace;
font-weight: bold;

color: gray;

}
Or, more concisely, we could amalgamate the font elements:

.robotic{
font: bold 1l4pt courier new, courier, monospace;
color: gray;
}
In either case, the multiple styling properties are written in a key-value pair nota-
tion, separated by semicolons.

CSS can define the layout and size (often referred to as the box-model) of an ele-
ment, by specifying margins and padding elements, either for all four sides or for
each side individually:

.padded{ padding: 4px; }
.eccentricPadded {
padding-bottom: 8px;
padding-top: 2px;
padding-left: 2px;
padding-right: 16px;
margin: lpx;
}
The dimensions of an element can be specified by the width and height proper-
ties. The position of an element can be specified as either absolute or relative.
Absolutely positioned elements can be positioned on the page by setting the top
and left properties, whereas relatively positioned elements will flow with the rest
of the page.

Licensed to jonathan zheng <yiyisun@gmail.com>

40 CHAPTER 2
First steps with Ajax

Background colors can be set to elements using the background-color prop-
erty. In addition, a background image can be set, using the background-image

property:
.titlebar{ background-image: url (images/topbar.png); }

Elements can be hidden from view by setting either visibility:hidden or
display:none. In the former case, the item will still occupy space on the page, if
relatively positioned, whereas in the latter case, it won’t.

This covers the basic styling properties required to construct user interfaces
for Ajax applications using CSS. In the following section, we’ll look at an example
of putting CSS into practice.

2.3.3 A simple CSS example

We’ve raced through the core concepts of Cascading Style Sheets. Let’s try put-
ting them into practice now. CSS can be used to create elegant graphic design, but
in an Ajax application, we’re often more concerned with creating user interfaces
that mimic desktop widgets. As a simple example of this type of CSS use,
figure 2.2 shows a folder widget styled using CSS.

CSS performs two roles in creating the widget that we see on the right in
figure 2.2. Let’s look at each of them in turn.

Using CSS for layout
The first job is the positioning of the elements. The outermost element, repre-
senting the window as a whole, is assigned an absolute position:

1T

g 00

Documents lost and shuft shopping things.txt taxns Documents lost and stuff ‘.hr)pplng |h|nf_|— txt 11 ves
Tourd =] L
‘}
chapter2
chapter 2 g

Figure 2.2 Using CSS to style a user interface widget. Both screenshots were generated from identical HTML,
with only the stylesheets altered. The stylesheet used on the left retains only the positioning elements,
whereas the stylesheet used to render the right adds in the decorative elements, such as colors and images.

Licensed to jonathan zheng <yiyisun@gmail.com>

Defining look and feel using CSS 41

div.window{
position:
overflow:
margin:

absolute;
auto;
8px;
Opx;
420px;
280px;

padding:

width:

height:
}

Within the content area, the icons are styled using the float property so as to
flow within the confines of their parent element, wrapping around to a new line
where necessary:

div.item{
position: relative;
height: 64px;
width: 56px;
float: left;
padding: 0px;
margin: 8px;

}

The itemName element, which is nested inside the item element, has the text posi-
tioned below the icon by setting an upper margin as large as the icon graphic:

div.item div

margin-top:

font: 10px

text-align:

. itemName {
48px;

verdana,
center;

arial, helvetica;

}

Using CSS for styling
The second job performed by CSS is the visual styling of the elements. The
graphics used by the items in the folder are assigned by class name, for example:

div.folder({
background:
transparent url (images/folder.png)
top left no-repeat;
}
div.file{
background:
transparent url (images/file.png)
top left no-repeat;
}
div.special{
background:
transparent url (images/folder_important.png)
top left no-repeat;

Licensed to jonathan zheng <yiyisun@gmail.com>

42

CHAPTER 2
First steps with Ajax

The background property of the icon styles is set to not repeat itself and be posi-
tioned at the top left of the element, with transparency enabled. (Figure 2.2 is
rendered using Firefox. Transparency of .png images under Internet Explorer is
buggy, with a number of imperfect proposed workarounds available. The forth-
coming Internet Explorer 7 fixes these bugs, apparently. If you need cross-
browser transparent images, we suggest the use of .gif images at present.)

Individual items declare two style classes: The generic item defines their lay-
out in the container, and a second, more specific one defines the icon to be used.
For example:

<div class='item folder'>

<div class='itemName'>stuff</div>

</div>

<div class='item file'>

<div class='itemName'>shopping list</div>
</div>

All the images in the styling are applied as background images using CSS. The
titlebar is styled using an image as tall as the bar and only 1 pixel wide, repeating
itself horizontally:

div.titlebar({
background-color: #0066aa;
background-image: url (images/titlebar_bg.png) ;
background-repeat: repeat-x;

}
The full HTML for this widget is presented in listing 2.1.

Listing 2.1 window.html

<html>

<head>

<link rel='stylesheet' type='text/css' Link to
href='window.css' /> ’ stylesheet

</head>

<body>

<div class='window'> <— Top-level window element
<div class='titlebar'>

 .
Titlebar

<gspan class='titleButton' id='max'>
buttons

<gspan class='titleButton' id='min'>
</div>
<div class='contents'>
<div class='item folder'>
<div class='itemName'>Documents</div>
</div>
<div class='item folder'>

Licensed to jonathan zheng <yiyisun@gmail.com>

Defining look and feel using CSS

<div class='itemName'>lost and found</div>

</div>

<div class='item folder'> An icon
<div class='itemName'>stuff</div> inside a

</div> window

<div class='item file'>
<div class='itemName'>shopping list</div>
</div>
<div class='item file'>
<div class='itemName'>things.txt</div>
</div>
<div class='item special'>
<div class='itemName'>faves</div>
</div>
<div class='item file'>
<div class='itemName'>chapter 2</div>
</div>
</div>
</div>
</body>
</html>

43

The HTML markup defines the structure of the document, not the look. It also
defines points in the document through which the look can be applied, such as
class names, unique IDs, and even the tag types themselves. Reading the HTML,
we can see how each element relates to the other in terms of containment but not
the eventual visual style. Editing the stylesheet can change the look of this docu-
ment considerably while retaining the structure, as figure 2.2 has demonstrated.

The complete stylesheet for the widget is shown in listing 2.2.

Listing 2.2 window.css

div.window{
position: absolute;
overflow: auto;
background-color: #eeefff;
border: solid #0066aa 2px;
margin: 8px;
padding: 0px;
width: 420px; o Geometry
height: 280px; of element
}
div.titlebar({
background-color: #0066aa;
background-image:
url (images/titlebar_bg.png) ;
background-repeat: repeat-x;

Background
texture

Licensed to jonathan zheng <yiyisun@gmail.com>

44 CHAPTER 2
First steps with Ajax

color:white;
border-bottom: solid black 1px;
width: 100%;
height: 16px;
overflow:hidden;
}
span.titleButton{
position: relative;
height: 16px;
width: 1lé6px;
padding: Opx;
margin: Opx 1lpx; Opx 1px;
float:right; e Flow layout
}
span.titleButton#min{
background: transparent
url (images/min.png) top left no-repeat;
}
span.titleButton#max{
background: transparent
url (images/max.png) top left no-repeat;
}
span.titleButton#close(
background: transparent
url (images/close.png) top left no-repeat;
}
div.contents {
background-color: #eOede8;
overflow: auto;
padding: 2px;
height:240px;
}
div.item{
position : relative;
height : 64px;
width: 56px;
float: left;
color : #004488;
font-size: 18;
padding: Opx;
margin: 4px;

}

div.item div.itemName {
margin-top: 48px; o Text placement
font: 10px verdana, arial, helvetica;
text-align: center;

}

div.folder({
background: transparent
url (images/folder.png) top left no-repeat;

Licensed to jonathan zheng <yiyisun@gmail.com>

2.4

Organizing the view using the DOM 45

div.file{
background: transparent
url (images/file.png) top left no-repeat;
}
div.special{
background: transparent
url (images/folder_important.png)
top left no-repeat;

We've already looked at a number of the tricks that we’'ve employed in this
stylesheet to tune the look and feel of individual elements. We’ve highlighted a
few more here, to demonstrate the breadth of concerns to which CSS can be
applied: on-screen placement @, texturing elements @, assisting in layout of ele-
ments @, and placing text relative to accompanying graphics @.

CSS is an important part of the web developer’s basic toolkit. As we've dem-
onstrated here, it can be applied just as easily to the types of interfaces that an
Ajax application requires as to the more design-oriented approach of a static
brochure-style site.

Organizing the view using the DOM

The Document Object Model (DOM) exposes a document (a web page) to the
JavaScript engine. Using the DOM, the document structure, as seen in figure 2.3,
can be manipulated programmatically. This is a particularly useful ability to have
at our disposal when writing an Ajax application. In a classic web application, we
are regularly refreshing the entire page with new streams of HTML from the
server, and we can redefine the interface largely through serving up new HTML.
In an Ajax application, the majority of changes to the user interface will be made
using the DOM. HTML tags in a web page are organized in a tree structure. The
root of the tree is the <HTML> tag, which represents the document. Within this,
the <BoDY> tag, which represents the document body, is the root of the visible doc-
ument structure. Inside the body, we find table, paragraph, list, and other tag
types, possibly with other tags inside them.

A DOM representation of a web page is also structured as a tree, composed of
elements or nodes, which may contain child nodes within them, and so on recur-
sively. The JavaScript engine exposes the root node of the current web page
through the global variable document, which serves as the starting point for all our
DOM manipulations. The DOM element is well defined by the W3C specification.

Licensed to jonathan zheng <yiyisun@gmail.com>

46

CHAPTER 2
First steps with Ajax

It has a single parent element, zero or more child elements, and any number of
attributes, which are stored as an associative array (that is, by a textual key such as
width or style rather than a numerical index). Figure 2.3 illustrates the abstract
structure of the document shown in listing 2.2, as seen using the Mozilla DOM
Inspector tool (see appendix A for more details).

The relationship between the elements in the DOM can be seen to mirror that
of the HTML listing. The relationship is two-way. Modifying the DOM will alter
the HTML markup and hence the presentation of the page.

This provides a top-level view of what the DOM looks like. In the following sec-
tion, we'll see how the DOM is exposed to the JavaScript interpreter and how to

work with it.

Figure 2.3

The DOM presents an HTML document as a

tree structure, with each element representing a tag
in the HTML markup.

nodeName I id | class]Bel
= #document |
= HTML
=l HEAD
#text
LINK
#text
=BODY
#text
= DIV window
#text
= DIV titlebar
#text
SPAN close titleButton
#text
SPAN max titleButton
#Ftext
SPAN min titleButton
#text
#text
= DIV contents
#text
= DIV item folder
= DIV itemName
#text
#text
DIV item folder
#text
+ DIV item folder
#text
DIV item file
#text
+ DIV item file
#text
DIV item special
#text
= DIV item file
#text
#text
#text

Licensed to jonathan zheng <yiyisun@gmail.com>

Organizing the view using the DOM 47

2.4.1 Working with the DOM using JavaScript

In any application, we want to modify the user interface as users work, to provide
feedback on their actions and progress. This could range from altering the label
or color of a single element, through popping up a temporary dialog, to replac-
ing large parts of the application screen with an entirely new set of widgets. By far
the most usual is to construct a DOM tree by feeding the browser with declarative
HTML (in other words, writing an HTML web page).

The document that we showed in listing 2.2 and figure 2.3 is rather large and
complex. Let’s start our DOM manipulating career with a small step. Suppose that
we want to show a friendly greeting to the user. When the page first loads, we
don’t know his name, so we want to be able to modify the structure of the page to
add his name in later, possibly to manipulate the DOM nodes programmatically.
Listing 2.3 shows the initial HTML markup of this simple page.

Listing 2.3 Ajax “hello” page

<html>

<head>

<link rel='stylesheet' type='text/css'
href='hello.css' /> <@ Link to stylesheet

<script type='text/javascript'
src='hello.js'></script> 0 Link to JavaScript
</head>
<body>
<p id='hello'>hello</p>
<div id='empty'></div> e Empty element
</body>
||

We have added references to two external resources: a Cascading Style Sheet
@ and a file containing some JavaScript code @. We have also declared an
empty <div> element with an ID @, into which we can programmatically add
further elements.

Let’s look at the resources that we've linked to. The stylesheet defines some
simple stylings for differentiating between different categories of item in our list
by modifying the font and color (listing 2.4).

Listing 2.4 hello.css

.declared{
color: red;
font-family: arial;
font-weight: normal;

Licensed to jonathan zheng <yiyisun@gmail.com>

48

CHAPTER 2
First steps with Ajax

font-size: 16px;

}

.programmed {
color: blue;
font-family: helvetica;
font-weight: bold;
font-size: 10px;

We define two styles, which describe the origin of our DOM nodes. (The names of
the styles are arbitrary. We called them that to keep the example easy to under-
stand, but we could have just as easily called them fred and jim.) Neither of these
style classes is used in the HTML, but we will apply them to elements program-
matically. Listing 2.5 shows the JavaScript to accompany the web page in
listing 2.4. When the document is loaded, we will programmatically style an exist-
ing node and create some more DOM elements programmatically.

Listing 2.5 hello.js

window.onload=function () {
var hello=document.getElementById('hello'); <— Find element by ID
hello.className="'declared';

var empty=document.getElementById('empty"') ;
addNode (empty, "reader of");
addNode (empty, "Ajax in Action!");

var children=empty.childNodes;
for (var i=0;i<children.length;i++) {
children[i].className="'programmed' ;

}

empty.style.border="solid green 2px'; Style node
empty.style.width="200px"; directly

}

function addNode (el, text) {

var childEl=document.createElement ("div"); <— Create new element
el.appendChild(childEl) ;
var txtNode=document.createTextNode (text) ; <— Create text element

childEl.appendChild (txtNode) ;
}
||

The JavaScript code is a bit more involved than the HTML or the stylesheet. The
entry point for the code is the window.onload () function, which will be called pro-
grammatically once the entire page has been loaded. At this point, the DOM tree

Licensed to jonathan zheng <yiyisun@gmail.com>

2.4.2

Organizing the view using the DOM 49

has been built, and we can begin to work with it. Listing 2.5 makes use of several
DOM manipulation methods, to alter attributes of the DOM nodes, show and hide
nodes, and even create completely new nodes on the fly. We won’t cover every
DOM manipulation method here—have a look at our resources section for that—
but we’ll walk through some of the more useful ones in the next few sections.

Finding a DOM node

The first thing that we need to do in order to work on a DOM with JavaScript is to
find the elements that we want to change. As mentioned earlier, all that we are
given to start with is a reference to the root node, in the global variable document.
Every node in the DOM is a child, (or grandchild, great-grandchild, and so on) of
document, but crawling down the tree, step by step, could be an arduous process in
a big complicated document. Fortunately, there are some shortcuts. The most
commonly used of these is to tag an element with a unique ID. In the onload()
function in listing 2.5 we want to find two elements: the paragraph element, in
order to style it, and the empty <div> tag, in order to add contents to it. Knowing,
this, we attached unique ID attributes to each in the HTML, thus:

<p id='hello'>
and
<div id='empty'></div>

Any DOM node can have an ID assigned to it, and the ID can then be used to
get a programmatic reference to that node in one function call, wherever it is
in the document:

var hello=document.getElementById('hello"');

Note that this is a method of a Document object. In a simple case like this (and
even in many complicated cases), you can reference the current Document object
as document. If you end up using IFrames, which we’ll discuss shortly, then you
have multiple Document objects to keep track of, and you’ll need to be certain
which one you’re querying.

In some situations, we do want to walk the DOM tree step by step. Since the
DOM nodes are arranged in a tree structure, every DOM node will have no more
than one parent but any number of children. These can be accessed by the
parentNode and childNodes properties. parentNode returns another DOM node
object, whereas childNodes returns a JavaScript array of nodes that can be iter-
ated over; thus:

Licensed to jonathan zheng <yiyisun@gmail.com>

50

2.4.3

CHAPTER 2
First steps with Ajax

var children=empty.childNodes;
for (var i=0;i<children.length;i++) {

}

A third method worth mentioning allows us to take a shortcut through docu-
ments that we haven’t tagged with unique IDs. DOM nodes can also be
searched for based on their HTML tag type, using getElementsByTagName (). For
example, document.getElementsByTagName ("UL") will return an array of all
tags in the document.

These methods are useful for working with documents over which we have rel-
atively little control. As a general rule, it is safer to use getElementById() than
getElementsByTagName (), as it makes fewer assumptions about the structure and
ordering of the document, which may change independently of the code.

Creating a DOM node

In addition to reorganizing existing DOM nodes, there are cases where we want to
create completely new nodes and add them to the document (say, if we're creating
a message box on the fly). The JavaScript implementations of the DOM give us
methods for doing that, too.

Let’s look at our example code (listing 2.5) again. The DOM node with ID
'empty' does indeed start off empty. When the page loads, we created some content
for it dynamically. Our addNode () function uses the standard document.create-
Element () and document.createTextNode() methods. createElement () can be
used to create any HTML element, taking the tag type as an argument, such as

var childEl=document.createElement ("div") ;

createTextNode () creates a DOM node representing a piece of text, commonly
found nested inside heading, div, paragraph, and list item tags.

var txtNode=document.createTextNode ("some text");

The DOM standard treats text nodes as separate from those representing HTML
elements. They can’t have styles applied to them directly and hence take up much
less memory. The text represented by a text node may, however, be styled by the
DOM element containing it.

Once the node, of whatever type, has been created, it must be attached to the
document before it is visible in the browser window. The DOM node method
appendChild() is used to accomplish this:

el.appendChild(childEl) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

2.4.4

Organizing the view using the DOM 51

These three methods—createElement (), createTextNode (), and appendChild () —
give us everything that we need to add new structure to a document. Having done
so, however, we will generally want to style it in a suitable way, too. Let’s look at
how we can do this.

Adding styles to your document

So far, we've looked at using the DOM to manipulate the structure of a docu-
ment—how one element is contained by another and so on. In effect, it allows us
to reshape the structures declared in the static HTML. The DOM also provides
methods for programmatically modifying the style of elements and reshaping the
structures defined in the stylesheets.

Each element in a web page can have a variety of visual elements applied to it
through DOM manipulation, such as position, height and width, colors, margins
and borders. Modifying each attribute individually allows for very fine control,
but it can be tedious. Fortunately, the web browser provides us with JavaScript
bindings that allow us to exercise precision where needed through a low-level
interface and to apply styling consistently and easily using CSS classes. Let’s look
at each of these in turn.

The className property

CSS offers a concise way of applying predefined, reusable styles to documents.
When we are styling elements that we have created in code, we can also take advan-
tage of CSS, by using a DOM node’s className property. The following line, for
example, applies the presentation rules defined by the declared class to a node:

hello.className="'declared';

where hello is the reference to the DOM node. This provides an easy and compact
way to assign many CSS rules at once to a node and to manage complex stylings
through stylesheets.

The style property
In other situations, we may want to make a finer-grained change to a particular
element’s style, possibly supplementing styles already applied through CSS.
DOM nodes also contain an associative array called style, containing all the
fine details of the node’s style. As figure 2.4 illustrates, DOM node styles typically
contain a large number of entries. Under the hood, assigning a className to the
node will modify values in the style array.
The style array can be manipulated directly. After styling the items in the
empty node, we draw a box around them; thus:

Licensed to jonathan zheng <yiyisun@gmail.com>

52 CHAPTER 2
First steps with Ajax

empty.style.border="solid green 2px";

empty.style.width="200px";
We could just as easily have declared a box class and applied it via the className
property, but this approach can be quicker and simpler in certain circumstances,
and it allows for the programmatic construction of strings. If we want to freely
resize elements to pixel accuracy, for example, doing so by predefining styles for
every width from 1 to 800 pixels would clearly be inefficient and cumbersome.

Using the above methods, then, we can create new DOM elements and style

them. There’s one more useful tool in our toolbox of content-manipulation tech-
niques that takes a slightly different approach to programmatically writing a web
page. We close this section with a look at the innerHTML property.

File Edit Search View

@ #4 file:/l/mntiremovable/writingtech/ria/drafts/ch2/listing2.2a html Inspect
- Document - DOM Nodes (5 | - Object - Computed Style b
nodeName | id | class |Eﬂ| Property Value | Eel
= #document background-attachment scroll £
= HTML background-color transparent
= HEAD background-image none
#text background-repeat repeat
= STYLE border-bottom-color rgb(255, 0, 0)
#text border-bottom-style none
#text border-bottom-width Opx
= BODY border-collapse separate
#text border-left-color rgb(255, 0, 0)
=1 border-left-style none
#text border-left-width Opx
- border-right-color rgb(255, 0, 0)
#text border-right-style none
#text border-right-width Opx
- SPAN world border-top-color rgb(255, 0, 0)
#text border-top-style none
#text border-top-width Opx
#text bottom auto
caption-side top
clear none
clip auto
color rgb(255, 0, 0) -
X
s World!

Figure 2.4 Inspecting the style attribute of a DOM node in the DOM Inspector. Most values will
not be set explicitly by the user but will be assigned by the rendering engine itself. Note the

scrollbar: we’re seeing only roughly one-quarter of the full list of computed styles.

Licensed to jonathan zheng <yiyisun@gmail.com>

2.4.5

2.5

Loading data asynchronously using XML technologies 53

A shortcut: Using the innerHTML property

The methods described so far provide low-level control over the DOM API. How-
ever, createElement () and appendChild() provide a verbose API for building a
document and are best suited for situations in which the document being created
follows a regular structure that can be encoded as an algorithm. All popular web
browsers” DOM elements also support a property named innerHTML, which allows
arbitrary content to be assigned to an element in a very simple way. innerHTML is a
string, representing a node’s children as HTML markup. For example, we can
rewrite our addNode () function to use innerHTML like this:

function addListItemUsingInnerHTML (el, text) {

el.innerHTML+="<div class='programmed'>"+text+"</div>";

}

The <p1V> element and the nested text node can be added in a single statement.
Note also that it is appending to the property using the += operator, not assigning
it directly. Deleting a node using innerHTML would require us to extract and parse
the string. innerHTML is less verbose and suited to relatively simple applications
such as this. If a node is going to be heavily modified by an application, the DOM
nodes presented earlier provide a superior mechanism.

We’ve now covered JavaScript, CSS, and the DOM. Together, they went under
the name Dynamic HTML when first released. As we mentioned in the introduc-
tion to this chapter, Ajax uses many of the Dynamic HTML techniques, but it is
new and exciting because it throws an added ingredient into the mix. In the next
section, we’ll look at what sets Ajax apart from DHTML—the ability to talk to the
server while the user works.

Loading data asynchronously
using XML technologies

While working at an application—especially a sovereign one—users will be inter-
acting continuously with the app, as part of the workflow. In chapter 1, we dis-
cussed the importance of keeping the application responsive. If everything locks
up while a lengthy background task executes, the user is interrupted. We dis-
cussed the advantages of asynchronous method calls as a way of improving UI
responsiveness when executing such lengthy tasks, and we noted that, because of
network latency, all calls to the server should be considered as lengthy. We also
noted that under the basic HT'TP request-response model, this was a bit of a non-
starter. Classical web applications rely on full-page reloads with every call to the
server leading to frequent interruptions for the user.

Licensed to jonathan zheng <yiyisun@gmail.com>

54

2.5.1

CHAPTER 2
First steps with Ajax

Although we have to accept that a document request is blocked until the server
returns its response, we have a number of ways of making a server request look
asynchronous to users so that they can continue working. The earliest attempts at
providing this background communication used IFrames. More recently, the
XMLHttpRequest object has provided a cleaner and more powerful solution. We’ll
look at both technologies here.

IFrames

When DHTML arrived with versions 4 of Netscape Navigator and Microsoft Inter-
net Explorer, it introduced flexible, programmable layout to the web page. A nat-
ural extension of the old HTML Frameset was the IFrame. The I stands for inline,
meaning that it is part of the layout of another document, rather than sitting side
by side as in a frameset. An IFrame is represented as an element in the DOM tree,
meaning that we can move it about, resize it, and even hide it altogether, while
the page is visible. The key breakthrough came when people started to realize
that an IFrame could be styled so as to be completely invisible. This allowed it to
fetch data in the background, while the visible user experience was undisturbed. Sud-
denly, there was a mechanism to contact the server asynchronously, albeit rather a
hacky one. Figure 2.5 illustrates the sequence of events behind this approach.

Like other DOM elements, an IFrame can be declared in the HTML for a page
or it can be programmatically generated using document.createElement (). In a
simple case, in which we want only a single nonvisible IFrame for loading data
into, we can declare it as part of the document and get a programmatic handle on
it using document .getElementById(), as in listing 2.6.

<html>

<head>

<script type='text/javascript'>

window.onload=function() {
var iframe=document.getElementById('dataFeed') ;
var src='datafeeds/mydata.xml';
loadDataAsynchronously (iframe, src) ;

}

function loadDataAsynchronously (iframe, src) {
//...do something amazing!!

}

</script>

</head>

<body>

<!--

...some visible content here...

Licensed to jonathan zheng <yiyisun@gmail.com>

Loading data asynchronously using XML technologies 55

-2
<iframe
id='dataFeed’
style='height:0px;width:0px; "'
>
</iframe>
</body>
</html>
||

The IFrame has been styled as being invisible by setting its width and height to
zero pixels. We could use a styling of display:none, but certain browsers will opti-
mize based on this and not bother to load the document! Note also that we need
to wait for the document to load before looking for the IFrame, by calling get-
ElementById() in the window.onload handler function. Another approach is to
programmatically generate the IFrames on demand, as in listing 2.7. This has the
added advantage of keeping all the code related to requesting the data in one
place, rather than needing to keep unique DOM node IDs in sync between the
script and the HTML.

@ocument contenDt Requestor ’6 Callback function b(Server ’
]]]]

!
=

2a. HTTP request
T

i i
: 3.HTTP response :
i i i i
i 4. Update user interface i i

i i i i

i i i i

i i i i

i i i i
Figure 2.5 Sequence of events in an asynchronous communication in a web page.
User action invokes a request from a hidden requester object (an IFrame or
XMLHttpRequest object), which initiates a call to the server asynchronously. The
method returns very quickly, blocking the user interface for only a short period of

time, represented by the height of the shaded area. The response is parsed by a
callback function, which then updates the user interface accordingly.

Licensed to jonathan zheng <yiyisun@gmail.com>

56

CHAPTER 2
First steps with Ajax

function fetchbData () {
var iframe=document.createElement ('iframe"') ;
iframe.className='hiddenDataFeed' ;
document .body . appendChild (iframe) ;
var src='datafeeds/mydata.xml';
loadDataAsynchronously (iframe, src) ;

The use of createElement () and appendchild() to modify the DOM should be
familiar from earlier examples. If we follow this approach rigidly, we will eventu-
ally create a large number of IFrames as the application continues to run. We
need to either destroy the IFrames when we’ve finished with them or implement a
pooling mechanism of some sort.

Design patterns, which we introduce in chapter 3, can help us to implement
robust pools, queues, and other mechanisms that make a larger-scale application
run smoothly, so we’ll return to this topic in more depth later. In the meantime,
let’s turn our attention to the next set of technologies for making behind-the-
scenes requests to the server.

2.5.2 XmiDocument and XMLHttpRequest objects

IFrames can be used to request data behind the scenes, as we just saw, but it is
essentially a hack, repurposing something that was originally introduced to
display visible content within a page. Later versions of popular web browsers
introduced purpose-built objects for asynchronous data transfer, which, as we will
see, offer some convenient advantages over IFrames.

The XmlDocument and XMLHttpRequest objects are nonstandard extensions
to the web browser DOM that happen to be supported by the majority of browsers.
They streamline the business of making asynchronous calls considerably, because
they are explicitly designed for fetching data in the background. Both objects
originated as Microsoft-specific ActiveX components that were available as Java-
Script objects in the Internet Explorer browser. Other browsers have since
implemented native objects with similar functionality and API calls. Both perform
similar functions, but the XMLHttpRequest provides more fine-grained control
over the request. We will use that throughout most of this book, but mention Xml-
Document briefly here in case you come across it and wonder how it differs from
XMLHttpRequest. Listing 2.8 shows a simple function body that creates an Xml-
Document object.

Licensed to jonathan zheng <yiyisun@gmail.com>

Loading data asynchronously using XML technologies 57

function getXMLDocument () {
var xDoc=null;

if

(document . implementation

&& document.implementation.createDocument) {
xDoc=document . implementation

.createDocument ("","",null) ; <— Mozilla/Safari
}else if (typeof ActiveXObject != "undefined") {
var msXmlAx==null;
try{
msXmlAx=new ActiveXObject
("Msxml2.DOMDocument") ; <+— Newer Internet Explorer

}catch (e){

}

msXmlAx=new ActiveXObject
("Msxml . DOMDocument") ; <+— Older Internet Explorer

xDoc=msXmlAx;

}

if (xDoc==null || typeof xDoc.load=="undefined") {
xDoc=null;

}

return xDoc;

The function will return an XmlDocument object with an identical API under most
modern browsers. The ways of creating the document differ considerably, though.

The code checks whether the document object supports the implementation
property needed to create a native XmlDocument object (which it will find in
recent Mozilla and Safari browsers). If it fails to find one, it will fall back on
ActiveX objects, testing to see if they are supported or unsupported (which is true
only in Microsoft browsers) and, if so, trying to locate an appropriate object. The
script shows a preference for the more recent MSXML version 2 libraries.

NOTE

It is possible to ask the browser for vendor and version number informa-
tion, and it is common practice to use this information to branch the
code based on browser type. Such practice is, in our opinion, prone to
error, as it cannot anticipate future versions or makes of browser and can
exclude browsers that are capable of executing a script. In our getXml-
Document () function, we don’t try to guess the version of the browser
but ask directly whether certain objects are available. This approach,
known as object detection, stands a better chance of working in future ver-
sions of browsers, or in unusual browsers that we haven’t explicitly test-
ed, and is generally more robust.

Licensed to jonathan zheng <yiyisun@gmail.com>

58

2.5.3

CHAPTER 2
First steps with Ajax

Listing 2.9 follows a similar but slightly simpler route for the XMLHttp-
Request object.

function getXMLHTTPRequest () {
var xXRequest=null;
if (window.XMLHttpRequest) ({

xRequest=new XMLHttpRequest () ; <— Mozilla/Safari
}else if (typeof ActiveXObject != "undefined") {
xRequest=new ActiveXObject
("Microsoft.XMLHTTP"); <— Internet Explorer

}

return xRequest;

Again, we use object detection to test for support of the native XMLHttpRequest
object and, failing that, for support for ActiveX. In a browser that supports nei-
ther, we will simply return null for the moment. We’ll look at gracefully handling
failure conditions in more detail in chapter 6.

So, we can create an object that will send requests to the server for us. What do
we do now that we have it?

Sending a request to the server

Sending a request to the server from an XMLHttpRequest object is pretty
straightforward. All we need to do is pass it the URL of the server page that will
generate the data for us. Here’s how it’s done:

function sendRequest (url, params, HttpMethod) {
if (!HttpMethod) {
HttpMethod="POST" ;
}
var reg=getXMLHTTPRequest () ;
if (req)({
req.open (HttpMethod, url, true) ;
req.setRequestHeader
("Content-Type",
"application/x-www-form-urlencoded") ;
req.send (params) ;
}
}

XMLHttpRequest supports a broad range of HTTP calling semantics, including
optional querystring parameters for dynamically generated pages. (You may
know these as CGI parameters, Forms arguments, or ServletRequest parameters,

Licensed to jonathan zheng <yiyisun@gmail.com>

Loading data asynchronously using XML technologies 59

depending on your server development background.) Let’s quickly review the
basics of HTTP before seeing how our request object supports it.

HTTP—A quick primer

HTTP is such a ubiquitous feature of the Internet that we commonly ignore it.
When writing classic web applications, the closest that we generally get to the
HTTP protocol is to define a hyperlink and possibly set the method attribute on a
form. Ajax, in contrast, opens up the low-level details of the protocol for us to
play with, allowing us to do a few surprising things.

An HTTP transaction between a browser and a web server consists of a request
by the browser, followed by a response from the server (with some exceptionally
clever, mind-blowingly cool code written by us web developers happening in
between, of course). Both request and response are essentially streams of text,
which the client and server interpret as a series of headers followed by a body.
Think of the headers as lines of an address written on an envelope and the body
as the letter inside. The headers simply instruct the receiving party what to do
with the letter contents.

An HTTP request is mostly composed of headers, with the body possibly con-
taining some data or parameters. The response typically contains the HTML
markup for the returning page. A useful utility for Mozilla browsers called Live-
HTTPHeaders (see the Resources section at the end of this chapter and appendix
A) lets us watch the headers from requests and responses as the browser works.
Let’s fetch the Google home page and see what happens under the hood.

The first request that we send contains the following headers:

GET / HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0

(Windows; U; Windows NT 5.0; en-US; rv:1.7)
Gecko/20040803 Firefox/0.9.3

Accept: text/xml,application/xml,

application/xhtml+xml, text/html;g=0.9,
text/plain;g=0.8,image/png, */*;g=0.5

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;g=0.7

Keep-Alive: 300

Connection: keep-alive

Cookie: PREF=ID=cabd38877dc0b6al:TM=1116601572

:LM=1116601572 : S=GD3SsQk3v0adtSBP
The first line tells us which HTTP method we are using. Most web developers are
familiar with GET, which is used to fetch documents, and PosST, used to submit

Licensed to jonathan zheng <yiyisun@gmail.com>

60

CHAPTER 2
First steps with Ajax

HTML forms. The World Wide Web Consortium (W3C) spec includes a few other
common methods, including HEAD, which fetches the headers only for a file; pur,
for uploading documents to the server; and DELETE, for removing documents.
Subsequent headers do a lot of negotiation, with the client telling the server what
content types, character sets, and so on it can understand. Because I've visited
Google before, it also sends a cookie, a short message telling Google who I am.

The response headers, shown here, also contain quite a lot of information:

HTTP/1.x 302 Found
Location: http://www.google.co.uk/cxfer?c=PREF%3D:
TM%3D1116601572:S%3DzFxPsBpXhZzknVMF&prev=/
Set-Cookie: PREF=ID=cabd38877dc0Ob6al:CR=1:TM=1116601572:
LM=1116943140:S=fRfhD-u49xpIUELS;
expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com
Content-Type: text/html
Server: GWS/2.1
Transfer-Encoding: chunked
Content-Encoding: gzip
Date: Tue, 24 May 2005 17:59:00 GMT
Cache-Control: private, x-gzip-ok=""
The first line indicates the status of the response. A 302 response indicates a redi-
rection to a different page. In addition, another cookie is passed back for this ses-
sion. The content type of the response (aka MIME type) is also declared. A further
request is made on the strength of the redirect instruction, resulting in a second
response with the following headers:
HTTP/1.x 200 OK
Cache-Control: private
Content-Type: text/html
Content-Encoding: gzip
Server: GWS/2.1
Content-Length: 1196
Date: Tue, 24 May 2005 17:59:00 GMT
Status code 200 indicates success, and the Google home page will be attached to
the body of this response for display. The content-type header tells the browser
that it is html.

Our sendRequest () method is constructed so that the second and third
parameters, which we probably won’t need most of the time, are optional,
defaulting to using POST to retrieve the resource with no parameters passed in
the request body.

The code in this listing sets the request in motion and will return control

to us immediately, while the network and the server take their own sweet time.

Licensed to jonathan zheng <yiyisun@gmail.com>

2.5.4

Loading data asynchronously using XML technologies 61

This is good for responsiveness, but how do we find out when the request
has completed?

Using callback functions to monitor the request

The second part of the equation for handling asynchronous communications is
setting up a reentry point in your code for picking up the results of the call once it
has finished. This is generally implemented by assigning a callback function, that
is, a piece of code that will be invoked when the results are ready, at some unspec-
ified point in the future. The window.onload function that we saw in listing 2.9 is a
callback function.

Callback functions fit the event-driven programming approach used in most
modern UI toolkits—keyboard presses, mouse clicks, and so on will occur at
unpredictable points in the future, too, and the programmer anticipates them by
writing a function to handle them when they do occur. When coding UI events in
JavaScript, we assign functions to the onkeypress, onmouseover, and similarly
named properties of an object. When coding server request callbacks, we encoun-
ter similar properties called onload and onreadystatechange.

Both Internet Explorer and Mozilla support the onreadystatechange callback,
so we’ll use that. (Mozilla also supports onload, which is a bit more straightfor-
ward, but it doesn’t give us any information that onreadystatechange doesn’t.) A
simple callback handler is demonstrated in listing 2.10.

var READY_STATE_UNINITIALIZED=0;
var READY_STATE_LOADING=1;
var READY_STATE_LOADED=2;
var READY_STATE_INTERACTIVE=3;
var READY_STATE_COMPLETE=4;
var req;
function sendRequest (url,params, HttpMethod) {
if (!HttpMethod) {
HttpMethod="GET";
}
reg=getXMLHTTPRequest () ;
if (reaq){
req.onreadystatechange=onReadyStateChange;
req.open (HttpMethod, url, true) ;
req.setRequestHeader
("Content-Type", "application/x-www-form-urlencoded") ;
req.send (params) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

62

2.5.5

CHAPTER 2
First steps with Ajax

function onReadyStateChange () {

var ready=req.readyState;

var data=null;

if (ready==READY_STATE_COMPLETE) {
data=req.responseText;

}else{
data="loading...["+ready+"]";

}

//... do something with the data...

First, we alter our sendRequest () function to tell the request object what its call-
back handler is, before we send it off. Second, we define the handler function,
which we have rather unimaginatively called onReadyStateChange ().

readyState can take a range of numerical values. We’ve assigned descriptively
named variables to each here, to make our code easier to read. At the moment,
the code is only interested in checking for the value 4, corresponding to comple-
tion of the request.

Note that we declare the request object as a global variable. Right now, this
keeps things simple while we address the mechanics of the xMLHt tpRequest object,
but it could get us into trouble if we were trying to fire oft several requests simul-
taneously. We’ll show you how to get around this issue in section 3.1. Let’s put the
pieces together now, to see how to handle a request end to end.

The full lifecycle

We now have enough information to bring together the complete lifecycle of
loading a document, as illustrated in listing 2.11. We instantiate the XMLHttp-
Request object, tell it to load a document, and then monitor that load process
asynchronously using callback handlers. In the simple example, we define a DOM
node called console, to which we can output status information, in order to get a
written record of the download process.

<html>

<head>

<script type='text/javascript'>
var reg=null;

var console=null;

var READY_STATE_UNINITIALIZED=0;
var READY_STATE_LOADING=1;

var READY_STATE_LOADED=2;

Licensed to jonathan zheng <yiyisun@gmail.com>

Loading data asynchronously using XML technologies

var READY_STATE_INTERACTIVE=3;
var READY_STATE_COMPLETE=4;
function sendRequest (url,params, HttpMethod) {
if (!HttpMethod) {
HttpMethod="GET";

}
reg=initXMLHTTPRequest () ;
if (req)({

req.onreadystatechange=onReadyState;
req.open (HttpMethod, url, true) ;
req.setRequestHeader
("Content-Type", "application/x-www-form-urlencoded") ;
req.send (params) ;

}
function initXMLHTTPRequest () {
var XRequest=null;
if (window.XMLHttpRequest) {
xRequest=new XMLHttpRequest() ;

} else if (window.ActiveXObject) { Initialize
xRequest=new ActiveXObject ’99"9“
("Microsoft .XMLHTTP") ; object
}
return xRequest;

}
function onReadyState () { <— Define callback handler
var ready=req.readyState;
var data=null;
if (ready==READY_STATE_COMPLETE) { <+— Check readyState

data=req.responseText ; <— Read response data
Yelse{

data="loading...["+ready+"]";
}
toConsole (data) ;

}
function toConsole(data) {
if (console!=null) {
var newline=document.createElement ("div") ;
console.appendChild(newline) ;
var txt=document.createTextNode (data) ;
newline.appendChild (txt) ;

}

window.onload=function() {
console=document.getElementById('console"') ;
sendRequest ("data.txt") ;

}

</script>

</head>

<body>

<div id='console'></div>

Licensed to jonathan zheng <yiyisun@gmail.com>

63

64

CHAPTER 2
First steps with Ajax

</body>
</html>

Let’s look at the output of this program in Microsoft Internet Explorer and
Mozilla Firefox, respectively. Note that the sequence of readyStates is different,
but the end result is the same. The important point is that the fine details of the
readyState shouldn’t be relied on in a cross-browser program (or indeed, one that
is expected to support multiple versions of the same browser). Here is the output
in Microsoft Internet Explorer:

loading...[1]
loading...[1]
loading...[3]

Here i1s some text from the server!

Each line of output represents a separate invocation of our callback handler. It is
called twice during the loading state, as each chunk of data is loaded up, and then
again in the interactive state, at which point control would be returned to the Ul
under a synchronous request. The final callback is in the completed state, and the
text from the response can be displayed.

Now let’s look at the output in Mozilla Firefox version 1.0:

loading. .. [

loading... [

loading... [
loading...[3]
Here is some text from the server!
The sequence of callbacks is similar to Internet Explorer, with an additional call-
back in the loaded readyState, with value of 2.

In this example, we used the responseText property of the XMLHttpRequest
object to retrieve the response as a text string. This is useful for simple data, but if
we require a larger structured collection of data to be returned to us, then we can
use the responsexML property. If the response has been allocated the correct
MIME type of text/xml, then this will return a DOM document that we can inter-
rogate using the DOM properties and functions such as getElementById() and
childNodes that we encountered in section 2.4.1.

These, then, are the building blocks of Ajax. Each brings something useful to
the party, but a lot of the power of Ajax comes from the way in which the parts
combine into a whole. In the following section, we’ll round out our introduction
to the technologies with a look at this bigger picture.

Licensed to jonathan zheng <yiyisun@gmail.com>

What sets Ajax apart 65

2.6 What sets Ajax apart

While CSS, DOM, asynchronous requests, and JavaScript are all necessary compo-
nents of Ajax, it is quite possible to use all of them without doing Ajax, at least in
the sense that we are describing it in this book.

We already discussed the differences between the classic web application and
its Ajax counterpart in chapter 1; let’s recap briefly here. In a classic web applica-
tion, the user workflow is defined by code on the server, and the user moves from
one page to another, punctuated by the reloading of the entire page. During
these reloads, the user cannot continue with his work. In an Ajax application, the
workflow is at least partly defined by the client application, and contact is made
with the server in the background while the user gets on with his work.

In between these extremes are many shades of gray. A web application may
deliver a series of discrete pages following the classic approach, in which each
page cleverly uses CSS, DOM, JavaScript, and asynchronous request objects to
smooth out the user’s interaction with the page, followed by an abrupt halt in
productivity while the next page loads. A JavaScript application may present the
user with page-like pop-up windows that behave like classic web pages at certain
points in the flow. The web browser is a flexible and forgiving environment, and
Ajax and non-Ajax functionality can be intermingled in the same application.

What sets Ajax apart is not the technologies that it employs but the interac-
tion model that it enables through the use of those technologies. The web-
based interaction model to which we are accustomed is not suited to sovereign
applications, and new possibilities begin to emerge as we break away from that
interaction model.

There are at least two levels at which Ajax can be used—and several positions
between these as we let go of the classic page-based approach. The simplest strat-
egy is to develop Ajax-based widgets that are largely self-contained and that can
be added to a web page with a few imports and script statements. Stock tickers,
interactive calendars, and chat windows might be typical of this sort of widget.
Islands of application-like functionality are embedded into a document-like web
page (figure 2.6). Most of Google’s current forays into Ajax (see section 1.3) fit
this model. The drop-down box of Google Suggest and the map widget in Google
Maps are both interactive elements embedded into a page.

If we want to adopt Ajax more adventurously, we can turn this model inside
out, developing a host application in which application-like and document-like
fragments can reside (figure 2.7). This approach is more analogous to a desktop
application, or even a window manager or desktop environment. Google’s GMail

Licensed to jonathan zheng <yiyisun@gmail.com>

66

CHAPTER 2
First steps with Ajax

@ Data
model

blah blah blah blah blah
blah blah

blah blah

blah blah

Figure 2.6

A simple Ajax application will still
work like a web page, with islands of
interactive functionality embedded
in the page.

fits this model, with individual messages rendering as documents within an inter-
active, application-like superstructure.

In some ways, learning the technologies is the easy part. The interesting chal-
lenge in developing with Ajax is in learning how to use them together. We are
accustomed to thinking of web applications as storyboards, and we shunt the
user from one page to another following a predetermined script. With application-
like functionality in our web application, we can provide the user with a more

fine-grained handle on the business domain, which can enable a more free-form

problem-solving approach to his work.

—~

Web page)

Blah
blah
blah
blah

Blah blah blah blah
blah blah blah

blah blah blah blah blah
blah blah

blah blah blah blah

Widget 1

Blah blah blah blah
blah blah blah
blah blah blah blah blah

Widget 2

Blah blah blah blah
blah blah blah

blah blah blah blah blah
blah blah

blah blah blah blah

Figure 2.7

In a more complex Ajax application, the
entire application is an interactive
system, into which islands of document-
like content may be loaded or
programmatically declared.

Licensed to jonathan zheng <yiyisun@gmail.com>

2.7

Summary 67

In order to gain the benefits of this greater flexibility, we have to question a lot of
our coding habits. Is an HTML form the only way for a user to input information?
Should we declare all our user interfaces as HTML? Can we contact the server in
response to user interactions such as key presses and mouse movements, as well as
the conventional mouse click? In the fast-paced world of information technology,
we place a large emphasis on learning new skills, but unlearning old habits can be
at least as important.

Summary

In this chapter, we’ve introduced the four technical pillars of Ajax.

JavaScript is a powerful general-purpose programming language with a bad
reputation for generating pop-up windows, back-button hacks, and image roll-
overs. Appendix B contains a more detailed description of some of the features of
the language, but from the examples here, you should be able to get a feel for
how it can be used to genuinely enhance usability.

CSS and the DOM complement one another in providing a clear program-
matic view of the user interface that we’re working with, while keeping the struc-
ture separate from the visual styling. A clean document structure makes
programmatic manipulation of a document much simpler, and maintaining a
separation of responsibilities is important in developing larger Ajax applications,
as we'll see in chapters 3 and 4.

We’ve shown how to work with the XMLHttpRequest object and with the older
XmlDocument and IFrame. A lot of the current hype around Ajax praises
XMLHttpRequest as the fashionable way to talk to the server, but the IFrame
offers a different set of functionality that can be exactly what we need at times.
Knowing about both enriches your toolkit. In this chapter, we introduced these
techniques and provided some examples. In chapter 5, we will discuss client/
server communications in more detail.

Finally, we looked at the way the technological pillars of Ajax can be combined
to create something greater than the sum of its parts. While Ajax can be used in
small doses to add compelling widgets to otherwise static web pages, it can also be
applied more boldly to create a complete user interface within which islands of
static content can be contained. Making this leap from the sidelines to center stage
will require a lot of JavaScript code, however, and that code will be required to run
without fail for longer periods, too. This will require us to approach our code dit-
ferently and look at such issues as reliability, maintainability, and flexibility. In the
next chapter, we look at ways of introducing order into a large-scale Ajax codebase.

Licensed to jonathan zheng <yiyisun@gmail.com>

68

CHAPTER 2
First steps with Ajax

2.8 Resources

For a deeper understanding of Cascading Style Sheets, we recommend the CSS
Zen Garden (www.csszengarden.com/), a site that restyles itself in a myriad of ways
using nothing but CSS.

Eric Meyer has also written extensively on CSS; visit his website at www.meyer-
web.com/eric/css/. Blooberry (www.blooberry.com) is another excellent website for
CSS information.

Early Ajax solutions using IFrames are described at http://developer.apple.
com/internet/webcontent/iframe.html.

The LiveHttpHeaders extension for Mozilla can be found at http:/livehttp-
headers.mozdev.org/

Danny Goodman’s books on JavaScript are an essential reference for DOM pro-
gramming, and cover the browser environments in great detail: Dynamic HTML:
The Definitive Reference (O’Reilly 2002) and JavaScript Bible (John Wiley 2004).

The W3Schools website contains some interactive tutorials on JavaScript, for
those who like to learn by doing (www.w3schools.com/js/js_examples_3. asp).

Licensed to jonathan zheng <yiyisun@gmail.com>

Introducing order to Ajax

This chapter covers

Developing and maintaining large Ajax client
codebases

Refactoring Ajax JavaScript code

Exploring common design patterns used in Ajax
applications

Using Model-View-Controller on the server side
of an Ajax app

Overview of third-party Ajax libraries

69

Licensed to jonathan zheng <yiyisun@gmail.com>

70

CHAPTER 3
Introducing order to Ajax

In chapter 2, we covered all the basic technologies that make up an Ajax applica-
tion. With what we’ve learned so far, it’s possible to build that super-duper Ajax-
powered web application that you've always dreamed of. It’s also possible to get
into terrible trouble and end up with a tangle of code, HTML markup, and styl-
ing that is impossible to maintain and that mysteriously stops working one day.
Or worse, you end up with an application that continues to work so long as you
don’t breathe near it or make a sudden loud noise. To be in such a situation on a
personal project can be disheartening. To be in such a situation with an
employer’s or paying customer’s site—someone who wants a few tweaks here and
there—can be positively frightening.

Fortunately, this problem has been endemic since the dawn of computing—
and probably before that! People have developed ways to manage complexity and
to keep increasingly large codebases in working order. In this chapter, we’ll intro-
duce the core tools for keeping on top of your code, allowing you to write and
rewrite your Ajax application to your customer’s heart’s content, and still go
home from work on time.

Ajax represents a break from the previous use of DHTML technologies not
only in the way the technologies are put together but also in the scale at which
they are used. We’re dealing with much more JavaScript than a classic web appli-
cation would, and the code will often be resident in the browser for a much longer
time. Consequently, Ajax needs to manage complexity in a way that classic
DHTML doesn’t.

In this chapter, we’ll give an overview of the tools and techniques that can help
you keep your code clean. These techniques are most useful, in our experience,
when developing large, complex Ajax applications. If you want to write only sim-
ple Ajax applications, then we suggest you skip ahead to the example-driven
chapters, starting with chapter 9. If you already know refactoring and design pat-
terns back to front, then you may wish to skim this chapter and move on to the
application of these techniques to Ajax in chapters 4 through 6. Even so, the
groundwork that we lay here is important in adapting these approaches to Java-
Script, so we expect you'll return here at some point. We also take the opportunity
at the end of this chapter to review the current state of third-party libraries for
Ajax, so if you're shopping for frameworks to streamline your project, you may
want to check out section 3.5.

Licensed to jonathan zheng <yiyisun@gmail.com>

Order out of chaos 71

3.1 Order out of chaos

3.1.1

The main tool that we will apply is refactoring, the process of rewriting code to
introduce greater clarity rather than to add new functionality. Introducing greater
clarity can be a satisfying end in itself, but it also has some compelling advantages
that should appeal to the bottom-line, when-the-chips-are-down mentality.

It is typically easier to add new functionality to well-factored code, to modify
its existing functionality, and to remove functionality from it. In short, it is under-
standable. In a poorly factored codebase, it is often the case that everything does
what the current requirements specify, but the programming team isn’t fully con-
fident as to why it all works.

Changing requirements, often with short time frames, are a regular part of
most professional coding work. Refactoring keeps your code clean and main-
tainable and allows you to face—and implement—changes in requirements
without fear.

We already saw some elementary refactoring at work in our examples in
chapter 2, when we moved the JavaScript, HTML, and stylesheets into separate
files. However, the JavaScript is starting to get rather long at 120 lines or so and
is mixing together low-level functionality (such as making requests to the server)
with code that deals specifically with our list object. As we begin to tackle bigger
projects, this single JavaScript file (and single stylesheet, for that matter) will
suffer. The goal that we’re pursuing—creating small, easily readable, easily
changeable chunks of code that address one particular issue—is often called sep-
aration of responsibilities.

Refactoring often has a second motive, too, of identifying common solutions
and ways of doing things and moving code toward that particular pattern. Again,
this can be satisfying in its own right, but it has a very practical effect. Let’s con-
sider this issue next.

Patterns: creating a common vocabulary

Code conforming to any well-established pattern stands a good chance of work-
ing satisfactorily, simply because it’s been done before. Many of the issues sur-
rounding it have already been thought about and, we hope, addressed. If we're
lucky, someone’s even written a reusable framework exemplifying a particular way
of doing things.

This way of doing things is sometimes known as a design pattern. The concept
of patterns was coined in the 1970s to describe solutions to architectural and
planning problems, but it has been borrowed by software development for the

Licensed to jonathan zheng <yiyisun@gmail.com>

72

3.1.2

CHAPTER 3
Introducing order to Ajax

last ten years or so. Server-side Java has a strong culture of design patterns, and
Microsoft has recently been pushing them strongly for the NET Framework. The
term often carries a rather forbidding academic aura and is frequently misused in
an effort to sound impressive. At its root, though, a design pattern is simply a
description of a repeatable way of solving a particular problem in software design.
It’s important to note that design patterns give names to abstract technical solu-
tions, making them easier to talk about and easier to understand.

Design patterns can be important to refactoring because they allow us to suc-
cinctly describe our intended goal. To say that we “pull out these bits of code into
objects that encapsulate the process of performing a user action, and can then
undo everything if we want” is quite a mouthful—and rather a wordy goal to have
in mind while rewriting the code. If we can say that we are introducing the Com-
mand pattern to our code, we have a goal that is both more precise and easier to
talk about.

If you're a hardened Java server developer, or an architect of any hue, then
you're probably wondering what’s new in what we’ve said. If you’ve come from the
trenches of the web design/new media world, you may be thinking that we’re
those weird sorts of control freaks who prefer drawing diagrams to writing real
code. In either case, you may be wondering what this has to do with Ajax. Our
short answer is “quite a lot.” Let’s explore what the working Ajax programmer
stands to gain from refactoring.

Refactoring and Ajax

We've already noted that Ajax applications are likely to use more JavaScript code
and that the code will tend to be longer lived.

In a classic web app, the complex code lives on the server, and design patterns
are routinely applied to the PHP, Java, or .NET code that runs there. With Ajax, we
can look at using the same techniques with the client code.

There is even an argument for suggesting that JavaScript needs this organiza-
tion more than its rigidly structured counterparts Java and C#. Despite its C-like
syntax, JavaScript is a closer cousin to languages such as Ruby, Python, and even
Common Lisp than it is to Java or C#. It offers a tremendous amount of flexibility
and scope for developing personal styles and idioms. In the hands of a skilled
developer, this can be wonderful, but it also provides much less of a safety net for
the average programmer. Enterprise languages such as Java and C# are designed
to work well with teams of average programmers and rapid turnover of members.
JavaScript is not.

Licensed to jonathan zheng <yiyisun@gmail.com>

3.1.3

3.1.4

Order out of chaos 73

The danger of creating tangled, unfathomable JavaScript code is relatively
high, and as we scale up its use from simple web page tricks to Ajax applications,
the reality of this can begin to bite. For this reason, I advocate the use of refactor-
ing in Ajax more strongly than I do in Java or C#, the “safe” languages within
whose communities design patterns have bloomed.

Keeping a sense of proportion

Before we move on, it’s important to say that refactoring and design patterns are
just tools and should be used only where they are actually going to be useful. If
overused, they can induce a condition known as paralysis by analysis, in which
implementation of an application is forestalled indefinitely by design after rede-
sign, in order to increase the flexibility of the structure or accommodate possible
future requirements that may never be realized.

Design patterns expert Erich Gamma summed this up nicely in a recent inter-
view (see Resources at end of chapter) in which he described a call for help from a
reader who had managed to implement only 21 of the 23 design patterns
described in the seminal Design Patterns book into his application. Just as a devel-
oper wouldn’t struggle to make use of integers, strings, and arrays in every piece
of code that he writes, a design pattern is useful only in particular situations.

Gamma recommends refactoring as the best way to introduce patterns. Write
the code first in the simplest way that works, and then introduce patterns to solve
common problems as you encounter them. If you've already written a lot of code,
or are charged with maintaining someone else’s tangled mess, you may have been
experiencing a sinking, left-out-of-the-party feeling until now. Fortunately, it’s
possible to apply design patterns retroactively to code of any quality. In the next
section, we'll take some of the rough-and-ready code that we developed in chap-
ter 2 and see what refactoring can do for it.

Refactoring in action

This refactoring thing might sound like a good idea, but the more practical-
minded among you will want to see it working before you buy in. Let’s take a few
moments now to apply a bit of refactoring to the core Ajax functionality that we
developed in the previous chapter, in listing 2.11. To recap the structure of that
code, we had defined a sendrequest () function that fired off a request to the
server. sendRequest () delegated to an initHttpRequest () function to find the
appropriate XMLHttpRequest object and assigned a hard-coded callback func-
tion, onReadyState (), to process the response. The XMLHttpRequest object was
defined as a global variable, allowing the callback function to pick up a reference

Licensed to jonathan zheng <yiyisun@gmail.com>

74

CHAPTER 3
Introducing order to Ajax

to it. The callback handler then interrogated the state of the request object and
produced some debug information.

The code in listing 2.11 does what we needed it to but is somewhat difficult to
reuse. Typically when we make a request to the server, we want to parse the
response and do something quite specific to our application with the results. To
plug custom business logic into the current code, we need to modify sections of
the onReadyState () function.

The presence of the global variable is also problematic. If we want to make sev-
eral calls to the server simultaneously, then we must be able to assign different
callback handlers to each. If we’re fetching a list of resources to update and
another list of resources to discard, it’s important that we know which is which,
after all!

In object-oriented (OO) programming, the standard solution to this sort of
issue is to encapsulate the required functionality into an object. JavaScript sup-
ports OO coding styles well enough for us to do that. We’ll call our object
ContentLoader, because it loads content from the server. So what should our
object look like? Ideally, we’d be able to create one, passing in a URL to which the
request will be sent. We should also be able to pass a reference to a custom call-
back handler to be executed if the document loads successfully and another to be
executed in case of errors. A call to the object might look like this:

var loader=new net.ContentLoader ('mydata.xml', parseMyData) ;

where parseMyData is a callback function to be invoked when the document loads
successfully. Listing 3.1 shows the code required to implement the Content-
Loader object. There are a few new concepts here, which we’ll discuss next.

var net=new Object(); © Namespacing object
net .READY_STATE_UNINITIALIZED=0;

net .READY_STATE_LOADING=1;

net.READY_STATE_LOADED=2;

net .READY_STATE_INTERACTIVE=3;

net .READY_STATE_COMPLETE=4;

net.ContentLoader=function (url, onload, onerror) { 0 Constructor function
this.url=url;
this.reg=null;
this.onload=onload;
this.onerror=(onerror) ? onerror : this.defaultError;
this.loadXMLDoc (url) ;

}

net.ContentLoader.prototype={

Licensed to jonathan zheng <yiyisun@gmail.com>

Order out of chaos 75

loadXMLDoc: function(url){ @) Renamed initXMLHttpRequest function
if (window.XMLHttpRequest) {

this.reg=new XMLHttpRequest () ; reff;;tMo[ed
} else if (window.ActiveXObject) { 02 .
function

this.reg=new ActiveXObject ("Microsoft.XMLHTTP") ;
}
if (this.req) {
try{
var loader=this;
this.reqg.onreadystatechange=function () {
loader.onReadyState.call (loader) ;
}
this.reqg.open('GET',url, true) ; Refactored
this.reqg.send(null) ; sendBequeﬁ
Jeatch (err){ function
this.onerror.call (this) ;

}
1,
onReadyState:function(){ (@ Refactored callback
var reg=this.req;
var ready=req.readyState;
if (ready==net.READY_STATE_COMPLETE) {
var httpStatus=req.status;

if (httpStatus==200 || httpStatus==0) {
this.onload.call (this) ;
}else{

this.onerror.call (this) ;

}
T,
defaultError: function () {
alert ("error fetching data!"
+"\n\nreadyState: "+this.reqg.readyState
+"\nstatus: "+this.reqg.status
+"\nheaders: "+this.reqg.getAllResponseHeaders());

The first thing to notice about the code is that we define a single global variable
net @ and attach all our other references to that. This minimizes the risk of
clashes in variable names and keeps all the code related to network requests in a
single place.

We provide a single constructor function for our object @. It has three

arguments, but only the first two are mandatory. In the case of the error han-
dler, we test for null values and provide a sensible default if necessary. The
ability to pass a varying number of arguments to a function might look odd to

Licensed to jonathan zheng <yiyisun@gmail.com>

76

CHAPTER 3
Introducing order to Ajax

OO programmers, as might the ability to pass functions as first-class refer-
ences. These are common features of JavaScript. We discuss these language
features in more detail in appendix B.

We have moved large parts of our initxMLHttpRequest() @ and send-
Request () functions @ from listing 2.11 into the object’s internals. We've also
renamed the function to reflect its slightly greater scope here as well. It is now
known as loadxMLDoc. @ We still use the same techniques to find an XMLHttp-
Request object and to initiate a request, but the user of the object doesn’t need to
worry about it. The onreadyState callback function @ should also look largely
familiar from listing 2.11. We have replaced the calls to the debug console with
calls to the onload and onerror functions. The syntax might look a little odd, so
let’s examine it a bit closer. onload and onerror are Function objects, and Func-
tion.call() is a method of that object. The first argument to Function.call ()
becomes the context of the function, that is, it can be referenced within the called
function by the keyword this.

Writing a callback handler to pass into our ContentLoader is quite simple,
then. If we need to refer to any of the ContentLoader’s properties, such as the
XMLHttpRequest or the url, we can simply use this to do so. For example:

function myCallBack () {

alert(
this.url
+" loaded! Here's the content:\n\n"
+this.req.responseText

})i
Setting up the necessary “plumbing” requires some understanding of Java-
Script’s quirks, but once the object is written, the end user doesn’t need to
worry about it.

This situation is often a sign of good refactoring. We’ve tucked away the diffi-
cult bits of code inside the object while presenting an easy-to-use exterior. The
end user is saved from a lot of unnecessary difficulty, and the expert responsible
for maintaining the difficult code has isolated it into a single place. Fixes need
only be applied once, in order to be rolled out across the codebase.

We’ve covered the basics of refactoring and shown how it can work to our ben-
efit in practice. In the next section, we’ll look at some more common problems in
Ajax programming and see how we can use refactoring to address them. Along
the way, we will discover some useful tricks that we can reuse in subsequent chap-
ters and that you can apply to your own projects as well.

Licensed to jonathan zheng <yiyisun@gmail.com>

Some small refactoring case studies 77

3.2 Some small refactoring case studies

3.2.1

The following sections address some issues in Ajax development and look at
some common solutions to them. In each case, we’ll show you how to refactor to
ease the pain associated with that issue, and then we’ll identify the elements of
the solution that can be reused elsewhere.

In keeping with an honorable tradition in design patterns literature, we will
present each issue in terms of a problem, the technical solution, and then a dis-
cussion of the larger issues involved.

Cross-browser inconsistencies:
Facade and Adapter patterns

If you ask any web developers—be they coders, designers, graphics artists, or all-
rounders—for their pet peeves in relation to their work, there’s a good chance
that getting their work to display correctly on different browsers will be on their
list. The Web is full of standards for technology, and most browser vendors imple-
ment most of the standards more or less completely most of the time. Sometimes
the standards are vague and open to different interpretations, sometimes the
browser vendors extended the standards in useful but inconsistent ways, and
sometimes the browsers just have good old-fashioned bugs in them.

JavaScript coders have resorted since the early days to checking in their code
which browser they’re using or to testing whether or not an object exists. Let’s
take a very simple example.

Working with DOM elements

As we discussed in chapter 2, a web page is exposed to JavaScript through the
Document Object Model (DOM), a tree-like structure whose elements corre-
spond to the tags of an HTML document. When manipulating a DOM tree pro-
grammatically, it is quite common to want to find out an element’s position on
the page. Unfortunately, browser vendors have provided various nonstandard
methods for doing so over the years, making it difficult to write fail-safe cross-
browser code to accomplish the task. Listing 3.2—a simplified version of a func-
tion from Mike Foster’s x library (see section 3.5)—shows a comprehensive way
of discovering the pixel position of the left edge of the DOM element ¢ passed in
as an argument.

Licensed to jonathan zheng <yiyisun@gmail.com>

78

CHAPTER 3
Introducing order to Ajax

function getLeft(e) {

if (! (e=xGetElementById(e))) {
return 0;

}

var css=xDef (e.style);

if (css && xStr(e.style.left)) {
iX=parselnt (e.style.left);
if (isNaN(iX)) iX=0;

}else if(css && xDef (e.style.pixelLeft)) {
iX=e.style.pixelLeft;

}

return iX;

Different browsers offer many ways of determining the position of the node via
the style array that we encountered in chapter 2. The W3C CSS2 standard sup-
ports a property called style.left, defined as a string describing value and units,
such as 100px. Units other than pixels may be supported. style.pixelLeft, in
contrast, is numeric and assumes all values to be measured in pixels. pixelLeft is
supported only in Microsoft Internet Explorer. The getLeft () method discussed
here first checks that CSS is supported and then tests both values, trying the W3C
standard first. If no values are found, then a value of zero is returned by default.
Note that we don’t explicitly check for browser names or versions but use the
more robust object-detection technique that we discussed in chapter 2.

Writing functions like these to accommodate cross-browser peculiarities is a
tedious business, but once it is done, the developer can get on with developing
the application without having to worry about these issues. And with well-tested
libraries such as x, most of the hard work has already been done for us. Having a
reliable adapter function for discovering the on-page position of a DOM element
can speed up the development of an Ajax user interface considerably.

Making requests to the server
We’ve already come across another similar cross-browser incompatibility in chap-
ter 2. Browser vendors have provided nonstandard mechanisms for obtaining the
XMLHttpRequest object used to make asynchronous requests to the server. When
we wanted to load an XML document from the server, we needed to figure out
which of the possibilities to use.

Internet Explorer will only deliver the goods if we ask for an ActiveX compo-
nent, whereas Mozilla and Safari will play nice if we ask for a native built-in
object. Only the XML loading code itself knew about those differences. Once the

Licensed to jonathan zheng <yiyisun@gmail.com>

Some small refactoring case studies 79

XMLHttpRequest object was returned into the rest of the code, it behaved identi-
cally in both cases. Calling code doesn’t need to understand either the ActiveX
or the native object subsystem; it only needs to understand the net.Content-
Loader () constructor.

The Facade pattern

For both getLeft () and new net.ContentLoader (), the code that does the object
detection is ugly and tedious. By defining a function to hide it from the rest of our
code, we are making the rest of the code easier to read and isolating the object-
detection code in a single place. This is a basic principle in refactoring—don’t
repeat yourself, often abbreviated to DRY. If we discover an edge case that our
object-detection code doesn’t handle properly, then fixing it once rolls that
change out to all calls to discover the left coordinate of a DOM element, create an
XML Request object, or whatever else we are trying to do.

In the language of design patterns, we are using a pattern known as Fagade.
Facade is a pattern used to provide a common access point to different imple-
mentations of a service or piece of functionality. The XMLHttpRequest object, for
example, offers a useful service, and our application doesn’t really care how it is
delivered as long as it works (figure 3.1).

In many cases, we also want to simplify access to a subsystem. In the case of
getting the left-edge coordinate of a DOM element, for example, the CSS spec
provided us with a plethora of choices, allowing the value to be specified in pixels,
points, ems, and other units. This freedom of expression may be more than we
need. The getLeft () function in listing 3.2 will work as long as we are using pix-
els as the unit throughout our layout system. Simplifying the subsystem in this
way is another feature of the Fagade pattern.

The Adapter pattern

A closely related pattern is Adapter. In Adapter, we also work with two subsystems
that perform the same function, such as the Microsoft and Mozilla approaches to
getting an XMLHttpRequest object. Rather than constructing a new Facade for
each to use, as we did earlier, we provide an extra layer over one of the subsystems
that presents the same API as the other subsystem. This layer is known as the
Adapter. The Sarissa XML library for Ajax, which we will discuss in section 3.5.1,
uses the Adapter pattern to make Internet Explorer’s ActiveX control look like
the Mozilla built-in XMLHttpRequest. Both approaches are valid and can help to
integrate legacy or third-party code (including the browsers themselves) into your
Ajax project.

Licensed to jonathan zheng <yiyisun@gmail.com>

80

3.2.2

CHAPTER 3
Introducing order to Ajax

Calling code

loadXML() function

e "\ e ‘\
i Implicit XMLHttpRequest inten‘ace/i { Implicit XMLHttpRequest inten‘ace/i

N e et — N et —

(Native XMLHtth{equeStDﬁ (ActiveX XMLHttpReques%

\ / _ /

Figure 3.1 Schematic of the Facade pattern, as it relates to the
XMLHttpRequest object across browsers. The 1oadXML () function
requires an XMLHttpRequest object, but doesn't care about its actual
implementation. Underlying implementations may offer considerably
more complex HTTP Request semantics, but both are simplified here
to provide the basic functionality required by the calling function.

Let’s move on to the next case study, in which we consider issues with JavaScript’s
event-handling model.

Managing event handlers: Observer pattern

We can’t write very much Ajax code without coming across event-based program-
ming techniques. JavaScript user interfaces are heavily event-driven, and the
introduction of asynchronous requests with Ajax adds a further set of callbacks
and events for our application to deal with. In a relatively simple application, an
event such as a mouse click or the arrival of data from the server can be handled
by a single function. As an application grows in size and complexity, though, we
may want to notify several distinct subsystems and even to expose a mechanism
whereby interested parties can sign themselves up for such notification. Let’s
explore an example to see what the issues are.

Licensed to jonathan zheng <yiyisun@gmail.com>

Some small refactoring case studies 81

Using multiple event handlers
It’s common practice when scripting DOM nodes using JavaScript to define the
script in the window.onload function, which is executed after the page (and there-
fore the DOM tree) is fully loaded. Let’s say that we have a DOM element on our
page that will display dynamically generated data fetched from the server at reg-
ular intervals once the page is loaded. The JavaScript that coordinates the data
fetching and the display needs a reference to the DOM node, so it gets it by defin-
ing a window.onload event:

window.onload=function () {

displayDiv=document.getElementById('display') ;

}
All well and good. Let’s say that we now want to add a second visual display that
provides alerts from a news feed, for example (see chapter 13 if you're interested
in implementing this functionality). The code that controls the news feed display
also needs to grab references to some DOM elements on startup. So it defines a
window.onload event handler, too:

window.onload=function () {

feedDiv=document.getElementById('feeds') ;

}
We test both sets of code on separate pages and find them both to work fine.
When we put them together, the second window.onload function overwrites the
first, and the data feed fails to display and starts to generate JavaScript errors.
The problem lies in the fact that the window object allows only a single onload
function to be attached to it.

Limitations of a composite event handler
Our second event handler overrides the first one. We can get around this by writ-
ing a single composite function:
window.onload=function () {
displayDiv=document.getElementById('display') ;
feedDiv=document.getElementById (' feeds');
}
This works for our current example, but it tangles together code from the data
display and the news feed viewer, which are otherwise unrelated to each other. If
we were dealing with 10 or 20 systems rather than 2, and each needed to get ref-
erences to several DOM elements, then a composite event handler like this would
become hard to maintain. Swapping individual components in and out would
become difficult and error prone, leading to exactly the sort of situation that we

Licensed to jonathan zheng <yiyisun@gmail.com>

82

CHAPTER 3
Introducing order to Ajax

described in the introduction, where nobody wants to touch the code in case it
should break. Let’s try to refactor a little further, by defining a loader function for
each subsystem:
window.onload=function() {
getDisplayElements () ;

getFeedElements () ;
}

function getDisplayElements () {
displayDiv=document.getElementById('display');
}
function getFeedElements () {
feedDiv=document.getElementById('feeds') ;
}
This introduces some clarity, reducing our composite window.onload() to a single
line for each subsystem, but the composite function is still a weak point in the
design and is likely to cause us trouble. In the following section, we’ll examine a

slightly more complex but more scalable solution to the problem.

The Observer pattern

It can be helpful sometimes to ask where the responsibility for an action lies. The
composite function approach places responsibility for getting the references to
DOM elements on the window object, which then has to know which subsystems
are present in the current page. Ideally, each subsystem should be responsible for
acquiring its own references. That way, if it is present on a page, it will get them,
and if it isn’t present, it won’t.

To set the division of responsibility straight, we can allow systems to register
for notification of the onload event happening by passing a function to call when
the window.onload event is fired. Here’s a simple implementation:

window.onloadListeners=new Array () ;
window.addOnLoadListener (listener) {
window.onloadListeners|[window.onloadListeners.length]=1istener;

}

When the window is fully loaded, then the window object need only iterate
through its array of listeners and call each one in turn:
window.onload=function () {
for (var i=0;i<window.onloadListeners.length;i++) {

var func=window.onlloadListeners[i];
func.call();

Licensed to jonathan zheng <yiyisun@gmail.com>

3.2.3

Some small refactoring case studies 83

Register

Observer

Observable

Figure 3.2
Division of responsibility in the
Observer pattern. Objects wishing to
be notified of an event, the Observers,
can register and unregister themselves
with the event source, Observable,

R —— . which will notify all registered parties
Responsibility of Observer Responsibility of Observable when an event occurs.

Maintain list <
of registered
Observers

Provided that every subsystem uses this approach, we can offer a much cleaner
way of setting up all the subsystems without tangling them up in one another. Of
course, it takes only one rogue piece of code to directly override window.onload
and the system will break. But we have to take charge of our codebase at some
point to prevent this from happening.

It’s worth pointing out here that the newer W3C event model also implements
a multiple event handler system. We've chosen to build our own here on top of
the old JavaScript event model because implementations of the W3C model aren’t
consistent across browsers. We discuss this in greater detail in chapter 4.

The design pattern into which our code here is refactored is called Observer.
Observer defines an Observable object, in our case the built-in window object, and
a set of Observers or Listeners that can register themselves with it (figure 3.2).

With the Observer pattern, responsibility is apportioned appropriately
between the event source and the event handler. Handlers take responsibility for
registering and unregistering themselves. The event source takes responsibility
for maintaining a list of registered parties and firing notifications when the event
occurs. The pattern has a long history of use in event-driven UI programming,
and we’ll return to Observer when we discuss JavaScript events in more detail in
chapter 4. And, as we’ll see, it can also be used in our own code objects independ-
ently of the browser’s mouse and key event processing.

For now, let’s move on to the next recurring issue that we can solve
through refactoring.

Reusing user action handlers: Command pattern

It may be obvious to say that in most applications, the user is telling (through
mouse clicks and keyboard presses) the app to do something, and the app then
does it. In a simple program, we might present the user with only one way to

Licensed to jonathan zheng <yiyisun@gmail.com>

84

CHAPTER 3
Introducing order to Ajax

perform an action, but in more complex interfaces, we will often want the user to
be able to trigger the same action from several routes.

Implementing a button widget
Let’s say that we have a DOM element styled to look like a button widget that per-
forms a calculation when pressed and updates an HTML table with the result. We

could define a mouse-click event-handler function for the button element that
looks like this:

function buttonOnclickHandler (event) {
var data=new Array();
datal[0]=6;
datal[l]l=datal[0]/3;
datal[2]=datal0] *datal[l]+7;
var newRow=createTableRow (dataTable) ;
for (var i=0;i<data.length;i++) {
createTableCell (newRow,datali]) ;
}
}
We’re assuming here that the variable dataTable is a reference to an existing table
and that the functions createTableRow() and createTableCell () take care of the
details of DOM manipulation for us. The interesting thing here is the calculation
phase, which could, in a real-world application, run to hundreds of lines of code.

We assign this event handler to the button element like so:

buttonDiv.onclick=buttonOnclickHandler;

Supporting multiple event types
Let’s say that we have now supercharged our application with Ajax. We are poll-
ing the server for updates, and we want to perform this calculation if a particular
value is updated from the server, too, and update a different table with the data.
We don’t need to go into the details of setting up a repeated polling of the server
here. Let’s assume that we have a reference to an object called poller. Internally, it
is using an XMLHttpRequest object and has set its onreadystatechange handler to
call an onload function whenever it has finished loading an update from the
server. We could abstract out the calculation and display phases into helper func-
tions, like this:
function buttonOnclickHandler (event) {
var data=calculate();
showData (dataTable,data) ;
}

function ajaxOnloadHandler () {
var data=calculate();

Licensed to jonathan zheng <yiyisun@gmail.com>

Some small refactoring case studies 85

showData (otherDataTable, data) ;

}

function calculate() {
var data=new Array () ;
datal[0]=6;
datal[l]l=datal0]/3;
datal[2]=datal0]*datal[l]+7;
return data;

}

function showData(table,data) {
var newRow=createTableRow (table) ;
for (var i=0;i<data.length;i++) {

createTableCell (newRow,datal[i]);

}

}

buttonDiv.onclick=buttonOnclickHandler;

poller.onload=ajaxOnloadHandler;

A lot of the common functionality has been abstracted out into the calculate()
and showData() functions, and we’re only repeating ourselves a little in the
onclick and onload handlers.

We’ve achieved a much better separation between the business logic and the
UI updates. Once again, we've stumbled upon a useful repeatable solution. This
time it is known as the Command pattern. The Command object defines some
activity of arbitrary complexity that can be passed around in code easily and
swapped between Ul elements easily. In the classic Command pattern for object-
oriented languages, user interactions are wrapped up as Command objects,
which typically derive from a base class or interface. We’ve solved the same prob-
lem in a slightly different way here. Because JavaScript functions are first-class
objects, we can treat them as Command objects directly and still provide the same
level of abstraction.

Wrapping up everything that the user does as a Command might seem a little
cumbersome, but it has a hidden payoff. When all our user actions are wrapped
up in Command objects, we can easily associate other standard functionality with
them. The most commonly discussed extension is to add an undo() method.
When this is done, the foundations for a generic undo facility across an applica-
tion are laid. In a more complex example, Commands could be recorded in a
stack as they execute, and the user can use the undo button to work back up the
stack, returning the application to previous states (figure 3.3).

Each new command is placed on the top of the stack, which may be undone
item by item. The user creates a document by a series of write actions. Then she
selects the entire document and accidentally hits the delete button. When she
invokes the undo function, the topmost item is popped from the stack, and its

Licensed to jonathan zheng <yiyisun@gmail.com>

86

CHAPTER 3
Introducing order to Ajax

Command stack

Delete selected

Interactions
_— Select all

Delete selected

Write para 2

Write para 1

11

Command stack

Undo
Document preview e Select all

Write para 2

Blah blah
blah blah Write para 1

i

Blah blah /
blah blah
rhubarb
blah

Document preview

Figure 3.3 Using the Command pattern to implement a generic undo stack in a word
processing application. All user interactions are represented as commands, which can be
undone as well as executed.

undo () method is called, returning the deleted text. A further undo would dese-
lect the text, and so on.

Of course, using Command to create an undo stack means some extra work
for the developer, in ensuring that the combination of executing and undoing the
command returns the system to its initial state. A working undo feature can be a
strong differentiator between products, however, particularly for applications
that enjoy heavy or prolonged use. As we discussed in chapter 1, that’s exactly the
territory that Ajax is moving into.

Command objects can also be useful when we need to pass information across
boundaries between subsystems in an application. The network, of course, is just
such a boundary, and we’ll revisit the Command pattern in chapter 5, when we
discuss client/server interactions.

Licensed to jonathan zheng <yiyisun@gmail.com>

Some small refactoring case studies 87

3.2.4 Keeping only one reference to a resource:
Singleton pattern

In some situations, it is important to ensure that there is only one point of contact
with a particular resource. Again, this is best explained by working with a specific
example, so let’s look at one now.

A simple trading example
Let’s say that our Ajax application manipulates stock market data, allowing us to
trade on the real markets, perform what-if calculations, and run simulation
games over a network against other users. We define three modes for our appli-
cation, named after traffic lights. In real-time mode (green mode), we can buy
and sell stocks on live markets, when they are open, and perform what-if calcula-
tions against stored datasets. When the markets are closed, we revert to analysis-
only mode (red mode) and can still perform the what-if analyses, but we can’t buy
or sell. In simulation mode (amber mode), we can perform all the actions availa-
ble to green mode, but we do so against a dummy dataset rather than interacting
with real stock markets.

Our client code represents these permutations as a JavaScript object, as

defined here:

var MODE_RED=1;

var MODE_AMBER=2;

var MODE_GREEN=2;

function TradingMode () {

this.mode=MODE_RED;

}

We can query and set the mode represented in this object and will do so in our
code in many places. We could provide getMode () and setMode () functions that
would check conditions such as whether or not the real markets were open, but
for now let’s keep it simple.

Let’s say that two of the options open to the user are to buy and sell stocks and
to calculate potential gains and losses from a transaction before undertaking it.
The buy and sell actions will point to different web services depending on the
mode of operation—internal ones in amber mode, our broker’s server in green
mode—and will be switched off in red mode. Similarly, the analyses will be based
on retrieving data feeds on current and recent prices—simulated in amber mode
and live market data in green mode. To know which feeds to point to, both will
refer to a TradingMode object as defined here (figure 3.4).

Licensed to jonathan zheng <yiyisun@gmail.com>

88 CHAPTER 3
Introducing order to Ajax

Simulation
server

Live trading
server

buyOrSell()

analyzeData() Live trading

server

Mode =AMBER

E

Mode = GREEN

Figure 3.4 In our example Ajax trading application, both buy/sell and analysis functions
determine whether to use real or simulated data based on a TradingMode object’s status,
talking to the simulation server if it is in amber mode and to the live trading server in green
mode. If more than one TradingMode object is present in the system, the system can end up in
an inconsistent state.

It is imperative that both activities point to the same TradingMode object. If our
user is buying and selling in a simulated market but basing her decisions on anal-
ysis of live market data, she will probably lose the game. If she’s buying and sell-
ing real stocks based on analysis of a simulation, she’s apt to lose her job!

An object of which there is only one instance is sometimes described as a sin-
gleton. We’ll look at how singletons are handled in an object-oriented language
first and then work out a strategy for using them in JavaScript.

Singletons in Java
Singletons are typically implemented in Java-like languages by hiding the object
constructor and providing a getter method, as illustrated in listing 3.3.

Listing 3.3 Singleton TradingMode object in Java

public class TradingMode({
private static TradingMode instance=null;
public int mode;

Licensed to jonathan zheng <yiyisun@gmail.com>

Some small refactoring case studies 89

private TradingMode () {
mode=MODE_RED;
}
public static TradingMode getInstance() {
if (instance==null) {
instance=new TradingMode /() ;
}
return instance;
}
public void setMode (int mode) {

}

The Java-based solution makes use of the private and public access modifiers to
enforce singleton behavior. The code

new TradingMode () .setMode (MODE_AMBER) ;

won’'t compile because the constructor is not publicly accessible, whereas the fol-
lowing will:

TradingMode.getInstance () .setMode (MODE_AMBER) ;

This code ensures that every call is routed to the same TradingMode object. We’ve
used several language features here that aren’t available in JavaScript, so let’s see
how we can get around this.

Singletons in JavaScript
In JavaScript, we don’t have built-in support for access modifiers, but we can
“hide” the constructor by not providing one. JavaScript is prototype-based, with
constructors being ordinary Function objects (see appendix B if you don’t under-
stand what this means). We could write a TradingMode object in the ordinary way:

function TradingMode () {

this.mode=MODE_RED;
}

TradingMode.prototype.setMode=function () {
}

and provide a global variable as a pseudo-Singleton:
TradingMode. instance=new TradingMode () ;

But this wouldn’t prevent rogue code from calling the constructor. On the other
hand, we can construct the entire object manually, without a prototype:

var TradingMode=new Object () ;

Licensed to jonathan zheng <yiyisun@gmail.com>

90

CHAPTER 3
Introducing order to Ajax

TradingMode .mode=MODE_RED;
TradingMode. setMode=function () {

}
We can also define it more concisely like this:

var TradingMode={
mode : MODE_RED,
setMode: function () {

}

i
Both of these examples will generate an identical object. The first way of writing
it is probably more familiar to Java or C# programmers. We’ve shown the latter
approach as well, because it is often used in the Prototype library and in frame-
works derived from it.

This solution works within the confines of a single scripting context. If the
script is loaded into a separate IFrame, it will launch its own copy of the singleton.
We can modify this by explicitly specifying that the singleton object be accessed
from the topmost document (in JavaScript, top is always a reference to this docu-
ment), as illustrated in listing 3.4.

Function getTradingMode () {
if (!top.TradingMode) {
top.TradingMode=new Object () ;
top.TradingMode.mode=MODE_RED;
top.TradingMode.setMode=function () {

}
}
return top.TradingMode;
}
||

This allows the script to be safely included in multiple IFrames, while preserving
the uniqueness of the Singleton object. (If you're planning on supporting a Sin-
gleton across multiple top-level windows, you'll need to investigate top.opener.
Due to constraints of space, we leave that as an exercise for the reader.)

You're not likely to have a strong need for singletons when writing UI code, but
they can be extremely useful when modeling business logic in JavaScript. In a tra-
ditional web app, business logic is typically modeled only on the server, but doing
things the Ajax way changes that, and Singleton can be useful to know about.

Licensed to jonathan zheng <yiyisun@gmail.com>

3.3

Model-View-Controller 91

This provides a first taste of what refactoring can do for us at a practical level.
The cases that we’ve looked at so far have all been fairly simple, but even so, using
refactoring to clarify the code has helped to remove several weak points that
could otherwise come back to haunt us as the applications grow.

Along the way, we encountered a few design patterns. In the following section,
we’ll look at a large-scale server-side pattern and see how we can refactor some
initially tangled code toward a cleaner, more flexible state.

Model-View-Controller

The small patterns that we've looked at so far can usefully be applied to specific
coding tasks. Patterns have also been developed for the organization of entire
applications, sometimes referred to as architectural patterns. In this section,
we're going to look at an architectural pattern that can help us to organize our
Ajax projects in several ways, making them easier to code and easier to maintain.

Model-View-Controller (MVC) is a way of describing a good separation between
the part of a program that interacts with a user and the part that does the heavy
lifting, number crunching, or other “business end” of the application.

MVC is typically applied at a large scale, covering entire layers of an applica-
tion or even stretching between the layers. In this chapter, we introduce the pat-
tern and show how to apply it to the web server when serving data to an Ajax
application. In chapter 4, we’ll look at the rather more involved case of applying
it to the JavaScript client application.

The MVC pattern identifies three roles that a component in the system can ful-
fill. The Model is the representation of the application’s problem domain, the
thing that it is there to work with. A word processor would model a document; a
mapping application would model points on a grid, contour lines, and so on.

The View is the part of the program that presents things to the user—input
forms, pictures, text, or widgets. The View need not be graphical. In a voice-
driven program, for example, the spoken prompts are the View.

The golden rule of MVC is that the View and the Model shouldn’t talk to each
other. Taken at face value, that might sound like a pretty dysfunctional program,
but this is where the Controller comes in. When the user presses a button or fills
in a form, the View tells the Controller. The Controller then manipulates the
Model and decides whether the changes in the Model require an update of the
View. If so, it tells the View how to change itself (see figure 3.5).

The advantage of this is that the Model and View remain loosely coupled,
that is, neither has a deep understanding of the other. Obviously they need to

Licensed to jonathan zheng <yiyisun@gmail.com>

92

CHAPTER 3
Introducing order to Ajax

Figure 3.5
The main components of the Model-View-
Controller pattern. The View and Model do
not interact directly but always through the
Controller. The Controller can be thought of
Gl as a thin boundary layer that allows the
3. Notify changes Model and View to communicate but

2. Modify enforces clear separation of the codebase,

Model improving flexibility and maintainability of
the code over time.

4. Update View
1. Interaction

know enough to get the job done, but the View knows about the Model only in
very general terms.

Let’s consider a program for managing inventories. The Controller might
provide the View with a function that returns a list of all product lines matching a
given category ID, but the View knows nothing about how that list was derived. It
may be that version 1 of this program stored the data used to generate the list in
an array in memory or read it from a flat text file. With the second version of the
program, there was a requirement to handle much larger datasets, and a rela-
tional database server was added to the architecture. The implications of this
change on the Model would be significant, and a lot of code would need to be
rewritten. Provided that the Controller could still deliver a list of product lines
matching a category, the impact on the View code would be nil.

Similarly, the engineers working on the View should be free to improve the
usability of the application without worrying about breaking hidden assumptions
in the Model, so long as they stick to a basic agreement on the interfaces with
which the Controller provides them. By dividing the system into subsystems, MVC
provides an insurance policy against minor changes rippling right across a code-
base and allows the team behind each subsystem to respond quickly without
treading on one another’s toes.

The MVC pattern is commonly applied to classic web application frameworks
in a particular way, in order to serve up the succession of static pages that compose
the interface. When an Ajax application is up and running and requesting data
from the server, the mechanics of serving up the data are similar to those of a clas-
sicweb app. Web server—style MVC can also benefit Ajax applications, and because
it’s well understood, we’ll start here and move on to other more Ajax-specific ways
of working with MVC later.

If you’re new to web frameworks, this section should provide you with the infor-
mation you need to understand how they can make an Ajax application more

Licensed to jonathan zheng <yiyisun@gmail.com>

3.4

3.4.1

Web server MVC 93

scalable and robust. If, on the other hand, you're familiar with web-tier tools such
as template engines and Object-Relational Mapping (ORM) tools or with frame-
works such as Struts, Spring, or Tapestry, you’ll probably already know most of what
we’re going to say here. In this case, you might like to skim over this section and
pick up the MVC trail in chapter 4, where we discuss its use in a very different way.

Web server MVC

Web applications are no stranger to MVC, even the classic page-based variety that
we spend so much time bashing in this book! The very nature of a web application
enforces some degree of separation between the View and the Model, because
they are on different machines. Does a web application inherently follow the MVC
pattern then? Or, put another way, is it possible to write a web application that
tangles the View and the Model together?

Unfortunately, it is. It’s very easy, and most web developers have probably
done it at some point, the authors included.

Most proponents of MVC on the Web treat the generated HTML page, and the
code that generates it, as the View, rather than what the user actually sees when
that page renders. In the case of an Ajax application serving data to a JavaScript
client, the View from this perspective is the XML document being returned to the
client in the HTTP response. Separating the generated document from the busi-
ness logic does require a little discipline, then.

The Ajax web server tier without patterns

To illustrate our discussion, let’s develop an example web server tier for an Ajax
application. We've already seen the fundamentals of the client-side Ajax code in
chapter 2 and section 3.1.4, and we’ll return to them in chapter 4. Right now,
we’ll concentrate on what goes on in the web server. We’ll begin by coding it in the
simplest way possible and gradually refactor toward the MVC pattern to see how it
benefits our application in terms of its ability to respond to change. First, let’s
introduce the application.

We have a list of clothes in a clothing store, which are stored in a database, and
we want to query this database and present the list of items to the user, showing an
image, a title, a short description, and a price. Where the item is available in sev-
eral colors or sizes, we want to provide a picker for that, too. Figure 3.6 shows the
main components of this system, namely the database, a data structure represent-
ing a single product, and an XML document to be transmitted to our Ajax client,
listing all the products that match a query.

Licensed to jonathan zheng <yiyisun@gmail.com>

94

CHAPTER 3
Introducing order to Ajax

ORM Template engine Client-side parser

\

<?xml
version="1.0"?>

4. Web browser

1. Database tables
2. Object model 3. XML stream

Figure 3.6 Main components used to generate an XML feed of product data in
our online shop example. In the process of generating the view, we extract a set
of results from the database, use it to populate data structures representing

individual garments, and then transmit that data to the client as an XML stream.

Let’s say that the user has just entered the store and is offered a choice between
Menswear, Womenswear, and Children’s clothing. Each product is assigned to
one of these categories by the Category column of the database table named Gar-
ments. A simple piece of SQL to retrieve all relevant items for a search under
Menswear might be

SELECT * FROM garments WHERE CATEGORY = 'Menswear';

We need to fetch the results of this query and then send them to the Ajax appli-
cation as XML. Let’s see how we can do that.

Generating XML data for the client

Listing 3.5 shows a quick-and-dirty solution to this particular requirement. This
example uses PHP with a MySQL database, but the important thing to note is
the general structure. An ASP or JSP page, or a Ruby script, could be con-
structed similarly.

<?php

header ("Content-type: application/xml"); <+— Tell client we are returning XML
echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n";

Sdb=mysgl_connect ("my_db_server", "mysqgl_user") ;

mysqgl_select_db("mydb", sdb) ; Fetch the
$sgl="SELECT id, title,description,price,colors,sizes" results from
."FROM garments WHERE category=\"{S$cat}\""; the database

Sresult=mysqgl_query ($sqgl, $db) ;

echo "<garments>\n";

while ($myrow = mysqgl_fetch_row($result)) { <+— lterate through resultset
printf ("<garment id=\"%s\" title=\"%s\">\n"

Licensed to jonathan zheng <yiyisun@gmail.com>

Web server MVC 95

."<description>%s</description>\n<price>%$s</price>\n",
Smyrow["id"],
Smyrow["title"],
Smyrow ["description"],
Smyrow|["price"]);
if (!is_null (Smyrow["colors"])){
echo "<colors>{Smyrow['colors']}</colors>\n";
}
if (!is_null (Smyrow["sizes"])) {
echo "<sizes>{Smyrow['sizes']}</sizes>\n";
}
echo "</garment>\n";
}
echo "</garments>\n";
?>

The PHP page in listing 3.5 will generate an XML page for us, looking something
like listing 3.6, in the case where we have two matching products in our database.
Indentation has been added for readability. We’ve chosen XML as the communi-
cation medium between client and server because it is commonly used for this
purpose and because we saw in chapter 2 how to consume an XML document gen-
erated by the server using the XMLHttpRequest object. In chapter 5, we’ll explore
the various other options in more detail.

Listing 3.6 Sample XML output from listing 3.5

<garments>
<garment 1d="SCKO001l" title="Golfers' Socks">
<description>Garish diamond patterned socks. Real wool.
Real itchy.</description>
<price>$5.99</price>
<colors>heather combo,hawaiian medley,wild turkey</colors>
</garment>
<garment id="HATO056" title="Deerstalker Cap">
<description>Complete with big flappy bits.
As worn by the great detective Sherlock Holmes.
Pipe is model's own.</description>
<price>$79.99</price>
<sizes>S, M, L, XL, egghead</sizes>
</garment>
</garments>

So, we have a web server application of sorts, assuming that there’s a nice Ajax
front end to consume our XML. Let’s look to the future. Suppose that as our prod-
uct range expands, we want to add subcategories (Smart, Casual, Outdoor, for

Licensed to jonathan zheng <yiyisun@gmail.com>

96

3.4.2

CHAPTER 3
Introducing order to Ajax

example) and also a “search by season” function, maybe keyword searching, and a
link to clearance items. All of these features could reasonably be served by a sim-
ilar XML stream. Let’s look at how we might reuse our current code for these pur-
poses and what the barriers might be.

Problems with reusability
There are several barriers to reusing our script as it stands. First, we have hard-
wired the SQL query into the page. If we wanted to search again by category or
keyword, we would need to modify the SQL generation. We could end up with an
ugly set of if statements accumulating over time as we add more search options,
and a growing list of optional search parameters.

There is an even worse alternative: simply accepting a free-form wHERE clause
in the CGI parameters, that is,

$sqgl="SELECT id, title,description,price,colors,sizes"

."FROM garments
WHERE ".S$sglWhere;

which we can then call directly from the URL, for example:
garments.php?sglWhere=CATEGORY="Menswear"

This solution confuses the Model and the View even further, exposing raw SQL in
the presentation code. It also opens the door to malicious SQL injection attacks,
and, although modern versions of PHP have some built-in defenses against these,
it’s foolish to rely on them.

Second, we’ve hardwired the XML data format into the page—it’s been buried
in there among the printf and echo statements somewhere. There are several
reasons why we might want to change the data format. Maybe we want to show an
original price alongside the sale price, to try to persuade some poor sap to buy all
those itchy golfing socks that we ordered!

Third, the database result set itself is used to generate the XML. This may look
like an efficient way to do things initially, but it has two potential problems. We’re
keeping a database connection open all the time that we are generating the XML.
In this case, we’re not doing anything very difficult during that while() loop, so
the connection won’t be too lengthy, but eventually it may prove to be a bottle-
neck. Also, it works only if we treat our database as a flat data structure.

Refactoring the domain model

We’re handling our lists of colors and sizes in a fairly inefficient manner at
present, by storing comma-separated lists in fields in the Garments table. If we
normalize our data in keeping with a good relational model, we ought to have a

Licensed to jonathan zheng <yiyisun@gmail.com>

Web server MVC 97

Garments

deerstalker shocking pink

battleship gray

blueberry

Figure 3.7 A many-to-many relationship in a database model. The table
Colors lists all available colors for all garments, and the table Garments
no longer lists any color information.

separate table of all available colors, and a bridging table linking garments to col-
ors (what the database wonks call a many-to-many relationship). Figure 3.7 illus-
trates the use of a many-to-many relationship of this sort.

To determine the available colors for our deerstalker hat, we look up the
Garments_to_Colors table on the foreign key garment_id. Relating the color_id
column back to the primary key in the Colors table, we can see that the hat is
available in shocking pink and blueberry but not battleship gray. By running the
query in reverse, we could also use the Garments_to_Colors table to list all gar-
ments that match a given color.

We’re making better use of our database now, but the SQL required to fetch all
the information begins to get a little hairy. Rather than having to construct elab-
orate join queries by hand, it would be nice to be able to treat our garments as
objects, containing an array of colors and sizes.

Object-relational Mapping tools
Fortunately, there are tools and libraries that can do that for us, known as Object-
Relational Mapping (ORM) tools. An ORM automatically translates between data-
base data and in-memory objects, taking the burden of writing raw SQL off the
developer. PHP programmers might like to take a look at PEAR DB_DataObject,
Easy PHP Data Objects (EZPDO), or Metastorage. Java developers are relatively
spoiled for choice, with Hibernate (also ported to .NET) currently a popular
choice. ORM tools are a big topic, one that we’ll have to put aside for now.
Looking at our application in MVC terms, we can see that adopting an ORM
has had a happy side effect, in that we have the beginnings of a genuine Model on

Licensed to jonathan zheng <yiyisun@gmail.com>

98

CHAPTER 3
Introducing order to Ajax

our hands. We now can write our XML-generator routine to talk to the Garment
object and leave the ORM to mess around with the database. We’re no longer
bound to a particular database’s API (or its quirks). Listing 3.7 shows the change
in our code after switching to an ORM.

In this case, we define the business objects (that is, the Model) for our store
example in PHP, using the Pear::DB_DataObject, which requires our classes to
extend a base DB_DataObject class. Different ORMs do it differently, but the point
is that we’re creating a set of objects that we can talk to like regular code, abstract-
ing away the complexities of SQL statements.

Listing 3.7 Object model for our garment store

require_once "DB/DataObject.php";
class GarmentColor extends DB_DataObject {
var $id;
var $garment_id;
var $color_id;
}
class Color extends DB_DataObject {
var $id;
var $name;
}
class Garment extends DB_DataObject {
var $id;
var $title;
var $description;
var $price;
var $colors;
var S$category;
function getColors () {
if (!isset($this->colors)) {
$linkObject=new GarmentColor () ;
$linkObject->garment_id = S$this->id;
$linkObject->find() ;
Scolors=array () ;
while ($linkObject->fetch()){
ScolorObject=new Color () ;
ScolorObject->id=$1inkObject->color_id;
ScolorObject->find() ;
while (ScolorObject->fetch()){
Scolors[] = clone($ScolorObject) ;

}
}

return $colors;

Licensed to jonathan zheng <yiyisun@gmail.com>

Web server MVC 99

As well as the central Garment object, we’ve defined a Color object and a method
of the Garment for fetching all Colors that it is available in. Sizes could be imple-
mented similarly but are omitted here for brevity. Because this library doesn’t
directly support many-to-many relationships, we need to define an object type for
the link table and iterate through these in the getColors () method. Nonetheless,
it represents a fairly complete and readable object model. Let’s see how to make
use of that model in our page.

Using the revised model

We’ve generated a data model from our cleaner database structure. Now we need
to use it inside our PHP script. Listing 3.8 revises our main page to use the ORM-
based objects.

<?php
header ("Content-type: application/xml") ;
echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n";
include "garment_business_objects.inc"
Sgarment=new Garment;
Sgarment->category = $_GET["cat"];
Snumber_of_rows = S$garment->find() ;
echo "<garments>\n";
while ($garment->fetch()) {
printf ("<garment id=\"%s\" title=\"%s\">\n"
."<description>%s</description>\n<price>%s</price>\n",
Sgarment->id,
Sgarment->title,
Sgarment->description,
$garment->price) ;
Scolors=$garment->getColors() ;
if (count($Scolors)>0){
echo "<colors>\n";
for($i=0; Si<count ($colors) ;Si++) {
echo "<color>{$colors[$i]}</color>\n";
}
echo "</colors>\n";
}
echo "</garment>\n";
}
echo "</garments>\n";
?>

We include the object model definitions and then talk in terms of the object
model. Rather than constructing some ad hoc SQL, we create an empty Garment

Licensed to jonathan zheng <yiyisun@gmail.com>

100

3.4.3

CHAPTER 3
Introducing order to Ajax

object and partly populate it with our search criteria. Because the object model is
included from a separate file, we can reuse it for other searches, too. The XML
View is generated against the object model now as well. Our next refactoring step
is to separate the format of the XML from the process of generating it.

Separating content from presentation

Our View code is still rather tangled up with the object, inasmuch as the XML for-
mat is tied up in the object-parsing code. If we’re maintaining several pages, then
we want to be able to change the XML format in only one place and have that
apply everywhere. In the more complex case where we want to maintain more
than one format, say one for short and detailed listings for display to customers
and another for the stock-taking application, then we want to define each format
only once and provide a centralized mapping for them.

Template-based systems

One common approach to this is a template language, that is, a system that
accepts a text document containing some special markup notation that acts as a
placeholder for real variables during execution. PHP, ASP, and JSP are themselves
templating languages of sorts, written as web page content with embedded code,
rather than the code with embedded content seen in a Java servlet or traditional
CGI script. However, they expose the full power of the scripting language to the
page, making it easy to tangle up business logic and presentation.

In contrast, purpose-built template languages, such as PHP Smarty and
Apache Velocity (a Java-based system, ported to .NET as NVelocity), offer a more
limited ability to code, usually limiting control flow to simple branching (for
example, if) and looping (for example, for, while) constructs. Listing 3.9 shows a
PHP Smarty template for generating our XML.

<?xml version="1.0" encoding="UTF-8" ?>

<garments>

{section name=garment loop=S$garments}

<garment id="{$garment.id}" title="{$garment.title}">

<description>{$Sgarment.description}</description>
<price>{Sgarment.price}</price>

{if count ($garment.getColors())>0}
<colors>

{section name=color loop=$garment.getColors()}

<color>Scolor->name</color>

{/section}

</colors>

Licensed to jonathan zheng <yiyisun@gmail.com>

Web server MVC 101

{/if}
</garment>

{/section}

</garments>

The template expects to see an array variable garments, containing Garment
objects, as input. Most of the template is emitted from the engine verbatim, but
sections inside the curly braces are interpreted as instructions and are either sub-
stituted for variable names or treated as simple branch and loop statements. The
structure of the output XML document is more clearly readable in the template
than when tangled up with the code, as in the body of listing 3.7. Let’s see how to
use the template from our page.

Using the revised view

We’ve moved the definition of our XML format out of our main page into the
Smarty template. As a result, now the main page needs only to set up the tem-
plate engine and pass in the appropriate data. Listing 3.10 shows the changes
needed to do this.

<?php

header ("Content-type: application/xml") ;
include "garment_business_objects.inc";
include "smarty.class.php";
Sgarment=new DataObjects_Garment;
Sgarment->category = $S_GET["cat"];
Snumber_of_rows = S$garment->find() ;
Ssmarty=new Smarty;
Ssmarty->assign('garments', Sgarments) ;
Ssmarty->display ('garments_xml.tpl') ;
?>

Smarty is very concise to use, following a three-stage process. First, we create a
Smarty engine. Then, we populate it with variables. In this case, there is only one,
but we can add as many as we like—if the user details were stored in session, we
could pass them in, for example, to present a personalized greeting through the
template. Finally, we call display (), passing in the name of the template file.
We’ve now achieved the happy state of separating out the View from our
search results page. The XML format is defined once and can be invoked in a
few lines of code. The search results page is tightly focused, containing only the

Licensed to jonathan zheng <yiyisun@gmail.com>

102

CHAPTER 3
Introducing order to Ajax

information that is specific to itself, namely, populating the search parameters
and defining an output format. Remember that we dreamed up a requirement
earlier to be able to swap in alternative XML formats on the fly? That’s easy
with Smarty; we simply define an extra format. It even supports including tem-
plates within other templates if we want to be very structured about creating
minor variations.

Looking back to the opening discussion about the Model-View-Controller pat-
tern, we can see that we’re now implementing it quite nicely. Figure 3.8 provides a
visual summary of where we are.

The Model is our collection of domain objects, persisted to the database auto-
matically using our ORM. The View is the template defining the XML format. The
Controller is the “search by category” page, and any other pages that we care to
define, that glue the Model and the View together.

This is the classic mapping of MVC onto the web application. We've worked
through it here in the web server tier of an Ajax application that serves XML doc-
uments, but it’s easy to see how it could also apply to a classic web application
serving HTML pages.

Depending on the technologies you work with, you’ll encounter variations on
this pattern, but the principle is the same. J2EE enterprise beans abstract the
Model and Controller to the point where they can reside on different servers.
.NET “code-behind” classes delegate the Controller role to page-specific objects,
whereas frameworks such as Struts define a “front controller” that intercepts and
routes all requests to the application. Frameworks such as Apache Struts have
worked this down to a fine art, refining the role of the Controller to route the
user between pages, as well as applying at the single-page level. (In an Ajax
application, we might do this in the JavaScript.) But in all cases, the mapping is

A sorer
Figure 3.8

Controller MVC as it is commonly applied in the
web application. The web page/serviet
/ acts as the Controller and first queries

PHP

Web browser

the Model to get the relevant data. It
then passes this data to the template
A file (the View), which generates the
content to be forwarded to the user.
Note that this is a read-only situation.
If we were modifying the Model, the
View Model flow of events would differ slightly, but
- > the roles would remain the same.

Smarty

Licensed to jonathan zheng <yiyisun@gmail.com>

3.5

Third-party libraries and frameworks 103

basically the same, and this is how MVC is generally understood in the web appli-
cation world.

Describing our web architecture using MVC is a useful approach, and it will
continue to serve us well as we move from classic to Ajax-style applications. But it
isn’t the only use to which we can put MVC in Ajax. In chapter 4, we will examine
a variation on the pattern that allows us to reap the advantages of structured
design throughout our application. Before we do that, though, let’s look at
another way of introducing order to our Ajax applications.

As well as refactoring our own code, we can often rationalize a body of code by
making use of third-party frameworks and libraries. With the growing interest in
Ajax, a number of useful frameworks are emerging, and we conclude this chapter
with a brief review of some of the more popular ones.

Third-party libraries and frameworks

A goal of most refactoring is reducing the amount of repetition in the codebase,
by factoring details out to a common function or object. If we take this to its log-
ical conclusion, we can wrap up common functionality into libraries, or frame-
works, that can be reused across projects. This reduces the amount of custom
coding needed for a project and increases productivity. Further, because the
library code has already been tested in previous projects, the quality can be
expected to be high.

We’ll develop a few small JavaScript frameworks in this book that you can reuse
in your own projects. There’s the ObjectBrowser in chapters 4 and 5, the Com-
mandQueue in chapter 5, the notifications frameworks in chapter 6, the Stop-
Watch profiling tools in chapter 8, and the debugging console in appendix A.
We’ll also be refactoring the teaching examples in chapters 9 through 13 at the
end of each chapter, to provide reusable components.

Of course, we aren’t the only people playing this game, and plenty of Java-
Script and Ajax frameworks are available on the Internet, too. The more estab-
lished of these have the advantage of some very thorough testing by a large pool
of developers.

In this section, we’ll look at some of the third-party libraries and frameworks
available to the Ajax community. There’s a lot of activity in the Ajax framework
space at the moment, so we can’t cover all the contenders in detail, but we’ll try to
provide you with a taste of what sort of frameworks exist and how you can intro-
duce order into your own projects by using them.

Licensed to jonathan zheng <yiyisun@gmail.com>

104

CHAPTER 3
Introducing order to Ajax

3.5.1 Cross-browser libraries

As we noted in section 3.2.1, cross-browser inconsistencies are never far away
when writing Ajax applications. A number of libraries fulfill the very useful func-
tion of papering over cross-browser inconsistencies by providing a common
fagade against which the developer can code. Some focus on specific pieces of
functionality, and others attempt to provide a more comprehensive program-
ming environment. We list below the libraries of this type that we have found to
be helpful when writing Ajax code.

x library

The x library is a mature, general-purpose library for writing DHTML applica-
tions. First released in 2001, it superseded the author’s previous CBE (Cross-
Browser Extensions) library, using a much simpler programming style. It pro-
vides cross-browser functions for manipulating and styling DOM elements, work-
ing with the browser event model, and includes out-of-the-box support libraries
for animation and drag and drop. It supports Internet Explorer version 4
upward, as well as recent versions of Opera and the Mozilla browsers.

x uses a simple function-based coding style, taking advantage of JavaScript’s
variable argument lists and loose typing. For example, it wraps the common doc-
ument . getElementById () method, which accepts only strings as input, with a func-
tion that accepts either strings or DOM elements, resolving the element ID if a
string is passed in but returning a DOM element unmodified if that is passed in as
argument. Hence, xGetElementById() can be called to ensure that an argument
has been resolved from ID to DOM node, without having to test whether it’s
already been resolved. Being able to substitute a DOM element for its text ID is
particularly useful when creating dynamically generated code, such as when pass-
ing a string to the setTimeout () method or to a callback handler.

A similarly concise style is used in the methods for manipulating DOM ele-
ment styling, with the same function acting as both getter and setter. For exam-
ple, the statement

xWidth (myElement)

will return the width of the DOM element myElement, where myElement is either a
DOM element or the ID of a DOM element. By adding an extra argument, like so

xWidth (myElement, 420)

we set the width of the element. Hence, to set the width of one element equal to
another, we can write

Licensed to jonathan zheng <yiyisun@gmail.com>

Third-party libraries and frameworks 105

xWidth (secondElement, xWidth (firstElement))

x does not contain any code for creating network requests, but it is nonetheless a
useful library for constructing the user interfaces for Ajax applications, written in
a clear, understandable style.

Sarissa

Sarissa is a more targeted library than x, and is concerned chiefly with XML
manipulation in JavaScript. It supports Internet Explorer’s MSXML ActiveX com-
ponents (version 3 and up), Mozilla, Opera, Konqueror, and Safari for basic func-
tionality, although some of the more advanced features such as XPath and XSLT
are supported by a smaller range of browsers.

The most important piece of functionality for Ajax developers is cross-browser
support for the XMLHttpRequest object. Rather than creating a Facade object of
its own, Sarissa uses the Adapter pattern to create a JavaScript-based XML-
HttpRequest object on browsers that don’t offer a native object by that name
(chiefly Internet Explorer). Internally, this object will make use of the ActiveX
objects that we described in chapter 2, but as far as the developer is concerned,
the following code will work on any browser once Sarissa has been imported:

var xhr = new XMLHttpRequest() ;

xhr.open ("GET", "myData.xml");
xhr.onreadystatechange = function() {
if (xhr.readyState == 4){

alert (xhr.responseXML) ;
}

}

xhr.send(null) ;
Compare this code with listing 2.11 and note that the API calls are identical to those
of the native XMLHttpRequest object provided by Mozilla and Safari browsers.

As noted already, Sarissa also provides a number of generic support mecha-
nisms for working with XML documents, such as the ability to serialize arbitrary
JavaScript objects to XML. These mechanisms can be useful in processing the
XML documents returned from an Ajax request to the server, if your project uses
XML as the markup for response data. (We discuss this issue, and the alternatives,
in chapter 5.)

Prototype

Prototype is a general-purpose helper library for JavaScript programming, with
an emphasis on extending the JavaScript language itself to support a more
object-oriented programming style. Prototype has a distinctive style of JavaScript

Licensed to jonathan zheng <yiyisun@gmail.com>

106

CHAPTER 3
Introducing order to Ajax

coding, based on these added language features. Although the Prototype code
itself can be difficult to read, being far removed from the Java/C# style, using Pro-
totype, and libraries built on top of it, is straightforward. Prototype can be
thought of a library for library developers. Ajax application writers are more
likely to use libraries built on top of Prototype than to use Prototype itself. We’ll
look at some of these libraries in the following sections. In the meantime, a brief
discussion of Prototype’s core features will help introduce its style of coding and
will be useful when we discuss Scriptaculous, Rico, and Ruby on Rails.

Prototype allows one object to “extend” another by copying all of the parent
object’s properties and methods to the child. This feature is best illustrated by an
example. Let’s say that we define a parent class vehicle

function Vehicle (numWheels, maxSpeed) {
this.numWheels=numWheels;
this.maxSpeed=maxSpeed;

}
for which we want to define a specific instance that represents a passenger train.
In our child class we also want to represent the number of carriages and pro-
vide a mechanism for adding and removing them. In ordinary JavaScript, we
could write

var passTrain=new Vehicle(24,100);
passTrain.carriageCount=12;
passTrain.addCarriage=function () {
this.carriageCount++;
}
passTrain.removeCarriage=function () {
this.carriageCount--;
}
This provides the required functionality for our passTirain object. Looking at the
code from a design perspective, though, it does little to wrap up the extended
functionality into a coherent unit. Prototype can help us here, by allowing us to
define the extended behavior as an object and then extend the base object with it.
First, we define the extended functionality as an object:
function CarriagePuller (carriageCount) {
this.carriageCount=carriageCount;
this.addCarriage=function() {
this.carriageCount++;
}
this.removeCarriage=function () {

this.carriageCount--;

}

Licensed to jonathan zheng <yiyisun@gmail.com>

Third-party libraries and frameworks 107

Then we merge the two to provide a single object containing all of the required
behavior:

var parent=new Vehicle(24,100);

var extension=new CarriagePuller (12);

var passTrain=0bject.extend (parent, extension) ;
Note that we define the parent and extension objects separately at first and then
mix them together. The parent-child relationship exists between these instances,
not between the vehicle and CarriagePuller classes. While it isn’t exactly classic
object orientation, it allows us to keep all the code related to a specific function, in
this case pulling carriages, in one place, from which it can easily be reused. While
doing so in a small example like this may seem unnecessary, in larger projects,
encapsulating functionality in such a way is extremely helpful.

Prototype also provides Ajax support in the form of an Ajax object that can
resolve a cross-browser XMLHttpRequest object. Ajax is extended by the
Ajax.Request type, which can make requests to the server using XMLHttp-
Request, like so:

var reg=new Ajax.Request ('myData.xml') ;

The constructor uses a style that we’ll also see in many of the Prototype-based
libraries. It takes an associative array as an optional argument, allowing a wide
range of options to be configured as needed. Sensible default values are provided
for each option, so we need only pass in those objects that we want to override. In
the case of the Ajax.Request constructor, the options array allows post data,
request parameters, HTTP methods, and callback handlers to be defined. A more
customized invocation of Ajax.Request might look like this:
var reg=new Ajax.Request (
'myData.xml',
{
method: 'get',
parameters: { name:'dave', likes:'chocolate,rhubarb' },
onLoaded: function(){ alert('loaded!"); },
onComplete: function() {
alert ('done!\n\n'+req.transport.responseText) ;
}
}
)i
The options array here has passed in four parameters. The HTTP method is set
to get, because Prototype will default to the HTTP post method. The parameters
array will be passed down on the querystring, because we are using HTTP get. If

we used POST, it would be passed in the request body. onLoaded and onComplete are

Licensed to jonathan zheng <yiyisun@gmail.com>

108

3.5.2

CHAPTER 3
Introducing order to Ajax

callback event handlers that will be fired when the readyState of the underlying
XMLHttpRequest object changes. The variable req. transport in the onComplete
function is a reference to the underlying XMLHttpRequest object.

On top of Ajax.Request, Prototype further defines an Ajax.Updater type of
object that fetches script fragments generated on the server and evaluates them.
This follows what we describe as a “script-centric” pattern in chapter 5 and is
beyond the scope of our discussion here.

This concludes our brief review of cross-browser libraries. Our choice of librar-
ies has been somewhat arbitrary and incomplete. As we have noted, there is a lot
of activity in this space at the moment, and we’ve had to limit ourselves to some of
the more popular or well-established offerings. In the next section, we’ll look at
some of the widget frameworks built on top of these and other libraries.

Widgets and widget suites

The libraries that we’ve discussed so far have provided cross-browser support for
some fairly low-level functionality, such as manipulating DOM elements and fetch-
ing resources from the server. With these tools at our disposal, constructing func-
tional Uls and application logic is certainly simplified, but we still need to do a lot
more work than our counterparts working with Swing, MFC, or Qt, for example.

Prebuilt widgets, and even complete widget sets for Ajax developers, are start-
ing to emerge. In this section, we’ll look at a few of these—again, more to give a
flavor of what’s out there than to provide a comprehensive overview.

Scriptaculous
The Scriptaculous libraries are UI components built on top of Prototype (see the
previous section). In its current form, Scriptaculous provides two major pieces
of functionality, although it is being actively developed, with several other fea-
tures planned.

The Effects library defines a range of animated visual effects that can be
applied to DOM elements, to make them change size, position, and transparency.
Effects can be easily combined, and a number of predefined secondary effects are
provided, such as puff (), which makes an element grow larger and more trans-
parent until it fades away completely. Another useful core effect, called paral-
lel(), is provided to enable simultaneous execution of multiple effects. Effects
can be a useful way of quickly adding visual feedback to an Ajax user interface, as
we’ll see in chapter 6.

Invoking a predetermined effect is as simple as calling its constructor, passing
in the target DOM element or its ID as an argument, for example:

Licensed to jonathan zheng <yiyisun@gmail.com>

Third-party libraries and frameworks 109

new Effect.SlideDown (myDOMElement) ;

Underlying the effects is the concept of a transition object, which can be param-
eterized in terms of duration and event handlers to be invoked when the transi-
tion ends. Several base transition types, such as linear, sinusoidal, wobble, and
pulse, are provided. Creating a custom effect is simply a matter of combining core
effects and passing in suitable parameters. A detailed discussion of building cus-
tom effects is beyond the scope of this brief overview. We’ll see Scriptaculous
effects in use again in chapter 6, when we develop a notifications system.

The second feature that Scriptaculous provides is a drag-and-drop library,
through the Sortable class. This class takes a parent DOM element as an argu-
ment and enables drag-and-drop functionality for all its children. Options
passed in to the constructor can specify callback handlers for when the item is
dragged and dropped, types of child elements to be made draggable, and a list
of valid drop targets (that is, elements that will accept the dragged item if the
user lets go of it while mousing over them). Effect objects may also be passed in
as options, to be executed when the item is first dragged, while it is in transit,

and when it is dropped.

Rico

Rico, like Scriptaculous, is based on the Prototype library, and it also provides
some highly customizable effects and drag-and-drop functionality. In addition, it
provides a concept of a Behavior object, a piece of code that can be applied to part
of a DOM tree to add interactive functionality to it. A few example Behaviors are
provided, such as an Accordion widget, which nests a set of DOM elements within
a given space, expanding one at a time. (This style of widget is often referred to as
outlook bar, having been popularized by its use in Microsoft Outlook.)

Let’s build a simple Rico Accordion widget. Initially, we require a parent DOM
element; each child of the parent will become a pane in the accordion. We define
a DIV element for each panel, with two further DIVs inside that, representing the
header and the body of each panel:

<div id='myAccordion'>

<div>
<div>Dictionary Definition</div>
<div>

n.A portable wind instrument with a small
keyboard and free metal reeds that sound when air is
forced past them by pleated bellows operated by the

player.</1li>
adj.Having folds or bends like the bellows

Licensed to jonathan zheng <yiyisun@gmail.com>

110

CHAPTER 3
Introducing order to Ajax

of an accordion: accordion pleats; accordion blinds.

</div>
</div>
<div>
<div>A picture</div>
<div>

</div>
</div>

</div>
The first panel provides a dictionary definition for the word accordion and the sec-
ond panel a picture of a monkey playing an accordion (see figure 3.9). Rendered
as it is, this will simply display these two elements one above the other. However,
we have assigned an ID attribute to the top-level DIV element, allowing us to pass
a reference to it to the Accordion object, which we construct like this:

var outer=$ ('myAccordion') ;
outer.style.width="'320px"';
new Rico.Accordion (
outer,
{ panelHeight:400,
expandedBg: '#909090"',
collapsedBg: '#404040"',
}
)
The first line looks rather curious. $ is actually a valid JavaScript variable name
and simply refers to a function in the core Prototype library. $ () resolves DOM nodes
in a way similar to the x library’s xGetElementById() function that we discussed in
the previous section. We pass a reference to the resolved DOM element to the
Accordion object constructor, along with an array of options, in the standard idiom
for Prototype-derived libraries. In this case, the options simply provide some styl-
ing of the Accordion widget’s visual elements, although callback handler functions
to be triggered when panels are opened or closed can also be passed in here. Fig-
ure 3.9 shows the effect of styling the DOM elements using the Accordion object.
Rico’s Behaviors provide a simple way of creating reusable widgets from common
markup and also separate the content from the interactivity. We’ll explore the
topic of applying good design principles to the JavaScript Ul in chapter 4.

The final feature of the Rico framework to mention is that it provides very
good support for Ajax-style requests to the server, through a global Rico Ajax-
Engine object. The AjaxEngine provides more than just a cross-browser wrapper
around the XMLHttpRequest object. It defines an XML response format that

Licensed to jonathan zheng <yiyisun@gmail.com>

Third-party libraries and frameworks 111

Unstyled content "Accordian" widget
Dictionary Definition D
« nLA portable wind instrument with a small keyboard « n.A portable wind instrument
and free metal reeds that sound when air is forced with a small keyboard and free
past them by pleated befllows operated by the player. metal reeds that sound when air
« adj.Having folds or bends like the bellows of an Is forced past them by pleated
accordlon: accordion pleats; accordion blinds bellows operated by the player
+ adj.Having folds or bends like
A picture the bellows of an accordion:
< accordion pleats; accordion
blinds.
pipicture g ________|

Mouse click

Figure 3.9 The Rico framework Behaviors allow plain DOM nodes to be styled as interactive
widgets, simply by passing a reference to the top-level node to the Behavior object’s
constructor. In this case, the Accordion object has been applied to a set of DIV elements (left)
to create an interactive menu widget (right), in which mouse clicks open and close the
individual panels.

consists of a number of <response> elements. The engine will automatically
decode these, and it has built-in support for two types of response: those that
directly update DOM elements and those that update JavaScript objects. We’ll
look at a similar mechanism in greater detail in section 5.5.3, when we discuss
client/server interactions in depth. For now, let’s move on to the next type of
framework: one that spans both client and server.

3.5.3 Application frameworks

The frameworks that we have looked at so far are executed exclusively in the browser
and can be served up as static JavaScript files from any web server. The final cat-
egory of frameworks that we will review here are those that reside on the server and
generate at least some of the JavaScript code or HTML markup dynamically.

These are the most complex of the frameworks that we are discussing here,
and we won’t be able to discuss them in great detail but will give a brief overview
of their features. We will return to the topic of server-side frameworks in
chapter 5.

Licensed to jonathan zheng <yiyisun@gmail.com>

112

CHAPTER 3
Introducing order to Ajax

DWR, JSON-RPC, and SAJAX

We’ll begin by looking at three small server-side frameworks together, because
they share a common approach, although they are written for different server-
side languages. SAJAX works with a variety of server-side languages, including
PHP, Python, Perl, and Ruby. DWR (which stands for Direct Web Remoting) is a
Java-based framework with a similar approach, exposing methods of objects
rather than standalone functions. JSON-RPC (JavaScript Object Notation-based
Remote Procedure Calls) is also similar in design. It offers support for server-side
JavaScript, Python, Ruby, Perl, and Java.

All three allow objects defined on the server to expose their methods directly
as Ajax requests. We will frequently have a server-side function that returns a use-
ful result that has to be calculated on the server, say, because it looks up a value
from a database. These frameworks provide a convenient way to access those
functions or methods from the web browser and can be a good way of exposing
the server-side domain model to the web browser code.

Let’s look at an example using SAJAX, exposing functions defined on the
server in PHP. We'll use a straightforward example function that simply returns a
string of text, as follows:

<?php

function sayHello (name) {

return("Hello! {$Sname} Ajax in Action!!!!");

?>
To export this function to the JavaScript tier, we simply import the SAJAX engine
into our PHP and call the sajax_export function:

<?php

require ('Sajax.php');

sajax_init();

sajax_export ("sayHello") ;

?>
When we write our dynamic web page, then, we use SAJAX to generate some Java-
Script wrappers for the exported functions. The generated code creates a local
JavaScript function with identical signatures to the server-side function:

<script type='text/javascript'>

<?

sajax_show_javascript () ;
?>

alert (sayHello("Dave")) ;

</script>

Licensed to jonathan zheng <yiyisun@gmail.com>

Third-party libraries and frameworks 113

When we call sayHello ("Dave") in the browser, the generated JavaScript code will
make an Ajax request to the server, execute the server-side function, and return
the result in the HTTP response. The response will be parsed and the return value
extracted to the JavaScript. The developer need not touch any of the Ajax tech-
nologies; everything is handled behind the scenes by the SAJAX libraries.

These three frameworks offer a fairly low-level mapping of server-side func-
tions and objects to client-side Ajax calls. They automate what could otherwise be
a tedious task, but they do present a danger of exposing too much server-side
logic to the Internet. We discuss these issues in greater detail in chapter 5.

The remaining frameworks that we’ll look at in this section take a more sophis-
ticated approach, generating entire Ul layers from models declared on the server.
Although they use standard Ajax technologies internally, these frameworks essen-
tially provide their own programming model. As a result, working with these
frameworks is quite different from writing generic Ajax, and we will be able to
provide only a broad overview here.

Backbase
The Backbase Presentation Server provides a rich widget set that binds at run-
time to XML tags embedded in the HTML documents generated by the server.
The principle here is similar to the Rico behavior components, except that Back-
base uses a custom set of XHTML tags to mark up the UI components, rather than
standard HTML tags.

Backbase provides server-side implementations for both Java and .NET. It is a
commercial product but offers a free community edition.

Echo2
NextApp’s Echo2 framework is a Java-based server engine that generates rich UI
components from a model of the user interface that is declared on the server.
Once launched in the browser, the widgets are fairly autonomous and will handle
user interactions locally using JavaScript or otherwise send requests back to the
server in batches using a request queue similar to the one employed by Rico.
Echo2 promotes itself as an Ajax-based solution that requires no knowledge of
HTML, JavaScript, or CSS, unless you want to extend the set of components that
are available. In most cases, the development of the client application is done
using only Java. Echo2 is open source, licensed under a Mozilla-style license,
allowing its use in commercial applications.

Licensed to jonathan zheng <yiyisun@gmail.com>

114

3.6

CHAPTER 3
Introducing order to Ajax

Ruby on Rails

Ruby on Rails is a web development framework written in the Ruby program-
ming language. It bundles together solutions for mapping server-side objects to a
database and presenting content using templates, very much in the style of the
server-side MVC that we discussed in section 3.4. Ruby on Rails claims very fast
development of simple to medium websites, since it uses code-generation tech-
niques to generate a lot of common code. It also seeks to minimize the amount of
configuration required to get a live application running.

In recent versions, Rails has provided strong Ajax support through the Proto-
type library. Prototype and Rails are a natural fit, since the JavaScript code for
Prototype is generated from a Ruby program, and the programming styles are
similar. As with Echo2, using Ajax with Rails does not require a strong knowledge
of Ajax technologies such as JavaScript, but a developer who does understand
JavaScript can extend the Ajax support in new ways.

This concludes our overview of third-party frameworks for Ajax. As we’ve
already noted, this is currently a fast-moving area, and most of the frameworks
that we have discussed are under active development.

Many of the libraries and frameworks have their own coding idioms and styles,
too. In writing the code examples for this book, we have sought to provide a feel
for the breadth of Ajax technologies and techniques and have avoided leaning
too heavily on any particular framework. Nonetheless, you will encounter some of
the products that we have discussed here, sprinkled lightly throughout the rest of
the book.

Summary

In this chapter, we’ve introduced the concept of refactoring as a way of improv-
ing code quality and flexibility. Our first taste of refactoring was to roll up the
XMLHttpRequest object—the very core of the Ajax stack—into a simple, reus-
able object.

We’ve looked at a number of design patterns that we can apply to solve com-
monly encountered problems when working with Ajax. Design patterns provide a
semiformal way of capturing the knowledge of the programmers who have gone
before us and can help us to refactor toward a concrete goal.

Facade and Adapter provide useful ways of smoothing over the differences
between varying implementations. In Ajax, these patterns are especially useful in
providing an insulating layer from cross-browser incompatibilities, a major and
longstanding source of worry for JavaScript developers.

Licensed to jonathan zheng <yiyisun@gmail.com>

3.7

Resources 115

Observer is a flexible pattern for dealing with event-driven systems. We’ll
return to it in chapter 4 when looking at the UI layers of our application. Used
together with Command, which offers a good way of encapsulating user interac-
tions, it is possible to develop a robust framework for handling user input and
providing an undo facility. Command also has its uses in organizing client/server
interactions, as we will see in chapter 5.

Singleton offers a straightforward way of controlling access to specific
resources. In Ajax, we may usefully use Singleton to control access to the network,
as we will see in chapter 5.

Finally, we introduced the Model-View-Controller pattern, an architectural
pattern that has a long history (in Internet time, at least!) of use in web applica-
tions. We discussed how the use of MVC can improve the flexibility of a server-side
application through use of an abstracted data layer and a template system.

Our garment store example also demonstrated the way in which design pat-
terns and refactoring go hand in hand. Creating a perfectly designed piece of
code the first time round is difficult, but refactoring an ugly-but-functional bit of
code such as listing 3.4 to gradually bring in the benefits of design patterns is
possible, and the end results are every bit as good.

Finally, we looked at third-party libraries and frameworks as another way of
introducing order to an Ajax project. A number of libraries and frameworks are
springing up at present, from simple cross-browser wrappers to complete widget
sets to end-to-end solutions encompassing both client and server. We reviewed
several of the more popular frameworks briefly, and we will return to some of
them in later chapters.

In the following two chapters, we’ll apply our understanding of refactoring
and design patterns to the Ajax client and then to the client/server communica-
tion system. This will help us to develop a vocabulary and a set of practices that
will make it easier to develop robust and multifeatured web applications.

Resources

Martin Fowler (with coauthors Kent Beck, John Brant, William Opdyke, and Don
Roberts) wrote the seminal guide to refactoring: Refactoring: Improving the Design
of Existing Code (Addison-Wesley Professional, 1999).

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known
as “The Gang of Four”) wrote the influential Design Patterns (Addison-Wesley Pro-
fessional, 1995).

Licensed to jonathan zheng <yiyisun@gmail.com>

116 CHAPTER 3
Introducing order to Ajax

Gamma later went on to become architect for the Eclipse IDE/platform (see
appendix A), and discusses both Eclipse and design patterns in this recent inter-
view: www.artima.com/lejava/articles/gammadp.html.

Michael Mahemoft has recently set up a website devoted to cataloging Ajax
design patterns: www.ajaxpatterns.org.

Licensed to jonathan zheng <yiyisun@gmail.com>

Part 2

Core techniques

Now that you know what Ajax is all about, we’ll cover the core techniques
for designing an application. Our goals are to design code that is flexible,
maintainable, and fun to work with. Chapter 4 looks at ways of getting the cli-
ent code in shape, and keeping the CSS, HTML, and JavaScript out of each
other’s hair. Chapter 5 looks at ways of interacting with the server, and how to
manage communication between the client and server tiers.

Licensed to jonathan zheng <yiyisun@gmail.com>

Licensed to jonathan zheng <yiyisun@gmail.com>

The page as
an application

This chapter covers

= Organizing complex user interface code

m Using the Model-View-Controller pattern
with JavaScript

m Separating presentation from logic for
maintainable code

m Creating a flexible event-handling mode

m Generating the user interface directly from
your business objects

119

Licensed to jonathan zheng <yiyisun@gmail.com>

120

CHAPTER 4
The page as an application

In chapters 1 and 2 we covered the basic principles of Ajax, from both a usability
and a technology perspective. In chapter 3 we touched on the notion of creating
maintainable code through refactoring and design patterns. In the examples that
we've looked at so far, this may have seemed like overkill, but as we explore the
subject of Ajax programming in more depth, they will prove themselves to be
indispensable tools.

In this chapter and the next, we discuss the details of building a larger, scal-
able Ajax client, and the architectural principles needed to make it work. This
chapter looks at the coding of the client itself, drawing heavily on the Model-
View-Controller (MVC) pattern that we discussed in chapter 3. We’ll also encoun-
ter the Observer and other smaller patterns along the way. Chapter 5 will look at
the relationship between the client and the server.

4.1 A different kind of MVC

4.1.1

In chapter 3, we presented an example of refactoring a simple garment store
application to conform to the MVC pattern. This is the context in which most web
developers will have come across MVC before, with the Model being the domain
model on the server, the View the generated content sent to the client, and the
Controller a servlet or set of pages defining the workflow of the application.

However, MVC had its origins in desktop application development, and there
are several other places in an Ajax application where it can serve us well too. Let’s
have a look at them now.

Repeating the pattern at different scales

The classic web MVC model describes the entire application in coarse-grained
detail. The entire generated data stream is the View. The entire CGI or servlet
layer is the Controller, and so on.

In desktop application development, MVC patterns are often applied at a
much finer scale, too. Something as simple as a pushbutton widget can use MVC:

m The internal representation of states—pressed, unpressed, inactive, for
example—is the Model. An Ajax widget would typically implement this as
a JavaScript object.

m The painted-on-screen widget—composed of Document Object Model
(DOM) nodes, in the case of an Ajax Ul—with modifications for different
states, highlights, and tooltips, is the View.

Licensed to jonathan zheng <yiyisun@gmail.com>

A different kind of MVC 121

m The internal code for relating the two is the Controller. The event-handler
code (that is, what happens in the larger application when the user presses
the button) is also a Controller, but not the Controller for this View and
Model. We’ll get to that shortly.

A pushbutton in isolation will have very little behavior, state, or visible variation,
so the payback for using MVC here is relatively small. If we look at a more compli-
cated widget component, such as a tree or a table, however, the overall system is
complicated enough to benefit from a clean MVC-based design more thoroughly.

Figure 4.1 illustrates MVC applied to a tree widget. The Model consists of tree
nodes, each with a list of child nodes, an open/closed status, and a reference to
some business object, representing files and directories in a file explorer, say. The
View consists of the icons and lines painted onto the widget canvas. The Control-
ler handles user events, such as opening and closing nodes and displaying pop-
up menus, and also triggering graphical update calls for particular nodes, to
allow the View to refresh itself incrementally.

That’s one way of applying MVC outside of the more familiar web server sce-
nario. But we’re not finished yet. Let’s turn our attention to the web browser next.

View
» =4 Accessibility
» © Components
w [y Information
& Memory
& PCMCIA
(=) Protocals
"1 Samba Status
M x-Server
« @l LookNFeel
B Background
& Behavior
5 Colors

Controller

“al Fonts
By Icons
& Launch Feedback
> Multiple Desktops

i Panels

E Screen Saver

. Splash Screen

& style

J° System Notifications

Figure 4.1
Model-View-Controller applied
to the internal functioning of a
tree widget. The view consists of

§§ Taskbar

¥ Window Behavior

¥ Window Decorations
» W Network

» <3 Peripherals
» |}, PowerControl
» Ly Securty
»
»
»

a series of painted-on-screen
elements composed of DOM
elements. Behind the scenes,
the tree structure is modeled as

Model
TreeMNodes,
Connections, etc.

& Sound a series of JavaScript objects.
@ System Controller code mediates
= WebBrowsing

between the two.

Licensed to jonathan zheng <yiyisun@gmail.com>

http://ripcord.co.nz/behaviour/
http://ripcord.co.nz/behaviour/

122

CHAPTER 4
The page as an application

4.1.2 Applying MVC in the browser

We’ve focused on the small details of our application. We can also zoom out our
perspective, to consider the entire JavaScript application that is delivered to the
browser on startup. This, too, can be structured to follow the MVC pattern, and it
will benefit from clear separation of concerns if it is.

At this level, the Model consists of the business domain objects, the View is the
programmatically manipulated page as a whole, and the Controller is a combina-
tion of all the event handlers in the code that link the UI to the domain objects.
Figure 4.2 illustrates the MVC operating at this level. This is perhaps the most
important use of MVC for an Ajax developer, because it is a natural fit to the Ajax
rich client application. We’ll examine the details of such use of the pattern, and
what it buys us, in the remainder of the chapter.

If you think back to the conventional web MVC that we discussed in chapter 3
as well, you'll remember that we have at least three layers of MVC within a typical
Ajax application, each performing different roles within the lifecycle of the appli-
cation and each contributing to clean, well-organized code. Figure 4.3 illustrates

Controller code

onMouseMove(){

1

onClick(}{
View !

Elle Edit View Go Bockmarks Iools Help

@ - = 3 | fle srmntremovables | @ Go GL

Firafox Help || Firefox Suppart || Plug-n FAQ

| NN

kioh . te . ln.doh . te. la.fah.soh _la.te. in.sch. fah. soh.is.te. doh

me . fah soh la te la.soh la. te. la. me. re, me. fah, soh. la.te. la

lsoh . la

Model
JavaScript
Objects

Figure 4.2 Model-View-Controller applied to the Ajax client application as a

whole. The Controller at this level is the code that links the Ul to the business
objects in the JavaScript.

Licensed to jonathan zheng <yiyisun@gmail.com>

A different kind of MVC 123

Browser)
>
View [
Controller Code
onMouseMove(){
)
onClick(){
}

JavaScript
Objects

PHP Controller
Smarty
 View Model)

Figure 4.3 Nested MVC architecture, in which the pattern repeats
itself at different scales. At the outermost level, we can see the
pattern defining the workflow of the application as a whole, with the
model residing on the web server. At a smaller scale, the pattern is
replicated within the client application and, at a smaller scale than
that, within individual widgets in the client application.

how these MVC patterns at different scales are nested within each other in the
application architecture.

So, what does this mean to us when we’re working on the code? In the follow-
ing sections, we’ll take a more practical look at using MVC to define the structure
of our JavaScript application, how it will affect the way we write code, and what
the benefits will be. Let’s start with a look at the View.

Licensed to jonathan zheng <yiyisun@gmail.com>

124

CHAPTER 4
The page as an application

4.2 The View in an Ajax application

4.2.1

From the position of the JavaScript application delivered to the browser when the
application starts up, the View is the visible page, consisting of the DOM elements
that are rendered by HTML markup or through programmatic manipulation.
We’ve already shown how to manipulate the DOM programmatically in chapter 2.

According to MVC, our View has two main responsibilities. It has to provide a
visible interface for the user to trigger events from, that is, to talk to the Control-
ler. It also needs to update itself in response to changes in the Model, usually
communicated through the Controller again.

If the application is being developed by a team, the View will probably be the
area subject to the most contention. Designers and graphic artists will be involved,
as will programmers, particularly as we explore the scope for interactivity in an
Ajax interface. Asking designers to write code, or programmers to get involved in
the aesthetics of an application, is often a bad idea. Even if you're providing both
roles, it can be helpful to separate them, in order to focus on one at a time.

We showed in our overview of server MVC how code and presentation could
become intertwined, and we separated them out using a template system. What
are the options available to us here on the browser?

In chapter 3, we demonstrated how to structure our web pages so that the CSS,
HTML, and JavaScript are defined in separate files. In terms of the page itself,
this split follows MVC, with the stylesheet being the View and the HTML/DOM
being the model (a Document Object Model). From our current perspective,
though, the page rendering is a black box, and the HTML and CSS together
should be treated as the View. Keeping them separate is still a good idea, and sim-
ply by moving the JavaScript out into a separate file we have started to keep the
designers and the programmers off each other’s backs. This is just a start, how-
ever, as you'll see.

Keeping the logic out of the View

Writing all our JavaScript in a separate file is a good start for enforcing separation
of the View, but even with this in place, we can entangle the View with the logic
roles (that is, Model and Controller) without having to try too hard. If we write
JavaScript event handlers inline, such as

<div class='importButton'
onclick="'importData("datafeed3.xml", mytextbox.value);'/>

Licensed to jonathan zheng <yiyisun@gmail.com>

The View in an Ajax application 125

then we are hard-coding business logic into the View. What is datafeed3? What
does the value of mytextbox have to do with it? Why does importData() take two
arguments, and what do they mean? The designer shouldn’t need to know
these things.

importData () is a business logic function. The View and the Model shouldn’t
talk to one another directly, according to the MVC canon, so one solution is to
separate them out with an extra layer of indirection. If we rewrite our DIV tag as

<div class='importButton' onclick='importFeedDatal()'/>
and define an event handler like this

function importFeedData (event) {
importData("datafeed3.xml", mytextbox.value);
}
then the arguments are encapsulated within the importFeedbata() function,
rather than an anonymous event handler. This allows us to reuse that functional-
ity elsewhere, keeping the concerns separate and the code DRY (at the risk of
repeating myself, DRY means “don’t repeat yourself ”).

The Controller is still embedded in the HTML, however, which might make it
hard to find in a large application.

To keep the Controller and the View separate, we can attach the event pro-
grammatically. Rather than declare an event handler inline, we can specify a
marker of some sort that will later be picked up by the code. We have several
options for this marker. We can attach a unique ID to the element and specify
event handlers on a per-element basis. The HTML would be rewritten as

<div class='importButton' id='dataFeedBtn'>
and the following code executed as part of the window. onload callback, for example:

var dfBtn=document.getElementById('dataFeedBtn') ;
dfBtn.onclick=importFeedData;
If we want to perform the same action on multiple event handlers, we need to
apply a non-unique marker of some sort. One simple approach is to define an
extra CSS class.

Adding events indirectly using CSS

Let’s look at a simple example, in which we bind mouse events to keys on a virtual
musical keyboard. In listing 4.1, we define a simple page containing an unstyled
document structure.

Licensed to jonathan zheng <yiyisun@gmail.com>

126 ‘

CHAPTER 4
The page as an application

Listing 4.1 musical.html

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0org/TR/xhtml1l/DTD/xhtmll-strict.dtd">

<html>

<head>

<title>Keyboard</title>

<link rel='stylesheet' type='text/css' href='musical.css'/>

<script type='text/javascript' src='musical.js'></script>

<script type='text/javascript'>

window.onload=assignKeys;

</script>

</head>

<body>

<div id='keyboard' class='musicalKeys'>
<div class='do musicalButton'></div>
<div class='re musicalButton'></div>
<div class='mi musicalButton'></div>
<div class='fa musicalButton'></div> Keys on our
<div class='so musicalButton'></div> "keyboard"
<div class='la musicalButton'></div>
<div class='ti musicalButton'></div>
<div class='do musicalButton'></div>

</div>

<div id='console' class='console'>

</div>

</body>

</html>

We declare the page to conform to XHTML strict definition, just to show that it
can be done. The keyboard element is assigned a unique ID, but the keys are not.
Note that the keys designated @ are each defined as having two styles. musical-
Button is common to all keys, and a separate style differentiates them by note.
These styles are defined separately in the stylesheet (listing 4.2).

Listing 4.2 musical.css

.body{
background-color: white;

}

.musicalKeys{
background-color: #ffe0do0;
border: solid maroon 2px;
width: 536px;
height: 68px;
top: 24px;
left: 24px;

Licensed to jonathan zheng <yiyisun@gmail.com>

The View in an Ajax application 127

margin: 4px;
position: absolute;
overflow: auto;

}

.musicalButton({
border: solid navy 1lpx;
width: 60px;
height: 60px;
position: relative;
margin: 2px;
float: left;

.do{ background-color: red; }
.re{ background-color: orange; }
.mi{ background-color: yellow; }
.fa{ background-color: green; }
.so{ background-color: blue; }
.la{ background-color: indigo; }
.ti{ background-color: violet; }
div.console({

font-family: arial, helvetica;

font-size: 16px;

color: navy;

background-color: white;

border: solid navy 2px;

width: 536px;

height: 320px;

top: 106px;

left: 24px;

margin: 4px;

position: absolute;

overflow: auto;

The style musicalButton defines the common properties of each key. The note-
specific styles simply define a color for each key. Note that whereas top-level
document elements are positioned with explicit pixel precision, we use the float
style attribute to lay the keys out in a horizontal line using the browser’s built-in
layout engine.

Binding the event-handler code
The JavaScript file (listing 4.3) binds the events to these keys programmatically.

Listing 4.3 musical.js

function assignKeys () {
var keyboard=document.getElementById ("keyboard") ; <+— Find parent DIV

Licensed to jonathan zheng <yiyisun@gmail.com>

128

CHAPTER 4
The page as an application

var keys=keyboard.getElementsByTagName ("div") ; <— Enumerate children
if (keys) {
for(var i=0;i<keys.length;i++) {
var key=keys[i];
var classes=(key.className) .split (" ");
if (classes && classes.length>=2

&& classes[l]l=="musicalButton") {
var note=classes[0];
key.note=note; <— Add custom attribute

key.onmouseover=playNote;

}

}
}
function playNote (event) {
var note=this.note; <+— Retrieve custom attribute
var console=document.getElementById("console");
if (note && console) {
console. innerHTML+=note+" . ";

}

The assignkeys () function is called by window.onload. (We could have defined
window.onload directly in this file, but that limits its portability). We find the key-
board element by its unique ID and then use getElementsByTagName () to iterate
through all the DIV elements inside it. This requires some knowledge of the page
structure, but it allows the designer the freedom to move the keyboard DIV
around the page in any way that she wants.

The DOM elements representing the keys return a single string as className
property. We use the inbuilt String.split function to convert it into an array,
and check that the element is of class musicalButton. We then read the other
part of the styling—which represents the note that this key plays—and attach it
to the DOM node as an extra property, where it can be picked up again in the
event handler.

Playing music through a web browser is rather tricky, so in this case, we simply
write the note out to the “console” underneath the keyboard. innerHTML is ade-
quate for this purpose. Figure 4.4 shows our musical keyboard in action. We’ve
achieved good separation of roles here. Provided the designer drops the key-
board and console DIV tags somewhere on the page and includes the stylesheet
and JavaScript, the application will work, and the risk of accidentally breaking
the event logic is small. Effectively, the HTML page has become a template into
which we inject variables and logic. This provides us with a good way of keeping

Licensed to jonathan zheng <yiyisun@gmail.com>

The View in an Ajax application 129

wort || Plug-in FAQ

Ho.re. mi.fa.so.la.ti.do.so.fa.mi.re.mi.fa.so.fa.fa. mi.re.mi.
re.do.re.

Figure 4.4 Musical keyboard application running in a browser. The
colored areas along the top are mapped to music notes, which are printed
out in the lower console area when the mouse moves over them.

logic out of the View. We’ve worked through this example manually, to demon-
strate the details of how it’s done. In production, you might like to make use of a
couple of third-party libraries that address the same issue.

The Rico framework (www.openrico.org/) has a concept of Behavior objects
that target specific sections of a DOM tree and add interactivity to them. We
looked at the Rico Accordion behavior briefly in section 3.5.2.

A similar separation between HTML markup and interactivity can be achieved
with Ben Nolan’s Behaviour library (see the Resources section at end of chapter).
This library allows event-handler code to be assigned to DOM elements based on
CSS selector rules (see chapter 2). In our previous example, the assignKeys ()
function programmatically selects the document element with the id keyboard,
and then gets all DIV elements directly contained by it, using DOM manipulation
methods. We can express this using a CSS selector as

#keyboard div

Using CSS, we could style all our keyboard elements using this selector. Using the
Behaviour,js library, we can also apply event handlers in the same way as follows:

Licensed to jonathan zheng <yiyisun@gmail.com>

130

4.2.2

CHAPTER 4
The page as an application

var myrules={
'#keyboard div' : function(key) {
var classes=(key.className) .split (" ");
if (classes && classes.length>=2
&& classes[l]=='musicalButton') {
var note=classes|[0];
key.note=note;
key.onmouseover=playNote;
}
}
Y
Behaviour.register (myrules) ;
Most of the logic is the same as in our previous example, but the use of CSS selec-
tors offers a concise alternative to programmatically locating DOM elements, par-
ticularly if we’re adding several behaviors at once.
That keeps the logic out of the view for us, but it’s also possible to tangle the

View up in the logic, as we will see.

Keeping the View out of the logic

We’ve reached the point now where the designers can develop the look of the
page without having to touch the code. However, as it stands, some of the func-
tionality of the application is still embedded in the HTML, namely, the ordering
of the keys. Each key is defined as a separate DIV tag, and the designers could
unwittingly delete some of them.

If the ordering of the keys is a business domain function rather than a design
issue—and we can argue that it is—then it makes sense to generate some of the
DOM for the component programmatically, rather than declare it in the HTML.
Further, we may want to have multiple components of the same type on a page. If
we don’t want the designer to modify the order of the keys on our keyboard, for
example, we could simply stipulate that they assign a DIV tag with the class key-
board and have our initialization code find it and add the keys programmatically.
Listing 4.4 shows the modified JavaScript required to do this.

var notes=new Array("do","re","mi","fa","so","la","ti","do");
function assignKeys () {
var candidates=document.getElementsByTagName ("div") ;
if (candidates) {
for(var i=0;i<candidates.length;i++) {
var candidate=candidates[i];
if (candidate.className.indexOf ('musicalKeys')>=0) {
makeKeyboard (candidate) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

The View in an Ajax application 131

}
function makeKeyboard(el) {
for (var 1=0;i<notes.length;i++) {

var key=document.createElement ("div") ;
key.className=notes[i]+" musicalButton";
key.note=notes[i];
key.onmouseover=playNote;
el.appendChild(key) ;

}
function playNote (event) {
var note=this.note;
var console=document.getElementById('console');
if (note && console) {
console.innerHTML+=note+" . ";

Previously, we had defined our key sequence in the HTML. Now it is defined as a
global JavaScript array. The assignkeys() method examines all the top-level
DIV tags in the document, to see if the className contains the value musical-
Keys. If it does, then it tries to populate that DIV with a working keyboard, using
the makeKeyboard() function. makeKeyboard() simply creates new DOM nodes
and then manipulates them in the same way as listing 4.4 did for the declared
DOM nodes that it encountered. The playNote() callback handler operates
exactly as before.

Because we are populating empty DIVs with our keyboard controls, adding a
second set of keys is simple, as listing 4.5 illustrates.

Listing 4.5 musical_dyn_keys.html

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html>

<title>Two Keyboards</title>

<head>

<link rel='stylesheet' type='text/css'
href="musical_dyn_keys.css'/>

<script type='text/javascript'
src='musical_dyn_keys.js'>

</script>

<script type='text/javascript'>

Licensed to jonathan zheng <yiyisun@gmail.com>

132

CHAPTER 4
The page as an application

window.onload=assignKeys;

</script>

</head>

<body>

<div id='keyboard-top' class='toplong musicalKeys'></div>
<div id='keyboard-side' class='sidebar musicalKeys'></div>
<div id='console' class='console'>

</div>

</body>

</html>

||

Adding a second keyboard is a single-line operation. Because we don’t want them
sitting one on top of the other, we move the placement styling out of the musical-
Keys style class and into separate classes. The stylesheet modifications are shown
in listing 4.6.

Listing 4.6 Changes to musical_dyn_keys.css

.musicalKeys{ <— Common keyboard styling
background-color: #ffe0do0;
border: solid maroon 2px;
position: absolute;
overflow: auto;
margin: 4px;

}

.toplong{ <— Geometry of keyboard |
width: 536px;
height: 68px;
top: 24px;
left: 24px;

}

.sidebar{ <— Geometry of keyboard 2
width: 48px;
height: 400px;
top: 24px;
left: 570px;

The musicalkeys class defines the visual style common to all keyboards. toplong
and sidebar simply define the geometry of each keyboard.

By refactoring our keyboard example in this way, we have made it possible to
reuse the code easily. However, the design of the keyboard is partly defined in the
JavaScript, in the makeKeyboard () function in listing 4.4, and yet, as figure 4.5
shows, one keyboard has a vertical layout and the other a horizontal one. How did
we achieve this?

Licensed to jonathan zheng <yiyisun@gmail.com>

The View in an Ajax application ‘ 133

port || Plug-in FAQ

do.la.ti.ti.la.so.fa. mi.re. mi.fa.so.la.ti.do.re.mi.fa.mi.la.ti
.do.fa.so.la.tido.re.fa.la.la.so.s0.s0.s0.s50.50.la.s0.fa.mi
.re.do.so.fa.mi.so.la.ti.

]

Figure 4.5 Our revised musical keyboard program allows the designer to specify
multiple keyboards. Using CSS-based styling and the native render engine, we can
accommodate both vertical and horizontal layouts without writing explicit layout
code in our JavaScript.

makeKeyboard () could easily have computed the size of the DIV that it was target-
ing and placed each button programmatically. In that case, we would need to get
quite fussy about deciding whether the DIV was vertical or horizontal and write
our own layout code. To a Java GUI programmer familiar with the internals of
LayoutManager objects, this may seem all too obvious a route to take. If we took
it, our programmers would wrest control of the widget’s look from the designers,
and trouble would ensue!

As it is, makeKeyboard () modifies only the structure of the document. The keys
are laid out by the browser’s own layout engine, which is controlled by style-
sheets—by the float style attribute in this case. It is important that the layout be
controlled by the designer. Logic and View remain separate, and peace reigns.

The keyboard was a relatively simple widget. In a larger, more complex wid-
get such as a tree table, it may be harder to see how the browser’s own render
engine can be coerced into doing the layout, and in some cases, programmatic
styling is inevitable. However, it’s always worth asking this question, in the inter-
ests of keeping View and Logic separate. The browser render engine is also a

Licensed to jonathan zheng <yiyisun@gmail.com>

134

4.3

4.3.1

CHAPTER 4
The page as an application

high-performing, fast, and well-tested piece of native code, and it is likely to beat
any JavaScript algorithms that we cook up.

That about wraps it up for the View for the moment. In the next section, we’ll
explore the role of the Controller in MVC and how that relates to JavaScript event
handlers in an Ajax application.

The Controller in an Ajax application

The role of the Controller in MVC is to serve as an intermediary between the
Model and the View, decoupling them from one another. In a GUI application
such as our Ajax client application, the Controller layer is composed of event
handlers. As is often the case with web browsers, techniques have evolved over
time, and modern browsers support two different event models. The classic
model is relatively simple and is in the process of being superseded by the newer
W3C specifications for event handling. At the time of writing, however, imple-
mentations of the new event-handling model vary between browsers and are
somewhat problematic. Both event models are discussed here.

Classic JavaScript event handlers

The JavaScript implementation in web browsers allows us to define code that will
be executed in response to a user event, typically either the mouse or keyboard.
In the modern browsers that support Ajax, these event handlers can be assigned
to most visual elements. We can use the event handlers to connect our visible user
interface, that is, the View, to the business object Model.

The classic event model has been around since the early days of JavaScript,
and is relatively simple and straightforward. DOM elements have a small number
of predefined properties to which callback functions can be assigned. For exam-
ple, to attach a function that will be called when the mouse is clicked on an ele-
ment myDomElement, we could write

myDomElement .onclick=showAnimatedMonkey

myDomElement is any DOM element that we have a programmatic handle on. show-
AnimatedMonkey is a function, defined as
function showAnimatedMonkey () {
//some skillfully executed code to display

//an engaging cartoon character here

}

Licensed to jonathan zheng <yiyisun@gmail.com>

The Controller in an Ajax application 135

that is, as an ordinary JavaScript function. Note that when we assign the event
handler, we pass the Function object, not a call to that object, so it doesn’t have
parentheses after the function name. This is a common mistake:

myDomElement .onclick=showAnimatedMonkey () ;

This looks more natural to programmers unaccustomed to treating functions as
first-class objects, but it will not do what we think. The function will be called
when we make the assignment, not when the DOM element is clicked. The
onclick property will be set to whatever is returned by the function. Unless you're
doing something extremely clever involving functions that return references to
other functions, this is probably not desirable. Here’s the right way to do it:

myDomElement .onclick=showAnimatedMonkey;

This passes a reference to our callback function to the DOM element, telling it
that this is the function to invoke when the node is clicked on. DOM elements
have many such properties to which event-handler functions can be attached.
Common event-handler callbacks for GUI work are listed in table 4.1. Similar
properties can be found elsewhere in web browser JavaScript, too. The xML-
HttpRequest.onreadystate and window.onload, which we have encountered
already, are also event handler functions that can be assigned by the programmer.

Table 4.1 Common GUI event handler properties in the DOM

Property Description
onmouseover Triggered when the mouse first passes into an element’s region.
onmouseout Triggered when the mouse passes out of an element’s region.
onmousemove Triggered whenever the mouse moves while within an element’s region

(i.e., frequently!).

onclick Triggered when the mouse is clicked within an element’s region.

onkeypress Triggered when a key is pressed while this element has input focus. Global key
handlers can be attached to the document’s body.

onfocus A visible element receives input focus.

onblur A visible element loses input focus.

There is an unusual feature of the event handler functions worth mentioning
here, as it trips people up most frequently when writing object-oriented Java-
Script, a feature that we will lean on heavily in developing Ajax clients.

Licensed to jonathan zheng <yiyisun@gmail.com>

136

CHAPTER 4
The page as an application

We’ve got a handle on a DOM element, and assigned a callback function to the
onclick property. When the DOM element receives a mouse click, the callback is
invoked. However, the function context (that is, the value that variable this
resolves to—see appendix B for a fuller discussion of JavaScript Function objects)
is assigned to the DOM node that received the event. Depending on where and
how the function was originally declared, this can be very confusing.

Let's explore the problem with an example. We define a class to represent a
button object, which has a reference to a DOM node, a callback handler, and a
value that is displayed when the button is clicked. Any instance of the button will
respond in the same way to a mouse click event, and so we define the callback
handler as a method of the button class. That’s a sufficient spec for starters, so
let’s look at the code. Here’s the constructor for our button:

function Button(value, domEl) {

this.domEl=domEl;
this.value=value;

this.domEl.onclick=this.clickHandler;
}

We go on to define an event handler as part of the Button class:

Button.prototype.clickHandler=function () {
alert (this.value) ;
}
It looks straightforward enough, but it doesn’t do what we want it to. The alert
box will generally return a message undefined, not the value property that we
passed to the constructor. Let’s see why. The function clickHandler gets invoked
by the browser when the DOM element is clicked, and it sets the function context
to the DOM element, not the Button JavaScript object. So, this.value refers to
the value property of the DOM element, not the Button object. You’d never tell by
looking at the declaration of the event-handler function, would you?
We can fix things up by passing a reference to the Button object to the DOM
element, that is, by modifying our constructor like this:
function Button (value,domEl) {
this.domEl=domEl;
this.value=value;
this.domEl.buttonObj=this;
this.domEl.onclick=this.clickHandler;
}
The DOM element still doesn’t have a value property, but it has a reference to the
Button object, which it can use to get the value. We finish up by altering the event
handler like this:

Licensed to jonathan zheng <yiyisun@gmail.com>

4.3.2

The Controller in an Ajax application 137

Button.prototype.clickHandler=function () {
var buttonObj=this.buttonObj;
var value=(buttonObj && buttonObj.value) ?
buttonObj.value : "unknown value";
alert (value) ;
}
The DOM node refers to the Button, which refers to its value property, and our
event handler does what we want it to. We could have attached the value directly
to the DOM node, but attaching a reference to the entire backing object allows
this pattern to work easily with arbitrarily complex objects. In passing, it’s worth
noting that we’ve implemented a mini-MVC pattern here, with the DOM element
View fronting a backing object Model.

That’s the classic event model, then. The main shortcoming of this event
model is that it allows only one event-handler function per element. In the
Observer pattern that we presented in chapter 3, we noted that an observable ele-
ment could have any number of observers attached to it at a given time. When
writing a simple script for a web page, this is unlikely to be a serious shortcoming,
but as we move toward the more complex Ajax clients, we start to feel the con-
straint more. We will take a closer look at this in section 4.3.3, but first, let’s look
at the more recent event model.

The W3C event model

The more flexible event model proposed by the W3C is complex. An arbitrary
number of listeners can be attached to a DOM element. Further, if an action takes
place in a region of the document in which several elements overlap, the event
handlers of each are given an opportunity to fire and to veto further calls in the
event stack, known as “swallowing” the event. The specification proposes that the
event stack be traversed twice in total, first propagating from outermost to inner-
most (from the document element down) and then bubbling up again from the
inside to the outside. In practice, different browsers implement different subsets
of this behavior.

In Mozilla-based browsers and Safari, event callbacks are attached using
addEventListener () and removed by a corresponding removeEventListener ().
Internet Explorer offers similar functions: attachEvent () and detachEvent().
Mike Foster’s xEvent object (part of the x library—see the Resources section at the
end of this chapter) makes a brave attempt at creating a Fagade (see chapter 3)
across these implementations in order to provide a rich cross-browser event model.

There is a further cross-browser annoyance here, as the callback handler func-
tions defined by the user are called slightly differently. Under Mozilla browsers,

Licensed to jonathan zheng <yiyisun@gmail.com>

138

4.3.3

CHAPTER 4
The page as an application

the function is invoked with the DOM element receiving the event as a context
object, as for the classic event model. Under Internet Explorer, the function
context is always the Window object, making it impossible to work out which
DOM element is currently calling the event handler! Even with a layer such as
xEvent in place, developers need to account for these variations when writing
their callback handlers.

The final issue to mention here is that neither implementation provides a sat-
isfactory way of returning a list of all currently attached listeners.

At this point, I advise you not to use the newer event model. The main short-
coming of the classic model—lack of multiple listeners—can be addressed by the
use of design patterns, as we will see next.

Implementing a flexible event model in JavaScript

Because of the incompatibilities of the newer W3C event model, the promise of a
flexible event listener framework remains just out of reach. We described the
Observer pattern in chapter 3, and that seems to fit the bill nicely, allowing us to
add and remove observers from the event source in a flexible fashion. Clearly, the
W3C felt the same way, as the revised event model implements Observer, but the
browser vendors delivered inconsistent and just plain broken implementations.
The classic event model falls far short of the Observer pattern, but perhaps we
can enhance it a little with some code of our own.

Managing multiple event callbacks

Before going on to implement our own solution, let’s come to grips with the prob-
lem through a simple example. Listing 4.7 shows a simple web page, in which a
large DIV area responds to mouse move events in two ways.

<html>
<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<script type='text/javascript'>
var cursor=null;
window.onload=function () {
var mat=document.getElementById('mousemat') ;
mat.onmousemove=mouseObserver;
cursor=document .getElementById('cursor') ;
}
function mouseObserver (event) {
var e=event || window.event;
writeStatus(e) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

The Controller in an Ajax application 139

drawThumbnail (e) ;

}

function writeStatus(e) {
window.status=e.clientX+", "+e.clientY;

}

function drawThumbnail (e) {
cursor.style.left=((e.clientX/5)-2)+"px";
cursor.style.top=((e.clientY/5)-2)+"px";

}

</script>

</head>

<body>

<div class='mousemat' id='mousemat'></div>

<div class='thumbnail' id='thumbnail'>
<div class='cursor' id='cursor'/>

</div>

</body>

</html>

||

First, it updates the browser status bar, in the writeStatus () function. Second, it
updates a smaller thumbnail image of itself, by repositioning a dot in the thumb-
nail area, to copy the mouse pointer’s movements, in the drawThumbnail () func-
tion. Figure 4.6 shows the page in action.

These two actions are independent of each other, and we would like to be able
to swap these and other responses to the mouse movement in and out at will, even
while the program is running.

The mouseObserver () function is our event listener. (The first line is perform-
ing some simple cross-browser magic, by the way. Unlike Mozilla, Opera, or
Safari, Internet Explorer doesn’t pass any arguments to the callback handler
function, but stores the Event object in window.event.) In this example, we have
hardwired the two activities in the event handler, calling writeStatus () and draw-
Thumbnail () in turn. The program does exactly what we want it to do, and,
because it is a small program, the code for mouseObserver () is reasonably clear.
Ideally, though, we would like a cleaner way to wire the event listeners together,
allowing the approach to scale to more complex or dynamic situations.

Implementing Observer in JavaScript

The proposed solution is to define a generic event router object, which attaches a
standard function to the target element as an event callback and maintains a list
of listener functions. This would allow us to rewrite our mousemat initialization
code in this way:

Licensed to jonathan zheng <yiyisun@gmail.com>

140

CHAPTER 4
The page as an application

window.onload=function () {
var mat=document.getElementById('mousemat') ;

var mouseRouter=new jsEvent.EventRouter (mat, "onmousemove") ;

mouseRouter.addListener (writeStatus) ;

mouseRouter.addListener (drawThumbnail) ;

}

We define an EventRouter object, passing in the DOM element and the type of
event that we would like to register as arguments. We then add listener functions
to the router object, which also supports a removeListener () method that we
don’t need here. It looks straightforward, but how do we implement it?

Location Edit View Go Bookmarks Tools Settings Window Help
Q0 0,0 O e A A W S ﬁ
B> Location: = file:/mnt/removable/writingtech/ria/drafts/ch3/mousemat_observer_pattern html ; 7
Mandrakesoft Mandrakestore Mandrakeclub Mandrakeexpert Mandrakeonline ,'; Dr.Web - Antivirus Tools »
-
X
v

149,390

Figure 4.6 The Mousemat program tracks mouse movement events on the main “virtual
mousemat” area in two ways: by updating the browser status bar with the mouse coordinates and
by moving the dot on the thumbnail view in sync with the mouse pointer.

Licensed to jonathan zheng <yiyisun@gmail.com>

The Controller in an Ajax application 141

First, we write a constructor for the object, which in JavaScript is simply a func-
tion. (Appendix B contains a primer on the syntax of JavaScript objects. Take a
look if any of the following code looks strange or confusing.)

jsEvent.EventRouter=function (el, eventType) {

this.lsnrs=new Array();

this.el=el;

el.eventRouter=this;

el [eventType]=jsEvent.EventRouter.callback;

}

We define the array of listener functions, which is initially empty, take a refer-
ence to the DOM element, and give it a reference to this object, using the pattern
we described in section 3.5.1. We then assign a static method of the EventRouter
class, simply called callback, as the event handler. Remember that in JavaScript,
the square bracket and dot notations are equivalent, which means

el.onmouseover
is the same as
el['onmouseover']

We use this to our advantage here, passing in the name of a property as an argu-
ment. This is similar to reflection in Java or the .NET languages.
Let’s have a look at the callback then:

jsEvent.EventRouter.callback=function (event) {
var e=event || window.event;
var router=this.eventRouter;
router.notify(e)
}
Because this is a callback, the function context is the DOM node that fired the
event, not the router object. We retrieve the EventRouter reference that we had
attached to the DOM node, using the backing object pattern that we saw earlier.
We then call the notify() method of the router, passing the event object in as
an argument.
The full code for the Event Router object is shown in listing 4.8.

var jsEvent=new Array () ;
jsEvent.EventRouter=function (el, eventType) {
this.lsnrs=new Array();
this.el=el;
el.eventRouter=this;

Licensed to jonathan zheng <yiyisun@gmail.com>

142 CHAPTER 4
The page as an application

el [eventTypel=jsEvent.EventRouter.callback;
}
jsEvent.EventRouter.prototype.addListener=function (lsnr) {
this.lsnrs.append(lsnr, true) ;
}
jsEvent.EventRouter.prototype.removeListener=function (lsnr) {
this.lsnrs.remove (lsnr) ;
}
jsEvent.EventRouter.prototype.notify=function (e) {
var lsnrs=this.lsnrs;
for(var i=0;i<lsnrs.length;i++) {
var lsnr=lsnrs[i];
lsnr.call(this,e);

}
jsEvent.EventRouter.callback=function (event) {
var e=event || window.event;
var router=this.eventRouter;
router.notify(e)

Note that some of the methods of the array are not standard JavaScript but have
been defined by our extended array definition, which is discussed in appendix
B. Notably, addListener () and removeListener () are simple to implement using
the append() and remove() methods. Listener functions are invoked using the
Function.call() method, whose first argument is the function context, and sub-
sequent arguments (in this case the event) are passed through to the callee.

The revised mousemat example is shown in listing 4.9.

ng 4.9 Revised mousemat.html, using EventRouter

<html>
<head>
<link rel='stylesheet' type='text/css' href='mousemat.css' />
<script type='text/javascript' src='extras-array.js'></script>
<script type='text/javascript' src='eventRouter.js'></script>
<script type='text/javascript'>
var cursor=null;
window.onload=function () {
var mat=document.getElementById('mousemat') ;
cursor=document .getElementById('cursor') ;
var mouseRouter=new jsEvent.EventRouter (mat, "onmousemove") ;
mouseRouter.addListener (writeStatus) ;
mouseRouter.addListener (drawThumbnail) ;
}
function writeStatus(e) {
window.status=e.clientX+", "+e.clientY

Licensed to jonathan zheng <yiyisun@gmail.com>

4.4

Models in an Ajax application 143

}

function drawThumbnail (e) {
cursor.style.left=((e.clientX/5)-2)+"px";
cursor.style.top=((e.client¥Y/5)-2)+"px";

}

</script>

</head>

<body>

<div class='mousemat' id='mousemat'></div>

<div class='thumbnail' id='thumbnail'>
<div class='cursor' id='cursor'/>

</div>

</body>

</html>

||

The inline JavaScript is greatly simplified. All we need to do is create the Event-
Router, pass in the listener functions, and provide implementations for the listen-
ers. We leave it as an exercise for the reader to include checkboxes to add and
remove each listener dynamically.

This rounds out our discussion of the Controller layer in an Ajax application
and the role that design patterns—Observer in particular—can play in keeping it
clean and easy to work with. In the following section, we’ll look at the final part of
the MVC pattern, the Model.

Models in an Ajax application

The Model is responsible for representing the business domain of our applica-
tion, that is, the real-world subject that the application is all about, whether that is
a garment store, a musical instrument, or a set of points in space. As we’ve noted
already, the Document Object Model is not the model at the scale at which we’re
looking at the application now. Rather, the model is a collection of code that we
have written in JavaScript. Like most design patterns, MVC is heavily based on
object-oriented thinking.

JavaScript is not designed as an OO language, although it can be persuaded
into something resembling object orientation without too much struggle. It does
support the definition of something very similar to object classes through its pro-
totype mechanism, and some developers have gone as far as implementing
inheritance systems for JavaScript. We discuss these issues further in appendix B.
When implementing MVC in JavaScript so far, we’ve adapted it to the JavaScript
style of coding, for example, passing Function objects directly as event listeners.
When it comes to defining the model, however, using JavaScript objects, and as

Licensed to jonathan zheng <yiyisun@gmail.com>

144

4.4.1

CHAPTER 4
The page as an application

much of an OO approach as we’re comfortable with for the language, makes good
sense. In the following section, we’ll show how that is done.

Using JavaScript to model the business domain

When discussing the View, we are very much tied to the DOM. When we talk about
the Controller, we are constrained by the browser event models. When writing the
Model, however, we are dealing almost purely with JavaScript and have very little
to do with browser-specific functionality. Those who have struggled with browser
incompatibilities and bugs will recognize this as a comfortable situation in which
to be.

Let’s look at a simple example. In chapter 3 we discussed our garment store
application, from the point of view of generating a data feed from the server. The
data described a list of garment types, in terms of a unique ID, a name, and a
description, along with price, color, and size information. Let’s return to that
example now and consider what happens when the data arrives at the client.
Over the course of its lifetime, the application will receive many such streams of
data and have a need to store data in memory. Think of this as a cache if you
like—data stored on the client can be redisplayed very quickly, without needing to
go back to the server at the time at which the user requests the data. This benefits
the user’s workflow, as discussed in chapter 1.

We can define a simple JavaScript object that corresponds to the garment
object defined on the server. Listing 4.10 shows a typical example.

var garments=new Array/();

function Garment (id, title,description,price) {
this.id=id;
garments[id]=this;
this.title=title;
this.description=description;
this.price=price;
this.colors=new Object();
this.sizes=new Object () ;

}

Garment .prototype.addColor (color) {
this.colors.append(color, true) ;

}

Garment .prototype.addSize (size) {
this.sizes.append(size, true) ;

}

Licensed to jonathan zheng <yiyisun@gmail.com>

4.4.2

Models in an Ajax application 145

We define a global array first of all, to hold all our garments. (Yes, global variables
are evil. In production, we’d use a namespacing object, but we’ve omitted that for
clarity here.) This is an associative array, keyed by the garment’s unique ID,
ensuring that we have only one reference to each garment type at a time. In the
constructor function, we set all the simple properties, that is, those that aren’t
arrays. We define the arrays as empty and provide simple adder methods, which
uses our enhanced array code (see appendix B) to prevent duplicates.

We don’t provide getter or setter methods by default and don’t support the full
access control—private, protected, and public variables and methods—that a full
OO language does. There are ways of providing this feature, which are discussed
in appendix B, but my own preference is to keep the Model simple.

When parsing the XML stream, it would be nice to initially build an empty
Garment object and then populate it field by field. The astute reader may be won-
dering why we haven’t provided a simpler constructor. In fact, we have. JavaScript
function arguments are mutable, and any missing values from a call to a function
will simply initialize that value to null. So the call

var garment=new Garment (123) ;
will be treated as identical to
var garment=new Garment (123,null,null,null);

We need to pass in the ID, because we use that in the constructor to place the new
object in the global list of garments.

Interacting with the server

We could parse the XML feed of the type shown in listing 4.10 in order to gener-
ate Garment objects in the client application. We’ve already seen this in action in
chapter 2, and we’ll see a number of variations in chapter 5, so we won’t go into
all the details here. The XML document contains a mixture of attributes and tag
content. We read attribute data using the attributes property and getNamed-
Item() function and read the body text of tags using the firstchild and data
properties, for example:

garment .description=descrTag.firstChild.data;
to parse an XML fragment such as

<description>Large tweedy hat looking
like an unappealing strawberry
</description>

Licensed to jonathan zheng <yiyisun@gmail.com>

146

CHAPTER 4
The page as an application

Note that garments are automatically added to our array of all garments as they
are created, simply by invoking the constructor. Removing a garment from the
array is also relatively straightforward:
function unregisterGarment (id) {
garments[id]=null;
}
This removes the garment type from the global registry, but won’t cascade to
destroy any instances of Garment that we have already created. We can add a sim-
ple validation test to the Garment object, however:
Garment.prototype.isValid=function() {
return garments[this.id]!=null;
}
We’ve now defined a clear path for propagating data all the way from the data-
base to the client, with nice, easy-to-handle objects at each step. Let’s recap the
steps. First, we generate a server-side object model from the database. In
section 3.4.2, we saw how to do this using an Object-Relational Mapping (ORM)
tool, which gave us out-of-the-box two-way interactions between object model
and database. We can read data into objects, modify it, and save the data.

Second, we used a template system to generate an XML stream from our object
model, and third, we parsed this stream in order to create an object model on the
JavaScript tier. We must do this parsing by hand for now. We may see ORM-like
mapping libraries appearing in the near future.

In an administrative application, of course, we might want to edit our data too,
that is, modify the JavaScript model, and then communicate these changes back
to the server model. This forces us to confront the issue that we now have two cop-
ies of our domain model and that they may get out of sync with each other.

In a classic web application, all the intelligence is located on the server, so our
model is located there, in whatever language we’re using. In an Ajax application,
we want to distribute the intelligence between the client and the server, so that the
client code can make some decisions for itself before calling back to the server. If
the client makes only very simple decisions, we can code these in an ad hoc way,
but then we won’t get much of the benefit of an intelligent client, and the system
will tend to still be unresponsive in places. If we empower the client to make more
important decisions for itself, then it needs to know something about our busi-
ness domain, at which point it really needs to have a model of the domain.

We can’t do away with the domain model on the server, because some resources
are available only on the server, such as database connections for persistence,

Licensed to jonathan zheng <yiyisun@gmail.com>

4.5

4.5.1

Generating the View from the Model 147

access to legacy systems, and so on. The client-side domain model has to work
with the one on the server. So, what does that entail? In chapter 5 we will develop
a fuller understanding of the client/server interactions and how to work cleanly
with a domain model split across both tiers.

So far we’ve looked at Model, View, and Controller in isolation. The final topic
for this chapter brings the Model and View together again.

Generating the View from the Model

By introducing MVC into the browser, we've given ourselves three distinct sub-
systems to worry about. Separating concerns may result in cleaner code, but it can
also result in a lot of code, and a common critique of design patterns is that they
can turn even the simplest task into quite an involved process (as Enterprise Java-
Beans [E]B] developers know only too well!).

Many-layered application designs often end up repeating information across
several layers. We know the importance of DRY code, and a common way of tack-
ling this repetition is to define the necessary information once, and generate the
various layers automatically from that definition. In this section, we’ll do just that,
and present a technique that simplifies the MVC implementation and brings
together all three tiers in a simple way. Specifically, we’ll target the View layer.

So far, we've looked at the View as a hand-coded representation of the under-
lying Model. This gives us considerable flexibility in determining what the user
sees, but at times, we won't need this flexibility, and hand-coding the UI can
become tedious and repetitive. An alternative approach is to automatically gener-
ate the user interface, or at least portions of it, from the underlying Model. There
are precedents for doing this, such as the Smalltalk language environments and
the Java/.NET Naked Objects framework (see the Resources section), and Java-
Script is well suited to this sort of task. Let’s have a look at what JavaScript reflec-
tion can do for us in this regard, and develop a generic “Object Browser”
component, that can be used as a View for any JavaScript object that we throw at it.

Reflecting on a JavaScript object

Most of the time when we write code to manipulate an object, we already have a
fairly good idea of what the object is and what it can do. Sometimes, however,
we need to code blindly, as it were, and examine the object without any prior
knowledge. Generating a user interface for our domain model objects is just
such a case. Ideally, we would like to develop a reusable solution that can be
equally applied to any domain—finance, e-commerce, scientific visualization,

Licensed to jonathan zheng <yiyisun@gmail.com>

148

CHAPTER 4
The page as an application

I
“| name mercury 4
— distance 039 [1

: : rery hot, because it is so close to the s
_| diameter 0.38 text very hot, because it is so close to the sun

y author dave Fig 4.7
igure 4.
B ithage date Wed Jun 29 2005 22:26:27 GMT+0100 (GMT) o .
image ‘ WadJon : Here the ObjectViewer is used

4 to display a hierarchical system

facts [0] === text smallest planet in the inner solar system of planets each of which
i ’
author dave contains a number of
— date Wed Jun 20 2005 22:26:00 GMT+0100 (GMT) informational properties, plus a

list of facts stored as an array.

and so on. This section presents just such a JavaScript library, the ObjectViewer,
that can be used in your own applications. To give you a taste of the Object-
Viewer in action, figure 4.7 shows the ObjectViewer displaying several layers of a
complex object graph.

The object being viewed, representing the planet Mercury, is quite sophisti-
cated, with properties including an image URL, an array of facts, as well as simple
strings and numbers. Our ObjectViewer can handle all of these intelligently with-
out knowing anything specific about the type of object in advance.

The process of examining an object and querying its properties and capabili-
ties is known as reflection. Readers with a familiarity to Java or .NET should already
be familiar with this term. We discuss JavaScript’s reflection capabilities in more
detail in appendix B. To summarize briefly here, a JavaScript object can be iter-
ated over as if it were an associative array. To print out all the properties of an
object, we can simply write

var description="";
for (var i in MyObj) {
var property=MyObj[il];
description+=i+" = "+4property+"\n";
;lert(description);
Presenting data as an alert is fairly primitive and doesn’t integrate with the rest of
a Ul very well. Listing 4.11 presents the core code for the ObjectViewer object.

Listing 4.11 ObjectViewer object

objviewer.ObjectViewer=function (obj,div, isInline, addNew) {
styling.removeAllChildren (div) ;
this.object=0bj;
this.mainDiv=div;
this.mainDiv.viewer=this;

Licensed to jonathan zheng <yiyisun@gmail.com>

Generating the View from the Model 149

this.isInline=isInline;
this.addNew=addNew;

var table=document.createElement ("table") ;
this.tbod=document.createElement ("tbody") ;
table.appendChild(this. tbod) ;
this.fields=new Array();

this.children=new Array();

for (var 1

in this.object) {

this.fields[i]l=new objviewer.PropertyViewer (

this,
)
}

objviewer.PropertyViewer=function (objectViewer, name) {
this.objectViewer=objectViewer;
this.name=name;

this.value=
this.rowTr=
this.rowTr.
this.valTd=
this.valTd.
this.valTd.
this.rowTr.
var valDiv=
this.valTd.

objectViewer.object[this.name] ;
document .createElement ("tr") ;
className="'objViewRow' ;
document.createElement ("td") ;
className="'objViewValue';
viewer=this;
appendChild(this.valTd) ;
this.renderSimple() ;
appendChild(valDiv) ;

viewer.tbod.appendChild(this.rowTr) ;

}

objviewer.PropertyViewer.prototype.renderSimple=function () {

var valDiv=document.createElement ("div") ;
var valTxt=document.createTextNode (this.value) ;
valDiv.appendChild(valTxt) ;

if (this.
valDiv.
valDiv.
valDiv.

}

spec.editable) {

className+=" editable";

viewer=this;
onclick=objviewer.PropertyViewer.editSimpleProperty;

return valDiv;

Our library contains two objects: an ObjectViewer, which iterates over the mem-
bers of an object and assembles an HTML table in which to display the data, and
a PropertyViewer, which renders an individual property name and value as a

table row.

This gets the basic job done, but it suffers from several problems. First, it will
iterate over every property. If we have added helper functions to the Object pro-
totype, we will see them. If we do it to a DOM node, we see all the built-in prop-
erties and appreciate how heavyweight a DOM element really is. In general, we

Licensed to jonathan zheng <yiyisun@gmail.com>

150

CHAPTER 4
The page as an application

want to be selective about which properties of our object we show to the user. We
can specify which properties we want to display for a given object by attaching a
special property, an Array, to the object before passing it to the object renderer.
Listing 4.12 illustrates this.

Listing 4.12 Using the objVviewSpec property

objviewer.ObjectViewer=function (obj,div, isInline, addNew) {
styling.removeAllChildren (div) ;
this.object=0bj;
this.spec=objviewer.getSpec (obj) ;
this.mainDiv=div;
this.mainDiv.viewer=this;
this.isInline=isInline;
this.addNew=addNew;
var table=document.createElement ("table");
this.tbod=document.createElement ("tbody") ;
table.appendChild(this.tbod) ;
this.fields=new Array();
this.children=new Array();
for (var 1=0;i<this.spec.length;i++) {
this.fields[i]=new objviewer.PropertyViewer (
this, this.spec[i]
)i
}
objviewer.getSpec=function (obj) {
return (obj.objViewSpec) ?
obj.objViewSpec
objviewer.autoSpec (obj) ;
}
objviewer.autoSpec=function (obj) {
var members=new Array () ;
for (var propName in obj) {
var spec={name:propName} ;
members.append (spec) ;
}
return members;
}
objviewer.PropertyViewer=function (objectViewer, memberSpec) {
this.objectViewer=objectViewer;
this.spec=memberSpec;
this.name=this.spec.name;

We define a property objviewSpec, which the ObjectViewer constructor looks for
in each object. If it can’t find such a property, it then resorts to creating one by

Licensed to jonathan zheng <yiyisun@gmail.com>

4.5.2

Generating the View from the Model 151

iterating over the object in the autoSpec () function. The objviewSpec property is
a numerical array, with each element being a lookup table of properties. For now,
we're only concerned with generating the name property. The PropertyViewer is
passed the spec for this property in its constructor and can take hints from the
spec as to how it should render itself.

If we provide a specification property to an object that we want to inspect in
the ObjectViewer, then we can limit the properties being displayed to those that
we think are relevant.

A second problem with our ObjectViewer is that it doesn’t handle complex
properties very well. When objects, arrays, and functions are appended to a
string, the tostring() method is called. In the case of an object, this generally
returns something nondescriptive such as [Object object]. In the case of a
Function object, the entire source code for the function is returned. We need to
discriminate between the different types of properties, which we can do using
the instanceof operator. With that in place, let’s see how we can improve on
our viewer.

Dealing with arrays and objects

One way of handling arrays and objects is to allow the user to drill down into
them using separate ObjectViewer objects for each property. There are several
ways of representing this. We have chosen here to represent child objects as pop-
out windows, somewhat like a hierarchical menu.

To achieve this, we need to do two things. First, we need to add a type property
to the object specification and define the types that we support:

objviewer.TYPE_SIMPLE="simple";

objviewer.TYPE_ARRAY="array";

objviewer.TYPE_FUNCTION="function";

objviewer.TYPE_IMAGE_URL="image url";

objviewer.TYPE_OBJECT="object";
We modify the function that generates specs for objects that don’t come with their
own to take account of the type, as shown in listing 4.13.

objviewer.autoSpec=function (obj) {
var members=new Array () ;
for (var propName in obj) {
var propValue=obj[name];
var propType=objviewer.autoType (value) ;
var spec={name:propName, type:propType};

Licensed to jonathan zheng <yiyisun@gmail.com>

152

CHAPTER 4
The page as an application

members.append (spec) ;
}
if (obj && obj.length>0) {
for (var i1i=0;i<obj.length;i++) {
var propName="array ["+i+"]";
var propValue=obj[i];
var propType=objviewer.ObjectViewer.autoType (value) ;
var spec={name:propName, type:propType};
members.append (spec) ;

}
return members;
}
objviewer.autoType=function (value) {
var type=objviewer.TYPE_SIMPLE;
if ((value instanceof Array)) {
type=objviewer.TYPE_ARRAY;
}else if (value instanceof Function) {
type=objviewer.TYPE_FUNCTION;
}else if (value instanceof Object) {
type=objviewer.TYPE_OBJECT;
}

return type;

Note that we also add support for numerically indexed arrays, whose elements
wouldn’t be discovered by the for. . .in style of loop.

The second thing that we need to do is to modify the PropertyViewer to take
account of the different types and render them accordingly, as shown in
listing 4.14.

ng 4.14 Modified PropertyViewer constructor

objviewer.PropertyViewer=function
(objectViewer, memberSpec, appendAtTop) {
this.objectViewer=objectViewer;
this.spec=memberSpec;
this.name=this.spec.name;
this.type=this.spec.type;
this.value=objectViewer.object[this.name];
this.rowTr=document.createElement ("tr") ;
this.rowTr.className="'objViewRow' ;
var isComplexType=(this.type==objviewer.TYPE_ARRAY

| |this. type==objviewer.TYPE_OBJECT) ;

if (!(isComplexType && this.objectViewer.isInline

) {

this.nameTd=this.renderSideHeader () ;

Licensed to jonathan zheng <yiyisun@gmail.com>

Generating the View from the Model

this.rowTr.appendChild(this.nameTd) ;

}

this.valTd=document.createElement ("td") ;

this.valTd.className="'objViewValue';

this.valTd.viewer=this;
this.rowTr.appendChild(this.valTd) ;

if (isComplexType) {
if (this.viewer.isInline) {

this.valTd.colSpan=2;
var nameDiv=this.renderTopHeader () ;
this.valTd.appendChild (nameDiv) ;
var valDiv=this.renderInlineObject () ;
this.valTd.appendChild(valDiv) ;
}else{
var valDiv=this.renderPopoutObject () ;
this.valTd.appendChild(valDiv) ;
}

}else if (this.type==objviewer.TYPE_IMAGE_URL) {
var valImg=this.renderImage() ;
this.valTd.appendChild(valImg) ;

}else if (this.type==objviewer.TYPE_SIMPLE) {
var valTxt=this.renderSimple() ;
this.valTd.appendChild(valTxt) ;

}

if (appendAtTop) {
styling.insertAtTop (viewer.tbod, this.rowTr) ;

}else{
viewer.tbod.appendChild(this.rowTr) ;

153

To accommodate the various types of properties, we have defined a number of
rendering methods, the implementation of which is too detailed to reproduce in
full here. Source code for the entire ObjectViewer can be downloaded from the
website that accompanies this book.

We now have a fairly complete way of viewing our domain model automati-
cally. To make the domain model objects visible, all that we need to do is to assign
objViewSpec properties to their prototypes. The Planet object backing the view
shown in figure 4.7, for example, has the following statement in the constructor:

this.objViewSpec=[

{name: "name", type:"simple"},

{name: "distance", type:"simple", editable:true},

{name: "diameter", type:"simple", editable:true},

{name: "image", type:"image url"},

{name: "facts", type:"array", addNew:this.newFact, inline:true }

Licensed to jonathan zheng <yiyisun@gmail.com>

154

4.5.3

CHAPTER 4
The page as an application

The notation for this specification is the JavaScript object notation, known as
JSON. Square braces indicate a numerical array, and curly braces an associative
array or object (the two are really the same). We discuss JSON more fully in
appendix B.

There are a few unexplained entries here. What do addNew, inline, and edit-
able mean? Their purpose is to notify the View that these parts of the domain
model can not only be inspected but also modified by the user, bringing in the
Controller aspects of our system, too. We’ll look at this in the next section.

Adding a Controller

It’s nice to be able to look at a domain model, but many everyday applications
require us to modify them too—download the tune, edit the document, add items
to the shopping basket, and so on. Mediating between user interactions and the
domain model is the responsibility of the Controller, and we’ll now add that func-
tionality to our ObjectViewer.

The first thing that we’d like to do is to be able to edit simple text values when
we click on them, if our specification object flags them as being editable.
Listing 4.15 shows the code used to render a simple text property.

objviewer.PropertyViewer.prototype.renderSimple=function() {
var valDiv=document.createElement ("div") ;
var valTxt=document
.createTextNode (this.value); <— Show read-only value
valDiv.appendChild (valTxt) ;
if (this.spec.editable){) Add interactivity if editable
valDiv.className+=" editable";
valDiv.viewer=this;
valDiv.onclick=objviewer.PropertyViewer.editSimpleProperty;
}
return valDiv;
}
objviewer.PropertyViewer.editSimpleProperty=function (e) { 6) Begin editing
var viewer=this.viewer;
if (viewer) {
viewer.edit () ;
}
}
objviewer.PropertyViewer.prototype.edit=function () {
if (this.type=objviewer.TYPE_SIMPLE) {
var editor=document.createElement ("input") ;
editor.value=this.value;
document .body . appendChild (editor) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

Generating the View from the Model 155

var td=this.valTd;

xLeft (editor,xLeft (td)) ;
xTop (editor,xTop (td)) ;
xWidth (editor,xWidth(td)) ;
xHeight (editor,xHeight (td)) ;

td.replaceChild(editor, td.firstChild) ; 9 Replace with read/write view
editor.onblur=objviewer.
PropertyViewer.editBlur; o Add commit callback

editor.viewer=this;
editor.focus () ;
}
}
objviewer.PropertyViewer
.editBlur=function(e){ @ Finish editing
var viewer=this.viewer;
if (viewer) {
viewer.commitEdit (this.value) ;
}
}
objviewer.PropertyViewer.prototype.commitEdit=function (value) {
if (this.type==objviewer.TYPE_SIMPLE) {
this.value=value;
var valDiv=this.renderSimple () ;
var td=this.valTd;
td.replaceChild(valDiv, td.firstChild) ;
this.objectViewer
.notifyChange (this) ; G Notify observers

Editing a property involves several steps. First, we want to assign an onclick han-
dler to the DOM element displaying the value, if the field is editable @. We also
assign a specific CSS classname to editable fields, which will make them change
color when the mouse hovers over them. We need the user to be able to realize
that she can edit the field, after all.

editSimpleProperty() @ is a simple event handler that retrieves the reference
to the PropertyViewer from the clicked DOM node and calls the edit () method.
This way of connecting the View and Controller should be familiar from
section 4.3.1. We check that the property type is correct and then replace the
read-only label with an equivalent-sized HTML form text input, containing the
value €. We also attach an onblur handler to this text area @), which replaces the
editable area with a read-only label @ and updates the domain model.

We can manipulate the domain model in this way, but in general, we would often
like to take some other action when the model is updated. The notifyChange ()

Licensed to jonathan zheng <yiyisun@gmail.com>

156 CHAPTER 4
The page as an application

method of the ObjectViewer @, invoked in the commitEdit () function, comes into
play here. Listing 4.16 shows this function in full.

objviewer.ObjectViewer.prototype
.notifyChange=function (propViewer) {
if (this.onchangeRouter) {
this.onchangeRouter.notify (propViewer) ;
}
if (this.parentObjViewer) {
this.parentObjViewer.notifyChange (propViewer) ;
}
}
objviewer.ObjectViewer.prototype
.addChangeListener=function(lsnr) {
if (!this.onchangeRouter) {
this.onchangeRouter=new jsEvent.EventRouter (this, "onchange") ;
}
this.onchangeRouter.addListener (1lsnr) ;
}
objviewer.ObjectViewer.prototype
.removeChangeListener=function (lsnr) {
if (this.onchangeRouter) {
this.onchangeRouter.removeListener (lsnr) ;

}

The problem we are facing—notifying arbitrary processes of a change in our
domain model—is ideally solved by the Observer pattern and the EventRouter
object that we defined in section 4.3.3. We could attach an EventRouter to the
onblur event of the editable fields, but a complex model may contain many of
these, and our code shouldn’t have visibility of such fine details in the Object-
Viewer implementation.

Instead, we define our own event type on the ObjectViewer itself, an onchange
event, and attach an EventRouter to that. Because our ObjectViewers are
arranged in a tree structure when drilling down on object and array properties,
we pass onchange events to the parent, recursively. Thus, in general, we can attach
listeners to the root ObjectViewer, the one that we create in our application code,
and changes to model properties several layers down the object graph will prop-
agate back up to us.

A simple example of an event handler would be to write a message to the
browser status bar. The top-level object in a model of planets is the solar system,
SO we can write

Licensed to jonathan zheng <yiyisun@gmail.com>

4.6

Summary 157

var topview=new objviewer.ObjectViewer
(planets.solarSystem,mainDiv) ;
topview.addChangeListener (testListener) ;

where testListener is an event-handler function that looks like this:

function testListener (propviewer) {
window.status=propviewer.name+" ["+propviewer.type+"] =
"+propviewer.value;
}
Of course, in reality, we would want to do more exciting things when the domain
model changes, such as contacting the server. In the next chapter, we’ll look at
ways of contacting the server and put our ObjectViewer to further use.

Summary

The Model-View-Controller pattern is an architectural pattern that has been
applied to the server code of classic web applications. We showed how to reuse
this pattern on the server in an Ajax application, in order to generate data feeds
for the client. We also applied the pattern to the design of the client itself and
developed a range of useful insights through doing so.

Looking at the View subsystem, we demonstrated how to effectively separate
presentation from logic, with the very practical benefit of allowing designer and
programmer roles to be kept separate. Maintaining clear lines of responsibilities
in the codebase that reflect your team’s organizational structure and skill sets can
be a great productivity booster.

In the Controller code, we looked at the different event models available to
Ajax and erred on the side of caution toward the older event model. Although it is
limited to a single callback function for each event type, we saw how to implement
the Observer pattern to develop a flexible, reconfigurable event-handler layer on
top of the standard JavaScript event model.

Regarding the Model, we began to address the larger issues of distributed
multiuser applications, which we will explore further in chapter 5.

Looking after a Model, a View, and a Controller can seem like a lot of work. In
our discussion of the ObjectViewer example, we looked at ways of simplifying the
interactions between these using automation, and we created a simple system
capable of presenting an object model to the user and allowing interaction with it.

We’ll continue to draw upon design patterns as we move on to explore client/
server interactions in the next chapter.

Licensed to jonathan zheng <yiyisun@gmail.com>

158 CHAPTER 4
The page as an application

4.7 Resources

The Behaviours library used in this chapter can be found at http://ripcord.co.nz/
behaviour/. Mike Foster’s x library can be found at www.cross-browser.com.

Autogeneration of the View from the Model is a technique inspired by the
Naked Objects project (http://www.nakedobjects.org/). The book Naked Objects
(John Wiley & Sons, 2002), by Richard Pawson and Robert Matthews, is somewhat
out of date as far as the code goes, but provides an incisive critique of hand-coded
MVC in the opening sections.

The images of the planets used in the ObjectViewer are provided by Jim’s
Cool Icons (http://snaught.com/]imsCoollcons/), and are modeled using the POV-
Ray modeler and textured with real images from NASA (according to the website)!

Licensed to jonathan zheng <yiyisun@gmail.com>

The role of the server

This chapter covers
m Using current web framework types with Ajax

m Exchanging data with the server as content,
script, or data

m Communicating updates to the server

m Bundling multiple requests and replies into a
single HTTP call

159

Licensed to jonathan zheng <yiyisun@gmail.com>

160

5.1

CHAPTER 5
The role of the server

This chapter concludes the work that we started in chapter 4: making our applica-
tions robust and scalable. We’ve moved from the proof-of-concept stage to some-
thing that you can use in the real world. Chapter 4 examined ways of structuring the
client code to achieve our goal; in this chapter, we look at the server and, more spe-
cifically, at the communication between the client and the server.

We’ll begin by looking at the big picture and discuss what functions the server
performs. We’ll then move on to describe the types of architectures commonly
employed in server-side frameworks. Many, many web frameworks are in use
today, particularly in the Java world, and we won’t try to cover them all, but
rather we’ll identify common approaches and ways of addressing web application
development. Most frameworks were designed to generate classic web applica-
tions, so we're particularly interested to see how they adapt to Ajax and where
the challenges lie.

Having considered the large-scale patterns, we’ll look at the finer details of
communicating between client and server. In chapter 2 we covered the basics of
the XMLHttpRequest object and hidden IFrames. We’ll return to these basics here
as we examine the various patterns for updating the client from the server and
discuss the alternatives to parsing XML documents using DOM methods. In the
final section, we’ll present a system for managing client/server traffic over the life-
time of the application, by providing a client-side queue for requests and server-
side processes for managing them.

Let’s start off, then, by looking at the role of the server in Ajax.

Working with the server side

In the lifecycle of an Ajax application, the server has two roles to fulfill, and these
are fairly distinct. First, it has to deliver the application to the browser. So far,
we’ve assumed that the initial delivery of content is fairly static, that is, we write
the application itself as a series of .html, .css, and .js files that even a very basic
web server would be able to deliver. Nothing is wrong with this approach—in fact,
a lot can be said for it—but it isn’t the only option available to us. We’ll look at the
alternatives later, when we discuss server-side frameworks in section 5.3.

The second role of the server is to talk to the client, fielding queries and sup-
plying data on request. Because HTTP is the only transport mechanism available
to us, we're limited to the client starting off any conversation. The server can only
respond. In chapter 4, we discussed the need for an Ajax application to maintain
a domain model on both the client (for fast responses) and the server (for access
to resources such as the database). Keeping the models in sync with one another

Licensed to jonathan zheng <yiyisun@gmail.com>

5.2

5.2.1

Coding the server side 161

represents a major challenge, and one that the client can’t solve on its own. We’ll
look at ways of writing data to the server in section 5.5 and present a solution to
this problem based on one of the patterns that we encountered in chapter 3.

We can deliver the client application—and talk to the client—in several ways,
as you will see in this chapter. Is one way better than the others? Do any particular
combinations support each other? Can they be mixed and matched? How do the
different solutions work with legacy server frameworks and architectures? To
answer these questions, a vocabulary for describing our various options will be
useful. And that’s exactly what we’re going to develop in this chapter. First, let’s
look at the way the server is set up in a web application, and how Ajax affects that.

Coding the server side

In a conventional web application, the server side tends to be a rather complex
place, controlling and monitoring the user’s workflow through the application
and maintaining conversational state. The application is designed for a particu-
lar language, and set of conventions, that will determine what it can and can’t do.
Languages may in themselves be tied to specific architectures, operating systems,
or hardware. Picking a programming environment is a big choice to make, so let’s
discuss the options available to us.

Popular implementation languages

Server-side programming is dominated by a handful of languages. Over the very
brief course of Internet history, fashions in server-side languages have changed
remarkably. The current kings of the hill are PHP, Java, and classic ASP, with
ASPNET and Ruby growing in popularity too. These names are undoubtedly
familiar to most readers, so I won’t try to explain what they are here. Ajax is pri-
marily a client-side technology and can interoperate with any of these languages.
Indeed, some ways of working with Ajax downplay the importance of the server-
side language considerably, making it easy to port Ajax applications from one
server platform to another.

Web frameworks are in many ways more important to Ajax than the imple-
mentation language. Web frameworks carry assumptions with them, about how
the application is structured and where key responsibilities lie. Most frameworks
have been designed for building classic web applications, and assumptions about
the lifecycles of these—which are very different from those of an Ajax app—may
be problematic in places. We'll look at server-side designs and frameworks in the

Licensed to jonathan zheng <yiyisun@gmail.com>

162

5.2.2

CHAPTER 5
The role of the server

following section, but first, let’s review the basic principles of web-based architec-
tures, in order to lay the groundwork for that discussion.

N-tier architectures

A core concept in distributed applications is that of the tier. A tier often represents
a particular set of responsibilities for an application, but it also describes a sub-
system that can be physically isolated on a particular machine or process. This
distinguishes it from the roles in MVC, for example. Model, View, and Controller
aren’t tiers because they typically sit in the same process.

Early distributed systems consisted of a client tier and a server tier. The client
tier was a desktop program using a network socket library to communicate to the
server. The server tier was typically a database server.

Similarly, early web systems consisted of a browser talking to a web server, a
monolithic system on the network sending files from the filesystem.

As web-based applications became more complex and began to require access
to databases, the two-tier model of client/server was applied to the web server to
create a three-tier model, with the web server mediating between the web browser
client and the database. Later refinements on the model saw a further separation
of the middle tier into presentation and business roles, either as distinct processes
or as a more modular software design within a single process.

Modern web applications typically have two principal tiers. The business tier
models the business domain, and talks directly to the database. The presentation
tier takes data from the business tier and presents it to the user. The browser acts
as a dumb client in this setup.

The introduction of Ajax can be considered to be the development of a further
client tier, separating the presentation tier’s traditional responsibilities of work-
flow and session management between the web server and the client (figure 5.1).

[Presentation tier

Business tier

N’

Web browser Web server Database server

Figure 5.1 An Ajax application moves some of the responsibilities of the
presentation tier from the server up to the browser, in a new entity that we
call the client tier.

Licensed to jonathan zheng <yiyisun@gmail.com>

5.2.3

Coding the server side 163

The role of the server-side presentation tier can be much reduced and workflow
control partly or completely handed over to the new client tier, written in Java-
Script and hosted on the browser.

This new tier in our application brings with it new possibilities, as we've
already discussed. It also brings the potential for greater complexity and confu-
sion. Clearly, we need a way to manage this.

Maintaining client-side and server-side domain models

In an Ajax application, we still need to model the business domain on the server,
close to the database and other vital centralized resources. However, to give the
client code sufficient responsiveness and intelligence, we typically will want to
maintain at least a partial model in the browser. This presents the interesting
problem of keeping the two models in sync with one another.

Adding an extra tier always adds complexity and communications overheads.
Fortunately, the problem isn’t entirely new, and similar issues are commonly
encountered in J2EE web development, for example, in which there is a strict sep-
aration between the business tier and the presentation tier. The domain model
sits on the business tier and is queried by the presentation tier, which then gener-
ates web content to send to the browser. The problem is solved in J2EE by the use
of “transfer objects,” which are simple Java objects designed to pass data between
the tiers, presenting limited views of the domain model to the presentation tier.

Ajax provides us with new challenges, though. In J2EE, both tiers are written in
a common language with a remote procedure mechanism provided, which is typ-
ically not the case with Ajax. We could use JavaScript on the server tier, through
Mozilla’s Rhino or Microsoft’s JScript .NET, for example, but it is currently rather
unorthodox to do so, and we’d still need to communicate between the two Java-
Script engines.

The two basic requirements for communicating between the tiers are reading
data from the server and writing data to the server. We’ll look at the details of
these in section 5.3 through 5.5. Before we conclude our overview of architectural
issues, though, we will look at the main categories of server architecture currently
in use. In particular, we’ll be interested to see how they represent the domain
model to the presentation tier and what restrictions this might place on an Ajax-
based design.

A recent informal survey (see the Resources at the end of this chapter) listed
over 60 presentation frameworks for Java alone (to be fair, Java probably suffers
from this framework-itis more than any other server language). Most of these
differ in the details, fortunately, and we can characterize the presentation tier

Licensed to jonathan zheng <yiyisun@gmail.com>

164

5.3

5.3.1

CHAPTER 5
The role of the server

(in whatever server language) as following one of several architectural patterns.
Let’s have a look at these now.

The big picture: common server-side designs

Server-side frameworks matter to all Ajax applications. If we choose to generate
the client code from a sever-side model, it matters a great deal. If we hand-code
the client code and serve it as static HTML and JavaScript pages, then the frame-
work isn’t involved in delivering the app, but the data that the application will
consume still has to be dynamically generated. Also, as we noted in the previous
section, the server-side framework typically contains a domain model of some
sort, and the presentation tier framework stands between that model and our
Ajax application. We need to be able to work with the framework in order for our
application to function smoothly.

Web application servers can be unkindly characterized as developers’ play-
grounds. The problem of presenting a coherent workflow to a user through a
series of web pages, while interfacing to back-end systems such as database serv-
ers, has never been adequately solved. The Web is littered with undernourished,
ill-maintained frameworks and utilities, with new projects popping up on a
monthly, if not weekly, basis.

Fortunately, we can recognize discrete families within this chaotic mixture.
Reducing this framework soup to its essentials, there are possibly four main ways
to get the job done. Let’s examine each in turn and see how it can be adapted to
the Ajax model.

Naive web server coding without a framework

The simplest kind of framework is no framework at all. Writing a web applica-
tion without a framework defining the key workflow elements, or mediating
access to the back-end systems, doesn’t imply a complete lack of order. Many
web sites are still developed this way, with each page generating its own views
and performing its own back-end housekeeping, probably with the assistance of
some shared library of helper functions or objects. Figure 5.2 illustrates this pat-
tern of programming.

Modifying this approach for Ajax is relatively straightforward, if we assume
that the client is hand-coded. Generating client code from the server is a big
topic that’s beyond the scope of this book. To deliver the client, we need to
define a master page that will include any necessary JavaScript files, stylesheets,
and other resources. For supplying data feeds, we simply need to replace the

Licensed to jonathan zheng <yiyisun@gmail.com>

https://bpcatalog.dev.java.net/nonav/ajax/jsf-ajax/frames.html
https://bpcatalog.dev.java.net/nonav/ajax/jsf-ajax/frames.html
https://bpcatalog.dev.java.net/nonav/ajax/jsf-ajax/frames.html

The big picture: common server-side designs 165

Web browser

/{ Web server \ ~

Helpers /
FL‘ Views/pages

-t
%

E /

Database server

Figure 5.2 Web programming without a framework. Each page, serviet, or CGI
script maintains its own logic and presentation details. Helper functions and/or
objects may encapsulate common low-level functionality, such as database access.

generated HTML pages with XML or the other data stream of our choice (more
on this topic later).

The key shortcoming of this approach in a classic web app is that the links
between documents are scattered throughout the documents themselves. That is,
the Controller role is not clearly defined in one place. If a developer needs to
rework the user flow between screens, then hyperlinks must be modified in sev-
eral places. This could be partly ameliorated by putting link-heavy content such
as navigation bars inside include files or generating them programmatically
using helper functions, but maintenance costs will still rise steeply as the app
becomes more complicated.

In an Ajax application, this may be less of a problem, since hyperlinks and
other cross-references will typically not be embedded in data feeds as densely as
in a web page, but includes and forwarding instructions between pages will still
pose a problem. Includes and forwards won't be required in a simple XML docu-
ment, but larger applications may be sending complex structured documents
assembled by several subprocesses, as we will see in section 5.5. The early gener-
ation of web frameworks used MVC as a cure for these ills, and many of these
frameworks are still in use today, so let’s look at them next.

Licensed to jonathan zheng <yiyisun@gmail.com>

166

CHAPTER 5
The role of the server

5.3.2 Working with Model2 workflow frameworks

The Model2 design pattern is a variation of MVC, in which the Controller has a
single point of entry and a single definition of the users’ possible workflows.
Applied to a web application, this means that a single Controller page or servlet
is responsible for routing most requests, passing the request through to various
back-end services and then out to a particular View. Apache Struts is probably
the best-known Model2 framework, although a number of other Java and PHP
frameworks follow this pattern. Figure 5.3 illustrates the structure of a Model2
web framework.

How can we apply this design to a server application talking to an Ajax client,
then? Model2 has relatively little to say about the delivery of the client applica-
tion, which will typically occur at startup as a single payload, identical for all
authenticated users. The centralized controller may be involved in the authenti-
cation process itself, but there is little merit in expressing the delivery of the
application itself through anything other than a single endpoint of the controller.

It provides a workable solution for delivery of data feeds, though. The Views
returned by Model2 are essentially independent of the framework, and we may

Web browser

/{ Web server ~

Action
Handlers

Views/pages

Controller
‘\ Business tier

. /

Database server

Figure 5.3 Model2 web framework. A single controller page or servlet accepts all
requests and is configured with a complete graph of user workflows and interactions.
The request will be handed to one of a number of ancillary classes or functions for
more specialized processing and finally routed out to a View component (for example,
a JSP or PHP page) before being sent to the browser.

Licensed to jonathan zheng <yiyisun@gmail.com>

5.3.3

The big picture: common server-side designs 167

easily swap HTML for XML or other data formats. Part of the Controller respon-
sibility will be passed to the client tier, but some Controller functions may still be
usefully expressed through server-side mappings.

Model2 for classic web apps provides a good way of expressing much of the
Controller responsibility at a high level of abstraction, but it leaves the implemen-
tation of the View as a hand-coding task. Later developments in web frameworks
attempted to provide a higher-level abstraction for the View, too. Let’s examine
them next.

Working with component-based frameworks

When writing an HTML page for a classic web application, the page author has a
very limited set of predefined GUI components at hand, namely the HTML form
elements. Their feature set has remained largely unchanged for nearly 10 years,
and compared to modern GUI toolkits, they are very basic and uninspiring. If a
page author wishes to introduce anything like a tree control or editable grid, a
calendar control or an animated hierarchical menu, he needs to resort to low-
level programming of basic document elements. Compared with the level of
abstraction available to a developer building a desktop GUI using component
toolkits such as MFC, GTK+, Cocoa, Swing, or Qt, this seems like a poor option.

Widgets for the web

Component-based frameworks aim to raise the level of abstraction for web UI
programming, by providing a toolkit of server-side components whose API
resembles that of a desktop GUI widget set. When desktop widgets render them-
selves, they typically paint onto a graphics context using low-level calls to gener-
ate geometric primitives, bitmaps, and the like. When web-based widgets render
themselves, they automatically generate a stream of HTML and JavaScript that
provides equivalent functionality in the browser, relieving the poor coder from a
lot of low-level drudgery. Figure 5.4 illustrates the structure of a component-
based web framework.

Many component-based frameworks describe user interaction using a desk-
top-style metaphor. That is, a Button component may have a click event handler,
a text field component may have a valueChange handler, and so on. In most
frameworks, event processing is largely delegated to the server, with a request
being fired for each user interaction. Smarter frameworks manage to do this
behind the scenes, but some will refresh the entire page with each user event.
This leads to a decidedly clunky user experience, as an application designed as a

Licensed to jonathan zheng <yiyisun@gmail.com>

168

CHAPTER 5
The role of the server

Web browser

Widget’sqmponent model

Controller

Business tier

Views/pages

Controller

) Action handlers
Database server

Figure 5.4 Architecture of a component-based web framework. The application is
described as a collection of widgets that render themselves by emitting a stream of
HTML and JavaScript into the browser. Each component contains its own small-scale
Model, View, and Controller, in addition to the larger Controller that fields browser
requests to individual components and the larger domain model.

widget set will typically have lots of fine-grained interactions compared to one
designed as a set of pages, using Model2, say.

A significant design goal of these frameworks is to be able to render different
types of user interface from a single widget model description. Some frameworks,
such as Windows Forms for .NET and JavaServer Faces (JSF), are already able to
do this.

Interoperating with Ajax
So how do Component-based frameworks fare with Ajax, then? On the surface,
both are moving away from a document-like interface toward a widget-based one,

Licensed to jonathan zheng <yiyisun@gmail.com>

The big picture: common server-side designs 169

so the overlap ought to be good. This type of framework may have strong possi-
bilities as far as generating the client application goes, if pluggable renderers that
understand Ajax can be developed. There is a considerable appeal to doing so,
since it avoids the need to retrain developers in the intricacies of JavaScript, and
it leaves an easy route for providing an alternative to older browsers through a
plain-old HTML rendering system.

Such a solution will work well for applications that require only standard wid-
get types. A certain degree of flexibility, however, will be lacking. Google Maps,
for example (see chapter 1), is successful largely because it defines its own set of
widgets, from the scrollable map to the zoom slider and the pop-up balloons and
map pins. Trying to build this using a standard set of desktop widgets would be
difficult and probably less satisfactory in the end.

That said, many applications do fit more easily within the conventional
range of widget types and would be better served by these types of framework.
This trade-off between flexibility and convenience is common to many code
generation-based solutions and is well understood.

To fully serve an Ajax application, the framework must also be able to supply
the necessary data feeds. Here, the situation may be somewhat more problem-
atic, as the Controller is heavily tied to the server tiers and is tightly defined
through the desktop metaphor. A responsive Ajax application requires more
freedom in determining its own event handlers than the server event model
seems to allow. Nonetheless, there is considerable momentum behind some of
these frameworks, and solutions will undoubtedly emerge as Ajax rises in popu-
larity. The CommandQueue approach that we will introduce in section 5.5.3 may
be one way forward for JSF and its cousins, although it wasn’t designed as such.
For now, though, these frameworks tie the client a little too closely to their apron
strings for my liking.

It will be interesting to see how these frameworks adapt to Ajax in the future.
There is already significant interest in providing Ajax-enabled toolkits from
within Sun and from several of the JSF vendors, and .NET Forms already support
some Ajax-like functionality, with more being promised in the forthcoming Atlas
toolkit (see the Resource section at the end of this chapter for URLs to all these).

This raises the question of what a web framework would look like if designed
specifically for Ajax. No such beast exists today, but our final step on the tour of
web frameworks may one day be recognized as an early ancestor.

Licensed to jonathan zheng <yiyisun@gmail.com>

170

CHAPTER 5
The role of the server

5.3.4 Working with service-oriented architectures

The final kind of framework that we’ll look at here is the service-oriented archi-
tecture (SOA). A service in an SOA is something that can be called from the net-
work and that will return a structured document as a reply. The emphasis here is
on data, not content, which is a good fit with Ajax. Web services are the most com-
mon type of service currently, and their use of XML as a lingua franca also works
well with Ajax.

NOTE The term Web Services, with capital letters, generally refer to systems
using SOAP as transport. The broader term web services (in lower case),
encompasses any remote data exchange system that runs over HTTP,
with no constraints on using SOAP or even XML. XML-RPC, JSON-RPC
and any custom system that you develop using the XMLHttpRequest
object are web services, but not Web Services. We are talking about the
broader category of web services in this section.

When consuming a web service as its data feed, an Ajax client achieves a high
degree of independence, similar to that of a desktop email client communicating
to a mail server, for example. This is a different kind of reuse from that offered by
the component-based toolkits. There, the client is defined once and can be
exported to multiple interfaces. Here, the service is defined once and can be used
by numerous unrelated clients. Clearly, a combination of SOA and Ajax could be
powerful, and we may see separate frameworks evolving to generate, and to
serve, Ajax applications.

Exposing server-side objects to Ajax

Many SOA and web service toolkits have appeared that make it possible to expose
a plain-old server-side object written in Java, C#, or PHP directly as a web service,
with a one-to-one mapping between the object’s methods and the web service
interface. Microsoft Visual Studio tools support this, as does Apache Axis for Java.
A number of Ajax toolkits, such as DWR (for Java) and SAJAX (for PHP, .NET,
Python, and several other languages) enhance these capabilities with JavaScript-
specific client code.

These toolkits can be very useful. They can also be misused if not applied with
caution. Let’s look at a simple example using the Java DWR toolkit, in order to
work out the right way to use these tools. We will define a server-side object to
represent a person.

Licensed to jonathan zheng <yiyisun@gmail.com>

The big picture: common server-side designs 171

package com.manning.ajaxinaction;

public class Person{
private String name=null;
public Person() {
}
public String getName () {
return name;
}
public void setName (String name) {
this.name=name;
}
}
The object must conform to the basic JavaBeans specification. That is, it must
provide a public no-argument constructor, and expose any fields that we want to
read or write with getter and setter methods respectively. We then tell DWR to
expose this object to the JavaScript tier, by editing the dwr.xml file:
<dwr>
<init>
<convert id="person" converter="bean"
match="com.manning.ajaxinaction.Person"/>
</init>
<allow>
<create creator="new" javascript="person">
<param name="class" value="com.manning.ajaxinaction.Person">
</create>
</allow>
</dwr>
In the <init> section, we define a converter for our class of type bean, and in the
<allow> section, we then define a creator that will expose instances of that object
to JavaScript as a variable called person. Our Person object only has one public

method, getName(), so we will be able to write in our Ajax client code

var name=person.getName () ;

and retrieve the value asynchronously from the server.

Our Person only has one method, so that’s all we’ve exposed, right? Unfortu-
nately, that’s a false assumption. Our Java Person class is descended from
java.lang.Object and inherits a few public methods from there, such as hash-
Code() and toString (), which we can also invoke from the server. This hidden
feature is not peculiar to DWR. The JSONRPCBridge.registerObject () method
will do the same, for example. To its credit, DWR does provide a mechanism for
restricting access to specific methods within its XML config file. However, the
default behavior is to expose everything. This problem is inherent in most

Licensed to jonathan zheng <yiyisun@gmail.com>

172

CHAPTER 5
The role of the server

reflection-based solutions. We ran across it in chapter 4 in our early versions of
the ObjectViewer utility using JavaScript reflection. Let’s see what we can do
about it.

Limiting exposure

We’ve accidentally exposed our hashcodes to the Web, but have we really done
any damage? In this case, probably not, because the superclass is java.lang.
Object, which is unlikely to change. In a more complex domain model, though,
we might be exposing implementation details of our own superclasses, which we
might want to refactor later. By the time we get around to it, some bright spark is
bound to have discovered our unwittingly exposed methods and used them in his
client code, so that when we deploy the refactored object model, his client sud-
denly breaks. In other words, we've failed to separate our concerns adequately. If
we’re using a toolkit such as DWR or JSON-RPC, then we should take great care to
decide which objects we are going to publish as our Ajax interface and preferably
create a Fagade object of some sort (figure 5.5).

Using a Facade in this situation offers several advantages. First, as already
noted, it allows us to refactor our server-side model without fear. Second, it sim-
plifies the publicly published interface that client code will use. In comparison to
code written for internal consumption, interfaces published to other parties are
expensive. Either we document them in detail up front or we don’t document
them—and become inundated with support calls from people writing to our pub-
lished interfaces.

Another advantage of Fagade is that it allows us to define the level of granu-
larity of our services separately from the design of our domain model. A good
domain model may contain lots of small, precise methods, because we require
that precision and control within our server-side code. The requirements of a web
service interface for an Ajax client are quite different, however, because of net-
work latency. Many small method calls will kill the usability of the client, and, if
deployed in sufficient number, may kill the server and even the network.

Think of it as the difference between a face-to-face conversation and a written
correspondence (or an IM conversation and an email correspondence, for those
too young and hip to remember what pen and paper are). When I talk directly to
you, there are many small interchanges, possibly several just to establish that we
are both “fine” today. When writing a letter, I may send a single exchange
describing the state of my health, a recent vacation, what the family is doing, and
a joke that I heard the other day, all in a single document.

Licensed to jonathan zheng <yiyisun@gmail.com>

The big picture: common server-side designs 173

Fine-grained
web services / \

=P
@':3}: >

Web client Web Domain
\ service model /
Web server

Coarse-grained
web services

<
-

»
>

Web service Domain
facade model
Web client
Web server

Figure 5.5 Comparison of a system in which all objects are fully
exposed as Internet services to an Ajax client and one is using a
Facade to expose only a few carefully chosen pieces of
functionality. By reducing the number of publicly published
methods, we can refactor our domain model without fear of
breaking client code over which we have no control.

By bundling calls across the network into larger documents, service-oriented
architectures are making better use of available network resources. Bandwidth is
typically less of a problem than latency. They are also causing problems for them-
selves by standardizing on a bulky XML data format over a verbose transmission
protocol (our familiar and well-loved HTTP), but that’s a story for another day. If
we look at the options available with Ajax, we can see that we are provided with
good native support for HTTP and XML technologies in the browser, and so a
document-centric approach to our distributed domain models makes sense.

A conventional document, such as this book, is composed of paragraphs, head-
ings, tables, and figures. Likewise, a document in a call to a service may contain a
variety of elements, such as queries, updates, and notifications. The Command
pattern, discussed in chapter 3, can provide a good foundation for structuring our

Licensed to jonathan zheng <yiyisun@gmail.com>

174

5.4

CHAPTER 5
The role of the server

documents as a series of undoable actions to be passed between client and server.
We’ll look at an implementation of this later in the chapter.

This concludes our discussion of the server-side architectures of the day. None
provides a perfect fit for Ajax yet, which is not surprising given that they were
designed to serve a considerably different kind of web application. A lot of good
work is underway to build Ajax into existing frameworks and the next year or so
should prove interesting. Nonetheless, many web developers will be faced with
the task of making Ajax work with these legacy systems, and this overview of the
strengths and weaknesses for each ought to provide a starting point.

Let’s assume for the moment that we have decided upon one architecture or
another and begun the work of developing an Ajax application. We have already
discussed the architecture of the client application itself in detail in chapter 4,
and we provided examples of retrieving XML data from the server in chapter 2.
XML is popular but not the only way of exchanging data between client and
server. In the following section, we review the full spectrum of options for com-
municating between client and server.

The details: exchanging data

We've looked at the big architectural patterns that describe how our web applica-
tion might behave and shown that there are many options. We've stressed the
importance of communication between the client and the server’s domain mod-
els, and we might naively assume that once we've settled on a framework, our
design choices are made for us. In this and the following section, we’ll see that
this is far from true. If we focus on a single exchange of data, we have many
options. We'll catalog the options here, with the aim of developing a pattern lan-
guage for Ajax data exchange. With this in hand, we can make more informed
decisions about what techniques to use in particular circumstances.

Exchanging pure data has no real analog in the classical web application, and
so the pattern language is less well developed in this area. I'll attempt to fill that
void by defining a few phrases of my own. As a first cut, I suggest that we break
user interactions into four categories: client-only, content-centric, script-centric, and
data-centric. Client-only interactions are simple, so we’ll deal with them quickly in
the next section, and then introduce an example that can see us through the
other three.

Licensed to jonathan zheng <yiyisun@gmail.com>

54.1

5.4.2

The details: exchanging data 175

Client-only interactions

A client-only interaction is one in which a user interaction is processed by a
script that has already been loaded into the browser. No recourse to the web
server (the old presentation tier) is necessary, which is good for responsiveness
and for server load. Such an interaction is suitable for relatively trivial calcula-
tions, such as adding a sales tax or shipping charge to a customer’s order. In gen-
eral, for this approach to be effective, the client-side logic that processes the
interaction needs to be small and unchanging during the lifetime of the cus-
tomer interaction. In the case of shipping options, we are on safe ground
because the number of options will be of the order of two to five, not several
thousands (unlike, say, the full catalog of an online retailer), and the shipping
costs are unlikely to change from one minute to the next (unlike, say, a stock
ticker or first-come-first-served ticket-reservation system). This type of interac-
tion has already been explored in chapter 4’s discussion of the client-side Con-
troller, so we’ll say no more about it here.

The remaining three categories all involve a trip back to the server and differ
primarily in what is fetched. The key differences are summarized in the following
sections, along with the pros and cons of each.

Introducing the planet browser example

Before we dive in to the different data exchange mechanisms, let’s introduce a
simple example, to serve as a hook on which to hang our arguments. The appli-
cation will present a range of facts about the planets of our solar system. Our
main screen shows an idealized view of the solar system, with an icon for each
planet. On the server, we have recorded various facts about these planets, which
can be brought up in pop-up windows by clicking on the planet’s icon (figure 5.6).
We aren’t using the ObjectViewer from chapter 4 here, but we will get back to it
later in this chapter.

The part of the puzzle that interests us now is delivering the data shown in the
pop-up from the server to the browser. We'll look at the format of data that the
server sends us in each variation, but we won’t go into the details of generating
that data, as we’ve already covered the principles in our discussion of MVC in
chapter 3. Listing 5.1 shows the skeleton of our client-side application, around
which we can explore the various content-delivery mechanisms.

Licensed to jonathan zheng <yiyisun@gmail.com>

176 CHAPTER 5
The role of the server

learth —

small

+ Earth is a small planet, third from|
the sun

+ Surface coverage of water is
roughly two-thirds

¢ Exhibits a remarkable diversity
of climates and landscapes

Figure 5.6
Screenshot of planetary info application, in which pop-up windows
describing each planet can be brought up by clicking on the icons.

g 5.1 popups.html

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0org/TR/xhtml1l/DTD/xhtmll-strict.dtd">

<html>

<head>

<title>Planet Browser</title>

<link rel=stylesheet type="text/css"
href="main.css"/>

<link rel=stylesheet type="text/css"
href="windows.css"/>

<link rel=stylesheet type="text/css"
href="planets.css"/>

<script type="text/javascript"
src="xX/X_core.js"></script>
<script type="text/javascript"
src="x/x_event.js"></script>

<script type="text/javascript" '“d“dﬁ
src="x/x_drag.js"></script> j;vaSsnpt
libraries

<script type="text/javascript"
src="windows.js"></script>

<script type="text/javascript"
src="net.js"></script>

(A I S |

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 177

<script type="text/javascript">

window.onload=function() {
var pbar=document.getElementById("planets") ;
var children=pbar.getElementsByTagName ("div") ;
for(var i=0;i<children.length;i++) {
children[i].onclick=showInfo; (2) Assign event handler to icons

</script>

</head>
<body>

<div class="planetbar" id="planets"> 0 Add hard-coded icons of planets
<div class="planetbutton" id="mercury">

</div>

<div class="planetbutton" id="venus">

</div>

<div class="planetbutton" id="earth">

</div>

<div class="planetbutton" id="mars">

</div>

<div class="planetbutton" id="jupiter">

</div>

<div class="planetbutton" id="saturn">

</div>

<div class="planetbutton" id="uranus">

</div>

<div class="planetbutton" id="neptune">

</div>

<div class="planetbutton" id="pluto">

</div>

</div>

</body>
</html>

Licensed to jonathan zheng <yiyisun@gmail.com>

178

5.4.3

CHAPTER 5
The role of the server

We have included a few JavaScript libraries @ in our file. net.js handles the
low-level HTTP request mechanics for us, using the XMLHttpRequest object that
we described in chapter 2. windows.js defines a draggable window object that we
can use as our pop-up window. The details of the implementation of the window
needn’t concern us here, beyond the signature of the constructor:

var MyWindow=new Window (bodyDiv,title,x,y,w,h);

where bodyDiv is a DOM element that will be added into the window body, titleis
a display string to show in the window titlebar, and x,y,w, h describes the initial
window geometry. By specifying a DOM element as the argument, we give our-
selves considerable flexibility as to how the content is supplied to the window. The
downloadable source code accompanying the book contains the full listing for the
Window object.

In the HTML, we simply define a div element for each planet @, to which we
assign an onclick handler in the window.onload function @, using the standard
DOM tree navigation methods. The onclick handler, showInfo(), isn’t defined
here, as we’ll provide several implementations in this chapter. Let’s start by look-
ing at the various actions that we can take when we come to loading the content.

Thinking like a web page: content-centric interactions

The first steps that we take toward Ajax will resemble the classic web application
that we are moving away from, as noted in chapter 1 when discussing horses and
bicycles. Content-centric patterns of interaction still follow the classic web para-
digm but may have a role to play in an Ajax application.

Overview
In a content-centric pattern of interaction, HTML content is still being gener-
ated by the server and sent to an IFrame embedded in the main web page.
We discussed IFrames in chapter 2 and showed how to define them in the
HTML markup of the page or generate them programmatically. In the latter
case, we can still be looking at a fairly radically dynamic style of interface more
akin to a window manager than a desktop. Figure 5.7 outlines the content-
centric architecture.

Listing 5.2 shows an implementation of the event handler for our planetary
info application, using a content-centric approach.

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 179

Client

Inner frame 1. Request

Y

2. Response

<h1>ABC</h1>

1
2
3

3. Display

Figure 5.7 Content-centric architecture in an Ajax application. The
client creates an IFrame and launches a request to the server for
content. The content is generated from a Model, View, and Controller on
the server presentation tier and returned to the IFrame. There is no
requirement for a business domain model on the client tier.

Listing 5.2 ContentPopup.js

var offset=8;

function showInfo (event) {

var planet=this.id;

var infoWin=new ContentPopup (
"info_"+planet+".html",
planet+"Popup",
planet,offset,offset,320,320

)

offset+=32;

function ContentPopup (url,winEl,displayStr,x,y,w, h){

var bod=document.createElement ("div") ;
document .body.appendChild (bod) ;

this.iframe=document.createElement ("iframe") ;
this.iframe.className="winContents";
this.iframe.src=url;
bod.appendChild(this.iframe) ;

this.win=new windows.Window (bod,displayStr,x,y,w,h);

Licensed to jonathan zheng <yiyisun@gmail.com>

180

CHAPTER 5
The role of the server

showInfo() is the event-handler function for the DOM element representing the
planet. Within the event handler, this refers to the DOM element, and we use that
element’s id to determine for which planet we display information.

We define a ContentPopup object that composes one of the generic Window
objects, creates an IFrame to use as the main content in the window body, and
loads the given URL into it. In this case, we have simply constructed the name of
a static HTML file as the URL. In a more sophisticated system with dynamically
generated data, we would probably add querystring parameters to the URL
instead. The simple file that we load into the IFrame in this example, shown in
listing 5.3, is generated by the server.

<html>

<head>

<link rel=stylesheet type="text/css" href="../style.css"/>
</head>

<body class="info">

<div class="framedInfo" id="info">

<div class="title" id="infotitle">earth</div>

<div class="content" id="infocontent">

A small blue planet near the outer rim of the galaxy,
third planet out from a middle-sized sun.

</div>

</div>

</body>

</html>

||

Nothing remarkable there—we can just use plain HTML markup as we would for
a classic web application.

In a content-centric pattern, the client-tier code needs only a limited under-
standing of the business logic of the application, being responsible for placing the
IFrame and constructing the URL needed to invoke the content. Coupling
between the client and presentation tiers is quite loose, with most responsibility
still loaded onto the server. The benefit of this style of interaction is that there is
plenty of HTML floating around on the Web, ready to use. Tiwo scenarios in which
it could be useful are incorporating content from external sites—possibly business
partners or public services—and displaying legacy content from an application.
HTML markup can be very effective, and there is little point in converting some
types of content into application-style content. Help pages are a prime example.
In many cases where a classic web application would use a pop-up window, an Ajax

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 181

application might prefer a content-centric piece of code, particularly in light of
the pop-up blocker features in many recent browsers.

This pattern is useful in a limited set of situations, then. Let’s briefly review its
limitations before moving on.

Problems and limitations

Because they resemble conventional web pages so much, content-centric inter-
actions have many of the limitations of the old way of doing things. The con-
tent document is isolated within the IFrame from the page in which it is
embedded. This partitions the screen real estate to some extent. In terms of lay-
out, the IFrame imposes a single rectangular window for the child document,
although it may be assigned a transparent background to help blend it into the
parent document.

It may be tempting to use this mechanism to deliver highly dynamic subpages
within the highly dynamic application, but the introduction of IFrames in this way
can be problematic. Each IFrame maintains its own scripting context, and the
amount of “plumbing” code required for scripts in the IFrame and parent to talk
to one another can be considerable. For communication with scripts in other
frames, the problem worsens. We'll return to this issue shortly when we look at
script-centric patterns.

We also suffer many of the usability problems of traditional web applications.
First, if the layout of the IFrame involves nontrivial boilerplate markup, we are
still resending static content with each request for content. Second, although the
main document won’t suffer from “blinking” when data is refreshed, the IFrame
might, if the same frame is reused for multiple fetches of content. This latter issue
could be avoided with a bit of extra coding to present a loading message over the
top of the frame, for example.

So, “content-centric” is the first new term for our vocabulary of Ajax server
request techniques. Content-centric approaches are limited in usefulness, but it’s
good to have a name for them. There are many scenarios that can’t be easily
addressed by a content-centric approach, such as updating a small part of a wid-
get’s surface, for example, a single icon or a single row in a table. One way to per-
form such modifications is to send JavaScript code. Let’s look at that option now.

Variations

The content-centric style that we’ve applied so far has used an IFrame to
receive the server-generated content. An alternative approach that might be
considered content-centric is to generate a fragment of HTML in response to

Licensed to jonathan zheng <yiyisun@gmail.com>

182

5.4.4

CHAPTER 5
The role of the server

an asynchronous request, and assign the response to the innerHTML of a DOM
element in the current document. We use that approach in chapter 12 in our
XSLT-driven phonebook, so we won’t reproduce a full example here.

Thinking like a plug-in: script-centric interactions

When we send a JavaScript file from our web server to a browser, and it executes
in that browser for us, we are actually doing something quite advanced. If we gen-
erate the JavaScript that we are sending from a program, we are setting up an
even more complex system. Traditionally, client/server programs communicate
data to one another. Communicating executable, mobile code across the network
opens up a lot of flexibility. Enterprise-grade network languages such as Java and
the .NET stack are only just catching on to the possibilities of mobile code,
through technologies such as RMI, Jini, and the .NET Remoting Framework. We
lightweight web developers have been doing it for years! As usual, Ajax lets us do
a few new interesting things with this capability, so let’s see what they are.

Overview

In a classic web application, a piece of JavaScript and its associated HTML are
delivered in a single bundle, and the script is typically authored to work with that
particular page. Using Ajax, we can load scripts and pages independently of one
another, giving us the possibility of modifying a particular page in a number of
different ways, depending on the script that we load. The code that constitutes
our client-tier application can effectively be extended at runtime. This introduces
both problems and opportunities, as we will see. Figure 5.8 illustrates the basic
architecture of a script-centric application.

The first advantage of this approach over a content-centric solution is that the
network activity is relegated to the background, eliminating visual blinking.

The exact nature of the script that we generate will depend on the hooks that
we expose in the client tier itself. As with much code generation, success hinges
on keeping the generated portion simple and making use of nongenerated
library code where possible, either transmitted alongside the generated code or
resident in the client application.

Either way, this pattern results in relatively tight coupling between the tiers.
That is, the code generated by the server requires intimate knowledge of API calls
on the client. Tivo problems emerge. First, changes to the server and client code
can unintentionally break them. Good modular design principles can offset this
to some extent, by providing a well-defined, well-documented API—implement-
ing the Fagade pattern. The second issue is that the stream of JavaScript is very

Licensed to jonathan zheng <yiyisun@gmail.com>

Client

Hidden inner

The details: exchanging data

1. Request

Y

3. Intefrpret

4. Update visible elements

2. Response

var title="ABC";
var items={

"

nn

ugn

show(title,items);

Figure 5.8 Script-centric architecture in an Ajax application. The client
application makes a request to the server for a fragment of JavaScript, which
it then interprets. The client app exposes several entry points for generated
scripts to hook into, allowing manipulation of the client by the script.

183

specifically designed for this client, and it is unlikely to be as reusable in other
contexts in comparison to, say, a stream of XML. Reusability isn’t important in all

cases, however.

Let’s have a look at our planetary info example again. Listing 5.4 shows a sim-
ple API for displaying our information windows.

Listing 5.4 showPopup () function and supporting code

var offset=8;

function showPopup (name,description) {
var win=new ScriptIframePopup
(name, description,offset,offset,320,320);

offset+=32;
}

function ScriptIframePopup (name,description,x,y,w,h){

var bod=document.createElement ("div") ;
document .body.appendChild (bod) ;

this.contentDiv=document.createElement ("div") ;
this.contentDiv.className="winContents";
this.contentDiv.innerHTML=description;
bod.appendChild(this.contentDiv) ;

this.win=new windows.Window (bod,name,x,y,w,h) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

184

CHAPTER 5
The role of the server

We define a function showpPopup that takes a name and description as argument
and constructs a window object for us. Listing 5.5 shows an example script that
invokes this function.

var name='earth';
var description="A small blue planet near the outer rim of the galaxy,"
+"third planet out from a middle-sized sun.";

showPopup (name,description) ;

We simply define the arguments and make a call against the API. Behind the
scenes, though, we need to load this script from the server and persuade the
browser to execute it. There are two quite different routes that we can take. Let’s
examine each in turn.

Loading scripts into IFrames

If we load a JavaScript using an HTML document <script> tag, the script will
automatically be executed by the interpreter when it loads. IFrames are the same
as any other document in this respect. We can define a showInfo () method to cre-
ate an IFrame for us, and load the script into it:

function showInfo (event) {

var planet=this.id;

var scriptUrl="script_"+planet+".html";

var dataframe=document.getElementById('dataframe') ;

if (!dataframe) {
dataframe=document.createElement ("iframe") ;
dataframe.className="'dataframe';
dataframe.id='dataframe’;
dataframe.src=scriptUrl;
document .body.appendChild (dataframe) ;

}else{
dataframe.src=scriptUrl;

}

The DOM manipulation methods that we’re using should be familiar by now. If we
use an invisible IFrame to load our script, we need only concentrate on generat-
ing the script itself, since all other interactions are generated for us. So let’s stitch
our sample script into an HTML document, as shown in listing 5.6.

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 185

<html>

<head>

<script type='text/javascript' src='script_earth.js'>

</script>

</head>

<body>

</body>

</html>

||

When we try to load this code, it doesn’t work, because the IFrame creates its own
JavaScript context and can’t directly see the API that we defined in the main doc-
ument. When our script states

showPopup (name, description) ;

the browser looks for a function showPopup () defined inside the IFrame’s context.
In a simple two-context situation such as this, we can preface API calls with top,
that is,

top.showPopup (name, description) ;

in order to refer to the top-level document. If we were nesting IFrames inside
IFrames, or wanted to be able to run our application inside a frameset, things
could get much more complicated.

The script that we load uses a functional approach. If we choose to instantiate
an object in our IFrame script, we will encounter further complications. Let’s say
that we have a file PlanetInfo.js that defines a PlanetInfo type of object that we
invoke in our script as

var pinfo=new PlanetInfo (name,description) ;

To use this type in our script, we could import PlanetInfo.js into the IFrame con-
text, by adding an extra script tag:

<script type='text/javascript' src='PlanetInfo.js'></script>

<script type='text/javascript'>

var pinfo=new PlanetInfo (name,description) ;

</script>
The PlanetInfo object created within the IFrame would have identical behavior to
one created in the top-level frame, but the two wouldn’t have the same prototype.
If the IFrame were later destroyed, but the top-level document kept a reference to
an object created by that IFrame, subsequent calls to the object’s methods would
fail. Further, the instanceof operator would have counterintuitive behavior, as
outlined in table 5.1.

Licensed to jonathan zheng <yiyisun@gmail.com>

186

CHAPTER 5
The role of the server

Table 5.1 Behavior of instanceof operator across frames

Object Created In instanceof Invoked In Obj instanceof Object Evaluates To
Top-level document Top-level document true
Top-level document IFrame false
IFrame Top-level document false
IFrame IFrame true

Importing the same object definition into multiple scripting contexts is not as
simple as it first looks. We can avoid it by providing a factory method as part of
our top-level document’s API, for example:
function createPlanetInfo (name,description) {
return new PlanetInfo (name,description);
}
which our script can then call without needing to refer to its own version of the
PlanetInfo type, thus:
<script type='text/javascript'>
var pinfo=createPlanetInfo (name,description) ;
</script>
The showPopup () function in listing 5.4 is essentially a factory for the Script-
IframePopup object.

This approach works and does what we want it to. We need to send a small
amount of HTML boilerplate with each page, but much less than with the content-
centric solution. The biggest drawback of this approach appears to be the creation
of a separate JavaScript context. There is a way to avoid that altogether, which we
will look at now.

Loading scripts using XMLHttpRequest and eval()

JavaScript, like many scripting languages, has an eval () function, which allows
any arbitrary text to be passed directly to the JavaScript interpreter. Using eval ()
is often discouraged, or noted as being slow, and this is indeed the case when it is
called regularly on lots of small scripts. However, it has its uses, and we can
exploit it here to evaluate scripts loaded from the server using the XMLHttp-
Request object. eval() performs with reasonable efficiency when working on
fewer, larger scripts.

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 187

Our planetary info example is rewritten to use eval () in the following code:

function showInfo (event) {
var planet=this.id;
var scriptUrl="script_"+planet+".js";
new net.ContentLoader (scriptUrl, evalScript) ;

}

function evalScript () {
var script=this.req.responseText;
eval (script) ;

}

The showInfo() method now uses the XMLHttpRequest object (wrapped in our
ContentLoader class) to fetch the script from the server, without needing to wrap it
in an HTML page. The second function, evalScript (), is passed to the Content-
Loader as a callback, at which point we can read the responseText property from
the XMLHttpRequest object. The entire script is evaluated in the current page
context, rather than in a separate context within an IFrame.

We can add the term script-centric to our pattern language now and make a
note that there are two implementations of it, using IFrames and eval(). Let’s
step back then, and see how script-based approaches compare with the content-
based style.

Problems and limitations

When we load a script directly from the server, we are generally transmitting a
simpler message, reducing bandwidth to some extent. We also decouple the logic
from the presentation to a great degree, with the immediate practical conse-
quence that visual changes aren’t confined to a fixed rectangular portion of the
screen as they are with the content-centric approach.

On the downside, however, we introduce a tight coupling between client
and server code. The JavaScript emitted by the server is unlikely to be reus-
able in other contexts and will need to be specifically written for the Ajax cli-
ent. Further, once published, the API provided by the client will be relatively
difficult to change.

It’s a step in the right direction, though. The Ajax application is starting to
behave more like an application and less like a document. In the next style of
client-server communication that we cover, we can release the tight coupling
between client and server that was introduced here.

Licensed to jonathan zheng <yiyisun@gmail.com>

188

CHAPTER 5
The role of the server

5.4.5 Thinking like an application: data-centric interactions

With the script-centric approach just described, we have started to behave more
like a traditional thick client, with data requests to the server taking place in the
background, decoupled from the user interface. The script content remained
highly specific to the browser-based client, though.

Overview

In some situations, we may want to share the data feeds to our Ajax client with
other front ends, such as Java or .NET smart clients or cell phone/PDA client soft-
ware. In such cases, we would probably prefer a more neutral data format than a
set of JavaScript instructions.

In a data-centric solution, the server serves up streams of pure data, which our
own client code, rather than the JavaScript engine, parses. Figure 5.9 illustrates
the features of a data-centric solution.

Most of the examples in this book follow a data-centric approach. The most
obvious format for data is XML, but other formats are possible, too, as we’ll
see next.

Using XML data

XML is a near-ubiquitous data format in modern computing. The web browser
environment in which our Ajax application sits, and the XMLHttpRequest object

Client

Request object 1. Request

2. Response

<data title="title">
<item>1</item>
4. Update visible elements <item>2</item>
<item>3</item>
</data>

3. Parse

Figure 5.9 In a data-centric system, the server returns streams of raw
data (XML in this case), which are parsed on the client tier and used to
update the client tier model and/or user interface.

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 189

in particular, provides good native support for processing XML. If the XML-
HttpRequest receives a response with an XML Content type such as application/
xml or text/xml, it can present the response as a Document Object Model, as we
have already seen. Listing 5.7 shows how our planetary data application adapts to
using XML data feeds.

Listing 5.7 DataXMLPopup.js

var offset=8;

function showPopup (name,description) {
var win=new DataPopup (name,description,offset,offset,320,320);
offset+=32;

function DataPopup (name,description,x,y,w,h){

var bod=document.createElement ("div") ;
document .body .appendChild (bod) ;

this.contentDiv=document.createElement ("div") ;
this.contentDiv.className="winContents";
this.contentDiv.innerHTML=description;
bod.appendChild(this.contentDiv) ;

this.win=new windows.Window (bod, name,x,y,w,h) ;

function showInfo (event) {
var planet=this.id;
var scriptUrl=planet+".xml";
new net.ContentLoader (scriptUrl, parseXML) ;

function parseXML () {
var name="";
var descrip="";
var xmlDoc=this.req.responseXML;
var elDocRoot=xmlDoc.getElementsByTagName ("planet") [0];
if (elDocRoot) {
attrs=elDocRoot.attributes;
name=attrs.getNamedItem("name") .value;
var ptype=attrs.getNamedItem("type") .value;
if (ptype) {
descrip+="<h2>"+ptype+"</h2>";

descrip+="";
for (var i1i=0;i<elDocRoot.childNodes.length;i++) {
elChild=elDocRoot.childNodes[i];

Licensed to jonathan zheng <yiyisun@gmail.com>

190

CHAPTER 5
The role of the server

if (elChild.nodeName=="info") {
descrip+="<1li>"+elChild.firstChild.data+"</1li>\n";
}
}
descrip+="";
Yelse{
alert ("no document") ;
}

top.showPopup (name, descrip) ;

The showInfo() function simply opens up an XMLHttpRequest object, wrapped
up in a ContentLoader object, providing the parsexML () function as a callback.
The callback here is slightly more involved than the evalScript () method that we
encountered in section 5.6.3, as we have to navigate the response DOM, pull out
the data, and then manually invoke the showPopup () method. Listing 5.8 shows
an example XML response generated by the server, which our XML data-centric
app might consume.

Listing 5.8 earth.xml

<planet name="earth" type="small">
<info id="a" author="dave" date="26/05/04">
Earth is a small planet, third from the sun
</info>
<info id="b" author="dave" date="27/02/05">
Surface coverage of water is roughly two-thirds
</info>
<info id="c" author="dave" date="03/05/05">
Exhibits a remarkable diversity of climates and landscapes
</info>
</planet>

A big advantage of XML is that it lends itself to structuring information. We have
taken advantage of this here to provide a number of <info> tags, which we trans-
late into an HTML unordered list in the parsexML () code.

We’ve achieved better separation of the server and client tiers by using XML.
Provided that both sides understand the document format, client and server code
can be changed independently of one another. However, getting the JavaScript
interpreter to do all the work for us in the script-centric solutions of the previous
section was nice. The following example, using JSON, gives us something of the
best of both worlds. Let’s look at it now.

Licensed to jonathan zheng <yiyisun@gmail.com>

The details: exchanging data 191

Using JSON data

The XMLHttpRequest object is arguably misnamed, as it can receive any text-
based information. A useful format for transmitting data to the Ajax client is the
JavaScript Object Notation (JSON), a compact way of representing generic Java-
Script object graphs. Listing 5.9 shows how we adapt our planetary info example
to use JSON.

Listing 5.9 DataJSONPopup.js

function showInfo (event) {
var planet=this.id;
var scriptUrl=planet+".json";
new net.ContentLoader (scriptUrl, parseJSON) ;

}

function parseJSON () {
var name="";
var descrip="";
var jsonTxt=net.req.responseText;
var jsonObj=eval (" ("+jsonTxt+")");
name=jsonObj.planet.name
var ptype=jsonObj.planet.type;
if (ptype) {
descrip+="<h2>"+ptype+"</h2>";
}

var infos=jsonObj.planet.info;

descrip+="";

for(var i in infos) {
descrip+=""+infos[i]+"</1li>\n";

}

descrip+="";
top.showPopup (name, descrip) ;

Once again, we fetch the data using a ContentLoader and assign a callback func-
tion, here parsegson (). The entire response text is a valid JavaScript statement,
so we can create an object graph in one line by simply calling eval ():

var jsonObj=eval (" ("+jsonTxt+")");

Note that we need to wrap the entire expression in parentheses before we evalu-
ate it. We can then query the object properties directly by name, leading to
somewhat more terse and readable code than the DOM manipulation methods

Licensed to jonathan zheng <yiyisun@gmail.com>

192

CHAPTER 5
The role of the server

that we used for the XML. The showPopup () method 1s omitted, as it is identical
to that in listing 5.7.

So what does JSON actually look like? Listing 5.10 shows our data for planet
Earth as a J[SON string.

{"planet": {

"name": "earth",
"type": "small",
"info": [

"Earth is a small planet, third from the sun",
"Surface coverage of water is roughly two-thirds",
"Exhibits a remarkable diversity of climates and landscapes"

1}
|

Curly braces denote associative arrays, and square braces numerical arrays.
Either kind of brace can nest the other. Here, we define an object called planet
that contains three properties. The name and type properties are simple strings,
and the info property is an array.

JSON is less common than XML, although it can be consumed by any Java-
Script engine, including the Java-based Mozilla Rhino and Microsoft’s JScript
NET. The JSON-RPC libraries contain JSON parsers for a number of program-
ming languages (see the Resources section at the end of this chapter), as well as a
JavaScript “Stringifier” for converting JavaScript objects to JSON strings, for two-
way communications using JSON as the medium. If a JavaScript interpreter is
available at both the server and client end, JSON is definitely a viable option. The
JSON-RPC project has also been developing libraries for parsing and generating
JSON for a number of common server-side languages.

We can add data-centric to our vocabulary now and note the potential for a wide
range of text-based data formats other than the ever-popular XML.

Using XSLT

Another alternative to manually manipulating the DOM tree to create HTML, as
we have done in section 5.7.3, is to use XSLT transformations to automatically
convert the XML into XHTML. This is a hybrid between the data-centric and
content-centric approaches. From the server’s perspective, it is data-centric,
whereas from the client’s, it looks more content-centric. This is quicker and eas-
ier but suffers the same limits as a content-centric approach, namely, the

Licensed to jonathan zheng <yiyisun@gmail.com>

5.5

5.5.1

Writing to the server 193

response is interpreted purely as visual markup typically affecting a single rect-
angular region of the visible UI. XSLT is discussed in more detail in chapter 11.

Problems and limitations

The main limitation of a data-centric approach is that it places the burden of
parsing the data squarely on the client. Hence the client-tier code will tend to be
more complicated, but, where this approach is adopted wholesale in a larger
application, the costs can be offset by reusing parser code or abstracting some of
the functionality into a library.

The three approaches that we have presented here arguably form a spectrum
between the traditional web-app model and the desktop-style thick client. Fortu-
nately, the three patterns are not mutually exclusive and may all be used in the
same application.

Client/server communications run both ways, of course. We’ll wrap up this
chapter with a look at how the client can send data to the server.

Writing to the server

So far, we've concentrated on one side of the conversation, namely, the server tell-
ing the client what is going on. In most applications, the user will want to manip-
ulate the domain model as well as look at it. In a multiuser environment, we also
want to receive updates on changes that other users have made.

Let’s consider the case of updating changes that we have made first. Techni-
cally, there are two main mechanisms for submitting data: HTML forms and the
XMLHttpRequest object. Let’s run through each briefly in turn.

Using HTML forms

In a classic web application, HTML form elements are the standard mechanism
for user input of data. Form elements can be declared in the HTML markup for
a page:
<form method="POST" action="myFormHandlerURL.php">
<input type="text" name="username"/>
<input type="password" name="password"/>
<input type="submit" value="login"/>
</form>
This will render itself as a couple of blank text boxes. If I enter values of dave
and letmein on the form, then an HTTP POST request is sent to myForm-
HandlerURL.php, with body text of username=dave&password=letmein. In most

modern web programming systems, we don’t directly see this encoded form

Licensed to jonathan zheng <yiyisun@gmail.com>

194

CHAPTER 5
The role of the server

data but have the name-value pairs decoded for us as an associative array or
“magic” variables.

It’s fairly common practice these days to add a little JavaScript to validate
the form contents locally before submitting. We can modify our simple form to
do this:

<form id="myForm" method="POST" action=""
onsubmit="validateForm(); return false;">
<input type="text" name="username"/>
<input type="password" name="password"/>
<input type="submit" value="login"/>
</form>

And we can define a validation routine in the JavaScript for the page:

function validateForm() {

var form=document.getElementById('myForm') ;

var user=form.elements[0].value;

var pwd=form.elements[1l].value;

if (user && user.length>0 && pwd && pwd.length>0) {
form.action="myFormHandlerURL.php';
form.submit () ;

Yelse{
alert ("please fill in your credentials before logging in");

}

The form is initially defined with no action attribute. The real URL is substituted
only when the values in the form have been validated correctly. JavaScript can
also be used to enhance forms by disabling the Submit button to prevent multiple
submissions, encrypting passwords before sending them over the network, and so
on. These techniques are well documented elsewhere, and we won’t go into them
in depth here. Chapters 9 and 10 contain more detailed working examples of
Ajax-enhanced HTML forms.

We can also construct a form element programmatically and submit it behind
the scenes. If we style it to not be displayed, we can do so without it ever being
seen by the user, as illustrated in listing 5.11.

Listing 5.11 submitData () function

function addParam(form, key,value) {
var input=document.createElement ("input") ;
input.name=key;
input.value=value;
form.appendChild (input) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

5.5.2

Writing to the server 195

function submitData (url,data) {

var form=document.createElement ("form") ;

form.action=url;

form.method="POST";

for (var i in data){
addbParam(form,i,datalil]);

}

form.style.display="none";

document .body.appendChild (form) ;

form.submit () ;

submitData () creates the form element and iterates over the data, adding to the
form using the addparam() function. We can invoke it like this:
submitData (
"myFormHandlerURL.php",
{username: "dave",password: "letmein"}
)i
This technique is concise but has a significant drawback in that there is no easy
way of capturing a server response. We could point the form at an invisible
IFrame and then parse the result, but this is rather cumbersome at best. Fortu-
nately, we can achieve the same effect by using the XMLHttpRequest object.

Using the XMLHttpRequest object

We’ve already seen the XMLHttpRequest object in action in chapter 2 and earlier
in this chapter. The differences between reading and updating are minor from
the client code’s point of view. We simply need to specify the POST method and
pass in our form parameters.

Listing 5.12 shows the main code for our ContentLoader object developed in
section 3.1. We have refactored it to allow parameters to be passed to the request,
and any HTTP method to be specified.

Listing 5.12 ContentLoader object

net.ContentLoader=function
(url,onload, onerror,method, params, contentType) { o Extra arguments

this.onload=onload;
this.onerror=(onerror) ? onerror : this.defaultError;
this.loadXMLDoc (url,method, params, contentType) ;

}

net.ContentLoader.prototype.loadXMLDoc

Licensed to jonathan zheng <yiyisun@gmail.com>

196

CHAPTER 5
The role of the server

=function (url,method, params, contentType) {
if (!'method) {
method="GET" ;
}
if (!contentType && method=="POST") {
contentType="application/x-www-form-urlencoded";
}
if (window.XMLHttpRequest) {
this.reg=new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
this.reg=new ActiveXObject ("Microsoft.XMLHTTP") ;
}
if (this.req) {

try{
this.reqg.onreadystatechange=net.ContentLoader.onReadyState;
this.req.open (method,url, true) ; <— HTTP method
if (contentType){ <— Content type

this.req.setRequestHeader ("Content-Type", contentType) ;
}
this.req.send (params) ; <+— Request parameters
Ycatch (err){
this.onerror.call (this) ;

We pass in several new arguments to the constructor . Only the URL (corre-
sponding to the form action) and the onload handler are required, but the HTTP
method, request parameters, and content type may be specified, too. Note that if
we're submitting key-value pairs of data by POST, then the content type must be
set to application/x-www-form-urlencoded. We handle this automatically if no
content type is specified. The HTTP method is specified in the open () method of
XMLHttpRequest, and the params in the send() method. Thus, a call like this

var loader=net.ContentLoader (
'myFormHandlerURL.php',
showResponse,
null,
'POST',
'username=dave&password=letmein'
)

will perform the same request as the forms-based submitData() method in
listing 5.11. Note that the parameters are passed as a string object using the

form-encoded style seen in URL querystrings, for example:

name=dave&job=book&work=Ajax_In+Action

Licensed to jonathan zheng <yiyisun@gmail.com>

5.5.3

Writing to the server 197

This covers the basic mechanics of submitting data to the server, whether based
on textual input from a form or other activity such as drag and drop or mouse
movements. In the following section, we’ll pick up our ObjectViewer example
from chapter 4 and learn how to manage updates to the domain model in an
orderly fashion.

Managing user updates effectively

In chapter 4, we introduced the ObjectViewer, a generic piece of code for brows-
ing complex domain models, and provided a simple example for viewing plane-
tary data. The objects representing the planets in the solar system each contained
several parameters, and we marked a couple of simple textual properties—the
diameter and distance from the sun—as editable. Changes made to any proper-
ties in the system were captured by a central event listener function, which we
used to write some debug information to the browser status bar. (The ability to
write to the status bar is being restricted in recent builds of Mozilla Firefox. In
appendix A, we present a pure JavaScript logging console that could be used to
provide status messages to the user in the absence of a native status bar.) This
event listener mechanism also provides an ideal way of capturing updates in
order to send them to the server.

Let’s suppose that we have a script updateDomainModel.jsp running on our
server that captures the following information:

® The unique ID of the planet being updated
® The name of the property being updated
m The value being assigned to the property

We can write an event handler to fire all changes to the server like so:

function updateServer (propviewer) {

var planetObj=propviewer.viewer.object;

var planetId=planetObj.id;

var propName=propviewer.name;

var val=propviewer.value;

net.ContentLoader (
'updateDomainModel.jsp"',
someResponseHandler,
null,
'POST',
'planetId="+encodeURI (planetId)
+'&propertyName="'+encodeURI (propName)
+'&value="+encodeURI (val)

)i

Licensed to jonathan zheng <yiyisun@gmail.com>

198

CHAPTER 5
The role of the server

And we can attach it to our ObjectViewer:
myObjectViewer.addChangeListener (updateServer) ;

This is easy to code but can result in a lot of very small bits of traffic to the server,
which is inefficient and potentially confusing. If we want to control our traffic, we
can capture these updates and queue them locally and then send them to the
server in batches at our leisure. A simple update queue implemented in Java-
Script is shown in listing 5.13.

Listing 5.13 CommandQueue object

net .CommandQueue=function (id,url, freq) { o Create a queue object
this.id=1d;
net.cmdQueues [id]=this;
this.url=url;
this.queued=new Array () ;
this.sent=new Array () ;
if (freq){
this.repeat (freq) ;

net .CommandQueue.prototype.addCommand=function (command) {
if (this.isCommand (command)) {
this.queue.append (command, true) ;

net .CommandQueue.prototype.fireRequest=function () { 0 Send request to server
if (this.queued.length==0) {
return;
}
var data="data=";
for(var i1=0;i<this.queued.length;i++) {
var cmd=this.queued[i];
if (this.isCommand (cmd)) {
data+=cmd. toRequestString () ;
this.sent[cmd.id]=cmd;

}

this.queued=new Array () ;

this.loader=new net.ContentLoader (
this.url,
net.CommandQueue.onload, net.CommandQueue.onerror,
"POST",data

)

Licensed to jonathan zheng <yiyisun@gmail.com>

Writing to the server 199

net.CommandQueue.prototype.isCommand=function (obj) { e Test object type
return (
obj.implementsProp ("id")
&& obj.implementsFunc ("toRequestString")
&& obj.implementsFunc ("parseResponse")
)

net .CommandQueue.onload=function (loader) { o Parse server response
var xmlDoc=net.req.responseXML;
var elDocRoot=xmlDoc.getElementsByTagName ("commands") [0];
if (elDocRoot) {
for (i=0;i<elDocRoot.childNodes.length;i++) {
elChild=elDocRoot.childNodes[i];
if (elChild.nodeName=="command") {
var attrs=elChild.attributes;
var id=attrs.getNamedItem("id") .value;
var command=net.commandQueue.sent[id];
if (command) {
command .parseResponse (elChild) ;

}
net.CommandQueue.onerror=function (loader) {
alert ("problem sending the data to the server");

net.CommandQueue.prototype.repeat=function (freq) { ‘3 Poll the server
this.unrepeat () ;
if (freg>0) {
this.freg=freq;
var cmd="net.cmdQueues|["+this.id+"].fireRequest()";
this.repeater=setInterval (cmd, freg*1000) ;

}
net.CommandQueue.prototype.unrepeat=function () { (’ kachpomngoﬁ
if (this.repeater) {
clearInterval (this.repeater) ;
}

this.repeater=null;

The CommandQueue object (so called because it queues Command objects—
we’ll get to that in a minute) is initialized @ with a unique ID, the URL of a server-
side script, and, optionally, a flag indicating whether to poll repeatedly. If it

Licensed to jonathan zheng <yiyisun@gmail.com>

200

CHAPTER 5
The role of the server

doesn’t, then we’ll need to fire it manually every so often. Both modes of opera-
tion may be useful, so both are included here. When the queue fires a request to
the server, it converts all commands in the queue to strings and sends them with
the request @.

The queue maintains two arrays. queued is a numerically indexed array, to
which new updates are appended. sent is an associative array, containing those
updates that have been sent to the server but that are awaiting a reply. The objects
in both queues are Command objects, obeying an interface enforced by the
isCommand () function €. That is:

m It can provide a unique ID for itself.
m It can serialize itself for inclusion in the POST data sent to the server (see @).

m [t can parse a response from the server (see @) in order to determine
whether it was successful or not, and what further action, if any, it

should take.

We use a function implementsFunc() to check that this contract is being obeyed.
Being a method on the base class Object, you might think it is standard Java-
Script, but we actually defined it ourselves in a helper library like this:

Object.prototype.implementsFunc=function (funcName) {

return this[funcName] && this[funcName] instanceof Function;

}
Appendix B explains the JavaScript prototype in greater detail. Now let’s get
back to our queue object. The onload method of the queue @ expects the server
to return with an XML document consisting of <command> tags inside a central
<commands> tag.

Finally, the repeat () @ and unrepeat () @ methods are used to manage the
repeating timer object that will poll the server periodically with updates.

The Command object for updating the planet properties is presented in list-
ing 5.14.

planets.commands.UpdatePropertyCommand=function (owner, field, value) {
this.id=this.owner.id+"_"+field;
this.obj=owner;
this.field=field;
this.value=value;

}

planets.commands.UpdatePropertyCommand. toRequestString=function () {

Licensed to jonathan zheng <yiyisun@gmail.com>

Writing to the server 201

return {
type: "updateProperty",
id:this.id,
planetId:this.owner.id,
field:this.field,
value:this.value
}.simpleXmlify ("command") ;

planets.commands.UpdatePropertyCommand.parseResponse=function (docEl) {
var attrs=docEl.attributes;
var status=attrs.getNamedItem("status").value;
if (status!="ok"){
var reason=attrs.getNamedItem("message") .value;
alert("failed to update "
+this.field+" to "+this.value
+"\n\n"+reason) ;

The command simply provides a unique ID for the command and encapsulates
the parameters needed on the server. The toRequestString() function writes
itself as a piece of XML, using a custom function that we have attached to the

Object prototype:

Object.prototype.simpleXmlify=function (tagname) {
var xml="<"+tagname;
for (i in this){
if (!this[i] instanceof Function) {
xml+=" "+i+"=\""+this[i]+"\"";

}
xml+="/>";
return xml;

}
This will create a simple XML tag like this (formatted by hand for clarity):

<command type='updateProperty'
id='001_diameter'
planetId='mercury'
field='diameter’
value='3"'/>
Note that the unique ID consists only of the planet ID and the property name. We
can’t send multiple edits of the same value to the server. If we do edit a property

several times before the queue fires, each later value will overwrite earlier ones.

Licensed to jonathan zheng <yiyisun@gmail.com>

202

CHAPTER 5
The role of the server

The POST data sent to the server will contain one or more of these tags,
depending on the polling frequency and how busy the user is. The server process
needs to process each command and store the results in a similar response. Our
CommandQueue’s onload will match each tag in the response to the Command
object in the sent queue and then invoke that Command’s parseResponse
method. In this case, we are simply looking for a status attribute, so the response
might look like this:

<commands>
<command id='001_diameter' status='ok'/>
<command id='003_albedo' status='failed' message='value out of range'/>
<command id='004_hairColor' status='failed' message='invalid property
name'/>
</commands>
Mercury’s diameter has been updated, but two other updates have failed, and a
reason has been given in each case. Our user has been informed of the prob-
lems (in a rather basic fashion using the alert () function) and can take reme-
dial action.

The server-side component that handles these requests needs to be able to
break the request data into commands and assign each command to an appropri-
ate handler object for processing. As each command is processed, the result will
be written back to the HTTP response. A simple implementation of a Java servlet
for handling this task is given in listing 5.15.

public class CommandServlet extends HttpServlet {
private Map commandTypes=null;

public void init() throws ServletException {
ServletConfig config=getServletConfig() ;
commandTypes=new HashMap () ; 0 Configure handlers on startup
boolean more=true;
for (int counter=1;more;counter++) {
String typeName=config.getInitParameter ("type"+counter) ;
String typeImpl=config.getInitParameter ("impl"+counter) ;
if (typeName==null || typeImpl==null) {
more=false;
telse{
try{
Class cls=Class.forName (typelImpl) ;
commandTypes.put (typeName, cls) ;
}catch (ClassNotFoundException clanfex) {
this.log(

Licensed to jonathan zheng <yiyisun@gmail.com>

Writing to the server 203

"couldn't resolve handler class name "
+typelImpl) ;

protected void doPost (
HttpServletRequest req,
HttpServletResponse resp
) throws IOException({
resp.setContentType ("text/xml") ; 0 Process a request
Reader reader=req.getReader() ;
Writer writer=resp.getWriter () ;

try{
SAXBuilder builder=new SAXBuilder (false) ;
Document doc=builder.build(reader) ; e Process XML data
Element root=doc.getRootElement() ;
if ("commands".equals (root.getName())) {
for(Iterator iter=root.getChildren ("command") .iterator () ;
iter.hasNext () ;) {
Element el=(Element) (iter.next());
String type=el.getAttributevValue("type");
XMLCommandProcessor command=getCommand (type,writer) ;
if (command!=null) {
Element result=command.processXML (el) ; ‘, Delegate to handler
writer.write(result.toString());
}
}
telse{

sendError (writer,
"incorrect document format - "
+"expected top-level command tag") ;
}
}catch (JDOMException jdomex) {
sendError (writer, "unable to parse request document") ;

private XMLCommandProcessor getCommand
(String type,Writer writer)
throws IOException{ © Match handler to command
XMLCommandProcessor cmd=null;
Class cls=(Class) (commandTypes.get (type)) ;
if (cls!=null){
try{
cmd= (XMLCommandProcessor) (cls.newInstance()) ;
}catch (ClassCastException castex) {
sendError (writer,
"class "+cls.getName ()
+" is not a command") ;

Licensed to jonathan zheng <yiyisun@gmail.com>

204

CHAPTER 5
The role of the server

} catch (InstantiationException instex) {
sendError (writer,
"not able to create class "+cls.getName()) ;
} catch (IllegalAccessException illex) {
sendError (writer,
"not allowed to create class "+cls.getName()) ;
}
}else{
sendError (writer, "no command type registered for "+type);
}
return cmd;
3

private void sendError
(Writer writer,String message) throws IOExceptionf{
writer.write("<error msg='"+message+"'/>");
writer.flush();

The servlet maintains a map of XMLCommandProcessor objects that are config-
ured here through the servletConfig interface @. A more mature framework
might provide its own XML config file. When processing an incoming POST
request @, we use JDOM to parse the XML data @ and then iterate through the
<command> tags matching type attributes to XMLCommandProcessors @. The
map holds class definitions, from which we create live instances using reflection in
the getCommand () method @.

The xMLCommandProcessor interface consists of a single method:

public interface XMLCommandProcessor {

Element processXML (Element el);

}
The interface depends upon the JDOM libraries for a convenient object-based
representation of XML, using Element objects as both argument and return type.
A simple implementation of this interface for updating planetary data is given in
listing 5.16.

Listing 5.16 PlanetUpdateCommandProcessor.java

public class PlanetUpdateCommandProcessor
implements XMLCommandProcessor {

public Element processXML (Element el) {

Element result=new Element ("command") ; o Create XML result node
String id=el.getAttributevalue("id") ;

Licensed to jonathan zheng <yiyisun@gmail.com>

Writing to the server 205

result.setAttribute("id",id);
String status=null;
String reason=null;
String planetId=el.getAttributevValue("planetId") ;
String field=el.getAttributevValue("field");
String value=el.getAttributevalue("value") ;
Planet planet=findPlanet (planetId) ; 0 Access domain model
if (planet==null) {
status="failed";
reason="no planet found for id "+planetId;
}else{
Double numValue=new Double (value) ;
Object[] args=new Object[]{ numValue };
String method = "set"+field.substring(0,1) .toUpperCase ()
+field.substring (1) ;
Statement statement=new Statement (planet,method, args) ;
try {
statement.execute(); € Update domain model
status="ok";
} catch (Exception e) {
status="failed";
reason="unable to set value "+value+" for field "+field;

}

result.setAttribute("status", status) ;

if (reason!=null) {
result.setAttribute("reason", reason) ;

}

return result;

private Planet findPlanet (String planetId) {

// TODO use hibernate O Use ORM for domain model
return null;

As well as using JDOM to parse the incoming XML, we use it here to generate
XML, building up a root node @ and its children programmatically in the pro-
cessXML () method. We access the server-side domain model using the find-
Planet () method @, once we have a unique ID to work with. findplanet () isn’t
implemented here, for the sake of brevity—typically an ORM such as Hibernate
would be used to talk to the database behind the scenes @. We use reflection to
update the domain model @ and then return the JDOM object that we have con-
structed, where it will be serialized by the servlet.

Licensed to jonathan zheng <yiyisun@gmail.com>

206

5.6

CHAPTER 5
The role of the server

This provides a sketch of the complete lifecycle of our queue-based architec-
ture for combining many small domain model updates into a single HTTP trans-
action. It combines the ability to execute fine-grained synchronization between
the client and server domain models with the need to manage server traffic effec-
tively. As we noted in section 5.3, it may provide a solution for JSF and similar
frameworks, in which the structure of the user interface and interaction model is
held tightly by the server. In our case, though, it simply provides an efficient way
of updating the domain models across the tiers.

This concludes our tour of client/server communication techniques for this
chapter and our overview of key design issues for Ajax applications. Along the
way, we've developed the start of a pattern language for Ajax server requests
and a better understanding of the technical options available to us for imple-
menting these.

Summary

We began this chapter by looking at the key roles of the application server in Ajax,
of delivering the client code to the browser, and supplying the client with data
once it is running. We looked at the common implementation languages on the
server side and took a tour of the common types of server-side frameworks of the
day. These are largely designed to serve classic web applications, and we consid-
ered how they can adapt to Ajax. The server-side framework space is crowded and
fast moving, and rather than looking at particular products, we categorized in
terms of generic architectures. This reduced the field to three main approaches:
the Model2 frameworks, component-based frameworks, and service-oriented
architectures. SOA seems to provide the most natural fit for Ajax, although the
others can be adapted with varying degrees of success. We looked at how to
enforce good separation of concerns in an SOA by introducing Facades.

Moving down to the fine-grained details, we contrasted three approaches to
fetching data from the server, which we labeled as content-centric, script-centric,
and data-centric. These form a continuum, with classic web applications tending
heavily toward the content-centric style and Ajax toward a data-centric style. In
discussing data-centric approaches, we discovered that there is life beyond XML,
and we took a look at JSON as a means of transmitting data to the client.

Finally, we described ways of sending updates to the server, using HTML
forms and the XMLHttpRequest object. We also considered bandwidth manage-
ment using a client-side queue of Command objects. This sort of technique can
give a significant performance boost by reducing both server load and network

Licensed to jonathan zheng <yiyisun@gmail.com>

5.7

Resources 207

traffic, and it is in keeping with what we have observed about best practice in
SOA, moving from an RPC-style approach toward a document-based communica-
tion strategy.

This chapter concludes our coverage of the core techniques of Ajax. We've
now covered all the basics and touched on quite a few advanced topics along the
way. In the following three chapters we return to the theme of usability and add
some polish to the technical wizardry that we’ve accomplished here, in order to
highlight key issues that can differentiate a clever hack from something that the
lay user will actually want to use.

Resources

Several web frameworks were discussed in this chapter. Here are the URLs:

Struts (http://struts.apache.org)

Tapestry (http://jakarta.apache.org/tapestry/)

JSF (http://java.sun.com/j2ee/javaserverfaces/faq.html)
PHP-MVC (www.phpmvc.net)

There are over 60 web frameworks for Java alone listed by the Wicket developers:
(http://wicket.sourceforge.net/Introduction.html).

JSF is a broad category covering many individual frameworks and products.
Kito Mann, author of JavaServer Faces in Action (Manning, 2004), maintains the
definitive portal site for all things JSF at www.jsfcentral.com/. Greg Murray and
colleagues of Sun’s Blueprints catalog discuss Ajax and JSF at https://bpcata-
log.dev.java.net/nonav/ajax/jst-ajax/frames.html. AjaxFaces is a commercial Ajax-
enabled JSF implementation (www.ajaxfaces.com), and Apache’s Open Source
MyFaces is looking at Ajax, too (http://myfaces.apache.org/sandbox/inputSug-
gestAjax.html).

Microsoft’s Atlas is still under development at the time of writing, but early
releases are expected later this year (2005). Scott Guthrie is Project Manager of
Atlas. His blog can be found at http://weblogs.asp.net/scottgu/archive/2005/06/28/
416185.aspx.

You can find JSON-RPC libraries for a range of programming languages at
www.json-rpc.org/impl.xhtml.

Licensed to jonathan zheng <yiyisun@gmail.com>

Licensed to jonathan zheng <yiyisun@gmail.com>

Part 3

Professional Ajax

Your Ajax application works end-to-end now and can read from the
server and update data on the server. There’s still some way to go though, if
you want to deploy a professional-quality application to real users. We’ll show

you in this part how to make your application easier to use, safer to use, and
fast enough to use.

Licensed to jonathan zheng <yiyisun@gmail.com>

Licensed to jonathan zheng <yiyisun@gmail.com>

The user experience

This chapter covers

m Key features of usable code

= Common notification features

m A reusable framework for notifications
m Highlighting updated data in situ

211

Licensed to jonathan zheng <yiyisun@gmail.com>

212

6.1

CHAPTER 6
The user experience

In chapter 1, we discussed usability, the keystone to any software application. No
matter how well organized your codebase and how clever the technical merits of
your application, if the usability stinks, you leave a bad association in the user’s
mind. This can be grossly unfair, but it’s a fact of life. More people recognize
Albert Einstein for his hangdog looks and wild hair than understand what he was
trying to say about the nature of space-time. First impressions—and attention to
detail—matters.

In chapters 2 to 5, we introduced a lot of cool technology and did some clever
things with Ajax. The focus on organization throughout the latter part of this
journey has enabled us to be flexible and highly adaptive about how we do these
things. However, our examples have been rather rough around the edges, and
rightly so while we focused on the cleverness at hand, but now we need to step
back and assess what we have done in terms of creating something that people
will actually want to use, possibly for several hours a day. The topics presented in
this chapter will go a long way toward helping you get your Ajax application
ready and presentable for the real world.

One of the biggest things that you can do to make your users feel comfortable
with your application is to keep them informed about background events in a dis-
crete and consistent fashion. They aren’t the be-all and end-all of usability, but we
will focus on them in this chapter in order to show how an in-depth, consistent
treatment benefits the application as a whole. Most Ajax applications will want to
notify the user at some point too, so we hope you’ll find the finished components
useful in your own projects as well.

We develop several solutions in this chapter for letting the users know what is
going on, without getting in the way of their workflow. Before we go into these
specifics, though, let’s take a quick look at what we mean by quality and how to
get there.

Getting it right: building a quality application

Usability is an especially hot topic for Ajax because web app users can be an
extremely fickle bunch. The downside of being able to download and run your
app with zero effort is that the users have invested no time and effort in it when
they start to use the application and will be willing to throw it away and move on
to the next of the 8 billion web pages that Google can point them to. To compli-
cate matters further, with Ajax we are seeing the convergence of two different
usability traditions, namely the desktop application and the web page. Getting

Licensed to jonathan zheng <yiyisun@gmail.com>

6.1.1

6.1.2

Getting it right: building a quality application 213

the mixture right can be quite a challenge, and failing to get it right can consign
your hard work to obscurity.

In chapter 1, we looked at usability from the users’ point of view. What do they
want in an application? And what are they willing to put up with? Let’s turn the
question around now and ask what qualities we need in our code to meet the goal
of usability. With this as a starting point, we can figure out what we can do in prac-
tical terms to make our application work. The following sections detail a number
of key features that add quality to your application.

Responsiveness

The most basic frustration that a computer user can suffer from is to have work-
flow interrupted while the computer struggles to catch up with him. Basic design
mistakes, such as locking up the entire user interface while writing some lengthy
configuration file to disk, can cause the user to lose track of what he is doing and
force him to make the mental leap between the domain model in which he is
engaged to the harsh reality of computer hardware.

When looking at responsiveness, it can be important to understand your target
audience and its typical system setups. In the case of writing a configuration file,
the speed may be acceptable on the developer’s high-speed 7200-RPM SATA disk
drive on the local workstation, but the customer writing the file to a congested
network share or a USB thumb drive may have a different experience. In the spe-
cific case of web app development, a similar mistake is often made in only testing
the application running over the loopback interface, that is, the web server run-
ning on the same development machine as the web browser. This doesn’t give a
useful evaluation of network latency issues, and all web apps ought to be either
tested over a real LAN or WAN or simulated using a traffic-shaping tool.

Beyond network issues, the performance of the client code can make a huge
difference to responsiveness. Performance is a big issue, so we’ll defer a closer
look at it to chapter 7.

Robustness

An application is robust if it can withstand the usual conditions encountered at a
busy workstation. How does it cope with a temporary network outage? If a badly
behaved program hogs the CPU for five minutes, will your application still work
afterwards? At one recent project that I was involved in, we would test our appli-
cation’s robustness by pounding randomly on the keyboard for 10 seconds or so,
and by “scribbling” the mouse across the page while clicking it. A crude sort of
test—but effective—and quite good fun!

Licensed to jonathan zheng <yiyisun@gmail.com>

214

6.1.3

CHAPTER 6
The user experience

What can such a test reveal? For one thing, it can highlight inefficiencies in
event-handler code. Keypresses, mouse moves, and the like need to return
quickly, since they are apt to be called very frequently. Further, they can reveal
unintentional dependencies between components. A particular condition may
arise in a GUI, for example, where a modal dialog is blocking access to the main
application, but an open menu item is blocking access to the modal dialog. If
such a situation depends on precise timing in the opening of the dialog and the
menu, it might take a single user two months of daily work to discover it. Once
released to an audience of several thousand, however, it might start showing up
within hours and be extremely hard to reproduce from field reports. Identify-
ing the problem up front, and correcting it, increases the overall robustness of
the application.

There is more to robustness than randomly thumping the keyboard. Just as
valuable is the process of watching someone other than the developer trying to use
the application. In the case of a complete newcomer, this can provide helpful
information on the overall usability design, but it is also useful to let someone
closely acquainted with the domain knowledge, even the product, test-drive a new
bit of functionality. When the person who wrote the code runs the program, she
can “see” the code behind it and may subconsciously avoid specific combinations
of actions or particular actions in specific contexts. The end user won’t have this
insider knowledge, of course, and neither will the developer sitting next to you
(unless you do pair programming). Getting someone else to informally run
through your app workflow can help to build up robustness early on.

Consistency

As we already noted, the usability patterns of Ajax are still evolving from a mish-
mash of desktop application and web browser conventions. Some Ajax toolKkits,
such as Bindows, qooxdoo, and Backbase, even present widget sets deliberately
styled to look like desktop application buttons, trees, and tables.

The right answer to this conundrum is still being worked out by webmasters,
usability gurus, and everyday users of the Web as it continues to evolve. In the
meantime, the best advice available is to keep things consistent. If one part of
your application uses web-style single clicks to launch pop-up windows, and
another part requires double-clicks on similar-looking icons, your user will
quickly become confused. And if you must have a talking pig that guides your
users around the site, make sure that it doesn’t suddenly change its accent, cos-
tume, or hairstyle halfway through!

Licensed to jonathan zheng <yiyisun@gmail.com>

6.1.4

6.1.5

Getting it right: building a quality application 215

From the point of view of your codebase, consistency and reuse go hand in
hand. If you cut and paste functionality from one location to another, and then
respond to a change request in three copies of the button-rendering code but
miss a fourth, the consistency of your interface will erode over time. If there is
only one copy of the button-rendering code that everyone uses, then the consis-
tency of your application is likely to remain high. This applies not only to visual
Ul behavior but also to less-visible parts of the interface, such as network timeouts
and responses to bad data.

Simplicity
Finally, we need to stress the importance of simplicity. Ajax allows you to do a
number of wild and creative things, the likes of which have never been seen in a
web page before. Some of these things have never been seen because the neces-
sary technology is only just arriving on the scene. In other cases, there are good
reasons for not implementing a feature. Spring-loaded menus that bounce onto
the screen and gradually dampen their oscillations may be great fun to code and
great fun for a short-term user dropping by for five minutes to let oft steam. If the
user is going to use the application for several hours a day, though, she is less
likely to appreciate the fun by the day’s end.

It is always worth asking whether a new feature will actually improve the end
experience. In many cases with Ajax, the answer will be yes, and the developer
can concentrate on coding features that will be genuinely beneficial.

Making it work

It’s probably the case that your code doesn’t exhibit all the features we just men-
tioned. Mine certainly doesn’t. These are merely ideals that we’ve presented.
Making the effort to move toward these ideals can pay big dividends when it
comes to maintaining your codebase in the future, and refactoring existing code
can introduce these qualities as you go along. Choosing where to concentrate the
effort is something of a black art, and the only way to get good at it is by practic-
ing. If you're new to refactoring, start with something small and gradually work
outward. Remember, refactoring is an incremental process, and you can add
quality to your code without pulling it apart and leaving bits on the floor for
weeks on end.

In the remainder of this chapter, we’ll look at some specific features that you
can build into Ajax applications. A large part of the chapter focuses on notification
frameworks, which are ways of keeping the user informed while background pro-
cesses such as calculations or network requests take place. By providing the user

Licensed to jonathan zheng <yiyisun@gmail.com>

216

6.2

6.2.1

CHAPTER 6
The user experience

with a visual cue that the process is under way, we improve the responsiveness of
the application. By running all such notifications through a common framework,
we ensure that presentation is consistent and make it simple for the user to work
with the notifications because everything works in the same way.

Let’s start oft by looking at the various ways in which we can notify the user of
events taking place within the application.

Keeping the user informed

In an Ajax application, we may often need to run off across the network and fetch
some resources from the server and then pick up the results in a callback function
and do something with them. If we were handling server requests synchronously,
we would have a relatively easy time working out how to handle this in user inter-
face terms. The request would be initiated, the entire user interface would lock up
and stop responding, and when the results come back from the server, the inter-
face would update itself and then start responding to input. What’s good for the
developer here is lousy for the user, of course, so we make use of an asynchronous
request mechanism. This makes the business of communicating server updates
through the user interface that much more complicated.

Handling responses to our own requests

Let’s pick up a concrete example to work with. The planetary information viewer
that we developed in chapter 5 allowed the user to update a couple of editable
properties for planets: the diameter and the distance from the sun (see
section 5.5). These updates are submitted to the server, which then responds, say-
ing whether it has accepted or rejected them. With the introduction of the com-
mand queue concept in section 5.5.3, we allowed each server response to carry
acknowledgments to several updates from a given user. A sample XML response
document follows, showing one successful and one unsuccessful command:
<commands>
<command i1id='001_diameter' status='ok'/>
<command id='003_albedo' status='failed'
message='value out of range'/>
</commands>
From the user’s perspective, she edits the property and then moves on to some
other task, such as editing the list of facts associated with that planet or even star-
ing out of the window. Her attention is no longer on the diameter of the planet
Mercury. Meanwhile, in the background, the updated value has been wrapped in

Licensed to jonathan zheng <yiyisun@gmail.com>

Keeping the user informed 217

a JavaScript Command object, which has entered the queue of outgoing messages
and will be sent to the server shortly thereafter. The Command object is then
transferred to the “sent” queue and is retrieved when the response returns, pos-
sibly along with a number of other updates. The Command object is then respon-
sible for processing the update and taking appropriate action.

Let’s recap where we had left this code before we start refactoring. Here is our
implementation of the Command object’s parseResponse () method, as presented
in chapter 5:

planets.commands.UpdatePropertyCommand
.parseResponse=function (docEl) {
var attrs=docEl.attributes;
var status=attrs.getNamedItem("status") .value;
if (status!="ok"){
var reason=attrs.getNamedItem("message") .value;

alert("failed to update "+this.field
+" to "+this.value+"\n\n"+reason) ;

}

This is good proof-of-concept code, ripe for refactoring into something more
polished. As it stands, if the update is successful, nothing happens at all. The local
domain model was already updated before the data was sent to the server, so
everything is assumed to be in sync with the server’s domain model. If the update
fails, then we generate an alert message. The alert message is simple for the
developer but makes for poor usability, as we will see.

Let’s return to our user, who is probably no longer thinking about the albedo
of the planet Mercury. She is suddenly confronted with a message in an alert box
saying, “Failed to update albedo to 180 value out of range,” or something similar.
Taken out of context, this doesn’t mean very much. We could upgrade our error
message to say “Failed to update albedo of Mercury...,” but we would still be inter-
rupting the user’s workflow, which was the reason that we switched to asynchro-
nous message processing in the first place.

We would, in this particular case, also be creating a more serious problem. Our
editable fields implementation uses the onblur event to initiate the process of
submitting data to the server. The onblur () method is triggered whenever the
text input field loses focus, including when it is taken away by an alert box.
Hence, if our user has moved on to editing another property and is midway
through typing into the second textbox, our alert will result in the submission of
partial data and either mess up the domain model on the server or generate an
error—and a further alert box if our validation code catches it!

Licensed to jonathan zheng <yiyisun@gmail.com>

218

6.2.2

CHAPTER 6
The user experience

A more elegant solution than the alert box is needed. We’ll develop one
shortly, but first let’s further complicate the picture by considering what other
users are up to while we make our requests to the server.

Handling updates from other users

Our planetary viewer application allows more than one user to log in at once, so
presumably other users may be editing data while we are. Each user would pre-
sumably like to be informed of changes made by other users more or less as they
happen. Most Ajax applications will involve more than one browser sharing a
domain model, so this is again a fairly common requirement.

We can modify our XML response, and the Command queue object, to cope
with this situation in the following way. For each update to the server-side model,
we generate a timestamp. We modify the server-side process that handles updates
to also check the domain model for recent updates by other users, and attach
them to the response document, which might now look like this:

<responses updateTime='1120512761877"'>

<command id='001_diameter' status='ok'/>

<command id='003_albedo' status='failed' message='value out of range'/>

<update planetId='002' fieldName='distance' value='0.76' user='jim'/>

</responses>

Alongside the <command> tags, which are identified by the ID of the Command
object in the sent queue, there is an <update> tag, which in this case denotes that
the distance from the sun of Venus has been set to a value of 0.76 by another user
called Jim. We have also added an attribute to the top-level tag, the purpose of
which we explain shortly.

Previously, our command queue sent requests to the server only if there were
commands queued up. We would need to modify it now to poll the server even if
the queue were empty, in order to receive updates. Implementing this touches
upon the code in several places. Listing 6.1 shows the revised CommandQueue
object, with the changes in bold.

net.cmdQueues=new Array(); " Global lookup

net.CommandQueue=function(id, url, onUpdate, freq) { 0 Extra parameters
this.id=id;
net.cmdQueues[id]=this;
this.url=url;
this.queued=new Array () ;
this.sent=new Array();

Licensed to jonathan zheng <yiyisun@gmail.com>

Keeping the user informed 219

this.onUpdate=onUpdate;

if (freq){ © Polling initializer
this.repeat (freq) ;

}

this.lastUpdateTime=0;

net.CommandQueue.prototype.fireRequest=function () {
if (!this.onUpdate && this.queued.length==0) {
return;

}

var data="lastUpdate="+this.lastUpdateTime+"&data=";

for(var i1i=0;i<this.queued.length;i++) {
var cmd=this.queued[i];
if (this.isCommand (cmd)) {
data+=cmd. toRequestString() ;
this.sent[cmd.id]=cmd;

}

this.queued=new Array () ;

this.loader=new net.ContentLoader (
this.url,
net.CommandQueue.onload, net.CommandQueue.onerror,
"POST",data

)i

net.CommandQueue.onload=function (loader) {
var xmlDoc=net.req.responseXML;

<+— Timestamp requests

var elDocRoot=xmlDoc.getElementsByTagName ("responses") [0];
var lastUpdate=elDocRoot.attributes.getNamedItem("updateTime") ;

if (parselInt (lastUpdate)>this.lastUpdateTime) {

this.lastUpdateTime=lastUpdate; ‘, Updated timestamp

}
if (elDocRoot) {
for (i=0;i<elDocRoot.childNodes.length;i++) {
elChild=elDocRoot.childNodes[i];

if (elChild.nodeName=="command") {
var attrs=elChild.attributes;
var id=attrs.getNamedItem("id") .value;
var command=net.commandQueue.sent[id];
if (command) {

command .parseResponse (elChild) ;

}

}else if (elChild.nodeName=="update") {
if (this.implementsFunc ("onUpdate"))

{

this.onUpdate.call (this,elChild); e Updated handler

Licensed to jonathan zheng <yiyisun@gmail.com>

220

CHAPTER 6
The user experience

}
net.CommandQueue.prototype.repeat=function (freq) { 0 Server poller
this.unrepeat () ;
if (freg>0) {
this.freg=freq;
var cmd="net.cmdQueues|["+this.id+"].fireRequest()";
this.repeater=setInterval (cmd, freg*1000) ;
}
}
net.CommandQueue.prototype.unrepeat=function () { ‘D PoMngswkch
if (this.repeater) {
clearInterval (this.repeater) ;
}
this.repeater=null;

}

We’ve added quite a bit of new functionality here. Let’s step through it.

First, we've introduced a global lookup of command queue objects @. This is a
necessary evil given the limitations of the setInterval () method, which we’ll dis-
cuss shortly. The constructor takes a unique ID as an argument and registers itself
with this lookup under this key.

The CommandQueue constructor now takes two other new arguments @.
onUpdate is a Function object that is used to handle the <update> tags that we
introduced into our response XML. freq is a numerical value indicating the num-
ber of seconds between polling the server for updates. If it is set, then the con-
structor initializes a call to the repeat () function @, which uses JavaScript’s built-
in setInterval () method to regularly execute a piece of code. setInterval () and
its cousin setTimeout () accept only strings as arguments under Internet Explorer,
so passing variable references directly into the code to be executed is not possible.
We use the global lookup variable and the unique ID of this queue to develop a
workaround to this problem in the repeat () method. We also keep a reference to
the repeating interval, so that we can stop it using clearInterval () in our unre-
peat () method @.

In the fireRequest () method, we previously exited directly if the queue of
commands to send was empty. That test has been modified now so that if an onup-
date handler is set, we will proceed anyway and send an empty queue in order to
fetch any <update> tags waiting for us. Alongside our own edited data, we send a
timestamp telling the server the date that we last received updates @, so that it

Licensed to jonathan zheng <yiyisun@gmail.com>

Keeping the user informed 221

can work out to send us relevant updates. This is stored as a property of the com-
mand queue and set to 0 initially.

We pass these timestamps as UNIX-style dates, that is, the number of millisec-
onds elapsed since January 1, 1970. The choice of timestamp is based on porta-
bility. If we chose a date format that was easier to read, we would run into issues
with localization, differences in default formats across platforms and languages,
and so on. Getting localization right is an important topic for Ajax applications,
since the application will be exposed to users worldwide if it is on the public
Internet or the WAN of a large organization.

In the onload () function, we add the code required to update the last updated
timestamp when a response comes in @ and to parse <update> tags @. The onUp-
date handler function is called with the command queue as its context object and
the <update> tag DOM element as the sole argument.

In the case of our domain model of the solar system, the update handler func-
tion is shown in listing 6.2.

function updatePlanets (updateTag) {
var attribs=updateTag.attributes;
var planetId=attribs.getNamedItem("planetId") .value;
var planet=solarSystem.planets([planetId];
if (planet) {
var fld=attribs.getNamedItem("fieldName") .value;
var val=attribs.getNamedItem("value") .value;
if (planet.fld){
planet[fld]l=val;
}else{
alert ('unknown planet attribute '+f1d);
}
}else{
alert ('unknown planet id '+planetId) ;

}

The attributes in the <update> tag give us all the information that we need to
update the domain model on the JavaScript tier. Of course, the data coming from
the server may not be correct, and we need to take some action if it isn’t. In this
case, we have fallen back on an alert() statement compounding the problems
that were discussed in section 6.2.1.

We’ve added quite a bit more clever code to our command queue object in the
process of handling updates from other users, including passing timestamps

Licensed to jonathan zheng <yiyisun@gmail.com>

222

6.3

CHAPTER 6
The user experience

between the client and web tiers, and adding a pluggable update handler func-
tion. Eventually we come full circle to the issue of informing the user of changes
and asynchronous updates as they take place. In the next section, we look at our
options for presenting this information to the user in a more workable fashion,
and we’ll factor out that pesky alert () function.

Designing a notification system for Ajax

The alert() function that we’ve been relying on up to now is a primitive throw-
back to the earlier, much simpler days of JavaScript, when web pages were largely
static and the amount of background activity was minimal. We can’t control its
appearance in any way through CSS, and for production-grade notification, we’re
much better off developing our own notification mechanisms using the tech-
niques employed to build the rest of our Ajax user interface. This also provides a
much greater degree of flexibility.

It we look across the full spectrum of computer systems, we see that notifica-
tions come in many shapes and sizes, varying considerably in their impact on the
user. At the low end of the scale regarding obtrusiveness are changes to the mouse
cursor (such as the Windows hourglass or the Mac “spinning beach ball”) or the
addition of secondary icons or emblems to an image denoting the status of the
files or other items in a folder. These simple indicators offer relatively little infor-
mation. A status bar can provide a bit more detail on background events, and
finally the full-blown dialog can show a greater degree of detail than either. Fig-
ure 6.1 illustrates a range of notification conventions being used in the KDE desk-
top for UNIX.

The folder called lost+found is not accessible to the current user, so a second-
ary image of a padlock has been superimposed over that folder. The status bar at
the bottom of the main window gives further information on the contents of the
folder being viewed, without interrupting the user. Finally, the error window that
is presented when the user tries to open the locked folder presents a stronger
notification requiring immediate action by the user.

Compared to these notifications, the use of alert() is essentially ad hoc, as
well as being simplistic and ugly. In our quest for robustness, consistency, and
simplicity, it makes sense to develop a framework for presenting notifications to
the user that we can reuse throughout our application. In the following sections
we’ll do just that.

Licensed to jonathan zheng <yiyisun@gmail.com>

6.3.1

Designing a notification system for Ajax 223

=18] [E3 file:/home/ - Konqueror 7 QOO
Location Edit View Go Bookmarks Tools Settings Window Help
.0 9,0 O == QIEIE S B E3
E» Location: [[file:home/ 7
\ ¢ .\ I‘;' n' .. f
cranefamily dave lost+found root
(=18) [&3 Error - Kongueror 7 O

You do not have enough permissions to read
file:/home/lost+found

4 Items - 0 Files - 4 Folders (T\

Figure 6.1 Various conventions for providing status information in a user interface: modifying
the icons to reflect particular characteristics (here access permissions), a status bar providing
summary information, and a modal dialog. The interface shown here is the KDE desktop for UNIX
workstations, but similar conventions are found in most popular graphical interfaces.

Modeling notifications

As a first step, let’s define what a notification message looks like. It contains a text
description for the user and optionally an icon to display alongside the message.

When we notify the user of background activity, some messages are going to be
more urgent than others. Rather than working out each time whether or not to
show a particular message, let’s define some generic priority levels, which we can
then assign to each message.

In general, we want to tell the user something, which they can acknowledge
and dismiss. Some messages might be important enough to stay around indefi-
nitely until the user does dismiss them, whereas others will be relevant only for a
limited time. Where a message does remove itself without user intervention, it
may be in response to a callback, if it is telling the user that some background pro-
cess such as a network download is under way and the process finishes before the
user dismisses the notification. In other cases, such as a news feed, we may simply
wish to assign a given lifetime to a message, after which it will tidy itself away.

With these requirements in mind, listing 6.3 presents a Message object, which
provides a generic behind-the-scenes representation of a notification that is to be
presented to the user. Once we’ve established this model of notification messages,
we can dress them up in various ways, as we will see later.

Licensed to jonathan zheng <yiyisun@gmail.com>

224 CHAPTER 6
The user experience

Listing 6.3 Message object

var msg=new Object () ;

msg.PRIORITY_LOW= { id:1, lifetime:30, icon:"img/msg_lo.png" };
msg.PRIORITY_DEFAULT={ id:2, lifetime:60, icon:"img/msg_def.png" };
msg.PRIORITY_HIGH= { 1id:3, lifetime:-1, icon:"img/msg_hi.png" };

msg.messages=new Array();

msg.Message=function (id, message,priority,lifetime, icon) {
this.id=id;
msg.messages [id]=this;
this.message=message;
this.priority=(priority) ? priority : msg.PRIORITY_DEFAULT.id;
this.lifetime=(lifetime) ? lifetime : this.defaultLifetime() ;
this.icon=(icon) ? icon : this.defaultIcon();
if (this.lifetime>0) {
this.fader=setTimeout (
"msg.messages['"+this.id+"'].clear ()",
this.lifetime*1000
)

}
msg.Message.prototype.clear=function () {
msg.messages[this.id]=null;

msg.Message.prototype.defaultlLifetime=function () {
if (this.priority<=msg.PRIORITY_LOW.id) {
return msg.PRIORITY_LOW.lifetime;
}else if (this.priority==msg.PRIORITY_DEFAULT.id) {
return msg.PRIORITY_DEFAULT.lifetime;
}else if (this.priority>=msg.PRIORITY_HIGH.id) {
return msg.PRIORITY_HIGH.lifetime;

msg.Message.prototype.defaultIcon=function () {
if (this.priority<=msg.PRIORITY_LOW.id) {
return msg.PRIORITY_LOW.icon;
}else if (this.priority==msg.PRIORITY_ DEFAULT.id) {
return msg.PRIORITY_DEFAULT.icon;
}else if (this.priority>=msg.PRIORITY_HIGH.id) {
return msg.PRIORITY_HIGH.icon;

Licensed to jonathan zheng <yiyisun@gmail.com>

6.3.2

Designing a notification system for Ajax 225

We define a global namespace object msg for our notification system, and
within that an associative array from which any message can be looked up by a
unique ID. The ID generation scheme will depend on the application using the
framework.

We define three constants defining the three priority levels—low, default, and
high—to which a message can be assigned. Each priority defines a default icon
and lifetime (in seconds), both of which may be overridden by optional argu-
ments in the constructor function. A lifetime value of -1, assigned to high-priority
messages, indicates that the message will not expire automatically but will need to
be dismissed explicitly, either by the user or by a callback function.

Defining user interface requirements

In MVC terms, we have provided a Model for our notification system here. To
make it useful, we need to define a View. There are many possible ways of visually
representing notifications. For this example, we have chosen to provide a status
bar of sorts, upon which notifications are represented as icons, as illustrated in
figure 6.2.

‘EE‘E

o

Figure 6.2 Status bar user interface for our notification
system. Individual messages are represented by their icons.

The red X icon is a standard icon provided for low-level notifications by our sys-
tem. The third message object on the status bar has provided its own icon, a blue,
shaded sphere, which overrides the default X. Each notification that is added to
this status bar can be inspected as a tooltip device, as shown in figure 6.3.

‘ the sky is blue today

X %/ Q= e

Figure 6.3 Messages on the status bar can be inspected by
rolling the mouse over the icon, causing a tooltip to appear.

This mechanism is designed to be unobtrusive. The status bar occupies relatively

little screen space, but it is apparent to the user when a new notification has
arrived by the presence of an additional icon. For more urgent messages, we may

Licensed to jonathan zheng <yiyisun@gmail.com>

226

6.4

6.4.1

CHAPTER 6
The user experience

watch out for that falling piano!!!

the butler did it!

there's a cat playing the bagpipes
over there

scientists have discovered that the
moon really is made of cheese

SEE[0]

Figure 6.4 Higher-priority messages are shown in a pop-up
dialog, in which messages are listed in order of priority.

wish for something more immediate. To this end, we will initially display only low-
priority messages in the status bar; default and high-priority messages will first
appear in a pop-up dialog, as illustrated in figure 6.4, before being dismissed.

The dialog can be modal or nonmodal. In the case of modal dialogs, we use a
semitransparent layer to block off the rest of the user interface until the user dis-
misses the dialog. When dismissed, the dialog is represented by an icon on the
right side of the status bar. In the following two sections, we’ll look at implemen-
tations of these features.

Implementing a notification framework

We’ve defined two main parts to our user interface: the status bar and the pop-up
dialog. Let’s have a look at implementing this functionality now. The full notifi-
cation system is quite complicated, so we’ll break it down into stages. First, we’ll
enhance our Message object so that it knows how to render a user interface for
itself, both for when it is sitting in the status bar as an icon and when it is showing
its full details, either in a tooltip or within the pop-up dialog. Let’s begin with the
implementation of the status bar component.

Rendering status bar icons

The status bar needs to render itself on the screen and contain the icons repre-
senting active messages. We delegate rendering of the individual icons to the

Licensed to jonathan zheng <yiyisun@gmail.com>

Implementing a notification framework 227

Message objects themselves. The Message will effectively implement a small-scale
MVC pattern, with the rendering ability delivering a View, whose interactive fea-
tures fulfill the role of Controller. Designing it this way could be problematic if we
wished to add arbitrary alternative rendering mechanisms to our notifications
framework. We don’t want to do that, however, because we want the notifications
to be uniform across our application, for consistency’s sake. Listing 6.4 shows a
rendering method for the Message object.

Listing 6.4 Message framework with user interface

msg.Message.prototype.render=function (el) { o Render message
if (this.priority<=msg.PRIORITY_LOW.id) {
this.renderSmall (el) ;
}else if (this.priority>=msg.PRIORITY_DEFAULT.1id) {
this.renderFull (el) ;

msg.Message.prototype.renderSmall=function(el) { 0 Render as icon with tooltip
this.icoTd=document.createElement ("div") ;
var ico=document.createElement ("img") ;
ico.src=this.icon;
ico.className="msg_small_icon";
this.icoTd.appendChild(ico) ;
this.icoTd.messageObj=this;
this.icoTd.onmouseover=msg.moverIconTooltip;
this.icoTd.onmouseout=msg.moutIconTooltip;
this.icoTd.onclick=msg.clickIconTooltip;

el.appendChild(this.icoTd) ;

msg.moverIconTooltip=function(e) { 0 Handle mouse-over events
var event=e || window.event;
var message=this.messageObj;
var popped=message.popped;
if (!popped) {
message.showPopup (event, false) ;

}
msg.moutIconTooltip=function (e) { (’ Handle mouse-out events
var message=this.messageObj;
var popped=message.popped;
var pinned=message.pinned;
if (popped && !pinned) {
message.hidePopup () ;

Licensed to jonathan zheng <yiyisun@gmail.com>

228 CHAPTER 6
The user experience

msg.clickIconTooltip=function(e) { 9 Handle mouse-click events
var event=e || window.event;
var message=this.messageObj;
var popped=message.popped;
var pinned=message.pinned;
var expired=message.expired;
if (popped && pinned) {
message.hidePopup () ;
if (expired) {
message.unrender () ;
}
}else{
message . showPopup (event, true) ;

}
msg.Message.prototype.showPopup=function (event, pinned) { ‘3 kahytookm
this.pinned=pinned;
if (!this.popup) {
this.popup=document.createElement ("div") ;
this.popup.className="'popup';
this.renderFull (this.popup) ;
document .body.appendChild (this.popup) ;
}
this.popup.style.display="'block"';
var popX=event.clientX;
var popY=event.clientY-xHeight (this.popup)-12;
xMoveTo (this.popup, popX, popY) ;
if (msg.popper && msg.popper!=this) {
msg.popper.hidePopup () ;
}
this.popped=true;
msg.popper=this;
}
msg.Message.prototype.hidePopup=function () { <+— Hide tooltip
if (this.popped) {
if (this.popup) {
this.popup.style.display="'none';
}
this.popped=false;

We’ve introduced the top-level rendering code for our Message object, and the
specific details for the representation used in the status bar here. Let’s address
the top-level code first. We provide a render () method @, which takes a DOM ele-
ment as an argument. This delegates to either a rendersmall() @ or render-
Full () @ method, based on the priority of the message. Messages being shown in

Licensed to jonathan zheng <yiyisun@gmail.com>

Implementing a notification framework 229

the status bar are always low priority, and will be displayed as an icon that pre-
sents a tooltip on mouseover (see figures 6.2 and 6.3).

rendersmall () renders the icon inside the DOM element and provides event
handlers for displaying the pop-up tooltip.

Because this chapter is about adding professional polish to Ajax applications,
the tooltip that we create for the icon has been implemented in a complete fash-
ion, with three event handlers. It will appear when the mouse rolls over the icon
O and disappear when the mouse moves off the icon @. If the icon is clicked,
however, the tooltip becomes “pinned” @ and will stay in place until either the
icon is clicked again, the message expires, or another tooltip is selected (only one
tooltip will be visible at any given time).

6.4.2 Rendering detailed notifications

Messages in the dialog are either default or high priority, and will display an icon
and a message alongside (see figure 6.4). We also need this type of display for the
status-bar icons’ tooltips. When the tooltip is invoked in showPopup (), it calls the
renderFull () method to present the full details of the message. The same
method is reused to render messages in the dialog. This reuse saves us from
duplicating unnecessary code and also ensures a high degree of visual consistency
in the user interface. The renderrull () method is presented in listing 6.5.

msg.Message.prototype.renderFull=function (el) {

var inTable=(el.tagName=="TBODY") ;

var topEl=null;

this.row=document.createElement ("tr") ;

if (!inTable) {
topEl=document.createElement ("table") ;
var bod=document.createElement ("tbody") ;
topEl.appendChild (bod) ;
bod.appendChild (this.row) ;

}else{
topEl=this.row;

}

var icoTd=document.createElement ("td") ;
icoTd.valign='center';
this.row.appendChild(icoTd) ;

var ico=document.createElement ("img") ;
ico.src=this.icon;
icoTd.className="msg_large_icon";
icoTd.appendChild(ico) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

230

6.4.3

CHAPTER 6
The user experience

var txtTd=document.createElement ("td") ;
txtTd.valign="'top"';
txtTd.className="msg_text";
this.row.appendChild (txtTd) ;
txtTd.innerHTML=this.message;

el.appendChild(topEl) ;

The renderrull () method generates a table row for the message. It checks the
DOM element that it is being appended to, and it will append itself directly if it is
a <tbody> tag or generate the necessary <table> and <tbody> tags if not. This
allows multiple messages to be presented in the same table in the main dialog
and the tooltip <div> tag to be correctly populated.

Note that the message text is attached to the user interface using innerHTML
rather than the W3C DOM methods that we usually use. This allows notifications
to use HTML markup to present themselves in a richer fashion than if we were
simply generating a text node.

Putting the pieces together

Having provided mechanisms for iconized and full-size display of messages,
we’ve provided a comprehensive render () method for individual messages. The
dialog and status bar themselves are generated by a top-level render () method,
as shown in listing 6.6.

Listing 6.6 msg.render () function

msg.render=function (msgbar) {
if (!msgbar) {
msgbar='"msgbar"';
}
msg.msgbarDiv=xGetElementById (msgbar) ; Ensure status
if (!msg.msgbarDiv) { bar exists
msg.msgbarDiv=msg.createBar (msgbar) ;
}
styling.removeAllChildren (msg.msgbarDiv) ;
var lows=new Array();
var meds=new Array();
var highs=new Array () ;
for (var i in msg.messages) { 0 Sort messages by priority
var message=msg.messages[i];
if (message) {
if (message.priority<=msg.PRIORITY_LOW.id) {
lows.append (message) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

Implementing a notification framework 231

}else if (message.priority==msg.PRIORITY_DEFAULT.id) {
meds . append (message) ;

}else if (message.priority>=msg.PRIORITY_HIGH.id) {
highs.append (message) ;

}
for (var i=0;i<lows.length;i++){ () Render low-priority messages
lows[i] .render (msg.msgbarDiv) ;
}
if (meds.length+highs.length>0){ @) Render higher-priority messages
msg.dialog=xGetElementById (msgbar+"_dialog") ;
if (!msg.dialog) {
msg.dialog=msg.createDialog (
msgbar+"_dialog",
msg.msgbarDiv,
(highs.length>0)); @ Ensure dialog exists

}

styling.removeAllChildren (msg.dialog.tbod) ;

for (var i=0;i<highs.length;i++) {
highs[i].render (msg.dialog.tbod) ;

}

for (var i=0;i<meds.length;i++) {
meds[i].render (msg.dialog.tbod) ;

}

if (highs.length>0) {
msg.dialog.ico.src=msg.PRIORITY_HIGH.icon;

}else{
msg.dialog.ico.src=msg.PRIORITY_DEFAULT.icon;

msg.createBar=function(id) { @ Create a status bar
var msgbar=document.createElement ("div") ;
msgbar.className="'msgbar';
msgbar.id=id;
var parentEl=document.body;
parentEl.append (msgbar) ;
return msgbar;

msg.createDialog=function(id, bar, isModal) { 0 Create a pop-up dialog
var dialog=document.createElement ("div") ;
dialog.className='dialog"';
dialog.id=id;
var tbl=document.createElement ("table") ;
dialog.appendChild(tbl) ;
dialog.tbod=document.createElement ("tbody") ;
tbl.appendChild(dialog.tbod) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

232 CHAPTER 6
The user experience

var closeButton=document.createElement ("div") ;
closeButton.dialog=dialog;
closeButton.onclick=msg.hideDialog;

var closeTxt=document.createTextNode ("x") ;
closeButton.appendChild(closeTxt) ;
dialog.appendChild(closeButton) ;

if (isModal){ @ Add modal layer if need be
dialog.modallLayer=document.createElement ("div") ;
dialog.modalLayer.className='modal';
dialog.modalLayer.appendChild(dialog) ;
document .body.appendChild(dialog.modalLayer) ;
telse{
dialog.className+=' non-modal';
document .body.appendChild(dialog) ;

dialog.ico=document.createElement ("img") ;
dialog.ico.className="msg_dialog_icon";
dialog.ico.dialog=dialog;
dialog.ico.onclick=msg.showDialog;
bar.appendChild(dialog.ico) ;

return dialog;

msg.hideDialog=function (e) { <+— Hide the dialog
var dialog=(this.dialog) ? this.dialog : msg.dialog;
if (dialog){
if (dialog.modalLayer) {
dialog.modallLayer.style.display='none';
}else{
dialog.style.display='none';

msg.showDialog=function (e) { <+— Show the dialog
var dialog=(this.dialog) ? this.dialog : msg.dialog;
if (dialog) {
if (dialog.modalLayer) {
dialog.modallLayer.style.display="block"';
telse{
dialog.style.display="'block"';

Licensed to jonathan zheng <yiyisun@gmail.com>

Implementing a notification framework 233

render () can be called more than once. It will check for the presence of the com-
mon UI components @, @ and create them if necessary, using the createbia-
log() @ and createBar () @ functions. These assemble the Ul components using
standard DOM manipulation methods and event handlers, such as those used to
show and hide the dialog.

To render all notifications, the system first sorts them by priority into three
temporary arrays @. Low-priority messages are then rendered to the status bar
© and other messages to the dialog, higher-priority messages first @.

To implement a modal dialog, we simply nest the visible dialog within another
DIV element that occupies the entire screen, blocking any mouse events from get-
ting through to the main user interface @. This modal DIV has a background pat-
tern of alternating white and transparent pixels to gray out the interface, giving a
clear indication that the dialog is modal. We use this rather than CSS transpar-
ency settings because the latter will make any nested elements, such as the dialog
itself, transparent, too. This is implemented in the CSS file for our notification
framework, presented in listing 6.7.

.msg_small_icon({
height: 32px;
width: 32px;
position:relative;
float:left;

}

.msg_dialog_iconf{
height: 32px;
width: 32px;
position:relative;
float:right;

}

.msg_large_icon({
height: 64px;
width: 64px;

}

.msg_text{
font-family: arial;
font-weight: 1light;
font-size: 1l4dpt;
color: blue;

Licensed to jonathan zheng <yiyisun@gmail.com>

234

CHAPTER 6
The user experience

.msgbar{
position:relative;
background-color: white;
border: solid blue 1lpx;
width: 100%;
height: 38px;
padding: 2px;

.dialog{
position: absolute;
background-color: white;
border: solid blue 1px;
width: 420px;
top: 64px;
left: 64px;
padding: 4px;

.popup{
position: absolute;
background-color: white;
border: solid blue 1lpx;
padding: 4px;

.non-modal {

}

.modal{
position: absolute;
top: Opx;
left: Opx;
width: 100%;
height: 100%;
background-image:url (img/modal_overlay.gif) ;

It’'s worth noting the use of the CSS float attribute in the msg_small_icon and
msg_dialog_icon classes, which are used to render the icons in the status bar.
msg_small_icon, which renders the icons for low-priority messages that present
the tooltips, uses a left float to align them to the left edge, and msg_dialog_icon
uses a right float to align the icon that launches the dialog to the right edge. The
framework allows the status bar to be rendered in any shape or size of DIV ele-
ment. Floating elements will align themselves in a sensible fashion, wrapping into
vertically aligned bars, if needed (figure 6.5).

Licensed to jonathan zheng <yiyisun@gmail.com>

Implementing a notification framework 235

‘ the sky is blue today
Figure 6.5

- Using CSS float attributes allows a list of icons to fit into a
ﬂ E‘ variety of shapes of container. Here we have changed the
EJ ﬂ status bar to a square, and the cross and blue sphere icons
on the left wrap themselves into the new area automatically,
while the launcher for the dialog floats to the right.

Finally, we need to modify our Message object now that we have a user interface
for it. As individual messages are created, they have the ability to add themselves
to the user interface and will remove themselves when the message expires. List-
ing 6.8 presents the changes needed to implement this functionality.

Listing 6.8 Modified Message object

var msg=new Object () ;

msg.PRIORITY_LOW= { id:1, lifetime:30, icon:"img/msg_lo.png" };
msg.PRIORITY_DEFAULT={ id:2, lifetime:60, icon:"img/msg_def.png" };
msg.PRIORITY_ HIGH= { 1d:3, lifetime:-1, icon:"img/msg_hi.png" };

msg.messages=new Array () ;
msg.dialog=null;
msg.msgBarDiv=null;
msg.suppressRender=false;
msg.Message=function (id, message,priority,lifetime,icon) {
this.id=id;
msg.messages [id]=this;
this.message=message;
this.priority=(priority) ? priority : msg.PRIORITY_DEFAULT.id;
this.lifetime=(lifetime) ? lifetime : this.defaultLifetime();
this.icon=(icon) ? icon : this.defaultIcon();
if (this.lifetime>0) {
this.fader=setTimeout (
"msg.messages['"+this.id+"'].clear ()",
this.lifetime*1000
)
}
if (!msg.suppressRender){ @ Extra arguments
this.attachToBar () ;

msg.Message.prototype.attachToBar=function () { 0 Extra arguments
if (!msg.msgbarDiv) {
msg.render () ;

Licensed to jonathan zheng <yiyisun@gmail.com>

CHAPTER 6
The user experience

}else if (this.priority==msg.PRIORITY_LOW.id) {
this.render (msg.msgbarDiv) ;
}else{
if (!msg.dialog) {
msg.dialog=msg.createDialog (
msg.msgbarDiv.id+"_dialog",
msg.msgbarDiv,
(this.priority==msg.PRIORITY_HIGH.id)
)
}
this.render (msg.dialog.tbod) ;
msg.showDialog () ;

msg.Message.prototype.clear=function () {

msg.messages[this.id]=null;

if (this.row){ © Extra arguments
this.row.style.display="'none';
this.row.messageObj=null;
this.row=null;

}

if (this.icoTd) {
this.icoTd.style.display="'none"';
this.icoTd.messageObj=null;
this.icoTd=null;

We want the framework to be easy for developers to work with, so when a message
is created, we automatically attach it to the user interface @. Simply invoking the
constructor will cause the new message to render itself. Depending on the mes-
sage priority, it will attach itself to the status bar or dialog as appropriate @. For
cases where we don’t want the overhead of rendering for each message—such as
when adding several messages at once—we provide a flag to suppress automatic
rendering. In such cases, we can manually call msg.render () after creating a large
number of messages.

Likewise, when removing a message in the clear () function, we automatically
remove any user interface elements, so that the message goes away @.

We now have a useful framework for presenting notifications to the user. We
can trigger it manually but also make use of it in our other reusable code compo-
nents. In the following section, we demonstrate how to hook it up to our Content-
Loader object to report on the progress of network downloads.

Licensed to jonathan zheng <yiyisun@gmail.com>

Using the framework with network requests 237

6.5 Using the framework with network requests

In chapter 5 we introduced the ContentLoader object as a common encapsula-
tion for network traffic. We can make use of our notification framework to pro-
vide status reports on any data request that we make automatically. Let’s scope
out the requirements first.

When a request is made to the server, we would like to indicate that it is in
progress, with a low-priority notification. To differentiate network requests from
other low-level notifications, we would like to use a different icon. We have the
image of the earth from our planetary viewer example in chapters 4 and 5, so let’s
use that.

When the network request completes, we would like the notification to be
cleared and replaced by a low-level notification if everything went okay or by a
medium-level notification if there was an error.

To implement this, we simply need to create Message objects at appropriate
points in the lifecycle of the request, such as when the request is fired, when it
completes or errors, and so on. The modified code for our ContentLoader object
is given in listing 6.9.

net.ContentLoader=function(...){ ... };
net.ContentLoader.msgld=1;
net.ContentLoader.prototype={
loadXMLDoc: function (url,method, params, contentType) {
if (!method) {
method="GET" ;
}
if (!contentType && method=="POST") {
contentType="'application/x-www-form-urlencoded';
}
if (window.XMLHttpRequest) {
this.reg=new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
this.reg=new ActiveXObject ("Microsoft.XMLHTTP") ;
}
if (this.req) {
try{
var loader=this;
this.reqg.onreadystatechange=function () {
loader.onReadyState.call (loader) ;
}
this.req.open (method,url, true) ;
if (contentType) {
this.reqg.setRequestHeader ('Content-Type', contentType);

Licensed to jonathan zheng <yiyisun@gmail.com>

238 CHAPTER 6
The user experience

}

this.notification=new msg.Message (o Notify request has started
"net00"+net.ContentLoader.msgld,
"loading "+url,
msg.PRIORITY_LOW. id,
-1,
"img/ball-earth.gif"

)

net.ContentLoader . .msgId++;

this.req.send (params) ;

}catch (err) {
this.onerror.call(this);

}
Iy

onReadyState: function () {
var reg=this.req;
var ready=req.readyState;
if (ready==net.READY_STATE_COMPLETE) {

var httpStatus=req.status;

if (httpStatus==200 || httpStatus==0) {
this.onload.call (this) ;
this.notification.clear(); 0 Clear initial notification

Yelse{
this.onerror.call (this);

}
i

defaultError: function() { 9 Notify on error
var msgTxt="error fetching data!"
+"readyState:"+this.req.readyState

+"status: "+this.reqg.status
+"headers: "+this.reqg.getAllResponseHeaders ()
+"";

if (this.notification) {
this.notification.clear () ;

}

this.notification=new msg.Message (
"net_err00"+net.ContentLoader.msgld,
msgTxt,msg.PRIORITY_DEFAULT.id

)i

net.ContentLoader.msgld++;

}

}i

Licensed to jonathan zheng <yiyisun@gmail.com>

Using the framework with network requests 239

When we make a network request using loadXMLDoc (), we create a low-level noti-
fication @ and attach a reference to it to the ContentLoader object. Note that we
set the lifetime to -1, so that the notification won’t expire by itself.

In the onreadyState () method, we clear the notification if everything has gone
well @. In the case of an error, we call the defaultError () method, which now
generates a notification of its own @. The message for this notification uses
HTML markup to create a richer report than plain text could.

Listing 6.10 demonstrates an example page using this modified Content-
Loader.

Listing 6.10 Notifications sample page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html>

<head>

<title>Notifications test</title>

<link rel=stylesheet type="text/css" href="msg.css"/>

<script type="text/javascript" src="x/x_core.js"></script>
<script type="text/javascript" src="extras-array.js"></script>
<script type="text/javascript" src="styling.js"></script>
<script type="text/javascript" src="msg.js"></script>

<script type="text/javascript" src="net_notify.js"></script>
<script type="text/javascript">

window.onload=function () {
msg.render ('msgbar') ;
}

var msgld=1l;

function submitUrl () {

var url=document.getElementById('urlbar') .value;

var loader=new net.ContentLoader (url,notifyLoaded) ; " Make request
} to server

function notifyLoaded() {

var doneMsg=new msg.Message (Q Notify that resource is loaded
"done00"+msgld,
"loaded that resource you asked for: "+this.url,
msg.PRIORITY_LOW.id

)

msgId++;

msg.render ('msgbar') ;

</script>
</head>

Licensed to jonathan zheng <yiyisun@gmail.com>

240

CHAPTER 6
The user experience

<body>

<div class='content'>

<p>here is some content. This is what the web
application is up to when not being bugged silly
by all these messages and notifications and stuff.
<p>Type in a URL in the box below (from the

same domain, see Chapter 7), and hit 'submit'.

A souped-up contentloader that understands the
notification system will be invoked.

<input id='urlbar' type='text'/>

submit
</div>

<div id='msgbar' class='msgbar'></div>
</body>

</html>

The page (as seen in figures 6.6 and 6.7) renders a simple HTML form into which
the user can type URLs. Clicking the submit link will attempt to load that URL @
and fire the notifylLoaded() callback function if successful. notifyLoaded()
doesn’t actually do anything with the resource, other than report that it has
fetched it by creating another Message object @.

Note that the behavior on a successful request is not written into the frame-
work but provided by a custom onload handler function. This allows the frame-
work to be adapted to differing requirements. In the example in listing 6.9, we
have hard-coded the default behavior in case of error. In a real application, every
network failure may not be sufficiently important to warrant a big in-your-face
dialog. We leave it as an exercise for the reader to add a parameter to the
ContentLoader to denote the urgency of the notification required on failure (or
else provide an overridden onError handler with a gentler notification policy).

Type in a URL in the box below, and hit ‘'submit’. A
souped-up contentloader that understands the
notification system will be invoked. jmgvai-venus gi
submit
i% %oaded that resource you asked for: Figure 6.6
img/ball-venus.gif
A successfully loaded resource
] 1 ill be displayed as a tooltip on
LY .

the status bar.

Licensed to jonathan zheng <yiyisun@gmail.com>

6.6

6.6.1

Indicating freshness of data 241

@ watch out for that falling piano!!!

error fetching data!

= : Figure 6.7
. & » readyState:1 An unsuccessful network request will
1 o status: 0 . e a- . :
i headors: wi result in the notification dialog being

shown. (There are two messages shown
% here, the second of which is a network
error notification.)

We've taken this framework as far as we need to for now and demonstrated how it
can play nicely with our existing code. In the following section, we’ll look at an
alternative graphical convention for notifications that can also serve us well.

Indicating freshness of data

The notifications framework that we developed in the previous section provides a
series of new top-level components that display information about system activity.
In some circumstances, we may want to display a more contextual form of notifi-
cation, indicating a change to a piece of data in situ. In this section, we augment
our ObjectViewer developed through chapters 4 and 5 to provide extra visual
cues on recently changed data.

Defining a simple highlighting style
Let’s start off with a simple way of highlighting the data by using a reverse video
effect. The Object Viewer user interface is mostly quite pale, and uses blue/gray
tones, so a deep red color will stand out nicely. The first thing that we need to do
is to define an additional CSS class to represent newly changed data:

.new{

background-color: #£0e0d0;

}
We have chosen a very simple styling here. In a more polished application, you
may want to be a little more adventurous. Listing 6.11 shows the changes to the
ObjectViewer code required to style recently edited properties as new and to
remove the styling automatically after a given length of time.

objviewer.PropertyViewer.prototype.commitEdit=function (value) {
if (this.type=objviewer.TYPE_SIMPLE) {
this.value=value;

Licensed to jonathan zheng <yiyisun@gmail.com>

242

CHAPTER 6
The user experience

var valDiv=this.renderSimple () ;
var td=this.valTd;
td.replaceChild(valDiv, td.firstChild) ;

this.viewer.notifyChange (this) ;
this.setStatus (objviewer.STATUS_NEW) ; 0 Set status as new

objviewer.STATUS_NORMAL=1;
objviewer.STATUS_NEW=2;

objviewer.PropertyViewer.prototype.setStatus=function (status) {
this.status=status;
if (this.fader){
clearTimeout (this. fader) ;
}
if (status==objviewer.STATUS_NORMAL) {
this.valTd.className="'objViewValue';
}else if (status==objviewer.STATUS_NEW) {
this.valTd.className="'objViewVvalue new';
var rnd="fade_"+new Date () .getTime() ;
this.valTd.id=rnd;
this.valTd. fadee=this;
this.fader=setTimeout ("objviewer.age('"+rnd+""')",5000) ; c’ Set timeout

objviewer.age=function (id) {
var el=document.getElementById(id) ;
var viewer=el.fadee;
viewer.setStatus (objviewer.STATUS_NORMAL) ; e Reset status when

el.id=""; timer expires
el.fadee=null;

We define two statuses, normal and new. We could have set a boolean term isNew
instead, but we chose this approach to allow for future expansion, say to style
items whose updates are being submitted to the server. We call the setStatus ()
method when committing an edited value @. This sets the CSS class appropri-
ately, and, in the case of the “new” status, it also sets up a timer that will reset the
status to normal after five seconds @. (In real life, we’d probably want it to last
longer, but five seconds is good for testing and demonstration purposes.) The
object retains a reference to the timer, which it can cancel if another change of
status takes place before it has expired.

Licensed to jonathan zheng <yiyisun@gmail.com>

6.6.2

Indicating freshness of data 243

name venus

- distance [0.72|
| diameter U5

] Figure 6.8
image The modified ObjectViewer displaying a recently edited value

- for the diameter property, which is styled to have a colored
facts] >>> background. The styling will disappear after a short period of
1 i I time, when the edit is no longer new and noteworthy.

Because of the limitations of the JavaScript setTimeout () method, we assign a
unique ID to the DOM node being styled, to allow us to find it again when the
timer calls the age () function @. age () also tidies up the ID and other temporary
references. Figure 6.8 shows the ObjectViewer with a recently edited value.

The user’s eye will be drawn toward the recently edited value because of the
change in color. Another way of drawing the user’s attention is to use animation,
and we’ll see how simple that can be in the next section.

Highlighting with the Scriptaculous Effects library

We've created a simple styling effect by hand here, in part because it’s easy to
display in the static medium of a printed book with screen shots. For production,
we recommend the Scriptaculous library’s Effect objects as a simple way of add-
ing sparkle to your inline notifications. We briefly introduced this library in
section 3.5.2, where we noted that it provides one-line calls for styling DOM ele-
ments with a variety of animated effects and transitions.

We can easily rewrite our setStatus () method from listing 6.11 to make use of
Scriptaculous Effects. Let’s say that we want to make recently edited entries pul-
sate using the Effects. Pulsate object. This will make them fade in and out repeat-
edly, in a way that certainly catches the eye, but unfortunately can’t be captured in
a screen shot. Listing 6.12 shows the changes necessary to make this work.

objviewer.PropertyViewer.prototype.setStatus=function(status) {

this.status=status;
if (this.effect) {

this.effect.cancel();

this.effect=null;
}
if (status==objviewer.STATUS_NEW) {

this.effect=new Effect.Pulsate(

this.valTd,

Licensed to jonathan zheng <yiyisun@gmail.com>

244

6.7

CHAPTER 6
The user experience

{duration: 5.0}
)

The Effect object takes care of some of the plumbing work for us, and we no
longer need to manage our own timeouts. The age () function can be removed
altogether. We simply invoke the constructor of the Pulsate effect, passing in a ref-
erence to the DOM element to operate on, and an associative array of any options
whose defaults we wish to override. By default, the Pulsate effect runs for 3 sec-
onds. We have modified it here to 5 seconds, in keeping with our previous exam-
ple, by passing a duration parameter into the options array.

The same styling techniques could be applied to other events affecting the
data, such as updates originating from the server. To prevent any clashes between
effects, we check first for any effect that is already in progress, and cancel it. (As of
version 1.1, all Scriptaculous effects respect a standard cancel () function.)

This kind of styling provides instant feedback to the user at the point at which
his attention is already focused, unlike the status bar and dialog notifications,
which are better suited to more general information. Taken together, these visual
feedbacks can do a lot to improve the user experience.

Summary

In this chapter, we’ve looked at a number of topics that add a professional feel to
an Ajax application. At the outset, we defined responsiveness, robustness, consist-
ency, and simplicity as key factors in providing that sense of quality.

The majority of the chapter has been dedicated to looking at ways of provid-
ing the user with feedback while she works. Along the way, we developed several
implementations of visual feedback mechanisms, including a status bar, a pop-up
dialog, and inline highlighting of data. Going the extra distance to add these fea-
tures can enrich the user experience considerably, and wrapping the functionality
up as a reusable framework as we have done here removes a lot of burden from
the developer. Having developed the frameworks, we showed how to easily inte-
grate them with some of our previous code examples. We added status bar notifi-
cations to provide feedback on the progress of our server requests and inline
highlighting of recently updated data in the ObjectBrowser that we use to view
data about planets in the solar system.

Licensed to jonathan zheng <yiyisun@gmail.com>

6.8

Resources 245

That’s enough glamour for now, though. The next two chapters look at topics
that help the usability of an application from behind the scenes, namely security
and performance.

Resources

The Scriptaculous Effects library can be found at http://wiki.script.aculo.us/scrip-
taculous/list’category =Effects.

Additional icons for the notifications examples were taken from the Nuvola
icon set developed by David Vignoni (www.icon-king.com/).

Licensed to jonathan zheng <yiyisun@gmail.com>

Security and Ajax

This chapter covers

The JavaScript security model
Remote web services

Protecting users’ data on the Internet
Protecting your Ajax data streams

246

Licensed to jonathan zheng <yiyisun@gmail.com>

JavaScript and browser security 247

Security is an increasingly important concern for Internet services. The Web is
inherently nonsecure, and adding proper security measures to an Ajax application
can be a strong differentiator for a product. Clearly, if a user’s money is involved in
any way, such as online shopping or providing a service that he has paid for, giving
due consideration to security is essential.

Security is a big topic and deserves its own book. Many of the security issues
that an Ajax application faces are the same as for a classical web application. For
these reasons, we’ll limit our discussion to security-related concerns that have
particular implications for Ajax. First, we'll look at the security implications of
shunting executable scripts around the network, and the steps that the browser
vendors have taken to make this a safe experience. We’ll also see the steps that
may be taken to relax these safeguards, with the user’s compliance. Second, we’ll
look at protecting a user’s data when it is submitted to the server, allowing a user
to work with our Ajax services confidently. Finally, we’ll describe ways to secure
the data services that our Ajax clients use to prevent them from being used ille-
gitimately by external entities on the network. Let’s kick off now with a look at the
security implications of sending our client across the network.

7.1 JavaScript and browser security

When an Ajax application is launched, the web server sends a set of JavaScript
instructions to a web browser running on a different machine, about which it
knows very little. The browser proceeds to execute these instructions. In letting
their web browser do this, the user of an Ajax application is placing a significant
amount of trust in the application and its authors. The browser vendors and stan-
dards bodies recognized that this trust was not always appropriate, and have put
safeguards in place to prevent it from being abused. In this section, we’ll look at
the safeguards and how to work with them. We’ll then discuss situations where the
constraints aren’t appropriate and can thus be relaxed. The ability to talk directly
to third-party web services is one such situation that should be of particular inter-
est to Ajax developers.

Before diving any further into this topic, let us define what we mean by
“mobile code.” Everything on the hard disk of a computer is just a clump of
binary data. We can distinguish, however, between data that is purely descriptive
and data that represents machine instructions that can be executed. Descriptive
data can do nothing until some executing process picks it up. In the early client/
server applications, the client was installed on the user’s machine just like any
other desktop application, and all traffic over the network was purely descriptive

Licensed to jonathan zheng <yiyisun@gmail.com>

248

7.1.1

7.1.2

CHAPTER 7
Security and Ajax

data. The JavaScript code of an Ajax application, however, is executable code. As
such, it offers the potential to do many more exciting things than “dead” data
can. It can also be more dangerous. We describe code as mobile if it is stored on
one machine and can transmit itself across the network to execute on another.
The computer receiving the mobile code needs to consider whether it should
trust the sender of the code, particularly over the public Internet. To what system
resources should it grant access?

Introducing the “server of origin” policy

We noted that, when executing JavaScript in a web browser, a user is letting code
written by somebody they don’t know run on their own machine. Mobile code,
capable of running automatically over a network in this fashion, is a potential
security risk. In response to the potential dangers of mobile code, browser ven-
dors execute JavaScript code in a sandbox, a sealed environment with little or no
access to the computer’s resources. An Ajax application can’t read or write to the
local filesystem. Nor can it establish network connections to any web domain
other than the one from which it originated, in most cases. A programmatically
generated IFrame can load pages from other domains and execute code, but the
scripts from the two domains cannot interact with each other. This is sometimes
referred to as the “server of origin” policy.

Let’s take a (very) simple example. In our first script file, we define a variable:

x=3;
In the second script file, we make use of that variable:
alert (top.x+4) ;

The first script is included into our top-level document, which opens up an
IFrame and loads a page that includes the second script into it (figure 7.1).

If both scripts are hosted on the same domain, then the alert fires successfully.
If not, a JavaScript error is thrown instead, and the second script fails.

Considerations for Ajax

In the script-centric interaction that we discussed in chapter 5, JavaScript code is
retrieved from the server and evaluated on the fly. In most cases, the client is con-
suming code from its own server, but let’s consider the case where it is running
code from a different domain, often referred to as “cross-scripting.” Allowing the
user to download scripts from arbitrary sites would open up the potential for a lot
of mischief, effectively letting third parties re-author or deface websites by using

Licensed to jonathan zheng <yiyisun@gmail.com>

7.1.3

JavaScript and browser security 249

Web browser

Frame 1 |§| Frame 2

var_x=3; alert(toE.x);

\x/ Figure 7.1

The JavaScript security model prevents
scripts from different domains from
interacting with one another.

DOM manipulation, for example. The limitations imposed by the JavaScript secu-
rity model offer real protection from this kind of exploit. The model also pre-
vents malicious sites from downloading your Ajax client code directly from your
website and pointing it at a different server without your users knowing that they
were talking to a different back-end.

In a data-centric interaction, the risk is slightly less, as the server is delivering
data rather than live code. Nonetheless, if delivered from a third-party server the
data might contain information crafted to do harm when parsed. For example, it
might overwrite or delete vital information, or cause resources to be consumed
on the server.

Problems with subdomains

Finally, note that web browsers have a fairly limited notion of what constitutes the
same domain and can err frustratingly on the side of caution. The domain is
identified solely by the first portion of the URL, with no attempt to determine
whether the same IP address backs the two domains. Table 7.1 illustrates a few
examples of how the browser security model “thinks.”

Table 7.1 Examples of cross-browser security policy

Cross-Scripting

S Allowed?

Comments

http://www.mysite.com/scriptl.js Yes As expected!

http://www.mysite.com/script2.js

continued on next page

Licensed to jonathan zheng <yiyisun@gmail.com>

250

7.1.4

CHAPTER 7
Security and Ajax

Table 7.1 Examples of cross-browser security policy (continued)

Cross-Scripting
URLs Allowed? Comments

http://www.mysite.com:8080/scriptl.js No The port numbers don’t match (script
1 is served from port 8080).

http://www.mysite.com/script2.js

http://www.mysite.com/scriptl.js No The protocols don’t match (script 2
uses a secure HTTP protocol).

https://www.mysite.com/script2.js

http://www.mysite.com/scriptl.js No ww.mysite.com resolves to IP address
192.168.0.1, but the browser doesn’t

http://192.168.0.1/script2.js try to work this out.

http://www.mysite.com/scriptl.js No Subdomains are treated as separate
domains.

http://scripts.mysite.com/script2.js

http://www.myisp.com/dave/scriptl.js Yes Although the scripts come from sites
owned by different people, the domain

http://www.myisp.com/eric/script2.js is the same.

http://www.myisp.com/dave/scriptl.js No www.mysite.com points to
www.myisp.com/dave, but the browser

http://www.mysite.com/script2.js won’t check this.

In the case of subdomains, it is possible to truncate the part of the domain being
matched by setting the document .domain property. Thus, for example, in a script
served from http://www.myisp.com/dave, we can add a line to the script stating

document .domain="'myisp.com';

which would allow interaction with a script served from the subdomain http:/
dave.myisp.com/, provided that it too sets the document.domain value. It isn’t
possible to set my document.domain to an arbitrary value such as www.goo-
gle.com, however.

Cross-browser security

Our discussion wouldn’t be complete without pointing out a glaring cross-
browser inconsistency. Internet Explorer security operates on a series of “zones,”
with more or less restrictive security permissions. By default (for Internet
Explorer 6, at least), files executing on the local filesystem are given permission
to contact websites on the Internet without the user being prompted, with the

Licensed to jonathan zheng <yiyisun@gmail.com>

7.2

Communicating with remote services 251

Internet Explorer x

{7 This page is accessing information that is not under its Figure 7.2
control, This poses a security risk. Do you want to A security warning dialog is shown in Internet
B Explorer if the code tries to contact a web service
not originating from its own server. If the user
Yes No] agrees to this interaction, subsequent

interactions won'’t be interrupted.

local filesystem assumed to be a safe zone. The same code will trigger a security
dialog if run from a local web server (figure 7.2).

It is possible to write sophisticated Ajax applications and test large parts of the
functionality against dummy data served directly from the filesystem. Taking the
web server out of the equation does simplify a development setup during intense
coding sessions. However, we urge developers testing any code that is accessing
Internet web services to test it on a local web server in addition to the filesystem.
Under Mozilla, there is no concept of zones, and web applications served off the
local filesystem are as restricted as any delivered from a web server. Under Inter-
net Explorer, however, the code runs in different security zones under the two sit-
uations, making for a big difference in behavior.

This summarizes the key constraints within which our Ajax scripts must oper-
ate. The JavaScript security model has a few annoyances but generally works to
our advantage. Without it, public confidence in rich Internet services such as
those offered by Ajax would be so low that Ajax wouldn’t be a viable technology
for any but the most trivial of uses.

There are, however, legitimate reasons for invoking scripts from domains
other than your own, such as when dealing with a publisher of web services. We’ll
see in the next section how to relax the security considerations for situations such
as these.

Communicating with remote services

Building security into the web browser is a sensible move, but it can also be frus-
trating. Security systems have to distrust everyone in order to be effective, but
there are situations where you will want to access a resource on a third-party
server for legitimate reasons, having thought through the security implications
for yourself. Now that we understand how the browsers apply their security policy,
let’s discuss ways of relaxing it. The first method that we’ll look at requires addi-
tional server-side code, and the second one works on the client only.

Licensed to jonathan zheng <yiyisun@gmail.com>

252 CHAPTER 7
Security and Ajax

7.2.1 Proxying remote services

Because of the “server of origin” policy, an Ajax application is limited to retriev-
ing all its data from its own web domain. If we want our Ajax application to access
information from a third-party site, one solution is to make a call to the remote
server from our own server rather than from the client, and then forward it on to
the client (figure 7.3).

Under this setup, the data appears to the browser to be coming from the local
server, and so the server of origin policy is not violated. In addition, all data is
subject to the scrutiny of the server, giving an opportunity to check for malicious
data or code before forwarding it to the client.

Web browser

Server of origin

Proxy servlet

Other server

Remote web service

Figure 7.3 If an Ajax application needs to access resources from
other domains, the server of origin can proxy the resources on the Ajax
client’s behalf.

Licensed to jonathan zheng <yiyisun@gmail.com>

7.2.2

Communicating with remote services 253

On the downside, this approach does increase the load on the server. The
second solution that we’ll examine goes directly from the browser to the third-
party server.

Working with web services

Many organizations these days provide web services that are intended to be used
by external entities, including JavaScript clients. An Ajax client will want to con-
tact a web service directly. The server of origin security policy is a problem here,
but it can be overcome by programmatically requesting privileges to perform net-
work activities. This request may be passed on to the user, or remembered by the
browser and applied automatically, if the user has so instructed.

In this section, you’ll learn how to call a third-party web service directly from
an Ajax client application. Internet Explorer and Mozilla Firefox each handle
these requests in their own ways, and we’ll see how to keep them both happy.

Our example program will contact one of Google’s web services using the Sim-
ple Object Access Protocol (SOAP). SOAP is an XML-based protocol built on top of
HTTP. The basic principle of SOAP is that the request sends an XML document to
the server, describing parameters to the service, and the server responds with an
XML document describing the results. The XML sent by SOAP is rather bulky,
itself consisting of headers and content wrapped up in an “envelope.” Because of
its use of XML, it is ideal for use with the XMLHttpRequest object.

Google offers a SOAP interface to its search engine, in which the user can trans-
mit a search phrase in the request and get back an XML document that lists a page
of results. The XML response is very similar to the data presented visually in a
Google search results page, with each entry listing a title, snippet, summary, and
URL. The document also lists the total estimated number of results for the phrase.

Our application is a guessing game for the Internet age. It is the estimated
number of results that we are interested in. We’re going to present the user with a
simple form and a randomly generated large number (figure 7.4). The user must
enter a phrase that they think will return a number of results within 1,000 of the
number indicated when sent to Google.

Figure 7.4
Obtain a search that returns between 90363302 and 90364302 results! Using the Google SOAP API in a simple
Ajax Ajax application to entirely frivolous

ends. The user can try to enter a phrase
that will return an estimated number of
results from Google within the

- specified range.

WRONG! Try again!
Your search for Ajax returned 816000 results!

Licensed to jonathan zheng <yiyisun@gmail.com>

254

CHAPTER 7
Security and Ajax

We are going to contact the Google SOAP service using the XMLHttpRequest
object, wrapped up in the ContentLoader object that we developed in chapter 3.
We last revised this object in chapter 6, when we added some notification capabil-
ities to it. If we use that version of the ContentLoader to talk to Google, we will
succeed in Internet Explorer but not in Mozilla. Let’s quickly run through the
behavior for each browser.

Internet Explorer and web services
As we already noted, Internet Explorer’s security system is based on the concept
of zones. If we are serving our guessing game application from a web server, even
one running on the localhost port, then we are by default considered to be some-
what nonsecure. When we contact Google the first time using our ContentLoader,
we receive a notification message like the one depicted in figure 7.2. If the user
clicks Yes, our request, as well as any subsequent requests to that server, will go
ahead. If the user clicks No, our request is canceled, and the ContentLoader’s
error handler is invoked. The user is not greatly inconvenienced, and a moderate
level of security is attained.

Remember, if you're testing your Ajax client off the local filesystem, Internet
Explorer will treat you as secure, and you won't see the dialog box.

Mozilla browsers, including Firefox, take a rather stricter approach to security,
and are consequently more difficult to get right. Let’s look at them next.

Mozilla’s PrivilegeManager
The Mozilla browser security model is based on a concept of privileges. Various
activities, such as talking to third-party web servers and reading and writing local
files, are considered to be potentially unsafe. Application code seeking to under-
take these activities must request the privilege of doing so. Privileges are handed
out by the netscape.security.PrivilegeManager object. If we want our Ajax client
to talk to Google, it’ll have to talk nicely to the PrivilegeManager first. Unfortu-
nately, Firefox can be configured so that the PrivilegeManager won’t even listen
to your code, and this setting is the default for content served from a web server
rather than the local filesystem. Thus, the following technique is mainly suitable
for use in intranets. If you are in such a situation, or just curious about how Fire-
fox works, then read on.

To request a privilege, we can call the enableprivilege method. The script will
then be halted, and a dialog will be shown to the user (figure 7.5).

The dialog explains that the script is about to do something that might be
unsafe. The user has the opportunity to grant or withhold the privilege. In either

Licensed to jonathan zheng <yiyisun@gmail.com>

Communicating with remote services 255

Obtain a search that returns between 94625 and 95625 results|

Ajex [hitp/fapi google com/searchibeta2] got request objecy
r-Imemn! S;curﬂy _

i | Ascript from ile:/ is requesting enhanced abiities that are UNSAFE and could be used to
! compramise your maching or data:
Read private data from amy site or window
Allow thess abilities only I you trust this source to be fres of viruses or malicious programs.

] remamber this decision

Figure 7.5 Requesting additional security privileges in the Firefox browser will result in a dialog
being displayed, with a standardized warning message.

case, the script then resumes running. If the privilege has been granted, then all
is well. If it hasn’t, then trying to execute the action requiring the privilege will
usually result in a scripting error.

We saw that Internet Explorer will automatically remember a user’s first deci-
sion and stop bothering them after the first warning. Mozilla will only grant a
privilege for the duration of the function in which it was requested, and unless the
user clicks the “Remember my decision” checkbox, they will be interrupted by the
dialog every time the privilege is required (which is twice per network request, as
we will see). Security and usability seem to be at loggerheads here.

The other difference between Internet Explorer and Mozilla is that Mozilla
will insist on being asked explicitly in the code before it will even show the user a
dialog. Let’s look at our ContentLoader object again (see chapters 3, 5, and 6),
and see what we need to do to it to make the request to Google. The modified
code contains requests to the PrivilegeManager object, as shown in listing 7.1.
(We've also added the ability to write custom HTTP headers, which we’ll need to
create the SOAP message, as we’ll see next.)

Listing 7.1 Security-aware ContentLoader object

net.ContentLoader=function(
url,onload, onerror,method, params, contentType, headers, secure
) {
this.reg=null;
this.onload=onload;
this.onerror=(onerror) ? onerror : this.defaultError;
this.secure=secure;
this.loadXMLDoc (url,method, params, contentType, headers) ;

Licensed to jonathan zheng <yiyisun@gmail.com>

256 CHAPTER 7
Security and Ajax

net.ContentLoader.prototype={
loadXMLDoc: function (url,method, params, contentType, headers) {
if (!method) {
method="GET" ;
}
if (!contentType && method=="POST") {
contentType="'application/x-www-form-urlencoded"';
}
if (window.XMLHttpRequest) {
this.reg=new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
this.reg=new ActiveXObject ("Microsoft.XMLHTTP") ;

}
if (this.req){
try{
try{
if (this.secure && netscape
&& netscape.security.PrivilegeManager.enablePrivilege) {
netscape.security.PrivilegeManager L/" Ask for privilege
.enablePrivilege('UniversalBrowserRead'); to make request
}
}catch (err){}
this.reqg.open (method,url, true) ;
if (contentType) {
this.req.setRequestHeader ('Content-Type', contentType) ;
}
if (headers)({ @ Add custom HTTP headers
for (var h in headers) {
this.req.setRequestHeader (h,headers[h]);
}
}
var loader=this;
this.reqg.onreadystatechange=function () {
loader.onReadyState.call (loader) ;
}
this.req.send(params) ;
}catch (err) {
this.onerror.call (this) ;
}
}
},

onReadyState: function () {

var reg=this.req;

var ready=req.readyState;

if (ready==net .READY_STATE_COMPLETE) {
var httpStatus=req.status;
if (httpStatus==200 || httpStatus==0) {
try{
if (this.secure && netscape
&& netscape.security.PrivilegeManager.enablePrivilege) {

Licensed to jonathan zheng <yiyisun@gmail.com>

Communicating with remote services ‘ 257

netscape.security.PrivilegeManager Ask for privilege to
.enablePrivilege ('UniversalBrowserRead') ; parse response
}
}catch (err) {}
this.onload.call (this) ;
}else{
this.onerror.call (this) ;
}
}
1,
defaultError:function() {
alert ("error fetching data!"
+"\n\nreadyState: "+this.req.readyState
+"\nstatus: "+this.req.status
+"\nheaders: "+this.reqg.getAllResponseHeaders());

We have added two new arguments to our constructor. The first is an array of
additional HTTP headers @, because we will need to pass these in during the
construction of the SOAP request. The second is a boolean flag indicating
whether the loader should request privileges at key points.

When we request privileges from the netscape.PrivilegeManager object, we
are granted them only for the scope of the current function. Therefore, we
request them at two points: when the request to the remote server is made @), and
when we try to read the response that is returned @. We call the custom onload
handler function within the scope of the onreadyState function, so the privilege
will persist through any custom logic that we pass in there.

Internet Explorer doesn’t understand the PrivilegeManager, and will throw an
exception when it is referred to. For this reason, we simply wrap the references to
it in try...catch blocks, allowing the exception to be caught and swallowed
silently. When the previous code runs in Internet Explorer, it will fail silently
within the try...catch block, pick itself up again, and keep going with no ill
results. Under Mozilla, the PrivilegeManager will be communicated with and no
exception will be thrown.

Let’s make use of our modified ContentLoader, then, to send a request off to
Google. Listing 7.2 shows the HTML required for our simple guessing game
application.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

Licensed to jonathan zheng <yiyisun@gmail.com>

258

CHAPTER 7
Security and Ajax

<head>

<title>Google Guessing</title>
<script type="text/javascript" src='net_secure.js'></script>
<script type="text/javascript" src='googleSoap.js'></script>
<script type='text/javascript'>

var googleKey=null;

var guessRange = 1000;
var intNum = Math.round (Math.random ()
* Math.pow(10,Math.round (Math.random() *8))) ;

window.onload = function() {
document .getElementById (" spanNumber")
.innerHTML = intNum + " and "
+ (intNum + guessRange) ;

</script>
</head>
<body>
<form name="Forml" onsubmit="submitGuess();return false;">
Obtain a search that returns between
 results!

<input type="text" name="yourGuess" value="Ajax">
<input type="submit" name="bl" value="Guess"/>

</form>
<hr/>
<textarea rows='24' cols='100' id='details'></textarea>
</body>
</html>

We set up the form elements in HTML, and calculate a suitably large random
number here. We also declare a variable, googlekey. This is a license key allowing
us to use the Google SOAP APIs. We haven’t included a valid key here, because we
aren’t allowed to by the license terms. Keys are free, and offer a limited number of
searches per day. They can be obtained from Google online through a simple
process (see the URL in the Resources section at the end of this chapter).

Submitting the request

The bulk of the work is done by the submitGuess() function, which is invoked
when the form is submitted. This is defined in the included JavaScript file, so let’s
have a look at that next. Listing 7.3 illustrates the first bit of JavaScript, which
calls the Google API.

Licensed to jonathan zheng <yiyisun@gmail.com>

Communicating with remote services ‘ 259

Listing 7.3 submitGuess () function

function submitGuess() {

if (lgooglekey){ @ Check license key
alert ("You will need to get a license key "
+"from Google,\n and insert it into "
+"the script tag in the html file\n "
+"before this example will run.");
return null;
}

var myGuess=document.Forml.yourGuess.value;

var strSoap='<?xml version="1.0" encoding="UTF-8"?>" 0 Build SOAP message
+'\n\n<SOAP-ENV:Envelope'
+' xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/""
+' xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"'
+' xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">"
+'<SOAP-ENV:Body><nsl:doGoogleSearch'
+' xmlns:nsl="urn:GoogleSearch"'
+' SOAP-ENV:encodingStyle="
+'"http://schemas.xmlsoap.org/soap/encoding/">"
+'<key xsi:type="xsd:string">' + googleKey + '</key>"'
+'<qg xsi:type="xsd:string">'+myGuess+'</qg>"
+'<start xsi:type="xsd:int">0</start>"'
+'<maxResults xsi:type="xsd:int">1</maxResults>"
+'<filter xsi:type="xsd:boolean">true</filter>"
+'<restrict xsi:type="xsd:string"></restrict>"
+'<safeSearch xsi:type="xsd:boolean">false</safeSearch>"'
+'<lr xsi:type="xsd:string"></lr>"'
+'<ie xsi:type="xsd:string">latinl</ie>"
+'<oe xsi:type="xsd:string">latinl</oe>"'
+'</nsl:doGoogleSearch>"
+'</SOAP-ENV:Body>"
+'</SOAP-ENV:Envelope>"';

var loader=new net.ContentLoader (9 Create ContentLoader
"http://api.google.com/search/beta2", ¢, Provide URL to Google API
parseGoogleResponse,
googleErrorHandler,
"POST",
strSoap,
"text/xml",
{

MessageType: "CALL"
Pass custom

HTTP headers

Man: "POST http://api.google.com/search/beta2 HTTP/1.1",

T,
true

)

Licensed to jonathan zheng <yiyisun@gmail.com>

260

CHAPTER 7
Security and Ajax

The first thing that we do in the submitGuess () function is check that we have a
license key, and remind the user if we don’t @. When you download the code for
this example, the license key will be set to null, so you’ll need to get your own key
from Google if you want to play with it.

Our second task is to construct a monstrously huge SOAP message @, contain-
ing the phrase we’re submitting and the license key value. SOAP is designed with
automation in mind, and it is unusual to build the XML by hand as we have done
here. Both Internet Explorer and Mozilla provide browser-specific objects for
interacting with SOAP in a simpler fashion. Nonetheless, we thought it instructive
to do it manually and look at the SOAP request and response data.

Having created the request XML text, we construct a ContentLoader object @,
passing in the SOAP XML as the HTTP body content, along with the URL of the
Google AP1 @ and the custom HTTP headers @. We set the content-type to text/
xml. Note that this represents the MIME type of the body of the request, not the
MIME type we expect to receive in the response, although in this case the two are
the same. The final parameter, set to a value of true, indicates that we should
seek permission from the PrivilegeManager object.

Parsing the response

The ContentLoader will then make the request and, if the user grants permis-
sion, will receive an equally large chunk of XML in return. Here is a small sample
of the response to a search on the term “Ajax”:

<?xml version='1.0' encoding='utf-8'?>

<soap-env:envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/xmlschema-instance"
xmlns:xsd="http://www.w3.0rg/1999/xmlschema">

<soap-env:body>
<nsl:dogooglesearchresponse xmlns:nsl="urn:googlesearch"

soap-env:encodingstyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="nsl:googlesearchresult">

<directorycategories
xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:array"
ns2:arraytype="nsl:directorycategory[1l]">

<estimateisexact xsi:type="xsd:boolean">false</estimateisexact>
<estimatedtotalresultscount
xsi:type="xsd:int">741000</estimatedtotalresultscount>

Licensed to jonathan zheng <yiyisun@gmail.com>

Communicating with remote services 261

<hostname xsi:type="xsd:string"></hostname>

<relatedinformationpresent xsi:type="xsd:boolean">true</
relatedinformationpresent>

<snippet xsi:type="xsd:string">de officiéle site van afc ajax</
b> .</snippet>

<summary xsi:type="xsd:string">official club site, including roster,
history, wallpapers, and video clips.
 [english/dutch]</summary>

<title xsi:type="xsd:string">

&1lt;b>ajax< /b> .nl - splashpagina

</title>

The full SOAP response is too lengthy to include here, we’ve presented three snip-
pets. The first part defines some of the transport headers, saying where the
response comes from, and so on. Within the body, we find a couple of elements
describing the estimated results count—the phrase returned 741,000 results,
which is not considered to be an exact figure. Finally, we can see part of the first
result returned, describing the link to the Dutch football team Ajax’s home page.
Listing 7.4 shows our callback handler, in which we parse the response.

Listing 7.4 parseGoogleResponse () function

function parseGoogleResponse () {
var doc=this.req.responseText.toLowerCase() ;
document .getElementById('details') .value=doc;
var startTag='<estimatedtotalresultscount xsi:type="xsd:int">"';
var endTag='</estimatedtotalresultscount>"';
var spotl=doc.indexOf (startTag) ;
var spot2=doc.indexOf (endTag) ;
var strTotall=doc.substring(spotl+startTag.length, spot2) ;
var totall=parselnt (strTotall);
var strOut="";
if (totall>=intNum && totall<=intNum+guessRange) {
strOut+="You guessed right!";
}else{
strOut+="WRONG! Try again!";
}
strOut+="
Your search for "
+document .Forml .yourGuess.value
+" returned " + strTotall + " results!";
document .getElementById("spanResults") .innerHTML = stroOut;

For the moment, we aren’t concerned with the structure of the SOAP message but
only with the estimated number of results returned. The response is valid XML,

Licensed to jonathan zheng <yiyisun@gmail.com>

262

CHAPTER 7
Security and Ajax

and we could parse it using the XMLHttpRequest object’s responseXML property.
However, we take the path of least resistance here, and simply extract the esti-
mated result count using string manipulation. We then use a few of our DOM
manipulation techniques to present the verdict to the user (how good their guess
was). For educational purposes, we also dump the entire XML response into a
textarea element, for those who want to look at SOAP data in more detail.

Enabling the PrivilegeManager in Firefox

As we noted earlier, the PrivilegeManager can be configured not to respond to
our programmatic pleas. To find out whether a Firefox browser is configured this
way, type “about:config” into the address bar to reveal the preferences list. Use
the filter textbox to find the entry signed.applets.codebase_principal_support.
If the value is true, then our code above will work. If not, we won’t be able to con-
tact Google.

Earlier versions of Mozilla required that the configuration be edited by hand,
followed by a complete browser restart. In Firefox, double-clicking the relevant
row in the preferences list will toggle the preference value between true and false.
Changes made in this way will take place immediately, without needing to restart the
browser, or even refresh the page, if the preferences are opened in a separate tab.

Signing Mozilla client code

Because Internet Explorer bypasses the PrivilegeManager, the application func-
tions smoothly enough in that browser. However, in Mozilla the user is confronted
with the scary-looking dialog twice (assuming that the browser is configured to
use the PrivilegeManager), making this sort of web service approach rather prob-
lematic for Mozilla users. They can prevent it from reappearing by selecting the
“Remember my decision” checkbox (see figure 7.5), but we developers have no
control over that (and quite rightly so!).

There is a solution, but it requires the application to be packaged in a way that
is very specific to Mozilla. Web applications may be signed by digital certificates.
To be signed, however, they must be delivered to Mozilla browsers in JAR files,
that is, compressed zip archives with all scripts, HTML pages, images, and other
resources in one place. JAR files are signed with digital certificates of the variety
sold by companies such as Thawte and VeriSign. Resources inside signed JAR files
are referred to using a special URL syntax, such as

jar:http://myserver/mySignedJar.jar|/path/to/somellebPage.html

When the user downloads a signed web application, they are asked once whether
they want to allow it to grant any privileges that it asks for, and that is that.

Licensed to jonathan zheng <yiyisun@gmail.com>

7.3

7.3.1

Protecting confidential data 263

Mozilla provides free downloadable tools for signing JAR files. For users who
want to simply experiment with this technology, unauthenticated digital certifi-
cates can be generated by tools such as the keytool utility that ships with the Sun
Java Development Kit (JDK). We, however, recommend using a certificate from a
recognized authority for live deployments.

Signed JAR files are not portable. They will only work in Mozilla browsers.
For that reason, we won’t pursue them in any greater detail here. If you're inter-
ested in exploring this approach further, have a look at the URLs in the
Resources section.

This concludes our discussion on interacting with remote services using Ajax.
We've reached to the point where our application is running in the browser,
exchanging data with its server and possibly with third-party servers as well. That
data is unlikely to execute malicious code on your machine, but it may be a secu-
rity risk of a different kind, particularly if the data is confidential. In the next sec-
tion, we’ll see how to safeguard your users’ data from prying eyes.

Protecting confidential data

The web browser that your user is sitting in front of does not enjoy a direct con-
nection to your server. When data is submitted to the server, it is routed across
many intermediate nodes (routers and proxy servers, for instance) on the Inter-
net before it finds your server. Ordinary HTTP data is transmitted in plain text,
allowing any intermediate node to read the data in the packets. This exposes the
data to compromise by anyone who has control of these intermediate nodes, as
we will see.

The man in the middle

Let’s suppose you've just written an Ajax application that sends financial details,
such as bank account numbers and credit card details, across the Internet. A well-
behaved router transmits the packet unchanged without looking at anything
other than the routing information in the packet headers, but a malicious router
(figure 7.6) may read the contents of the transmission (say, looking for credit card
numbers in the content or valid email addresses to add to a spam list), modify
routing information (for example, to redirect the user to a fake site that mimics
the one she is visiting), or even modify the content of the data (to divert funds
from an intended recipient to his own account, for instance).

Ajax uses HTTP both for transmitting the client code and for submitting
data requests to the server. All of the communication methods we’ve looked at—

Licensed to jonathan zheng <yiyisun@gmail.com>

264

7.3.2

CHAPTER 7
Security and Ajax

Web browser

Password

Password

Password

Password
Routing node

Password

Figure 7.6

In an ordinary HTTP transmission,
data is transmitted across the
Internet in plain text, allowing it to be
read or modified at intermediate
nodes by the man in the black hat.

©).

The Internet

hidden IFrames, HTML forms, XMLHttpRequest objects—are identical in this
respect. As with any web-based application, a malicious entity looking to inter-
fere with your service has several points of leverage. Exploiting these weak
points are known as “man-in-the-middle” attacks. Let’s look at the measures we
can take to protect ourselves from them.

Using secure HTTP

If you are concerned about protecting the traffic between your Ajax client and the
server, the most obvious measure you can take is to encrypt the traffic using a
secure connection. The Hypertext Transfer Protocol over Secure Socket Layer
(HTTPS) provides a wrapper around plain-text HTTP, using public-private key
pairs to encrypt data going in both directions. The man in the middle still sees
the data packets, but because the content is encrypted, there is nothing much that
he can do with them (figure 7.7).

HTTPS requires native code support on both the browser and the server. Mod-
ern browsers have good support for HTTPS built in, and most web-hosting firms
now offer secure connections at a reasonable price. HTTPS is computationally
expensive, and transfers binary data. JavaScript is not a natural choice here; just
as we wouldn’t try to reimplement the DOM, CSS, or HTTP using JavaScript,
HTTPS is best viewed as a service that we use, rather than something we can over-
ride and replace for ourselves.

Licensed to jonathan zheng <yiyisun@gmail.com>

Protecting confidential data 265

Web browser

Password

Password

Encryption

XXXXXXXXX

@ XXXXXXXXX
Routing node

XXXXXXXXX

Figure 7.7

Using a secure HTTP connection, data is
encrypted in both directions. Intermediate
nodes still see the encrypted data but lack
the necessary key to decrypt it.

XXXXXXXXX

©).

The Internet

Let us introduce a few caveats about HTTPS. First, the encryption and decryption
do introduce a computational overhead. At the client end, this is not a significant
problem, as a single client need only process one stream of traffic. On the server,
however, the additional load can be significant on a large website. In a classic
web application, it is common practice to transmit only key resources over
HTTPS and send mundane content such as images and boilerplate markup over
plain HTTP. In an Ajax application, you need to be aware of the impact that this
may have on the JavaScript security model, which will recognize http:// and https://
as distinct protocols.

Second, using HTTPS secures only the transmission of data; it is not a com-
plete security solution in itself. If you securely transmit your users’ credit card
details using 128-bit SSL encryption and then store the information in an
unpatched database that has been infected with a backdoor exploit, the data will
still be vulnerable.

Nonetheless, HTTPS is the recommended solution for transferring sensitive
data across the network. However, we do recognize that it has its costs and might
not be within easy reach of the small website owner. For those with more modest
security requirements, we next present a plain HTTP mechanism for transmitting
encrypted data.

Licensed to jonathan zheng <yiyisun@gmail.com>

266

CHAPTER 7
Security and Ajax

7.3.3 Encrypting data over plain HTTP using JavaScript

Let’s suppose that you run a small website that doesn’t routinely transmit sensi-
tive data requiring secure connections. You do ask users to log in, however, and
are troubled by the passwords being sent as plain text for verification.

In such a scenario, JavaScript can come to your aid. First, let’s describe the
overview of the solution and then look at the implementation.

Public and private keys

Rather than transmitting the password itself, we can transmit an encrypted form
of the password. An encryption algorithm will generate a random-looking, but
predictable, output from an input string. MD5 is an example of such an algorithm.
It has a few key features that make it useful for security. First, MD5-ing a piece of
data will always generate the same result, every time. Second, two different
resources are monumentally unlikely to generate the same MD5 digest. Taken
together, these two features make an MD5 digest (that is, the output of the algo-
rithm) of a resource a rather good fingerprint of that resource. The third feature
is that the algorithm is not easy to reverse. The MD5 digest can therefore be freely
passed about in the open, without the risk of a malicious entity being able to use it
to decrypt the message.

For example, the MD5 algorithm will generate the digest string
“8bd04bbe6ad2709075458c03b6ed6c5a” from the password string “Ajax in
action” every time. We could encrypt it on the client and transmit the encrypted
form to the server. The server would then fetch the password for the user from
the database, encrypt it using the same algorithm, and compare the two strings. If
they match, the server would log us in. At no time did our unencrypted password
go across the Internet.

We can’t transmit the straight MD5 digest across the Internet in order to log in,
however. A malicious entity might not be able to figure out that it was generated
from “Ajax in action”, but they would soon learn that that particular digest grants
them access to our site account.

This is where public and private keys come in. Rather than encrypting just our
password, we will encrypt a concatenation of our password and a random
sequence of characters supplied by the server. The server will supply us with a dif-
ferent random sequence every time we visit the login screen. This random
sequence is transmitted across the Internet to the client.

On the client tier, when the user enters her password, we append the random
string and encrypt the result. The server has remembered the random string for
the duration of this login attempt. It can therefore retrieve the user id, pull the

Licensed to jonathan zheng <yiyisun@gmail.com>

Protecting confidential data 267

correct password for that user from its database, append the random term,
encrypt it, and compare the results. If they match, it lets us in. If they don’t (say
we mistype our password), it presents the login form again, but with a different
random string this time.

Let’s say that the server transmits the string “abcd”. The MD5 digest of “Ajax
in actionabed” is “€992dc25b47384202306a61f03f3787.” On the next request, it
transmits the string “wxyz”, for which we generate a completely different digest,
“3f2da3b3ee2795806793c56bf00a8b94.” A malicious entity can see each random
string, and match them to the encrypted hashes, but has no way of deducing the
password from these pairs of data. So, unless it gets lucky enough to be snooping
a message whose random string it has seen before, it will be unable to hijack the
login request.

The random string is the public key. It is visible to all, and disposable. Our
password is the private key. It is long-lived, and is never made visible.

A JavaScript implementation
Implementing this solution requires an MD5 generator at both the client and the
server. On the client, Paul Johnston has written a freely available generator
library in JavaScript (see the Resources section). Using his code is just a matter of
including the library and invoking a simple function:

<script type='text/javascript' src='md5.js'></script>

<script type='text/javascript'>

var encrypted=str_md5('Ajax in action');

//now do something with it...
</script>

On the server tier, MD5 algorithms are available for most popular languages. PHP
has had a built-in md5 () function since version 3. The java.security.Message-
Digest class provides a base implementation for Java encryption algorithms and
implementations of a number of common algorithms, including MD5. The .NET
Framework provides a System. Security.Cryptography.MD5 class.

This technique has limited usefulness, since the server must already know the
data being encrypted in order to facilitate a comparison. It is ideal as a means of
providing secure login capabilities without recourse to HTTPS, although it can’t
substitute for HTTPS as an all-around secure transmission system.

Let’s review where are now. The server of origin policy is safeguarding our
users’ computers from malicious code. Data exchanged between the client and
the server is protected from man-in-the-middle attacks by HTTPS. In the final
section, let’s look at a third point of attack, the server itself. You'll learn how to
secure your own web services from unwanted visitors.

Licensed to jonathan zheng <yiyisun@gmail.com>

268

CHAPTER 7
Security and Ajax

7.4 Policing access to Ajax data streams

7.4.1

Let’s begin by reviewing the standard Ajax architecture, in order to identify the
vulnerability that we’ll discuss in this section. The client, once it is running in the
user’s browser, makes requests to the server using HTTP. These requests are ser-
viced by web server processes (servlets, dynamic pages, or whatever) that return
streams of data to the client, which it parses. Figure 7.8 summarizes the situation.

The web services or pages are accessible by external entities, without any addi-
tional work on our part—that’s just how the Internet works. It may be that we
encourage outsiders to use our web services in this way, and we may even publish
an API, as eBay, Amazon, and Google, among others, have done. Even in this case,
though, we need to keep security in mind. There are two things we can do, which
we discuss in the following two sections. First, we can design our web services
interface, or API, in such a way that external entities cannot subvert the purpose of
our web application—say, by ordering goods without paying for them. Second, we
look at techniques to restrict access to the web services to particular parties.

Designing a secure web tier

When we design a web application, we typically have an end-to-end workflow in
mind. In a shopping site, for example, the users will browse the store, adding items
to their baskets, and then proceed to checkout. The checkout process itself will

Web browser

Data stream

exposes web services to the
Internet over a standard protocol,
typically HTTP. The Ajax client
fetches streams of data from the
server. Because of the public nature
of the web services, external
entities may request the data
External entity directly, bypassing the client.

»@ Figure 7.8
In an Ajax architecture, the server

The Internet

Web services
N/

Licensed to jonathan zheng <yiyisun@gmail.com>

Policing access to Ajax data streams 269

have a well-defined workflow, with choice of delivery address, shipping options,
payment methods, and confirmation of order. As long as our application is calling
the shots, we can trust that the workflow is being used correctly. If an external
entity starts to call our web services directly, however, we may have a problem.

Screen scrapers and Ajax

A classic web application is vulnerable to “screen-scraping” programs that
traverse these workflows automatically, crafting HTTP requests that resemble
those generated by a user filling in a form. Screen-scrapers can deprive sites of
advertising revenue and skew web statistics. More seriously, by automating what is
intended to be an interaction between a human and the application, they can sub-
vert the workflow of the application, calling server events out of order, or they can
overload server processes by repetitive submission. From a security perspective,
they are generally considered problematic.

The data in a classic web application’s pages is often buried within a heap of
boilerplate HTML and decorative content. In a well-factored Ajax application, the
web pages sent to the client are much simpler, well-structured data. Separation of
concerns between presentation and logic is good design, but it also makes the job
of a screen-scraper easier, because the data returned from the server is designed
to be parsed rather than rendered in a browser. Screen-scraping programs tend
to be fragile and are prone to break when the look and feel of the site changes.
Visual makeovers of an Ajax client are less likely to alter the signatures of the
underlying web services that the client application uses to communicate to the
server. To protect the integrity of our application, we need to give some thought
to these issues when designing the structure of the high-level API used to commu-
nicate between client and server. By API, we don’t mean HTTP or SOAP or XML,
but the URLs of the dynamic pages and the parameters that they accept.

Example: online battleship game
To illustrate how the design of a web service API affects the security of the appli-
cation, let’s look at a simplistic example. We’re developing an online version of
the classic board game Battleship (see the Resources section), which will be played
using an Ajax client that communicates to the server using web services. We want
to ensure that the game is cheat-proof, even if a malicious player hacks the client,
making it send data to the server out of turn.

The aim of the game is for each player to guess the position of the other’s
boats. The game consists of two phases. First, the players each position their
pieces on the board. Once this is done, they take turns at guessing particular

Licensed to jonathan zheng <yiyisun@gmail.com>

270

CHAPTER 7
Security and Ajax

Client 1

Server

Client 2

Figure 7.9 Data models in an Ajax-based game of Battleship. Once
the pieces are positioned, the server will maintain a map of both
players’ pieces. The clients will initially model only their own pieces
but build up a model of their opponent’s as the game progresses.

squares on the board, to see if they can sink the other player’s ships. The master
copy of the board is stored on the server during a game, with each client also
maintaining a model of its own half of the board and a blank copy of the other
player’s board, which gradually gets filled in as their ships are discovered
(figure 7.9).

Let’s look at the setup stage. First, the board is wiped clean. Then each piece is
placed on the board, until all pieces are placed. There are two ways that we can
design the service calls that the clients will make to the server during setup. The
first is to use a fine-grained approach, with calls to clear the board and to add a
given piece at a given position. During the setup phase, the server would be hit
several times, once to clear the board and once to position each piece. Table 7.2
describes the fine-grained setup’s API.

Licensed to jonathan zheng <yiyisun@gmail.com>

Policing access to Ajax data streams 271

Table 7.2 Fine-grained web API for Battleship game setup phase

URL Arguments Return Data
clearBoard.do userid Acknowledgment
positionShip.do userid shiplength Acknowledgment or error

coordinates (x,y) format
orientation (N,S,E or W)

The second design is a coarse-grained approach, in which a single service call
clears the board and positions all pieces. Under this approach, the server is hit
only once during setup. Table 7.3 describes this alternative API.

Table 7.3 Coarse-grained web API for Battleship game setup phase

URL Arguments Return Data

setupBoard.do userid Acknowledgment or error
coordinates array of (x,y,length,
orientation) structs

We already contrasted these two styles of service architecture when we discussed
SOA in chapter 5. The single network call is more efficient and provides better
decoupling between tiers, but it also helps us to secure our game.

Under the fine-grained approach, the client takes on the responsibility of
checking that the correct number and type of pieces are placed, and the server
model takes on the responsibility of verifying the correctness of the system at the
end of the setup. Under the coarse-grained approach, this checking is also writ-
ten into the document format of the service call.

Once setup is completed, an additional service call is defined to represent a
turn of the game, in which one player tries to guess the position of another’s ship.
By the nature of the game, this has to be a fine-grained service call representing a
guess for a single square, as shown in table 7.4.

Table 7.4 Web API for Battleship game play phase (used for both fine- and coarse-grained setup styles)

URL Arguments Return Type
guessPosition.do userid “hit,” “miss,” or “not your turn”
coordinates (x,y) plus update of other player’s last
guess

Licensed to jonathan zheng <yiyisun@gmail.com>

272

7.4.2

CHAPTER 7
Security and Ajax

Under correct game play, both users may set up their pieces in any order and will
then call the URL guessPosition.do in turn. The server will police the order of
play, returning a “not your turn” response if a player tries to play out of turn.

Let’s now put on our black hats and try to hack the game. We’ve written a cli-
ent that is able to call the web service API in any order it likes. What can we do to
tip the odds in our favor? We can’t give ourselves extra turns because the server
monitors that—it’s part of the published API.

One possible cheat is to move a piece after the setup phase is finished. Under
the fine-grained architecture, we can try calling positionShip.do while the game
is in progress. If the server code has been well written, it will note that this is
against the rules and return a negative acknowledgment. However, we have noth-
ing to lose by trying, and it is up to the server-side developer to anticipate these
misuses and code defensively around them.

On the other hand, if the server is using the coarse-grained API, it isn’t possi-
ble to move individual pieces without also clearing the entire board. Fine-tuning
the game in your favor isn’t a possibility.

A coarse-grained API limits the flexibility of any malicious hacker, without
compromising the usability for law-abiding users. Under a well-designed server
model, use of a fine-grained API shouldn’t present any exploits, but the number of
entry points for potential exploits is much higher, and the burden of checking
these entry points for security flaws rests firmly with the server tier developer.

In section 5.3.4, we suggested using a Facade to simplify the API exposed by a
service-oriented architecture. We recommend doing so again here, from a secu-
rity standpoint, because a simpler set of entry points from the Internet is easier
to police.

Design can limit the exposure of our application to external entities, but we
still need to offer some entry points for our legitimate Ajax client to use. In the
following section, we examine ways of securing these entry points.

Restricting access to web data

In an ideal world, we would like to allow access to the dynamic data served from
our app to the Ajax client (and possibly other authorized parties) and prevent
anybody else from getting in. With some rich-client technologies, we would have
the opportunity of using custom network protocols, but the Ajax application is
limited to communicating over HTTP. Secure HTTP can keep the data in individ-
ual transactions away from prying eyes, as we discussed earlier, but it can’t be used
to determine who gets to call a particular URL.

Licensed to jonathan zheng <yiyisun@gmail.com>

Policing access to Ajax data streams 273

Fortunately, HTTP is quite a rich protocol, and the XMLHttpRequest object
gives us a good level of fine-grained control over it. When a request arrives on the
server, we have access to a range of HTTP headers from which we can infer things
about the origin of the request.

Filtering HTTP requests

For the sake of providing concrete examples, we’ll use Java code here. Other
server-side technologies offer similar ways to implement the techniques that we
are describing, too. In the Java web application specification, we can define
objects of type javax.servlet.Filter, which intercept specific requests before
they are processed at their destination. Subclasses of Filter override the doFil-
ter () method and may inspect the HT TP request before deciding whether to let it
through or forward it on to a different destination. Listing 7.5 shows the code for
a simple security filter that will inspect a request and then either let it through or
forward it to an error page.

public abstract class GenericSecurityFilter implements Filter {
protected String rejectUrl=null;
public void init(FilterConfig config)
throws ServletException {
rejectUrl=config.getInitParameter ("rejectUrl"); " Configure reject URL

public void doFilter (
ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException {

if (isvalidRequest (request)) ({ <+—@) Check request validity
chain.doFilter (request, response);
telse if (rejectUrl!=null){ <€) Forward to reject URL

RequestDispatcher dispatcher
=request.getRequestDispatcher (rejectUrl) ;
dispatcher. forward(request, response);

protected abstract boolean
isValidRequest (ServletRequest request) ;

public void destroy () {}
}

Licensed to jonathan zheng <yiyisun@gmail.com>

274

CHAPTER 7
Security and Ajax

The filter is an abstract class, defining an abstract method isvalidrequest () that
inspects the incoming request object before passing a verdict. If the method fails
@, it is forwarded to a different URL @), which is defined in the configuration file
for the web application @), which we’ll look at shortly.

This filter provides us with considerable flexibility in defining a concrete sub-
class. We can adapt it to more than one security strategy.

Using the HTTP session

One common approach is to create a token in the user’s HTTP session when she
logs in and check for the existence of that object in session during subsequent
requests before performing any other actions. Listing 7.6 demonstrates a simple
filter of this type.

public class SessionTokenSecurityFilter
extends GenericSecurityFilter {
protected boolean isValidRequest (ServletRequest request) {
boolean valid=false;
HttpSession session=request.getSession() ;
if (session!=null) {
UserToken token=(Token) session.getAttribute('userToken');
if (token'!=null) {
valid=true;
}
}

return valid;

This technique is commonly used in conventional web applications, typically for-
warding to a login screen if validation fails. In an Ajax application, we are free to
return a much simpler response in XML, JSON, or plain text, which the client
could respond to by prompting the user to log in again. In chapter 11, we discuss
a fuller implementation of such a login screen for our Ajax Portal application.

Using encrypted HTTP headers

Another common strategy for validating a request is to add an additional header
to the HTTP request and check for its presence in the filter. Listing 7.7 shows a
second example filter that looks for a specific header and checks the encrypted
value against a known key held on the server.

Licensed to jonathan zheng <yiyisun@gmail.com>

Policing access to Ajax data streams ‘ 275

Listing 7.7 HTTP header-checking filter

public class SecretHeaderSecurityFilter
extends GenericSecurityFilter {
private String headerName=null;
public void init(FilterConfig config) throws ServletException {
super.init (config) ;
headerName=config.getInitParameter ("headerName") ; <— Configure header
} name

protected boolean isValidRequest (ServletRequest request) {
boolean valid=true;

HttpServletRequest hrequest=(HttpServletRequest)request;
if (headerName!=null) {
valid=false;
String headerVal=hrequest.getHeader (headerName) ; " Get header value
Encrypter crypt=EncryptUtils.retrieve (hrequest) ;
if (crypt!=null) {

valid=crypt.compare (headerval) ; 0 Compare header value

}

return valid;

When testing the request, this filter reads a specific header name @ and com-
pares it with an encrypted value stored in the server session @. This value is tran-
sient and may be generated randomly for each particular session in order to
make the system harder to crack. The Encrypter class uses the Apache Commons
Codec classes and javax.security.MessageDigest classes to generate a hex-
encoded MD5 value. The full class listing is available in the downloadable code

that accompanies this book. The principle of deriving a hex-encoded MD5 in Java
is shown here:

MessageDigest digest=MessageDigest.getInstance("MD5") ;
byte[] data=privKey.getBytes();

digest.update (data) ;

byte[] raw=digest.digest (pubKey.getBytes());

byte[] b64=Baseb64d.encodeBaseb4d (raw) ;

return new String(b64);

where privkey and pubkey are the private and public keys, respectively. To
configure this filter to review all URLs under the path /Ajax/data, we can

add the following filter definition to the web.xml configuration file for our
web application:

Licensed to jonathan zheng <yiyisun@gmail.com>

276

CHAPTER 7
Security and Ajax

<filter id='securityFilter_1'>
<filter-name>HeaderChecker</filter-name>
<filter-class>
com.manning.ajaxinaction.web.SecretHeaderSecurityFilter
</filter-class>
<init-param id='securityFilter_1_param_1'>
<param-name>rejectUrl</param-name>
<param-value>/error/reject.do</param-value>
</init-param>
<init-param id='securityFilter_1_param_2'>
<param-name>headerName</param-name>
<param-value>secret-password</param-value>
</init-param>
</filter>

This configures the filter to forward rejected requests to the URL /error/reject.do,
after checking the value of HTTP header “secret-password.” To complete the
configuration, we define a filter mapping to match this filter to everything under
a specific path:
<filter-mapping>
<filter-name>HeaderChecker</filter-name>
<url-pattern>/ajax/data/*</url-pattern>
</filter-mapping>
On the client side, the client can generate Base64 MD5 digests using Paul John-
ston’s libraries (which we discussed earlier in this chapter). To add the required
HTTP header on our Ajax client, we use the setRequestHeader () method, as out-
lined here:
function loadXml (url) {
var reg=null;
if (window.XMLHttpRequest) {
reg=new XMLHttpRequest() ;
} else if (window.ActiveXObject) {
reg=new ActiveXObject ("Microsoft.XMLHTTP") ;
}
if (req)
req.onreadystatechange=onReadyState;
reqg.open('GET',url, true) ;

req.setRequestHeader ('secret-password', getEncryptedKey()) ;
req.send (params) ;

}

where the encryption function is simply defined as the Base64 MD5 digest of a
given string:

Licensed to jonathan zheng <yiyisun@gmail.com>

7.5

Summary 277

var key="password";

function getEncryptedKey () {
return b64_md5 (key) ;

}

This solution still requires us to initially communicate the variable key to the Ajax
client. We might send the key for the session over HI'TPS when the user logs into
the application. In reality, the key would be something random, not a string as
simple as “password” of course.

The strength of this particular solution is that the HTTP header information
can’t be modified from a standard hyperlink or HTML form. Requiring the
hacker to use a programmatic HTTP client will stop the less determined ones, at
least. Of course, as the use of XMLHttpRequest becomes more prevalent, the
knowledge of how to craft HTTP headers within web page requests will spread.
Programmatic HTTP clients such as Apache’s HTTPClient and Perl LWP::User-
Agent have been able to do this for a long time.

Ultimately, filters and similar mechanisms can’t make it impossible for exter-
nal agents to get into your site, but they can make it more difficult. Like any other
developer, evil hackers have limited resources and time on their hands, and by
securing your application in the various ways we have outlined above, you cer-
tainly discourage casual interference with your data services.

This concludes our discussion of security for Ajax applications. There are sev-
eral aspects to securing an Ajax application that we haven’t covered here, because
they are largely the same as for a classic web application. A good authentication
and authorization mechanism helps to control access to services based on roles
and responsibilities. Standard HTTP headers can be used to verify the origin of
callers, making it harder (but not impossible) to invoke the services outside the
official channels. We recommend consulting the literature on web-based security
for those of you with a deeper interest in securing your Ajax applications.

Finally, remember that security isn’t an absolute state. Nothing is ever com-
pletely secure. The best that you can hope for is to be one step ahead of any
intruders. Using HTTPS where relevant, minimizing exposure of your web-
based API, and judiciously using HTTP request checking are all good steps in
that direction.

Summary

In this chapter, we discussed security implications of using Ajax. We concen-
trated on security issues that were different for Ajax than for conventional web

Licensed to jonathan zheng <yiyisun@gmail.com>

278

7.6

CHAPTER 7
Security and Ajax

applications. First, we looked at the sandbox governing the use of JavaScript
within the web browser and the rules that prevent code from different sources
from interacting with each other. We saw how to relax the server of origin policy,
with the user’s consent, in order to access third-party Internet services such as
the Google API.

Second, we looked at ways of protecting data as it passes between the client
and the server. HTTPS is the recommended industry-strength solution here, but
we also presented a simple Ajax-based way of transmitting passwords securely
over plain-text HTTP. Finally, we saw how Ajax has a specific vulnerability owing
to the way raw data is provided for consumption from the server. Having evalu-
ated this as a serious threat in some cases, we looked at ways of designing the
server architecture to minimize exposure to such risks. We also described ways of
programming the server to make external access to data more difficult.

The issues that we’ve tackled in this chapter should help you to tighten up
your Ajax applications for use in the real world. In the next chapter, we continue
the theme of grim realities with a look at performance issues.

Resources

Keys for the Google web service APIs may be obtained at http://www.google.com/
apis/.

The JavaScript MD5 libraries of Paul Johnston can be found at http://
pajhome.org.uk/crypt/md5/mdbsrc.html. For those wanting a quick taste of MD5,
visit the online checksum generator at www.fileformat.info/tool/hash.htm?text=
ajax+in+action.

The Apache Commons Codec library for Java, which we used to generate our
Base64-MD5 on the server, can be downloaded at http://jakarta.apache.org/com-
mons/codec/.

In section 7.1, we looked at signing JAR files to create secure applications for
Mozilla browsers. The official word on that can be found at www.mozilla.org/
projects/security/components/signed-scripts.html. You'll find some background
information on the Battleship game at http://gamesmuseum.uwaterloo.ca/vex-

hibit/Whitehill/Battleship/.

Licensed to jonathan zheng <yiyisun@gmail.com>

Performance

This chapter covers
= Profiling Ajax applications
m Managing memory footprints

m Using design patterns for consistent
performance

m Handling browser-specific performance issues

279

Licensed to jonathan zheng <yiyisun@gmail.com>

280

8.1

CHAPTER 8
Performance

In the previous three chapters, we have built up our understanding of how Ajax
applications can be made robust and reliable—able to withstand real-life usage
patterns and changes in requirements. Design patterns help us to keep our code
organized, and the principle of separation of concerns keeps the coupling in our
code low enough to allow us to respond quickly to changes without breaking things.

Of course, to make our application really useful, it also has to be able to func-
tion at a reasonable speed and without bringing the rest of our user’s computer
to a grinding halt. So far, we’'ve been operating in a high-tech Shangri-la in
which our user’s workstations have infinite resources and web browsers know how
to make use of them effectively. In this chapter, we’ll descend to the grubby side
streets of the real world and look at the issue of performance. We’ll be taking our
idealistic refactoring and design patterns with us. Even down here, they can pro-
vide a vocabulary—and valuable insights—into performance issues that we
might encounter.

What is performance?

The performance of a computer program hinges on two factors: how fast it can run
and how much of the system resources (most crucially, memory and CPU load) it
takes up. A program that is too slow is frustrating to work with for most tasks. In a
modern multitasking operating system, a program that makes the rest of a user’s
activities grind to a halt is doubly frustrating. These are both relative issues.
There is no fixed point at which execution speed or CPU usage becomes accept-
able, and perception is important here, too. As programmers, we like to focus on
the logic of our applications. Performance is a necessary evil that we need to keep
an eye on. If we don’t, our users will certainly remind us.

Like chess, computer languages offer self-contained worlds that operate by a
well-specified set of rules. Within that set of rules, everything is properly defined
and fully explicable. There is a certain allure to this comfortable clockwork world,
and as programmers, we can be tempted to believe that the self-contained rules
fully describe the system that we’re working on to earn our daily bread. Modern
trends in computer languages toward virtual machines reinforce this notion that
we can write code to the spec and ignore the underlying metal.

This is completely understandable—and quite wrong. Modern operating sys-
tems and software are far too complicated to be understood in this mathemati-
cally pure way, and web browsers are no exception. To write code that can actually
perform on a real machine, we need to be able to look beyond the shiny veneer of
the W3C DOM spec or the ECMA-262 specification for JavaScript and come to

Licensed to jonathan zheng <yiyisun@gmail.com>

8.2

JavaScript execution speed 281

grips with the grim realities and compromises built into the browsers that we
know and love. If we don’t acknowledge these lower layers of the software stack,
things can start to go wrong.

If our application takes several seconds to respond to a button being clicked or
several minutes to process a form, then we are in trouble, however elegant the
design of the system. Similarly, if our application needs to grab 20MB of system
memory every time we ask it what the time is and lets go of only 15MB, then our
potential users will quickly discard it.

JavaScript is (rightly) not known for being a fast language, and it won’t per-
form mathematical calculations with the rapidity of hand-tuned C. JavaScript
objects are not light either, and DOM elements in particular take up a lot of mem-
ory. Web browser implementations too tend to be a little rough around the edges
in many cases and prone to memory leaks of their own.

Performance of JavaScript code is especially important to Ajax developers
because we are boldly going where no web programmer has gone before. The
amount of JavaScript that a full-blown Ajax application needs is significantly
more than a traditional web application would use. Further, our JavaScript objects
may be longer lived than is usual in a classic web app, because we don’t refresh
the entire page often, if at all.

In the following two sections, we’ll pursue the two pillars of performance,
namely, execution speed and memory footprint. Finally, we’ll round out this chapter
with a case study that demonstrates the importance of naming and understanding
the patterns that a developer uses when working with Ajax and with the DOM.

JavaScript execution speed

We live in a world that values speed, in which things have to get finished yester-
day. (If you don’t live in such a world, drop me a postcard, or better still, an immi-
gration form.) Fast code is at a competitive advantage to slower code, provided
that it does the job, of course. As developers of code, we should take an interest in
how fast our code runs and how to improve it.

As a general rule, a program will execute at the speed of its slowest subsystem.
We can time how fast our entire program runs, but having a number at the end of
that won’t tell us very much. It’s much more useful if we can also time individual
subsystems. The business of measuring the execution speed of code in detail is
generally known as profiling. The process of creating good code, like creating
good art, is never finished but just stops in interesting places. (Bad code, on the
other hand, often just stops in interesting places.) We can always squeeze a little

Licensed to jonathan zheng <yiyisun@gmail.com>

282

8.2.1

CHAPTER 8
Performance

more speed out of our code by optimizing. The limiting factor is usually our time
rather than our skill or ingenuity. With the help of a good profiler to identify the
bottlenecks in our code, we can determine where to concentrate our efforts to get
the best results. If, on the other hand, we try to optimize our code while writing it,
the results can be mixed. Performance bottlenecks are rarely where one would
expect them to be.

In this section, we will examine several ways of timing application code, and
we’ll build a simple profiling tool in JavaScript, as well as examine a real profiler
in action. We’ll then go on to look at a few simple programs and run them
through the profiler to see how best to optimize them.

Timing your application the hard way

The simplest tool for measuring time that we have at our disposal is the system
clock, which JavaScript exposes to us through the Date object. If we instantiate a
Date object with no arguments, then it tells us the current time. If one Date is sub-
tracted from another, it will give us the difference in milliseconds. Listing 8.1
summarizes our use of the Date object to time events.

function myTimeConsumingFunction () {
var beginning=new Date() ;

//do something interesting and time-consuming!
var ending=new Date() ;
var duration=ending-beginning;

alert ("this function took "+duration
+"ms to do something interesting!");

We define a date at each end of the block of code that we want to measure, in this
case our function, and then calculate the duration as the difference between the
two. In this example, we used an alert () statement to notify us of the timing, but
this will work only in the simplest of cases without interrupting the workflow that
we are trying to measure. The usual approach to gathering this sort of data is to
write it to a log file, but the JavaScript security model prevents us from accessing
the local filesystem. The best approach available to an Ajax application is to store
profiling data in memory as a series of objects, which we later render as DOM
nodes to create a report.

Licensed to jonathan zheng <yiyisun@gmail.com>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp

JavaScript execution speed 283

Note that we want our profiling code to be as fast and simple as possible while
the program is running, to avoid interfering with the system that we are trying to
measure. Writing a variable to memory is much quicker than creating extra DOM
nodes during the middle of the program flow.

Listing 8.2 defines a simple stopwatch library that we can use to profile our
code. Profiling data is stored in memory while the test program runs and ren-
dered as a report afterward.

Listing 8.2 stopwatch.js

var stopwatch=new Object () ;
stopwatch.watches=new Array () ; <— Array of registered timers

stopwatch.getWatch=function(id, startNow){ <— Entry point for client code
var watch=stopwatch.watches[id];
if (!watch) {
watch=new stopwatch.StopWatch (id) ;
}
if (startNow) {
watch.start () ;
}
return watch;

}

stopwatch.StopWatch=function (id) { <+— Stopwa